
Cryptanalysis of TETRA Encryption Algorithms
Episode 1: TEA-3

Jens Alich1, Amund Askeland2, Subhadeep Banik3, Tim Beyne4, Anne
Canteaut5, Patrick Felke6, Gregor Leander1, Willi Meier7 and Lukas Stennes1

1 Ruhr University Bochum, Bochum, Germany
firstname.lastname@rub.de

2 University of Bergen, Bergen, Norway
amund.askeland@uib.no

3 Universita della Svizzera Italiana, Lugano, Switzerland
subhadeep.banik@usi.ch

4 COSIC, KU Leuven, Leuven, Belgium
tim.beyne@esat.kuleuven.be

5 Inria, Paris, France
anne.canteaut@inria.fr

6 University of Applied Sciences Emden/Leer, Emden, Germany
patrick.felke@hs-emden-leer.de

7 University of Applied Sciences and Arts Northwestern Switzerland, Windisch, Switzerland
willimeier48@gmail.com

Abstract. We present the first public and in-depth cryptanalysis of TEA-3, a stream
cipher used in TETRA radio networks that was kept secret until recently. While the
same also holds for the six other TETRA encryption algorithms, we pick TEA-3 to
start with as (i) it is not obviously weakened as TEA-{1,4,7} but (ii) in contrast to
TEA-2 it is approved only for extra-European emergency service, and (iii) as already
noted by [MBW23] the TEA-3 design surprisingly contains a non-bijective S-box.
Most importantly, we show that the 80-bit non-linear feedback shift register operating
on the key decomposes into a cascade of two 40-bit registers. Although this hints
at an intentional weakness at first glance, we are not able to lift our results to a
practical attack. Other than that, we show how the balanced non-linear feedback
functions used in the state register of TEA-3 can be constructed.
Keywords: TETRA · TEA-3 · Stream cipher · Cryptanalysis · ETSI

1 Introduction
TETRA (Terrestrial Trunked Radio) is a standardized trunked radio system that automates
channel selection, enabling multiple users to communicate efficiently—a critical feature for
many applications. TETRA is the European counterpart to North America’s Project 25 and
was specifically developed for government agencies, emergency services (such as police, fire
departments, and ambulance services), public safety networks, rail transport staff, transport
services, and the military. Standardized by the European Telecommunications Standards
Institute (ETSI) in 1995, TETRA is now used in over 100 countries and is the most widely
adopted police radio communication system outside of the U.S. While Project 25 supports
widely recognized encryption algorithms such as DES, Triple-DES, and AES, TETRA
specifies several proprietary cryptographic algorithms as its core security components.
These proprietary algorithms were kept secret for an extended period, a practice that
can compromise national security and public safety, as it prevents potential design flaws

mailto:firstname.lastname@rub.de
mailto:amund.askeland@uib.no
mailto:subhadeep.banik@usi.ch
mailto:tim.beyne@esat.kuleuven.be
mailto:anne.canteaut@inria.fr
mailto:patrick.felke@hs-emden-leer.de
mailto:willimeier48@gmail.com

2 Cryptanalysis of TETRA Encryption Algorithms

from being found, reported, and fixed. This approach is particularly concerning given
ETSI’s history of standardizing proprietary cryptographic primitives with weaknesses that
may enable practical attacks. Examples in other ETSI standards, such as A5/1 [BSW00]
and GEA [BDL+21], have raised concerns and mistrust regarding TETRA’s security
foundations. Only after the reverse engineering effort by the Dutch security researchers
Carlo Meijer, Wouter Bokslag, and Jos Wetzels in 2022 [MBW23], ETSI decided to publish
the details of the encryption algorithms.

Originally, i.e. in the mid 1990s, four algorithms TEA-1 to TEA-4, were designed for
TETRA [ETS24j]. They are all stream ciphers with an 80-bit key and 29-bit IV.

• TEA-1: Has an internal state of 12 bytes, 8 in the state and 4 in the key register. It
is primarily intended for commercial use. It is widely used by critical infrastructure
sectors worldwide, such as pipelines, railways, and the electric grid. Its key size is
reduced to 32 bits which we discuss in more detail below.

• TEA-2: Has an internal state of 18 bytes, split into one non-linear feedback register
for the key that feeds into another non-linear feedback register producing the key
stream. Designed for exclusive use within Europe, it is deployed in radios and
walkie-talkies by police, military, intelligence agencies, and emergency personnel.

• TEA-3: Has an internal state of 18 bytes, split into one non-linear feedback register
for the key that feeds into another non-linear feedback register producing the key-
stream. This is the export version of TEA-2, serving the same user groups but
intended for use outside of Europe.

• TEA-4: Has an internal state of 15 bytes, again split into a state and key register of 8
and 7 bytes respectively. TEA-4 is intended for commercial use outside Europe, but
reportedly has seen minimal practical use [MBW23]. Similar to TEA-1, the effective
key size is reduced, in this case to 56 bits.

In 2022, ETSI introduced the TETRA encryption Set B containing three more stream
ciphers TEA-{5,6,7}. They were made public in 2024 [ETS24h]. All of them take a 192-bit
key and an 80-bit IV as input and all of them are built in the same way: they expand the
IV to 192 bits and then apply an 8-bit S-box 48 times in parallel, each time taking 4 bits
from the key and 4 bits from the IV. Thereby, a different key and IV are derived which
are then used to run Rijndael in counter mode. Moreover,

• TEA-5: Is the analog to TEA-2.

• TEA-6: Is the analog to TEA-3 and, interestingly, again uses a non-bijective S-box
(which reduces the complexity of a brute force attack by 9 bits).

• TEA-7: Has an effective key size of 56 bits [ETS24k] and is the counterpart to
TEA-{1,4}. The reduction of the key size is achieved by defining the aforementioned
S-box [ETS24h, Table 6] such that, for a given IV, the collision entropy of the key
and hence the security against a brute force attack is only 56 bits.

For the full details of which cipher is allowed to use in which context, we refer to the
official ETSI rules in [ETS24a, ETS24b, ETS24c, ETS24d, ETS24e, ETS24f, ETS24g].

As mentioned above, in 2022 Dutch security researchers managed to extract TEA-
{1,2,3} from a TETRA radio device and reverse-engineered them, revealing several critical
vulnerabilities [MBW23]. The most significant cryptographic weakness discovered was
in TEA-1, which initializes its internal state by essentially clocking the 80-bit key into a
32-bit register. This approach allows the algorithm to be practically broken within seconds
on a standard modern laptop. As a result, TEA-1 appears intentionally weakened.

Alich, Askeland, Banik, Beyne, Canteaut, Felke, Leander, Meier, Stennes 3

Whether this, or the parallels in TEA-{4,7}, constitutes a "backdoor" is debatable.
On one hand, the use of an 80-bit key that is then effectively reduced internally to
32 bits might suggest a backdoor, as the design obfuscates the true key length. On
the other hand, the weakness is apparent once the algorithm’s description is known.
ETSI has claimed this design choice was made to comply with export regulations at the
time [ETS24k, Zet24, WAS24]. However, a straightforward reduction to a 32-bit key length
would have achieved compliance without obfuscation, raising further concerns over the
design’s transparency and security.

It is important to note that, as with mobile networks, end-to-end encryption should
always be added on top of TETRA whenever possible to enhance security. Despite
TETRA’s widespread and critical applications, ETSI only released the specification of
TETRA to the public two years after [MBW23] reverse-engineered the algorithms. This
release, along with the original research, remains one of the only sources of information
on the TEA algorithms, with the cryptanalytic security of TEA entirely unexplored in
published literature. This lack of analysis is concerning given (i) the extensive global
use of these algorithms, (ii) their deployment in critical applications, and (iii) ETSI’s
questionable track record in designing robust ciphers. In response to this situation, a
thorough investigation into the security of TEA is both necessary and urgent.

Our Contribution. We conduct an in-depth analysis of the TEA-3 algorithm, which
appears to be an especially pertinent target for reasons discussed before. While we do not
succeed in breaking the cipher, we identify several unconventional and unnecessarily weak
design choices that warrant further scrutiny.

As mentioned above, TEA-3 consists of two nonlinear feedback registers. While the
benefit of using non-linear shift registers is obvious, they provide the necessary non-linearity
for a secure cipher, their behavior is less understood. This is in particular true for word-
based non-linear shift registers as used here. Thus, as our first contribution, we transfer
and generalize the theory known for the binary NFSRs to the word-based case. This theory
about cascades of NFSRs and their cycle structure becomes of particular interest as the
key-register decomposes into two registers, an NFSR with a 5-byte state feeding into a
linear LFSR with a 5-byte state as well.

+ S + S

+

+

This decomposition is highly unexpected and leads to very short periods for this register
of roughly 240 instead of the 280 that would have been possible. The theory adopted and
generalized in Section 3 is key to explain this behavior and is given in Corollary 3. This
reduces the computation of cycles to the computation of the possible cycles of the small
non-linear register and we are able to compute the entire cycle structure of that.

While it is not clear if this property can be lifted to an attack, it certainly does not
increase the trust in the cipher. Indeed, based on the short and known cycle length, it
would be possible to mount a key recovery attack for around 75% of the key space (in time
less than generic key/state recovery attack) as explained in Section 6. However, this attack
would require the IV to be larger or equal to 32 bits, while the actual IV is only 29 bits.

The other, much more obvious observation that was already discussed in [MBW23] is
that the function S is actually not a permutation, even if it is referred to as such in the
standard. Note that the update function of the key register is still invertible. Thus there
is no immediate entropy loss arising from the non-bijectivity of the S function. Given our
understanding of the cycle structure we performed an experiment, reported in Section 4.2
to understand if the choice of the S function significantly influences the cycle structure,

4 Cryptanalysis of TETRA Encryption Algorithms

but that does not seem to be the case. So, again, we could not lift this property to an
attack, but it is a very unexpected property as well.

The other component where the design is unclear given only the specification are the
non-linear functions F31 and F32, mapping 16 bits to 8 bits in a balanced manner. Those
functions consist of 8 Boolean functions that take 4 bits as input to produce the 8 output
bits. It is not trivial to construct such a function in a way that ensures that the overall
function is balanced and our main contribution here is to give a general construction that
can be used to create those functions.

Besides generic attacks, that are possible due to the way the IV and the key are handled
and that we present in the last part of Section 6, we discuss the resistance of TEA-3
against linear cryptanalysis. It is intriguing to observe that the best linear trails between
consecutive keystream bytes have correlation ±2−32. Given the 64 bit state, this fact
can be interpreted as a motivation for using a decimation factor of 19. A rough analysis
of the resources required for a key-recovery attack based on this observation suggests
a time-complexity of slightly less than 280 memory accesses and arithmetic operations,
for a data-complexity of 267 keystream bytes. Using more modern techniques of linear
cryptanalysis, such as using additional linear approximations obtained from multiple linear
trails with lower correlation and more efficient methods for key recovery, it might be
possible to further reduce the time- and data-complexity. However, we do not expect a
linear attack that outperforms a brute force attack in its overall practical costs.

Related Work. TETRA is not the first set of ETSI-standardized ciphers to exhibit critical
security issues. Similar concerns have previously arisen with the A5/1 cipher, used for
voice encryption, and the GEA-1 cipher, used for data encryption in mobile networks.
Both ciphers share a comparable history: they were proprietary, kept secret, and later
revealed to be weak—arguably by design—once their specifications became public. In
addition to the specifications of the TETRA algorithms [ETS24j, ETS24h] and reverse
engineering efforts such as [MBW23], a recent interview [Zet24] with Brian Murgatroyd,
who manages the technical body responsible for TETRA and critical broadband technology
standardization, provides valuable insights into the process.

For foundational theory on NFSRs, the primary references are Golomb’s seminal work
[Gol81] and additional sources as [MST79, GD70], which develop the theory required to
analyze the cycle structure of cascaded bit-based constructions.

Outline. We start by describing TEA-3 in Section 2. In Sections 3 and 4 we present
necessary theory and the details of the decomposition of the key register respectively.
Then, in Section 5, we study the non-linear functions F31 and F32 which are used in the
feedback of the state register. We give some more general cryptanalytic results in Section 6
and conclude the paper in Section 7.

2 Description of TEA-3
In this section, we describe TEA-3 based on the reverse-engineered source code provided
by Midnight Blue [MBW23]1, the original specification by ETSI [ETS24j] and private
communication [Bok]. In terms of notation, we stick with [MBW23] and hence deviate
from the ETSI document which, in contrast to our work, has the least significant bit/byte
on the right and starts counting from 1 from the left. TEA-3 is a stream cipher that
takes as input an 80-bit key k, a 29-bit initialization vector IV and a 32-bit tweak t. We
denote the keystream of m bytes generated by TEA-3 with these inputs as TEA-3k(IV, t, m).

1See https://github.com/MidnightBlueLabs/TETRA_crypto/blob/main/tea3.c.

https://github.com/MidnightBlueLabs/TETRA_crypto/blob/main/tea3.c

Alich, Askeland, Banik, Beyne, Canteaut, Felke, Leander, Meier, Stennes 5

Figure 1 gives the high-level structure of TEA-3. It consists of two registers, namely the
key register (top) and the state register (bottom).

k0 k1 k2 k3 k4 k5 k6 k7 k8 k9

+ S +

x0 x1 x2 x3 x4 x5 x6 x7+

F31 R3

+

F32

+

+

Figure 1: TEA-3 with the 10-byte key register on top and 8-byte state register below.

2.1 Internals of TEA-3
We omit the full description of the S-Box S here for brevity. Remarkably, the S-Box is not
bijective as S(0x14) = S(0x9e) = 0xc2 and 0xd2 is not in the image of S. Notice that
S(0xc2) = 0. That is, the value appearing twice in the image is mapped to zero. Notice
also that the S-box is of algebraic degree 8. This degree would not be reachable if the
S-Box would be a permutation.

The bit permutation R3 : F8
2 → F8

2 maps a byte X = (x0, x1, . . . , x7), with x0 being
the least significant bit in X, to the byte (x3, x7, x6, x1, x2, x4, x0, x5). The functions
F31 : F16

2 → F8
2 and F32 : F16

2 → F8
2 are built similarly and both are balanced. For

F ∈ {F31, F32}, and for each 0 ≤ i < 8, the coordinate functions Fi depend only on four
of the sixteen input bits, two from each input byte. We give their algebraic normal forms
in Appendix B.

2.2 Initialization and Keystream Generation
TEA-3 is initialized with the 80-bit cipher key CK, the so-called frame numbers (29 bits),
and the network information (32 bits). We identify the frame number with a four-byte
initialization vector IV = (IV0, IV1, IV2, IV3) where the three most significant bits of IV3
are filled with zeros, and the network information with a four-byte tweak t = (LA, CN, CC)
with the 14-bit location area LA, the 12-bit carrier number CN, and the 6-bit color code CC.
For initialization, both the frame numbers and the network information are expanded with

expandK(t) := LA||CN||CC||CN||CC||CN||CC||CN and
expandS(IV) := (IV3 ⊕ 0xC4)||IV3||IV2||IV1||IV0||(IV2 ⊕ 0x3A)||(IV1 ⊕ 0x7D)||(IV0 ⊕ 0x51).

Then, the initial state of the TEA-3 state register is given by expandS(IV). That is, x0
in Figure 1 is filled with IV3 ⊕ 0xC4, x1 with IV3 and so on. Curiously enough, the
used constants sum up to 0xd2, i.e., the value not appearing in the image of the S-box
S. The encryption cipher key ECK, i.e., the initial state of the key register is given by
CK ⊕ expandK(t). After this, both registers are synchronously clocked 32 times to bring
TEA-3 in a state where keystream generation can start. Keystream bytes are generated
by clocking the cipher 19 times and then taking the value held in register x0 as the output
byte (the first output byte takes 51 clocks).

6 Cryptanalysis of TETRA Encryption Algorithms

Remark 1. The original specification [ETS24j, Sect. 7.2.3] of the IV expansion is clearly
erroneous. Hence, our description here relies on [MBW23]. Further, strictly speaking,
TEA-3 is initialized with the ECK directly. The computation of ECK is done in a different
function, namely TB5, which is part of a different specification [ETS24i, Section 5.24]. We
merged this here for simplicity.

2.3 Class-2 networks
Here, we give details on so-called Class-2 networks based on [MBW23, Bok].

Tetra devices communicate via connecting with a cell tower. Each cell tower is thereby
a location area. It may have several radios operating on a few different frequencies, but in
general, a single base station counts as a single location area. With a 5-20km radius, there
are thus hundreds of location areas for a country-spanning network and thus, hundreds of
different ECKs which differ. A base station may have multiple base radios, operating on
different frequencies. While the location area will be identical for each base radio in the
same cell, the frequency and thus carrier number differs. As already shown, the IV consists
of four numbers: hyperframe, multiframe, frame and slot. These increment with time and
are generally synchronized throughout the entire country-spanning network, usually using
GPS time for reference. These numbers do roll over within less than a month, but the key
should have changed before that happens.

In Class-2 the ECK is derived from the 80-bit static cipher key denoted by SCK in the
standard (see [MBW23, Figure 4], i.e. in Class-2 networks CK in [ETS24j] is instantiated
with the SCK) which is used network-wide and intended to be changed every few weeks. In
practice, many network operators tend to never change the SCK.

3 The Theory of Word-Oriented NFSRs
This section is devoted to the theory of word-oriented NFSRs. This theory will be used
to decompose the key-register in TEA-3 and afterwards to compute its possible cycle
length. While there exist several papers on bit-oriented NFSRs, see e.g. [MST79] or
[Gol81], to the best of our knowledge the theory of word-oriented NFSRs is not covered
by common literature. However, it is quite similar to the theory of bit-oriented NFSRs.
Therefore most of the results presented in this section are generalizations which we
formally provide for completeness. By F2n we denote the finite field of degree n and
even characteristic and by Fn

2 the F2-vectorspace of dimension n. Let R denote the set
of sequences r = (ri)i∈N, ri ∈ F2n . The all-zero sequence is denoted by (0). Let Mn

be the set of all mappings from F2n to itself. We consider F2n as a subset of Mn by
identifying A ∈ F2n with the mapping x 7→ A · x. Hence for M ∈Mn the map AM is the
composition x 7→ A ·M(x). By F2n [X] we denote the univariate polynomial ring, where
F2n is considered as a subset of Mn by the above identification. A generalized polynomial
is a polynomial of the form

∑m
i=0 Hi(Gi), Hi ∈ Mn and Gi in F2n [X], where Hi(Gi) is

considered as a formal expression. Later we define how to apply this expression as a
mapping on sequences over F2n .

Let f be of the form Xm+F (X), where F (X) =
∑m−1

i=0 Hi(Gi), Hi ∈Mn, Gi ∈ F2n [X],
and every Gi is of degree strictly less than m. We call f a register polynomial. The
mapping associated to X0 is called the constant of F . The degree of f is defined as m.
Let R denote the set of sequences over F2n . For a register polynomial f of degree m we
define a sequence operator θ by

θ(f) : R→ R,
θ(f)(r) := r′, r′

i = f(ri, . . . , ri+m), i ∈ N,

i.e. each Xj , 0 ≤ j ≤ m is substituted by ri+j and each Si is applied to the corresponding

Alich, Askeland, Banik, Beyne, Canteaut, Felke, Leander, Meier, Stennes 7

value in F2n . If θ(f)(r) = (0) then r is called a register sequence. The set of all register
sequences of f is denoted by Ω(f).

Definition 1. Let g = Xm +
∑m−1

i=0 GiX
i be a register polynomial and h = Xk +∑k−1

j=0 HjXj ∈ F2n [X]. We define the composition by setting

(g · h) :=
m∑

i=0
Gi

 k∑
j=0

HjXj+i

 or (h · g) :=
m∑

i=0
Hi

 k∑
j=0

GjXj+i

 ,

respectively.

The following theorem is a direct consequence of the above definition.

Theorem 1. The following assertions hold for g, h as above:

1. The compositions gh and hg are again register polynomials.

2. The degree of gh and hg is in both cases m + k.

3. The composition hg simplifies to
∑m+k

ℓ=0 FℓX
ℓ, where Fℓ denotes the mapping∑

i,j,i+j=ℓ Hi(Gj).

4. It is θ(gh) = θ(g) ◦ θ(h) and θ(hg) = θ(h) ◦ θ(g).

5. r is a register sequence of gh or hg if and only if θ(h)(r) is a register sequence of g
or θ(g)(r) is a register sequence of h.

We will see that Item 5 is, although it may appear rather trivial, very useful. This fact
is not restricted to register polynomials and could be generalized. The same is true as well
for some of the subsequent results. As these kinds of generalizations are not of interest for
this paper we restricted Item 5 and the rest of this paper to register polynomials.

Definition 2. The period of a register sequence r is the smallest p ∈ N such that there
exist a k ≥ 0 with rk+i+p = ri+k, i ≥ 0, i ∈ N. The minimal k ≥ 0 with this property is
called the preperiod of r.

Remark 2. For a register sequence r with period p, it is well-known that if l is another
value with rk+i+l = ri+k, i ≥ 0 then p divides l.

Corollary 1. Given gh and a ∈ Ω(g) of period p. If a = θ(h)(r), r ∈ Ω(gh) then p divides
the period of r.

Proof. If r is periodic with period ℓ then obviously ak+i+ℓ = ak+i for a proper chosen k.
Hence a is periodic and the period of a divides ℓ by Remark 2.

For a register polynomial f(X) = Xm + F (X) we denote by Tf : (F2n)m → (F2n)m the
mapping (r0, . . . , rm−1) 7→ (r1, r2, . . . , rm−1, F (r0, . . . , rm−1)). We then have the following
for the period of a register sequence.

Theorem 2. Given a register polynomial f . If Tf is bijective then, for any sequence
r ∈ Ω(f) of period p, we have ri+p = ri, i ≥ 0, i.e. the preperiod is zero.

Proof. By the definition of the preperiod k we have that rk+i+p = rk+i, i ≥ 0 but
rk−1+p ̸= rk−1. Assume that k ≥ 1. We then have

(rk+p, . . . , rk+p+m) = Tf (rk−1+p, . . . , rk−1+p+m−1)
= (rk, . . . , rk+m) = Tf (rk−1, . . . , rk−1+m−1),

but (rk−1+p, . . . , rk−1+p+m−1) ̸= (rk−1, . . . , rk−1+m−1). This is a contradiction.

8 Cryptanalysis of TETRA Encryption Algorithms

Remark 3. Note that Tf being bijective is equivalent to Tf being onto.

Corollary 2. Let f be a register polynomial of the form Xm +F (X)+C with C ∈ F2n \{0},
where

F (X) =
m−1∑
i=1

Hi(Gi), Hi ∈Mn, Gi ∈ F2n [X]

and every Gi is of degree strictly less than m and a constant equal to 0. Let r ∈ Ω(f) be a
sequence with period p. Then, ri+p = ri for every i ≥ 0.

Proof. Since C ̸= 0 and all Gi have 0 as a constant the mapping Tf is onto. Thus the
result follows from Theorem 2.

Theorem 3. Given the composition gh of register polynomials, where g = Xd + G(X)
and h = Xd + H(X) are of degree d. For a ∈ Ω(g) there exist 2nd register sequences r of
gh with θ(h)(r) = a.

Proof. For r ∈ Ω(gh) we have a = θ(h)(r) if and only if ai = ri+d + H(ri, . . . , ri+d−1) for
all i ≥ 0. Hence r0, . . . , rd−1 can be chosen arbitrarily but then to become an element of
Ω(gh) the sequence r is determined. As the first d elements of θ(h)(r) coincide with the
one of a it is mapped to a. Hence for each a there exist 2nd preimages.

Definition 3. The cascade connection of two register polynomials g = Xd + G(X), h =
Xm + H(X) of degree d, m, where at least one is a polynomial, is denoted by g < h and
defined as follows. Let r be a register sequence of h. The sequence a of g < h fulfills the
identity ai+d = ri + θ(G)(a)i = ri + G(ai, . . . , ai+d−1).

Figure 2 shows the cascade connection of g < h, where g = X5+1 and h = X5+S(X2)+1
for the key register of TEA-3. The following theorem is well-known for cascade connections.
For completeness we give a proof.

Theorem 4. The sequences of the cascade connection g < h of two register polynomials
g = Xd + G(X) ∈ F2n [X], h = Xm + H(X) of degree d and m respectively (where at least
one of g, h is in F2n [X]) are exactly the register sequences of hg.

Proof. Let r be a register sequence of h. The output sequence of the cascade connection a
fulfills the identity ai+d = ri + G(ai, . . . , ai+d−1), i ≥ 0. So ri = ai+d + G(ai, . . . , ai+d−1)
and finally θ(g)(a) = r. Thus, by Theorem 1, θ(hg)(a) = 0. The converse is analog.

In the following, we study the periods of a specific decomposition useful later.

Theorem 5. Let h be a register polynomial and g = Xm + 1. Then, the period of a
sequence in Ω(hg) is dp, where d is a divisor of 2m and p is a period of a sequence in Ω(h)
with preperiod 0.

Proof. We make use of the fact that Ω(g < h) = Ω(hg) by Theorem 4. Let a0, . . . , am−1
denote the initial values of g and r0, . . . , rd−1 those of h. Let k denote the output sequence
and p the period of θ(g)(k) ∈ Ω(h). The i-th entry of the register g at clock 0, m, 2m, . . . is
of the form ai, ai + ri, ai + ri + ri+m, Hence, after 2pm clocks, the i-th entry is of the
form ai +

∑2p−1
j=0 ri+mj = ai +

∑p−1
j=0 ri+mj +

∑p−1
j=0 ri+mj+mp. Since the period of r is p,

clearly rj = rj+mp holds as the preperiod is 0, so each element from r appears twice in the
sum (for large enough values of i). Thus, after 2mp clocks, the i-th entry of the register g
is again ai. As by Corollary 1 p is a divisor of the period of k, so it follows that the period
can only be tp for t = 1, . . . , 2m. Suppose the period is tp. Clearly, we have kℓ2mp+i = ki

for any ℓ, and also kutp+i = ki for any u. By substitution, we get k(ℓ2m−ut)p+i = ki. By
Bezout’s identity, we have ℓ, u such that gcd(2m, t) = ℓ2m − ut, hence the period is a
divisor of gcd(2m, t)p and divided by p.

Alich, Askeland, Banik, Beyne, Canteaut, Felke, Leander, Meier, Stennes 9

For the polynomial basis (1, α, . . . , αn−1) of F2n it is well-known that the map Φn : Fn
2 →

F2n , (a0, . . . , an−1) 7→
∑n−1

i=0 aiα
i is an isomorphism. Applying Φn it is straightforward to

see that the theory developed in this section applies 1-to-1 to generalized polynomials,
where the set of mappings M′

n is over Fn
2 . For the sake of clarity, we introduced the

theory for Mn. In the next section, we consider S as an element of M′
n as it fits better

to common descriptions of TEA-3.

4 Decomposition of the Key Register
In this section we apply the theory developed so far to give properties of TEA-3, which are
the foundation for our analysis. As stated in the introduction, the key register in TEA-3
decomposes. More precisely, the original and the decomposed register depicted in the
introduction are equivalent up to initialization, i.e., they generate the same output stream.
To see this, consider (k0, . . . , k9) as the initial state of the non-decomposed key register.
Then, clearly the output stream s of the key register is

s0 = k0 ⊕ S(k2 ⊕ k7), s1 = k1 ⊕ S(k3 ⊕ k8), s2 = k2 ⊕ S(k4 ⊕ k9), s3 = k3 ⊕ S(k5 ⊕ s0),
s4 = k4 ⊕ S(k6 ⊕ s1), s5 = k5 ⊕ S(k7 ⊕ s2), s6 = k6 ⊕ S(k8 ⊕ s3), s7 = k7 ⊕ S(k9 ⊕ s4),
s8 = k8 ⊕ S(s0 ⊕ s5), s9 = k9 ⊕ S(s1 ⊕ s6).

From this, it directly follows that the initial state a = (a0, . . . , a4) of the linear part of
the decomposed key register must be a = (s0, . . . , s4). Further, for 5 ≤ i ≤ 9 we have
si = ai−5 ⊕ ri−5. Hence, for (r0, r1, r2, r3, r4) = (s5 ⊕ s0, s6 ⊕ s1, s7 ⊕ s2, s8 ⊕ s3, s9 ⊕ s4)
it is easy to verify that the two registers indeed produce the same output stream.

a0 a1 a2 a3 a4 r0 r1 r2 r3 r4

S

+

+

g h

Figure 2: The decomposition of the key register of TEA-3 into the cascade connection
with feedback polynomial hg = (X5 + S(X2) + 1)(X5 + 1). a and r are the initial states.

Remark 4. Alternatively, we can initialize g with a = (k0, k1, k2, k3, k4) and h with
r = (k0⊕ k5, k1⊕ k6, k2⊕ k7, k3⊕ k8, k4⊕ k9) and clock g and h 10 times without clocking
the state register. Then, g and h are in the same state as described above.

In terms of the theory established in Section 3, this means that the key register of
TEA-3 is the composition of two generalized polynomials hg = (X5 + S(X2) + 1)(X5 + 1).
Hence the key stream is a register sequence of the cascade connection g < h. This cascade
connection is depicted in Figure 2. As the register polynomial X5 + S(X2) + X fulfills the
conditions from Theorem 2 we get the following corollary from Theorem 5.

Corollary 3 (Period lengths of the TEA-3 key register). The periods of a keystream k
generated by hg where h = (X5 + S(X2) + 1) and g = (X5 + 1) are p, 2p, 5p or 10p, where
p is a period of a sequence in Ω(h).

Remark 5. Note, that F28 contains the subgroup of 5-th roots of unity. Hence X5 + 1 =
(X4 +X3 +X2 +X +1)(X +1) =

∏4
i=0

(
X + ζi

)
over F28 , ζ a generator the above subgroup.

Our attacks do not use this fact.

10 Cryptanalysis of TETRA Encryption Algorithms

4.1 Sequences of the Decomposed Key Register
Since the length of the sequences generated by the TEA-3 key register is largely determined
by the period of the sequences in Ω(h), we are interested in identifying these sequences
and their periods. Some of these are notably short. For example, if all the bytes of the
register with feedback polynomial h are initialized with the value 0xc2, it will be stuck and
produce a period of length 1 as S(0xc2) = 0. We find another short sequence by noting
that S(0x81)⊕ 0x81 = 0xc2, which combined with S(0xc2) = 0 means that if this register
is filled with any combination of the byte values 0xc2 and 0x81 it will only ever produce
more of those same values. In this case, the register behaves like a 5-bit binary feedback
shift register with feedback polynomial X5 + X2 + 1. Since this is a primitive polynomial,
the sequence containing combinations of 0x81 and 0xc2 has period 25 − 1 = 31.

The total number of states in the register with feedback polynomial h is 240, which
is sufficiently low for us to find all the sequences formed by this feedback shift register
by straightforward computation. We find that there are a total of 28 distinct sequences,
with the longest having a period of approximately 239.245. The period of all the sequences
together with an initial value for each sequence is listed in Table 1. The initial values
should be read as five consecutive bytes from right to left. The C-code used to find these
sequences and to build Table 1 can be found in Appendix A.

Table 1: The cycle structure of output streams of the register with feedback polynomial h.
For every cycle length, there is exactly one cycle of that length.

Initial value length log2(length) Initial value length log2(length)
0xc2c2c2c2c2 p0 = 1 0 0x00006261e3 p14 = 2 · 86113 17.394
0x05586fe1a3 p1 = 22 · 3 3.585 0x000039a19c p15 = 5 · 137869 19.395
0x8181818181 p2 = 31 4.954 0x0000126e10 p16 = 3 · 163 · 3259 20.604
0x0041ec11a6 p3 = 5 · 7 5.129 0x00000c6ba3 p17 = 3 · 439 · 2371 21.574
0x093edd24b1 p4 = 103 6.687 0x0000000039 p18 = 2 · 3 · 31 · 117427 24.381
0x0096090772 p5 = 22 · 5 · 7 7.129 0x00000037e0 p19 = 28 · 5 · 53 · 1009 26.029
0x0006725628 p6 = 2 · 3 · 103 9.271 0x000000027a p20 = 13 · 23 · 43 · 89 · 967 30.043
0x0021253386 p7 = 829 9.695 0x00000000fc p21 = 7 · 23 · 14533049 31.124
0x00058dba94 p8 = 5 · 11 · 139 12.900 0x000000007c p22 = 22 · 11 · 29 · 563 · 3359 31.168
0x0001771efd p9 = 2 · 7309 13.835 0x0000000002 p23 = 13 · 3689014783 35.481
0x0004795bfa p10 = 2 · 3 · 59 · 61 14.398 0x0000000009 p24 = 67121 · 755903 35.562
0x0003da68e1 p11 = 23 · 3 · 1283 14.910 0x0000000006 p25 = 7 · 109 · 3373 · 43283 36.697
0x0000747c73 2p12 =3 ·19 · 293 15.443 0x000000000a p26 = 37 · 101 · 1021 · 60793 37.755
0x00001d60ac p13 = 2 · 3 · 19 · 983 16.774 0x0000000000 p27 = 25033 · 26026229 39.245

4.2 S-box Influence on Cycle Structure
The number of distinct sequences generated by the key register, and their periods, depends
on the S-box which is part of the feedback function. Since the TEA-3 S-box is unusual in
that it is not a permutation, one could ask if has been chosen in order to lead to some
desired properties in the number of sequences or their lengths. In order to analyze this,
we considered several alternative bijective S-boxes. For those, we again computed all
sequences produced by this register with the same method that we used to build Table 1.

The first two alternative S-boxes we considered are generated by replacing one of the
two 0xc2 entries with the missing 0xd2 entry. For these two alternatives, the register
produces 28 and 24 distinct sequences where the largest one has a period of approximately
238.89 and 239.62. Next, replacing the S-box with the AES S-box we get 30 sequences where
the largest has an approximate period of 239.90. We also try with one of the S-boxes used
in Camellia, which results in 26 sequences where the largest has an approximate period of
238.92. From these experiments, we cannot see that the unusual S-box leads to any special
properties in the cycle structure.

Alich, Askeland, Banik, Beyne, Canteaut, Felke, Leander, Meier, Stennes 11

5 On the functions F31 and F32

The two functions F31 and F32 are balanced functions of degree 3 from F16
2 to F8

2. It
is obvious from the specifications and the algebraic normal forms given in Appendix B
that, up to a reordering of the input variables, both are such that their i-th coordinate fi

depends on four variables (xi, xi+1, yi, yi+1), where 0 ≤ i < 8 and all indices are computed
modulo 8. Notice that the same applies to the feedback functions used in TEA-{1,2,4}.

However, one may wonder how these functions have been chosen since constructing a
balanced function having this property is not trivial. In this section, we show that these
two functions share the same specific construction which guarantees that they are balanced.
Let G : F16

2 → F8
2 be a function derived from F31 or F32 by composing its input with the

bijection (x, y) 7→ (x, x⊕ y).
Then, it can be checked from their algebraic normal forms given in Appendix B that

the middle coordinates of G have the following form, for 1 ≤ i ≤ 6:

fi(xi, xi+1, yi, yi+1) =
{

yi+1 ⊕ ci if yi = εi

yi+1ℓ1
i (xi, xi+1)⊕ ℓ0

i (xi, xi+1) if yi = 1⊕ εi

(1)

where εi, ci ∈ F2 and ℓ0
i and ℓ1

i are 2 functions of degree 1 such that (ℓ0
i ⊕ ℓ1

i) has degree 1.
Then, this construction guarantees that the function

F (6) : (x1, . . . , x7, y1, . . . , y7) 7→ (f1(x1, x2, y1, y2), . . . , f6(x6, x7, y6, y7))

is balanced as shown by the following proposition.

Proposition 1. Let n be an integer and F (n) be the function from F2n+2
2 → Fn

2 defined by

F (n)(x1, . . . , xn+1, y1, . . . , yn+1) = (f1(x1, x2, y1, y2), . . . , fn(xn, xn+1, yn, yn+1))

with fi, 1 ≤ i ≤ n, defined by (1) where εi for 2 ≤ i ≤ n is such that ℓ0
i ⊕ ℓ1

i ⊕ εi+1ℓ1
i ⊕xi+1

has degree 1. Then, F (n) is balanced.

Notice, for any i, such an εi+1 always exists as at least one of the two functions
(ℓ0

i (xi, xi+1)⊕ xi+1) and ((ℓ0
i ⊕ ℓ1

i)(xi, xi+1)⊕ xi+1) has degree 1. Indeed, since ℓ0
i , ℓ1

i and
ℓ0

i ⊕ ℓ1
i all have degree 1, the linear parts of ℓ0

i and of (ℓ0
i ⊕ ℓ1

i) cannot both equal xi+1.
The fact that F (n) is balanced equivalently means that its components γ · F (n) are

balanced for all nonzero γ ∈ Fn
2 . This is deduced from the fact that the sum of any

k consecutive coordinates of F (n), gu,k := fu + . . . + fu+k−1, is balanced. Indeed, as
detailed in Appendix C, it can be proved by induction on k that gu,k is balanced and
the restriction of (gu,k ⊕ xu+k) to yu+k = 1⊕ εu+k is balanced. This proof relies on the
following key lemma.

Lemma 1. Let g be a balanced Boolean function of 2k variables (x1, . . . , xk, y1, . . . , yk)
such that the restriction of g⊕ xk to all inputs with yk = 1⊕ ε is balanced for some ε ∈ F2.
Then, the Boolean function of 2(k + 1) variables

f(x1, . . . , xk+1, y1, . . . , yk+1) := g(x1, . . . , xk, y1, . . . , yk)⊕ fk(xk, xk+1, yk, yk+1)

is balanced where fk is defined by (1) with εk = ε. Moreover, f satisfies the following
additional properties:

(i) If g ⊕ yk is balanced, then f ⊕ yk+1 is balanced.

(ii) If ℓ0
k(xk, xk+1)⊕ xk+1 has degree 1, then the restriction of f ⊕ xk+1 to all inputs with

yk+1 = 0 is balanced;

12 Cryptanalysis of TETRA Encryption Algorithms

(iii) If (ℓ0
k⊕ ℓ1

k)(xk, xk+1)⊕xk+1 has degree 1, then the restriction of f ⊕xk+1 to all inputs
with yk+1 = 1 is balanced.

Proof. • Let us first prove that f is balanced. Let fε (resp. f1⊕ε) be the restriction
of f to yk = ε (resp. to yk = 1⊕ ε). Then,

fε(x1, . . . , xk+1, y1, . . . , yk+1) = g(x1, . . . , xk, y1, . . . , yk−1, ε)⊕ yk+1 ⊕ ck (2)

which is balanced since g does not depend on yk+1. Moreover,

f1⊕ε(x1, . . . , yk+1) = g(x1, . . . , xk, y1, . . . , yk−1, 1⊕ε)⊕yk+1ℓ1
k(xk, xk+1)⊕ℓ0

k(xk, xk+1) .

Then, the two restrictions of f1⊕ε to yk+1 = 0 and to yk+1 = 1 are of the form

g(x1, . . . , xk, y1, . . . , yk−1, 1⊕ε)⊕ℓ(xk, xk+1) with ℓ(xk, xk+1) =
{

ℓ0
k(xk, xk+1)

(ℓ0
k ⊕ ℓ1

k)(xk, xk+1)

Since ℓ0
k and (ℓ0

k ⊕ ℓ1
k) have degree 1, the linear part of ℓ belongs to {xk, xk ⊕

xk+1, xk+1}. Because g does not depend on xk+1, this function is balanced when
the linear part of ℓ involves xk+1. Moreover, if the linear part of ℓ equals xk, it is
balanced too since the restriction of g ⊕ xk to yk = 1⊕ ε is balanced by hypothesis.
Therefore, the 2 restrictions of f1⊕ε are balanced, implying that f1⊕ε is balanced.

• For proving (i), we first use the fact that the restrictions of f1⊕ε to yk+1 = 0 and
to yk+1 = 1 are balanced, implying that f1⊕ε ⊕ yk+1 is balanced. Moreover, we
know from (2) that, when yk+1 is fixed, fε equals g(x1, . . . , xk, y1, . . . , yk−1, ε) up to
a constant. When both g and (g ⊕ yk) are balanced, the restriction of g to yk = ε
(and to yk = ε⊕ 1) is balanced, implying that the restrictions of fε to yk+1 = 0 and
to yk+1 = 1 are balanced. It follows that the restrictions of f to yk+1 = 0 and to
yk+1 = 1 are balanced. Hence (f ⊕ yk+1) is balanced.

• For proving (ii) and (iii), we consider the restriction hα of (f ⊕ xk+1) to yk+1 = α,
α ∈ F2. Then, if yk = ε,

hα(x1, . . . , yk+1) = g(x1, . . . , xk, y1, . . . , yk−1, ε)⊕ xk+1 ⊕ (α⊕ ck)

which is obviously balanced. If yk = 1⊕ ε,

hα(x1, . . . , yk+1) = g(x1, . . . , xk, y1, . . . , yk−1, 1⊕ ε)⊕ (αℓ1
k ⊕ ℓ0

k)(xk, xk+1)⊕ xk+1 ,

which is balanced if (αℓ1
k ⊕ ℓ0

k)⊕ xk+1 has degree 1. The result then directly follows.

Remark 6. Prop. 1 similarly holds if the first coordinate of F (n) is replaced by any balanced
function f ′

1 which satisfies the hypothesis of Lemma 1, i.e., the restriction of (f ′
1 ⊕ x2) to

y2 = 1⊕ ε2 is balanced.
Remark 7. We also deduce from the proof of Prop. 1 that, for any γ ∈ Fn

2 , the restriction
of (γ · F (n) ⊕ xn+1) to yn+1 = 0 (resp. to yn+1 = 1) is balanced if ℓ0

n ⊕ xn+1 (resp.
ℓ0

n ⊕ ℓ1
n ⊕ xn+1) has degree 1.

Functions F31 and F32 in TEA-3 then use the construction described in Prop. 1, and
more specifically its generalization in Remark 6, for n = 6 for defining their 6 middle
coordinates. Two additional coordinates, g0 and g7, that have to be carefully chosen, then
need to be appended. To this aim, we can take advantage of the degrees of freedom we
have in choosing the first coordinate of F (n−2), as explained in Remark 6, so that the
resulting function has some symmetries.

Alich, Askeland, Banik, Beyne, Canteaut, Felke, Leander, Meier, Stennes 13

Corollary 4. Let

f ′
1(x1, x2, y1, y2) =

{
(y2 ⊕ ε2 ⊕ 1)ℓ1(x1, x2)⊕ c1 if y1 = 0
(y2 ⊕ ε2 ⊕ 1)ℓ′

1(x1, x2)⊕ c1 ⊕ 1 if y1 = 1
(3)

where ℓ1 and ℓ′
1 are two functions of degree 1 such that deg(ℓ1⊕x1) = 1 and deg(ℓ′

1⊕x1) = 1.
Let n be an integer and F̃ (n) be the function from F2n+2

2 → Fn
2 defined by

F̃ (n)
n (x1, . . . , yn+1) = (f ′

1(x1, x2, y1, y2), f2(x2, x3, y2, y3), . . . , fn(xn, xn+1, yn, yn+1))

with fi, 2 ≤ i ≤ n, defined by (1) where εi for 2 ≤ i ≤ n−1 is such that ℓ0
i⊕ℓ1

i⊕εi+1ℓ1
i⊕xi+1

has degree 1, deg(ℓ0
n ⊕ xn+1) = 1 and (ℓ1

n ⊕ xn+1) is constant. Then, F̃ (n) is balanced and,
for every fixed values a, b ∈ F2 and every z ∈ Fn

2 ,

Na,b(u, v, z) = #{(x2, . . . , xn, y2, . . . yn) : F̃ (n)(u, x2, . . . , xn, v, a, y2, . . . , yn, b) = z}

does not depend on u and v.
Proof. The fact that F̃ (n) is balanced is derived from Remark 6, by observing that f ′

1 is
balanced and that the restriction of (f ′

1 ⊕ x2) to y2 = 1⊕ ε2 is balanced as it has degree 1.
From now on, we set y1 and yn+1 to some fixed values a and b. We define the 2n-variable

Boolean function

gω(x1, . . . , xn+1, y2 . . . , yn) = ω · F̃ (n)(x1, . . . , xn+1, a, y2, . . . , yn, b), ω ∈ Fn
2 .

Then, for any ω ∈ Fn
2 and any α, β ∈ F2, we have

N̂a,b(α, β, ω) =
∑

z∈Fn
2

∑
u,v∈F2

Na,b(u, v, z)(−1)ω·z⊕αu⊕βv

=
∑

x,y∈Fn−1
2 ×Fn−1

2

∑
u,v∈F2

(−1)gω(u,x,v,y)⊕αu⊕βv .

The inverse Fourier transform leads to

Na,b(u, v, z) = 2−n
∑

α,β∈F2

∑
ω∈Fn

2

N̂a,b(α, β, ω)(−1)αu⊕βv⊕ω·z ,∀u, v ∈ F2, z ∈ Fn
2 .

Since N̂a,b(α, β, ω) is equal to the correlation of the function gω ⊕ αx1 ⊕ βxn+1, we
derive that Na,b(u, v, z) does not depend on (u, v) if all functions (gω ⊕ αx1 ⊕ βxn+1), for
(α, β) ̸= (0, 0) are balanced.

Let us now prove this last property. When the first coordinate of ω vanishes, then
(gω ⊕ x1 ⊕ βxn+1) is obviously balanced since gω does not depend on x1. Furthermore,
the fact that (gω ⊕ xn+1) is balanced is derived from Remark 7, because in this case, gω

is a sum of functions fk, implying that the restriction of (ω · F̃ (n) ⊕ xn+1) to yn+1 = b is
balanced for any b because ℓ0

n ⊕ xn+1 and ℓ0
n ⊕ ℓ1

n ⊕ xn+1 have degree 1 by hypothesis.
When the first coordinate of ω equals 1, then we have to prove that (f ′

1(x1, x2, a, y2)⊕
αx1⊕gω′⊕βxn+1) is balanced, where ω′ is obtained by changing the first coordinate of ω to 0.
This can be deduced from Prop. 1 and Remark 6, starting from f̃1 = f ′

1(x1, x2, a, y2)⊕αx1,
for α, a ∈ F2. Indeed, it can be checked that these four functions are such that the
restrictions of (f̃1 ⊕ x2) to y2 = 1⊕ ε2 are balanced, since they have degree 1. It follows
that, as noticed in Remark 7, the restriction (f̃1 ⊕ ω′ · F̃ (n) ⊕ xn+1) to yn+1 = b, i.e. the
function (gω ⊕ αx1 ⊕ xn+1) is balanced for all b ∈ F2 because deg(ℓ0

n ⊕ xn+1) = 1 and
deg(ℓ0

n ⊕ ℓ1
n ⊕ xn+1) = 1.

Finally, we have to handle the case α = 1 and β = 0, i.e. prove that (f ′
1 ⊕ x1 ⊕ gω′)

is balanced. This is derived from the recursive application of Property (i) in Lemma 1,
starting from the observation that (f ′

1 ⊕ x1 ⊕ y2) is balanced both on y1 = 0 and on y1 = 1
because deg(ℓ1 ⊕ x1) = 1 and deg(ℓ′

1 ⊕ x1) = 1.

14 Cryptanalysis of TETRA Encryption Algorithms

Theorem 6. Let n be an integer and G(n) be the function from F2n
2 to Fn

2 defined by

G(n)(x0, . . . , xn−1, y0, . . . , yn−1) = (z0, . . . , zn−1)

where

z0 = g0(x0, x1, y0, y1)
z1 = f ′

1(x1, x2, y1, y2)
zi = fi(xi, xi+1, yi, yi+1) for 2 ≤ i < n− 1
zn−1 = gn−1(xn−1, x0, yn−1, y0)

and f ′
1 and fi are defined by (1) and (3) and satisfy the hypotheses of Corollary 4. Assume

that g0 and gn−1 are such that the functions

(x0, x1, xn−1, y0) 7→ (g0(x0, x1, y0, a), gn−1(xn−1, x0, b, y0))

are balanced for all a, b ∈ F2. Then, G(n) is balanced.

Proof. Let z ∈ Fn
2 and N (z) = #{(x, y) ∈ F2n

2 : G(n)(x, y) = z}. Then,

N (z) =
∑

a,b∈F2

∑
u,v∈F2

#{(x0, x2 . . . , xn−2, y0, y2, . . . , yn−2) : g0(x0, u, y0, a) = z0,

F̃ (n−2)(u, x2, . . . , xn−2, v, a, y2, . . . , yn−2, b) = z′ and gn−1(v, x0, b, y0) = zn−1}
=

∑
a,b∈F2

∑
u,v∈F2

#{(x0, y0) : g0(x0, u, y0, a) = z0, gn−1(v, x0, b, y0) = zn−1}Na,b(u, v, z′)

where z′ = (z1, . . . , zn−2), F̃ (n−2) is defined as in Corollary 4 and

Na,b(u, v, z′) = #{(x2, . . . , xn, y2, . . . yn) : F̃ (n−2)(u, x2, . . . , xn−2, v, a, y2, . . . , yn−2, b) = z′}.

We know from Corollary 4 that Na,b(u, v, z′) does not depend on (u, v). It follows that

N (z) =
∑

a,b∈F2

Na,b(0, 0, z′)

 ∑
u,v∈F2

#{(x0, y0) : g0(x0, u, y0, a) = z0, gn−1(v, x0, b, y0) = zn−1}

= 4

∑
a,b∈F2

Na,b(0, 0, z′) = #
(

F̃ (n−2)
)−1

(z′)

because the mapping (x0, y0, u, v) 7→ (g0(x0, u, y0, a), gn−1(v, x0, b, y0)) is balanced. Since
F̃ (n−2) is balanced, we deduce that N (z) = #

(
F̃ (n−2)

)−1
(z′) = 2n.

Theorem 6 then provides a simple algorithm for constructing many balanced functions
from F2n

2 to Fn
2 with a low-cost implementation. Determining whether this particular

construction, especially the fact that each of the middle coordinates is linear on a hyperplane,
introduces some weaknesses remains open.

6 Cryptanalysis
For attacking stream ciphers, a number of methods are known for state recovery, analysis
of the initialization mechanism, and distinguishers of the keystream. Established methods
include algebraic and correlation attacks as well as TMDTO attacks. Our focus is on
generic as well as dedicated attacks. To begin with, it can be easily deduced that a key-
recovery attack on TEA-3 using exhaustive search requires around 285.67 iterations of the
cipher (see Appendix E.3.1). Also a simple TMDTO attack to recover the internal state of
the cipher would need ≈ 279.83 iterations of TEA-3, with Tinsertions = 270.42 table-insertions,
Tlookups = 273.58 table-lookups and M = 6 · 272 bytes of memory (see Appendix E.3.2).

Alich, Askeland, Banik, Beyne, Canteaut, Felke, Leander, Meier, Stennes 15

6.1 Observation for Shifted Keystreams
Let us analyze a generic design resembling TEA-3, that employs an initial vector of length
ℓ bits that is expanded into a 64 bit string using an affine map Aff : {0, 1}ℓ → {0, 1}64,
which can be seen as the tuple consisting of full-rank matrix M of size 64× ℓ over F2 and
a vector b⃗ ∈ {0, 1}64, so that Aff(x⃗) = M · x⃗⊕ b⃗.

Consider a key ECK and an initial vector IV1. If TEA-3 is initialized with (ECK, IV1),
then after 51 iterations, denote the internal state it produces as S1 = (K,V1) where
K ∈ F80

2 is the value in the key register and V1 ∈ F64
2 is the value of the state register. Let

K be a vector for which the TEA-3 registers produce a key sequence of period 10p for
some p (since we know that all keys produce sequences of period 10p). Run the cipher for
190p iterations. Let the new state after 190p iterations be denoted by S2 = (K,V2). We
want to determine if it is possible that for some other initial vector IV2 and key ECK, we
have that S2 is the state of the cipher after 51 iterations itself? To answer this question,
we can clock the cipher backwards from S2 for 51 iterations and check if the resulting
state S = (ECK, V) is a valid initial state of TEA-3. This only happens if V is in the image
of the affine map Aff, i.e. there exists an IV2 ∈ {0, 1}ℓ such that M · IV2 ⊕ b⃗ = V . For
example if ℓ = 32 and we had used the original expandS function, then the above condition
would be satisfied if V = v0, v1, · · · , v7 satisfied the following bit-conditions.

v0 = v1 ⊕ 0xC4 v2 = v5 ⊕ 0x3A v3 = v6 ⊕ 0x7D v4 = v7 ⊕ 0x51 (4)

When this happens IV2 is an initial vector such that (ECK, IV1) and (ECK, IV2) generate
exactly 10p shifted keystream bytes. The process is explained pictorially in Figure 3.
The probability that V lies in the image of Aff is naturally equal to ρ = |Im(Aff)|

264 = 2ℓ−64.
So the probability that the above exercise will succeed for any randomly chosen IV is
small. However if we exhaust all the 2ℓ initial vectors in the space, then the above set of
experiments is expected to have around 22ℓ−64 successes, i.e. we find on average 22ℓ−64

initial vector pairs IV1, IV2 after the back-tracking. If ℓ = 32, this value is equal to 1.
However consider a second exercise: let S3 = (K,V3) denote the state after 380p

iterations of the cipher. We want to determine if one of the following situations is possible:

• For some other initial vector IV2: S2 is the state of the cipher after 51 iterations or

• For some other initial vector IV3: S3 is the state of the cipher after 51 iterations.

Assuming that the events are disjoint, this probability can be roughly estimated to be
2 · ρ = 2ℓ−63. Let α be an integer parameter. In general the probability that any one of the
α states Si (for 2 ≤ i ≤ α+1) gives a valid state after backtracking is α ·2ℓ−64. This means
that for any key ECK there exist on average around (α−1) ·22ℓ−64 IV pairs that generate up
to 10pα byte-shifted keystream sequences. For a fixed key ECK, now we consider the space

ECK,IV1 K,V1
51 rounds 190p rounds

z1 z2
b b b b z10p z10p+1 z10p+2

19 rounds

K,V2

19 rounds 19 rounds

K,V2ECK,IV2
51 rounds

z10p+1 z10p+2

19 rounds

Figure 3: Generating IV pairs that produce shifted keystream bytes.

of IVs as a graph in which the IVs are nodes and (IV1, IV2) are connected if (ECK, IV1) and

16 Cryptanalysis of TETRA Encryption Algorithms

(ECK, IV2) generate either 10p, 20p, · · · , 10pα byte-shifted keystream bytes. From the above
discussion we know that the cardinality of the set of edges is around Epair = α · 22ℓ−64,
indicated by the blue edges in Figure 4. Assume that we know a priori the value of p,
and α is chosen such that Epair ≥ 1. Our task is to query random initial vectors IV and
collect keystream sequences for the unknown key ECK and IV. We want to determine
many random IV’s we need to query before we get two initial vectors that produce up to
10pα shifted keystream bytes. In other words we do the following experiment outlined in
Algorithm 1. In this random experiment we query random IVs and check if there exist

Algorithm 1: Finding IV pairs that generate shifted keystream bytes.
FindIVpair(p, α)
Input: p: The value such that the Secret Key ECK produces sequence of period 10p
Input: α: Integer parameter larger than 1
Output: (IV1, IV2, i): (ECK, IV1), (ECK, IV2) give 10pi byte shifted keystream,i ≤ α

Initialize an empty hash-table Tab
while True do

Choose random initial vector IV $← Fℓ
2

Generate keystream bytes z1, . . . , z10pα+18 with the key-IV pair (ECK, IV)
for r ← 0 to α do

Denote Zr := [z10pr+1, z10pr+2, . . . , z10pr+18]
if Tab[Zr] is empty then Store (IV, r) in Tab[Zr]
else return (IV1 = Tab[Zr].IV, IV2 = IV, i = |r − Tab[Zr].r|)

end
end

initial vectors IV1, IV2 and integers r1, r2 such that the r1-th block of 18 keystream bytes
produced by ECK, IV1 equals the r2-th block produced by ECK, IV2. This indicates with
high probability that the internal states produced by (ECK, IV1) at instance r1 and that
produced by (ECK, IV2) at instance r2 are the same and thus they produce 10p|r1 − r2|
byte shifted keystream. If we query X initial vectors we are actually testing all the

(
X
2
)

edges that are formed between them (the red edges in Figure 4). The blue edges are those
that connect the shifted IVs. A collision occurs when the product of number of red and
blue edges equals the total possible number of edges. Thus we have(

X

2

)
· α · 22ℓ−64 =

(
2ℓ

2

)
⇒ X = 232

√
α

We know that p can only have 28 values the largest of which p27 is just above 239. So
to begin with we can generate 10p27α + 18 bytes from X = 232/

√
α random initial

vectors. Since the IV space has 2ℓ vectors, for the attack to make sense we need both
Epair = α · 22ℓ−64 ≥ 1 and 232 ≤

√
α · 2ℓ, both of which lead to α ≥ 264−2ℓ.

The algorithm requires Tcomplexity = (51+190p27α+342) ·X ≈ 279√α iterations of TEA-
3. Now for i = 27 downto 0, we run the algorithm FindIVpair(pi, α), for X = 232/

√
α

initial vectors (without generating anymore keystream) and move to the next lower value
of i, if the algorithm does not output anything. We should get a collision whp for some
value of i after which we get the value of pi to which the Key belongs to. The number of
hash insertions is around Tinsertions = α · 28 ·X ≈ 238√α. If ℓ = 32, then by choosing α = 2
this results in a distinguisher to determine the period pi with computational complexity
lower than state recovery of Appendix E.3.2, and with table access complexity significantly
lower than state recovery. Indeed, if the period is wrongly guessed the probability of such
a collision is 2ℓ

2144 and thus is not expected to occur when conducting the above experiment.

Alich, Askeland, Banik, Beyne, Canteaut, Felke, Leander, Meier, Stennes 17

Figure 4: Space of initial vectors as a graph. IVi, IVi+1 are connected with a blue edge if
they produce upto 10pα byte-shifted keystream sequences.

However this does not give us the actual key, but only tells us in which class the secret
key lies in. However when ℓ = 29, this forces us to choose α ≥ 26 = 64, which results in
Tcomplexity ≈ 282. This gives some justification as to why the length of the IV has been
somewhat awkwardly set at 29 bits.

6.1.1 Forcing Short Periods

We extend our observations on shifted keystreams by considering the tweak which is used
to derive ECK. For this, recall from Remark 4 that initializing the decomposed register in
Figure 2 with (a0, a1, a2, a3, a4) = (k0, k1, k2, k3, k4) and (r0, r1, r2, r3, r4) = (k0 ⊕ k5, k1 ⊕
k6, k2⊕k7, k3⊕k8, k4⊕k9) produces the same sequence as the original un-decomposed key
register in Figure 1. The h-register produces sequences of one of 28 periods pi, i ∈ [0, 27]
as tabulated in Table 1 and it has also been shown that the key sequence (si) has period
either pi, 2pi, 5pi or 10pi. Indeed, the 28 periods divide the state space of the register
into 28 disjoint partitions or orbits. Given a 10-byte master key K = (k0, k1, k2, . . . , k9),
define its short-key as the 5-byte vector SL = (k0 ⊕ k5, k1 ⊕ k6, k2 ⊕ k7, k3 ⊕ k8, k4 ⊕ k9),
corresponding to the initial state of the h-register. If SL happens to reside in an orbit of
smaller size, then we might be able to leverage an attack on the keystream generator.

However, the short-key corresponding to an arbitrary master key Kdoes not necessarily
lie in a small orbit. An active attacker can however freely choose the 14-bit location
area (LA), 12-bit carrier number (CN) and the 6-bit color code (CC) to force the h-register
into a low period orbit. The 32-bit vector t = LA||CN||CC is expanded to 80 bits by
E = expandK(t) = (LA ∥ CN ∥ CC ∥ CN ∥ CC ∥ CN ∥ CC ∥ CN) which are xored to the K to
give the encryption key ECK = K⊕E. If ei’s denote the bits of E, i.e LA = (e0, e1, · · · , e13),
CN = (e14, e15, · · · , e25) and CC = (e26, e27, · · · , e31) then the short-key SL is given as

SL0 = k0 ⊕ k5 ⊕ (e0, e1, · · · e7)⊕ (e22, e23, · · · , e29)
SL1 = k1 ⊕ k6 ⊕ (e8, e9, · · · e15)⊕ (e30, e31, e14, e15, · · · , e19)
SL2 = k2 ⊕ k7 ⊕ (e16, e17, · · · e23)⊕ (e20, e21, · · · , e27)
SL3 = k3 ⊕ k8 ⊕ (e24, e25, · · · e31)⊕ (e28, e29, · · · , e31, e14, e15, · · · , e17)
SL4 = k4 ⊕ k9 ⊕ (e14, e15, · · · e21)⊕ (e18, e19, · · · , e25).

Since the keystream generator is initialized with the session key ECK, we want to see if
the corresponding SL can be part of an orbit with small size. If we keep e8 to e31 fixed
to some constant, and by varying e0, . . . , e7 to all the 256 strings of 8 bits, we obtain 256
short session keys in which the first byte takes all the byte values and the 2nd to 5th bytes
are constant. With high probability, one of the SL’s belongs to a small orbit of size ≤ p22.

In fact a simple experiment can be done as follows: we consider all the orbits of sizes
p0 to p22 as shown in Table 1. For each of the i orbits (0 ≤ i ≤ 22), we denote the pi

elements of the orbits as Xi,j , j ∈ [0, pi − 1], where each Xi,j is a 5-byte string. We want

18 Cryptanalysis of TETRA Encryption Algorithms

to find out what values the last 4 bytes of Xj can take i.e. Xi,j ∧ 0x00ffffffff. We
iterate over all the pi elements of the orbit and insert in a set S, all the possible values of
Xi,j ∧ 0x00ffffffff for i ∈ [0, 22]. Doing this for all elements of all the i orbits of size
upto p22, i.e. for 0 ≤ i ≤ 22, we find that |S| = 3225630085 = 231.5869. Therefore we have
|Sc| = 232 − |S| = 1069337211 = 229.9941.

Although a given master key may be such that its short-key does not lie in a small
orbit, we can try to see if any of the short-keys of the derived session keys lie in a small
orbit by varying the ei’s. If we generate 28 session keys by varying e0, e1, . . . , e7, then
the corresponding short-keys will take all the 256 values in the first byte i.e. since only
SL0 changes as per the expressions listed earlier. Now if [SL1, SL2, SL3, SL4] ∈ S, then it
is certain that one of the 256 short-keys lie in a period of size less than p22, since we are
generating all the values in the first byte SL0. Now [SL1, SL2, SL3, SL4] ∈ S with probability
|S|
232 ≈ 0.751, which is therefore the probability that at least one of the session keys is such
that its short-key lies in an orbit of size less than or equal to p22 ≈ 231.168.

To perform the attack we repeat the attack of the previous section for each of the 256
session keys, but instead of p28 we generate only till 10p22α + 18 bytes and search for a
collision. Thus in terms of number of iterations, the computational complexity is given by

Tcomplexity = 28 · (190 · α · p22) · 232/
√

α ≈ 278.7 ·
√

α.

The number of hash insertions is Tinsertions = 2 · 23 · 232
√

α
· 28 ≈ 245.5 · α−1/2. For ℓ = 32

and α = 2, we get Tcomplexity = 279.2, Tinsertions = 245, i.e. the computational complexity is
slightly lower and the table access complexity is significantly lower than the corresponding
figures of the generic state-recovery detailed in Appendix E.3.2. However when ℓ = 29, α =
64, we get Tcomplexity = 281.7, Tinsertions = 242.5 which is worse than state recovery complexity.
This is another justification for the length of the IV to be limited to well below 32 bits.

Once we establish that for some known value of (e0, . . . , e7) = b∗, the session key is in a
short period orbit pi for i ≤ 22, we have effectively reduced the entropy of the master key
to log2 pi + 40 < 71.17 bits. The remaining key can be found by exhaustive search. From
Appendix E.3.1, we know that this should take less than 271.17+5.67 ≈ 276.84 iterations. So
the total computational complexity if ℓ = 32 is still 279.2 which is lower than the complexity
of generic state recovery, and results in a significantly smaller table-access complexity.

With probability around 1− 0.751 ≈ 0.249 we will not obtain a collision in any one
of the 256 cases listed above. If so we reduced the last 4 bytes of the short-key to a set
of cardinality Sc which is just lower than 230, and the entire short-key to 238. Thus the
remaining entropy of the key is around 78 bits, which can still be exhausted in complexity
approximately 283.67.
Remark 8. The high complexity comes from the fact that the decimation factor 19 is
co-prime with 10. If instead the decimation factor had been 30, which is still larger than 19,
the attack complexity would have a factor 30p22 instead of 190p22 which is around 6 times
smaller. Thus the decimation factor being co-prime with 10 is necessary for the security.

6.2 Linear Cryptanalysis
For a well-designed stream cipher, there should be no linear approximations with high
absolute correlation between the inputs (in the case of TEA-3, these are the 29-bit IV and
the 32-bit tweak) and the keystream. The overall methodology of linear cryptanalysis is
identical for stream- and block ciphers, although for historical reasons different terminology
is sometimes used. For example, correlation attacks are covered as a special case of
the analysis below. The main difference is that, for stream ciphers, there are linear
approximations with all-zero input masks – and these are particularly important.

To emphasize the influence that the decomposition discussed in Section 4 can have on
linear cryptanalysis, for a moment, consider a modified TEA-3 with a linear state register.

Alich, Askeland, Banik, Beyne, Canteaut, Felke, Leander, Meier, Stennes 19

In this setting, a guess-and-determine key-recovery attack with complexity roughly 240

TEA-3 evaluations (computing 10 key stream bytes each) becomes easily possible. Consider
Figure 2 again. The idea of the attack is to guess the 40-bit state r = (r0, . . . , r4) and
then uniquely determine a = (a0, . . . , a4) from the output keystream. We can do so rather
easily as, after guessing the initialization of h, only linear components remain.

In regards to the original TEA-3, we argue that the most interesting scenarios for
linear cryptanalysis of TEA-3 are the following two extreme cases: (i) targeting only
the initialization (output mask nonzero only for the first keystream byte), or (ii) using
consecutive keystream bytes (zero masks on the inputs). Due to the relatively heavy
initialization phase of TEA-3 (key and state registers are clocked 32 times for mixing and
an additional 19 times to output the first keystream byte), targeting the initialization phase
seems less promising. However, the constraints on the masks of the linear approximations
are more flexible. Also, because the tweak is injected through the key register, it is possible
to skip a few initialization rounds by fixing the IV and part of the tweak. However, our
analysis indicates that this does not lead to better attacks. Hence, we focus on scenario(ii).

For linear approximations with masks nonzero only on consecutive keystream bytes, we
first analyze the construction with a fixed tweak. This is a natural starting point, since in
this case the key-update function imposes no additional constraints on the masks of linear
trails through the state-update function. By solving a (simplied) Satisfiability Modulo
Theories model of TEA-3, we found a linear trail between two consecutive keystream bytes
(19 iterations of the state-update function) with correlation ±2−32. This trail is depicted
in Figure 5a in Appendix E.1. For the same linear approximation as in Figure 5a, there
exist four linear trails with correlation ±2−35 (see Figure 5b). These trails have the same
key-dependency and always cancel each other. In addition to the trails in Figure 5, we
found several trails (for different approximations) with correlation ±2−34 and ±2−35.

Based on the above, one might be tempted to conclude that there are linear approxi-
mations between consecutive keystream bytes with correlation ±2−32. However, this is
incorrect because the IV only consists of 29 bits, so the initial state is not uniform random.
This will lead to an estimation error (due to trails with nonzero masks on the initial
state) on the order of ±2−14.5. Heuristically, multiple linear cryptanalysis based on the
approximations with correlation c = ±2−32 is still feasible, but the data-complexity would
be around 299 = 229 · 270 so that q

√
l = 1/c2 with q = 229 the number of IVs and l = 270

the number of keystream bytes for each IV.
The data-complexity may be reduced to 267 = 229+32 · 26 if multiple tweaks are used.

However, this would require guessing 40 bits of the key and modifying the test-statistic
based on the output of the nonlinear part of the key-update function. This can be done in
roughly 280 table accesses as follows. First, distill the data into a table of length 232+6

indexed by 32-bit tweaks and six bits indicating the linear approximation. For every 40
bit value of the xor between the two halves of the 80 bit key (so the initial state of the
nonlinear part of the key-update function can be computed for a given tweak), compute a
standard test statistic for multiple linear cryptanalysis (such as the sum of squares). This
requires 240 · 232+6 = 278 table reads and a similar number of arithmetic operations. In
practice, the memory accesses are likely to dominate. It is not clear if the computational
cost of this approach can be brought significantly below 280 evaluations of TEA-3.

It is also worth looking at TEA-3 with a smaller decimation factor, r, so that r = 19
for TEA-3. In Appendix E.2, it is shown that for r ≤ 8 there are no linear trails with
nonzero correlation – assuming that the mask on the state before the extraction of the
first keystream byte is zero.

6.3 Generic Attacks
These attacks are applicable to TEA-{2,4} as well.

20 Cryptanalysis of TETRA Encryption Algorithms

6.3.1 Attack on Ciphers Xoring Key and Tweak

It is well-known that xoring a tweak to the key of a secure block cipher does not yield a
secure tweakable block cipher in general [LRW02]. Indeed, there is a generic time-data-
memory trade-off attack [DH77] that, e.g., was recently described in the context of the
tweakable block cipher HALFLOOP [DDLS22, LRS23]. Essentially the same attack can
be applied to the stream cipher TEA-3. However, here the 32-bit tweak is expanded to 80
bits using expandK which acts as the identity on the first 32-bits. Hence, we only vary the
last 48 bits of the key. More precisely, for a fixed initialization vector IV∗, in an offline
phase we compute a table

T =
[(

032||k, TEA-3032||k(IV∗, 0, 10)
)

for k ∈ F48
2

]
and sort it by the second component. In the online phase, we query TEA-3k∗(IV∗, t, 10) for
every tweak t ∈ F32

2 where k∗ is the secret key we wish to recover. Using binary search, we
check if there exists a tuple (k, t) such that TEA-3032||k(IV∗, 0, 10) = TEA-3k∗(IV∗, t, 10). If
so, we know that (ignoring one expected false positive) k∗ = expandK(t)⊕ (032||k).

This attack has an offline complexity of 248 TEA-3 encryptions (plus sorting the table)
and roughly 248 · 16 bytes = 4 PB (petabytes) of memory. For the online complexity, we
need 232 queries with chosen IV and tweak and as many binary searches in the table. At
least for passive attackers, we do not consider this attack practical, simply because the
need of chosen data is too high, especially considering that the key should be changed
before the IV, which corresponds to a time stamp, rolls over.

6.3.2 A TMTO Attack for a Fixed IV

We describe a TMTO attack, with a practical online and query complexity that requires 1
PB more of memory than the previous attack. We follow Hellman’s approach and assume
that the reader is familiar with TMTO attacks. [Hel06] is an excellent reference for those
who need help. Other approaches as e.g. the one by Oechslin [Oec03] might be equally
appropriate. Again we fix an initial value IV∗. As we recover the ECK directly we do not have
to deal with the tweak except after recovery to compute the CK or SCK from it respectively.
Hence we adjust the notation a bit and denote with TEA-3k(IV∗, 10) the first 10 bytes
after the initialization phase of TEA-3 with initial value IV∗. We consider keys of the form
08||k, k ∈ F72

2 , i.e. elements from the subspace K72 := {0}8×F72
2 . According to [GMAM16,

Table 1] we build 2 72
3 = 224 tables with 224 rows and 224 columns to get a coverage of 80%.

Thereby the starting points for each table Tl are chosen uniformly at random from K72.
Then TEA-3k(IV∗, 10) is applied, i.e. the transition function f : K72 → K72 for the l-th
table is as follows. From the current entry the 10-byte output stream TEA-3k(IV∗, 10) is
considered as an element k ∈ K72 by setting the first 8 bits to zero. Then TEA-3k(IV∗, 10)
is applied which gives the next output stream. The end points are stored and sorted as
well. The transition function is over F80

2 as 10-byte output stream has to be compared to
prevent false positives on average. With a probability of 1

28 we have that the tweaked key
k∗ = expandK(t)⊕ k lies in K72. Taking into account that the coverage is 80%, we get that
only 28 · 1.25 queries are required on average to expect that k∗ is contained in one of the
Tl. So with a complexity of 28 · 1.25 · 248 ≈ 256.3 the key k∗ and thus k can be recovered.

To study the practicality of this attack, we roughly compute its complexity and cost.
If for all 28 · 1.25 = 320 queries the search is done in parallel, the complexity is 248 and
the key can be recovered within 3 days on average. From Section 2.3 it is known that
in Class-2 networks the CK tends to be used for along time. Hence if one sets up a fake
base station or wiretaps 320 base stations, a TMTO attack based on a fixed IV should
be successful as then it can be expected that there is a device where the ECK lies in K72.
From this, CK can be computed and then used for a long time. In the latter attack scenario
it might take up to a month to be successful and it is less realistic. To build the tables Tl

Alich, Askeland, Banik, Beyne, Canteaut, Felke, Leander, Meier, Stennes 21

we have to go through 272 states. It is possible to generate 229.10 keystreams of 10 bytes
in a second [Tez]. Hence it is possible to generate 255 entries in a year with one GPU. So
with 218 GPUs the corresponding tables can be built within a year. Due to the amount
of GPUs required an optimistic assumption is that each of them costs 100 €. Hence for
70,000,000 € these tables can be built. The required memory is 19 · 248 bytes ≈ 5 PB.
These costs are estimated with 10,000,000 €. So in total such an attack costs 80,000,000 €
and might then be considered as somewhere between purely academic and practical.

7 Discussion
We presented a first public and in-depth cryptanalysis of TEA-3. Although we identified
some rather unconventional and arguably unsound design choices, most importantly the
decomposing key register, we were not able to give a practical attack. Nevertheless,
we advise using for instance AES instead of TEA-3 and TEA-2. AES is more secure
(higher key length) and better studied. Moreover, even though we did not study them in
detail, we also advise against using TEA-{1,4} (as their effective key size is 32 or 56 bit
respectively). And, again without an in-depth analysis, we also recommend using AES
instead of TEA-{5,6,7}. While Rijndael in counter mode is a good step, modifying it by
adding an obscure function to derive the key for it, which in TEA-7 is used to intentionally
weaken the design [ETS24k], is questionable at best. Still, we believe that studying all
these designs to unveil the design choices made without an open evaluation process is
thrilling future work.

References
[BDL+21] Christof Beierle, Patrick Derbez, Gregor Leander, Gaëtan Leurent, Håvard

Raddum, Yann Rotella, David Rupprecht, and Lukas Stennes. Cryptanalysis
of the GPRS encryption algorithms GEA-1 and GEA-2. In Anne Canteaut and
François-Xavier Standaert, editors, Advances in Cryptology - EUROCRYPT
2021 - 40th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, October 17-21, 2021, Proceedings,
Part II, volume 12697 of Lecture Notes in Computer Science, pages 155–183.
Springer, 2021.

[Bok] Wouter Bokslag. Private communication.

[BSW00] Alex Biryukov, Adi Shamir, and David A. Wagner. Real time cryptanalysis
of A5/1 on a PC. In Bruce Schneier, editor, Fast Software Encryption, 7th
International Workshop, FSE 2000, New York, NY, USA, April 10-12, 2000,
Proceedings, volume 1978 of Lecture Notes in Computer Science, pages 1–18.
Springer, 2000.

[DDLS22] Marcus Dansarie, Patrick Derbez, Gregor Leander, and Lukas Stennes. Break-
ing HALFLOOP-24. IACR Trans. Symmetric Cryptol., 2022(3):217–238,
2022.

[DH77] Whitfield Diffie and Martin E. Hellman. Special feature exhaustive cryptanal-
ysis of the NBS data encryption standard. Computer, 10(6):74–84, 1977.

[ETS24a] ETSI. Rules for the management of the TETRA standard encryption algo-
rithms; Part 1: TEA1. https://www.etsi.org/deliver/etsi_TS/101000_
101099/10105301/02.01.01_60/ts_10105301v020101p.pdf, 2024. [Online;
accessed 11-November-2024].

https://www.etsi.org/deliver/etsi_TS/101000_101099/10105301/02.01.01_60/ts_10105301v020101p.pdf
https://www.etsi.org/deliver/etsi_TS/101000_101099/10105301/02.01.01_60/ts_10105301v020101p.pdf

22 Cryptanalysis of TETRA Encryption Algorithms

[ETS24b] ETSI. Rules for the management of the TETRA standard encryption algo-
rithms; Part 2: TEA2. https://www.etsi.org/deliver/etsi_TS/101000_
101099/10105302/02.05.01_60/ts_10105302v020501p.pdf, 2024. [Online;
accessed 11-November-2024].

[ETS24c] ETSI. Rules for the management of the TETRA standard encryption algo-
rithms; Part 3: TEA3. https://www.etsi.org/deliver/etsi_ts/101000_
101099/10105303/02.01.01_60/ts_10105303v020101p.pdf, 2024. [Online;
accessed 11-November-2024].

[ETS24d] ETSI. Rules for the management of the TETRA standard encryption algo-
rithms; Part 4: TEA4. https://www.etsi.org/deliver/etsi_ts/101000_
101099/10105304/02.01.01_60/ts_10105304v020101p.pdf, 2024. [Online;
accessed 11-November-2024].

[ETS24e] ETSI. Rules for the management of the TETRA standard encryption algo-
rithms; Part 5: TEA5. https://www.etsi.org/deliver/etsi_ts/101000_
101099/10105305/01.01.01_60/ts_10105305v010101p.pdf, 2024. [Online;
accessed 11-November-2024].

[ETS24f] ETSI. Rules for the management of the TETRA standard encryption algo-
rithms; Part 6: TEA6. https://www.etsi.org/deliver/etsi_ts/101000_
101099/10105306/01.01.01_60/ts_10105306v010101p.pdf, 2024. [Online;
accessed 11-November-2024].

[ETS24g] ETSI. Rules for the management of the TETRA standard encryption algo-
rithms; Part 7: TEA7. https://www.etsi.org/deliver/etsi_ts/101000_
101099/10105307/01.01.01_60/ts_10105307v010101p.pdf, 2024. [Online;
accessed 11-November-2024].

[ETS24h] ETSI. TETRA Air Interface Security, Algorithms Specification; Part 2:
TETRA Encryption Algorithms TEA Set B. https://www.etsi.org/deliv
er/etsi_ts/104000_104099/10405302/01.01.01_60/ts_10405302v0101
01p.pdf, 2024. [Online; accessed 11-November-2024].

[ETS24i] ETSI. TETRA Air Interface Security, Algorithms specification; Part 3:
TETRA and Authentication and Key Management Algorithms TAA1. https:
//www.etsi.org/deliver/etsi_ts/104000_104099/10405303/01.01.01
_60/ts_10405303v010101p.pdf, 2024. [Online; accessed 11-November-2024].

[ETS24j] ETSI. TETRA Air Interface Security, Algorithms Specifications; Part 1:
TETRA Encryption Algorithms Set A. https://www.etsi.org/deliver/ets
i_ts/104000_104099/10405301/01.01.01_60/ts_10405301v010101p.pdf,
2024. [Online; accessed 11-November-2024].

[ETS24k] ETSI. Tetra security disclosures. https://tcca.info/documents/Research
-Disclosures-v2-301023.pdf, 2024. [Online; accessed 11-November-2024].

[GD70] D.H. Green and K.R. Dimond. Nonlinear product-feedback shift registers.
Proceedings of the Institution of Electrical Engineers, 117:681–686, 1970.

[GMAM16] Nasser Gharavi, Abdolrasoul Mirghadri, Mohammad Abdollahi Azgomi, and
Ahmad Mousavi. Expected coverage of perfect chains in the Hellman time
memory trade-off. Journal of Computing and Security, 3:155–162, 07 2016.

[Gol81] Solomon W. Golomb. Shift Register Sequences. Aegean Park Press, USA,
1981.

https://www.etsi.org/deliver/etsi_TS/101000_101099/10105302/02.05.01_60/ts_10105302v020501p.pdf
https://www.etsi.org/deliver/etsi_TS/101000_101099/10105302/02.05.01_60/ts_10105302v020501p.pdf
https://www.etsi.org/deliver/etsi_ts/101000_101099/10105303/02.01.01_60/ts_10105303v020101p.pdf
https://www.etsi.org/deliver/etsi_ts/101000_101099/10105303/02.01.01_60/ts_10105303v020101p.pdf
https://www.etsi.org/deliver/etsi_ts/101000_101099/10105304/02.01.01_60/ts_10105304v020101p.pdf
https://www.etsi.org/deliver/etsi_ts/101000_101099/10105304/02.01.01_60/ts_10105304v020101p.pdf
https://www.etsi.org/deliver/etsi_ts/101000_101099/10105305/01.01.01_60/ts_10105305v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/101000_101099/10105305/01.01.01_60/ts_10105305v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/101000_101099/10105306/01.01.01_60/ts_10105306v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/101000_101099/10105306/01.01.01_60/ts_10105306v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/101000_101099/10105307/01.01.01_60/ts_10105307v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/101000_101099/10105307/01.01.01_60/ts_10105307v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/104000_104099/10405302/01.01.01_60/ts_10405302v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/104000_104099/10405302/01.01.01_60/ts_10405302v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/104000_104099/10405302/01.01.01_60/ts_10405302v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/104000_104099/10405303/01.01.01_60/ts_10405303v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/104000_104099/10405303/01.01.01_60/ts_10405303v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/104000_104099/10405303/01.01.01_60/ts_10405303v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/104000_104099/10405301/01.01.01_60/ts_10405301v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/104000_104099/10405301/01.01.01_60/ts_10405301v010101p.pdf
https://tcca.info/documents/Research-Disclosures-v2-301023.pdf
https://tcca.info/documents/Research-Disclosures-v2-301023.pdf

Alich, Askeland, Banik, Beyne, Canteaut, Felke, Leander, Meier, Stennes 23

[Hel06] M. Hellman. A cryptanalytic time-memory trade-off. IEEE Trans. Inf. Theor.,
26(4):401–406, sep 2006.

[LRS23] Gregor Leander, Shahram Rasoolzadeh, and Lukas Stennes. Cryptanaly-
sis of HALFLOOP block ciphers destroying HALFLOOP-24. IACR Trans.
Symmetric Cryptol., 2023(4):58–82, 2023.

[LRW02] Moses D. Liskov, Ronald L. Rivest, and David A. Wagner. Tweakable block
ciphers. In Moti Yung, editor, Advances in Cryptology - CRYPTO 2002, 22nd
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 18-22, 2002, Proceedings, volume 2442 of Lecture Notes in Computer
Science, pages 31–46. Springer, 2002.

[MBW23] Carlo Meijer, Wouter Bokslag, and Jos Wetzels. All cops are broadcasting:
TETRA under scrutiny. In 32nd USENIX Security Symposium (USENIX
Security 23), pages 7463–7479, 2023.

[MST79] Johannes Mykkeltveit, Man-Keung Siu, and Po Tong. On the cycle structure
of some nonlinear shift register sequences. Information and control, 43(2):202–
215, 1979.

[Oec03] Philippe Oechslin. Making a faster cryptanalytic time-memory trade-off. In
Dan Boneh, editor, Advances in Cryptology - CRYPTO 2003, pages 617–630,
Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[Tez] Cihangir Tezcan. Private communication.

[WAS24] The Wassenaar Arrangement on Export Controls for Conventional Arms and
Dual-Use Goods and Technologies. https://www.wassenaar.org/, 2024.
[Online; accessed 11-November-2024].

[Zet24] Kim Zetter. Interview with the ETSI Standards Organization That Created
TETRA "Backdoor". https://www.zetter-zeroday.com/interview-wit
h-the-etsi-standards/, 2024. [Online; accessed 11-November-2024].

https://www.wassenaar.org/
https://www.zetter-zeroday.com/interview-with-the-etsi-standards/
https://www.zetter-zeroday.com/interview-with-the-etsi-standards/

24 Cryptanalysis of TETRA Encryption Algorithms

A A C-program to Find the Sequences of the Decomposed
Key Register

1 # include <stdint .h>
2 # include <stdio.h>
3 # include <stdlib .h>
4

5 /*
6 This program , as is , will find all cycles in the decomposed
7 key register of the TEA -3 cipher and print their periods .
8 We do this by marking every state we visit in a table. We get
9 a state belonging to an unknown cycle by consulting the table.

10 The full table requires 2^40 bits corresponding to 128 GiB.
11 In order to be able to run this program om machines with
12 less than 128 GiB of RAM , we only consider a subset of the
13 states controlled by a " subset key ". With a subset key size of
14 4 bits the table only requires 8 GiB - at the expense of
15 possibly missing some cycles . If any cycles are missed ,
16 the program can be rerun with another value for the subset key.
17

18 Compile with gcc -O3 filename .c -o find_cycles
19 Takes ~3 hours to complete on a typical laptop .
20 */
21

22 uint8_t tea3_sbox [256] = {
23 0x7d , 0xbf , 0x7b , 0x92 , 0xae , 0x7c , 0xf2 , 0x10 ,
24 0x5a , 0x0f , 0x61 , 0x7a , 0x98 , 0x76 , 0x07 , 0x64 ,
25 0xee , 0x89 , 0xf7 , 0xba , 0xc2 , 0x02 , 0x0d , 0xe8 ,
26 0x56 , 0x2e , 0xca , 0x58 , 0xc0 , 0xfa , 0x2a , 0x01 ,
27 0x57 , 0x6e , 0x3f , 0x4b , 0x9c , 0xda , 0xa6 , 0x5b ,
28 0x41 , 0x26 , 0x50 , 0x24 , 0x3e , 0xf8 , 0x0a , 0x86 ,
29 0xb6 , 0x5c , 0x34 , 0xe9 , 0x06 , 0x88 , 0x1f , 0x39 ,
30 0x33 , 0xdf , 0xd9 , 0x78 , 0xd8 , 0xa8 , 0x51 , 0xb2 ,
31 0x09 , 0xcd , 0xa1 , 0xdd , 0x8e , 0x62 , 0x69 , 0x4d ,
32 0x23 , 0x2b , 0xa9 , 0xe1 , 0x53 , 0x94 , 0x90 , 0x1e ,
33 0xb4 , 0x3b , 0xf9 , 0x4e , 0x36 , 0xfe , 0xb5 , 0xd1 ,
34 0xa2 , 0x8d , 0x66 , 0xce , 0xb7 , 0xc4 , 0x60 , 0xed ,
35 0x96 , 0x4f , 0x31 , 0x79 , 0x35 , 0xeb , 0x8f , 0xbb ,
36 0x54 , 0x14 , 0xcb , 0xde , 0x6b , 0x2d , 0x19 , 0x82 ,
37 0x80 , 0xac , 0x17 , 0x05 , 0xff , 0xa4 , 0xcf , 0xc6 ,
38 0x6f , 0x65 , 0xe6 , 0x74 , 0xc8 , 0x93 , 0xf4 , 0x7e ,
39 0xf3 , 0x43 , 0x9f , 0x71 , 0xab , 0x9a , 0x0b , 0x87 ,
40 0x55 , 0x70 , 0x0c , 0xad , 0xcc , 0xa5 , 0x44 , 0xe7 ,
41 0x46 , 0x45 , 0x03 , 0x30 , 0x1a , 0xea , 0x67 , 0x99 ,
42 0xdb , 0x4a , 0x42 , 0xd7 , 0xaa , 0xe4 , 0xc2 , 0xd5 ,
43 0xf0 , 0x77 , 0x20 , 0xc3 , 0x3c , 0x16 , 0xb9 , 0xe2 ,
44 0xef , 0x6c , 0x3d , 0x1b , 0x22 , 0x84 , 0x2f , 0x81 ,
45 0x1d , 0xb1 , 0x3a , 0xe5 , 0x73 , 0x40 , 0xd0 , 0x18 ,
46 0xc7 , 0x6a , 0x9e , 0x91 , 0x48 , 0x27 , 0x95 , 0x72 ,
47 0x68 , 0x0e , 0x00 , 0xfc , 0xc5 , 0x5f , 0xf1 , 0xf5 ,
48 0x38 , 0x11 , 0x7f , 0xe3 , 0x5e , 0x13 , 0xaf , 0x37 ,
49 0xe0 , 0x8a , 0x49 , 0x1c , 0x21 , 0x47 , 0xd4 , 0xdc ,
50 0xb0 , 0xec , 0x83 , 0x28 , 0xb8 , 0xf6 , 0xa7 , 0xc9 ,
51 0x63 , 0x59 , 0xbd , 0x32 , 0x85 , 0x08 , 0xbe , 0xd3 ,
52 0xfd , 0x4c , 0x2c , 0xfb , 0xa0 , 0xc1 , 0x9d , 0xb3 ,
53 0x52 , 0x8c , 0x5d , 0x29 , 0x6d , 0x04 , 0xbc , 0x25 ,

Alich, Askeland, Banik, Beyne, Canteaut, Felke, Leander, Meier, Stennes 25

54 0x15 , 0x8b , 0x12 , 0x9b , 0xd6 , 0x75 , 0xa3 , 0x97
55 };
56

57 # define SUBSET_KEY 0ULL
58 # define SUBSET_KEY_SIZE 4
59 # define SR_WIDTH 40
60 # define TABLE_SIZE (1 ULL << (SR_WIDTH - SUBSET_KEY_SIZE - 6))
61 # define MASK_FULL ((1 ULL << SR_WIDTH) - 1)
62 # define MASK_PARTIAL ((1 ULL << (SR_WIDTH - SUBSET_KEY_SIZE)) - 1)
63

64 uint64_t * visited_states ;
65

66 // Initial states that we know belong to short cycles
67 // these could be missed due to the subset_key part of the code
68 uint64_t known_short [] = {0 xc2c2c2c2c2 , 0 x8181818181 };
69 uint64_t num_short_cycles = sizeof (known_short) /

sizeof (known_short [0]);
70

71 // Finds the period of the cycle containing init_val
72 uint64_t map_cycle (uint64_t init_val) {
73 init_val = init_val & MASK_FULL ; \
74 uint64_t state = init_val & MASK_FULL ;
75 uint64_t fb;
76 uint64_t cycle_length = 0;
77 uint64_t state_key ;
78

79 while (1) {
80 if ((cycle_length & 0 xfffffff) == 0) { // Print progress
81 printf ("\ rNumber of visisted states in current cycle:

0x%010 lx", cycle_length);
82 fflush (stdout);
83 }
84 cycle_length ++;
85 // Mark the state as visited
86 state_key = state >> (SR_WIDTH - SUBSET_KEY_SIZE);
87 if (state_key == SUBSET_KEY) {
88 uint64_t partial_state = state & MASK_PARTIAL ;
89 uint64_t index = (partial_state >> 6);
90 uint64_t bitmask = 1ULL << (partial_state & 0x3f);
91 if (visited_states [index] & bitmask) {
92 break ; // We have been here before , break
93 }
94 visited_states [index] |= bitmask ;
95 }
96 // Calculate feedback and advance the shift register
97 fb = tea3_sbox [(state >> 16) & 0xff];
98 fb ^= state & 0xff;
99 state = (state >> 8) | (fb << (SR_WIDTH - 8));

100 // Break if we have completed the cycle
101 if (state == init_val) {
102 break;
103 }
104 }
105 return cycle_length ;
106 }
107

108 // Returns the first unvisited state in the table

26 Cryptanalysis of TETRA Encryption Algorithms

109 uint64_t get_unvisited_state (uint64_t * unvisited_state) {
110 * unvisited_state = SUBSET_KEY << (SR_WIDTH - SUBSET_KEY_SIZE);
111 for (uint64_t i = 0; i < TABLE_SIZE ; i++) {
112 if (visited_states [i] != 0 xffffffffffffffff) {
113 for (uint64_t j = 0; j < 64; j++) {
114 if (!(visited_states [i] & (1 ULL << j))) {
115 * unvisited_state |= (i << 6) | j;
116 * unvisited_state &= MASK_FULL ;
117 return 1;
118 }
119 }
120 }
121 }
122 return 0;
123 }
124

125 int main () {
126 // Allocate memory for the states table. Calloc initializes to 0
127 visited_states = calloc (TABLE_SIZE , sizeof (uint64_t));
128 if (visited_states == NULL) {
129 printf (" Memory allocation failed \n");
130 return -1;
131 }
132 uint64_t total_states_mapped = 0;
133 uint64_t num_found_cycles = 0;
134

135 while (1) {
136 uint64_t unvisited_state ;
137 if (num_found_cycles < num_short_cycles) {
138 unvisited_state = known_short [num_found_cycles];
139 num_found_cycles ++;
140 } else if (! get_unvisited_state (& unvisited_state)) {
141 break ;
142 }
143 printf ("\ nMapping the cycle containing state 0x%010 lx\n",

unvisited_state);
144 uint64_t cycle_length = map_cycle (unvisited_state);
145 total_states_mapped += cycle_length ;
146 // Print progress
147 printf ("\ nCycle found with period %lu\n", cycle_length);
148 printf (" Number of covered states : 0x%010 lx / 0x%010 llx\n",

total_states_mapped , MASK_FULL + 1);
149 }
150

151 free(visited_states); // Cleanup
152 return 0;
153 }

Alich, Askeland, Banik, Beyne, Canteaut, Felke, Leander, Meier, Stennes 27

B Algebraic Normal Forms of F31 and F32 and of the
Equivalent Functions Studied in Section 5

F31(x0, . . . , y7)0 = x5x6y5 ⊕ x5x6 ⊕ x5y5y6 ⊕ x5y5 ⊕ x5y6 ⊕ x6y5y6 ⊕ y5y6 ⊕ y5 ⊕ y6

F31(x0, . . . , y7)1 = x6x7y6 ⊕ x6x7 ⊕ x6y6y7 ⊕ x6y7 ⊕ x6 ⊕ x7y6 ⊕ x7y7 ⊕ y6y7 ⊕ y6 ⊕ y7 ⊕ 1
F31(x0, . . . , y7)2 = x0x7y0 ⊕ x0y0y7 ⊕ x0y0 ⊕ x0 ⊕ x7y7 ⊕ y0

F31(x0, . . . , y7)3 = x0x1y0 ⊕ x0x1y1 ⊕ x0x1 ⊕ x0y0y1 ⊕ x0y1 ⊕ x1y0y1 ⊕ x1 ⊕ y1

F31(x0, . . . , y7)4 = x1x2y2 ⊕ x1x2 ⊕ x1y1 ⊕ x1y2 ⊕ x2y1y2 ⊕ x2y1 ⊕ x2 ⊕ y1y2 ⊕ y1 ⊕ y2 ⊕ 1
F31(x0, . . . , y7)5 = x2x3y3 ⊕ x2y2 ⊕ x2 ⊕ x3y2y3 ⊕ x3y3 ⊕ x3 ⊕ y2 ⊕ y3 ⊕ 1
F31(x0, . . . , y7)6 = x3x4y4 ⊕ x3y3 ⊕ x3y4 ⊕ x4y3y4 ⊕ x4y4 ⊕ x4 ⊕ y3y4 ⊕ 1
F31(x0, . . . , y7)7 = x4x5y5 ⊕ x4y4y5 ⊕ x4y4 ⊕ x4y5 ⊕ x5y4y5 ⊕ x5 ⊕ y5 ⊕ 1

F32(x0, . . . , y7)0 = x5x6y5 ⊕ x5x6 ⊕ x5y5y6 ⊕ x5y5 ⊕ x5y6 ⊕ x6y5y6 ⊕ y5 ⊕ y6 ⊕ 1
F32(x0, . . . , y7)1 = x6x7y6 ⊕ x6x7 ⊕ x6y6y7 ⊕ x6y7 ⊕ x6 ⊕ x7y7 ⊕ x7 ⊕ y6 ⊕ 1
F32(x0, . . . , y7)2 = x0x7y0 ⊕ x0x7y7 ⊕ x0y0y7 ⊕ x0y0 ⊕ x0 ⊕ x7y0y7 ⊕ y0

F32(x0, . . . , y7)3 = x0x1y0 ⊕ x0x1y1 ⊕ x0y0y1 ⊕ x1y0y1 ⊕ x1y0 ⊕ x1 ⊕ y0y1 ⊕ y1

F32(x0, . . . , y7)4 = x1x2y1 ⊕ x1x2y2 ⊕ x1x2 ⊕ x1y1y2 ⊕ x1y1 ⊕ x1 ⊕ x2y1y2 ⊕ x2 ⊕ y1y2 ⊕ y2

F32(x0, . . . , y7)5 = x2x3y3 ⊕ x2y2 ⊕ x3y2y3 ⊕ x3y3 ⊕ x3 ⊕ y3

F32(x0, . . . , y7)6 = x3x4y4 ⊕ x3x4 ⊕ x3y3 ⊕ x3y4 ⊕ x4y3y4 ⊕ x4y3 ⊕ x4 ⊕ y3y4 ⊕ y3 ⊕ y4

F32(x0, . . . , y7)7 = x4x5y5 ⊕ x4y4y5 ⊕ x4y4 ⊕ x5y4y5 ⊕ x5 ⊕ y4 ⊕ y5 ⊕ 1

The functions G31 and G32 derived from F31 and F32 by composing the input with the bi-
jection (x, y) 7→ (x, x⊕y) and by reordering the input variables by (x0, . . . , x7, y0, . . . , y7) 7→
(x3, . . . , x2, y3, . . . , y2) have the following coordinates:

G31(x0, . . . , y7)0 = x1 ⊕ y0 ⊕ x0y0 ⊕ y1 ⊕ x0y1 ⊕ x0x1y1 ⊕ y0y1 ⊕ x0y0y1 ⊕ x1y0y1

G31(x0, . . . , y7)1 = 1⊕ y1 ⊕ y2 ⊕ x1y2 ⊕ x2y2 ⊕ y1y2 ⊕ x1y1y2

G31(x0, . . . , y7)2 = x2 ⊕ x3 ⊕ x2y2 ⊕ x3y2 ⊕ y3 ⊕ x3y3 ⊕ x3y2y3

G31(x0, . . . , y7)3 = x4y3 ⊕ y4 ⊕ x3y3y4 ⊕ x4y3y4

G31(x0, . . . , y7)4 = 1⊕ y4 ⊕ x4y4 ⊕ x5y4 ⊕ y5 ⊕ y4y5 ⊕ x5y4y5

G31(x0, . . . , y7)5 = 1⊕ x5 ⊕ x6 ⊕ y5 ⊕ x5y5 ⊕ x6y5 ⊕ y6 ⊕ x6y6 ⊕ x6y5y6

G31(x0, . . . , y7)6 = 1⊕ x6 ⊕ x6y6 ⊕ x7y7 ⊕ y6y7 ⊕ x7y6y7

G31(x0, . . . , y7)7 = 1⊕ x7 ⊕ y0 ⊕ x0y7 ⊕ x7y7 ⊕ x0x7y7 ⊕ x0y0y7 ⊕ x7y0y7

G32(x0, . . . , y7)0 = 1⊕ x1 ⊕ x0x1 ⊕ y0 ⊕ x0y0 ⊕ x1y0 ⊕ y1 ⊕ x0x1y1 ⊕ x0y0y1 ⊕ x1y0y1

G32(x0, . . . , y7)1 = 1⊕ y1 ⊕ x2y2 ⊕ x1y1y2

G32(x0, . . . , y7)2 = x3 ⊕ x3y2 ⊕ y3 ⊕ x2y3 ⊕ x3y3 ⊕ x2y2y3 ⊕ x3y2y3

G32(x0, . . . , y7)3 = x4y3 ⊕ y4 ⊕ y3y4 ⊕ x3y3y4 ⊕ x4y3y4

G32(x0, . . . , y7)4 = x4y4 ⊕ y5 ⊕ y4y5 ⊕ x4y4y5 ⊕ x5y4y5

G32(x0, . . . , y7)5 = x5 ⊕ x6 ⊕ x5y5 ⊕ x6y5 ⊕ y6 ⊕ x6y6 ⊕ x6y5y6

G32(x0, . . . , y7)6 = y6 ⊕ x6y6 ⊕ x7y6 ⊕ y7 ⊕ y6y7 ⊕ x7y6y7

G32(x0, . . . , y7)7 = x0x7 ⊕ y0 ⊕ x7y0 ⊕ y7 ⊕ x0y7 ⊕ x7y7 ⊕ x0x7y7 ⊕ x0y0y7 ⊕ x7y0y7

28 Cryptanalysis of TETRA Encryption Algorithms

Then, it can be easily checked that these functions satisfy the construction described
in Theorem 6. For instance, focusing on G31, the coordinate of index 1 has the form (3).
Indeed,

G31,1 =
{

y2(x1 ⊕ x2 ⊕ 1)⊕ 1 if y1 = 0
y2x2 if y1 = 1

and the next 5 coordinates then follow Construction (1)’:

G31,2 =
{

y3 if y2 = 1
y3(x3 ⊕ 1)⊕ x2 ⊕ x3 if y2 = 0

G31,3 =
{

y4 if y3 = 0
y4(x3 ⊕ x4 ⊕ 1)⊕ x4 if y3 = 1

G31,4 =
{

y5 ⊕ 1 if y4 = 0
y5x5 ⊕ x4 ⊕ x5 if y4 = 1

G31,5 =
{

y6 if y5 = 1
y6(x6 ⊕ 1)⊕ x5 ⊕ x6 ⊕ 1 if y5 = 0

G31,6 =
{

y7 ⊕ 1 if y6 = 1
y7x7 ⊕ x6 ⊕ 1 if y6 = 0

C Proof of Proposition 1
We will start by proving that any sum of k consecutive coordinates, ranging from u to
u + k − 1, is balanced. Let gu,k where 1 ≤ u < u + k ≤ n denote the Boolean function of
2(k + 1) variables defined by

gu,k(xu, . . . , xu+k, yu, . . . , yu+k) =
u+k−1∑

i=u

fi(xi, xi+1, yi, yi+1) .

We can prove by induction on k ≥ 1 that gu,k is balanced and the restriction of (gu,k⊕xu+k)
to yu+k = 1⊕ εu+k is balanced.

• For k = 1, we only have to check that each function fu is balanced, which comes
from the fact that its restrictions to yu = εu and to yu = 1⊕ εu are both balanced.
Indeed, ℓ0

u and (ℓ0
u⊕ ℓ1

u) both have degree 1. Moreover, the restriction of (fu⊕ xu+1)
to yu+1 = 1⊕ εu+1 is given by{

xu+1 ⊕ 1⊕ εu+1 ⊕ cu if yu = εu

((1⊕ εu+1)ℓ1
u ⊕ ℓ0

u)(xu, xu+1)⊕ xu+1 if yu = 1⊕ εu .

It is then balanced on the set of inputs with yu = εu. Moreover, it is also balanced
on yu = 1 ⊕ εu, because εu+1 satisfies deg(ℓ0

u ⊕ ℓ1
u ⊕ εu+1ℓ1

u ⊕ xu+1) = 1 for all
1 ≤ u < n.

• The induction step is derived from Lemma 1. Indeed, by induction hypothesis, gu,k

is balanced and the restriction of (gu,k ⊕ xu+k) to yu+k = 1 ⊕ εu+k is balanced.
Then Lemma 1 with ε = εu+k implies that gu,k+1 is balanced and the restriction
of gu,k+1 ⊕ xu+k+1 to yu+k+1 = 1 ⊕ εu+k+1 is balanced because εu+k+1 has been
chosen such that deg(ℓ0

u+k ⊕ ℓ1
u+k ⊕ εu+k+1ℓ1

u+k ⊕ xu+k+1) = 1.

Alich, Askeland, Banik, Beyne, Canteaut, Felke, Leander, Meier, Stennes 29

Now, the vectorial function F (n) is balanced if and only if its components γ · F (n) are
balanced for all nonzero γ ∈ Fn

2 . If {i : γi = 1} consists of consecutive integers, then γ ·F (n)

equals some gu,k and is therefore balanced. Otherwise, {i : γi = 1} can be decomposed
into I1 ∪ I2 . . . ∪ Iv where the sets Ij are disjoint sets of consecutive integers that satisfy
max Ij < min Ij+1 + 1 for 1 ≤ j < v. It follows that γ · F (n) is a sum of v functions guj ,kj

with distinct input variables. Since all guj ,kj
are balanced and are in direct sum, γ · F (n)

is balanced.

D Equivalent Representations
For completeness, we briefly describe some equivalent ways of representing TEA-3.

Key Register Output First, notice that instead of taking the feedback value of the key
register as an input into the state register, we can also take the output (the leftmost
byte of the key register) as the input into the state register. Up to initialization, this is
equivalent. The corresponding initialization is clocking the key register 10 times (with the
state register unchanged).

Fibonacci-like Representations While the state register is originally presented in a Galois-
like representation, we can change this to an (up to initialization) equivalent Fibonacci-like
representation. That is, there is a feedback function H1 : (F8

2)8 → F8
2 that computes a

single feedback byte that is fed into the right most byte of the state register. Clearly, the
initial state of this representation must be the first eight bytes of the output stream itself.
The feedback function H, which we deduced by symbolically clocking the state register, is

H1(x0, . . . , x7) = x0⊕R(F31(x1, x2)⊕x3)⊕F32(F31(x3, x4)⊕x5, F31(x4, x5)⊕x6)⊕F31(x6, x7)

where x0 is the leftmost byte in the Fibonacci-like representation. Furthermore, we can
apply the same idea to the state and key register jointly (or the state and the linear part
of the decomposed key register). That is, there is (up to initialization) an equivalent
Fibonacci-like representation of TEA-3 that consists of a single 18-byte register with
a feedback function H2 : (F8

2)18 → F8
2. Again, the initial state is simply given by the

(undecimated) output stream of TEA-3. The feedback function is

H2(x0, . . . , x17) =H1(x0, . . . , x7)⊕ x8 ⊕H1(x10, . . . , x17)
⊕ S(H1(x2, . . . , x9)⊕ x10 ⊕H1(x7, . . . , x14)⊕ x15).

Notice that in both cases, the leftmost byte x0 is only used linearly. Hence, we can also
interpret the state update of TEA-3 as a Feistel-like structure.

Further Decomposition As already mentioned in Remark 5 we can decompose the linear
part of the decomposed key register even further. That is, in F2n [X] we have

(X5 + 1) = (X4 + X3 + X2 + X + 1)(X + 1) =
4∏

i=0
(X − ζi)

and hence we can split the 5-byte register into a trivial one byte register feeding into
a 4-byte register with all taps set, or vice versa. Alternatively, we can write it as the
composition of 5 LFSRs with linear characteristic polynomials over F28 . In all cases, the
order does not matter. In the latter case, we have to consider bytes as elements of F2n via
Φn.

30 Cryptanalysis of TETRA Encryption Algorithms

Sum of Key Registers Finally, we note that instead of decomposing the key register, we
can equivalently consider the key register where we initialize the five leftmost bytes to
some fixed 40-bit value and then xor the output stream of this register with the output
stream of the linear register from the decomposition of the key register which is initialized
with an according 40-bit value. We can apply this idea also the aforementioned further
decomposition.

E Cryptanalysis
E.1 Linear Cryptanalysis
This section contains supplementary material for Section 6.2.

E.1.1 Linear Trails

Linear trails with nonzero masks on consecutive keystream bytes are shown in Figure 5.
The masks in this figure correspond to the masks on the bytes x0, x1, . . . , x7 (as in Figure 1
from left to right) in every round.

1.
.8 .8 2.2 .. 1.
.8 .. .12 1. .8
4. .1 .1 1. .8 .8
.. .. .4 .. .8 1. .8 4.
.. .4 .. .8 1. .8 4. ..
.4 .2 .8 1. .8 4.
.2 .8 .. .8 41 8. .. .4
.8 414 .2
.. .8 4. .. .1 .4 .2 .8
.8 4. .. .1 .4 .2 .8 ..
4.4 .. .8 .. .8
.. 1. .8 4.
.. 1. .8 4. ..
.. 1. .8 4.
.. .2 1. .8 4.
.. 1. .8 4.
.. .. 4.
.. 4.
4.

(a) Correlation ±2−32.

1.
.8 .8 2. .. .4 .2 .. 1.
48 2. .1 .4 .. .2 1. .8
4. .1 .1 u8 .8 48
.. .. .48 48 4.
.. .48 48 4. ..
.48 48 4.
.3 .. 18 48 4. 81 .. .4
.. 18 .. 4. .1 2. .4 .3
.8 1. 4. .1 2. .4 .3 ..
1. 4. .. 2. .4 .2 .. .8
4.48 1.
.. 1. 1. 4.
.. 1. 1. 4. ..
.. 1. 1. 4.
.. .v 1. 1. 4.
.. 1. 1. 4.
.. .. 4.
.. 4.
4.

(b) Correlation ±2−35.

Figure 5: Linear trails for consecutive keystream bytes, u ∈ {0, 1} and v ∈ {2, 4}.

E.2 Reduced Number of Clocks
Let r denote the number of clocks of the state-update function between consecutive
keystream bytes, so that r = 19 for TEA-3. A standard miss-in-the-middle argument
shows that for r ≤ 7, there are no linear trails with nonzero correlation – assuming that
the mask on the state before the extraction of the first keystream byte is zero. The
miss-in-the-middle argument is shown in Figure 6a, with u the input mask, v the output
mask, zeros denoted by ‘·’ and undetermined values denoted by ‘*’. For r = 8, a little more

Alich, Askeland, Banik, Beyne, Canteaut, Felke, Leander, Meier, Stennes 31

work is necessary to show that all such trails have correlation zero. If no assumptions on
F31 and F32 are made, then one can see that all trails are of the form shown in Figure 6b.
However, a contradiction is obtained when taking into account that if the output mask
of these functions is nonzero, then the mask on at least one of the input bytes should be
nonzero to obtain a nonzero correlation (due to balancedness). For r = 9 we found linear
trails with correlation ±2−26.

u · · · · · · ·
* * * · * * · u
| | | | | | | |
· * * * * * v ·
· * * * * v · ·
· * * * v · · ·
· * * v · · · ·
· · v · · · · ·
· v · · · · · ·
v · · · · · · ·

(a) r = 7

u · · · · · · ·
· a * · * * · u
| | | | | | | |
· · * · * w · v
· * · * w · v ·
· * * w · v · ·
· · w · v · · ·
· w · v · · · ·
· · v · · · · ·
· v · · · · · ·
v · · · · · · ·

(b) r = 8

Figure 6: Structure of linear trails through the state-update function with r ∈ {8, 9}.

E.3 Generic Attacks
E.3.1 Key recovery

We first explicitly compute the complexity of exhaustive search in terms of the number
of TEA-3 rounds executed by the adversary. This is an important metric to compare
the feasibility of our attacks. To do an exhaustive search, first we guess the value of
the key and then run an initialization phase for 51 rounds and generate keystream bytes
corresponding to the guessed value of the key. We then compare the generated keystream
byte with the keystream byte corresponding to the secret value of the key. If unequal, we
discard the guess of the key, and restart with another guess, if not we generate the next
keystream byte for comparison (this takes another 19 rounds). This way 255/256 of the
key-guesses get eliminated after round 51 itself. Of the remaining 1/256 fraction, again
255/256 of the guesses get eliminated after 51 + 19 = 70 rounds etc. Therefore on average
the total number of TEA-3 rounds needed for the process is

Texhaustive = 255
256 · 2

80 · 51 + 1 · 255
256 · 256 · 2

80 · (51 + 19) + 1 · 1 · 255
256 · 256 · 256 · 2

80 · (51 + 2 · 19) + · · ·

= 255
256 · 2

80 ·
9∑

i=0

(
1

256

)i

· (51 + 19i) ≈ 285.67

E.3.2 State recovery

The state size of the stream ciphers is less than twice the size of the key and hence the
complexity of state recovery should be slightly better than that of exhaustive search. In
the offline stage, we generate T randomly chosen internal states of the TEA-3 cipher, i.e.
Si

$← F144
2 , for i ∈ [1, T]. We generate an 18-byte keystream sequence Zi corresponding

to each Si and store it in a hash table indexed by Si. Generating 18 bytes requires us to
run TEA-3 for 18× 19 = 342 iterations, which makes the offline complexity Toffline = 342T
iterations. In general, the time to access a table could be considered to be equivalent
to a typical cryptographic operation, since insertion in a large table also requires some

32 Cryptanalysis of TETRA Encryption Algorithms

time/energy. Unless we have the technology or means to perform disk access in short
enough time, we ought also take into consideration the number of table insertions/lookups
needed as one of the costs of doing the attack. In this case we have Tinsertions = T , and the
memory complexity is M = 18T bytes.

In the online stage, we generate N keystream bytes from given secret key and IV pair.
We can generate around N−17 ≈ N keystream windows Yi of 18 bytes each, and search for
it in the precomputed table. If yes then recover the corresponding state Si and clock back
the cipher to the starting state to recover the key. Generating N bytes requires us to run
TEA-3 for N × 19 = 19N iterations. After state is found another maximum N · 19 reverse
iterations to get the key, which makes the offline complexity Toffline = 38N iterations, and
number of table-lookups is Tlookups = N . Therefore the total time complexity equals

Tfinal = 342T + 38N.

By Birthday considerations, the algorithm succeeds when TN = 2144. Tfinal is minimized
when T = 1

3 · 2
72 and N = 3 · 272. This makes Tfinal ≈ 279.83 iterations of TEA-3. We also

have Tinsertions = 270.42 and Tlookups = 273.58 and M = 6 · 272 bytes.

	Introduction
	Description of TEA-3
	Internals of TEA-3
	Initialization and Keystream Generation
	Class-2 networks

	The Theory of Word-Oriented NFSRs
	Decomposition of the Key Register
	Sequences of the Decomposed Key Register
	S-box Influence on Cycle Structure

	On the functions F31 and F32
	Cryptanalysis
	Observation for Shifted Keystreams
	Linear Cryptanalysis
	Generic Attacks

	Discussion
	A C-program to Find the Sequences of the Decomposed Key Register
	Algebraic Normal Forms of F31 and F32 and of the Equivalent Functions Studied in section:functions
	Proof of Proposition 1
	Equivalent Representations
	Cryptanalysis
	Linear Cryptanalysis
	Reduced Number of Clocks
	Generic Attacks

