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Abstract. At FSE’15, Mennink introduced two tweakable block ciphers,
F̃ [1] and F̃ [2], both utilizing an n-bit tweak. It was demonstrated that

F̃ [1] is secure for up to 22n/3 queries, while F̃ [2] is secure for up to 2n

queries, assuming the underlying block cipher is an ideal cipher with n-
bit key and n-bit data. Later, at ASIACRYPT’16, Wang et al. showed a
birthday bound attack on Mennink’s design (which was later corrected in
the eprint version eprint 2015/363) and proposed 32 new candidates for
tweakable block ciphers that are derived from n-bit ideal block ciphers.
It was shown that all the 32 constructions are provably secure up to 2n

queries. All the proposed designs by both Mennink and Wang et al. admit
only n-bit tweaks. In FSE’23, Shen and Standaert proposed a tweakable
block cipher, G̃2, which uses 2n-bit tweaks and is constructed from three
n-bit block cipher calls, proving its security up to n bits, assuming that
the underlying block cipher is an ideal cipher. They have also shown that
it is impossible to design a tweakable block cipher with 2n-bit tweaks
using only two n-bit block cipher calls while achieving security beyond
the birthday bound. In this paper, we advance this research further.
We show that any tweakable block cipher design with 3n-bit tweaks
based on only three block cipher calls, where at least one key is tweak-
independent, is vulnerable to a birthday bound distinguishing attack. We

then propose a tweakable block cipher, G̃3

∗
that uses three block cipher

calls and admits 3n-bit tweaks, achieves security up to O(22n/3) queries
when all three block cipher keys are tweak-dependent. Furthermore, we
prove that using four ideal block cipher calls, with at least one key being
tweak-dependent, is necessary and sufficient to achieve n-bit security for
a tweakable block cipher that admits 3n-bit tweaks. Finally, we propose
a tweakable block cipher, G̃r, which uses (r + 1) block cipher calls and
processes rn-bit tweaks, achieving security up to O(2n) queries when at
least one block cipher key is tweak-dependent.



1 Introduction

A block cipher is a family of permutations that is indexed via a secret key.
Over time, block ciphers have gained widespread acceptance as a fundamental
cryptographic object. However, their applicability is somewhat constrained due
to the specific utilization of block ciphers within various modes of operation.
Consequently, the adaptability of the cipher itself is limited. To address this
limitation, a significant number of applications that involve block ciphers are
either implicitly or explicitly designed from a tweakable block cipher (TBC).

Tweakable block cipher, as an additional fundamental cryptographic building
block, serves to introduce variability within the cipher’s structure. It is defined
as a family of permutations Ẽ : K×T ×{0, 1}n → {0, 1}n indexed by secret key
k ∈ K and public tweak t ∈ T . The prototype of a TBC originally appeared in the
Schroeppel’s Hasty Pudding Cipher [Sch], a submission to the NIST competition
for Advanced Encryption Standard (AES) [NIS00], where an extra input, called
“spice” was introduced by the designer besides the key and the plaintext, to a
block cipher. The intention of this extra input is to randomize the choice of the
permutation family, i.e., different values of the spice corresponds to different and
independent permutation families. This design feature was later formalised by
Liskov, Rivest and Wagner [LRW02,LRW11] as a TBC.

TBCs have found diverse applications, notably in designing of authenti-
cated encryption schemes like Deoxys [JNPS21], Romulus [IKMP20], and sev-
eral other candidates of NIST and CAESAR competetions [GLS+, JNPa, JNPb,
Wan,HKR15,JNPS21]. Besides, several other authenticated encryption schemes
[CS08a,ABL+13,GJMN16,PS16,BBB+20,Hir20,NS20,BBN22] also use TBCs
as building blocks. Apart from designing AE schemes, TBCs have diverse ap-
plication in designing wide block encryption modes [BLN18,NI22], message au-
thentication codes [CS08a, Nai15, CLS17, IMPS17a, Nai19, CIL+20], and hash
functions [FLS+,GIK+,Hir22].

1.1 Design Landscape of Tweakable Block Cipher

Liskov et al. first proposed two provably secure tweakable block cipher construc-
tions LRW1 and LRW2, which are build out of n-bit block ciphers. Related to
the LRW2 construction is the XEX construction by Rogaway [Rog04], and ex-
tensions of it by Chakraborty and Sarkar [CS06] and Minematsu [Min06], which
effectively reduces the key space to n bits. However, all of them are birthday
bound secure under the assumption that the underlying block cipher is a secure
strong pseudorandom permutation 6.

Landecker et al. [LST12] showed that cascading two LRW2 constructions
achieves security up to 22n/3 queries. However, the original proof in [LST12] had
a flaw, pointed out Procter [Pro14], and suggsted a fix. Subsequent works [JN20,
LS13] have improved the bound of Landecker et al.

6 Informally, a block cipher is said to be a strong pseudorandom permutation if it is
hard to distinguish the block cipher and its inverse from a random permutation and
its inverse.
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In [BGGS20], Bao et al. have shown that three round cascading of LRW1
constructions, dubbed as TNT, achieves 2n/3 bit CCA security. Later, Khairal-
lah [Kha23] have shown a birthday bound CCA distiguishing attack on the
construction. Subsequent works have either extended the TNT construction to r
round [ZQG23] or proved the security of TNT in less stronger model [GGLS20].
Datta et al. [Dut20] and Jha et al. [JKNS23] have independently shown that
cascading four independent instances of the LRW1 construction achieves CCA
security up to 23n/4 queries. Furthermore, Jha et al. [JKNS23] have also improved
the security bound of [ZQG23] up to r = 8 and the security bound of [LS13] up
to r = 6. In a recent work, Bhaumik et al. [BCD+24] have shown some efficient
variants of TNT construction and proved similar level of security bound. All the
above designs have been proven secure under the assumption that the underly-
ing block cipher behaves as a strong pseudorandom permutation. Furthermore,
none of the above designs are secure up to 2n queries, where n denotes the block
length of the block cipher. We would like to point out that there have been no
efficient block cipher based tweakable block cipher designs which are proven se-
cure up to 2n queries under the assumption that the underlying block cipher is
a strong pseudorandom permutation. Although r-round cascading of LRW2 or
LRW1 construction provides rn/r+1 bit security [LST12,ZQG23], which is close
to n bits of security in asymptotic sense, however, it requires r many block ci-
pher and r+1 hash function evaluations (for cascading LRW2). Alternatively, by
using a tweak-dependent key, Minematsu’s design [Min09] can achieve beyond-
birthday-bound security max{2n/2, 2n − |t|} in the standard model when the
tweak size t is shorter than n/2 bits.

1.2 Tweakable Block Cipher Design in the Ideal-Cipher Model

In [Men15a], Mennink proposed two tweakable block ciphers F̃ [1] and F̃ [2] which

are build of a n-bit block cipher with n-bit key and has shown that F̃ [1] achieves

2n/3 bit security whereas F̃ [2] achieves n-bit security. However, the security
proof relies on the ideal cipher model where we assume that the underlying
block cipher behaves like an ideal cipher. Later in [WGZ+16], Wang et al. have
identified a flaw in Mennink’s design, which was later corrected in [Men15b], and
mounted a key recovery attack on the construction in O(2n/2) query complex-
ity. In addition to this, Wang et al. proposed 32 additional block cipher based
tweakable block ciphers and showed each one of them achieves n-bit security. As
before, the security proof of the constructions are based on the assumption that
the underlying block cipher is an n-bit ideal cipher with n-bit bit key.

Both the constructions by Mennink and that of Wang et al. admit tweak
of length n bits. To incorporate variable length tweak, Jha et al. [JLM+17]
proposed XHX construction and proved its security up to 2(n+k)/2 queries under
the assumption that the underlying block cipher is an n-bit ideal cipher with
k-bit key. Later in [LL18], Lee et al. have extended XHX to XHX2 and proved its
security up to min{22(n+k)/3, 2n+k/2−logn}. Note that, XHX is birthday bound
secure with respect to the input length of the block cipher, i.e., n + k. On the
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other hand, XHX2 is secure beyond the birthday bound secure with respect to
the input length of the block cipher. However, if k ≥ n, then XHX is secure up
to 2n queries whereas XHX2 is secure up to 24n/3 queries. 7

Both the constructions XHX and XHX2 employs keyed hash functions to
process arbitrary length tweak. In particular, XHX makes two hash function
calls and that of XHX2 makes four calls. In [SS23] Shen and Standaert studied
how to design tweakable block ciphers from block cipher that process large size
tweak, i.e., tweaks of length more than n bits without using any hash function.
In particular, they have studied designing tweakable block ciphers with 2n-bit
tweak from an n-bit block cipher, under the assumption that the underlying
block cipher is an n-bit ideal cipher with n-bit key. It was shown that one cannot
get a beyond the birthday bound secure tweakable block cipher that admits 2n-
bit tweaks, by making only two block cipher calls. Furthermore, authors have
demonstrated that to obtain an n-bit secure block cipher based tweakable block
cipher that admits 2n-bit tweak, one needs to make three block cipher calls.
In particular, they have shown that their proposed tweakable block cipher G̃2,
which is build out of three block cipher invocations, is secure up to 2n queries
based on the assumption that the underlying block cipher is an n-bit ideal cipher
with n-bit key. It was conjectured in [SS23] that to build an n-bit secure TBC
with rn-bit tweaks where r > 2, it may require at least (r+ 1) block cipher calls.

1.3 Importance of Digesting Long Tweak

Having a flexible tweak length is an interesting design goal for a TBC. Some
dedicated designs of TBCs like SKINNY [BJK+16] and Deoxys-TBC [JNPS21]
allow 2n-bit tweaks for n-bit blocks and n-bit keys. A recent trend allows a
even larger tweaks and several variants are proposed. For example, SKINNYe-
64-256 [NSS20] allows tweak length up to 3n-bit and SKINNYee [NSS22] allows
tweak length up to (5n+3)-bit. Deoxys-TBC-512, and Deoxys-TBC-640 [CJPS22]
allow even larger tweaks of length up to 3n-bit and 4n-bit respectively. In general,
the tweak of a TBC can be used to contain additional information associated
with a plaintext block [MI15,ABD+23]. Hence, it is desirable to make the tweak
longer than the block length for more flexible designs. Recent trends show that
a TBC with a large tweak is in particular helpful as a building block for var-
ious modes of operation. For example MACs [IMPS17b] based on large tweak
TBC can lead to designs with improved efficiency. Similarly, authenticated en-
cryption schemes [NSS20,NSS22,CJPS22] based on large size TBC provides a
high security bound. Long tweak TBCs are also important in designing various

7 Structurally, two similar constructions as that of XHX have been proposed. The first
one is by Minematsu and Iwata [MI15], dubbed as XTX, which has been proven secure
up to 2(n+t)/2 queries and the other one is proposed by Naito [Nai17], dubbed as
XKX and XKX(2). It has been shown that the XKX is secure up to 2(n+t)/2 queries,
whereas XKX(2) is secure up to 2min{n,k/2} queries, where k denotes the key size
of the underlying block cipher. The difference between the two constructions with
XHX is that both XTX and XKX have been proven secure under the standard model
assumption, whereas XHX has been proven secure in the ideal-cipher model.
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leakage resilience almost rate-1 authenticated encryption schemes. For exam-
ple, Triplex [SPS+22] uses 2n-bit tweaks and achieves n-bit security with rate
2/3. Multiplex [PSS23] achieves n-bit security and uses dn-bit tweaks to achieve
rate d/(d + 1). Tweplex [DDLM23] uses dn/2-bit tweaks to achieve birthday
bound security with a rate d/(d+1). Large tweak TBC is also helpful in design-
ing various tweakable enciphering schemes [HR03,Hal04,HR04,WFW05,MM07,
CS08b,Sar09,Dwo10,Sar11,BN15,DN18,CEL+21,CDK23], full-disk encryption
schemes [ST13], where a large tweak can support more modular designs. In this
regard, XHX and XHX2 (in general any hash based TBC design, where the tweak
is processed through a hash function) seems to be a good fit as an instantiation
of the underlying TBCs of the above applications. However, the key size of XHX
is 2n bits and that of XHX2 is 4n bits, where n denotes the block size of the ideal
cipher. Since the key size of these two constructions are more than the block size
of the cipher, they are not particularly suited for TBC-based applications that
use n-bit TBC with n-bit keys and large tweaks, e.g., Deoxys-AE1, Deoxys-AE2,
Triplex, Multiplex, Tweplex. Thus, the state-of-the-art in the generic design of
block cipher based optimally secure 8 large tweak TBC that restrict the key
length to n-bits is limited except the work of Shen and Standaert [SS23].

1.4 Our Contributions

Our contribution in this work is fourfold, which are listed below.

1. We investigate the number of block cipher calls necessary to design a TBC
that achieves security beyond the birthday bound while processing 3n-bit
tweaks with n-bit key and n-bit data. Our study reveals that constructions
with three block cipher invocations can never achieve security beyond the
birthday bound unless all three block cipher keys are tweak-dependent. We
demonstrate this fact by systematically studying all possible constructions
of TBCs with 0, 1, or 2 tweak-dependent keys, and showed birthday bound
attack for each of them.

2. Building on this result, we propose G̃3∗, a block cipher based TBC, designed
to process 3n-bit tweaks using three block cipher calls, with all three block
cipher keys being tweak-dependent. We prove that this construction is secure
up to 22n/3 queries in the ideal cipher model.

3. We observed that having at least one tweak-dependent key is a necessary
and sufficient condition for designing optimally secure TBC with 3n bit

8 One may wonder that a TBC based on an ideal block cipher with n-bit data and
k-bit key can possibly achieve (n + k)-bit security. For example, XHX2 provides
4n/3-bit security, which is beyond n bits. So why do we call n-bit security of our
constructions as optimal in the ideal cipher model? We would like to clarify that
when the tweakable block cipher supports keys larger than n bits (e.g., XHX2), then
only one could expect security beyond 2n. For example, XHX2, in specific, achieves
4n/3-bit security but requires 4n-bit key. However, our motivation is to design TBC
with key size exactly n bits and hence our proven bound of n-bit security is referred
as optimal.
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tweaks using four BC calls. We support this assertion by first presenting
a generic birthday bound attack against all such constructions where each

block cipher key is tweak-independent. Then, we propose a TBC, dubbed G̃3,
that processes 3n-bit tweaks using four block cipher calls, with one block
cipher key being tweak-dependent while the keys for the remaining block
ciphers are tweak-independent. We prove that this construction is secure up
to 2n queries in the ideal cipher model.

4. Finally, we extend G̃3 construction to r rounds to yields G̃r, that processes
rn-bit tweaks using (r + 1) block cipher calls, with one block cipher key
being tweak-dependent while the keys for the remaining block ciphers are

tweak-independent. We prove that G̃r is secure up to 2n queries in the ideal
cipher model.

Since our proposed constructions have been proven secure in the ideal cipher
model, we have listed down the state-of-the art tweakable block cipher schemes
which are secure in the ideal cipher model and compare them with our proposed
constructions in terms of the key size, tweak size, number of primitive calls, and
their respective security bounds in Table 1.

Table 1: Comparison of G̃3∗, G̃3 and G̃r with existing TBCs in the ideal cipher
model. Key size states the size of the key required by the design including the
block cipher and the hash key. tweak size states the size of tweak supported by the
design. The column tdk denotes whether the design relies on tweak-dependent
key.

Construction #BC #Hash Key size Tweak size Security (in bits)

XHX 1 2 2n arbitrary n [JLM+17]

XHX2 2 4 4n arbitrary 4n/3 [LL18]

F̃ [1] 1 0 n n 2n/3 [Men15a]

F̃ [2] 2 0 n n n [Men15a]

Ẽ1, . . . , Ẽ32 2 0 n n n [WGZ+16]

G̃2 3 0 n 2n n [SS23]

G̃3∗ 3 0 n 3n 2n/3 [This Paper]

G̃3 4 0 n 3n n [This Paper]

G̃r (r + 1) 0 n rn n [This Paper]

Open Problems. Although G̃3
∗
achieves 2n/3-bit security, it is noteworthy

that the security bound of the construction is not tight. Hence, it appears to be
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a challenging problem to explore whether the bound is tight or if an improved
bound can be achieved. In fact, it remains an open to determine if the construc-
tion achieves n-bit security. A more general and pertinent question is to find
the minimum number of block cipher calls required to design a tweakable block
cipher with dn-bit tweaks to achieve n-bit security.

Organization. Sect. 2 is comprised of all preliminary details, definition of
security notions and some useful results. In Sect. 3, we present the birthday
bound attack on all TBC constructions with three block cipher calls such that
at least one block cipher key is tweak independent. In Sect. 4, we propose the

TBC G̃3∗ that processes 3n-bit tweaks using three block cipher calls, with all
three block cipher keys being tweak-dependent and showed that it is secure up
to 22n/3 online and offline queries. We show in Sect. 5 a necessary and sufficient
condition for achieving optimal security in designing a tweakable block cipher
that process 3n bit tweaks using four block cipher calls. Finally, we proposed

an optimally secure tweakable block cipher G̃r in Sect. 6 that processes rn-bit
tweaks using r + 1 block cipher calls.

2 Preliminaries

Notation: For a finite set X , we write X
$←− X to denote that X is uniformly

sampled from X . We write (X1, X2, . . . , Xq)
$←− X to denote that each Xi is

sampled uniformly at random from X . For a set X , we write X ∪←− X to denote
that X ← X ∪ {X}. For a fixed n, we write the set of all n-bit binary strings
as {0, 1}n, and {0, 1}∗ denote the set of all binary strings of arbitrary length.
ε is used to denote the empty string. |x| denotes the length of the bit string x.
msbc(Z) and lsbc(Z) return the c most and least significant bits of a bit string
Z, respectively. x[i, j] denotes the substring from i-th bit to j-th bit of x. The
concatenation of two strings x and y is denoted as x∥y. We also often write
it as (x, y). We say a function f : {0, 1}dn → {0, 1}d′n is a linear if for every
x, y ∈ {0, 1}dn, f(x ⊕ y) = f(x) ⊕ f(y), and for any constant c ∈ {0, 1}dn,
f(c · x) = c · f(x), where · is the usual field multiplication. We say a function
g : {0, 1}dn → {0, 1}d′n is affine if there is a linear function f : {0, 1}dn → {0,
1}d′n and an element b ∈ {0, 1}d′n such that g(x) = f(x)⊕ b for all x ∈ {0, 1}dn.
We write (a)q to denote the number of ways q distinct objects have been chosen
from a set of a elements, which is a(a − 1)(a − 2) . . . (a − q + 1). For a natural
number q, (x1, x2, . . . , xq) ∈ ({0, 1}n)q denotes a tuple of q elements, where each
element is an n-bit binary string. We write ({0, 1}n)q := {(x1, x2, . . . , xq) ∈ ({0,
1}n)q : ∀i ̸= j, xi ̸= xj} to denote the set of tuples of q distinct n-bit binary
strings. Thus, we have |({0, 1}n)q| = (2n)q.

Block Cipher: A block cipher is a function E : K×{0, 1}n → {0, 1}n such that
for each k ∈ K, E(k, ·) is a permutation over {0, 1}n. A block cipher is said to be
(q, t, ϵ)-secure pseudo random permutation if for any polynomial time adversary
A with running time at most t that makes at most q queries to either the block
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cipher Ek for a randomly chosen secret key k or an n-bit random permutation
P, cannot distinguish the output distribution of the two random systems but
with probability at most ϵ. Formally, we define the distinguishing advantage of
the adversary A in distinguishing Ek from P as follows:

Advprp
E (A) := Pr[k

$←− K : AEk(·) = 1]− Pr[P
$←− Perm(n) : AP(·) = 1].

We call a block cipher (q, t, ϵ)-secure strong pseudo random permutation if for
any polynomial time adversary A with running time at most t that makes at
most q queries to either the block cipher Ek and its inverse E−1

k for a randomly
chosen secret key k or an n-bit random permutation P and its inverse P−1,
cannot distinguish the output distribution of the two random systems but with
probability at most ϵ. In other words, we define the strong pseudo random per-
mutation advantage of the adversary A in distinguishing (Ek,E

−1
k ) from (P,P−1)

as follows:

Advsprp
E (A) := Pr[k

$←− K : AEk(·),E−1
k (·) = 1]−Pr[P $←− Perm(n) : AP(·),P−1(·) = 1].

TSPRP Security in the Ideal-Cipher Model: A tweakable block cipher
Ẽ : K × T × {0, 1}n → {0, 1}n is a function such that for each key k ∈ K
and each tweak t ∈ T , Ẽ(k, t, ·) is a permutation over {0, 1}n. We define the

tweakable strong pseudorandom security of Ẽ under the ideal-cipher model. We
assume that Ẽ makes internal calls to a publicly evaluated block cipher E with
more than one key. Typically, Ẽ would be keyed with some key k and derive
block cipher keys k1, k2, . . . , km as a function of k and other inputs (Ẽ can make
internal calls to multiple block ciphers when all of them are independently and
uniformly distributed over the set BC(K, {0, 1}n)). For simplicity, we write ẼE

k

to denote Ẽ with a uniformly sampled block cipher E
$←− BC(K, {0, 1}n), which

is keyed by a randomly sampled key k from K.
The distinguisher A is given access to either (ẼE

k, (Ẽ
−1)Ek,E

±) for a randomly

sampled key k or (P̃, P̃−1,E±) for P̃
$←− TP(T , {0, 1}n), where E

$←− BC(K, {0,
1}n) is a uniformly sampled n-bit block cipher such that A can make forward
or inverse queries to E, which is denoted as E±. We define the tsprp-advantage
of A against the tweakable block cipher Ẽ in the ideal cipher model as

Advtsprp-icm
Ẽ

(A) := Adv
(ẼE

k,(Ẽ
−1)Ek,E

±)

(P̃,P̃−1,E±)
(A),

for k
$←− K, P̃ $←− TP(T , {0, 1}n),E $←− BC(K, {0, 1}n) and the randomness of the

adversary A. We say that Ẽ is a (q, p, ϵ)-tsprp in the ideal cipher model if

Advtsprp-icm
Ẽ

(A) ≤ ϵ,

for all adversaries A that make q queries to Ẽ, Ẽ−1, p forward and inverse offline
ideal-cipher queries to E.
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2.1 H-Coefficient Technique

Let A be a computationally unbounded deterministic distinguisher that interacts
with either the oracles in the real world, or in the ideal world. The collection of
all the queries and responses that A made and received to and from the oracle,
is called the transcript of A, denoted as τ . Sometimes, we allow the oracle to
release more internal information to A only after A completes all its queries and
responses, but before it outputs its decision bit.

Let Xre and Xid denote the probability distributions of the transcript τ
induced by the real oracle and the ideal oracle respectively. The probability
of realizing a transcript τ in the ideal oracle (i.e., Pr[Xid = τ ]) is called the
ideal interpolation probability. Similarly, one can define the real interpolation
probability. A transcript τ is said to be attainable with respect to A if the ideal
interpolation probability is non-zero (i.e., Pr[Xid = τ ] > 0). We denote the set
of all attainable transcripts by Θ. Following these notations, we state the main
theorem of H-Coefficient Technique [Pat08,CS14] as follows:

Theorem 1 (H-Coefficient Technique). Let A be a fixed deterministic dis-
tinguisher that has access to either the real oracle Ore or the ideal oracle Oid.
Let Θ = Θg ⊔ Θb (disjoint union) be some partition of the set of all attainable
transcripts of A. Suppose there exists ϵratio ≥ 0 such that for any τ ∈ Θg,

Pr[Xre = τ ]

Pr[Xid = τ ]
≥ 1− ϵratio,

and there exists ϵbad ≥ 0 such that Pr[Xid ∈ Θb] ≤ ϵbad. Then,

AdvOid

Ore
(A) := |Pr[AOre = 1]− Pr[AOid = 1]| ≤ ϵratio + ϵbad. (1)

2.2 Sum Capture Lemma

In this section, we state a variant of the sum capture lemma [Bab02] used
in [CS14]. Informally, the results states that when choosing a random subset
Z of GF(2n) (or more generally any abelian group) of size q, the value

µ(Z) := max
X ,Y⊆GF(2n)

|{(z, x, y) ∈ Z × X × Y : z = x⊕ y}|,

is at most q|X ||Y|/2n, except with negligible probabilty. Chen et al. [CS14]
proved the result for a different setting where Z arises from the interaction of an
adversary with a random permutation P, namely Z = {x⊕y : (x, y) ∈ Q}, where
Q is the transcript of the interaction between the adversary and the permutation.
We employ the similar result in our setting which is stated as follows:

Lemma 1. Let RF be a random function that maps elements from {0, 1}n to
{0, 1}n. Let A be some probabilitistic distinguisher that makes q adaptive queries
to RF. Let Q = ((x1, y1), . . . , (xq, yq)) denotes the transcript of the interaction
with RF to A. For any two subsets U and V of {0, 1}n, let

µ(Q,U ,V) = |{((x, y), u, v) ∈ Q× U × V : x⊕ u = y ⊕ v}|.

9



Then assuming 9n ≤ q ≤ 2n−1, we have

Pr
RF,ω

[
∃ U ,V ⊆ {0, 1}n : µ(Q,U ,V) ≥ q|U||V|

2n
+ 3

√
nq|U||V|

]
≤ 2

2n
, (2)

where the probability is taken over the random choices of RF and the random
coins ω of A.

2.3 Useful Combinatorial Results

In this section, we state and prove some important combinatorial results that
would be required later in the security analysis of different tweakable block cipher
constructions.

Lemma 2. Let f = (f1, f2, f3, f4) be a function, where fs : {0, 1}3n → {0,
1}n, ∀s ∈ {1, 2, 3, 4} are affine functions. Then f satisfies one of the following
conditions:

1. There exist t1, t2 ∈ {0, 1}3n such that fs(t
1) = fs(t

2),∀ s ∈ {1, 2, 3,
4}.

2. There exist t1, t2, . . . , t2
n/2 ∈ {0, 1}3n satisfying f1(t

i) = f1(t
j),

f3(t
i) ̸= f3(t

j), for all distinct i, j ∈ {1, 2, . . . , 2n/2}.
3. There exist t1, t2, . . . , t2

n/2 ∈ {0, 1}3n satisfying f1(t
i) = f1(t

j),
f2(t

i) ̸= f2(t
j), f4(t

i) ̸= f4(t
j), for all distinct i, j ∈ {1, 2, . . . , 2n/2}.

We defer the proof of the lemma in Supplementary Material A.1.

Lemma 3. Let γ be an element in F . Let f = (f1, f2, f3, f4) be a function,
where fs : {0, 1}3n → {0, 1}n for all s ∈ {1, 2, 3, 4} are affine functions. Then f
satisfies at least one of the following conditions:

1. There exist t1, t2 ∈ {0, 1}3n such that fs(t
1) = fs(t

2) for all s ∈ {1,
2, 3, 4}.

2. There exist t1, t2, . . . , t2
n/2 ∈ {0, 1}3n satisfying f2(t

i) ̸= f2(t
j),

f3(t
i) = f3(t

j), f4(t
i) = f4(t

j), for all distinct i, j ∈ {1, 2, . . . , 2n/2}.
3. There exist t1, t2, . . . , t2

n/2 ∈ {0, 1}3n satisfying f1(t
i) ̸= f1(t

j),
f3(t

i) ̸= f3(t
j), f4(t

i) = γ.f3(t
i), for all distinct i, j ∈ {1, 2, . . . ,

2n/2}.
4. There exist t1, t2, . . . , t2

n/2 ∈ {0, 1}3n satisfying f2(t
i) ̸= f2(t

j),
f4(t

i) = γ.f3(t
i), for all distinct i, j ∈ {1, 2, . . . , 2n/2}.

We defer the proof of the lemma in Supplementary Material A.2.

10



Lemma 4. Let f = (f1, f2, f3, f4) be a function, where fs : {0, 1}3n → {0, 1}n
for all s ∈ {1, 2, 3, 4} are affine functions. Then f satisfies at least one of the
following conditions:

1. There exist t1, t2 ∈ {0, 1}3n such that fs(t
1) = fs(t

2) for all s ∈ {1,
2, 3, 4}.

2. There exist t1, t2, . . . , t2
n/2 ∈ {0, 1}3n satisfying f2(t

i) ̸= f2(t
j),

f4(t
i) = f4(t

j), for all distinct i, j ∈ {1, 2, . . . , 2n/2}.
3. There exist t1, t2, . . . , t2

n/2 ∈ {0, 1}3n satisfying f1(t
i) ̸= f1(t

j),
f3(t

i) ̸= f3(t
j), f4(t

i) = f4(t
j), for all distinct i, j ∈ {1, 2, . . . , 2n/2}.

We defer the proof of the lemma in Supplementary Material A.3.

3 Generic Birthday Attacks on TBCs with 3n-bit Tweak
from Three BCs with Any Tweak-independent Key

In this section, we demonstrate that constructing tweakable block ciphers with
3n-bit tweaks that are secure beyond the birthday bound using three block
ciphers is impossible unless all the block ciphers have tweak-dependent keys.
To support our claim, we first illustrate birthday-bound attacks on the generic
construction where all three block ciphers use tweak-independent keys. Subse-
quently, we extend the idea to mount birthday attacks in cases where one or two
block ciphers use tweak-independent keys. Note that our search space considers
constructions with the following simplified assumptions: (i) the message is fed
only at the input of the last block cipher call, (ii) no tweak is fed into the input
or the output of the last block cipher call. We will justify the choice of this search
space at the end of the subsection.

3.1 Constructions with Three Tweak-independent Keys

In this subsection, we consider TBC constructions with three block ciphers,
in which we have all the block cipher calls with tweak-independent keys. The
generalized construction for this case, dubbed C1, is depicted in Fig. 12. Note
that incorporating tweaks into the message does not amplify security. So, we
refrain from using such modifications in our constructions. Now, to attack this
generic construction, our strategy is as follows:

1. Find two tweaks such that t1, t2 such that f1(t
1) = f1(t

2), f2(t
1) = f2(t

2).
Note that, with this choice of tweaks, we will have y11 = y21 as well as y12 = y22 .

2. We can use the above observation to distinguish the TBC from a random
tweakable permutation by making two oracle queries (m, t1), (m, t2), and
verifying if the corresponding outputs match. Note that, for the real con-
struction, this matches with probability 1, while for random tweakable per-
mutations, the probability is only 1/2n.

An algorithmic description of the attack is presented in Fig. 14 of the Supple-
mentary Material C.1.
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Ef1(t)

a1.k

y1 Eα1.y1 ⊕ f2(t)

a2.k

y2 Em ⊕

α2.y1 ⊕ β1.y2

a3.k

c⊕

α3.y1 ⊕ β2.y2

Fig. 1: Construction C1: All the block ciphers use tweak-independent key

3.2 Constructions with Two Tweak-independent Keys

In this subsection, we consider all the possible TBC constructions with three
block ciphers where we have two block cipher calls with tweak-independent keys.
By tweak-independent keys, we mean keys are derived only from the master
secret key. Use of such keys are efficient as one do not need separate sub-key
generation functions to process those block cipher calls. It is straightforward to
see that there are three possible cases depending on which of the block cipher
invocations uses the tweak-dependent key.

Case 1: First block cipher uses the tweak-dependent key. Here we look
at all the possible constructions where the first block cipher uses the tweak-
dependent key and the next two block cipher uses tweak-independent keys. The
generalized construction, dubbed C2, is depicted in Fig. 2. Now, to attack this

Ef1(t)

a1.k ⊕ f2(t)

y1 Eα1.y1 ⊕ f3(t)

a2.k

y2 Em ⊕

α2.y1 ⊕ β1.y2

a3.k

c⊕

α3.y1 ⊕ β2.y2

Fig. 2: Construction C2: Only first block cipher uses tweak-dependent key

generic construction, let us consider the function f : {0, 1}3n → {0, 1}3n defined
as f(t) := f1(t)∥f2(t)∥f3(t) is injective. Otherwise, we can find two tweaks t1

and t2 for which f(t1) = f(t2). Now if we encrypt (m, t1) and (m, t2), we have
y11 = y21 , and y12 = y22 , which ensures the obtained ciphertexts would be same for
the real construction. Thus, we can mount an attack with a constant number
of queries. Now we consider the case when f is injective, and in this case, our
strategy is as follows:

12



1. Find 2n/2 tweaks such that for each pair of tweaks (ti, tj), we have f2(t
i) ̸=

f2(t
j), and f3(t

i) = f3(t
j). The injectivity of the function f ensures that we

will have such tweaks. Now look at the y1 values - since the keys used in the
block cipher for generating these values are distinct, and we have 2n/2 keys,
at least two of them collide, i.e., there exists i, j such that yi1 = yj1.

2. Now, let’s examine the y2 values. Given that the same keys are utilized in
the block cipher to generate these values, and there exist indices i and j such
that yi1 = yj1 and f3(t

i) = f3(t
j), it follows that yi2 = yj2. Now the question

is how to detect such a collision. Observe that, in such a case the ciphertext
ci generated for (m, ti) would be equal to cj , the ciphertext generated for
(m, tj).

3. Finally, we can distinguish the TBC from a random tweakable permutation
by making two additional oracle queries (m⋆, ti), (m⋆, tj), where m⋆ ̸= m,
and verifying if the corresponding outputs match. Note that, for the real
construction, this matches with probability 1, while for random tweakable
permutations, the probability is only 1/2n.

An algorithmic description of the attack is shown in Fig. 15 (See Supplementary
Material C.2).

Case 2: Second block cipher uses the tweak-dependent key. Here we
look at all the possible constructions where the second block cipher uses the
tweak-dependent key and the other two block cipher uses tweak-independent
keys. The generalized construction, dubbed C3, is depicted in Fig. 3.

Ef1(t)

a1.k

y1 Eα1.y1 ⊕ f2(t)

a2.k ⊕ α2.y1 ⊕ f3(t)

y2 Em ⊕

α3.y1 ⊕ β1.y2

a3.k

c⊕

α4.y1 ⊕ β2.y2

Fig. 3: Construction C3: Only second block cipher uses tweak-independent keys

It is easy to see that a similar birthday attack with 2n/2 tweaks satisfying
f1(t

i) = f1(t
j) and f3(t

i) ̸= f3(t
j), for each (ti, tj) pairs, following an adversary

as given in Fig.16, Supplementary Material C.3, will hold in this case.

Case 3: Final block cipher uses the tweak-dependent key. Here we look
at all the possible constructions where the final block cipher uses the tweak-
dependent key and the first two block cipher uses tweak-independent keys. The
generalized construction, dubbed C4, is depicted in Fig. 4.
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Ef1(t)

a1.k

y1 Eα1.y1 ⊕ f2(t)

a2.k

y2 Em ⊕

α2.y1 ⊕ β1.y2

a3.k ⊕ α3.y1 ⊕ β2.y2 ⊕ f3(t)

c⊕

α4.y1 ⊕ β3.y2

Fig. 4: Construction C4: Only the final block cipher uses tweak-independent key

Now, to mount an attack on this generic construction, we consider the fol-
lowing sub-cases depending on the values of β1 and β2:

Sub-case 3.1: β1 = β2 = 0. In this case, we mount the birthday attack as
follows:

1. Find tweaks t1 and t2 such that f1(t
1) = f1(t

2), f2(t
1) ̸= f2(t

2), and f3(t
1) =

f3(t
2).

2. Make two queries (m, t1) and (m, t2). Note that the condition β1 = β2 = 0
ensures that there is a (key, input) collision occurs in the final block cipher
for both queries. Let us assume that the corresponding ciphertexts are c1
and c2. It is easy to see that we have y12 ⊕ y22 = c1 ⊕ c2.

3. Finally, we can distinguish the real construction from a random tweakable
permutation by making two additional oracle queries (m⊕∆, ti), (m⊕∆, tj),
where ∆ ̸= 0, and verifying that the corresponding ciphertexts, say c⋆i and
c⋆j , satisfy the equation c⋆1 ⊕ c⋆2 = c1 ⊕ c2.

Sub-case 3.2: β1 ̸= 0, β2 = 0. Here we mount the attack as follows:

1. Find 2n/2 tweaks such that for each pair of tweaks (ti, tj), we have f1(t
i) =

f1(t
j), f2(t

i) ̸= f2(t
j), and f3(t

i) = f3(t
j). Again, the injectivity of the

function f = (f1, f2, f3) ensures that we will have such tweaks. Note that,
with this choice of tweaks, we will have yi1 = yj1, for all (i, j).

2. Now we make 2n/2 queries in the form (mi, t
i), such that for all i, j,mi ̸= mj .

Note that our choice of messages ensures that a (key, input) collision occurs
in the final block cipher if yi2 ⊕ yj2 = β−1

1 (mi ⊕mj). It is easy to see that by
birthday paradox, we expect that at least one such pair, say ((mi, t

i), (mj ,
tj)) exists, and in that case, we have ci ⊕ cj = β−1

1 β3(mi ⊕mj).
3. Finally, we can distinguish the real construction from a random tweakable

permutation by making two additional oracle queries (mi⊕∆, ti), (mj ⊕∆,
tj), where ∆ ̸= 0, and verifying that the corresponding ciphertexts, say c⋆i
and c⋆j , satisfy the equation c⋆i ⊕ c⋆j = β−1

1 β3(mi ⊕mj).

Sub-case 3.3: β2 ̸= 0. Here we proceed as follows:

1. Find 2n/2 tweaks such that for each pair of tweaks (ti, tj), we have f1(t
i) =

f1(t
j), f2(t

i) ̸= f2(t
j), and f3(t

i) ̸= f3(t
j).
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2. Now we make 2n/2 queries in the form (mi := β−1
2 β1f3(t

i), ti). Note that
our choice of messages ensures that a (key, input) collision occurs in the final
block cipher if β1(y

i
2 ⊕ yj2) = mi ⊕mj . Now by birthday paradox, we expect

that at least one such pair, say ((mi, t
i), (mj , t

j)) exists. In that case we have
ci ⊕ cj = β3β

−1
2 (f3(t

i)⊕ f3(t
j)).

3. Finally, we can distinguish the real construction from a random tweakable
permutation by making two additional oracle queries (mi⊕∆, ti), (mj ⊕∆,
tj), where ∆ ̸= 0, and verifying that the corresponding ciphertexts, say c⋆i
and c⋆j , satisfy the equation c⋆i ⊕ c⋆j = ci ⊕ cj .

An algorithmic description of the attack corresponding to the three sub-cases
are presented in Fig. 16 of the Supplementary Material C.4.

3.3 Constructions with One Tweak-independent Key

In this subsection, we consider all the possible TBC constructions with three
block ciphers where we have a single block cipher call with tweak-independent
key. It is straightforward to see that there are three possible cases depending on
which of the block cipher invocations uses the tweak-dependent key.

Case 1: First block cipher uses the tweak-independent key. Here we
look at all the possible constructions where the first block cipher uses the tweak-
independent key and the next two block cipher uses tweak-dependent keys. The
generalized construction, dubbed C5, is depicted in Fig. 5.

Ef1(t)

a1.k

y1 Eα1.y1 ⊕ f2(t)

a2.k ⊕ α2.y1 ⊕ f3(t)

y2 Em ⊕

α3.y1 ⊕ β1.y2

a3.k ⊕ α4.y1 ⊕ β2.y2 ⊕ f4(t)

c⊕

α5.y1 ⊕ β3.y2

Fig. 5: Construction C5: Only the first block cipher uses tweak-independent key

Sub-case 1.1: β1 = β2 = 0. In this case, we mount the constant query attack
as follows:

1. Find 2 tweaks t1, t2 such that f1(t
1) = f1(t

2) and f4(t
1) = f4(t

2). Note that,
with this choice of tweaks, we will have y11 = y21 .

2. Now we make 2 queries (m, t1) and (m, t2), for some message m. We will
have the same (input, key) pair of the final block cipher as the messages
and the first block cipher outputs are the same for both queries. Observe
corresponding responses say c1 and c2.
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3. Finally, we can distinguish the TBC from a random tweakable permutation
by making two additional oracle queries (m⊕∆, t1), (m⊕∆, t2), where∆ ̸= 0
and observing if the corresponding ciphertexts, say c⋆1 and c⋆2 satisfies the
equation c⋆1⊕c⋆2 = c1⊕c2. Note that, for our TBC construction, this equation
matches with probability 1, while for random tweakable permutations, the
probability is only 1/2n.

Sub-case 1.2: β1 ̸= 0, β2 = 0. In this case, we will be able to find 2n/2

tweaks t1, . . . , t2
n/2

such that for each pair of tweaks (ti, tj), f1(t
i) = f1(t

j),
f4(t

i) = f4(t
j), and either f3(t

i) ̸= f3(t
j) or f2(t

i) ̸= f2(t
j). Based on this

observation, our approach is described as follows:

1. Find 2n/2 tweaks t1, . . . , t2
n/2

such that for each pair of tweaks (ti, tj), we
have at least of above two condition. Note that, with this choice of tweaks,
we will have yi1 = yj1, for all (i, j).

2. Now we make 2n/2 queries (mi, t
i), where mi ̸= mj for each pair (i, j). We

expect at least one collision in the (input, key) pair of the final block cipher
as such a collision occurs when (yi2 ⊕ yj2) = β−1

1 (mi ⊕mj). This collision is
observable through the equation β1(ci ⊕ cj) = β3(mi ⊕mj).

3. Finally, we can distinguish the real construction from a random tweakable
permutation by making two additional oracle queries (mi⊕∆, ti), (mj ⊕∆,
tj), where ∆ ̸= 0 and observing if the corresponding ciphertexts, say c⋆i and
c⋆j satisfies the equation c⋆i ⊕ c⋆j = ci ⊕ cj .

Sub-case 1.3: β2 ̸= 0. If we can find 2n/2 tweaks t1, . . . , t2
n/2

such that for each
pair of tweaks (ti, tj), we have f1(t

i) = f1(t
j), f3(t

i) ̸= f3(t
j), then we use the

following strategy.

1. Find 2n/2 tweaks t1, . . . , t2
n/2

such that for each pair of tweaks (ti, tj), we
have f1(t

i) = f1(t
j), f3(t

i) ̸= f3(t
j). Note that, with this choice of tweaks,

we will have yi1 = yj1, for all (i, j).
2. Now we make 2n/2 queries (mi = β−1

2 β1(f4(t
i)), ti). We expect at least one

collision in the (input, key) pair of the final block cipher as such a collision
occurs when (yi2 ⊕ yj2) = β−1

2 (f4(t
i) ⊕ f4(t

j)). This collision is observable
through the equation (ci + cj) = β3β

−1
2 (f4(t

i) + f4(t
j)).

3. Finally, we can distinguish the TBC from a random tweakable permutation
by making two additional oracle queries (mi ⊕ ∆, ti), (mj ⊕ ∆, tj), where
∆ ̸= 0 and observing if the corresponding ciphertexts, say c⋆i and c⋆j satisfies
the equation c⋆i ⊕ c⋆j = ci ⊕ cj .

Otherwise, by virtue of Lemma 2, we can find 2n/2 tweaks t1, . . . , t2
n/2

such that
for each pair of tweaks (ti, tj), we have f1(t

i) = f1(t
j), f2(t

i) ̸= f2(t
j), and

f4(t
i) ̸= f4(t

j). In this case, our approach is described as follows:

1. Find 2n/2 tweaks t1, . . . , t2
n/2

such that for each pair of tweaks (ti, tj), we
have f1(t

i) = f1(t
j), f2(t

i) ̸= f2(t
j), and f4(t

i) ̸= f4(t
j). Note that, with

this choice of tweaks, we will have yi1 = yj1, for all (i, j).
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2. Now we make 2n/2 queries (mi = β−1
2 β1(f4(t

i)), ti). We expect at least one
collision in the (input, key) pair of the final block cipher as such a collision
occurs when (yi2 ⊕ yj2) = β−1

2 (f4(t
i) ⊕ f4(t

j)). This collision is observable
through the equation β1(ci ⊕ cj) = β3(mi ⊕mj).

3. Finally, we can distinguish this construction from a random tweakable per-
mutation by making two additional oracle queries (mi⊕∆, ti), (mj ⊕∆, tj),
where ∆ ̸= 0 and observing if the corresponding ciphertexts, say c⋆i and c⋆j
satisfies the equation c⋆i ⊕ c⋆j = ci ⊕ cj . Note that, for our TBC construc-
tion, this equation matches with probability 1, while for random tweakable
permutations, the probability is only 1/2n.

An algorithmic description of the attack corresponding to the three sub-cases
are presented in Fig. 17 of the Supplementary Material C.5.

Case 2: Second block cipher uses the tweak-independent key. We will
look at all the possible constructions where the second block cipher uses the
tweak-independent key and the other two block cipher uses tweak-dependent
keys. The generalized construction, dubbed C6, is depicted in Fig. 6. Note that
if α1 = 0, then we can easily mount a birthday attack using similar technique
as used in the previous case. Hence, we concentrate only on the constructions
with α1 ̸= 0. Now, to make an attack on the generic construction, we first make

Ef1(t)

a1.k ⊕ f2(t)

y1 Eα1.y1 ⊕ f3(t)

a2.k

y2 Em ⊕

α2.y1 ⊕ β1.y2

a3.k ⊕ α3.y1 ⊕ β2.y2 ⊕ f4(t)

c⊕

α4.y1 ⊕ β3.y2

Fig. 6: Construction C6: Only the second block cipher uses tweak-independent
key

the following observation: If we can find two tweaks t1, t2 ∈ {0, 1}3n satisfying
fs(t

1) = fs(t
2). ∀ s ∈ {1, 2, 3, 4}, then we are done. In this case, we use the

following strategy:

1. Find t1, t2 ∈ {0, 1}3n satisfying fs(t
1) = fs(t

2). ∀ s ∈ {1, 2, 3, 4}. This ensures
y11 = y21 and y12 = y22 .

2. Make two query (m, t1) and (m, t2) for any message m, and observe if the
respective cipher texts c1 and c2 are equal (TBC), or not (random tweakable
permutation).

If we do not have such t1, t2, then we use following attack strategy:
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Sub-case 2.1 α3 = 0. By virtue of lemma 4, we will have 2n/2 tweaks t1,

t2, . . . , t2
n/2

satisfying either (C1) f2(t
i) ̸= f2(t

j) ∧ f4(t
i) = f4(t

j), or (C2)
f1(t

i) ̸= f1(t
j) ∧ f3(t

i) ̸= f3(t
j) ∧ f4(t

i) = f4(t
j). For both cases, we use the

following strategy:

1. Find 2n/2 tweaks t1, t2, . . . , t2
n/2

satisfying at least one of conditions (C1) or
(C2).

2. Now we make 2n/2 queries (mi = α2α
−1
1 (f3(t

i)), ti). We expect at least one
collision in the (input, key) pair of the final block cipher as such a collision
occurs when (yi1 ⊕ yj1) = α−1

1 (f3(t
i) ⊕ f3(t

j)). This collision is observable
through the equation α1(ci ⊕ cj) = α4(f3(t

i)⊕ f3(t
j)).

3. Finally, we can distinguish the TBC from a random tweakable permutation
by making two additional queries (mi⊕∆, ti), (mj⊕∆, tj), where ∆ ̸= 0 and
observing if the corresponding ciphertexts, say c∗i , c

∗
j satisfies c

∗
i⊕c∗j = ci⊕cj .

Sub-case 2.2 α3 ̸= 0. In this case, we apply Lemma 3 and deduce that we can

find 2n/2 tweaks t1, t2, . . . , t2
n/2

satisfying either (C1) f2(t
i) ̸= f2(t

j), f3(t
i) =

f3(t
j), f4(t

i) = f4(t
j), or (C2) f1(t

i) ̸= f1(t
j), f3(t

i) ̸= f3(t
j), f4(t

i) =
α3α

−1
1 f3(t

i), or (C3) f2(t
i) ̸= f2(t

j), f4(t
i) = α3α

−1
1 f3(t

i). For all the three
cases, we use the following strategy:

1. Find 2n/2 tweaks t1, t2, . . . , t2
n/2

satisfying at least one of conditions (C1),
(C2) and (C3).

2. Now we make 2n/2 queries (mi = α2α
−1
1 (f3(t

i)), ti). We expect at least one
collision in the (input, key) pair of the final block cipher as such a collision
occurs when (yi1 ⊕ yj1) = α−1

1 (f3(t
i) ⊕ f3(t

j)). This collision is observable
through the equation α1(ci ⊕ cj) = α4(f3(t

i)⊕ f3(t
j)).

3. Finally, we can distinguish the TBC from a random tweakable permutation
by making two additional queries (mi⊕∆, ti), (mj⊕∆, tj), where ∆ ̸= 0 and
observing if the corresponding ciphertexts, say c∗i , c

∗
j satisfies c

∗
i⊕c∗j = ci⊕cj .

An algorithmic description of the attack corresponding to the two sub-cases
are shown in Fig. 18 of the Supplementary Material C.6.

Case 3: Final block cipher uses the tweak-independent key. We will
look at all the possible constructions where the final block cipher uses the
tweak-independent key and the other two block cipher uses tweak-dependent
keys. The generalized construction, dubbed C7, is depicted in Fig. 7. Now, if
there exists t1, t2 ∈ {0, 1}3n satisfying fs(t

1) = fs(t
2), ∀ s ∈ {1, 2, 3, 4}, we

simply use the two-query distinguisher as used in the previous case. Otherwise,

there exist 2n/2 many tweaks say t1, t2, . . . , t2
n/2

satisfying either (C1) (f1(t
i) =

f1(t
j))∧ (f2(ti) = f2(t

j))∧ (f3(ti) ̸= f3(t
j), or (C2) (f1(t

i) = f1(t
j))∧ (f2(ti) =

f2(t
j))∧(f4(ti) ̸= f4(t

j))), for all (i, j) pair. We use this fact to mount the attack
as follows.

Sub-case 3.1: β1 ̸= 0. In this case we use attack strategy as follows:
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Ef1(t)

a1.k ⊕ f2(t)

y1 Eα1.y1 ⊕ f3(t)

a2.k ⊕ f4(t)⊕ α2.y1

y2 Em ⊕

α3.y1 ⊕ β1.y2

a3.k

c⊕

α4.y1 ⊕ β2.y2

Fig. 7: Construction C7: Only the final block cipher uses tweak-independent key

1. Find 2n/2 tweaks satisfying either (C1) or (C2).

2. Make 2n/2 queries (mi, t
i), where mi ̸= mj for all (i, j) pair and observe

cipher text ci’s. We expect at least one collision in (input, key) pair of the
final block cipher as it occurs if yi2 ⊕ yj2 = β−1

1 (mi ⊕mj). This is observable
by the equation β1(ci ⊕ cj) = β2(mi ⊕mj).

3. Finally, make additional two queries (mi⊕∆, ti), (mj⊕∆, tj) and get corre-
sponding cipher text c∗i , c

∗
j . Distinguish by observing whether c∗i⊕c∗j = ci⊕cj

(real TBC construction), or not (random tweakable permutation).

Sub-case 3.2: β1 = 0. We will proceed as follows:

1. Find two tweak t1, t2 such that f1(t
1) = f1(t

2) ∧ f2(t
1) = f2(t

2). It is easy
to see that we have y11 = y21 .

2. Make two queries (m, t1) and (m, t2). Note that if c1, c2 be two corresponding
cipher text, then c1 ⊕ c2 = β2(y

1
2 ⊕ y22).

3. Finally, make two additional queries (m⊕∆, t1) and (m⊕∆, t2) and observe if
the corresponding cipher texts c∗1 and c∗2 satisfy the equation c∗1⊕c∗2 = c1⊕c2
(for real TBC construction), or not (random tweakable permutation).

The concrete attacks correspond to these two subcases are formally presented
in Fig. 19, Supplementary Material C.7.

3.4 Justification of the Search Space

We have already mentioned that our search space considers constructions with
assumptions that the message is fed only at the input of the last block cipher
call, and no tweak is fed into the input or the output of the last block cipher
call. Here we briefly justify our assumptions below:

– Case 1: Message is fed into keys: Here the construction won’t be invertible,
as finding the keys of a block cipher given its (input, output) pairs is not
possible.
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– Case 2: Message is fed into several block ciphers: Suppose the message is
fed into the second and the final block cipher. For the invertibility of the
construction, the final block cipher must be independent of the output of the
second block cipher. This can be exploited to mount a simple PRP attack.
A similar argument can be made for all possible combinations.

– Case 3: A linear combination of the message, tweaks and the block cipher
outputs is used to define the ciphertext : One can easily mount a two-query
PRP attack, exploiting the property that under the same tweak, a linear
combination of two ciphertexts can be written as a linear combination of the
corresponding two plaintexts.

– Case 4: Tweak is fed into the input/output of the final block cipher: This does
not strengthen the security, and similar attacks will go through. In fact, since
the tweaks are controlled by the adversary, this may weaken the security.

– Case 5: Message is fed into one of the non-final block-ciphers: There are two
cases: the message in XORed before the first block cipher call or the second
block cipher call. For each of them, we have several cases when all the keys
are not tweak-dependent, and for each of the cases, we show a birthday or
constant-time attacks using similar ideas as used in Sect. 3.1-3.3 when the
message block is used in the final block-cipher. A detailed analysis of this
presented in Supplementary Material B.

4 BBB Secure TBC with 3n-bit Tweaks Using Three
Block Cipher Calls

Let E : {0, 1}n × {0, 1}n → {0, 1}n be a n-bit block cipher. The tweakable block

cipher G̃∗
3 : {0, 1}n × {0, 1}3n × {0, 1}n → {0, 1}n with a 3n bit tweak with only

three block cipher invocation is constructed as follows: two block cipher calls
are first invoked sequentially to produce two masks y1 and y2 from the tweaks
t1, t2, t3 and the master key k. By using y1 to mask both the input and output,
and using y2, the master key k, and t1 to provide variety in the sub-key, a third
block cipher call is then invoked to encrypt the message m to the ciphertext c.

A pictorial illustration of the construction G̃∗
3 is given in Fig. 8.

Remark 1. One may be interested to have an idea about the efficiency of this con-
struction as compared to popular block cipher based TBCs in standard model,

e.g., CLRW2. Note that G̃∗
3 uses only constant field multiplication (multiplica-

tion by 2 requires only a shift-operation and a conditional-XOR), while CLRW2
with 3n-bit tweaks (in general, any hash function based TBC construction),
instantiated with PolyHash function, would require at least 6 arbitrary field mul-
tiplications (which is non-linear, and hence, costly). On the other hand, there
are differences in design goals between the two constructions. For example, our
construction uses tweak-dependent block-cipher keys whereas CLRW2 (in gen-
eral any hash function based TBC construction) uses two hash keys and two
block-cipher keys that are tweak-independent. We believe that it is difficult to
conclude which design is better in terms of performance or efficiency. Instead, it
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Et1

k ⊕ t2

y1 Et3

y1 ⊕ t2

y2 Em ⊕

y1

2.k ⊕ y2 ⊕ t1

c⊕

y1

Fig. 8: G̃∗
3 construction: TBC with 3n bit tweaks using three block cipher calls.

We impose a natural ordering on the block cipher calls from left to right.

would depend on the application environment and the concrete implementation.
Moreover, we would like to hightlight the following:

1. CLRW2 can not be applied in designing TBC-based constructions that re-
quire n-bit key size (e.g., Triplex, Multiplex, Tweplex, etc.) while our con-
structions can. It directs the designer to suitably choose the application areas
where our constructions are better suited than CLRW2.

2. Since CLRW2 requires both block-cipher evaluation and field multiplication
(a non-linear operation), our proposed construction, which employs only
block cipher evaluations as the only non-linear operation, seems to be bet-
ter suited over CLRW2 for applications which are targeted for area-efficient
design.

3. Finally, to the best of our knowledge, this is the first work on large tweak
TBC construction built from n-bit block-ciphers that accept n-bit key and
achieve n-bit security without invoking any additional non-linear operations.
Nevertheless, we agree that the security of our construction is based on
stronger assumptions (ideal cipher model) than the standard model. We
would like to mention that the proofs of our proposed block cipher based
TBC constructions in the ideal cipher model do not exploit any specific
properties of the underlying block cipher and assuming it to be an ideal
function is stronger than the standard (S)PRP notion.

In the following, we demonstrate that G̃∗
3 is a secure tweakable block cipher with

3n bit tweaks against all adversaries that makes roughly 22n/3 construction and
ideal-cipher queries. Formally, we present the following result:

Theorem 2. Let A be an adversary making at most q construction queries and
p ideal-cipher queries including both forward and backward queries. Then,

Advtsprp-icm
G̃∗
3

(A) ≤ q

2n
+

12q2

22n
+

6q2p

22n
+

4qp

22n
+

11qp2

22n
.

Proof. Let us assume that A makes at most q construction queries (to the first
oracle) and p ideal-cipher queries (to the second oracle). Let τc = {(t1,m1,
c1), (t

2,m2, c2), . . . , (t
q,mq, cq)} denotes the list of construction query-responses,
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where each ti = ti1∥ti2∥ti3 is a concatenation of three n-bit strings, and τp =
{(L1, u1, v1), (L2, u2, v2), . . . , (Lp, up, vp)} denotes the list of ideal-cipher query-
responses, where Li denotes the ideal-cipher key chosen at the i-th query. For the
sake of convenience, we assume that the oracle releases some intermediate values
to the distinguisher after the interaction is over, but before A outputs its decision
bit. In the real world, the oracle releases the block cipher key k and the (yi1, y

i
2),

i ∈ [q] tuple. On the other hand, the oracle in the ideal world randomly samples
n-bit dummy key k and computes (yi1, y

i
2), i ∈ [q] tuple, where yi1 and yi2 are

computed similar to the real world and finally release them to the distinguisher.
Therefore, the extended transcript of the attack is τ = (τc, τp, (y

i
1, y

i
2)i∈[q], k).

4.1 Defining the Bad Transcripts

Let Θ denote the set of all attainable transcripts. We call an attainable transcript
τ ∈ Θ is bad if it satisfies either of the following:

1. Bad1: ∃i ∈ [q], α ̸= β ∈ [p] : k ⊕ ti2 = Lα, yi1 ⊕ ti2 = Lβ

2. Bad2: ∃i ̸= j ∈ [q] : yi1 ⊕ yj1 = mi ⊕mj , yi2 ⊕ yj2 = ti1 ⊕ tj1
3. Bad3: ∃i ̸= j ∈ [q] : yi1 ⊕ yj1 = ci ⊕ cj , yi2 ⊕ yj2 = ti1 ⊕ tj1
4. Bad4: ∃i ∈ [q], α ∈ [p] : mi ⊕ yi1 = uα, 2k ⊕ yi2 ⊕ ti1 = Lα

5. Bad5: ∃i ∈ [q], α ∈ [p] : ci ⊕ yi1 = vα, 2k ⊕ yi2 ⊕ ti1 = Lα

6. Bad6: ∃i ̸= j ∈ [q] : 2k ⊕ yi2 ⊕ ti1 = k ⊕ tj2, mi ⊕ yi1 = tj1
7. Bad7: ∃i ̸= j ∈ [q] : 2k ⊕ yi2 ⊕ ti1 = k ⊕ tj2, ci ⊕ yi1 = yj1
8. Bad8: ∃i ̸= j ∈ [q] : 2k ⊕ yi2 ⊕ ti1 = yj1 ⊕ tj2, mi ⊕ yi1 = tj3
9. Bad9: ∃i ̸= j ∈ [q] : 2k ⊕ yi2 ⊕ ti1 = yj1 ⊕ tj2, ci ⊕ yi1 = yj2
10. Bad10: ∃i ∈ [q] : 2k ⊕ yi2 ⊕ ti1 = k ⊕ ti2

In the following lemma we state that one of the bad events holds in the ideal
world with very low probability.

Lemma 5. Let Θb denote the set of all bad transcripts and recall that Xid de-
notes the random variable of transcript τ induced in the ideal world. Then, we
have the following:

Pr[Xid ∈ Θb] ≤
q

2n
+

12q2

22n
+

6q2p

22n
+

4qp

22n
+

11qp2

22n
. (3)

Proof Let us denote Bad = Bad1 ∨ (∨9i=2Badi | Bad1) ∨ Bad10. Therefore, by
applying the union bound, we have

Pr[Bad] ≤ Pr[Bad1] +
9∑

i=2

Pr[Badi | Bad1] + Pr[Bad10].

Therefore, to bound the probability of the event Bad, we individually bound the
probability of the event Bad1,Bad10 and Badi for 2 ≤ i ≤ 10 conditioned on the
complement of the event Bad1 and then we apply the union bound to obtain the
final result.
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Bounding Bad1: We bound the event in two cases: (i) when ti1 ̸= uα for all
α ∈ [p] and (ii) when ∃α ∈ [p] such that ti1 = uα. To bound the first case, we
note that if ti1 ̸= uα, then yi1 is fresh and thus, we use the randomness of yi1 to
bound the event yi1 ⊕ ti2 = Lβ to at most 1/(2n − p) ≤ 2/2n assuming p ≤ 2n−1.
Moreover, due to the randomness of k, we bound the event k⊕ ti2 = Lα to 1/2n.
Therefore, by varying over all possible choices of indices, we have

Pr[Bad1] ≤ 2qp2/22n. (4)

To bound the second case, we consider three following sub-cases: (a) when α > i
and the α-th ideal-cipher query is forward one. In that case, for a fixed choice
of indices i ∈ [q], α, β ∈ [p], the probability of the event k ⊕ ti2 = Lα, t

i
1 = uα,

vα⊕ ti2 = Lβ is upper bounded by 1/2n ·1/(2n−p) due to the randomness of the
key k and the randomness of the ideal-cipher query output vα. By varying over
all possible choices of indices i ∈ [q], α ̸= β ∈ [p] and by assuming p ≤ 2n−1, we
have

Pr[Bad1] ≤ 2qp2/22n. (5)

(b) when α > i and the α-th ideal-cipher query is inverse one. In that case,
for a fixed choice of indices i ∈ [q], α, β ∈ [p], the probability of the event
k ⊕ ti2 = Lα, t

i
1 = uα, vα ⊕ ti2 = Lβ is upper bounded by 1/2n · 1/(2n − p) due

to the randomness of the key k and the randomness of the ideal-cipher query
output uα. By varying over all possible choices of indices i ∈ [q], α ̸= β ∈ [p] and
by assuming p ≤ 2n−1, we have

Pr[Bad1] ≤ 2qp2/22n. (6)

(c) On the other hand, if α < i, then we cannot use the randomness of vα. In
that case, for a fixed choices of i, α and β, the probability that k ⊕ ti2 = Lα,
ti1 = uα, vα⊕ ti2 = Lβ holds is upper bounded by 1/2n due to the randomness of
the key k. However, the number of choices of i, α and β such that vα ⊕ ti2 = Lβ

holds is at most qp2/2n by the virtue of the Sum-Capture Lemma. Therefore, in
both the cases, we have

Pr[Bad1] ≤ qp2/22n. (7)

Therefore, by combining Eqn. (4), Eqn. (5), Eqn. (6), and Eqn. (7), we have

Pr[Bad1] ≤ 7qp2/22n. (8)

Bounding Bad2 | Bad1: To bound the event, we need to bound the probability
of the following two equations hold:

E =

{
(1) : yi1 ⊕ yj1 = mi ⊕mj

(2) : yi2 ⊕ yj2 = ti1 ⊕ tj1

Now, we bound the probability of this event in several cases as follows:
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Case I. (ti1, t
i
2) = (tj1, t

j
2): If the condition happens, then it implies that yi1 = yj1

and thus from Eqn. (1), we have mi = mj . Since the distinguisher is non-trivial,

therefore, it implies that ti3 ̸= tj3. But then it implies that yi2 ̸= yj2. However, from

Eqn. (2), we have yi2 = yj2 which is a contradiction and hence the probability of
the event would be zero.

Case-II. y variables are determined by ideal-cipher query:Without loss

of generality, we assume that yi1 is determined by an ideal-cipher query. Then by
the virtue of Bad1, y

i
2 fresh, i.e., it is not determined by any ideal-cipher query.

Hence, the above equations are boiled down to the following:
k ⊕ ti2 = Lα

ti1 = uα

yj1 = mi ⊕mj ⊕ vα

yi2 ⊕ yj2 = ti1 ⊕ tj1

Using the randomness of yi2 and the randomness of the key k, the probability of
the above event is bounded by 1/2n ·1/(2n−p). However, the number of choices
of i, j, α is

(
q
2

)
p. By assuming p ≤ 2n−1, we have

Pr[Bad2 | Bad1] ≤ q2p/22n. (9)

Case-III. none of the y variables are determined by ideal-cipher query:
We consider this case in several sub-cases as follows:

1. We consider the case when ti1 = ti3, t
j
1 = tj3, k = yi1 and yi1 = yi2. This event

implies yi1 = yi2 and yj1 = yj2. Hence, the rank of the system of equations
E is 1 and hence E holds with probability at most 1/(2n − p). However,
we also have the randomness from the equation k = yi1 which additionally
contributes to 2−n in the probability. Therefore, for a fixed choice of indices,
the probability that E holds is at most 1/2n ·1/(2n−p). By varying over the
all possible choices of indices and by assuming p ≤ 2n−1, we have

Pr[Bad2] ≤ q2/22n. (10)

2. We consider a case when ti1 = tj3, t
i
3 = tj1, k ⊕ yj1 = ti2 ⊕ tj2 and yi1 = yj1. This

event implies yi1 = yj2 and yj1 = yi2. Hence, the rank of the system of equations
E is 1 and hence E holds with probability at most 1/(2n−p). However, we also
have the randomness from the equation k ⊕ yj1 = ti2 ⊕ tj2 which additionally
contributes to 2−n in the probability. Therefore, for a fixed choice of indices,
the probability that E holds is at most 1/2n ·1/(2n−p). By varying over the
all possible choices of indices, we have

Pr[Bad2] ≤ q2/22n. (11)

3. If the above two cases do not happen, then the rank of the system of equa-
tions E is 2 and in that case, we obtain two fresh random variables yi1 and
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yi2 which jointly contributes 1/(2n − p)2 to the probability of the above sys-
tem of equations E . Hence, for a fixed choice of indices, the probability that
E holds is at most 1/(2n − p)2. By varying over the all possible choices of
indices and by assuming p ≤ 2n−1, we have

Pr[Bad2] ≤ 2q2/22n. (12)

Therefore, by combining Eqn. (9)-Eqn. (12), we have

Pr[Bad2 | Bad1] ≤ 4q2/22n + q2p/22n. (13)

Bounding Bad3 | Bad1: Bounding Bad3 | Bad1 is identical to that of Bad2 | Bad1
and hence we have,

Pr[Bad3 | Bad1] ≤ 4q2/22n + q2p/22n. (14)

Bounding Bad4 | Bad1: We bound this event in several sub-cases as follows:
(a) If yi1 is not determined by any ideal-cipher query, then for a fixed choices
of indices, using the randomness of yi1 and key k, we bound this event up to
1/2n · 1/(2n − p). By varying the choices of indices and by assuming p ≤ 2n−1,
we have

Pr[Bad4] ≤ 2qp/22n (15)

(b) On the other hand, if yi1 is determined by ideal-cipher query, let ti1 = uβ ,
k ⊕ ti2 = Lβ for some β ∈ [p] which implies yi1 = vβ , then by the virtue of Bad1,
yi2 must be fresh. In that case, the event gets boils down to the following system
of equations: 

mi ⊕ yi1 = uα

2k ⊕ yi2 ⊕ ti1 = Lα

ti1 = uβ

k ⊕ ti2 = Lβ

For a fixed choices of indices, using the randomness of yi2 and k, the probability
of the above system of equation holds is 1/2n ·1/(2n−p). Moreover, the number
of choices of indices is qp2. Thus, we have

Pr[Bad4 | Bad1] ≤ 2qp2/22n (16)

Therefore, by combining Eqn. (15), and Eqn. (16), we have

Pr[Bad4 | Bad1] ≤ 2qp/22n + 2qp2/22n (17)

Bounding Bad5 | Bad1: Bounding Bad5 | Bad1 is identical to that of Bad4 | Bad1
and hence, we have

Pr[Bad5 | Bad1] ≤ 2qp/22n + 2qp2/22n. (18)
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Bounding Bad6 | Bad1: For a fixed choice of indices, the above event boils
down to bounding the following system of equations hold:{

3k = yi2 ⊕ ti1 ⊕ tj2
yi1 = mi ⊕ tj1

Now, we analyze the probability of the above event in the following two sub-
cases: (a) when yi1 is fresh, then we use the randomness of the key k and yi1 to
bound the probability to at most 1/2n · 1/(2n − p). However, by varying the all
possible choices of indices and by assuming p ≤ 2n−1, we have

Pr[Bad6 | Bad1] ≤ q2/22n. (19)

(b) On the other hand, if yi1 is not fresh, i.e., yi1 is determined from ideal-cipher
query, then, the event boils down to the following system of equations hold:{

3k = yi2 ⊕ ti1 ⊕ tj2
k ⊕ ti2 = Lα

where α ∈ [p]. Since yi1 is determined from ideal-cipher query, by the virtue of
Bad1, yi2 is fresh. Now, we use the randomness of the key k and yi2 to bound the
probability to at most 1/2n · 1/(2n − p). However, by varying the all possible
choices of indices and by assuming p ≤ 2n−1, we have

Pr[Bad6 | Bad1] ≤ q2p/22n. (20)

By combining Eqn. (19) and Eqn. (20), we have

Pr[Bad6 | Bad1] ≤ q2/22n + q2p/22n. (21)

Bounding Bad7 | Bad1: Bounding this event is identical to that of bounding
Bad6 | Bad1 and hence we have

Pr[Bad7 | Bad1] ≤ q2/22n + q2p/22n. (22)

Bounding Bad8: For a fixed choice of indices, the above event boils down to
bounding the following system of equations hold:{

2k = yi2 ⊕ ti1 ⊕ yj1 ⊕ tj2
yi1 = mi ⊕ tj3

Now, we analyze the probability of the above event in the following two sub-
cases: (a) when yi1 is fresh, then we use the randomness of the key k and yi1 to
bound the probability to at most 1/2n · 1/(2n − p). However, by varying the all
possible choices of indices and by assuming p ≤ 2n−1, we have

Pr[Bad8] ≤ q2/22n. (23)
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(b) On the other hand, if yi1 is not fresh, i.e., yi1 is determined from ideal-cipher
query, then, the event boils down to the following system of equations hold:{

2k = yi2 ⊕ ti1 ⊕ yj1 ⊕ tj2
k ⊕ ti2 = Lα

where α ∈ [p]. Since yi1 is determined from ideal-cipher query, by the virtue of
Bad1, yi2 is fresh. Now, we use the randomness of the key k and yi2 to bound the
probability to at most 1/2n · 1/(2n − p). However, by varying the all possible
choices of indices and by assuming p ≤ 2n−1, we have

Pr[Bad8 | Bad1] ≤ q2p/22n. (24)

By combining Eqn. (23) and Eqn. (24), we have

Pr[Bad8 | Bad1] ≤ q2/22n + q2p/22n. (25)

Bounding Bad9 | Bad1: Bounding this event is identical to that of bounding
Bad8 | Bad1 and hence we have

Pr[Bad9 | Bad1] ≤ q2/22n + q2p/22n. (26)

Bounding Bad10: For a fixed choice of index i, the probability of the event
2k ⊕ yi2 ⊕ ti1 = k ⊕ ti2 is upper bounded by 2−n due to the randomness of the
n-bit key k. By varying over all possible choices of indices, we have

Pr[Bad10] ≤ q/2n (27)

We derive the bound of Lemma 5 by combining Eqn. (8)-Eqn. (27). ⊓⊔

4.2 Good Transcript Analysis

Let τ = (τc, τp, (y
i
1, y

i
2)i∈[q], k) be a good transcript. We consider a set

S = {
(
(k ⊕ t12, t

1
1, y

1
1), (y

1
1 ⊕ t12, t

1
3, y

1
2)
)
, . . . ,

(
(k ⊕ tq2, t

q
1, y

q
1), (y

q
1 ⊕ tq2, t

q
3, y

q
2)
)
}

that records the (key, input, output) triplet of the first and second block cipher
call of the construction across all q construction queries. For each n-bit string
K ∈ {0, 1}n, we define a list IC(K) = {(L, u, v) ∈ τp : L = K} that records the
(ideal-cipher key, input, output) triplet across all p ideal-cipher queries such that
the ideal-cipher key is K. We maintain a list of integers L1, where we include
an index i ∈ [q] in L1, if ∃α ∈ [p] such that k ⊕ ti2 = Lα. Similarly, we maintain
a list of integers L2, where we include an index i ∈ [q] in L2, if ∃α ∈ [p] such
that yi1⊕ ti2 = Lα. Note that, L1 ∩L2 = ϕ, otherwise the event Bad1 would have
been hold. Now, we define a set

H1 := {(k ⊕ ti2, t
i
1, y

i
1), (y

i
1 ⊕ ti2, t

i
3, y

i
3) : i /∈ L1 ∪ L2}.
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Note that, H1 records the (key, input, output) triplet of the first and second block
cipher call of the construction across all q construction queries such that both
keys of the block cipher have not collided with any ideal-cipher key. Moreover,
H1 ⊆ S. Finally, for each i ∈ L1, we include the element (k ⊕ ti2, t

i
1, y

i
1) into

the list IC(k ⊕ ti2), i.e., IC(k ⊕ ti2)← IC(k ⊕ ti2) ∪ {(k ⊕ ti2, t
i
1, y

i
1)}, and, for each

i ∈ L2, we include the element (yi1 ⊕ ti2, t
i
3, y

i
3) into the list IC(yi1 ⊕ ti2), i.e.,

IC(yi1⊕ ti2)← IC(yi1⊕ ti2)∪{(yi1⊕ ti2, t
i
3, y

i
3)}. For each key K ∈ {0, 1}n, we define

the set

H2(K) := {(2k⊕ y2⊕ t1,m⊕ y1, c⊕ y1) : (t1∥t2∥t3,m, c) ∈ τc, 2k⊕ y2⊕ t1 = K}

that records the (key, input, output) triplet of the third block cipher call such
that the key is K. Similarly, for each tweak t ∈ {0, 1}3n, we define the set

H(t) := {(t1∥t2∥t3,m, c) ∈ τc : t1∥t2∥t3 = t}

which records all q construction queries and response excluding the block cipher
key such that the tweak of the construction query is t. Finally, for each key
K ∈ {0, 1}n, we define the set

Z(K) := {(t1∥t2∥t3) : (t1∥t2∥t3,m, c) ∈ τc, 2k ⊕ y2 ⊕ t1 = K}.

It is to be noted that as the transcript is good, for each key K ∈ {0, 1}n, we
have H2(K)∩H1 = ϕ, otherwise either of the event Bad6-Bad10 would have been
hold. Similarly, for each key K ∈ {0, 1}n, we have H2(K)∩ IC(K) = ϕ, otherwise
either of the events Bad4-Bad9 would have been hold. Finally, by the virtue of
the definition, we have H1 ∩ IC(K) = ϕ for each key K ∈ {0, 1}n.
Let us fix a key K ∈ {0, 1}n. For each t ∈ Z(K), |H(t)| denotes the number of
construction queries with tweak t. Then, we have for each key K ∈ {0, 1}n,∑

t∈Z(K)

|H(t)| = |H2(K)|.

For the sake of simplicity, let us denote |H1| = α1. For each K ∈ {0, 1}n, we
denote |IC(K)| = αic(K), |H2(K)| = α2(K) and for each tweak t ∈ {0, 1}3n,
we denote |H(t)| = α(t). Therefore, for a fixed good transcript τ , the ideal
interpolation probability becomes

Pr[Xid = τ ] =
1

2n
·

∏
K∈{0,1}n

·
α2(K)−1∏

j=0

1

2n − j
·
( ∏

K∈{0,1}n

αic(K)−1∏
j=0

1

2n − j

)

·
( ∏

K∈{0,1}n

∏
t∈Z(K)

α(t)−1∏
p=0

1

2n − p

)

=
1

2n
·

∏
K∈{0,1}n

·
α2(K)−1∏

j=0

1

2n − j
·
( ∏

K∈{0,1}n

αic(K)−1∏
j=0

1

2n − j

α2(K)−1∏
p=0

1

2n − p

)
.
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To bound the real interpolation probability, the number of times block cipher
is called for deriving sub-keys is α1. However, number of times block cipher is
called for ideal-cipher queries and construction queries is αic(K) + α2(K) for
each key K ∈ {0, 1}n. Therefore, we have

Pr[Xre = τ ] =
1

2n
·

∏
K∈{0,1}n

·
α2(K)−1∏

j=0

1

2n − j
·
( ∏

K∈{0,1}n

αic(K)+α2(K)−1∏
j=0

1

2n − j

)
.

Since for each key K ∈ {0, 1}n, we have

αic(K)−1∏
j=0

1

2n − j

α2(K)−1∏
p=0

1

2n − p
≤

αic(K)+α2(K)−1∏
j=0

1

2n − j
,

the ratio of the real to ideal interpolation probability becomes ≥ 1, which proves
the result.

Remark 2. The security of our construction holds as long as the online query
complexity q ≤ 22n/3 and the offline query complexity p ≤ 22n/3. Ideally, the
offline query complexity should go up to 2n as they are cheaper than the online
queries, but we believe that it is challenging to improve the security bound of
our construction that tolerates offline query complexity up to 2n.

5 Optimally Secure TBC with 3n-bit Tweaks Using Four
Block Cipher Calls

In this section, we show that to process 3n bit tweaks using four block cipher
calls, having one tweak-dependent block cipher key is both necessary and suffi-
cient condition for achieving security up to O(2n) queries. In the following, we
first show that at least one tweak-dependent key is necessary to construct TBCs
with 3n-bit tweak from four block ciphers calls. Followed by, we show that at
least one tweak-dependent key is sufficient to construct TBCs with 3n-bit tweak
from four block ciphers calls.

5.1 Generic Birthday Attacks on TBCs with 3n-bit tweak from
Four BC with All Tweak-independent Keys

In this subsection, we will show that at least one tweak-dependent key is nec-
essary to construct TBCs with 3n-bit tweak from four block ciphers. In other
words, we exhibit birthday bound attacks on all TBC constructions with four
block cipher calls that process 3n bit tweaks with no tweak dependency key. More
precisely, we consider the generic construction using four block ciphers where no
block cipher keys are tweak-dependent, dubbed C8 as depicted in Fig.9, and
present a birthday attack on the construction.

To mount an attack on this generic construction, our strategy is as follows:
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Ef1(t)

a1.k

y1 Eα1.y1 ⊕ f2(t)

a2.k

y2 Eα2.y1 ⊕ β1.y2 ⊕ f3(t)

a3.k

y3

Em ⊕

α3.y1 ⊕ β2.y2 ⊕ γ1.y3

a4.k

c⊕

α4.y1 ⊕ β3.y2 ⊕ γ2.y3

Fig. 9: Construction C8: All the four block cipher uses tweak-independent keys.

Case 1: γ1 = 0. In this case we find a constant query attack as follows:

1. Find t1, t2 satisfying f1(t
1) = f1(t

2) and f2(t
1) = f2(t

2). This choice makes
y11 = y21 and y12 = y22 .

2. Make two query with (m, t1) and (m, t2). We have the same (input, key)
for both queries. Note that, corresponding cipher texts c1, c2 will satisfy
c1 ⊕ c2 = γ2(y

1
3 ⊕ y23).

3. Finally, make two additional queries (m ⊕ ∆, t1) and (m ⊕ ∆, t2), where
∆ ̸= 0. Let c⋆1 and c⋆2 be two cipher texts. Return 1 if c⋆1⊕ c⋆2 = c1⊕ c2. Note
that, this equation happens for TBC construction is 1, while for random
tweakable permutation, the probability is only 1/2n.

Case 2: γ1 ̸= 0. Here we find a birthday attack as follows:

1. Find 2n/2 many tweaks such that for each pair of tweaks (ti, tj), we have
f1(t

i) = f1(t
j), f2(t

i) = f2(t
j), and f3(t

i) ̸= f3(t
j). Note that, with this

choice of tweaks, we will have yi1 = yj1, and yi2 = yj2, for all (i, j).
2. Now we make 2n/2 queries (mi, t

i) such that all the mi-values are distinct.
It is easy to see that a collision in the input of the final block cipher happens
when γ1(y

i
3 ⊕ yj3) = mi ⊕mj . Now due to birthday paradox, we expect one

such collision. Moreover, this collision is detectable as in this case, we have
γ1(ci ⊕ cj) = γ2(mi ⊕mj).

3. Finally, we can distinguish the TBC from a random tweakable permutation
by making two additional oracle queries (mi ⊕ ∆, ti), (mj ⊕ ∆, tj), where
∆ ̸= 0, and verifying if the corresponding outputs, say c⋆i and c⋆j satisfies the
following equation: c⋆i ⊕ c⋆j = ci ⊕ cj .

30



An algorithmic description of the attack is shown in Fig. 20 (See Supplemen-
tary Material C.8).

Remark 3. In general, we can mount a similar generic birthday attack on TBCs
with rn-bit tweak from (r + 1) Block ciphers if all the block cipher keys are
Tweak-independent.

5.2 Optimal Secure TBC with 3n-bit tweak from Four BC with one
Tweak-dependent Key

Let E : {0, 1}n × {0, 1}n → {0, 1}n be a n-bit block cipher. The tweakable block

cipher G̃3 : {0, 1}n × {0, 1}3n × {0, 1}n → {0, 1}n with a 3n bit tweak using
four block cipher calls is constructed as follows: three block cipher calls are first
invoked in parallel to produce three masks y1, y2 and y3 from the tweaks t1, t2, t3
and the master key k. By using y1⊕y2 to mask the input and by using y1⊕y3 to
mask the output, and using y2 ⊕ y3, the master key k, and t1 to provide variety
in the sub-key, a fourth block cipher call is then invoked to encrypt the message

m to the ciphertext c. A pictorial illustration of the construction G̃3 is given in
Fig. 10.

Et1

k

y1 Et2

2.k

y2 Et3

4.k

y3 Em ⊕

y1 ⊕ y2

k ⊕ t1 ⊕ y2 ⊕ y3

c⊕

y1 ⊕ y3

Fig. 10: G̃3 construction: TBC with 3n-bit tweaks using four block cipher calls.
We impose a natural ordering on the block cipher calls from left to right.

In the following we show that G̃3 is a secure tweakable block cipher with 3n
bit tweaks against all adversaries that makes roughly 2n construction and ideal-
cipher queries. Formally, we have the following result:

Theorem 3. Let A be an adversary making at most q construction queries and
p ideal-cipher queries including both forward and backward queries. Then,

Advtsprp-icm
G̃3

(A) ≤ 4q(p+ q)

22n
+

4q + 3p+ 1

2n
.

Proof. We consider A to be a computationally unbounded deterministic distin-

guisher that interacts with a pair of oracles in either the real world (G̃3

E
,E±) or

in the ideal world (P̃,E±). Let us assume that A makes at most q construction
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queries and p ideal-cipher queries. Let τc = {(t11∥t12∥t13,m1, c1), . . . , (t
q
1∥t

q
2∥t

q
3,mq,

cq)} denote the list of construction query-responses and τp = {(L1, u1, v1), (L2,
u2, v2), . . . , (Lp, up, vp)} denote the list of ideal-cipher query-responses. For the
sake of proof, let the oracle release some additional value after all of adversary
A’s query responses are finished. Note that these additional released values can
only increase the adversary’s advantage. We assume that the oracle in the real
world releases the block cipher key k and the tuple (yi1, y

i
2, y

i
3), i ∈ [q] tuple. On

the other hand, the oracle in the ideal world randomly samples n-bit dummy
key k and computes (yi1, y

i
2, y

i
3), i ∈ [q] tuple, where yi1, y

i
2, and yi3 are computed

similar to the real world and finally released them to the distinguisher. There-
fore, the extended transcript of the attack is τ = (τc, τp, (y

i
1, y

i
2, y

i
3)i∈[q], k). Let

Θ denote the set of all attainable transcripts. We call an attainable transcript
τ ∈ Θ is bad if it satisfies either of the following:

1. Bad1: k = 0.
2. Bad2: ∃α ∈ [p] : Lα ∈ {k, 2k, 4k}.
3. Bad3: ∃i ∈ [q] : k ⊕ ti1 ⊕ yi2 ⊕ yi3 ∈ {k, 2k, 4k}.
4. Bad4: ∃i ∈ [q], α ∈ [p] : mi ⊕ yi1 ⊕ yi2 = uα, k ⊕ ti1 ⊕ yi2 ⊕ yi3 = Lα.
5. Bad5: ∃i ∈ [q], α ∈ [p] : ci ⊕ yi1 ⊕ yi3 = vα, k ⊕ ti1 ⊕ yi2 ⊕ yi3 = Lα.
6. Bad6: ∃i ̸= j ∈ [q] : yi1 ⊕ yi2 ⊕ yj1 ⊕ yj2 = mi ⊕mj , yi2 ⊕ yi3 ⊕ yj2 ⊕ yj3 =

ti1 ⊕ tj1.

7. Bad7: ∃i ̸= j ∈ [q] : yi1⊕yi3⊕y
j
1⊕y

j
3 = ci⊕cj , yi2⊕yi3⊕y

j
2⊕y

j
3 = ti1⊕t

j
1.

In the following lemma we state that one of the bad events holds in the ideal
world with very low probability.

Lemma 6. Let Θb denote the set of all bad transcripts and recall that Xid de-
notes the random variable of transcript τ induced in the ideal world. Then, we
have the following:

Pr[Xid ∈ Θb] ≤
4q(p+ q)

22n
+

4q + 3p+ 1

2n
. (28)

Proof Let us denote Bad = Bad1 ∨ Bad2 ∨ (∨7i=3Badi | Bad2). Therefore, by
applying the union bound, we have

Pr[Bad] ≤ Pr[Bad1] + Pr[Bad2] +
7∑

i=3

Pr[Badi | Bad2].

Therefore, to bound the probability of the event Bad, we individually bound the
probability of the event Bad1,Bad2 and Badi for 3 ≤ i ≤ 7 conditioned on the
complement of the event Bad2. Then we apply the union bound to obtain the
final result.

Bounding Bad1: It is easy to see the randomness of the key k ensures that

Pr[Bad1] ≤ 1/2n. (29)
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Bounding Bad2: For a fixed index α ∈ [p], the probability of the event k = Lα

is upper bounded by 1/2n due to the randomness of the key k. Similarly, the
probability of the event 2k = Lα is upper bounded by 1/2n and the probability
of the event 4k = Lα is upper bounded by 1/2n due to the randomness of the
key k. By varying over all possible choices of indices α ∈ [p], we have

Pr[Bad2] ≤ 3p/2n. (30)

Bounding Bad3 | Bad2: For a fixed choice of index i, we bound the event
k ⊕ ti1 ⊕ yi2 ⊕ yi3 = k, which boils down to the event yi2 ⊕ yi3 = ti1. Due to the
event Bad2, yi2 variable is fresh and hence we bound the probability of the event
to at most 1/(2n−p). Similarly, for a fixed choice of index i, we bound the event
k ⊕ ti1 ⊕ yi2 ⊕ yi3 = 2k, which boils down to the event

k = (2⊕ 1)−1(yi2 ⊕ yi3 ⊕ ti1).

Using the entropy of the random variable k, we bound the probability of the
event at most 1/2n. Similarly, for a fixed choice of index i, we bound the event
k ⊕ ti1 ⊕ yi2 ⊕ yi3 = 4k, which boils down to the event

k = (22 ⊕ 1)−1(yi2 ⊕ yi3 ⊕ ti1).

Using the entropy of the random variable k, we bound the probability of the
event at most 1/2n. Therefore, by varying over all possible choices of indices and
by assuming p ≤ 2n−1, we have

Pr[Bad3 | Bad2] ≤ 4q/2n. (31)

Bounding Bad4 | Bad2: For a fixed choice of indices i ∈ [q], α ∈ [p], the proba-
bility of the event {

yi1 ⊕ yi2 = mi ⊕ uα

k ⊕ yi2 ⊕ yi3 = ti1 ⊕ Lα

is upper bounded by 1/2n · 1/(2n − p) due to the randomness of the key k and
yi1 as yi1 is not determined by ideal-cipher query due to the virtue of ¬Bad2.
By varying over all possible choices of indices i ∈ [q], α ∈ [p] and by assuming
p ≤ 2n−1, we have

Pr[Bad4 | Bad2] ≤ 2qp/22n. (32)

Bounding Bad5 | Bad2: Bounding this event is identical to that of Bad4 | Bad2
and hence we have

Pr[Bad5 | Bad2] ≤ 2qp/22n (33)

Bounding Bad6 | Bad2: We bound the probability of this event in several sub-
cases as follows:
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1. if (ti1, t
i
2) = (tj1, t

j
2), then it implies that yi1 = yj1 and yi2 = yj2 which follows

from the construction. Hence, it implies from the above equation

(yi1 ⊕ yi2)⊕ (yj1 ⊕ yj2) = mi ⊕mj

that mi = mj . On the other hand, the above condition also implies from the
equation

(yi2 ⊕ yi3)⊕ (yj2 ⊕ yj3) = ti1 ⊕ tj1

that yi3 = yj3 that follows from the construction which in turn implies that

ti3 = tj3. However, if the tweaks are same for i-th and j-th query, then the
corresponding message should be different as we assume non-trivial distin-
guisher which is violated from the above sequence of logical events. Therefore,
in this case, the probability of the event is zero.

2. if (ti1, t
i
3) = (tj1, t

j
3), then it implies that yi1 = yj1 and yi3 = yj3 which follows

from the construction. Hence, it implies from the above equation

(yi2 ⊕ yi3)⊕ (yj2 ⊕ yj3) = ti1 ⊕ tj1

that yi2 = yj2 which in turn implies that ti2 = ti3. On the other hand, the
above condition implies from the above equation

(yi1 ⊕ yi2)⊕ (yj1 ⊕ yj2) = mi ⊕mj

that mi = mj . However, if the tweaks are same for i-th and j-th query,
then the corresponding message should be different as we assume non-trivial
distinguisher which is violated from the above sequence of logical events.
Therefore, in this case, the probability of the event is zero.

3. if (ti2, t
i
3) = (tj2, t

j
3), then it implies that yi2 = yj2 and yi3 = yj3 which follows

from the construction. Hence, it implies from the above equation

(yi2 ⊕ yi3)⊕ (yj2 ⊕ yj3) = ti1 ⊕ tj1

that ti1 = tj1, which again implies that yi1 = yj1 that follows from the con-
struction. But again it implies that mi = mj which follows from the equation

(yi1 ⊕ yi2)⊕ (yj1 ⊕ yj2) = mi ⊕mj .

However, if the tweaks are same for i-th and j-th query, then the correspond-
ing message should be different as we assume non-trivial distinguisher which
is violated from the above sequence of logical events. Therefore, in this case,
the probability of the event is zero.

4. In all the other cases, at most one of ti1, t
i
2, t

i
3 will collide with the correspond-

ing tj1, t
j
2, t

j
3 respectively. In that case we obtain two fresh random variables

from each of the two equations{
(yi2 ⊕ yi3)⊕ (yj2 ⊕ yj3) = ti1 ⊕ tj1
(yi1 ⊕ yi2)⊕ (yj1 ⊕ yj2) = mi ⊕mj
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Without loss of generality, we assume that i < j and in that case we choose
yj1 as fresh random variable from the first equation and choose yj3 as fresh
random variable from the second equation. Note that we can utilize the
randomness of both yj1 and yj3 together due to Bad1. Using the randomness

of yj1 and yj3, we bound the probability of the above event for a fixed choices
of indices to at most 1/(2n − p)2. By varying over all possible choices of
indices and by assuming p ≤ 2n−1, we have

Pr[Bad6 | Bad2] ≤ 2q2/22n (34)

Bounding Bad7 | Bad2: Bounding this event is exactly identical to that of
Bad6 | Bad2 and hence, we have

Pr[Bad7|Bad2] ≤ 2q2/22n. (35)

We derive the bound of Lemma 6 by combining the bounds from Eqn. (29)-
Eqn. (35). ⊓⊔
We lower bound the ratio of the real to ideal interpolation probability for a good
transcript. Formally, we prove the following lemma.

Lemma 7. Let τ = (τc, τp, (y
i
1, y

i
2, y

i
3)i∈[q], k) be a good transcript. Let Xre and

Xid be two random variables defined as above. Then, we have

Pr[Xre = τ ]

Pr[Xid = τ ]
≥ 1. (36)

Proof Let τ = (τc, τp, (y
i
1, y

i
2, y

i
3)i∈[q], k) be a good transcript. Let us consider

the following set:

H1 = {(k, t11, y11), (2k, t12, y12), (4k, t13, y13), . . . , (k, t
q
1, y

q
1), (2k, t

q
2, y

q
2), (4k, t

q
3, y

q
3))

which records the (key, input, output) triplet of the first, second and the third
block cipher call of the construction across all q construction queries. For each
key K ∈ {0, 1}n, we define the sets H2(K) = {(L, u, v) ∈ τp : L = K} and
H3(K) = {(k ⊕ ti1 ⊕ yi2 ⊕ yi3,mi ⊕ yi1 ⊕ yi2, ci ⊕ yi1 ⊕ yi2) : k ⊕ ti1 ⊕ yi2 ⊕ yi3 = K},
where (ti1∥ti2∥ti3,mi, ci) ∈ τc. Note that, H2(K) denotes the set of (key, input,
output) triplet across all p ideal-cipher queries such that the key is K. Similarly,
H3(K) denotes the set of all triplet of (key, input, output) of the third block
cipher call of the construction across all q construction queries such that the key
of the third block cipher call is K. For each tweak t ∈ {0, 1}3n, we define the set

H(t) = {(ti1∥ti2∥ti3,mi, ci) ∈ τc : t
i
1∥ti2∥ti3 = t}

which records all q triplet of tweak, queries and response excluding the block
cipher key such that the tweak of the construction query is t. Finally, for each
key K ∈ {0, 1}n, we define the set

Z(K) = {(ti1∥ti2∥ti3) : (ti1∥ti2∥ti3,mi, ci) ∈ τc ∧ k ⊕ ti1 ⊕ yi2 ⊕ yi3 = K}.
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Since the transcript is good, we have H1∩H2(K) = ∅, H1∩H3(K) = ∅, H2(K)∩
H3(K) = ∅, for each K ∈ {0, 1}n. These follow directly from Bad2, Bad3, and
Bad4 ∧ Bad5.

Let us fix a key K ∈ {0, 1}n. For each t ∈ Z(K), |H(t)| denotes the number of
construction queries with tweak t. Due to Bad6 ∧ Bad7, we have for each key
K ∈ {0, 1}n, ∑

t∈Z(K)

|H(t)| = |H3(K)|.

For the sake of simplicity, let us denote |H1| = α1. For each K ∈ {0, 1}n, we
denote |H2(K)| = α2(K), |H3(K)| = α3(K) and for each tweak t ∈ {0, 1}3n,
we denote |H(t)| = α(t). Therefore, for a fixed good transcript τ , the ideal
interpolation probability becomes

Pr[Xid = τ ] ≤ 1

2n
·
α1−1∏
i=0

1

2n − i
·
( ∏

K∈{0,1}n

α2(K)−1∏
j=0

1

2n − j

α3(K)−1∏
p=0

1

2n − p

)
.

To bound the real interpolation probability, the number of times block cipher
is called for deriving sub-keys is α1. However, the number of times block cipher
is called for ideal-cipher queries and construction queries is α2(K) + α3(K) for
each key K ∈ {0, 1}n. Therefore, we have

Pr[Xre = τ ] =
1

2n
·
α1−1∏
i=0

1

2n − i
·
( ∏

K∈{0,1}n

α2(K)+α3(K)−1∏
j=0

1

2n − j

)
.

Since for each key K ∈ {0, 1}n, we have

α2(K)−1∏
j=0

1

2n − j

α3(K)−1∏
p=0

1

2n − p
≤

α2(K)+α3(K)−1∏
j=0

1

2n − j
,

the ratio of the real to ideal interpolation probability becomes ≥ 1, which proves
the result. ⊓⊔
Finally, Theorem 3 follows by combining Lemma 6 and Lemma 7. ⊓⊔

6 Optimally Secure TBC with rn-bit Tweaks Using
(r + 1) Block Cipher Calls

Let E : {0, 1}n × {0, 1}n → {0, 1}n be a n-bit block cipher and r ∈ N be a given

parameter. The tweakable block cipher G̃r : {0, 1}n×{0, 1}rn×{0, 1}n → {0, 1}n
with a rn-bit tweak is constructed using (r+1) block ciphers as follows: r block
cipher calls are first invoked in parallel to produce r sub-keys y1, y2, . . . , yr from
the tweaks t1, t2, . . . , tr and the master key k as shown in Fig. 11. Then, the
subkeys are linearly combined to generate two n-bit strings Y and Z which are
used to compute the ciphertext for a given message m as shown in Fig. 11.
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Fig. 11: G̃r construction: TBC with rn-bit tweaks using (r+1) block cipher calls.

Remark 4. In order to compare G̃r with polynomial-based universal hashing of

an rn-bit tweak in the XHX construction, we would like to point out that G̃r

generates the subkeys in parallel and combines them to obtain the key of the
final block-cipher call used in the encryption module. Thus, it requires r + 1
block-cipher calls with no additional non-linear operation. On the other hand,
XHX needs one block-cipher call and two hash function evaluations. When in-
stantiating each hash function with an r-degree polynomial, it needs to evaluate
r + 1 field multiplications in sequential order to generate the block cipher key.
While the actual efficiency comparison between the two constructions crucially
depends on the actual implementation of the ciphers and the platform available
for the implementation, our attempt in this paper is to minimize the number of
non-linear operations.

In the following we show that G̃r is a secure tweakable block cipher with rn
bit tweaks against all adversaries that makes roughly 2n construction and ideal-
cipher queries. Formally, we have the following result:

Theorem 4. Let A be an adversary making at most q construction queries and
p ideal-cipher queries including both forward and backward queries. Then,

Advtsprp-icm
G̃r

(A) ≤ 4q(p+ q)

22n
+

2rq + rp+ 1

2n
.

Proof. Let τc = {(t11∥t12∥ . . . ∥t1r,m1, c1), . . . , (t
q
1∥t

q
2∥ . . . ∥tqr,mq, cq)} and τp =

{(L1, u1, v1), (L2, u2, v2), . . . , (Lp, up, vp)} denotes the list of construction query-
responses and ideal-cipher query-responses of A respectively. After the inter-
action, the real world oracle releases the block cipher key k and the tuple of
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sub-keys (yi1, y
i
2, . . . , y

i
r), i ∈ [q] tuple, whereas the ideal world oracle randomly

samples n-bit dummy key k and computes the sub-key tuple (yi1, y
i
2, . . . , y

i
r),

i ∈ [q], where yi1, y
i
2, . . . , y

i
r are computed similar to the real world and finally

released them to the distinguisher. Therefore, the extended transcript of the
attack is τ = (τc, τp, (y

i
1, y

i
2, . . . , y

i
r)i∈[q], k).

6.1 Definition of Bad Transcript and Bounding its Probability

Let Θ denote the set of all attainable transcripts. We call an attainable transcript
τ ∈ Θ is bad if it satisfies either of the following:

1. Bad1: k = 0.
2. Bad2: ∃α ∈ [p] : Lα ∈ {k, 2k, 22k, . . . , 2r−1k}.
3. Bad3: ∃i ∈ [q] : k ⊕ Z ∈ {k, 2k, 22k, . . . , 2r−1k}.
4. Bad4: ∃i ∈ [q], α ∈ [p] : mi ⊕ Yi = uα, k ⊕ Zi = Lα.
5. Bad5: ∃i ∈ [q], α ∈ [p] : ci ⊕ Yi = vα, k ⊕ Zi = Lα.
6. Bad6: ∃i ̸= j ∈ [q] : Yi ⊕ Yj = mi ⊕mj , Zi = Zj .
7. Bad7: ∃i ̸= j ∈ [q] : Yi ⊕ Yj = ci ⊕ cj , Zi = Zj .

Lemma 8. Let Θb denote the set of all bad transcripts and recall that Xid de-
notes the random variable of transcript τ induced in the ideal world. Then, we
have the following:

Pr[Xid ∈ Θb] ≤
4q(p+ q)

22n
+

2rq + rp+ 1

2n
. (37)

Proof Let us denote Bad = Bad1 ∨ Bad2 ∨ (∨7i=3Badi | Bad2). Therefore, by
applying the union bound, we have

Pr[Bad] ≤ Pr[Bad1] + Pr[Bad2] +
7∑

i=3

Pr[Badi | Bad2].

Therefore, to bound the probability of the event Bad, we individually bound the
probability of the event Bad1,Bad2 and Badi for 3 ≤ i ≤ 7 conditioned on the
complement of the event Bad2. Then we apply the union bound to obtain the
final result.

Bounding Bad1: Bounding this event is exactly identical to that of bounding
Bad1 in Lemma 6. Thus, we have

Pr[Bad1] ≤ 1/2n. (38)

Bounding Bad2: Bounding this event is again very similar to that of bounding
Bad2 in Lemma 6. For a fixed index α ∈ [p], and for a fixed i ∈ [r] the probability
of the event 2i−1k = Lα is upper bounded by 1/2n due to the randomness of the
key k. By varying over all possible choices of indices α ∈ [p] and i ∈ [r], we have

Pr[Bad2] ≤ rp/2n. (39)
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Bounding Bad3 | Bad2: For a fixed choice of index i ∈ [q], and for a fixed
α ∈ [r], we bound the event k ⊕ 2ryi1 ⊕ 2r−1yi2 ⊕ . . .⊕ 2yir = 2α−1k, which boils
down to the event

2ryi1 ⊕ 2r−1yi2 ⊕ . . .⊕ 2yir = k(1⊕ 2α−1).

By the virtue of Bad2 event, the random variable yi1 is fresh. Hence, we bound the
probability of the event to at most 1/2n−p using the randomness of yi1. Therefore,
by varying over all possible choices of indices and by assuming p ≤ 2n−1, we have

Pr[Bad3 | Bad2] ≤ 2rq/2n. (40)

Bounding Bad4 | Bad2: For a fixed choice of indices i ∈ [q], α ∈ [p], the proba-
bility of the event {

yi1 ⊕ yi2 ⊕ . . .⊕ yir = mi ⊕ uα

k ⊕ 2ryi1 ⊕ 2r−1yi2 ⊕ . . .⊕ 2yir = Lα

is upper bounded by 1/2n · 1/(2n − p) due to the randomness of the key k and
yi1 as yi1 is not determined by ideal-cipher query due to the virtue of Bad2. By
varying over all possible choices of indices i ∈ [q], α ∈ [p] and by assuming
p ≤ 2n−1, we have

Pr[Bad4 | Bad2] ≤ 2qp/22n. (41)

Bounding Bad5 | Bad2: Bounding this event is identical to that of Bad4 | Bad2
and hence we have

Pr[Bad5 | Bad2] ≤ 2qp/22n (42)

Bounding Bad6 | Bad2: For a fixed choice of indices i ̸= j ∈ [q], the probability
of the event{

(yi1 ⊕ yi2 ⊕ . . .⊕ yir)⊕ (yj1 ⊕ yj2 ⊕ yjr) = mi ⊕mj

2r(yi1 ⊕ yj1)⊕ 2r−1(yi2 ⊕ yj2)⊕ . . .⊕ 2(yir ⊕ yjr) = 0n

Let EQ = {α1, α2, . . . , αs} ⊆ [r] such that tiα1
= tjα1

, tiα2
= tjα2

, . . . tiαs
= tjαs

.
Therefore, we have

mi ⊕mj = ⊕α∈[r]\EQ(y
i
α ⊕ yjα)

0n = ⊕α∈[r]\EQ2
r−α+1(yiα ⊕ yjα)

It is easy to see that |EQ| < r− 1, otherwise the probability of the above events
would have been zero. Therefore, we assume that |EQ| ≤ r− 2. Hence, we get at
least two fresh random variables yiα1

, yiα2
, where α1, α2 ∈ [r] \ EQ by the virtue

of Bad2. Since, the above system of equations is of rank 2, therefore, by using
the randomness of yiα1

and yiα2
, we upper bound the probability of the above

event to 1/(2n − p)2. By varying all possible choices of indices i ̸= j ∈ [q] and
by assuming p ≤ 2n−1, we have

Pr[Bad6 | Bad2] ≤ 2q2/22n (43)
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Bounding Bad7 | Bad2: Bounding this event is exactly identical to that of
Bad6 | Bad2 and hence, we have

Pr[Bad7|Bad2] ≤ 2q2/22n. (44)

We derive the bound of Lemma 8 by combining the bounds from Eqn. (38)-
Eqn. (44). ⊓⊔

6.2 Good Transcript Analysis

In this section, we lower bound the ratio of the real to ideal interpolation prob-
ability for a good transcript. Formally, we prove the following lemma.

Lemma 9. Let τ = (τc, τp, (y
i
1, y

i
2, . . . , y

i
r)i∈[q], k) be a good transcript. Let Xre

and Xid be two random variables defined as above. Then, we have

Pr[Xre = τ ]

Pr[Xid = τ ]
≥ 1. (45)

Proof Let τ = (τc, τp, (y
i
1, y

i
2, . . . , y

i
r)i∈[q], k) be a good transcript. Let us con-

sider the following set:

H1 = {(k, t11, y11), (2k, t12, y12), . . . , (2r−1k, t1r, y
1
r), . . . , (k, t

q
1, y

q
1), (2k, t

q
2, y

q
2), . . . , (2

r−1k, tqr, y
q
r))

which records the (key, input, output) triplet of the r many block cipher call
in the sub-key derivation phase of the construction across all q construction
queries. For each key K ∈ {0, 1}n, we define the sets H2(K) = {(L, u, v) ∈ τp :
L = K} and H3(K) = {(k ⊕ 2ryi1 ⊕ 2r−1yi2 ⊕ . . .⊕ 2yir,mi ⊕ yi1 ⊕ yi2 ⊕ . . .⊕ yir,
ci⊕yi1⊕yi2⊕ . . .⊕yir) : k⊕2ryi1⊕2r−1yi2⊕ . . .⊕2yir = K}, where (ti1∥ti2∥ . . . ∥tir,
mi, ci) ∈ τc. For each tweak t ∈ {0, 1}rn, we define the set

H(t) = {(ti1∥ti2∥ . . . ∥tir,mi, ci) ∈ τc : t
i
1∥ti2∥ . . . ∥tir = t}

which records all q triplet of tweak, queries and response excluding the block
cipher key such that the tweak of the construction query is t. Finally, for each
key K ∈ {0, 1}n, we define the set

Z(K) = {(ti1∥ti2∥ . . . ∥tir) : (ti1∥ti2∥ . . . ∥tir,mi, ci) ∈ τc∧k⊕2ryi1⊕2r−1yi2⊕. . .⊕2yir = K}.

Since the transcript is good, we have H1∩H2(K) = ∅, H1∩H3(K) = ∅, H2(K)∩
H3(K) = ∅, for each K ∈ {0, 1}n. These follow directly from Bad2, Bad3, and
Bad4 ∧ Bad5.

Let us fix a key K ∈ {0, 1}n. For each t ∈ Z(K), |H(t)| denotes the number of
construction queries with tweak t. Due to Bad6 ∧ Bad7, we have for each key
K ∈ {0, 1}n, ∑

t∈Z(K)

|H(t)| = |H3(K)|.
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For the sake of simplicity, let us denote |H1| = α1. For each K ∈ {0, 1}n, we
denote |H2(K)| = α2(K), |H3(K)| = α3(K) and for each tweak t ∈ {0, 1}rn,
we denote |H(t)| = α(t). Therefore, for a fixed good transcript τ , the ideal
interpolation probability becomes

Pr[Xid = τ ] =
1

2n
·
α1−1∏
i=0

1

2n − i
·
( ∏

K∈{0,1}n

α2(K)−1∏
j=0

1

2n − j

)

·
( ∏

K∈{0,1}n

∏
t∈Z(K)

α(t)−1∏
p=0

1

2n − p

)

≤ 1

2n
·
α1−1∏
i=0

1

2n − i
·
( ∏

K∈{0,1}n

α2(K)−1∏
j=0

1

2n − j

α3(K)−1∏
p=0

1

2n − p

)
.

To bound the real interpolation probability, the number of times block cipher
is called for deriving sub-keys is α1. However, the number of times block cipher
is called for ideal-cipher queries and construction queries is α2(K) + α3(K) for
each key K ∈ {0, 1}n. Therefore, we have

Pr[Xre = τ ] =
1

2n
·
α1−1∏
i=0

1

2n − i
·
( ∏

K∈{0,1}n

α2(K)+α3(K)−1∏
j=0

1

2n − j

)
.

Since for each key K ∈ {0, 1}n, we have

α2(K)−1∏
j=0

1

2n − j

α3(K)−1∏
p=0

1

2n − p
≤

α2(K)+α3(K)−1∏
j=0

1

2n − j
,

the ratio of the real to ideal interpolation probability becomes ≥ 1, which proves
the result. ⊓⊔
Finally, Theorem 4 follows by combining Lemma 8 and Lemma 9.
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JNPS21. Jérémy Jean, Ivica Nikolic, Thomas Peyrin, and Yannick Seurin. The deoxys
AEAD family. J. Cryptol., 34(3):31, 2021.

Kha23. Mustafa Khairallah. Clrw13 is not secure beyond the birthday bound:
Breaking tnt with O(2n/2) queries. Cryptology ePrint Archive, Paper
2023/1212, 2023. https://eprint.iacr.org/2023/1212.

LL18. ByeongHak Lee and Jooyoung Lee. Tweakable block ciphers secure be-
yond the birthday bound in the ideal cipher model. In Thomas Peyrin and

45

https://competitions.cr.yp.to/round2/joltikv13.pdf
https://competitions.cr.yp.to/round2/joltikv13.pdf
https://competitions.cr.yp.to/round1/kiasuv1.pdf
https://competitions.cr.yp.to/round1/kiasuv1.pdf
https://eprint.iacr.org/2023/1212


Steven D. Galbraith, editors, Advances in Cryptology - ASIACRYPT 2018 -
24th International Conference on the Theory and Application of Cryptology
and Information Security, Brisbane, QLD, Australia, December 2-6, 2018,
Proceedings, Part I, volume 11272 of Lecture Notes in Computer Science,
pages 305–335. Springer, 2018.

LRW02. Moses D. Liskov, Ronald L. Rivest, and David A. Wagner. Tweakable
block ciphers. In Moti Yung, editor, Advances in Cryptology - CRYPTO
2002, 22nd Annual International Cryptology Conference, Santa Barbara,
California, USA, August 18-22, 2002, Proceedings, volume 2442 of Lecture
Notes in Computer Science, pages 31–46. Springer, 2002.

LRW11. Moses D. Liskov, Ronald L. Rivest, and David A. Wagner. Tweakable block
ciphers. J. Cryptol., 24(3):588–613, 2011.

LS13. Rodolphe Lampe and Yannick Seurin. Tweakable blockciphers with asymp-
totically optimal security. In Shiho Moriai, editor, Fast Software Encryption
- 20th International Workshop, FSE 2013, Singapore, March 11-13, 2013.
Revised Selected Papers, volume 8424 of Lecture Notes in Computer Science,
pages 133–151. Springer, 2013.

LST12. Will Landecker, Thomas Shrimpton, and R. Seth Terashima. Tweakable
blockciphers with beyond birthday-bound security. In Reihaneh Safavi-
Naini and Ran Canetti, editors, Advances in Cryptology - CRYPTO 2012 -
32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-
23, 2012. Proceedings, volume 7417 of Lecture Notes in Computer Science,
pages 14–30. Springer, 2012.

Men15a. Bart Mennink. Optimally secure tweakable blockciphers. In Gregor Leander,
editor, Fast Software Encryption - 22nd International Workshop, FSE 2015,
Istanbul, Turkey, March 8-11, 2015, Revised Selected Papers, volume 9054
of Lecture Notes in Computer Science, pages 428–448. Springer, 2015.

Men15b. Bart Mennink. Optimally secure tweakable blockciphers. Cryptology ePrint
Archive, Paper 2015/363, 2015.

MI15. Kazuhiko Minematsu and Tetsu Iwata. Tweak-length extension for tweak-
able blockciphers. In Jens Groth, editor, Cryptography and Coding - 15th
IMA International Conference, IMACC 2015, Oxford, UK, December 15-
17, 2015. Proceedings, volume 9496 of Lecture Notes in Computer Science,
pages 77–93. Springer, 2015.

Min06. Kazuhiko Minematsu. Improved security analysis of XEX and LRW modes.
In Eli Biham and Amr M. Youssef, editors, Selected Areas in Cryptography,
13th International Workshop, SAC 2006, Montreal, Canada, August 17-18,
2006 Revised Selected Papers, volume 4356 of Lecture Notes in Computer
Science, pages 96–113. Springer, 2006.

Min09. Kazuhiko Minematsu. Beyond-birthday-bound security based on tweakable
block cipher. In Orr Dunkelman, editor, Fast Software Encryption, 16th In-
ternational Workshop, FSE 2009, Leuven, Belgium, February 22-25, 2009,
Revised Selected Papers, volume 5665 of Lecture Notes in Computer Science,
pages 308–326. Springer, 2009.

MM07. Kazuhiko Minematsu and Toshiyasu Matsushima. Tweakable enciphering
schemes from hash-sum-expansion. In K. Srinathan, C. Pandu Rangan,
and Moti Yung, editors, Progress in Cryptology - INDOCRYPT 2007, 8th
International Conference on Cryptology in India, Chennai, India, December
9-13, 2007, Proceedings, volume 4859 of Lecture Notes in Computer Science,
pages 252–267. Springer, 2007.

46



Nai15. Yusuke Naito. Full prf-secure message authentication code based on tweak-
able block cipher. In Man Ho Au and Atsuko Miyaji, editors, Provable
Security - 9th International Conference, ProvSec 2015, Kanazawa, Japan,
November 24-26, 2015, Proceedings, volume 9451 of Lecture Notes in Com-
puter Science, pages 167–182. Springer, 2015.

Nai17. Yusuke Naito. Tweakable blockciphers for efficient authenticated encryp-
tions with beyond the birthday-bound security. IACR Trans. Symmetric
Cryptol., 2017(2):1–26, 2017.

Nai19. Yusuke Naito. A highly secure MAC from tweakable blockciphers with
support for short tweaks. In Julian Jang-Jaccard and Fuchun Guo, ed-
itors, Information Security and Privacy - 24th Australasian Conference,
ACISP 2019, Christchurch, New Zealand, July 3-5, 2019, Proceedings, vol-
ume 11547 of Lecture Notes in Computer Science, pages 588–606. Springer,
2019.

NI22. Kazuki Nakaya and Tetsu Iwata. Generalized feistel structures based on
tweakable block ciphers. IACR Transactions on Symmetric Cryptology,
2022(4):24–91, Dec. 2022.

NIS00. NIST Competition for Advanced Encryption Stan-
dard (AES), 1997 - 2000. https://csrc.nist.gov/

projects/cryptographic-standards-and-guidelines/

archived-crypto-projects/aes-development.

NS20. Yusuke Naito and Takeshi Sugawara. Lightweight authenticated encryption
mode of operation for tweakable block ciphers. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2020(1):66–94, 2020.

NSS20. Yusuke Naito, Yu Sasaki, and Takeshi Sugawara. Lightweight authenticated
encryption mode suitable for threshold implementation. In Anne Canteaut
and Yuval Ishai, editors, Advances in Cryptology - EUROCRYPT 2020 -
39th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings,
Part II, volume 12106 of Lecture Notes in Computer Science, pages 705–735.
Springer, 2020.

NSS22. Yusuke Naito, Yu Sasaki, and Takeshi Sugawara. Secret can be public:
Low-memory AEAD mode for high-order masking. In Yevgeniy Dodis and
Thomas Shrimpton, editors, Advances in Cryptology - CRYPTO 2022 -
42nd Annual International Cryptology Conference, CRYPTO 2022, Santa
Barbara, CA, USA, August 15-18, 2022, Proceedings, Part III, volume
13509 of Lecture Notes in Computer Science, pages 315–345. Springer, 2022.

Pat08. Jacques Patarin. The ”coefficients h” technique. In Roberto Maria Avanzi,
Liam Keliher, and Francesco Sica, editors, Selected Areas in Cryptogra-
phy, 15th International Workshop, SAC 2008, Sackville, New Brunswick,
Canada, August 14-15, Revised Selected Papers, volume 5381 of Lecture
Notes in Computer Science, pages 328–345. Springer, 2008.

Pro14. Gordon Procter. A note on the clrw2 tweakable block cipher construction.
Cryptology ePrint Archive, Paper 2014/111, 2014. https://eprint.iacr.
org/2014/111.

PS16. Thomas Peyrin and Yannick Seurin. Counter-in-tweak: Authenticated en-
cryption modes for tweakable block ciphers. In Matthew Robshaw and
Jonathan Katz, editors, Advances in Cryptology - CRYPTO 2016 - 36th
Annual International Cryptology Conference, Santa Barbara, CA, USA,

47

https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/archived-crypto-projects/aes-development
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/archived-crypto-projects/aes-development
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/archived-crypto-projects/aes-development
https://eprint.iacr.org/2014/111
https://eprint.iacr.org/2014/111


August 14-18, 2016, Proceedings, Part I, volume 9814 of Lecture Notes in
Computer Science, pages 33–63. Springer, 2016.

PSS23. Thomas Peters, Yaobin Shen, and François-Xavier Standaert. Mul-
tiplex: TBC-based Authenticated Encryption with Sponge-Like Rate.
http://hdl.handle.net/2078.1/273131, 2023.

Rog04. Phillip Rogaway. Efficient instantiations of tweakable blockciphers and re-
finements to modes OCB and PMAC. In Pil Joong Lee, editor, Advances in
Cryptology - ASIACRYPT 2004, 10th International Conference on the The-
ory and Application of Cryptology and Information Security, Jeju Island,
Korea, December 5-9, 2004, Proceedings, volume 3329 of Lecture Notes in
Computer Science, pages 16–31. Springer, 2004.

Sar09. Palash Sarkar. Efficient tweakable enciphering schemes from (block-wise)
universal hash functions. IEEE Trans. Inf. Theory, 55(10):4749–4760, 2009.

Sar11. Palash Sarkar. Tweakable enciphering schemes using only the encryption
function of a block cipher. Inf. Process. Lett., 111(19):945–955, 2011.

Sch. Richard Schroeppel. The hasty pudding cipher. AES submission to NIST,
1997 - 2000.

SPS+22. Yaobin Shen, Thomas Peters, François-Xavier Standaert, Gaëtan Cassiers,
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Appendix

A Proof of Combinatorial Results

A.1 Proof of Lemma 2

We need to show that at least one of the following conditions is true:

1. There exists t1, t2 ∈ {0, 1}3n such that fs(t
1) = fs(t

2),∀ s ∈ {1, 2, 3, 4}.
2. There exists t1, t2, . . . , t2

n/2 ∈ {0, 1}3n satisfying f1(t
i) = f1(t

j), f3(t
i) ̸=

f3(t
j), for all i, j ∈ {1, 2, . . . , 2n/2}.

3. There exists t1, t2, . . . , t2
n/2 ∈ {0, 1}3n satisfying f1(t

i) = f1(t
j), f2(t

i) ̸=
f2(t

j), f4(t
i) ̸= f4(t

j), for all i, j ∈ {1, 2, . . . , 2n/2}.

Let us consider the function f1 : {0, 1}3n → {0, 1}n. By the Pigeonhole Principle,
there exist at least 22n distinct inputs that map the function f1 to some fixed
value, say a. Define the set Aa := {t ∈ {0, 1}3n : f1(t) = a}. By definition,
|Aa| ≥ 22n. Now, we consider the two cases:

Case 1: f3 is solely dependent on f1. In this case, we have f3(t) = c,∀t ∈ Aa,
for some c ∈ {0, 1}n. Consider the sets Bb := {t ∈ Aa : f2(t) = b},∀b ∈ {0, 1}n.
If there exists some b such that |Bb| ≥ 2n+1, then we can apply the Pigeonhole
Principle to conclude there exists t1 and t2 with f4(t

1) = f4(t
2), and hence

satisfies condition 1. Otherwise, for each b ∈ {0, 1}n, the set Bb has exactly 2n

elements. If for some b, Bb has two elements t1, t2 with f4(t
1) = f4(t

2), then we
are done as this satisfies condition 1. If not, for all b, the set f4(Bb) is equal to

{0, 1}n. Now take the set S =
⋃2n/2

i=1 {ti ∈ Bi : f4(t
i) = i}. It is easy to see that

|S| = 2n/2, and the tweaks in set S satisfy condition 3.

Case 2: f3 does not solely depend on f1. Let us consider the sets Cc := {t ∈
Aa : f3(t) = c},∀c ∈ {0, 1}n. If there exists 2n/2 indices c1, . . . , c2n/2 such that
Cci ̸= ∅, ∀i ≤ 2n/2, then the set S = {ti ∈ Cci : i = 1, 2, . . . , 2n/2}, containing
2n/2 elements, satisfies condition 2. Otherwise, there exists at most 2n/2−1 non-
empty Cc’s. By the Pigeonhole principle, at least one set, say Cc′ contains at least
23n/2+1 elements. Now look at the sets Bb = {t ∈ Cc′ : f2(t) = b},∀b ∈ {0, 1}n.
If there are at most 2n/2−1 non-empty Bb’s, then there exists some b′, for which
|Bb′ | ≥ 2n + 1, and hence, we would have t1, t2 ∈ Bb′ such that f4(t

1) = f4(t
2),

satisfying condition 1. Otherwise, we have at least 2n/2 many non-empty sets
Bbi for i = 1, 2, . . . , 2n/2. Now, if all the Bbi sets are injective on f4, we can
construct a set S := {ti ∈ Bbi : i = 1, 2, . . . , 2n/2} such that f4(t

i) ̸= f4(t
j) for

all i, j ∈ {1, 2, . . . , 2n/2} that provides the necessary values to satisfy condition
3. Otherwise, we will have some i for which t1, t2 ∈ Bbi : f4(t

1) = f4(t
2), and

hence, t1, t2 will satisfy condition 1.

49



A.2 Proof of Lemma 3

Here we fix γ ∈ F , and our goal is to show that one of the following holds for
any affine functions f1, f2, f3, f4.

1. There exist t1, t2 ∈ {0, 1}3n such that fs(t
1) = fs(t

2) for all s ∈ {1, 2, 3, 4}.
cannot

2. There exist t1, t2, . . . , t2
n/2 ∈ {0, 1}3n satisfying f2(t

i) ̸= f2(t
j), f3(t

i) =
f3(t

j), f4(t
i) = f4(t

j), for all i, j ∈ {1, 2, . . . , 2n/2}.
3. There exist t1, t2, . . . , t2

n/2 ∈ {0, 1}3n satisfying f1(t
i) ̸= f1(t

j), f3(t
i) ̸=

f3(t
j), f4(t

i) = γf3(t
i), for all i, j ∈ {1, 2, . . . , 2n/2}.

4. There exist t1, t2, . . . , t2
n/2 ∈ {0, 1}3n satisfying f2(t

i) ̸= f2(t
j), f4(t

i) =
γf3(t

i), for all i, j ∈ {1, 2, . . . , 2n/2}.

We will consider the following two possible cases.

Case 1: f4 depends solely on f3. In this case, f4(t
i) = f4(t

j) implies f3(t
i) =

f3(t
j), for all ti, tj ∈ {0, 1}3n. In addition, we assume that both f1 and f2 are

mutually independent and also independent from f3 and f4. Otherwise, we will
have t1, t2 satisfying condition 1. Note that, we have at least 22n many ti’s
satisfying f3(t

i) = a, i ∈ {1, 2, . . . , 22n}, for some a ∈ {0, 1}n. Let Aa := {ti ∈
0, 13n : f3(t

i) = a}. Now, define 2n many sets depending on f2: ∀ b ∈ {0, 1}n,
Bb := {t ∈ Aa : f2(t) = b}. Suppose there exist b1, b2, . . . , b2n/2 such that Bbi ’s
are non-empty for each i ∈ {1, 2, . . . , 2n/2}. Then, the set S having one element
from each of Bbi , for all i ∈ {1, 2, . . . , 2n/2}, satisfies condition 2. If such bi’s do
not exist, then we have at most 2n/2 − 1 many non-empty Bb’s. Hence, by the
pigeonhole principle, there exists b′ with |Bb′ | ≥ 23n/2 + 1. Hence, there exist
t1, t2 ∈ Bb′ such that f1(t

1) = f1(t
2), and t1, t2 satisfies condition 1.

Case 2: f4 does not solely depend on f3. As all the fs’s are affine functions, we
can express them as fs(t1, t2, t3) = as.t1 ⊕ bs.t2 ⊕ cs.t3 ⊕ ds, where all as, bs, cs
are field elements and ds ∈ {0, 1}n. Consider the set A := {(t1, t2, t3) ∈ {0,
1}3n : (a4 ⊕ γa3).t1 ⊕ (b4 ⊕ γb3).t2 ⊕ (c4 ⊕ γc3).t3 ⊕ (d4 ⊕ γd3) = 0}. It is easy
to see that, by definition, t ∈ A if and only if f4(t) = γ.f3(t) and |A| ≥ 22n.
Now, define the sets Bb := {t ∈ A : f2(t) = b}, for all b ∈ {0, 1}n. If there exist
2n/2 many non-empty Bb’s, then we will pick up 2n/2 many values, one from
each of those non-empty sets, satisfying condition 4. Otherwise, we will have at
least one b′ ∈ 0, 1n such that |Bb′ | ≥ 23n/2 +1. In this case, we consider the sets
Cc := {t ∈ Bb′ : f1(t) = c} for all c ∈ {0, 1}n. If we do not have at least 2n/2

many non-empty Cc’s, then we will have a c′ ∈ {0, 1}n satisfying |Cc′ | ≥ 2n +1.
Hence, we will have t1, t2 ∈ Cc′ satisfying condition 1. If there exists t1, t2 in
some Cc′′ such that f3(t

1) = f3(t
2), then these two will satisfy condition 1.

Otherwise, we can construct a set S taking one element from each of Cc’s, and
the elements of S will satisfy condition 3.
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A.3 Proof of Lemma 4

Here our goal is to show that one of the following holds:

1. There exist t1, t2 ∈ {0, 1}3n such that fs(t
1) = fs(t

2) for all s ∈ {1, 2, 3, 4}.
2. There exist t1, t2, . . . , t2

n/2 ∈ {0, 1}3n satisfying f2(t
i) ̸= f2(t

j), f4(t
i) =

f4(t
j), for all i, j ∈ {1, 2, . . . , 2n/2}.

3. There exist t1, t2, . . . , t2
n/2 ∈ {0, 1}3n satisfying f1(t

i) ̸= f1(t
j), f3(t

i) ̸=
f3(t

j), f4(t
i) = f4(t

j), for all i, j ∈ {1, 2, . . . , 2n/2}.

We again consider two cases following the dependency of the two functions
f2 and f4 as follows:

Case 1: f4 depends solely on f2. In this case if {f1, f3} are mutually dependent,
or dependent with f4 (consequently f2), then we will have t1, t2 satisfying con-
dition 1. Otherwise, we will have a set A := {t ∈ {0, 1}3n : f4(t) = a} for some
a ∈ {0, 1}n, where |A| ≥ 22n. Now, consider the sets Bb := {t ∈ A : f1(t) = b},
for all b ∈ {0, 1}n. If we have at most 2n − 1 non-empty Bb’s, then there exist
one b′ ∈ {0, 1}n satisfying |Bb′ | ≥ 2n + 1, and we can find t1, t2 ∈ Bb′ satisfying
f3(t

1) = f3(t
2). Hence, t1, t2 will satisfy condition 1. Otherwise, we have 2n non-

empty Bb’s, then either f3 is injective on each Bb, or there exist b′′ ∈ {0, 1}n
such that t1, t2 ∈ Bb′′ satisfying f3(t

1) = f3(t
2). If such t1, t2 exists then those

satisfy condition 1. If f3 is injective on each Bb, then we can construct a set S
taking one element from each Bb. The elements of the set S will satisfy condition
3.

Case 2: f4 does not depend solely on f2. Consider a set A := {t ∈ {0, 1}3n :
f4(t) = a} for some a ∈ {0, 1}n, such that |A| ≥ 22n. Now define Bb := {t ∈
A : f2(t) = b}, ∀ b ∈ {0, 1}n. If we have at least 2n/2 many non-empty Bb’s, we
can construct a set S with one element from each Bb’s that satisfies condition
2. Otherwise, we will have some b′ such that |Bb′ | ≥ 23n/2 + 1. Now define
Cc := {t ∈ Bb′ : f1(t) = c}, ∀ c ∈ {c ∈ {0, 1}n}. If we have at most 2n/2 − 1
non-empty Cc’s then we will have some Cc′ with at least 2n + 1 elements, that
implies there exist t1, t2 ∈ Cc′ satisfying condition 1. Otherwise, we have at least
2n/2 non-empty Cc’s. Now depending on whether f3 is injective on all the non-
empty Cc sets or not, we can have 2n/2 many tweaks satisfying condition 3, or
two tweaks satisfying condition 1, respectively.

B Necessity of all tweak-dependent Keys if Message is
fed into one of the non-final block-ciphers

In this section, we show that if the message is fed into the input of one of the
non-final block cipher then again the construction requires all the block cipher
keys to be tweak dependent.
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B.1 Message is fed into First Block cipher

The generalized construction (ensuring the TBC is invertible) for this case,
dubbed C9, is depicted in Fig. 12. Note that incorporating tweaks into the mes-
sage or ciphertext does not amplify security. So, we refrain from using such mod-
ifications in our constructions. Now we consider cases with different numbers of

Em

g1(t)⊕ a1.k

y1 Eα1.y1 ⊕ f1(t)

g2(t)⊕ a2.k

y2 Eβ1.y2 ⊕ f2(t)

g3(t)⊕ a3.k

c

Fig. 12: Construction C9: Message is fed in the first block cipher call

tweak-independent keys.

Constructions with Three Tweak-independent Keys In this case, by
definition, we have g1(t) = g2(t) = g3(t) = 0. To attack this construction, our
strategy is as follows:

1. Find two tweaks such that t1, t2 such that f1(t
1) = f1(t

2), f2(t
1) = f2(t

2).
Note that, with this choice of tweaks, if we make two queries (m, t1) and
(m, t2), we will have y11 = y21 as well as y12 = y22 .

2. We can use the above observation to distinguish the TBC from a random
tweakable permutation by making two oracle queries (m, t1), (m, t2), and
verifying if the corresponding outputs match.

Constructions with Two Tweak-independent Keys In this subsection, we
consider all the possible TBC constructions with three block ciphers where we
have two block cipher calls with tweak-independent keys.

Case 1: First block cipher uses the tweak-dependent key. In this case,
we have g2(t) = g3(t) = 0. Here we consider two subcases. If we can find two
tweaks t1 and t2 such that f1(t

1) = f1(t
2), f2(t

1) = f2(t
2) and g1(t

1) = g1(t
2),

we can simply carry out the previous attack. Otherwise, we can find 2n/2 many

tweaks t1, . . . , t2
n/2

for which f2(t
i) = f2(t

j) and g1(t
i) = g1(t

j). Note that, for
all i, j, we have f1(t

i) ̸= f1(t
j). In this case, we construct the attack as follows:

1. We make queries (mi, t
i), for i = 1, . . . , 2n/2 with distinct messages, i.e.,

mi ̸= mj , for all i and j. We expect to find a collision in the input of the
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second block cipher, i.e., find a and b such that α1.y
a
1⊕f1(ta) = α1.y

b
1⊕f1(tb)

and in that case, we have ya2 = yb2, and the outputs, ca and cb matches.
2. Now we fix ∆ ̸= 0 and find td such that f1(t

d) = f1(t
a) +∆, f2(t

d) = f2(t
a)

and g1(t
d) = g1(t

a). We also find te such that f1(t
e) = f1(t

b) +∆, f2(t
e) =

f2(t
b) and g1(t

e) = g1(t
b).

3. Finally, we make two queries: (ma, t
d) and (mb, t

e) and checks if the output
matches.

Case 2: Second block cipher uses the tweak-dependent key. In this case,
we have g1(t) = g3(t) = 0. Now we have two subcases. If we can find two tweaks
t1 and t2 such that f1(t

1) = f1(t
2), f2(t

1) = f2(t
2) and g2(t

1) = g2(t
2), we are

done. Otherwise, find 2n/2 many tweaks t1, . . . , t2
n/2

for which f2(t
i) = f2(t

j)
and g2(t

i) ̸= g2(t
j). Now we construct the attack as follows:

1. We make queries (mi, t
i), for i = 1, . . . , 2n/2 with distinct messages, i.e.,

mi ̸= mj , for all i and j. In this case, we expect to find a and b such that
ya2 = yb2 (b’day collision), and in that case the outputs, ca and cb match.

2. Now fix ∆ ̸= 0. Find td such that f1(t
d) = f1(t

a), f2(t
d) = f2(t

a) +∆ and
g2(t

d) = g2(t
a). Also, find te such that f1(t

e) = f1(t
b), f2(t

e) = f2(t
b) +∆

and g2(t
e) = g2(t

b).
3. Finally, query (ma, t

d) and (mb, t
e) and checks whether the output matches.

Case 3: Final block cipher uses the tweak-dependent key. In this case,
we have g1(t) = g2(t) = 0. Now we have two subcases. If we can find two tweaks
t1 and t2 such that f1(t

1) = f1(t
2), f2(t

1) = f2(t
2) and g3(t

1) = g3(t
2), we

have a trivial attack. Otherwise, find 2n/2 many tweaks t1, . . . , t2
n/2

for which
f2(t

i) = f2(t
j) and g3(t

i) = g3(t
j). Note that, for all i, j, we have f1(t

i) ̸= f1(t
j).

Here we construct the attack as follows:

1. We make queries (mi, t
i), for i = 1, . . . , 2n/2 with distinct messages, i.e.,

mi ̸= mj , for all i and j. In this case, we expect to find a and b such that a
collision occurs in the input of the second block cipher, i.e., α1.y

a
1 ⊕f1(t

a) =
α1.y

b
1 ⊕ f1(t

b), and in that case the outputs, ca and cb matches.
2. Now fix ∆ ̸= 0. Find td such that f1(t

d) = f1(t
a), f2(t

d) = f2(t
d) +∆ and

g3(t
d) = g3(t

a). Also, find te such that f1(t
e) = f1(t

b), f2(t
e) = f2(t

b) +∆
and g3(t

e) = g3(t
b).

3. Finally, we query (ma, t
d) and (mb, t

e) and checks whether the output matches.

Constructions with One Tweak-independent Key

Case 1: First two block ciphers use tweak-dependent key. In this case,
we have g3(t) = 0. If we can find two tweaks t1 and t2 such that f1(t

1) = f1(t
2),

f2(t
1) = f2(t

2), g1(t
1) = g1(t

2) and g2(t
1) = g2(t

2), we have a trivial attack.
Otherwise, we break it into the following cases based on the dependency of f1,
f2, g1 and g2 as given below.
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Subcase 1: {f2, g1} is linearly dependent. In this case, we proceed as follows. First

we find 2n/2 many tweaks t1, . . . , t2
n/2

such that g1(t
i) = g1(t

j), f1(t
i) ̸= f1(t

j),
g2(t

i) = g2(t
j), f2(t

i) = f2(t
j).

1. We make queries (mi, t
i), for i = 1, . . . , 2n/2 such that mi ̸= mj , for all i, j.

Here we expect to find a and b such that α1.y
a
1 ⊕ f1(t

a) = α1.y
b
1⊕ f1(t

b) (by
birthday collision), and in that case the outputs, ca and cb match.

2. Now fix ∆ ̸= 0. Find td such that g1(t
d) = g1(t

a), f1(t
d) = f1(t

a) ⊕∆ and
g2(t

d) = g2(t
a). Also, find te such that g1(t

e) = g1(t
b), f1(t

e) = f1(t
b) ⊕∆

and g2(t
e) = g2(t

b).
3. Finally, we query (ma, t

d) and (mb, t
e) and checks whether the output matches.

Subcase 2: {f1, f2, g1} are linearly dependent. In this case we proceed as follows.

First we find 2n/2 many tweaks t1, . . . , t2
n/2

such that g1(t
i) ̸= g1(t

j), g2(t
i) =

g2(t
j), f2(t

i) = f2(t
j).

1. We make queries (m, ti), for i = 1, . . . , 2n/2. Here we expect to find a and b
such that α1.y

a
1 ⊕ f1(t

a) = α1.y
b
1⊕ f1(t

b) (by birthday collision), and in that
case the outputs, ca and cb matches.

2. Now fix ∆ ̸= 0. Find td such that g1(t
d) = g1(t

a), f1(t
d) = f1(t

a) and
g2(t

d) = g2(t
a) ⊕∆. Also, find te such that g1(t

e) = g1(t
b), f1(t

e) = f1(t
b)

and g2(t
e) = g2(t

b)⊕∆.
3. Finally, we query (m, td) and (m, te) and checks whether the output matches.

Subcase 3: {f1, f2} or {f1, g2} or {f2, g2} or {f1, f2, g2} are linearly dependent.
First, let us consider the cases when {f1, f2} or {f1, f2, g2} is linearly dependent.

Here we proceed as follows. First we find 2n/2 many tweaks t1, . . . , t2
n/2

such that
g1(t

i) ̸= g1(t
j), f1(t

i) = f1(t
j), f2(t

i) = f2(t
j), g2(t

i) = g2(t
j).

1. We make queries (m, ti), for i = 1, . . . , 2n/2, for all i and j. In this case, we
expect to find a and b such that ya1 = yb1 (by birthday collision), and in that
case the outputs, ca and cb match.

2. Now fix ∆ ̸= 0. Find td such that g1(t
d) = g1(t

a), f1(t
d) = f1(t

a) ⊕∆ and
g2(t

d) = g2(t
a). Also, find te such that g1(t

e) = g1(t
b), f1(t

e) = f1(t
b) +∆

and g2(t
e) = g2(t

b).
3. Finally, we query (m, td) and (m, te) and checks whether the output matches.

When {f2, g2} is linearly dependent, we follow the same algorithm except that
we choose td and te as follows: g1(t

d) = g1(t
a), f1(t

d) = f1(t
a) and g2(t

d) =
g2(t

a)⊕∆; g1(t
e) = g1(t

b), f1(t
e) = f1(t

b) and g2(t
e) = g2(t

b) +∆.
When {f1, g2} is linearly dependent, we follow the same algorithm except

that we choose td and te as follows: g1(t
d) = g1(t

a), f2(t
d) = f2(t

a) and f1(t
d) =

f1(t
a)⊕∆; g1(t

e) = g1(t
b), f2(t

e) = f2(t
b) and f1(t

e) = f1(t
b) +∆.

Subcase 4: {f1, g1} or {f1, g1, g2} are linearly dependent. Here we find 2n/2 many

tweaks t1, . . . , t2
n/2

such that g1(t
i) ̸= g1(t

j), f1(t
i) ̸= f1(t

j), f2(t
i) = f2(t

j),
g2(t

i) = g2(t
j).
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1. We make queries (m, ti), for i = 1, . . . , 2n/2, for all i and j. Here we expect to
find a and b such that α1.y

a
1 ⊕f1(t

a) = α1.y
b
1⊕f1(t

b) (by birthday collision),
and in that case the outputs, ca and cb match.

2. Now fix ∆ ̸= 0. Find td such that g1(t
d) = g1(t

a), f1(t
d) = f1(t

a), f2(t
d) =

f2(t
a) +∆. Also, find te such that g1(t

e) = g1(t
b), f1(t

e) = f1(t
b), f2(t

e) =
f2(t

b) +∆.
3. Finally, we query (m, td) and (m, te) and checks whether the output matches.

Subcase 5: {g1, g2} or {f2, g1, g2} are linearly dependent. In this case we find

2n/2 many tweaks t1, . . . , t2
n/2

such that g1(t
i) = g1(t

j), f1(t
i) ̸= f1(t

j), f2(t
i) =

f2(t
j), g2(t

i) = g2(t
j).

1. We make queries (mi, ti), for i = 1, . . . , 2n/2, where mi ̸= mj , for all i and
j. In this case, we expect to find a and b such that ya2 = yb2 (by birthday
collision), and in that case the outputs, ca and cb match.

2. Now fix ∆ ̸= 0. Find td such that g1(t
d) = g1(t

a), f1(t
d) = f1(t

a), f2(t
d) =

f2(t
a) +∆. Also, find te such that g1(t

e) = g1(t
b), f1(t

e) = f1(t
b), f2(t

e) =
f2(t

b) +∆.
3. Finally, we query (m, td) and (m, te) and checks whether the output matches.

Subcase 6: None of the proper subsets of {f1, f2, g1, g2} are linearly dependent.

In this case, we proceed as follows. First we find 2n/2 many tweaks t1, . . . , t2
n/2

such that g1(t
i) ̸= g1(t

j), f1(t
i) ̸= f1(t

j), g2(t
i) = g2(t

j), f2(t
i) = f2(t

j).

1. We make queries (m, ti), for i = 1, . . . , 2n/2, for all i and j. We expect to
find a and b such that α1y

a
1 + f1(t

a) = yb1 + f1(t
b) (by birthday collision),

and in that case the outputs, ca and cb matches.
2. Now fix ∆ ̸= 0. Find td such that g1(t

d) = g1(t
a), f1(t

d) = f1(t
a) + ∆,

f2(t
d) = f2(t

a). Also, find te such that g1(t
e) = g1(t

b), f1(t
e) = f1(t

b) +∆,
f2(t

e) = f2(t
b).

3. Finally, we query (m, td) and (m, te) and checks whether the output matches.

B.2 Message is fed into Second Block cipher

The generalized construction (ensuring the TBC is invertible) for this case,
dubbed C10, is depicted in Fig. 13. Note that incorporating tweaks into the
message or ciphertext does not amplify security. So, we refrain from using such
modifications in our constructions. Now we consider cases with different number
of tweak-independent keys.

Constructions with Three Tweak-independent Keys In this case, by
definition, we have g1(t) = g2(t) = g3(t) = 0, α2 = α4 = 0. To attack this
construction, our strategy is as follows:

1. Find two tweaks such that t1, t2 such that f1(t
1) = f1(t

2), f2(t
1) = f2(t

2).
Note that, with this choice of tweaks, if we make two queries (m, t1) and
(m, t2), we will have y11 = y21 as well as y12 = y22 .
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Ef1(t)

g1(t)⊕ a1.k

y1 Em⊕ α1.y1

g2(t)⊕ α2.y1 ⊕ a2.k

y2 Eβ1.y2 ⊕

α3.y1 ⊕ f2(t)

α4.y1 ⊕ g3(t)⊕ a3.k

c⊕

α5.y1

Fig. 13: Construction C10: Message is fed into Second Block Cipher Call

2. We can use the above observation to distinguish the TBC from a random
tweakable permutation by making two oracle queries (m, t1), (m, t2), and
verifying if the corresponding outputs match.

Constructions with Two Tweak-independent Keys Here we consider the
possible TBC constructions with three block ciphers where we have two block
cipher calls with tweak-independent keys.

Case 1: First block cipher uses the tweak-dependent key. In this case,
we have g2(t) = g3(t) = 0 and α2 = α4 = 0. Now we have two subcases. If we
can find two tweaks t1 and t2 such that f1(t

1) = f1(t
2), f2(t

1) = f2(t
2) and

g1(t
1) = g1(t

2), we have the trivial attack. Otherwise, we find 2n/2 many tweaks

t1, . . . , t2
n/2

for which f1(t
i) = f1(t

j) and f2(t
i) = f2(t

j). Note that, for all i, j,
we have g1(t

i) ̸= g1(t
j). In this case we construct the attack as follows:

1. We make queries (m, ti), for i = 1, . . . , 2n/2. In this case we expect to find a
and b such that ya1 = yb1 (b’day collision), and in that case the outputs, ca
and cb matches.

2. Now fix ∆ ̸= 0. Make two queries (m + ∆, ta) and (m + ∆, tb) and checks
whether the output matches.

Similar attacks will work for the other two cases.

Constructions with One Tweak-independent Key Here we consider the
possible TBC constructions with three block ciphers where we have one block
cipher call with tweak-independent keys.

Case 1: First block cipher uses the tweak-dependent key. In this case,
we have g3(t) = 0 and α4 = 0. If we can find two tweaks t1 and t2 such that
f1(t

1) = f1(t
2), f2(t

1) = f2(t
2), g1(t

1) = g1(t
2) and g2(t

1) = g2(t
2), we have

a trivial attack. Otherwise, we break it into the following cases based on the
dependency of f1, f2, g1 and g2 as given below.
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Subcase 1: {g1, g2} or {g1, f2} or {g1, g2, f2} is linearly dependent. Here we can

find 2n/2 many tweaks t1, . . . , t2
n/2

for which g1(t
i) = g1(t

j), f2(t
i) = f2(t

j),
g2(t

i) = g2(t
j) and f1(t

i) ̸= f1(t
j). Now we mount the following attack:

1. We make queries (mi, t
i), for i = 1, . . . , 2n/2, where mi := α1α

−1
3 f2(t

i), for
all i. Note that by birthday assumption, we expect to find a and b such that
mi ⊕ α1.y

a
1 = mj ⊕ α1.y

b
1, then by definition, we will have ya2 = yb2, and

subsequently the outputs, ca and cb matches. Note that the choice of our
messages ensures that we have α3(y

i
1 ⊕ yj1) = f2(t

i)⊕ f2(t
j).

2. Now fix ∆ ̸= 0. Make two queries (m + ∆, ta) and (m + ∆, tb) and checks
whether the output matches.

Subcase 2: All Other Cases. For all the remaining cases, we can find 2n/2

many tweaks t1, . . . , t2
n/2

for which g2(t
i) = g2(t

j), f2(t
i) = f2(t

j) and g1(t
i) ̸=

g1(t
j), and mount the following attack:

1. We make queries (m, ti), for i = 1, . . . , 2n/2. Note that by birthday assump-
tion, we expect to find a and b such that ya1 = yb1, then by definition, we will
have ya2 = yb2, and subsequently the outputs, ca and cb matches.

2. Now fix ∆ ̸= 0. Make two queries (m + ∆, ta) and (m + ∆, tb) and checks
whether the output matches.

Similar attacks will work for the remaining two cases, i.e., when the second or
third block cipher uses a tweak-independent key.

C Distinguishing Algorithms against various
Constructions

C.1 Construction C1 and A Distinguishing Algorithm against It

Ef1(t)

a1.k

y1 Eα1.y1 ⊕ f2(t)

a2.k

y2 Em ⊕

α2.y1 ⊕ β1.y2

a3.k

c⊕

α3.y1 ⊕ β2.y2
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Distinguisher D1

1 : Choose t1, t2 : f1(t
1) = f1(t

2) ∧ f2(t
1) = f2(t

2);

2 : Make TBC Queries (m, t1), (m, t2); Let the responses be c1, c2;

3 : Return 1, if c1 = c2;

Fig. 14: Distinguishing Algorithm against Construction C1

C.2 Construction C2 and A Distinguishing Algorithm against It

Ef1(t)

a1.k ⊕ f2(t)

y1 Eα1.y1 ⊕ f3(t)

a2.k

y2 Em ⊕

α2.y1 ⊕ β1.y2

a3.k

c⊕

α3.y1 ⊕ β2.y2

Distinguisher D2

1 : Choose t1, . . . , t2n/2 : ∀i, j, f2(t
i) ̸= f2(t

j) ∧ f3(t
i) = f3(t

j);

2 : Make 2n/2
TBC Queries (m, t1), . . . , (m, tq);

3 : Let the responses be c1, . . . , cq, respectively;

4 : Find a, b : ca = cb;

5 : Make TBC Queries (m⋆, ta), (m⋆, tb), m ̸= m⋆;

6 : Let the responses be c⋆a, c⋆b ;

7 : Return 1, if c⋆a = c⋆b ;

Fig. 15: Distinguishing Algorithm against Construction C2
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C.3 Construction C3 and A Distinguishing Algorithm against It

Ef1(t)

a1.k

y1 Eα1.y1 ⊕ f2(t)

a2.k ⊕ α2.y1 ⊕ f3(t)

y2 Em ⊕

α3.y1 ⊕ β1.y2

a3.k

c⊕

α4.y1 ⊕ β2.y2

Distinguisher D3

1 : Choose t1, . . . , t2
n/2

: ∀i, j, f1(t
i) = f1(t

j) ∧ f3(t
i) ̸= f3(t

j);

2 : Make 2n/2
TBC Queries (m, t1), . . . , (m, tq);

3 : Let the responses be c1, . . . , cq, respectively;

4 : Find a, b : ca = cb;

5 : Make TBC Queries (m⋆, ta), (m⋆, tb), m ̸= m⋆;

6 : Let the responses be c⋆a, c⋆b ;

7 : Return 1, if c⋆a = c⋆b ;

Fig. 16: Distinguishing Algorithm against Construction C3

C.4 Construction C4 and A Distinguishing Algorithm against It

Ef1(t)

a1.k

y1 Eα1.y1 ⊕ f2(t)

a2.k

y2 Em ⊕

α2.y1 ⊕ β1.y2

a3.k ⊕ α3.y1 ⊕ β2.y2 ⊕ f3(t)

c⊕

α4.y1 ⊕ β3.y2
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Distinguisher D4 against the Construction when β1 = β2 = 0

1 : Choose t1, t2 : f1(t
1) = f1(t

2) ∧ f2(t
1) ̸= f2(t

2) ∧ f3(t
1) = f3(t

2);

2 : Make 2 TBC Queries (m, t1), (m, t2);

3 : Let the responses be c1, c2, respectively;

4 : Make TBC Queries (m⊕∆, t1), (m⊕∆, t2), ∆ ̸= 0;

5 : Let the responses be c⋆1, c⋆2;

6 : Return 1, if c⋆1 ⊕ c⋆2 = c1 ⊕ c2;

Distinguisher D4 against the Construction when β1 ̸= 0, β2 = 0

1 : Choose t1, . . . , t2
n/2

: ∀i, j, f1(t
i) = f1(t

j) ∧ f2(t
i) ̸= f2(t

j) ∧ f3(t
i) = f3(t

j);

2 : Make 2n/2
TBC Queries (m1, t

1), . . . , (mq, t
q) : ∀i, j mi ̸= mj ;

3 : Let the responses be c1, . . . , cq, respectively;

4 : Find i, j : ci ⊕ cj = β−1
1 β3(mi ⊕mj);

5 : Make TBC Queries (mi ⊕∆, ti), (mj ⊕∆, tj), ∆ ̸= 0;

6 : Let the responses be c⋆i , c⋆j ;

7 : Return 1, if c⋆i ⊕ c⋆i = β−1
1 β3(mi ⊕mj);

Distinguisher D4 against the Construction when β2 ̸= 0

1 : Choose t1, . . . , t2
n/2

: ∀i, j, f1(t
i) = f1(t

j) ∧ f2(t
i) ̸= f2(t

j) ∧ f3(t
i) ̸= f3(t

j);

2 : Make 2n/2
TBC Queries (m1 := β−1

2 β1f3(t
1), t1), . . . , (mq := β−1

2 β1f3(t
q), tq);

3 : Let the responses be c1, . . . , cq, respectively;

4 : Find i, j : ci ⊕ cj = β−1
1 β3(mi ⊕mj);

5 : Make TBC Queries (mi ⊕∆, ti), (mj ⊕∆, tj), ∆ ̸= 0;

6 : Let the responses be c⋆i , c⋆j ;

7 : Return 1, if c⋆i ⊕ c⋆i = β−1
1 β3(mi ⊕mj);

Fig. 16: Distinguishing Algorithm against Construction C4.
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C.5 Construction C5 and A Distinguishing Algorithm against It

Ef1(t)

a1.k

y1 Eα1.y1 ⊕ f2(t)

a2.k ⊕ α2.y1 ⊕ f3(t)

y2 Em ⊕

α3.y1 ⊕ β1.y2

a3.k ⊕ α4.y1 ⊕ β2.y2 ⊕ f4(t)

c⊕

α5.y1 ⊕ β3.y2

Distinguisher D5 against the Construction when β1 = β2 = 0

1 : Choose t1, t2 : f1(t
1) = f1(t

2) ∧ f4(t
1) = f4(t

2);

2 : Make 2 TBC Queries (m, t1), (m, t2); Let the responses be c1, c2;

3 : Make TBC Queries (m⊕∆, t1), (m⊕∆, t2), ∆ ̸= 0;

4 : Let the responses be c⋆1, c⋆2;

5 : Return 1, if c⋆1 ⊕ c⋆2 = c1 ⊕ c2;

Distinguisher D5 against the Construction when β1 ̸= 0, β2 = 0

1 : Choose t1, . . . , t2
n/2

: ∀i, j, f1(t
i) = f1(t

j) ∧ f4(t
i) = f4(t

j)

∧ (f3(t
i) ̸= f3(t

j) ∨ f2(t
i) ̸= f2(t

j));

2 : Make 2n/2
TBC Queries (m1, t

1), . . . , (mq, t
q) : ∀i, j mi ̸= mj ;

3 : Let the responses be c1, . . . , cq, respectively;

4 : Find i, j : β1(ci ⊕ cj) = β3(mi ⊕mj);

5 : Make TBC Queries (mi ⊕∆, ti), (mj ⊕∆, tj), ∆ ̸= 0;

6 : Let the responses be c⋆i , c⋆j ;

7 : Return 1, if c∗i ⊕ c∗j = ci ⊕ cj ;

Distinguisher D4 against the Construction when β2 ̸= 0

1 : Choose t1, . . . , t2
n/2

: ∀i, j, f1(t
i) = f1(t

j) ∧ f3(t
i) ̸= f3(t

j) or

f1(t
i) = f1(t

j) ∧ f2(t
i) ̸= f2(t

j) ∧ f4(t
i) ̸= f4(t

j);

2 : Make 2n/2
TBC Queries (m1 := β−1

2 β1f4(t
1), t1), . . . , (mq := β−1

2 β1f4(t
q), tq);

3 : Let the responses be c1, . . . , cq, respectively;

4 : Find i, j : β1(ci ⊕ cj) = β3(mi ⊕mj);

5 : Make TBC Queries (mi ⊕∆, ti), (mj ⊕∆, tj), ∆ ̸= 0;

6 : Let the responses be c⋆i , c⋆j ;

7 : Return 1, if c⋆i ⊕ c⋆i = ci ⊕ cj ;

Fig. 17: Distinguishing Algorithm against Construction C5.
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C.6 Construction C6 and A Distinguishing Algorithm against It

Ef1(t)

a1.k ⊕ f2(t)

y1 Eα1.y1 ⊕ f3(t)

a2.k

y2 Em ⊕

α2.y1 ⊕ β1.y2

a3.k ⊕ α3.y1 ⊕ β2.y2 ⊕ f4(t)

c⊕

α4.y1 ⊕ β3.y2

Distinguisher D6 against the Construction when α1 ̸= 0, α3 = 0

1 : Choose t1, . . . , t2
n/2

: ∀i, j, f2(t
i) ̸= f2(t

j) ∧ f4(t
i) = f4(t

j) or

f1(t
i) ̸= f1(t

j) ∧ f3(t
i) ̸= f3(t

j) ∧ f4(t
i) = f4(t

j);

2 : Make 2n/2
TBC Queries (m1 = α2α

−1
1 f3(t

1), t1), . . . ,

(mq = α2α
−1
1 f3(t

q), tq) : ∀i, j mi ̸= mj ;

3 : Let the responses be c1, . . . , cq, respectively;

4 : Find i, j : α1(ci ⊕ cj) = α4(f3(t
i)⊕ f3(t

j));

5 : Make TBC Queries (mi ⊕∆, ti), (mj ⊕∆, tj), ∆ ̸= 0;

6 : Let the responses be c⋆i , c⋆j ;

7 : Return 1, if c∗i ⊕ c∗j = ci ⊕ cj ;

Distinguisher D6 against the Construction when α1 ̸= 0, α3 ̸= 0

1 : Choose t1, . . . , t2
n/2

: ∀i, j, f2(t
i) ̸= f2(t

j), f3(t
i) = f3(t

j), f4(t
i) = f4(t

j) or

f1(t
i) ̸= f1(t

j), f3(t
i) ̸= f3(t

j), f4(t
i) = α3α

−1
1 f3(t

i) or

f2(t
i) ̸= f2(t

j), f4(t
i) = α3α

−1
1 f3(t

i);

2 : Make 2n/2
TBC Queries (m1 := α−1

2 α1f3(t
1), t1), . . . , (mq := α−1

2 α1f3(t
q), tq);

3 : Let the responses be c1, . . . , cq, respectively;

4 : Find i, j : α1(ci ⊕ cj) = α4(f3(t
i)⊕ f3(t

j));

5 : Make TBC Queries (mi ⊕∆, ti), (mj ⊕∆, tj), ∆ ̸= 0;

6 : Let the responses be c⋆i , c⋆j ;

7 : Return 1, if c⋆i ⊕ c⋆i = ci ⊕ cj ;

Fig. 18: Distinguishing Algorithm against Construction C6.
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C.7 Construction C7 and A Distinguishing Algorithm against It

Ef1(t)

a1.k ⊕ f2(t)

y1 Eα1.y1 ⊕ f3(t)

a2.k ⊕ f4(t)⊕ α2.y1

y2 Em ⊕

α3.y1 ⊕ β1.y2

a3.k

c⊕

α4.y1 ⊕ β2.y2

Distinguisher D7 against the Construction when β1 ̸= 0

1 : Choose t1, . . . , t2
n/2

: ∀i, j, f1(t
i) = f1(t

j) ∧ f2(t
i) = f2(t

j)

∧ (f3(t
i) ̸= f3(t

j) ∨ f4(t
i) ̸= f4(t

j));

2 : Make 2n/2
TBC Queries (m1, t

1), . . . , (mq, t
q) : ∀i, j mi ̸= mj ;

3 : Let the responses be c1, . . . , cq, respectively;

4 : Find i, j : β1(ci ⊕ cj) = β2(mi ⊕mj);

5 : Make TBC Queries (mi ⊕∆, ti), (mj ⊕∆, tj), ∆ ̸= 0;

6 : Let the responses be c⋆i , c⋆j ;

7 : Return 1, if c∗i ⊕ c∗j = ci ⊕ cj ;

Distinguisher D7 against the Construction when β1 = 0

1 : Choose t1, t2 such that f1(t
1) = f1(t

2) ∧ f2(t
1) = f2(t

2);

2 : Make 2 TBC Queries (m, t1) and (m, t2);

3 : Let the responses be c1, C2 respectively;

4 : Make TBC Queries (m⊕∆, t1), (m⊕∆, t1), ∆ ̸= 0;

5 : Let the responses be c⋆1, c⋆2;

6 : Return 1, if c⋆1 ⊕ c⋆1 = c1 ⊕ c2;

Fig. 19: Distinguishing Algorithm against Construction C7.
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C.8 Construction C8 and A Distinguishing Algorithm against It

Ef1(t)

a1.k

y1 Eα1.y1 ⊕ f2(t)

a2.k

y2 Eα2.y1 ⊕ β1.y2 ⊕ f3(t)

a3.k

y3

Em ⊕

α3.y1 ⊕ β2.y2 ⊕ γ1.y3

a4.k

c⊕

α4.y1 ⊕ β3.y2 ⊕ γ2.y3

Distinguisher D8 against the Construction when γ1 = 0

1 : Choose t1, t2 satisfying f1(t
1) = f1(t

2) and f2(t
1) = f2(t

2);

2 : Make 2n/2
TBC Queries (m, t1), (m, t2);

3 : Let the responses be c1, c2 respectively;

4 : Make TBC Queries (m⊕∆, t1), (m⊕∆, t2), ∆ ̸= 0;

5 : Let the responses be c⋆1, c⋆2;

6 : Return 1, if c⋆1 ⊕ c⋆2 = c1 ⊕ c2;

Distinguisher D8 against the Construction when γ1 ̸= 0

1 : Choose t1, . . . , tq : ∀i, j, f1(t
i) = f1(t

j) ∧ f2(t
i) = f2(t

j) ∧ f3(t
i) ̸= f3(t

j);

2 : Make 2n/2
TBC Queries (m1, t1), . . . , (mq, tq) : ∀i, j, mi ̸= mj ;

3 : Let the responses be c1, . . . , cq, respectively;

4 : Find i, j : γ1(ci ⊕ cj) = γ2(mi ⊕mj);

5 : Make TBC Queries (mi ⊕∆, ti), (mj ⊕∆, tj), ∆ ̸= 0;

6 : Let the responses be c⋆i , c⋆j ;

7 : Return 1, if c⋆i ⊕ c⋆j = ci ⊕ cj ;

Fig. 20: Distinguishing Algorithm against Construction C8.
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