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Abstract—Information-theoretic or unconditional security provides the highest level of security — independent of the computational
capability of an adversary. Secret-sharing techniques achieve information-theoretic security by splitting a secret into multiple parts
(called shares) and storing the shares across non-colluding servers. However, secret-sharing-based solutions suffer from high
overheads due to multiple communication rounds among servers and/or information leakage due to access-patterns (i.e., the identity of
rows satisfying a query) and volume (i.e., the number of rows satisfying a query).
We propose SEASEARCH, an information-theoretically secure approach that uses both additive and multiplicative secret-sharing, to
efficiently support a large class of selection queries involving conjunctive, disjunctive, and range conditions. Two major contributions of
SEASEARCH are: (i) a new search algorithm using additive shares based on fingerprints, which were developed for string-matching
over cleartext; and (ii) two row retrieval algorithms: one is based on multiplicative shares and another is based on additive shares.
SEASEARCH does not require communication among servers storing shares and does not reveal any information to an adversary
based on access-patterns and volume.

Index Terms—Shamir’s secret-sharing, additive secret-sharing, computation and data privacy, data and computation outsourcing,
multi-party computation, selection query, conjunctive query, disjunctive query, range query
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1 INTRODUCTION

This paper studies information-theoretically secure ways to
support selection queries that may contain conjunctions, disjunc-
tions, and range predicates. In contrast to encryption-based tech-
niques that are only computationally secure (i.e., secure against
the adversary of limited computational capabilities), information-
theoretically secure techniques offer a higher level of security.
Such techniques remain secure regardless of the computational
capabilities of an adversary (even with a quantum computer, at the
present or the future) and are, thus, referred to as unconditionally
secure. Secret-sharing (SS) is a popular information-theoretically
secure technique. In a SS-based system, multiple pieces (called
secret-shares) of a secret are created and placed into non-colluding
(cloud) servers. To be able to reconstruct the secret, secret-shares
from a number of servers (equal to or greater than a predefined
threshold) need to be obtained. §1.1 will provide an overview of
SS techniques. Advantages of information-theoretic security and
the need of secure data outsourcing based on secret-sharing have
been featured in several recent popular media articles [1]–[4].

While SS-based solutions require multiple non-colluding
servers, with the emergence of several independent cloud vendors,
such a requirement has become relatively easy to satisfy. Organi-
zations already adopt multi-cloud solutions so as not to be locked
into a single vendor for purposes such as fault-tolerance or vendor-
specific dependency [5]–[9]. Organizations can further leverage
multi-cloud settings to outsource secret-shares without concerns
about cloud vendors colluding with each other to reconstruct user
data.

Secret-sharing-based systems target single-table databases and
support selection, aggregation, and group-by queries.1 The de-
mand for highly secure systems, even with limited operations, has

A preliminary version of this work was appeared in VLDB 2023.
1. While there are some works on multi-table join queries, such solutions are not

practical. For instance, state-of-the-art solution for joins using secret-sharing described
in [58] takes 2.6 seconds to join two tables with only 256 rows each!

driven multiple commercial solutions based on secret-sharing, e.g.,
Galois Inc.’ Jana [10], [19], Stealth Software Technologies’ Pul-
sar [11], and Cybernetica’s Sharemind [12], [20]. Multiple systems
to support single table queries using secret-sharing have also been
developed by academia, e.g., Conclave [70], PDAS [69], and [34],
[73]. Existing (academic and industrial) systems, however, suffer
from the following two major drawbacks:

Information leakage. Existing systems do not prevent leakage
due to access-patterns and/or volume, simultaneously. Access-
pattern leakage refers to adversaries gaining knowledge of the
identities of rows that satisfy a query, while volume or output-size
leakage refers to the adversary getting to know the (output) size
of query results. SS-based PDAS [69] and [34], [73] reveal both
access-patterns and volume. Pulsar [11] and Conclave [70] reveal
volume. However, efficient SS-based systems do not prevent both
the leakages, simultaneously. Prior work has shown the importance
of preventing both leakages [24], [43], [46], [51], [53], [54], [60],
[65].

Query inefficiency. Systems that prevent both access-pattern and
volume leakages simultaneously, are not efficient. For example,
Jana [19] prevents both access-patterns and volume leakages, by
returning the entire table with non-desired rows (i.e., the rows
that do not satisfy the selection query) being converted into zero
of additive share form. However, Jana takes ≈450 s(econds) for
selection queries on 1M rows. Another example is Sharemind [20],
which also prevents both leakages, but it takes more than 600s for
a simple projection query on 3M rows, as reported in [70]. The two
main reasons for the query inefficiency are: (i) returning the entire
data in the share form to prevent both access-pattern and volume
leakages, while answering a selection query, and (ii) multiple
rounds of communication among servers storing the shares to
execute a selection query — particularly, for searching keywords
over m columns and n rows can require O(mℓ) communication
rounds where ℓ is the maximum length of a word, and the total
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Papers [34] S3ORAM [44] Sepia [23] Sharemind [20] SPDZ [30] Jana [19] Conclave [70] SEASEARCH

Technique SSS SSS SSS Additive Additive Additive Additive Additive + SSS
Communication between servers No Yes Yes Yes Yes Yes Yes No
Distribution/frequency leakage from ciphertext No No No No No No No No
Access-pattern leakage from query execution Yes No No No No No Yes No
Volume leakage from query execution Yes No No No No No Yes No
Supported operators SPJ 1 keyword

fetch
Compare/
equality

SPJ SPJ Selection † Complex
search & fetch

Computational complexity of selection O(logn) O(logn) O(n) N/A O(n) O(n) O(n) O(n)

Index support Yes Yes No No No No No No
Support for dynamic data Yes No N/A Yes Yes Yes Yes Yes
Experimental results: Time using one thread
(data)

0.07s∗
(150K rows)

7.3s (on
40GB)‡‡

N/A >10m (on
3M rows)♢

10s (on 1000
rows) ⊖

450s (on
1M rows)

† 1.502s on 1M
rows

TABLE 1: Comparison of existing secure systems against SEASEARCH. Notes. (i) SSS: Shamir’s secret-shares. (ii) SPJ: selection, projection, join. (iii) s:

seconds. m: minutes M: Millions. (iv) The scalability numbers are taken from the respective papers. (v) ∗: Numbers are taken from [73] experimental comparison. (vi) ‡‡: Does not

mention the number of rows. (vii) ♢: Numbers are taken from Conclave [70] experimental comparison. (viii) ⊖: Numbers from [56]. (ix) †: Conclave [70] uses a trusted party to

support SPJ over multi-party settings, and thus, we do not include experimental numbers.

amount of information flow among servers (and between a server
and a querier) can be O(nm).

This paper describes efficient, scalable, and information-
theoretically secure techniques for selection queries, entitled
SEASEARCH,2 that prevents both information leakages from
access-patterns and volume. Also, SEASEARCH does not require
servers (which store secret-shares) to communicate among them-
selves before/during/after computations. SEASEARCH offers: (i)
query privacy — indistinguishability of queries by an adversar-
ial server, (ii) data privacy — not revealing to an adversarial
server anything (such as data distribution and ordering) about
input/intermediate/output data, and (iii) server privacy — not
revealing to the querier/client anything other than the answer to
the query.

Before describing, how SEASEARCH achieves the goal of
efficient, scalable, and secure search, we first briefly discuss
secret-sharing techniques.

1.1 Background on Secret-Sharing & Fingerprints
SEASEARCH uses additive shares, multiplicative shares, and fin-
gerprints.

Additive Secret-Sharing: is the simplest type of secret-sharing
method. Additive shares are defined over an Abelian group, Gp,
under addition operation modulo p, where p is a prime number.
A secret owner creates c>1 shares of a secret, say S, such that
S=

∑i=c
i=1 si (si denotes an ith share) over Gp, and sends si to

the ith server (belonging to a set of c non-colluding servers).
These servers cannot know S unless collecting all c shares. To
reconstruct S, the secret owner collects all c shares and adds them.
Example. Let G5={0, 1, 2, 3, 4} be an Abelian group under addi-
tion modulo 5. Let 4 be a secret. A secret owner may create two
shares: 3 and 1 (since 4=(3+1) mod 5) and send them to two
servers.
Property. Additive shares of a number are random (e.g., 5=1+4
and 5=2+3); thus, the adversary by observing an additive share
cannot deduce a secret. Additive sharing allows additive homo-
morphism (i.e., adding two or more shares at a server locally, i.e.,

2. Finding items in a sea is practically impossible if the exact location of items is
unknown; likewise, an adversary not knowing all shares cannot learn the secret and cannot
execute a query without knowing a sufficient number of shares.

without communicating with other servers) and scalar multipli-
cation (i.e., multiplying a number to all additive shares, and the
result is equivalent to multiplying two numbers in cleartext).

Multiplicative Secret-Sharing. The classical multiplicative
secret-sharing scheme was introduced by Adi Shamir [67], say
Shamir’s secret-sharing (SSS). It requires a secret owner to
randomly select a polynomial of degree c′ with c′ random co-
efficients, i.e., f(x) = a0+a1x+a2x

2+ · · · + ac′x
c′ , where

f(x)∈Fp[x], p is a prime number, Fp is a finite field of order
p, a0=S (the secret), and ai∈N (1≤i≤c′). The secret owner dis-
tributes S into c>c′ shares, by computing f(x) for x=1, 2, . . . , c
and sends an ith share to the ith server. The secret, S, is
reconstructed using Lagrange interpolation [28] over any c′+1
shares. An adversary can construct S, iff they collude with c′+1
servers. Thus, the degree of a polynomial is set to be c′, if an
adversary can collude with at most c′ servers. In this paper, the
terms ‘multiplicative secret-sharing’ and ‘Shamir’s secret-sharing
(SSS)’ are used interchangeably.
Property. SSS allows additive homomorphism. SSS offers multi-
plicative homomorphism, i.e., servers can locally multiply shares,
and the result can be constructed at the owner if we have enough
shares, as multiplication increases the polynomials’ degree.

Fingerprint. The fingerprint (function) was proposed for string
matching over cleartext [48]. A fingerprint is defined as:
ϕr,p(s) =

∑l
i=1 sir

i mod p, where a string s = s1s2 . . . sl
coded over a finite field Fp, p is a prime number, and r ∈ Fp

is a random number.
Property. Fingerprint functions are additive homomorphic, i.e.,
ϕr,p(s1+s2) =

∑l
i=1(s1,i+s2,i)r

imodp = ϕr,p(S1)+ϕr,p(S2).
Two identical strings always generate the same fingerprint.
SEASEARCH executes fingerprints over additive shares for
string search and conjunctive search (see §5.1.1). As fingerprints
execute a modular operation, the probability of false positives
(i.e., answering a string even if it does not match against a pattern)
exists. Nonetheless, the probability of false positives is very small,
i.e., l/p, with l being the string’s length and p (≫l) being a large
prime number. False positives exist, usually, for random strings.
If we consider only meaningful strings (like names of people), the
error probability is negligible. More details may be found in §2
of [22]. In our experiments with r = 43 and p = 100,000,007,
we get zero false positives for any query. The readers must not
relate the fingerprint false positive probability against the birthday
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Notations Meaning
R and A A relation/table R in cleartext and the attribute/column A of R
R A relation/table in share form
A A column A of R in additive share form
A.vi A value in additive share in A in an ith row
A.vi A value in multiplicative share in A in an ith row
n and m The number of rows and the number of columns in the table R

Si and Sc A server i and the combiner
F (x) and r A fingerprint of x using the fingerprint parameter (a prime

number) r
p A prime number used as modulo in secret-sharing
PRG and seed A pseudo-random generator and the seed used in PRG

TABLE 2: Frequently used notations in this paper.

paradox [49], and in fingerprint functions, p is a modulus, not the
range domain used in the birthday paradox.

1.2 Summary of SEASEARCH

SEASEARCH, primarily, supports selection queries contain-
ing conjunctive, disjunctive, and range predicates. Also,
SEASEARCH can offer sum and group-by sum queries.

To execute a selection query, SEASEARCH executes two
rounds of communication between servers and a client. In the first
round, SEASEARCH finds the row ids that satisfy the query predi-
cate, and then in the second round, fetches all the qualified rows.
SEASEARCH uses additive shares for single/multiple keyword
search, conjunctive search, and search involving range conditions,
while uses multiplicative shares for disjunctive search. Impor-
tantly, SEASEARCH does not require servers (which store secret-
shares) to communicate among themselves before/during/after
computations. All supported operations by SEASEARCH prevent
both access-patterns and volume leakage, simultaneously.

Each round of SEASEARCH comes with a challenge (discussed
below). Also, we provide an overview of the solution to address
the challenge.

1. Efficient and Oblivious Search. The challenge in round one
of SEASEARCH is to search query keywords efficiently over one
or multiple columns (i.e., conjunctive and disjunctive search)
obliviously (i.e., being data-independent and not revealing access-
patterns, as well as volume). In simple words, the search operation
supported by SEASEARCH at the cloud must be completely pri-
vate. A trivial and impractical approach to address this challenge
is to download a complete copy of the entire data and then
execute the query locally. Another straightforward solution is to
use a keyword search protocol such as [37] or private information
retrieval (PIR) by keywords [26]. However, in the case of keyword
search protocol [37], the query size and computation cost at
a server will be equal to all possible combinations of unique
keywords across all columns of a database (see §2.3 of [57]).
In contrast, PIR by keyword will reveal additional data to a client,
i.e., the client will not only learn the desired data, but also learn
other data without executing queries for them, (see §1.1 and §4.2
of [37]).

Our approach. To address the problem of efficient and oblivious
search, we develop novel search techniques using fingerprint-
based search [48], which was developed for string matching over
cleartext. Our search algorithm uses the concept of fingerprints
and enables them to work over additive shares. The novelty of
the algorithm is that it does not require communication among

Threads String
search

Number
search

Conjunctive
search

Disjunctive
search

Row Fetch
— Multi-
plicative

Row
Fetch —
Additive

1 thread 0.783 0.582 0.696 0.743 0.759 0.950
4 threads 0.453 0.396 0.451 0.475 0.395 0.452

TABLE 3: SEASEARCH performance (in sec) on 1M rows using
1 and 4 threads.

servers to perform a search operation over one or more columns,
due to utilizing additive homomorphism of both fingerprints and
additive shares. The search algorithm takes as inputs keyword(s)
in secret-share form and outputs the row-ids, where the keyword
appears in the secret-share table. The search algorithms need only
one round of communication between the server and the client.
In terms of security, the search algorithms do not reveal access-
patterns and volume to servers.

2. Efficient and Oblivious Row Retrieval. Once we know the
row ids that have the query keyword in round one of SEASEARCH,
the next challenge is to fetch the row without revealing to servers
access-patterns and volume. To address this, one possible solution
is to use oblivious random access memory (ORAM) [40], [68].
However, ORAM schemes have multiple drawbacks: revealing
additional data other than the answers to the query to the client,
no support for queries with conjunctive/disjunctive conditions, no
support for range queries, no efficient support for dynamic data,
and harder to support multiple clients, as also argued in [32].
Another possible solution is to use PIR or optimized versions
of PIR, known as Distributed Point Function (DPF) [38] and
Function Secret Sharing (FSS) [21]. SEASEARCH provides two
methods to fetch rows, and one of them is built on DPF.

Our approach. We develop two methods: the first method (§6.1)
uses multiplicative shares and incurs the communication cost of
O(
√
n) from a client to a server, where n is the number of rows in

a table. The second method (§6.2) uses additive shares and incurs
the communication cost of O(log n) from a client to a server. The
second method is inspired by DPF and leverages DPF to fetch
additive shares obliviously. Both methods hide access-patterns
when fetching rows, only utilize four servers, and do not need
servers to communicate among themselves during the protocol.
Moreover, both methods are designed to fetch O(

√
n) rows in

the same round with the same communication and computational
cost. Importantly, our methods are significantly better than existing
work [19], [20], [52] that requires each server to send the entire
table containing the desired rows (i.e., the rows satisfying the
query predicates) and non-desired rows being converted into zero
in the share form. Table 1 compares current secret-sharing-based
schemes and SEASEARCH.

3. SEASEARCH performance. We implemented SEASEARCH in
Java, and the code contains more than 9,000 lines. We set up
SEASEARCH at AWS and tested on 1M and 10M rows of Lineitem
Table of TPCH benchmark [13]. In round one for a search query
(i.e., knowing the row ids), SEASEARCH took at most 0.475s on
1M rows and 2.964s on 10M rows using four-threaded implemen-
tation. In round two to fetch row, SEASEARCH took 0.395s using
multiplicative shares and 0.452s using additive shares on 1M rows
using four-threads. On 10M rows, in round two, SEASEARCH took
6.765s using multiplicative shares and 3.357s using additive shares
using four threads. Table 3 provides computation time over 1M
rows using one/four threads.
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Method Total query time Speedup Operation support

DL encrypted data 14.6s(1.6s to DL, 10.8s to decrypt, 2s to load, .2s to Q) ≈10x Any
DL additive shares 4.9s (1.2s to DL, 1.5s to add, 2s to L, 0.2s to Q) ≈3x Any
DL one-time pad 4.6s (1.2s to DL 1.2s to XOR 2.0s to load 0.2s to Q) ≈3x Any
Jana ≈450s ≈300x Selection query
Waldo ≈12s ≈7x Absence/presence of a keyword
SEASEARCH ≈1.5s (0.743s for search, 0.759 for row fetch) x Selection query

Notations: DL: Download. L: Load data into MySQL, Q: query execution without index.

TABLE 4: Comparing different systems against SEASEARCH on 1M rows.

Entities Parameters
DBO All parameters except seedc (i.e., the seed

for PRG selected by the client)
Server Si p, r, F , PRG, seedS (the seed only known

to the servers), seedc

Client p, r, F , PRG, seedc

Combiner Sc p

TABLE 5: Parameters known to different entities.

4. SEASEARCH vs other approaches, and the reason for
using fingerprints. The following multiple simpler approaches
could support the same class of operators as SEASEARCH: (i)
Downloading the entire encrypted data: the client downloads the
entire encrypted data, decrypts it, loads the cleartext data into
a DBMS, and then executes a query. (ii) Downloading all the
additive shares: the client downloads additive shares of the data,
performs additions over the shares to obtain the cleartext data, and
then loads it into a DBMS to execute the query. (iii) Using one-
time pad: one server stores the one-time pad [50] and another
server stores the XOR of the pad with the database, and for
query processing, the client fetches the data from both servers to
recompute the original database and executes a query after loading
the data into a DBMS.

While the first approach is not information-theoretically se-
cure, the remaining two are. The second and the third approaches
offer the same security as SEASEARCH offers, do not require
dependence on fingerprints, and do not require any communication
among the cloud servers.

All three approaches, however, incur a huge communication
cost in downloading the data and the computational cost at the
client to execute a query. Compared to these three approaches,
SEASEARCH first finds the desired row ids, and then, fetches
those rows. It is important to note, a fingerprint function, in
SEASEARCH, compresses the output of string comparison, as well
as, compresses the output of a conjunctive search over x > 1
columns and returns only a single value/number per row regardless
of x columns. Table 4 compares SEASEARCH against the above
three approaches and also to other approaches.

Code. Code and data used in experiments for this paper are
available at [14].

2 PRELIMINARY

This section provides an overview entities involved in
SEASEARCH, the threat model, and the security properties.

Secret-share 

creation

DB Owner

Dataset

Four Servers

Trusted Domain

Secret-share 

creation and 

interpolation

Querier or Client

Trusted DomainUntrusted Domain

1

2

2 3

4

4

6

5

5

Fig. 1: The model.

2.1 Entities and Assumptions
We assume three entities (database owner, servers, and clients/
queriers); see Figure 1. Table 2 provides frequently used notations
in the paper. Table 5 shows parameters known to different entities.

1) Database owner (DBO) owns a database and creates both
additive and multiplicative secret-shares of the database (§4
provides the algorithm for creating secret-shares). DBO trans-
fers the ith share of the database to the ith server.

2) Servers store secret-shared data outsourced by DBO and
execute queries for clients. The servers are untrusted. The
security model requires that the secret-shared data stored at
the server must not reveal anything about the data, e.g., data
distribution and ordering of values, to the server. Likewise,
query answering protocols must not reveal anything about
the client’s query, e.g., the query, answers to queries, access-
patterns, and volume, to the server. As will become clear soon,
we use four servers Sz∈{1,4} to store secret-shares, where S1,
S3 store the same shares and S2, S4 also store the same shares.

For developing our technique, we make a simplifying
assumption that servers do not collude with each other. Since
our technique is based on secret-sharing, this assumption can
be relaxed by increasing the number of shares. Note that
secret-sharing is robust against collusion amongst servers and
byzantine behavior as long a the majority of the servers are
not malicious, i.e., do not collude and follow the protocol
correctly [29], [36], [62]. Servers establish a secure communi-
cation link with DBO and clients, and authenticate them before
executing the protocols.

3) Queriers/Clients ask queries over secret-shared data, stored
at the servers. Clients, in general, can be different from DBO.
While DBO can be a client, a client might not be the owner
of the database. If a client is different from DBO, the client’s
access to data is restricted based on policies specified by DBO.
Restricting client’s access requires an additional access control
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mechanism to ensure that client’s queries are restricted to data
for which the client has access permission. Standard access
control mechanisms (e.g., as [59]) can be used for such a
purpose. We will, henceforth, assume the presence of such
a mechanism and, thus, restrict our protocols to the case when
clients’ queries only access data they have permission to.
Our security model requires the protocol to guarantee that
the client only learns answers to the query and nothing else,
i.e., clients does not learn any information (e.g., distribu-
tion/ordering) about data which it does not query. Since the
client’s queries do not access data the client does not have
access permission for, and, furthermore, since our protocol
guarantees that the client learns nothing about data other than
the data it queries, our protocols guarantee that the client does
not gain any information about data they do not have access to.
We develop our protocol under the assumption that the server
does not collude with DBO (if indeed DBO is different from a
querier) to identify the query being asked by the querier.

2.2 Security Requirements and Properties
We follow the standard security definition given in [18], [37]. Par-
ticularly, we need to satisfy the following three specific properties:

Query privacy requires that the queries or query predicates must
be hidden from servers, and they cannot distinguish between arbi-
trary queries or query predicates. For example, queries searching
over a column for keywords must be indistinguishable by servers.3

Data privacy requires that the stored input data, intermediate data
during computation, and output data are not revealed in cleartext
to servers, and the secret value can only be reconstructed by the
client. We must ensure that the servers will not learn (i) frequency
distribution, i.e., the number of ciphertext rows containing an
identical value, (ii) ordering of values, i.e., a relationship of
<,>,= between two shares, (iii) access-patterns, i.e., the identity
of ciphertext satisfies a query, and (iv) output-size/volume, i.e.,
the number of ciphertext satisfies a query. Based on such things,
an adversary may learn the full/partial data, as discussed in [24],
[46], [51].

Server privacy restricts a client from learning additional informa-
tion other than the answers to the queries [57]. Server privacy is
important when the queriers are different from DBO.4

Now, to formally define the security properties, we define the
notion of adversarial view, below.

Adversarial view and notations for security definition. An ad-
versarial server knows secret-shared data (n rows and m columns),
secret-shared query predicates, and the protocol they execute.
This is known as adversarial view. The adversarial view does
not captures the cleartext data, cleartext query predicates, and
cleartext answers to the queries. Based on the adversarial view, the
adversarial server wishes to learn the cleartext data, query, and/or
results. (Recall that a majority of the servers cannot collude with
each other; thus, servers cannot reconstruct the cleartext.)

3. This paper does not focus on hiding the type of queries (i.e., conjunctive, disjunctive,
range query, or fetch queries). Hiding the query type will lead to huge redundant data,
which eventually incurs computational overhead.

4. Consider a hospital database on which a nurse is executing a query to know all
rows of cancer patients. Now, here, due to the query execution, the nurse must not learn
anything about other diseases, such as data distribution of other diseases or which sensitive
disease is not treated by the hospital. In this case, server privacy plays an important role
in preventing this.

Let Aview (π, qp,R,L) be the adversarial view of an adver-
sary A in the real execution of a protocol π (for a query predicate
qp) on input secret-share table R of n>1 rows and m>0 columns.
Here, L refers to the rows accessed by the protocol π, i.e., access-
patterns, and the size of outputs, i.e., volume. The protocol π is
executed on more than one server that stores secret-share table R.
Note that in SEASEARCH, a protocol π could be either any type
of search or row fetch, and qp could be any keyword for search
protocols or row-ids for row fetch protocols. The security of a
protocol is defined as follows:

Definition 1. For an adversary A executing a server protocol π
over any input secret-share relation R of n>1 rows and m>0
columns and for any query predicates qp, qp′, π is secure, iff the
following condition holds (where L is defined above):

Aview (π, qp,R,L) = Aview (π, qp
′,R,L) ■

Definition 1 indicates that the adversary cannot distinguish
two (or more) adversarial views obtained by executing the same
protocol for two (or more) query predicates. Thus, the adver-
sary cannot learn anything based on secret-shared tables and/or
query execution, such as frequency distribution, ordering, access-
patterns, and volume. Particularly, the adversary cannot distin-
guish (i) which query predicates they are working on, and (ii)
which rows and how many rows of the table satisfy the query.
Thus, the protocol satisfies the properties of query privacy and
data privacy.

Definition 2. For any given secret-shared relation at the servers,
for any query predicate qp, and for any real client, say C , there
exists a probabilistic polynomial time (PPT) client C ′ in the
ideal execution, such that the outputs to C and C ′ for the query
predicate qp on the secret-shared relation are identical. ■

Definition 2 indicates that no client will learn more data other
than the answer to a query predicate qp. The security proof of the
definitions is provided in the Appendix.

Later sections will discuss in detail the security of differ-
ent operators offered by SEASEARCH. Informally, SEASEARCH

uses secret-sharing techniques over cleartext to produce non-
identical shares for the same value and non-orderable shares for
values holding an order (>,<,=) in cleartext. This prevents fre-
quency distribution and ordering leakages from secret-shared data.
SEASEARCH sends query predicates in share form to prevent ad-
versaries from learning the query predicates. Queries are executed
obliviously to prevent leakages from access-patterns. Further,
SEASEARCH returns the same amount of output for any search (ei-
ther over one/multiple columns or conjunctive/disjunctive search)
and for row retrieval to hide volume. Also, servers return data in a
way that only reveals answers to the queries, nothing else, to the
client.

2.3 Evaluation Parameters
SEASEARCH can be evaluated on the following theoretical pa-
rameters: (i) Computation cost: is measured at a client and a
server, and finds the number of values on which each entity
performs computation for answering a query. (ii) Scan cost: finds
the number of rounds, when a server and a client read n values.
(iii) Communication rounds and cost: are measured between a
client and a server. The communication round is the number of
times data flows between a client and a server to execute a query.
Communication cost finds the amount of data flowing between a
client and a server. The communication cost among servers is
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Operations Shares used Server used
Search (including single- or multi-
keyword, conjunctive, range)

Additive S1, S2

Disjunctive search Multiplicative S1, . . . ,S4 (if
>3 disjuncts)

Fetching a row Multiplicative or additive S1, . . . ,S4

Group-by count
Additive shares S1, S2

Group-by sum Additive shares S1, . . . ,S4

TABLE 6: Techniques and servers used for different operations.

always zero, since SEASEARCH does not require communication
among servers.

Briefly, in SEASEARCH, each operator takes only one round of
communication between the desired two entities. The maximum
communication cost from a server to a client is O(n) bytes (de-
pending on the size of integers used in programming languages),
where n is the number of rows, while from a client to a server
is O(

√
n). The scan cost at servers and a client is one. The

computation cost varies for different operations and is discussed
with each operator.

3 SEASEARCH AT THE HIGH LEVEL

SEASEARCH consists of three entities: a trusted DBO, four un-
trusted servers, and clients; see Figure 1. SEASEARCH provides
oblivious algorithms for search and row retrieval. At the abstract
level, data processing in SEASEARCH consists of the following
four phases:

First phase: Data outsourcing 1 2 . DBO creates additive and
multiplicative shares of the data (using a method given in §4).
For strings, DBO first converts them into a sequence of numbers
by translating each letter to a number (e.g., according to the
position in a language), and then, additive and multiplicative
shares are created for such numeric strings. For numbers, DBO
simply creates both types of shares. All shares are outsourced to
servers.

Second phase: Secret-sharing creation of queries 3 4 . Queries
are initiated by a client by creating secret-shares of query predi-
cates, which are sent to servers.

Third phase: Search query execution. Servers execute the
algorithm locally, depending on the requested search operation.
Particularly, servers execute computations over additive shares
for a single keyword, multi-keyword, conjunctive, and range
search, while multiplicative shares are utilized for disjunctive
search. On completing the algorithm, each server sends a vector
5 in share form to the client. The algorithm’s execution does
not reveal access-patterns and volume, as well as query predi-
cates/answers/input to servers.

Final phase: Fetch operation. The client determines the final
answer of a search query, i.e., which row-ids contain the query
predicate, by interpolating the received vectors 6 . If the client
wishes to fetch the rows also, the client communicates one more
time with the four servers. Then, servers, locally, execute either
multiplicative- or additive sharing-based method that obliviously
returns rows to the client, which interpolates the received shares
and obtains the rows.

rid Name Cost

1 Jo 4
2 Mo 6
3 Lo 8
4 Mo 4

TABLE 7: An input cleartext Patient table.

rid A.NAME A.COST M.COST

1 6,10 3 6
2 10,5 2 8
3 10,6 4 10
4 3,5 2 6

TABLE 8: PATIENT1.

rid A.NAME A.COST M.COST

1 4,5 1 8
2 3,10 4 10
3 2,9 4 12
4 10,10 2 8

TABLE 9: PATIENT2.

4 DATA OUTSOURCING IN SEASEARCH

This section explains how SEASEARCH uses different secret-
sharing techniques on a table/relation and outsources them. To
state it briefly, SEASEARCH creates both additive and multiplica-
tive shares of each value. A summary of such techniques and
servers used for different operations is given in Table 6. Detailed
reasons of using different types of shares will be clear soon. The
method for share creation is explained using a Patient table;
see Table 7.

C1: Shares for strings. We maintain a mapping for each letter
to a number. This mapping could be either the position of the
letter in the language or the ASCII code. First, each letter in a
string is converted into a number according to the mapping of the
letter. Second, since strings can be of different lengths, which
may reveal information to the adversary, an identical random
number is padded to strings to make them equal in length. Finally,
two additive shares (A.v1 and A.v2) of each number v are
created. When the meaning is clear, A.v instead of A.v1 or A.v2
will be used. Also, two multiplicative shares of v are created.
Recall that in §2.1, for the purpose of simplicity, we assume that
servers do not collude with others; thus, for multiplicative shares,
polynomials of degree are enough.

C2: Shares for numbers. We create additive and multiplicative
shares of each number.

Data outsourcing. On each column of a table R, DBO imple-
ments the above method, depending on the column containing
strings or numbers. This produces two tables R1, R2, where Ri

contains the ith shares. DBO outsources R1 to servers S1,S3

and R2 to S2,S4.

Aside. The detailed reasons of using four servers will be
clear in §5.3,§6. In short, the two additional servers are used
only in disjunctive search or fetching a row. Recall that one of
our row fetch methods is based on multiplicative shares, and
this method performs two times multiplications over shares with
another multiplicative share, which were created from polynomials
of degree one. Thus, four servers allow the client to interpolate
polynomials of degree three. Another row fetch method is based
on additive shares and is based on DPF. DPF works over two
servers, and both servers keep identical data in cleartext. To make
DPF work for additive shares, we use four servers and replicate a
share over two servers.

Example. Table 7 shows a cleartext table, whose secret-share
tables using the above method are shown in Tables 8, 9. To
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illustrate, we use rid column to refer to row-ids, but this column is
not needed to outsource. Consider a prime number p = 17. DBO
wants to create shares of “Jo” and “4” (name and cost values in the
first row of Table 7). To do so, DBO represents Jo by letters’ posi-
tions: ⟨10, 15⟩, and then, creates two additive shares of ⟨10, 15⟩,
as: ⟨6, 10⟩ and ⟨4, 5⟩. We do not show multiplicative shares of the
name column. The first share table Patient1 contains ⟨6, 10⟩
in the name column, while ⟨4, 5⟩ is kept in the name column
of the second share table Patient2. DBO creates ⟨3, 1⟩ as the
additive shares of 4. For creating multiplicative shares of 4, DBO
uses a polynomial of degree one (e.g., f(x) = (2x + s) mod p,
where s = 4 is the secret value) and obtains shares as: f(1) = 6
and f(2) = 8. For simplicity, only one polynomial for the entire
Table 7 is selected. ■

Discussion on leakages from the secret-shared data. The
common leakages from ciphertext may reveal the frequency dis-
tribution and ordering of the values. Our share creation method
prevents both of these leakages. Particularly, additive and multi-
plicative shares of a value are randomly created (resulting in non-
identical shares). Thus, by observing shares, an adversary cannot
deduce whether two or more shares correspond to an identical
value or hold any relation (<,>,=), preventing an adversary
from learning frequency distribution and ordering information
from the shares. Also, note that while DBO adds an identical
random number to make strings of the same length, the adversary
cannot deduce which share corresponds to a real or fake number,
due to randomness in creating shares.

5 KEYWORD SEARCH ALGORITHMS

This section develops operators to search keywords over a single
or multiple columns: single keyword search in a column (§5.1),
conjunctive search (§5.2), and disjunctive search (§5.3). These
operators involve servers and a client and facilitate the client
knowing the row-ids that satisfy a query. §5.4 provides methods to
optimize the communication cost between servers and clients for
practical usage.

5.1 Single Keyword Search
A single/simple search operator finds whether a keyword/query
predicate exists in secret-shared data or not.

5.1.1 High-level Idea and Step-wise Details
The idea of our search operator is that if we subtract two identical
strings that are represented as numbers according to their letters’
positions (in the language), then the result will be zero; otherwise,
a non-zero number. SEASEARCH implements exactly the same
idea over additive secret-shares and query predicate at two servers.

Fingerprints are used to compress the string-matching outputs
and a pseudo-random generator (PRG) is used to provide security.
Below, we explain how the search algorithm works over strings:

1) Client: represents the query keyword according to their posi-
tions in English alphabets, creates two additive shares of the
keyword (as explained in C1 in §4), and computes fingerprints
over secret-shares. Fingerprints for a query keyword q are
denoted as F (q1) and F (q2), and F (qz)z∈{1,2} is sent to
server Sz .
Also, the client negotiates PRG(seedc) with S1. Note that
in this protocol between the client and servers, such a PRG is

not necessary. The reason for using PRG(seedc) is to only
reduce the total communication between servers and client
at the cost of an additional new untrusted server, and will be
clear in §5.4.

2) Server: Sz∈{1,2} executes three operations: (i) computes fin-
gerprints over the data, (ii) subtracts the fingerprint received
from the client, and (iii) multiplies and adds random numbers.
Particularly, Sz computes fingerprints over additive shares of
the desired column, A, and subtracts the received fingerprints
F (qz) from each fingerprint in A. Then, Sz multiplies a
random number, i.e., PRG(seeds) and also adds a random
number, i.e., PRG(seedc), where seeds is unknown to clients
and seedc is known to S1 and clients. PRG(seeds) is added
to achieve server privacy, will be discussed in §5.1.3. Partic-
ularly, for each jth row,

S1: answer1[j]←{(F (A.vj)1−F (q1))×PRG(seeds[j])
+PRG(seedc[j])}modp

S2: answer2[j]←((F (A.vj)2−F (q2))×PRG(seeds[j]))modp

where F (A.vj)z is the fingerprint of a value v (in additive
share form) in the jth row at Sz . Sz sends answerz[] to the
client. Note that answerz[] contains n integers regardless of
the string length.

3) Client: obtains the final answer of the search operator and
executes: vec[i] ← (answer1[i]+answer2[i])modp. Also,
the client executes PRG(seed)[i]i∈{1,n}. If vec[i] matches
(PRG(seed)[i])modp, then query keyword exists at servers.
Also, the client learns which row-ids contain the query key-
word, and it will help to fetch the rows.5

5.1.2 Example
A client wants to know whether Tables 8, 9 contain “Jo” or not
in the A(Name) column. Client selects p=17 and r=2. Assume
PRG(seedc)=[4, 6, 1, 2] at S1, and PRG(seeds)=[2, 9, 4, 5] at
S1, S2. The single keyword search works as follows:

1) Client: creates shares and fingerprints of the query keyword Jo
that is represented according to alphabet positions: ⟨10, 15⟩.
Additive shares of ⟨10, 15⟩ are created: ⟨5, 5⟩, ⟨5, 10⟩. Finally,
fingerprints are computed: (5 × 2 + 5 × 22) mod 17 = 13
and (5 × 2 + 10 × 22) mod 17 = 16. Fingerprint 13 is sent
to S1 and fingerprint 16 is sent to S2.

2) Server: The first column of Table 10 (or Table 11) shows ad-
ditive shares of the Name column at S1 (or at S2). The second
column shows fingerprint computation over the Name column
at S1 (or at S2). The third column shows the computation
for searching Jo over fingerprints at S1 (or at S2). The fourth
column shows the final result after using PRG. To client, S1
sends ⟨14, 11, 6, 16⟩, and S2 sends ⟨7, 15, 11, 16⟩.

3) Client: performs the following computation:
(14 + 7) mod 17 = 4 (11 + 15) mod 17 = 9
(6 + 11) mod 17 = 0 (16 + 16) mod 17 = 15

The vector ⟨4, 9, 0, 15⟩ is compared against
PRG(seedc)=[4, 6, 1, 2], and only the first position

5. While the client performs some computation on the received values, a majority
of the computation is carried out on servers. Experiment 2 will show that the maximum
processing time at the client is significantly less than 1s for 10M rows to know the
qualified row-ids. Systems, e.g., Secrecy [52], which uses binary shares, also require the
client to obtain n bits to know the row-ids. Systems, such as Jana and Conclave, transfer
the job of the client to a trusted proxy for finding row-ids.



8

matches. This shows that the first row of the data contains the
query keyword Jo. ■

NAME Fingerprints of NAME Search Computation Final result

6,10 6×2+10×22 mod
17 = 1

(1 − 13) mod
17 = 5

(5 × 2 + 4) mod
17 = 14

10,5 10×2+5×22 mod
17 = 6

(6 − 13) mod
17 = 10

(10×9 +
6)mod17=11

10,6 10×2+6×22 mod
17 = 10

(10 − 13) mod
17 = 14

(14 × 4 + 1) mod
17 = 6

3,5 3× 2 + 5× 22 mod
17 = 9

(9 − 13) mod
17 = 13

(13×5+2) mod
17 = 16

TABLE 10: Search computation at S1.
NAME Fingerprints of NAME Search Computation Final result

4,5 4 × 2 + 5 × 22 mod
17 = 11

(11 − 16) mod
17 = 12

(12 × 2) mod
17 = 7

3,10 4× 2 + 10× 22 mod
17 = 12

(12 − 16) mod
17 = 13

(13 × 9) mod
17 = 15

2,9 2 × 2 + 9 × 22 mod
17 = 6

(6 − 16) mod
17 = 7

(7× 4) mod 17 =
11

10,10 10×2+10×22 mod
17 = 9

(9 − 16) mod
17 = 10

(10 × 5) mod
17 = 16

TABLE 11: Search computation at S2.

5.1.3 Discussion
Now, we discuss correctness, information leakage, and cost related
to the above algorithm.

Correctness. Recall that from the definition of fingerprint given
in §1.1, the fingerprint function is additive homomorphic. Thus,
Σi=2

i=1answeri[j]=({F (A.vj)−F (q1)−F (q2)}×PRG(seeds)[j])
+PRG(seedc[j])modp
=({F (A.vj)−F (q)}×PRG(seeds))+(PRG(seedc)[j])modp

Obviously, if the query keyword matches a value A.vj , then the
two fingerprints (i.e., F (A.vj) and F (q)) will be identical, and
the client receives only (PRG(seedc)[j]) mod p.

Information leakage discussion. We have already discussed in §4
that shares at-rest do not reveal frequency distribution and ordering
of values. Now, let us discuss the security of query execution
protocol. (i) Shares (or fingerprints) of the data at the servers and
of query keywords are created randomly. Thus, a server by looking
at the data and query keyword cannot learn which rows satisfy the
query. (ii) Servers perform an identical operation on each row;
this hides access-patterns. (iii) Each server sends n integers to
the client, and this prevents volume leakage. (iv) Also, note that
the client does not know seeds. If values in two rows i and j
do not match a query keyword, the client obtains two different
random numbers (generated via PRG(seeds)), regardless of the
values i and j are identical or not. In contrast, if the values match
the keyword, the client always obtains zero. Therefore, the client
learns only which rows match the query keyword and does not
learn anything (e.g., data distribution or ordering of values) about
the secret-shared data.

Therefore, the single keyword search algorithm satisfies all
security requirements, which are mentioned in §2.2.

Cost analysis. The computation cost at the server is O(n), while
the client also adds n numbers received from each server. The
communication cost between a server and a client depends on the
size of n integers. §5.4 will provide a method to reduce the total
communication cost from both servers to a client from 2n = 2×n
(n from each server) integers to only n integers.

5.1.4 Searching a Number
When searching a number, e.g., age = 40, there is no need to
create fingerprints. The client creates two additive shares of the
number and sends them to servers. The servers execute the same
computation as in Step 2 of the string matching operation, except
for the fingerprint computation. In other words, servers directly
subtract the received additive shares of a query from each additive
share in the desired column of the data, without computing
fingerprints. The client also performs the same computation on
receiving n numbers from each server.

5.2 Conjunctive Search
In practical applications, queries involve multiple predicates over
different columns. This section develops an approach for queries
containing conjunctive predicates over multiple columns.

Consider a conjunctive search: select * from Patient
where name = ‘Mo’ and cost = 6. A straightforward
method to answer such queries is: to execute the single keyword
search operator (§5.1) over each column at servers and sending
multiple vectors (equal to the number of query predicates) con-
taining n numbers in each, to the client, and then, the client
locally finds the answer of the conjunctive search by finding one in
each row over all the received vectors. While this trivial approach
works, it incurs computational overhead and communication over-
head of O(kn), where k is the number of conjunctive query
predicates. To reduce such overhead to only n integers, we extend
the single keyword search operator (§5.1) for k > 1 conjunctive
predicates, as follows:

1) Client: generates only one fingerprint regardless of the
number of conjunctive conditions. First, the client creates
additive shares of each of the k predicates, depending on
strings or numbers. Then, the client organizes k additive shares
as a concatenated string and computes a single fingerprint over
the string, as in STEP 1 of single keyword search §5.1.1.
Fingerprints F (qz)z∈{1,2} are sent to the server Sz . PRG
and seedc are also provided to S1.

2) Servers: work on additive shares and execute the same op-
erations as in §5.1.1 over each of the desired k columns
of each row. Particularly, servers consider the k values of
each jth row as a string and compute a single fingerprint.
Then, servers subtract the fingerprint received from the client
and multiply PRG(seeds)[j] to the output. Finally, S1 adds
PRG(seedc)[j] to jth output. S1,S2 send outputs to client.

3) Client: executes the same operation as in §5.1.1, i.e., adds the
elements of the received vector position-wise and compares
against (PRG(seedc)[i]) mod p. If ith values match, that
means the k query predicates of the conjunctive search exist
in the row i.

5.2.1 Example
A client wants to know whether Tables 8, 9 contain “name =
Jo AND cost = 4” or not. Client selects p = 17, r = 2, and
PRG(seedc) = [4, 6, 1, 2]. Assume PRG(seeds) = [2, 9, 4, 5]
at S1, S2. The conjunctive search operator works as follows:

1) Client: creates shares and fingerprints. ⟨Jo, 4⟩ is represented
as: ⟨10, 15, 4⟩. Additive shares are created as: ⟨5, 5, 2⟩
⟨5, 10, 2⟩. Finally, fingerprints are created as: (5×2+5×22+
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NAME COST Fingerprint computation Search Computation Final result

6,10 3 6×2 + 10×22 + 3×23mod17=8 (8−12)mod17=13 (13×2 + 4)mod17=13

10,5 2 10×2 + 5×22 + 2×23mod17=5 (5−12)mod17=10 (10× 9 + 6)mod17=11

10,6 4 10×2 + 6×22 + 4×23mod17=8 (8−12)mod17=13 (13×4+1)mod17=2

3,5 2 3×2 + 5×22 + 2×23mod17=8 (8−12)mod17=13 (13×5+2)mod17=16

TABLE 12: Search computation at S1 for conjunctive search.
NAME COST Fingerprint computation Search Computation Final result

4,5 1 4×2+5×22+1×23mod17=2 (2−15)mod17=4 (4×2)mod17=8

3,10 4 3×2+10×22+4×23mod17=10 (10−15)mod17=12 (12×9)mod17=6

2,9 4 2× 2+9× 22+4×23mod17=4 (4−15)mod17=6 (6×4)mod17=7

10,10 2 10×2+10×22+2×23mod17=8 (8−15)mod17=10 (10×5)mod17=16

TABLE 13: Search computation at S2 for conjunctive search.

2×23)mod17=12 and (5×2+10×22+2×23)mod17=15.
Fingerprint 12 (15) is sent to S1 (S2).

2) Server: computation is shown in Table 12 and Table 13.

3) Client: performs the following computation on the received
vectors ⟨13, 11, 2, 16⟩ from S1 and ⟨8, 6, 7, 16⟩ from S2:

(13+8)mod17=4, (11+6)mod17=0
(2+7)mod17=9, (16+16)mod17=15

Comparing the vector ⟨4, 0, 9, 15⟩ against PRG(seedc) =
[4, 6, 1, 2] will show that the first row satisfies the conjunctive
search. ■

5.2.2 Discussion
Information leakage discussion. Let us discuss information
leakage from query executions. First, servers do not learn query
predicates by just observing fingerprints received from the client,
due to working on additive shares. Second, on each of the k
columns of each row, a server performs an identical operation
that hides access-patterns. Also, the output at each server will
be different for each row, regardless k query predicate matches
or not in multiple rows; thus, the output at each server does not
reveal anything about the final result. Third, each server sends n
numbers to the client, and it prevents volume leakage. Finally,
since the client is not aware of seeds, the client only learns which
rows satisfy the query, nothing else.

Cost analysis. The computation cost at the server is O(n).
Regardless of the number of columns involved in a conjunctive
query, the client works on n numbers received from each server,
and the communication cost depends on the size of n integers, (as
in the case of the single keyword search algorithm).

5.3 Disjunctive Search
A disjunctive search (select * from table where
name = ‘Jo’ or cost = 4) finds all those rows that
satisfy multiple query predicates connected using ‘or’ over
different columns.

High-level idea. This approach works over multiplicative shares.
Let a, b, c be three values in three different columns of a table.
If query predicates are either a, b, or c, then subtraction of the
query predicate will result in a = 0, b = 0, or c = 0, and then,
a× b× c = 0. We do exactly the same over multiplicative shares
— servers subtract the query keyword and multiply the answer.

Step-wise details. We provide detailed steps of disjunctive search:

1) Client: creates multiplicative shares of k query predicates us-
ing polynomials of degree one and sends them to servers. For
k = 2 (and k ≥ 3) predicates, three (and four) multiplicative
shares are created and sent to S1,S2,S3 (and all four servers).

2) Servers: subtract the k query predicates from each value
of the desired column, which is also in multiplicative share
forms, and then, multiply the output of any three columns
(i.e., ⌈k/3⌉). Note that k = 2 is a special case, and here, the
output of two columns are multiplied at S1,S2,S3. In other
words, if there are 3k columns, then servers, after subtraction,
execute multiplication over groups of three columns in each.
Such multiplication will result in a polynomial of degree
three. Finally, the server multiplies PRG(seeds)[i] and adds
PRG(seedc)[i]. Finally, servers send ⌈k/3⌉ vectors to the
client.

3) Client: performs Lagrange interpolation on each ⌈k/3⌉ vec-
tor and matches the ith position of each vector against
PRG(seedc)[i]. A match shows that the ith row satisfies
the disjunctive query. (Since SEASEARCH uses at most four
servers, the client can interpolate the shares of four servers to
recover the answer.)

A B
1 5
6 4

TABLE 14: An input cleartext table.

A B
2 8
8 8

TABLE 15:
Share Table1.

A B

3 11
10 12

TABLE 16:
Share Table2.

A B

4 14
12 16

TABLE 17:
Share Table3.

5.3.1 Example.
Table 14 shows a cleartext table, whose multiplicative secret-
shares are shown in Tables 15, 16, and 17. Consider a prime
number p = 17. For creating multiplicative shares of 1, DBO uses
f(x) = (1x + s) mod p, where s = 1 is the secret value, and
obtains shares: f(1) = 2, f(2) = 3 and f(3) = 4. For creating
multiplicative shares of 5, DBO uses f(x) = (2x+5) mod p and
obtains shares: f(1) = 8, f(2) = 11 and f(3) = 14. For creating
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A B Search Computation Final result

2 8 ((2− 4) mod 17× (8− 7) mod 17) mod 17 = 15 (15 + 1) mod 17 = 16

8 8 ((8− 4) mod 17× (8− 7) mod 17) mod 17 = 4 (4 + 2) mod 17 = 6

TABLE 18: Search computation at S1 for disjunctive search.

A B Search Computation Final result

3 11 ((3− 7) mod 17× (11− 8) mod 17) mod 17 = 5 (5 + 1) mod 17 = 6

10 12 ((10− 7) mod 17× (12− 8) mod 17) mod 17 = 12 (12 + 2) mod 17 = 14

TABLE 19: Search computation at S2 for disjunctive search.

A B Search Computation Final result

4 14 ((4− 10) mod 17× (14− 9) mod 17) mod 17 = 4 (4 + 1) mod 17 = 5

12 16 ((12− 10) mod 17× (16− 9) mod 17) mod 17 = 14 (14 + 2) mod 17 = 16

TABLE 20: Search computation at S3 for disjunctive search.

multiplicative shares of 6, DBO uses f(x) = (3x+8) mod p and
obtains shares: f(1) = 8, f(2) = 10 and f(3) = 12. For creating
multiplicative shares of 4, DBO uses f(x) = (4x+4) mod p and
obtains shares: f(1) = 8, f(2) = 12 and f(3) = 16.

Consider a disjunctive search: select * from Test
where A = 1 or B = 6. A client wants to know whether
Table 15, 16, and 17 contain “A = 1 OR B = 6” or not. The client
selects p = 17 and PRG(seedc) = [1, 2]. The disjunctive search
operator works as follows:

1) Client: creates multiplicative shares of 1 and 6 using poly-
nomials of degree one. Shares of 1 are obtained as: 4, 7, 10
using f(x) = (3x+ 1) mod p, for x = 1, 2, 3. Shares of
6 are obtained as: 7, 8, 9 using f(x) = (1x+ 6) mod p, for
x = 1, 2, 3. Shares ⟨4, 7⟩ are sent to S1; ⟨7, 8⟩ are sent to S2;
and ⟨10, 9⟩ are sent to S3.

2) Servers: performs computation over data and query predicates
both in multiplicative share form. Tables 18, 19, and 20 show
computation at each server. For simplicity, we do not show
PRG(seeds).

3) Client: receives vectors ⟨16, 6⟩ from S1, ⟨6, 14⟩ from S2, and
⟨5, 16⟩ from S3. On such values, the client performs Lagrange
interpolation as follows:

f(x) =
(x− x2)(x− x3)

(x1 − x2)(x1 − x3)
×y1 +

(x− x1)(x− x3)

(x2 − x1)(x2 − x3)
×y2

+
(x− x1)(x− x2)

(x3 − x1)(x3 − x2)
×y3

(1)

For y1 = 16, y2 = 6 and y3 = 5, f(x) evaluates to:

f(x) =
(x− 2)(x− 3)

(1− 2)(1− 3)
×16 +

(x− 1)(x− 3)

(2− 1)(2− 3)
×6

+
(x− 1)(x− 2)

(3− 1)(3− 2)
×5 = 35 mod 17 = 1

(2)
For y1 = 6, y2 = 14 and y3 = 16, f(x) evaluates to:

f(x) =
(x− 2)(x− 3)

(1− 2)(1− 3)
×6 +

(x− 1)(x− 3)

(2− 1)(2− 3)
×14

+
(x− 1)(x− 2)

(3− 1)(3− 2)
×16 = −8 mod 17 = 9

(3)

Comparing 〈1,9〉 against PRG(seedc) = [1,2] shows that the
first row satisfies the disjunctive search.

5.3.2 Discussion
Information leakage discussion. A server cannot learn data and
query predicates by observing them, since both are in multiplica-
tive share form. Also, the shares of data and shares of query

predicate are not identical, due to using different polynomials (of
the same degree). A server cannot learn whether any value resulted
in zero after subtraction, since the output of subtraction is also
in multiplicative share form. Since servers perform an identical
operation on each row, access-patterns are not revealed. Servers
return n numbers, and the number of rows satisfying a query is
also not revealed.

Cost analysis. Communication cost between a server and a client
is ⌈kn/3⌉), where k is the number of disjunctive query predicates.
Computation cost at a server is at most kn, and at a client is
⌈kn/3⌉).

5.4 Optimizing Communication Cost
In the search algorithms developed in the previous subsections, a
client receives a vector of n numbers from both servers S1,S2
in the case of single keyword and conjunctive search, while may
receive ⌈k/3⌉ vectors (each with n numbers) from S1, . . . ,S4,
(k is the number of query predicates in a disjunctive search). In
practical situations, a client may be geographically far away from
servers and/or has a limited network connection speed and/or hold
a weaker machine. In such a case, the following can happen:
(i) the processing time at the client will increase, and/or (i)
transferring the data from the servers to the client may increase
the overall query processing time. To reduce the computation time
at the client and communication between a server and a client,
we provide a method that requires an additional untrusted server,
called combiner server, denoted by Sc; see Figure 2.

Secret-share 

creation

DB Owners

Dataset

Four Servers

Trusted Domain

Secret-share 

creation and 

interpolation

Querier or Client

Trusted DomainUntrusted Domain

1

2

2 3

5

7

4

5

5

6

Combiner

Fig. 2: The model with combiner.

Before presenting the method, let us discuss assumptions
behind Sc. Firstly, Sc is not trusted likewise servers S1, . . . ,S4.
Sc only knows the modulus used in the fingerprint. Sc receives
shares from servers and computes modular addition or Lagrange
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interpolation. While Sc knows both servers, we assume that Sc

never sends the data received from one server to another. Also,
servers will not send the additive shares to Sc. Such requirements
are necessary to prevent Sc or servers to reconstruct the secret, i.e.,
the original data in cleartext. Likewise, other servers S1, . . . ,S4,
Sc also wishes to learn about the original data, based on the
received shares and the computation it does. Thus, we need to
prevent access-patterns and volume at Sc also and must need to
satisfy our Security Definition 1. The role of the combiner has
been also considered in the previous work, for example, [16], [25],
[45], [72], [74].

Method. This method is quite straightforward. Now, servers send
the output of the computation to Sc instead of sending it to the
client. Importantly, now, servers must use PRG(seedc) in STEP

2 of the respective algorithms.

In the case of single keyword search or conjunctive search,
Sc performs modular addition under p and sends a single vector
to the client that matches the ith received vector’s value against
PRG(seedc)[i], 1 ≤ i ≤ n. The matching ith index shows that
the ith row at the server satisfies the query. Note that now Sc
sends only n numbers to the client, and the client does not need
to perform modular addition.

In the case of disjunctive search, Sc performs Lagrange
interpolation over ⌈k/3⌉ vectors and sends interpolated vectors
to client that compares the ith value of the vector against
PRG(seed)[i]1≤i≤n, and the matching ith index shows the ith

row satisfies the query.

Security discussion. Sc must never learn the final answer after
performing modular addition or Lagrange interpolation. Since Sc
does not know PRG(seedc) added by servers, Sc finds all n
numbers to be random. Thus, Sc cannot learn which rows satisfy
the query. Also, Sc performs an identical operation on each share
received from servers and always sends a vector of n numbers to
the client. Thus, access-patterns and volume are hidden from Sc.

Reason for adding PRG(seedc) at servers. Until now, one
can check the necessity of PRG(seedc): if the server does not
add such random numbers, then Sc will learn which rows and
how many rows satisfy the query.

5.5 Multi-Keyword Search
A multi-keyword search query finds different keywords in a col-
umn, simultaneously. For example, select * from table
where name = ‘Jo’ or name = ‘Mo’ will fetch all rows
containing Jo or Mo. Such a query can be answered by executing
the simple search operator multiple times, equal to the number
of query keywords. However, this straightforward method incurs
overheads in terms of both computation and communication. To
reduce the overhead, we develop an algorithm for multi-keyword
search that takes only one communication round.

High-level idea. In searching multiple keywords, now the client
sends additive shares of the keywords, and the server computes
x > 1 fingerprints over the additive shares of the keyword. Also,
servers compute fingerprints over additive shares in the desired
column and send the output vector to Sc that adds the output
vectors position-wise and provides a single vector to the client.
Finally, the client compares the fingerprints of the keyword, which
were also received from the server, over the vector, which is
received from Sc. This way, we search for multiple keywords.

Sending the vector (containing the fingerprints of the column)
from Sc to the client will reveal data distribution to the client, and
to hide this, the servers compute x > 1 fingerprints on the client
queries by adding x random numbers.

The method works as follows:

1) Client: creates additive shares of the k > 1 keywords and
sends them to S1 and S2. Note that here, the client does
not compute fingerprints over additive shares of the query
keyword, unlike the single keyword search algorithm §5.1.

2) Servers: perform three tasks: (i) select x ≤ n random numbers
in Fp, (ii) compute x fingerprints for each k > 1 query
keyword by adding each of the x random numbers to the
fingerprints, and send all such fingerprints queryFP [] to the
client, note that here the servers compute fingerprints, and
the fingerprint parameter used by servers is not known to the
client, and (iii) compute fingerprints over additive shares of
the desired column, as follows:
S1: ∀i ∈ blockj : answer1[i] ← F (A.vi) + jth random
number
S2: ∀i ∈ blockj : answer2[i] ← F (A.vi) + jth random
number
The servers partition the data into x blocks, compute finger-
prints over the additive shares of the desired columns, and
add the jth random number to the output of fingerprint for
each row in the jth block. This computation produces a vector
answerz∈{1,2}[] that is sent to the client.

3) Combiner: executes vec[] ← answer1[i] + answer2[i] and
sends the resulting vector vec[] to the client.

4) Client: compares the received vector vec[] against all the fin-
gerprints queryFP []. The client compares all jth fingerprints
of each k > 1 keywords against all the rows of the jth block
of vec[]. If a fingerprint matches, it means the keyword exists.

Method for multiple numeral search. The above method can be
extended trivially for searching multiple numbers.

Information leakage. Likewise, the arguments for the servers
in the single keyword search method in §5.1.1, we can derive
arguments for the server in the multi-keyword search method.
Specifically, the servers do not learn frequency distribution, or-
dering, and access-patterns.

Now, we discuss the case of Sc and the client. Note that Sc
holds fingerprints of each value of the column, added with random
numbers. Based on fingerprints, Sc can never know data, as it
needs to guess the parameter r used to compute fingerprints and
the random numbers xi added to fingerprint (F (A.vi)). Further,
since the entire data is divided into multiple blocks, the output
(i.e.,

∑z=2
z=1 answerz[i]) across the blocks for a keyword will be

non-identical, due to using different random numbers for each
block. Thus, Sc cannot learn the data distribution. Sc performs
identical operations on each value of the received vector from the
servers and returns the same number of values to the client. Thus,
access-patterns and volume are not revealed to Sc. To make the
technique more secure at Sc, the servers can add PRG(seedc)
before sending the vector to Sc. Now, to learn anything from
fingerprints, Sc needs to know multiple PRGs.

Now, let us discuss leakages at the client. The client learns
only the rows that match the keywords, nothing else. The client
does not learn anything from vec[] due to not knowing x random
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numbers. Thus, to the client, each number in vec[] will look
different, preventing the client from learning the data distribution.

Cost analysis. The communication cost between the client and
Sc is O(n), and between a server and Sc is also O(n). The
communication cost can grow if the client wishes to search for
many keywords and the server creates many blocks over the
data. The computation cost at each entity is O(n), as executing
computation over n values of a column.

5.6 Range Search
A range search outputs a list of values (and row ids) that satisfy a
given range query. We develop two methods to answer a range
query. Both methods use additive shares. The first method is
communication efficient, but may reveal the order of values to
the client. The second method is completely secure and does
not reveal any information to the client; however, incurs the
communication cost (O(xℓ), where ℓ is the length of a range
query and x>1).

We describe a range query over integers, while the same idea
applies to non-integers also. Let [µ1, µ2] be the endpoints of a
range. A value v belongs to the range, iff µ1≤v≤µ2. Our primary
idea of both approaches is to generate a unique value for each
number in the range [µ1, µ2] by executing a function.

5.6.1 Communication-Efficient Range Query
High-level idea. In this method, we check that v∈[µ1, µ2], iff
f(µ1)≤f(v)≤f(µ2), where f denotes an order-preserving func-
tion. For example, 3,4,5 belong to a range [3, 5]. The output of a
function f(x)=x+µµ2

1 can also detect whether 3, 4, 5∈[3, 5] or
not, since f(3), f(4), f(5) ∈ [f(3), f(5)], i.e., 246, 247, 248 ∈
[246, 248], and no other number can belong to [f(3), f(5)].

The servers compute x > 1 different functions on the range
end-points and provide the output to the client. The servers also
compute the x different functions on x different parts of the data
(which is in additive share form) and send the output to Sc that
adds the received data from servers row-wise. Finally, Sc sends
the vector to the client, which finds which row ids belong to the
range query. The method works as follows:

1) Client: creates additive shares of the range queries’ end-points,
say µ1, µ2, and sends them to the servers.

2) Servers: do the following:
(i) find x different functions (f1, . . . , fx) and execute them
on the range end-points µ1, µ2: opzi1 ← fi(µ1), opzi2 ←
fi(µ2), where opzi1 and opzi2 are the output of the function
fi on the range endpoints, and z ∈ {1, 2}. The outputs of the
x functions, i.e., 1 ≤ i ≤ x : opzi1, opzi2, are provided to
the client.
(ii) work over additive shares of each value of the column.
For simplicity, we assume that secret-shared data will be
partitioned into x blocks. For each block, servers select a
function.
Servers compute: answerz[j] ← fi(A.vj) + PRG(seedc),
i.e., the function fi, on each row of the ith block, is computed,
and a vector answerz[] is sent to Sc.

3) Combiner: adds answer1[i] and answer2[i] and obtains a
vector, vec[] that is sent to the client.

4) Client: subtracts PRG(seedc) from each value of vec[] and
then partitions vec[] into x blocks. Over an ith block, the client
finds all those numbers that belong to the range [opi1, opi2],
where opi1 =

∑z=2
z=1 opzi1 and opi2 =

∑z=2
z=1 opzi2.

Correctness. It is clear that the function pairs (opi1, opi2) =
{fi(µ1) ⊙i fi(µ2)} are all linear functions, so they are order-
preserving. One can easily check that if v ∈ [µ1, µ2], then
fi(vj) ∈ [fi(µ1), fi(µ2)].

Cost analysis. Communication cost: (i) from the server to the
client is O(2x), (x is number of blocks), by sending 2x range
end-points, (ii) from Sc to the client isO(n), (iii) between a server
and Sc is also O(n), by sending n values. The computation cost
at each entity is O(n).

Information leakage. Servers cannot learn anything, due to
executing an identical operation on each row in the form
of additive shares. Sc does not learn anything, since servers
add PRG(seedc). The client can learn the difference between
f(x1)− f(x2). If the client knows some values in the data, then
they may deduce secret values based on f(x1)− f(x2).

5.6.2 Fully-Secure Range Query
To prevent the client from learning f(x1) − f(x2), this method
requires the DBO to send additional data to servers. Particularly,
DBO executes a PRG function on each value of the domain of a
column and also outsources such values, denoted by PRGdbo(v),
in additive share form to the servers. Furthermore, the DBO
represents all column values using v+PRGdbo(v) and creates an
additional type of shares. Thus, now, DBO outsources all columns
of a table in three forms: additive shares, multiplicative shares, and
additive shares of v+PRGdbo(v). To execute completely secure
range queries, we use additive shares of v + PRGdbo(v).

Three differences between this method and the previous
method are: (i) The servers compute x functions on each number
in a given range [µ1, µ2] in additive share form, sent by the
client, as follows: opzi[j] ← fi(aj + PRG(aj)), and sends the
vector opzi[] containing all the possible outputs of a function
fi to the client; (ii) the servers work on the additive shares
of v + PRGdbo(v) and perform the same operation, as in the
previous method; and (iii) on receiving the vector from Sc, the
client finds all those numbers that belong to opi[j]. The method
works as follows:

1) DBO: creates additive shares, PRGdbo(v), for each domain
value of the attribute. Such shares are outsourced separately
in a different table. Furthermore, DBO creates additive shares
of vi+PRGdbo(vi), where vi is a value in the ith row of the
column.

2) Client: first finds additive shares of PRGdbo(v) each value
v ∈ [µ1, µ2]. Then, the client creates additive shares of each
value v + PRGdbo(v) in range queries and sends them to the
servers.

3) Servers: do the following:
(i) Find x different functions (f1, . . . , fx) and execute them on
each additive share received from the client. This step produces
a vector: opzi[] at Sz . Such a vector is given to the client.
(ii) Work over additive shares of a number. For simplicity,
we assume that secret-shared data will be partitioned into x
blocks. For each block i, servers select a function fi and
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compute: answerz[j] ← fi(A.vj + PRGdbo(vj)), i.e., the
function fi, on each row of the ith block, is computed, and
this vector answerz[] is sent to Sc.

4) Combiner: adds answer1[i] and answer2[i] and obtains a
vector, vec[] that is sent to the client.

5) Client: partitions vec[] into x blocks. Over an ith block, the
client finds all those numbers that belong to {opi1, opi2}.

Cost analysis. Communication cost from the client to the server
is O(ℓ), where ℓ is the length of a range query. Communication
cost from a server to the client is O(xℓ), where x is the number
of blocks the servers create. Communication cost from Sc to the
server is O(n), and the same communication cost exists between
servers and Sc. Computation cost both at servers and Sc is O(n).
Information leakage. In this method, servers do not learn any-
thing, likewise the method of §5.6.1. Also, the combiner does
not learn anything, due to using PRGdbo(vj) and x blocks.
Furthermore, the client cannot learn anything within a block, due
to using PRGdbo(vj), as PRG will eliminate any relationship
between two numbers.

5.7 Conjunctive or Multi-dimensional Range Search
This subsection presents two approaches for answering multi-
dimensional range queries (select * from employees
where age between 10 and 20 and salary
between 100 and 200). These proposed approaches
follow the idea of a one-dimensional range query given in §5.6.
Both approaches work on additive shares of a number. The
first approach generates a unique value for the combinations
of different range end-points. The second approach works on
additive shares of v+PRGdbp(v) and generates a unique number
for each value belonging to a range. Below, we explain the idea
using a two-dimensional range condition.

The first approach. Let (µ1
1≤A1≤µ1

2) ∧ (µ2
1≤A2≤µ2

2) be a
two-dimensional range query, where we assume that µ∗∗∈{1,2}
have the same order of magnitude and the superscript refers to
column and subscript refers to range. Our aim is to construct a
function f(A1, A2, µ

1
1, µ

1
2, µ

2
1, µ

2
2) that produce unique outputs

for different values of A1 and A2. We use a simple way:
f(A1, A2, µ

1
1, µ

1
2, µ

2
1, µ

2
2) = (A1 ⊙ (ρ11µ

1
1 + ρ12µ

1
2) + (A2 ⊙

(ρ21µ
2
2 + ρ22µ

2
2))× r) mod p where ρ∗,∗ are random numbers,

and r is another random number that makes (ρ21µ2
1+ ρ22µ

2
2)× r

much bigger than ρ11µ
1
1+ρ12µ

1
2. This feature makes the function

f outputting different results according to different inputs A1, A2.
In addition, if the range [µ1

1, µ
1
2] and [µ2

1, µ
2
2] are not in the same

order of magnitude, we can adjust the value of r to satisfy our
requirement.

For example, for a range query for 2 ≤ A1 ≤ 3
and 5 ≤ A2 ≤ 7, we construct a function as follows:
F (A1, A2, 2, 3, 5, 7) = (A1−(9×2+4×3)+(A2−(1×5+8×
7))×10) mod p. Assume p = 13, we immediately know that for
all the value pairs (2, 5), (2, 6), (2, 7), (3, 5), (3, 6), (3, 7) in the
conjunctive range, the above function produces different values
{10, 7, 4, 11, 8, 5}.

Now, the client and servers follow the same protocol on the
multi-dimensional range queries’ end-point as they did in 5.6.1.

The second approach: is the extension of the fully-secure
range search §5.6.2. Here, servers compute x different functions

f1 . . . , fx on each pair of values (i.e., fk over i+PRGdbo(i), j+
PRGdbo(j), where ∀i, j ∈ [µ1

1 ≤ A1 ≤ µ1
2 ∧ µ2

1 ≤ A2 ≤ µ2
2]),

in additive share form and sends the output to the client. Also,
servers compute functions on the given columns and provide the
vector Sc, which adds the vector position-wise. The client on
receiving the vector from Sc finds elements that match against
the list provided by the servers for each value of a range query.

6 FETCH OPERATOR

A fetch operator retrieves the desired rows containing a keyword.
To do so, first, the client needs to know the row id using the
search operators. Afterward, the client needs to fetch the row(s)
obliviously. A straightforward way for oblivious fetch is private
information retrieval (PIR). It is worth noting that, in our setting,
all servers store data in shares form, not cleartext. Thus, any
PIR schemes should be modified accordingly, in order to fetch
shares obliviously. On top of that, for practical implementations,
we also need to use a limited number of servers (unlike existing
work [39]). To achieve these goals, we develop two methods: mul-
tiplicative sharing-based method (§6.1) and PRG-based method
(§6.2) that uses additive shares. The multiplicative sharing-based
method simplifies the model of [39] and provides a practical
scheme. The additive sharing method extends DPF [38], which
was designed for cleartext processing. Both these methods utilize
four servers and are compared in §6.3.

6.1 Multiplicative Sharing-based Method

Row id

0 0 · · · 0 · · · 0 1
...

...
. . .

...
...

...
...

0 0 · · · 1 · · · 0 i
...

...
. . .

...
...

...
...

0 0 · · · 0 · · · 0
√
n

1 2 · · · j · · ·
√
n Column ids

High-level idea. Given a cleartext vector, vec, of size n, contain-
ing all zeros, except a single one at the position that the client
wishes to fetch, we organize vec into a matrix of r rows and
c columns. For the purpose of simplicity, here, we assume that
r = c =

√
n.6 Thus, only one of the cells (i, j) (i.e., row i and

column j) of the matrix contains one; otherwise, zero, as shown
in the matrix.

Now, we create two vectors: r1=⟨0, . . . , 0, 1i, 0, . . . ,
√
n⟩ and

r2=⟨0, . . . , 0, 1j , 0, . . . ,
√
n⟩. If we position-wise multiply each

row of the matrix by r1, then we will obtain the ith row of the
matrix after adding values of each column of the matrix. Now, we
can multiply the resultant row by r2 to get the desired value/row.

SEASEARCH implements exactly the same. Particularly, the
client sends r1 and r2 vectors in multiplicative share form, and

6. The reason for selecting a grid/matrix of
√
n×
√
n will be clear in the commu-

nication cost analysis. In case, when
√
n results in a non-integer number, we find two

numbers, say x and y, such that x × y = n, and x and y are equal or close to each
other such that the difference between x and y is less than the difference between any
two factors, say x′ and y′ of n so that n = x′ × y′.
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each of the four servers implements exactly the same idea over
multiplicative shares.

Details of the methods are given below:

1) Client: creates two row vectors r1 and r2, each of size
√
n and

filled with zeros. Suppose, the client wants to fetch a row that
is mapped to the (i, j)th cell of the matrix of size

√
n×
√
n,

then the ith value of r1 and the jth value of r2 contain 1. The
client creates multiplicative shares (or SSS) of r1 and r2 and
sends them to four servers.

2) Servers: organizes the data in a form of
√
n×
√
n matrix and

multiply the kth values of r1 with each tuples in the kth

row of the matrix. After that, servers adds all attribute across
all rows of each column of the matrix, resulting in a single
row containing

√
n tuples. Finally, to the single row, servers

position-wise multiply r2 vectors and add the output of each
attribute across

√
n tuples, if the client wants to fetch only

(i, j)th row.7 Servers send the final output to the client.

3) Client: receives shares of the desired row from the servers and
performs Lagrange interpolation to get the real values.

Information leakage. Based on the row vectors, this method can
never reveal to servers which row they return, since the row vectors
are in share form. Since servers perform identical computations on
each row, this also prevents access-patterns. Furthermore, servers
return either one row (in case of the client wants only one row) or√
n rows (otherwise), which prevents volume leakage.

Cost analysis. The computation cost at the server is O(n),
while at the client is O(x), where x ∈ {1,

√
n}. Each row

vector contains
√
n numbers, which enable the client to fetch

x ∈ {1,
√
n} rows. Note that if all the rows containing a query

keyword exist in either the same row or the same column of the
matrix, we can fetch all of them in a single communication round.
Thus, to fetch x ∈ {1,

√
n} rows, the communication cost is

O(
√
n). Since the minimal communication cost can be achieved

by organizing n tuples in a matrix of the minimum size that can
be achieved by a

√
n×
√
n matrix. Thus, we create a matrix of√

n×
√
n.

6.2 Additive Share-based Method
[27] provided a trivial private information retrieval (PIR)

scheme that allows a client to obliviously obtain one bit from two
servers. This method can be extended to fetch an ithi∈{1,n} additive
share using four servers, as follows:

Bit vector-based method. Assume that there are two numbers
a, b∈{0, 1} such that a−b=1 or 0 (depending on the value
a−b). When we multiply (a−b) by a value X = x1+x2,
the product, say z , will remain X or zero. Meanwhile, the
expansion (x1+x2)(a−b) = ax1+ax2−bx1−bx2 can be split
into four parts, and each part can be executed over one of the
four servers locally. Note that a server having partial information
cannot learn the final result z , while a client with ax1, ax2,
bx1, bx2 can know z . This method can be used to fetch a kth

row by creating two row vectors r1 and r2 of size n, such that
r1[i]− r2[i] = 0,∀i ∈ {1, n}\{k} and r1[k]− r2[k] = 1.

Example. Suppose a dataset contains {4, 2, 6}, and a client wishes
to fetch the third element. Assume that the dataset is stored in

7. If the client wishes to fetch x∈{1,
√
n} rows that belong to a single row or column

of the matrix, the servers do not need to perform the second multiplication operation.

additive shares at four servers. The client can create row vectors:
r1 = [0, 1, 1] and r2 = [0, 1, 0], and send each vector to two
servers. Each server will perform position-wise multiplication and
then add all values before returning a single value to client, which
learns the output. ■

Problem of bit vector-based method. This method incurs the high
communication cost of n-bits to fetch a single row. To reduce the
communication cost, below, we propose a new method:

6.2.1 High-level Idea
Our objective is to compress the row vectors from n-bits to log n-
bits at the client; while, at the server, to decompress such vectors
to size n, each. To do so, we identify Distributed Point Function
(DPF) [38] as a natural fit for our oblivious fetch scheme. DPF
was designed to fetch a single value from cleartext data, without
revealing the value. We extend DPF to work over additive shares.
To do so, row vectors r1 and r2 can be recognized as the additive
shares of a point function f(x), to fetch kth row, where f(x) = 1
if x = k; otherwise, f(x) = 0.

To compress shares of r1 and r2, we do the following at a client:

Idea of compression at the client. We provide the idea to com-
press n-bits to

√
n bits, which can be recursively compressed into

log n bits. First, organize n bits in a matrix, likewise the method
of §6.2. Thus, only one of the cells (i, j) (i.e., row i and column
j) of the matrix contains one; otherwise, zero. Then, we can form
two row vectors r1 and r2. Obviously, except the ith row and jth

column of the matrix, the rest parts of r1, r2 contain only zeros.

To hide the actual values (i.e., 0 or 1), we
use PRG with

√
n − 1 different seeds, denoted

by sd1, sd2, . . . , sd i−1, sd i+1, . . . , sd√n (one seed
generates a random number for a tuple of the
data). Note that PRG(sdq) − PRG(sdq) = 0,
∀q ∈ {1, 2, . . . , i−1, i+1, . . . ,

√
n}.

Now, to construct the ith row of the matrix, we need two more
vectors: crα, crβ , each of size

√
n, such that

PRG(sdδ)[k] + crα[k]− (PRG(sdθ)[k]+crβ [k]) = 1, for k=j
otherwise, for k ̸= j = 0.

We call crα, crβ as compressed row vectors. In the following,
for the purpose of simplicity, we denote (compressed) row vectors
as rα and rβ . Note that by only looking at the value of rα or rβ ,
no one can find which value will result in one or zero.

Finally, the client forms two seed vectors:
SD1 = [sd1

1, . . . , sd
1
i−1sd

1
δ , sd

1
i+1 . . . , sd

1√
n]

SD2 = [sd2
1, . . . , sd

2
i−1sd

2
θ , sd

2
i+1 . . . , sd

2√
n].

Note that all seed values except sdδ and sdθ are identical.
Finally, S1,S4 receive ⟨rα, rβ ,SD1, b1⟩, and S2,S3 receive
⟨rα, rβ ,SD2, b2⟩. Here, b1 and b2 are called block vectors, de-
scribed below in detail.

Idea of decompression at the server: is to partition the table into
multiple disjoint blocks, each of size

√
n, and execute:

∀kth block:
(PRG(sd∗k[z]) + r∗[z])× A.vz, ∗ ∈ {α, β}, 1 ≤ j, z ≤

√
n

6.2.2 Details of the Method
We provide details of the method.
1) Client: performs the following:
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(i) Generates block vectors by organizing n tuple-ids into a
matrix/grid of size

√
n×
√
n. Client, then, creates two identi-

cal block vectors b1 and b2 having 0 and 1, each with
√
n-bits,

such that an ith index of b1 and b2 contains complemented
bits, where ith row of the grid contains a tuple (in cell i, j)
that client wishes to fetch.
(ii) Selects two random seeds sdδ and sdθ for a PRG that
produces two random vectors α1 and α2, each of size

√
n.

(iii) Generates two row vectors r1 and r2, each of size
√
n,

by placing the row vector to the ith row of the grid (which
contains the desired row at the cell (i, j) to be fetched), such
that α1[j] + α2[j] + r1[j] + r2[j] = 1 at the jth position;
otherwise, zero at all other positions.
(iv) Generates two vectors of seeds SD1

and SD2 by selecting
√
n − 1 random seeds,

such that: SD1={sd1, . . . , sdδ, . . . , sd√n}, and
SD2={sd1, . . . , sdθ, . . . , sd√n}.
(v) Sends ⟨b1, r1, r2,SD1⟩ to S1, S4 and ⟨b2, r1, r2,SD2⟩ to
S2, S3.

2) Server: Sz∈{1,4} partitions the data into
√
n blocks. S1,S3

(or S2,S3) keep the first (or second) share table. For each
ith ∈ {1,

√
n} block, it selects sd i and r1 if the ith value of

the block vector is 0; otherwise, r2. Then, servers execute the
following:
∀ block i ∈ {1,

√
n}, ∀ row j ∈ {1,

√
n} of the block and

compute: sumz∈{1,4}A ←
∑

((PRG(sd i)[j]+rx[j])×A.vj),
where PRG(sd i)[j] denotes the jth values generated by PRG
using seed sd i and x ∈ {0, 1} depending on the xth value
of block vector. The same computation is executed on other
attributes of the jth row to return the entire tuple.

3) Client: executes the following: sum1.A−sum2.A−sum3.A+
sum4.A to obtain the values of the columns. The same
operation will be executed over other column values to obtain
the complete tuple.

6.2.3 Discussion
Now, we discuss the correctness, information leakage, and cost of
the above method.

Correctness. Suppose, we want to fetch a value X , which is stored
in additive share form: X = (x1+x2)modp. We need the server
executes (X × 1)modp, and (Y × 0)modp, where Y represents
other values. In additive share form, the above formula can be
implemented as:
(x1+x2)(α1−α2)modp=(x1α1 − x2α2 − x1α2 + x2α1)modp

Here, α1, α2 ∈ {0, 1} and α1 ≥ α2. Clearly, if we select
α1 = 1, α0 for X and α1 = α2 for other values, the above
formula only obtains X . Thus, the final summation at client
(sum1A − sum2A − sumsA + sum4A) returns X . Further, since
x1α1, x2α2, x1α2, x2α1 are calculated locally by four servers,
no communication is needed among servers.

Information leakage. This method does not reveal to servers
which row they return, since a server does not know both seed
arrays. As servers perform identical computations on each row,
it also prevents access-patterns. Further, servers return the same
amount of data for each query, and this prevents volume leakage.

Cost analysis. Through iterative compressing, the size of row
and block vectors can be achieved to O(log n), as following the
approach of [38]. Thus, the communication cost between a client

and a server is O(log n). Servers perform over entire data, and
thus, the computation cost at the server is O(n), while at the
client is O(

√
n).

6.3 Comparing Two Row Retrieval Methods
Both methods offer different security guarantees and efficiency.
The multiplicative-sharing-based row fetch method is information-
theoretically secure, while the additive-sharing-based row fetch
method is computationally secure due to using a PRG, which
is computationally secure. Simply put, in the additive-sharing
method, an adversary with infinite capabilities may learn which
row the client wishes to fetch; however, the adversary can never
learn the data. Further, due to using PRG, the additive sharing-
based method is slower than another row fetch method (see
Table 22 and Table 23).

7 EXPERIMENTAL RESULTS

This section discusses the scalability of SEASEARCH, investigates
the impact of different parameters on SEASEARCH, and compares
SEASEARCH against other systems. Machine. We used four
mac2.metal AWS servers having 6 cores and 16GB RAM.
We selected the same AWS machine as a combiner Sc. Also, a
similar machine is selected as a DBO/client. All such machines
were located in different zones (which are connected over wide-
area networks), of AWS Virginia region. Dataset. LineItem table
of TPCH benchmark [13] with four columns ⟨SupplyKey (SK),
PartKey (PK), LineNumber (LN), OrderKey (OK)⟩ is used in
experiments. We created two tables with 1M and 10M cleartext
rows and treated SK values as strings and others as numeric data.
Cryptographic parameters. We set fingerprint parameter r=43
and a prime number p=100,000,007. Code: is written in Java
and contains more than 9K lines. Time: is calculated by taking an
average of 10 runs of the programs and shown in seconds (s).

7.1 SEASEARCH Evaluation
This section investigates the following questions:
1) how much time our algorithms take to produce secret-shared

tables and what will be the size of secret-shared data — Exp 1.
2) how do SEASEARCH algorithms behave on different sizes of

data with a single-threaded implementation — Exp 2.
3) what is the impact of parallelism over query execution – Exp 3.
4) what happens on increasing the number of columns in the

conjunctive and disjunctive search — Exp 4.
5) what happens on increasing the number of rows to be fetched

from servers — Exp 4.
6) how much data a client sends to a server, how much data a

client fetches from a server, and how such data impacts the
overall query execution time — Exp 5.

7) how much better is the idea of using a combiner — Exp 6.
8) what will happen when the number of colluding servers will

increase — Exp 7.
9) how range queries behave for different range length — Exp 8.

10) how performance of multi-keyword search changes with in-
crease in rows — Exp 9.

Exp 1: Share generation time and share data size. We create
four shares tables using the algorithm given in §4. Each share table
contains 9 columns: one for row-id and other columns for additive
and multiplicative shares of SK, PK, LN, OK. Table 21 shows
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the time to create shares and the average size of the share tables.
Note that the size of a share table increases due to keeping more
columns and storing each letter of a string as per the position in
the dictionary.

Rows Time for share creation and im-
porting in MySQL

Size of a share
table

Cleartext
size

1M 7.2s (= 4.1 (share creation time) +
3.1 (import time))

62MB 22MB

10M 77.3s (= 35.4 + 41.9) 638MB 221MB

TABLE 21: Exp 1: Share generation time and average size of
tables.

Exp 2: Query execution performance. To evaluate the query
performance, we run SEASEARCH on both 1M and 10M rows
using a single-threaded implementation of each entity (we discuss
the impact of multiple threads later). Here, we execute conjunctive
(CS) and disjunctive search (DS) over OK and PK columns.
Table 22 and Table 23 show time for each operation at different
entities.

Entity String
search

Number
search

Conjunctive
search

Disjunctive
search

Row Fetch
— MSR

Row Fetch
— ASR

Client 0.065 0.066 0.065 0.067 0.020 0.039
Server 0.718 0.516 0.631 0.641 0.723 0.911
Total 0.783 0.582 0.696 0.743 0.759 0.950

TABLE 22: Exp 2: Time (sec) breakdown on 1M rows via
1 thread.

Entity String
search

Number
search

Conjunctive
search

Disjunctive
search

Row Fetch
— MSR

Row Fetch
— ASR

Client 0.208 0.373 0.210 0.201 0.029 0.070
Server 6.315 4.030 5.201 5.163 6.694 8.478
Total 6.523 4.403 5.411 5.364 6.723 8.548

TABLE 23: Exp 2: Time (s) breakdown on 10M rows via 1 thread.

Maximum computation time at servers. Recall that SEASEARCH

partitions a selection query into a search and fetch query. In
round one for searching the qualified row-ids, SEASEARCH took
at most 0.783s on 1M rows and at most 6.523s on 10M rows
using one thread. In round two to fetch rows, the multiplicative-
sharing-based (MSR) row fetch method took 0.759s on 1M rows
and 6.723s on 10M rows, while additive sharing-based row fetch
method (ASR) took 0.950s on 1M rows and 8.548s on 10M
rows. We study the impact of fetching different numbers of rows
later. The reason for efficient query processing is twofold: (i) the
computation at servers is simple (just addition, multiplication, and
modulo over integers), and (ii) servers do not need to communicate
among themselves, compared to existing systems [19], [20], [30],
[31], [44], [70].

Maximum computation time at a client. Computation time for
the client for any operation is significantly less than 1s in the case
of both 1M and 10M rows. Search queries took more time at the
client compared to row fetch methods. The reason is: in search
queries, the client works on either 1M or 10M numbers compared
to row fetch methods that interpolate only the desired rows.
Interesting observations. The first is related to search operation:
a search operation over strings takes more time than searching
a number, due to computing fingerprints over additive shares of
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Fig. 3: Exp 3: SEASEARCH performance on multi-threaded im-
plementation at AWS. Time in seconds.

strings. (Obviously, fingerprint computation takes more time than
a simple subtraction in the case of numeric data.) The second
observation is related to the row fetch method: A client takes
more time in ASR than MSR, since the client generates in total 4
vectors for each server in ASR compared to generating two vectors
to each server in MSR. Also, a server took more time in ASR
due to decompressing the vectors (via running a PRG function),
compared to MSR in which servers only perform multiplication
and addition.

Exp 3: Impact of parallelism. SEASEARCH executes identical
operations on the entire data; hence, multiple threads reduce the
processing time. To inspect this, we implemented multi-threaded
server programs for all algorithms. Programs create multiple
blocks containing an equal number of rows, and each thread
processes different parts of the data and executes the algorithm.
The output of the program is kept in the memory. Figure 3 shows
that as increasing the number of threads from 1 to 4, the processing
time decreases. At 4 threads, SEASEARCH takes less than 1/2s
for over 1M and less than 4s over 10M rows for executing any
operation. Since we used only 6-core machines, increasing more
than 4 threads does not help due to thrashing.

Exp 4: Impact of different parameters. We study the impact
of different parameters on SEASEARCH using 4-threaded imple-
mentation of SEASEARCH, as 4-threads took the minimum time
to execute a computation.

(a) The number of columns in conjunctive and disjunctive
search. Figure 4a shows that as the number of columns increases
from 2 to 4 in a CS search, the computation time increases slightly,
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Fig. 4: Exp 4: Impact of different parameters based on 4-threaded
implementation.

as computing fingerprints over more values. The computation time
also increases a bit when executing 2DS vs 3DS. However, the
execution time of 4DS is significantly more than 3DS. The reason
is: servers send two vectors corresponding to DS queries over
⟨OK,SK⟩ and ⟨PK,LN⟩; thus, Sc and the client also work on more
data to obtain the final answer. Note that in 4DS, servers cannot
multiply all four column values; otherwise, the secret cannot be
reconstructed at the client.

(b) Impact of the number of retrieving rows. Figures 4b, 4c
show that as the number of rows to be fetched increases, the
computation time also increases. Two interesting observations:
(i) the time does not increase linearly, as we scan/process the
entire data only once for fetching multiple rows, instead of
scanning/processing the entire data multiple times for each row.
(ii) since our methods are designed to fetch

√
n consecutive rows

at a time, the time increases only when we fetch additional
√
n

rows. ASR method always took more time than MSR method, due
to the decompression function at the servers.

Exp 5: Data size and the impact of communication. In our
approach, servers/combiner send data to a client to answer a query.

Search algorithms: send more data from servers/combiner to the
client (n integers, where n is the number of rows in the table)
compared to fetch algorithms. In this case of search over 1M rows,
Sc sends at most 7.7MB data, while 77MB data in case of 10M
rows. A client sends only some numbers in any search operation.

Row fetch algorithms. In the MSR fetch method, the client sends
data of size at most 12KB in the case of 1M rows and 34KB for
10M rows. The ASR fetch method requires the client to send data
of size at most 14KB in the case of 1M rows and 44KB for 10M
rows. In both methods, a server sends at most

√
n rows of size

24KB from 1M rows and 75KB from 10M rows.

Communication cost: may impact the overall performance of
SEASEARCH. We considered three different speeds of data trans-
fer, as: slow (50MB/s), medium (100MB/s), and fast (1GB/s). The
data transfer time is negligible over medium and fast speeds for
both 1M and 10M datasets. In the case of slow speed, the data
transfer time is also negligible for 1M data, while takes only 1s
for 10M data (to transfer 77MB file). Compared to processing
time, all the approaches take negligible time to transmit data, even
in the case of 10M rows. Note that in all algorithms over 10M,
the computation time was at least 2.7s (see Figure 3b), while the
communication time is just only 1s. Thus, the communication time
does not affect the overall performance of SEASEARCH.

Exp 6: Impact of the combiner Sc. While all the above ex-
periments include Sc, this experiment investigates the usefulness
of Sc by considering four cases for string search over 1M rows:
(i) servers and the client are geographically close to each other
(different zones in AWS Virginia region) and connected at 10Gbps
speed, (ii) all servers, Sc, and the client are in AWS Virginia region
and connected at 10Gbps speed, (iii) all servers and Sc are in
different zones of AWS Virginia region, while the client is at our
university (NJIT) and connected at the speed of 200Mbps with Sc,
and (iv) servers are directly connected with the client at NJIT. The
overall query processing time was 0.739s, 0.783s, 0.989s, 1.4s for
the four cases respectively, while the client took 0.069s, 0.065s,
0.180s, 0.587s for the four cases respectively. This validates the
purpose of using Sc to reduce the burden on the client when a
client is far from the servers.

Exp 7: Impact of increasing the number of servers. All the
above experiments consider that the servers will not collude with
each other. In this experiment, we investigate when the number
of colluding servers f increases. If f servers can collude with
each other, then we need to create f+1 additive or multiplicative
shares. Thus, a group of f servers cannot recover the secret.
However, if we consider f Byzantine servers, which our paper
does not deal with, then we need 2f+1 servers.

We experimented with the first case for a simple search. Here,
increasing the number of servers does not impact the computation
time at the servers, since servers work in parallel. Also, the
computation time at the client does not change, as the client works
only on one vector. However, the combiner Sc performs operations
over more values, and hence, the computation time at Sc, (as well
as, the overall computation time) increase slightly. Table 24 shows
the time at Sc as increasing the number of colluding servers f and
the total computation time for a simple search.

Exp 8: Range queries. As we increase the length of a range, the
computation time also increases; see Table 25. We did experiments
for different range lengths of 50, 100, 500, and 1000. Recall
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#servers f = 0 f = 1 f = 2 f = 4 f = 8

Time at Sc 0.066 0.071 0.076 0.081 0.101
Total time 0.582 0.587 0.592 0.597 0.617

TABLE 24: Exp 7: Computation time at Sc with f colluding
servers.

that range queries create different blocks at servers; we vary the
number of blocks to 10 and 100. However, as increasing blocks,
the computation time does not increase significantly (only differs
in ms). The reason is: as we increase the number of blocks
servers do the identical computation, while the computation at
the announcer increases a little bit. In this experiment, A-Range
refers to the method of §5.6.1, while pA-range refers to the method
of §5.6.2.

pA-Range A-Range
Length 10Blo 100Blo 10Blo 100Blo

50 4.852 5.463 1.835 2.117
100 5.375 6.081 2.139 2.815
500 7.315 9.763 4.821 5.224
1,000 9.505 14.493 7.367 7.511

TABLE 25: Exp 8: Impact of range conditions on 10M rows using
4 threads (time in seconds).

Exp 9: Multi-keyword Search. We performed multi-keyword
search (§5.5) for ten keywords and created ten blocks. String-
based multi-keyword search took 1.479s for 1M rows and 10.761s
for 10M rows on a single thread. Number-based multi-keyword
search took 0.679s for 1M rows and 3.624s for 10M rows on a
single thread. We observe that multi-keyword search for numeric
columns takes less time as compared to multi-keyword search
on string columns, due to the fingerprint operation performed
over string columns. In comparison to single keyword search,
Table 22 and Table 23, multi-keyword search takes more time
for both numeric and string search; however, this time does not
scale linearly as we search multiple keywords in one round of
communication.

7.2 SEASEARCH vs Other Systems
SEASEARCH offers information-theoretic security; thus, we com-
pare SEASEARCH against systems offering the same level of
security. While multiple information-theoretically secure systems
are developed by industries (e.g., Sharemind [20], SPDZ [30]-
based Systems), they are not freely available. To give a perspec-
tive on query execution time and compare SEASEARCH against
those systems, Table 1 provides experimental results given in the
respected papers. Below, we compare SEASEARCH against the
following: trivial download strategy and additive sharing-based
Jana [19], Waldo [33], Ciphercore [15]. Table 4 shows such results.
Important to note that the existing secret-sharing systems do
not support the large data and take more time compared to
SEASEARCH.

Download methods. We compare SEASEARCH against three
download strategies (given in §1). Overall, SEASEARCH outper-
forms such methods.

Jana [19]: supports only selection queries over additive shares in
a single round of communication between a client and a server.
Also, Jana requires servers to communicate among themselves to
execute a query. Jana converts all non-desired rows (i.e., rows
not containing the keywords) into zero in additive share form and
returns the entire database to the client that filters the desired rows.
Jana took more than 10 minutes to create shares of 1M rows. For
executing a selection query, Jana took ≈450s.

Waldo [33]: allows a client to know the presence/absence of a
query keyword over additive shares. However, it does not allow us
to know the row-id where the keyword exists. Waldo took ≈12s
for searching a keyword.

Ciphercore [15]: supports only search operation using
equality operator in a single round of communication
between a client and a server, while requiring servers to commu-
nicate among themselves to execute a query. Ciphercore returns
a vector containing 1 or 0 to the client, where 1 shows which
row contains the query keyword. However, the current version of
Ciphercore does not support operations to fetch the desired row.
Furthermore, since Ciphercore is proprietary software, the current
code does not allow us to find separate times to create shares and
time to execute a query. In other words, the current code requires
creating the share of the entire data before executing each query.
Using one thread, Ciphercore took more than 1 minute for both
share creation and executing a search query over 1M rows, while
SEASEARCH took at most 7.988s (7.2s to create shares and 0.788s
for a search query).

S3ORAM [44]: is a multiplicative sharing-based method to exe-
cute a search over only a single column via an ORAM-type index.
S3ORAM inherits all the weaknesses of ORAM, as discussed
in §1.2. Also, S3ORAM does not support conjunctive/disjunctive
search. The current code allows searching only unique random
numbers and incurs the high space overhead by storing twice the
amount of input numbers. Except random numbers, the current
code does not import other data. To provide a perspective on query
execution time, we provide experimental results (taken from the
paper) of S3ORAM in Table 1.

8 RELATED WORK

Secret-Sharing-based solutions. Additive [20] and multiplica-
tive [67] are the two famous secret-sharing techniques. Such tech-
niques perform addition over shares efficiently locally at servers,
(i.e., without communicating with other servers), while the mul-
tiplication of shares requires communication among servers [18].
Multiplicative shares can multiply shares locally at servers, if we
have enough shares. Sharemind [20], SPDZ [30], [31], Jana [19],
Conclave [70], and Waldo [33] use additive shares. PDAS [69],
and [34], [73] use multiplicative shares. However, such techniques
suffer from either query inefficiency and/or information leakage
via access-patterns and/or volume and/or use a trusted party as
in Conclave, as we have discussed in §1. Table 1 compares such
techniques also. In contrast, SEASEARCH offers highly efficient
query processing using both additive and multiplicative shares,
as well as also prevents leakages from both access-patterns and
volume. Also, SEASEARCH does not use any trusted party.

Information leakage via access-patterns. The impact of re-
vealing access-patterns on encrypted data was investigated in
the novel work [46] that lead to multiple works in the same
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direction [24], [35], [42], [51], [53], [55], [60], [61]. To overcome
leakage from access-patterns, ORAM [40], [41], [63] and their
improved version known as PathORAM [68] was developed. Such
solutions have asymptotic complexity of polylogarithmic in the
index size. However, all such solutions have multiple problems, as
mentioned in §1. S3ORAM [44] provides ORAM-type index for
secret-shares. However, S3ORAM [44] does not support conjunc-
tive/disjunctive/range search. Furthermore, S3ORAM [44] also in-
herits all disadvantages of the standard ORAM. PIR, DPF, and FSS
also hide access-patterns. Splinter [71] is the first system based on
FSS. SEASEARCH provides two techniques for row fetch while
hiding access-patterns: one is information-theoretically secure and
another is based on DPF for additive shares.

Information leakage via volume. [65] showed that even when
hiding access-patterns, an adversary can learn based only on vol-
ume. Recently, several techniques [17], [47], [64], [66] have been
developed to hide volume. While [47], [64] are data-independent
volume-hiding techniques, all such techniques only deal with
encrypted key-value data only. Furthermore, all these techniques
incur significant storage overhead (by storing ciphertext that is at
least twice the actual data [17], [47], [64]) and show inefficient
query execution (by fetching data that is twice the size of the
maximum result).

9 EXTENDING TO GROUP-BY OPERATIONS

In executing group-by queries, the client needs to know the name
of the groups, and then, based on that, the client can ask the
servers to execute group-by queries. SEASEARCH supports group-
by count, sum, maximum, minimum, and median queries. As will
be clear below, the communication cost between a server and a
client to know the final answer to a query is minimum in group-
by-count and sum queries.

Group-by count: requires only one round of communication. Once
the client knows the group names, client can execute single
keyword search operation (§5.1) to know the answer to the count
query. Particularly, the client can search for each group name using
the approach of §5.1 or §5.5. Recall that we compute fingerprints
over strings to search for a keyword, and it may result in false
positives with a negligible probability. To completely avoid false
positive probability, which is essential in group-by operations,
DBO can map each group to a random number, and this can be
done with the help of pseudo pseudo-random number generator.

Group-by sum: requires two rounds of communication between a
server and a client. In the first round, the client executes keyword
search operation (§5.1 or §5.5) to know the row-ids matching the
group name. Then, in the second round, the client sends a vector
containing 0 and 1 in multiplicative share form to three servers.
Each server multiplies the ith number of the vector with the ith

value of the desired column on which the client wishes to compute
the sum. After that, the server adds all values of the column and
sends the answer to the client. On receiving an answer to the
query, the client performs Lagrange interpolation to know the final
answer.

Group-by max/min/median: requires two rounds of communica-
tion between a server and a client. In the first round, the client
executes the keyword search operation (§5.1 or §5.5) to know the
row-ids matching the group name. Then, in the second round, the
client executes PRG row fetch method to know the values of the

desired column that contains the group name. On receiving all the
values of the column that contains the desired group name, the
client locally finds the maximum/minimum/median.

10 CONCLUSION

We develop SEASEARCH — efficient and scalable techniques for
selection queries, based on both additive and multiplicative secret-
sharing. SEASEARCH does not reveal information from ciphertext
and query execution via both access-patterns and volume/output-
size, simultaneously. SEASEARCH uses fingerprints to perform
search operations over the shares. The fingerprints avoid commu-
nication among servers during query execution, and this brings in
efficiency, as justified by experiments.

REFERENCES

[1] Biometrics and blockchains: the Horcrux protocol [part 3]. Available at:
https://tinyurl.com/2c2jpmfd.

[2] Binance Moved $204 million Worth Of ETH For A Fee Of 6 Cents.
Available at: https://tinyurl.com/yc3bn8xp.

[3] Thailand’s Democrat Party Holds First Ever Election Vote with
Blockchain Technology. Available at: https://tinyurl.com/y26rztj7.

[4] Coinbase Moves $5Billion Worth of Crypto to Kick-Start its new Digital
Storage System. Available at: http://tinyurl.com/bddh2znk.

[5] Multicloud. Available at: https://www.ibm.com/cloud/learn/multicloud.
[6] Multi-cloud mature organizations are 6.3 times more likely to go to

market and succeed before their competition. Here’s why. Available at:
https://www.geektime.com/multi-cloud-maturity-report-seagate/.

[7] More and more companies are spreading their data over public clouds.
Available at: https://tinyurl.com/46fph54z.

[8] Multi-Cloud Data Solutions for Today (and Tomorrow). Available at:
http://tinyurl.com/ym7hkn8v.

[9] How Many Companies Use Cloud Computing in 2022? All You Need To
Know. Available at: https://tinyurl.com/2p983aau.

[10] Jana: Private Data as a Service. Available at:
https://galois.com/project/jana-private-data-as-a-service/.

[11] Stealth Pulsar, available at:http://www.stealthsoftwareinc.com/.
[12] Cybernetica’s Sharemind. Available at:

https://sharemind.cyber.ee/secure-computing-platform/.
[13] TPC-H. Available at: https://www.tpc.org/tpch/.
[14] Code, data, and the full version of the paper: https://drive.google.com/

drive/folders/1jTdLkRn2qD Nix4 CbjR8y8rt3x2SyXg?usp=sharing.
[15] Ciphercore GitHub. Available at: http://tinyurl.com/3dw62y4c.
[16] I. Ahmad et al. Coeus: A system for oblivious document ranking and

retrieval. In SOSP, pages 672–690, 2021.
[17] G. Amjad et al. Dynamic volume-hiding encrypted multi-maps with

applications to searchable encryption. PETS, 2023(1):417–436, 2023.
[18] T. Araki et al. High-throughput semi-honest secure three-party computa-

tion with an honest majority. In CCS, pages 805–817, 2016.
[19] D. W. Archer et al. From keys to databases - real-world applications of

secure multi-party computation. Comput. J., 61(12):1749–1771, 2018.
[20] D. Bogdanov et al. Sharemind: A framework for fast privacy-preserving

computations. In ESORICS, pages 192–206, 2008.
[21] E. Boyle et al. Function secret sharing. In EUROCRYPT, pages 337–367,

2015.
[22] D. Breslauer et al. Real-time streaming string-matching. ACM Trans.

Algorithms, 10(4), 2014.
[23] M. Burkhart et al. SEPIA: privacy-preserving aggregation of multi-

domain network events and statistics. In USENIX Security, pages 223–
240, 2010.

[24] D. Cash et al. Leakage-abuse attacks against searchable encryption. In
CCS, pages 668–679, 2015.

[25] S. G. Choi et al. Efficient three-party computation from cut-and-choose.
In CRYPTO, pages 513–530, 2014.

[26] B. Chor et al. Private information retrieval by keywords. IACR Cryptol.
ePrint Arch., page 3, 1998.

[27] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Private information
retrieval. J. ACM, 45(6):965–981, nov 1998.

[28] R. M. Corless et al. A graduate introduction to numerical methods. AMC,
10:12, 2013.

[29] R. Cramer et al. Secure Multiparty Computation and Secret Sharing.
Cambridge University Press, 2015.

http://www.stealthsoftwareinc.com/
https://drive.google.com/drive/folders/1jTdLkRn2qD_Nix4_CbjR8y8rt3x2SyXg?usp=sharing 
https://drive.google.com/drive/folders/1jTdLkRn2qD_Nix4_CbjR8y8rt3x2SyXg?usp=sharing 


20
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APPENDIX A
SECURITY PROOF OUTLINE

Now, we provide the security proof outline for SEASEARCH. In
our context, we, first, need to show that an adversarial server
cannot distinguish any two queries of the same type based on
the output size, i.e., the query privacy will be maintained. Then,
we will show how the server privacy (i.e., not revealing more
information to the client) is achieved.
Theorem 1. For an adversary A executing a server protocol π
over any input secret-share relation R of n>1 rows and m>0
columns and for any query predicates qp, qp′, the protocol π is
secure, iff the following condition holds (where L could be either
access-pattern leakage or volume leakage):

Aview (π, qp,R,L) = Aview (π, qp
′,R,L) ■

We can argue that if the adversarial server can distinguish
two input queries, then either SEASEARCH does not create shares
randomly or SEASEARCH does not provide query privacy.

In order to show that the adversarial server can never know the
exact query value, we consider two instances of the databases, as
follows: D1 and D2, where D1 differs from D2 only at one value
each, say v1 and v2, i.e., v1 is in D1 but D2 and v2 is in D2 but
D1. Of course, D1 and D2 contain n rows and m columns. Here,
we show that if the adversary can distinguish the single different
value in D1 and D2, she can break SEASEARCH. In this setting,
the server executes the input queries on D1 and D2.

The adversary cannot distinguish that D1 and D2 are identical
or different, due to randomness in creating shares by following
the algorithm given in §4. Note that if the DBO uses only one
polynomial (i.e., a weak cryptographic plan) and the same additive
shares for a value, then the adversary can find which value is
the only single value of D1 that is different from values of D2.
Moreover, it reveals frequency count of values. However, the share
creation algorithm will never create the same shares for the same
values.

Now assume the queries for the value v1 and v2 that will be
mapped to secret-shared queries, qv1(D1) and qv1(D2), respec-
tively. These queries can be executed on either or both databases.
Further, assume that qv1(D1) and qv2(D2) are identical in share
form. Hence, the adversary will consider both of them as an identi-
cal query, while they are for different queries. Hence, the adversary
cannot distinguish two queries. Now, assume that qv1(D1) and
qv2(D2) are different in share form, and here the adversary’s
objective is to deduce which tuples of relations satisfy the query
or not. If the adversary cannot know which tuple is satisfying the
query, the adversary cannot distinguish two queries, as well as,
the two datasets. Recall that all the algorithms access the entire
database and perform the same operations on each row. Further,
the servers send the same amount of data regardless of the query
predicate. Thus, the adversary cannot distinguish two datasets or
two queries. ■
Theorem 2. For any given secret-shared relation at the servers,
for any query predicate qp, and for any real client, say C , there
exists a probabilistic polynomial time (PPT) client C ′ in the
ideal execution, such that the outputs to C and C ′ for the query
predicate qp on the secret-shared relation are identical. ■

Now, we show how server privacy is maintained. In order to
show that the client will learn only the answer to the query, we
consider two instances of the datasets, as follows: D1 and D2,
where D1 and D2 hold n rows and m columns. A single value
v1 appears in both D1 and D2. Except v1, all the other rows in

D1 and D2 can contain the same or different values. Here, we
show that if the client executes a query for v1, the client will not
learn any additional information other than the output of the query.
In this setting, the server executes the input queries on both D1

and/or D2.
Note that the server cannot distinguish between D1 and D2.

Further note that in response to a query, the client will surely
obtain only the correct answer in the ideal execution of the
protocol.

The query for v1 is mapped to secret-shared queries, qv1(D1)
and qv1(D2), respectively, for database D1 and D2. Note that the
server cannot distinguish between two queries. Now, servers will
return all the row-ids matching the query in the case of the search
operation (otherwise, return the rows during the fetch operation).
Now, the task of the client is to find out which database is used by
the server to answer a query. The server can execute both queries
on the same database or a different one.

Now, consider two cases: both queries are executed on the
same database, and before returning the row-ids to the client, the
servers permute the answer; and both queries are executed on
different databases, and answers are returned to the client. The
client here cannot know which database is used to answer the
query, since the answer to the query will return the same number
of matching rows in both cases. To break the technique, the client
needs to know seeds, which is only known to the server.

This shows that the client will not receive any additional
information other than the answer to queries, such that the client is
able to distinguish the databases, and furthermore, the answer will
not allow the client to learn the same number of qualified rows as
they can be returned in the ideal execution of the protocols. ■
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