
The Jacobi Factoring Circuit:
Quantum Factoring with Near-Linear Gates and Sublinear Space and Depth

Gregory D. Kahanamoku-Meyer∗
MIT

Seyoon Ragavan†

MIT
Vinod Vaikuntanathan‡

MIT

Katherine Van Kirk§
Harvard

December 17, 2024

Abstract

We present a compact quantum circuit for factoring a large class of integers, including some whose
classical hardness is expected to be equivalent to RSA (but not including RSA integers themselves). To
our knowledge, it is the first polynomial-time circuit to achieve sublinear qubit count for a classically-
hard factoring problem; the circuit also achieves sublinear depth and nearly linear gate count. We build
on the quantum algorithm for squarefree decomposition discovered by Li, Peng, Du and Suter (Nature
Scientific Reports 2012), which relies on computing the Jacobi symbol in quantum superposition. Our
circuit completely factors any number 𝑁 , whose prime decomposition has distinct exponents, and finds
at least one non-trivial factor if not all exponents are the same. In particular, to factor an 𝑛-bit integer
𝑁 = 𝑃2𝑄 (with 𝑃 and 𝑄 prime, and 𝑄 < 2𝑚 for some 𝑚), our circuit uses 𝑂(𝑚) qubits and has depth at
most 𝑂(𝑚 + 𝑛/𝑚), with 𝑂(𝑛) quantum gates. When 𝑚 = Θ(𝑛𝑎) with 2/3 < 𝑎 < 1, the space and depth
are sublinear in 𝑛, yet no known classical algorithms exploit the relatively small size of 𝑄 to run faster
than general-purpose factoring algorithms. We thus believe that factoring such numbers has potential
to be the most concretely efficient classically-verifiable proof of quantumness currently known.

The technical core of our contribution is a new space-efficient quantum algorithm to compute the
Jacobi symbol of 𝐴 mod 𝐵, in the regime where 𝐵 is classical and much larger than 𝐴. Crucially, our
circuit reads the bits of the classical value 𝐵 in a streaming fashion, never storing more than 𝑂(log𝐴)
qubits of quantum information at one time. In the context of the larger Jacobi algorithm for factoring
𝑁 = 𝑃2𝑄, this reduces the overall qubit count to be roughly proportional to the length of 𝑄, rather
than the length of 𝑁 . Our circuit for computing the Jacobi symbol is also highly gate-efficient and
parallelizable, achieving gate count 𝑂(log𝐵) and depth at most 𝑂(log𝐴+ log𝐵/ log𝐴). Finally, we note
that our circuit for computing the Jacobi symbol generalizes to related problems, such as computing the
greatest common divisor, and thus could be of independent interest.

∗Email: gkm@mit.edu. Supported by U.S. DoE Co-design Center for Quantum Advantage (C2QA) DE-SC0012704.
†Email: sragavan@mit.edu. Supported by NSF CNS-2154149 and a Simons Investigator Award.
‡Email: vinodv@mit.edu. Supported by NSF CNS-2154149 and a Simons Investigator Award.
§Email: kvankirk@g.harvard.edu. Supported by the Fannie and John Hertz Foundation and an NDSEG fellowship.

Contents

1 Introduction 1
1.1 The LPDS Circuit for Squarefree Decomposition . 5
1.2 Technical Overview . 6

2 Preliminaries 8
2.1 Notation . 8
2.2 Jacobi Symbol . 9
2.3 Computational Number Theory . 10
2.4 Sums of Phases . 12

2.4.1 Basic Lemmas . 12
2.4.2 Gauss Sums . 13

3 Factoring Squarefull Integers 14

4 Algorithm for Computing Jacobi Symbols 22
4.1 Abstract Construction . 23
4.2 Implications: Factoring Certain Integers in Sublinear Space and Depth 29

5 Fully Factoring Integers with Distinct Exponents in their Prime Factorization 30

The problem of distinguishing prime numbers from composite numbers and of
resolving the latter into their prime factors is known to be one of the most important
and useful in arithmetic. [C. F. Gauss, Disquisitiones Arithmeticae, 1801]

1 Introduction

Shor’s discovery of a polynomial-time quantum algorithm for factoring numbers [Sho97] jump-started the
field of quantum computation. However, despite decades of intense research and development in quantum
algorithms, quantum error correction, and quantum hardware, quantum factoring circuits remain out of
reach for current devices.

The difficulty is many-fold; a primary issue is that that the quantum circuits for factoring are still
rather large, in terms of gate count, space complexity, and gate depth. For example, Shor’s algorithm seems
to require quantum circuits of size �̃�(𝑛2) to factor 𝑛-bit numbers [Sho97] (where the notation �̃� hides
factors poly-logarithmic in 𝑛); a recent improvement by Regev has reduced the asymptotic gate count
to �̃�(𝑛3/2) [Reg23], but the practical cost of achieving this improved scaling seems rather large [EG24b].
Much effort has been applied to reducing the space-complexity of these circuits, for both Shor [BCDP96,
VBE96, Sei01, Cop02, CW00, Bea03, TK06, Zal06, EH17, Gid17, HRS17, Gid19, GE21, KMY24] and Regev’s
algorithms [RV24, EG24a], achieving space as low as 𝑂(𝑛) or even 𝑂(𝑛) qubits. Yet there seems to be no
fundamental obstacle preventing these costs from being improved further, and indeed if we are to have any
hope of factoring classically-intractable integers on quantum computers in the near- or medium-term, it
will be necessary to do so. Thus we arrive at two questions that are the focus of this paper:

Are there quantum circuits for factoring with (near-)linear gate count?
Could these be implemented with sub-linear space and depth?

In a nutshell, our main contribution is to present the Jacobi factoring circuit, a quantum circuit for factoring
a large class of integers for which efficient classical algorithms are not known. Our circuit completely
factors any number 𝑁 whose prime decomposition has distinct exponents, and finds at least one non-trivial
factor if any exponent is ≥ 2 (i.e. 𝑁 is divisible by the square of some prime). Notably, this excludes RSA
composites 𝑁 = 𝑃𝑄 that are a product of two primes. We state below the special case of 𝑁 = 𝑃2𝑄 with 𝑃
and 𝑄 prime.

Theorem 1.1 (Informal, see Corollary 4.7 for formal statement). There is a quantum circuit that factors
any 𝑛-bit integer 𝑁 = 𝑃2𝑄 (with 𝑃 and 𝑄 prime, and 𝑄 < 2𝑚 for some 𝑚) with 𝑂(𝑛) gates, 𝑂(𝑚) qubits, and
𝑂(𝑚 + 𝑛/𝑚) depth.

The space and depth complexity are sublinear when 𝑚 = Θ(𝑛𝑎) with 𝑎 < 1. Algorithms to factor
numbers of this form have been extensively studied in the cryptography and computational number theory
literature [PO96, BDH99, CJLN09, CL09, May10, CFRZ16, HH22, Mul24]; motivated in part by the fact that
this problem’s hardness has been used as the basis of several cryptosystems [Oka90, OU98, PT00, Tak98,
SS06]. Roughly speaking, to classically factor 𝑁 = 𝑃2𝑄 where 𝑄 is the smaller of the two numbers, we have
two choices. Either employ a class of special-purpose factoring algorithms along the lines of Lenstra’s elliptic
curve method [Len87], which run in time exp(�̃�(

√
log𝑄)); or use the fastest general-purpose factoring

algorithm, namely the number field sieve [Pol93, LLMP90, BLP93], which runs in time exp(�̃�((log𝑁)1/3)).
Which one is faster depends on how small 𝑄 is relative to 𝑁 . As long as log𝑄 = Ω̃((log𝑁)2/3), there are

1

no known classical algorithms that exploit the special structure in 𝑁 to factor faster than general-purpose
factoring algorithms. We refer the reader to Section 2.3 for more in-depth discussion on special-purpose
factoring.

Before proceeding further, let us mention that the other barriers to realizing integer factorization on a
quantum computer come from the concrete costs of factoring circuits; from the overhead due to quantum
error-correction [GE21]; and from the difficulty in building quantum hardware [AAB+19], none of which
we address in this paper. We do note, however, that the Jacobi factoring circuit, appropriately instantiated,
seems friendly enough to admit a concretely small realization that factors, say, 2048-bit integers of the form
stated in Theorem 1.1, although we leave an exploration of the circuit’s concrete costs to future work.

The Jacobi factoring circuit builds on the remarkable, but apparently little known, work of Li, Peng,
Du and Suter [LPDS12] who constructed a quantum circuit to compute the squarefree decomposition of
an integer. That is, given as input a positive integer 𝑁 , find the unique 𝐴 and 𝐵 such that 𝑁 = 𝐴2𝐵 and
𝐵 is not divisible by the square of any integer (greater than 1). The quantum part of the LPDS circuit
computes a Jacobi symbol mod 𝑁 , followed by a quantum Fourier transform mod 𝑁 . Using the algorithm of
Hales and Hallgren [HH00], the quantum Fourier transform mod 𝑁 can be computed (approximately) with
near-linear size quantum circuits. We observe that using Schönhage’s GCD algorithm [Sch71, BS96, Möl08],
Jacobi symbols can be computed in near-linear time as well. Overall, this gives a near-linear size (and also
near-linear space and depth) quantum circuit for squarefree decomposition which, in particular, factors
numbers 𝑁 = 𝑃2𝑄 where 𝑃, 𝑄 are prime numbers.

Our Contributions. Building on the aforementioned work of Li, Peng, Du and Suter [LPDS12], we show
the following:

• Our first contribution, presented in Section 3, is a new analysis of [LPDS12] that is necessary to
get our final result. Jumping ahead a bit, it allows the quantum circuit to use a superposition of
numbers from a potentially much smaller range, e.g. to factor 𝑁 = 𝑃2𝑄, one can use a superposition
of numbers from 1 to poly(𝑄) rather than 1 to poly(𝑁) as in [LPDS12]. (Hence the number of qubits
required for the initial superposition will be log(poly(𝑄)) = 𝑂(log𝑄).)

• Our second and main technical contribution, presented in Section 4, is the construction of an
efficient quantum circuit to compute the Jacobi symbol (𝐴𝐵) in near-linear size and sublinear space
and depth, when log𝐴 ≪ log𝐵, and 𝐴 could be in superposition but 𝐵 is classical. In particular,
our circuit achieves qubit count 𝑂(log𝐴) and gate count 𝑂(log𝐵), parallelized into depth at most
𝑂(log𝐵/ log𝐴 + log𝐴). Combined with our first contribution, this yields a factoring circuit for
𝑃2𝑄 with essentially the same gate count as [LPDS12] but using smaller space and depth when
log𝑄 ≪ log 𝑃 .

We believe our circuit design is of independent interest as it can be readily adapted to solve other
problems of a similar nature, e.g. computing the greatest common divisor gcd(𝐴, 𝐵) with the same
efficiency.

• Our final contribution, presented in Section 5, is the observation that an algorithm for squarefree
decomposition suffices to completely factor a general class of integers of inverse-polynomial density,
namely any integer whose prime factorization has distinct exponents.

2

On Special-Purpose Classical and Quantum Factoring. Our result can be seen to complement the
classical factoring algorithms, e.g. [Len87, Mul24] that exploit various types of structure. The result
by [LPDS12] takes a first step in this direction by showing that some integers with special structure (e.g.
𝑁 = 𝑃2𝑄 with 𝑃, 𝑄 prime) become easier to factor quantumly. Our result builds on this, demonstrating
that these integers can be quantumly factored even more easily (i.e. in much lower space and depth) if
log𝑄 ≪ log𝑁 . We emphasize that, as long as log𝑄 ≥ Ω̃((log𝑁)2/3), this structure cannot be exploited by
any known special-purpose classical factoring algorithms (we discuss this more in Section 2.3).

In contrast, prior quantum factoring algorithms [Sho97, Reg23] do not seem to benefit from any such
structure. With that said, an important open question is whether our algorithm can be leveraged or extended
to factor integers in general (we note that it would suffice to devise a way to factor squarefree integers; see
Sections 3 and 5 for details).

A More Efficient Proof of Quantumness. Recent excitement has centered on efficiently-verifiable
proofs of quantumness, which are protocols by which a single untrusted quantum device can demonstrate
its quantum capability to a skeptical polynomial-time classical verifier [BCM+21, BKVV20, KCVY21, YZ22,
KLVY23, MY23, AMMW24, AZ24, Mil24]. The Jacobi factoring circuit presented in this work immediately
yields the first factoring-based proof of quantumness with sublinear space complexity (see Table 1). Existing
proofs of quantumness based on factoring broadly fall into two categories: factoring algorithms, which
straightforwardly demonstrate their quantum capability by finding the factors; and interactive protocols,
which do not actually factor the number, but instead perform a task that for any classical algorithm is
provably as hard as factoring. We address each of these in turn:

• Factoring algorithms: Shor’s algorithm for factoring [Sho97], when implemented with a low-depth
quantum multiplication circuit [NZLS23], costs 𝑂(𝑛2) gates, 𝑂(𝑛) qubits, and 𝑂(𝑛) depth.1 Regev’s
recent improved factoring algorithm [Reg23], together with the optimizations of [RV24] (and using
the same low-depth multiplier), can be implemented in 𝑂(𝑛1.5) gates, 𝑂(𝑛) qubits, and 𝑂(𝑛0.5) depth.
The previously proposed Jacobi factoring circuit [LPDS12], together with the algorithm by [Sch71]
for computing Jacobi symbols, uses 𝑂(𝑛) gates, space, and depth.

In contrast, if we instantiate our construction with an integer 𝑁 = 𝑃2𝑄 where log𝑄 = Θ̃((log𝑁)2/3),
our circuit uses 𝑂(𝑛) gates, 𝑂(𝑛2/3) depth, and 𝑂(𝑛2/3) qubits. In terms of the product of qubit count
with either gates or depth, this outperforms all other factoring algorithms described here.

• Interactive protocols that do not factor: the relevant protocols here are those based on trapdoor claw-
free functions (TCFs), specifically instantiated with Rabin’s function 𝑓 (𝑥) = 𝑥2 mod 𝑁 as introduced
in [KCVY21]. Evaluating this function requires performing just a single multiplication, and thus can be
implemented with a quantum circuit of 𝑂(𝑛) gates, polylog(𝑛) depth, and 𝑂(𝑛) qubits. While the low
depth is appealing, the main obstacle is the qubit count, which is outperformed substantially by the
Jacobi factoring circuit. Furthermore, the protocol of [KCVY21] is interactive, requiring the quantum
computer to maintain coherence throughout several rounds of measurement of subsets of the qubits
and communication with the verifier. Indeed, that protocol cannot be run in an “offline” setting, where
a classical verifier publishes a challenge publicly and provides no further data to any particular prover.

1There also exist log-depth implementations of Shor’s algorithm [CW00], but they come at the cost of far worse gate and qubit
counts. We include asymptotics for this circuit in Table 1 for completeness.

3

Protocol Cost (up to polylog factors)
Gates Depth Qubits

Shor [Sho97] 𝑛2 𝑛 𝑛
Log-depth Shor [CW00] 𝑛5 log 𝑛 𝑛5

Regev [Reg23, RV24] 𝑛3/2 𝑛1/2 𝑛
𝑥2 mod 𝑁 [KCVY21]† 𝑛 log2 𝑛 𝑛

Squarefree decomposition
𝑛 𝑛 𝑛[LPDS12, Sch71]

This work n n𝟐/𝟑 n𝟐/𝟑

Table 1: Asymptotic cost of various proofs of quantumness based on the hardness of factoring
𝑛-bit integers. We omit constant and poly-logarithmic factors throughout for clarity. For all algorithms
which use black-box multiplication, we assume the use of a parallelized circuit for Schönhage-Strassen
multiplication [NZLS23]. We use † to denote the fact that [KCVY21] is an interactive protocol in which the
quantum computer is not required to actually factor the number.

Interactive protocols are also somewhat less satisfying as a proof of quantum computational power,
because the prover is not actually solving a computational problem—instead, interaction allows the
prover show it can make measurements in anticommuting bases, which is not possible for a classical
algorithm. There do exist TCF-based protocols which are non-interactive; their classical hardness
either relies on quantum access to random oracles ([BKVV20], see [CGH04, KM15] for discussion of
the random oracle heuristic) or computational problems other than factoring [AGGM24].

For completeness we note that, when the quantum circuit costs are expressed as a function of the
best-known classical time cost for the same problem, our result does not asymptotically outperform certain
proofs of quantumness based the hardness of problems other than factoring — simply because the classical
hardness of those problems grows much more rapidly. Consider, for example, applying Shor’s algorithm to
the elliptic curve discrete logarithm problem (ECDLP) [Sho97, HJN+20]. Although the standard quantum
circuit to solve ECDLP requires at least linear space and depth in the size of the input — which is worse
than the circuits we present in this work — this is outweighed by the fact that integer factorization admits
sub-exponential time classical algorithms (namely exp(𝑂(𝑛1/3))), while to the best of our knowledge ECDLP
does not. Thus, if we want to work with a problem that takes time 𝑇 to solve classically, it would suffice
to set 𝑛 = 𝑂(log 𝑇) in the case of ECDLP, whereas for factoring we would need to set 𝑛 = 𝑂((log 𝑇)3).
However, in practice the constant factors for factoring circuits seem to be dramatically better than those
for the ECDLP problem, with the constant multiplying the leading-order term even being less than 1 in
some cases [GE21].

We proceed to describe the quantum circuit of [LPDS12] and then our technical contributions in more
detail.

4

1.1 The LPDS Circuit for Squarefree Decomposition

In a beautiful work from a decade ago, Li, Peng, Du and Suter [LPDS12] showed a quantum circuit to
compute the squarefree decomposition of an integer. That is, let 𝑁 = 𝐴2𝐵 where 𝐵 is not divisible by the
square of any integer (greater than 1) denote the unique squarefree decomposition of𝑁 . Given𝑁 , computing
𝐵 seems classically hard in general; indeed, it is at least as hard as factoring integers of the form 𝑁 = 𝑃2𝑄
where 𝑃 and 𝑄 are primes. The squarefree decomposition problem has received much attention from the
computational number-theory community [PO96, BDH99, CJLN09, CL09, May10, CFRZ16, HH22, Mul24], in
part due to its applications in cryptography [Oka90, OU98, PT00, Tak98, SS06], and it is at the core of other
important problems such as computing the ring of integers of a number field [BL94] and the endomorphism
ring of an elliptic curve over a finite field [BS11].

The starting point of [LPDS12] is the observation that when 𝑁 = 𝑃2𝑄, the Jacobi symbol of 𝑥 mod 𝑁
depends essentially2 only on 𝑥 mod 𝑄. Indeed, if 𝑥 and 𝑁 are relatively prime,

(
𝑥
𝑁) = (

𝑥
𝑃)

2

(
𝑥
𝑄) = (

𝑥
𝑄)

since (𝑥𝑃) ∈ {±1}. Thus, the Jacobi symbol of 𝑥 mod 𝑁 is periodic modulo the secret factor 𝑄.
With quantum period finding in mind, this naturally suggests the following procedure: (1) start with

a uniform superposition over all 𝑥 mod 𝑁 ; (2) compute and measure the Jacobi symbol (𝑥𝑁); and (3) use
Shor’s period-finding procedure [Sho97] to recover 𝑄. The apparent obstacle is that once we measure the
Jacobi symbol (𝑥𝑁), we will end up not with one periodic signal modulo 𝑄 but a superposition of several
periodic signals modulo 𝑄.

One approach to circumvent this obstacle would be the following: instead of measuring one Jacobi
symbol, we could measure multiple Jacobi symbols (𝑥𝑁) , (𝑥+1𝑁) ,… , (𝑥+𝑘𝑁) for a large enough 𝑘 so as to
(hopefully) uniquely determine the value of 𝑥 mod 𝑄. (Intuitively, each one of these Jacobi symbols
should give an “independent” piece of information about the value of 𝑥 mod 𝑄, so measuring enough of
them should determine 𝑥 mod 𝑄.) It turns out that 𝑘 = poly(log𝑄) likely suffices (see the Boneh-Lipton
conjecture [BL96, CW24]). Thus measuring the function manyJac𝑁 ,𝑘(𝑥) = (𝑥𝑁) , (𝑥+1𝑁) ,… , (𝑥+𝑘𝑁) on the
uniform superposition gives us

1√
𝑁

⋅ ∑
𝑥∈[0,𝑁−1]

|𝑥⟩
measure manyJac𝑁 ,𝑘−−−−−−−−−−−−−−→

1
𝑃
⋅ ∑
𝑗∈[0,𝑃2−1]

|𝑥0 + 𝑗𝑄⟩
QFT mod 𝑁

⟶
1√
𝑄

∑
𝑗∈[0…𝑄−1]

𝑒−2𝜋𝑖𝑥0𝑗/𝑄
||||
𝑗𝑁
𝑄 ⟩ (1)

for some 𝑥0 ∈ [0, 𝑄 − 1]. Now, measuring gives us an integer multiple of 𝑁/𝑄 = 𝑃2 from which it is not
hard to read off 𝑃2 and therefore 𝑃 .

This would, however, result in a rather large circuit: to uniquely fix 𝑥 mod 𝑄, one would certainly
need to compute at least Ω(log𝑄) Jacobi symbols (and perhaps even a larger poly(log𝑄) [BL96, CW24]).
The key result of [LPDS12] is that just computing and measuring a single Jacobi symbol already suffices
(even though we would be working with a superposition of periodic signals3), shown using a remarkable

2We say “essentially” because this is subject to the minor constraint that 𝑥 and 𝑁 need to be relatively prime.
3[HH00] provides a black-box algorithm for finding the period of “many-to-one” periodic functions like this, however it

requires a super-constant number of calls to the Fourier sampling subroutine. The Gauss sum analysis of [LPDS12] (and that of the
present work) provides much better efficiency, showing that just one iteration of Fourier sampling suffices to find the period with
probability Ω(1).

5

analysis involving Gauss sum bounds! Indeed, the QFT of the signal after measuring a single Jacobi symbol,
namely that of 𝑥 mod 𝑁 , will be very similar to the end result in equation 1 except that each basis state will
receive a sum of several amplitudes. In particular, if we measure the Jacobi symbol (𝑥𝑁) and obtain a value
𝑏 ∈ {−1, 1},4 each non-zero basis state |𝑗𝑁/𝑄⟩ will have absolute amplitude

≈
1
𝑄

⋅

||||||||

∑
𝑥0∶(

𝑥0
𝑄)=𝑏

exp(−
2𝜋𝑖𝑥0𝑗
𝑄)

||||||||

By standard Gauss sum bounds (see Section 2.4.2 for details), the summation is lower-bounded by Ω(
√
𝑄),

and so we know that each non-zero basis state will have amplitude Ω(1/
√
𝑄). Since there are 𝑄 − 1 such

states, a measurement will give us a non-zero multiple of 𝑁/𝑄 = 𝑃2 with a constant probability (in fact,
[LPDS12] shows that this probability can be made to equal 1!).

We remark that [LPDS12] generalizes this method to obtain the squarefree decomposition of any 𝑁 ,
not necessarily of the form 𝑃2𝑄 for prime 𝑃, 𝑄. With this in mind, we now turn to an overview of our
techniques.

1.2 Technical Overview

Section 3: A New Analysis of [LPDS12]. Our first contribution is a more careful analysis of the circuit
by [LPDS12], wherein we show that it suffices to start with a superposition from 1 to poly(𝑄) rather than
all the way to 𝑁 . At a high level, this follows from combining two previous techniques. Our starting point
is the analysis by Shor [Sho97] that shows that in order to find the period of a function with period ≤ 𝑄max,
it suffices to take a superposition from 1 to poly(𝑄max).

The reason this does not immediately suffice for our setting is that we are not working with one periodic
signal; we would be working with a superposition of periodic signals corresponding to values 𝑥0 ∈ [0, 𝑄−1]
that have Jacobi symbol (

𝑥0
𝑄) = 𝑏 for some 𝑏 ∈ {−1, 1}. To get around this, we combine elements of Shor’s

analysis [Sho97] with the Gauss sum analysis introduced by [LPDS12].

Section 4: Computing Jacobi Symbols in Sublinear Space and Depth. The computational bottleneck
in the [LPDS12] factoring circuit is computing the Jacobi symbol (𝑥𝑁), where 𝑥 ∈ [0, 𝑁−1] is in superposition.
This can be done in gates (and hence space/depth) 𝑂(𝑛) [Sch71, BS96, Möl08], where 𝑛 is the number of
bits in 𝑁 , which is a near-linear gate complexity and hence essentially tight.

However, thanks to our first contribution, we need only compute (𝑥𝑁) for 𝑥 ≤ poly(𝑄); moreover, since
𝑁 is classically known, there is the tantalizing possibility that the number of qubits could be pushed down
to linear in log𝑄 rather than log𝑁 . We show that this is indeed the case (up to polylogarithmic factors), by
constructing a quantum circuit that computes the Jacobi symbol using space 𝑂(𝑚) qubits for any 𝑚 ≥ log𝑄.
Our circuit is also very efficient, achieving gate count 𝑂(𝑛), parallelized into depth 𝑂(𝑛/𝑚 + 𝑚).5

4We once again assume here that we do not obtain the relatively unlikely outcome of 𝑏 = 0; we will handle this more carefully
in the relevant technical sections.

5If log𝑄 < 𝑂((log𝑁)1/2), the depth and space cannot both be made to both scale with log𝑄 simultaneously, because the
space-time volume (space times depth) is lower bounded by the gate count, and the gate count is lower bounded by 𝑂(log𝑁).
However, the parameters can be tuned to achieve a continuous tradeoff between the two, while maintaining a space-time product
nearly linear in log𝑁 .

6

To explain our methods, let us revisit some well-known algorithms for computing the Jacobi symbol
(𝑥𝑁). These algorithms also provide algorithms for computing GCDs and vice versa:

• The binary GCD algorithm [BS96] is often used in quantum algorithms due to its circuit-friendliness
[RNSL17]. However, this will not be useful for our goals; the number of gates needed to compute
(𝑥𝑁) is 𝑂((log 𝑥 + log𝑁)2) [BS96], which is quadratic in log𝑁 (rather than near-linear).

• The extended Euclidean algorithm relies on the observation that the Jacobi symbol (𝑎𝑏) is equal
to (𝑎 mod 𝑏

𝑏), which together with quadratic reciprocity (property 7 of Theorem 2.4) allows one to
rapidly reduce the size of the problem’s inputs. Indeed, after just one step, the problem is reduced to
the computation of the Jacobi symbol of two inputs of length 𝑂(log 𝑥). Nevertheless, due to that first
step, this algorithm seems to require 𝑂(log𝑁) qubits.

• Finally, there is an algorithm due to Schönhage [Sch71, BS96, Möl08] that runs in 𝑂(log𝑁) gates, but
does not come with any better guarantees on the space and depth.

We take an approach that, at a very high level, mimicks the extended Euclidean algorithm:

1. First, we reduce the computation of (𝑥𝑁) to some Jacobi computation (𝑎𝑏) between two inputs 𝑎, 𝑏 of
length 𝑂(log 𝑥).

2. We then compute (𝑎𝑏) using Schönhage’s algorithm out-of-the-box, which only requires gates (and
hence space/depth) 𝑂(log 𝑥).

The challenge, and room for creativity, is in implementing step 1. The “extended Euclidean” approach
would be to compute 𝑁 mod 𝑥 , but it is not clear how to do this reversibly in low space and depth. Instead,
we find a multiple 𝑘𝑥 of 𝑥 such that both of the following are true: (a) 𝑁 − 𝑘𝑥 is divisible by 2𝑛−𝑚; and (b)
𝑘𝑥 < 2𝑛. For now one should consider 𝑚 = ⌈log 𝑥⌉; in some cases, one may choose 𝑚 ≥ ⌈log 𝑥⌉ to improve
efficiency, as we discuss later. To be explicit, this allows us to compute the Jacobi symbol via the following
chain of transformations:

(
𝑥
𝑁) → (

𝑁
𝑥) → (

𝑁 − 𝑘𝑥
𝑥) → (

(𝑁 − 𝑘𝑥)/2𝑛−𝑚

𝑥) ,

where each of the arrows follows from standard properties of the Jacobi symbol stated in Theorem 2.4, and
the Jacobi symbol of the last expression is computed directly (step 2 above).

The key idea behind our quantum circuit for step 1 is to stream through the (classical) bits of 𝑁 in blocks
of size 𝑚 starting with the lowest-order bits, matching each block of 𝑘𝑥 to the corresponding block of 𝑁
(such that the difference 𝑁 −𝑘𝑥 has trailing zeros). Sublinear quantum space is achieved via the observation
that only the leading 𝑂(𝑚) bits of the running sum 𝑘𝑥 need to be stored quantumly at any given time, as all
of the lower-order bits match the classical bits of 𝑁 by design. Sublinear depth follows from the fact that
the number of blocks is 𝑂(𝑛/𝑚), and the desired operations on each block can be performed in a constant
number of multiplications of depth 𝑂(polylog(𝑚)) [NZLS23, SS71].

Section 5: Fully Factoring Special Integers. Finally, we present a black-box reduction implying that any
algorithm for squarefree decomposition can be used to fully factor integers𝑁 with distinct exponents in their
prime factorization; i.e. 𝑁 that can be written as 𝑝𝛼11 …𝑝𝛼𝑟𝑟 for distinct primes 𝑝1,… , 𝑝𝑟 and distinct positive

7

exponents 𝛼1,… , 𝛼𝑟 . Such integers have been studied before and are referred to as special integers [AM17].
The idea is simple: using the algorithm for squarefree decomposition, we can recover

𝐵 = ∏
𝑖∈[𝑟]∶𝛼𝑖 odd

𝑝𝑖.

Then let 𝑖∗ ∈ [𝑟] be the index such that 𝛼𝑖∗ is the smallest of the odd 𝛼𝑖. (If the 𝛼𝑖 are all even, then 𝑁 will
be a perfect square and we can take its square root until at least one 𝛼𝑖 is odd.) By dividing 𝑁 by 𝐵 as many
times as possible, we obtain:

𝑘 = ∏
𝑖∈[𝑟]∶𝛼𝑖 even

𝑝𝛼𝑖𝑖 ⋅ ∏
𝑖∈[𝑟]∶𝛼𝑖 odd

𝑝𝛼𝑖−𝛼𝑖∗𝑖 .

Now, because the 𝛼𝑖 are all distinct, 𝑘 will be divisible by every prime dividing 𝐵 except 𝑝𝑖∗ . Thus we can
compute 𝐵/gcd(𝑘, 𝐵) = 𝑝𝑖∗ , which is a prime divisor of 𝑁 . We can now divide as many factors of 𝑝𝑖∗ from
𝑁 as possible, then recurse.

2 Preliminaries

2.1 Notation

Let 𝑁 < 2𝑛 be an 𝑛-bit number that we wish to factor. We use negl(𝑛) to denote any real-valued function
𝑓 (𝑛) such that |𝑓 (𝑛)| = 𝑜(𝑛−𝑐) for all constants 𝑐 > 0. For any positive integer 𝑘, let 𝜑(𝑘) denote the number
of positive integers in [1, 𝑘] that are relatively prime to 𝑘. We will sometimes use the notation 𝐴 ∣ 𝐵 to
indicate that the integer 𝐴 divides the integer 𝐵.

We say that an integer 𝐵 is squarefree if it is not divisible by any square (other than 1). Observe that any
𝑁 has a unique representation of the form 𝐴2𝐵 for some squarefree 𝐵; indeed, if 𝑁 has prime factorization
∏𝑟
𝑖=1 𝑝

𝑎𝑖
𝑖 , then we must have 𝐵 = ∏𝑟

𝑖=1 𝑝
𝑎𝑖 mod 2
𝑖 and 𝐴 = ∏𝑟

𝑖=1 𝑝
⌊𝑎𝑖/2⌋
𝑖 . When 𝐴 > 1, we say that 𝑁 is

squarefull.
Throughout this paper, log will denote the base-2 logarithm. We use ℤ𝑁 to denote the ring of integers

mod 𝑁 , and ℤ∗
𝑁 to denote the multiplicative group of invertible elements mod 𝑁 . We will also use the

following straightforward claim:

Proposition 2.1. Let𝑀, 𝐵 be positive integers with 𝐵 > 1 and let 𝑗 ∈ [0, 𝐵−1] be an integer. Then the number
of integers 𝑥 ∈ [1, 𝑀] such that 𝑥 ≡ 𝑗 (mod 𝐵) is exactly

⌊
𝑀 − 𝑗
𝐵 ⌋ − ⌈

1 − 𝑗
𝐵 ⌉ + 1.

Proof. Writing 𝑥 = 𝐵𝑦 + 𝑗 , we wish to find the number of integers 𝑦 (not necessarily positive) such that:

𝐵𝑦 + 𝑗 ∈ [1, 𝑀]

⇔ 𝑦 ∈ [⌈
1 − 𝑗
𝐵 ⌉ , ⌊

𝑀 − 𝑗
𝐵 ⌋] .

The conclusion now follows.

8

2.2 Jacobi Symbol

Here, we define the Jacobi symbol and state its relevant properties for our purposes. We follow the exposition
in [BS96, Chapter 5]. The Legendre symbol is a well-known special case of the Jacobi symbol and our
starting point:

Definition 2.2 (Legendre symbol). For an integer 𝑎 and an odd prime 𝑝, define the Legendre symbol (
𝑎
𝑝) as

follows:

(
𝑎
𝑝)

=

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

0, if 𝑝 divides 𝑎;
1, if 𝑎 is a (nonzero) quadratic residue mod 𝑝;
−1, otherwise.

The Jacobi symbol is most naturally defined in terms of the Legendre symbol:

Definition 2.3 (Jacobi symbol). Let 𝑎 be an integer and 𝑏 an odd positive integer with factorization 𝑏 =
𝑝𝑒11 …𝑝𝑒𝑘𝑘 . Then define the Jacobi symbol (𝑎𝑏) as follows:

(
𝑎
𝑏)

= (
𝑎
𝑝1)

𝑒1

(
𝑎
𝑝2)

𝑒2
…(

𝑎
𝑝𝑘)

𝑒𝑘
.

The Jacobi symbol (𝑎𝑏) can be computed efficiently without knowing the factorization of 𝑏 , via the
following properties. They can be applied, for example, in the same manner as the extended Euclidean
algorithm for the greatest common divisor; we will discuss quantum circuits for computing the Jacobi
symbol in detail in Section 4.

Theorem 2.4 (Jacobi symbol properties). The Jacobi symbol has the following properties. (Recall that (𝑎𝑛) is
only defined when 𝑛 is an odd positive integer — although 𝑎 could be even; thus in all of the below, it is assumed
that 𝑚, 𝑛 are both odd and positive.)

1. If gcd(𝑎, 𝑛) > 1, then (𝑎𝑛) = 0. Otherwise, (𝑎𝑛) ∈ {−1, 1}.

2. (𝑎𝑏𝑛) = (𝑎𝑛) (
𝑏
𝑛);

3. (𝑎
𝑚𝑛) = (𝑎𝑚) (

𝑎
𝑛);

4. (𝑎𝑛) = (𝑏𝑛) if 𝑎 ≡ 𝑏 mod 𝑛;

5. (−1
𝑛) = (−1)(𝑛−1)/2;

6. (2
𝑛) = (−1)(𝑛2−1)/8

7. (Quadratic Reciprocity) If gcd(𝑎, 𝑛) = 1 and 𝑎 is odd and positive, then

(
𝑎
𝑛)(

𝑛
𝑎)

= (−1)(𝑎−1)(𝑛−1)/4.

Consequently, whenever 𝑎 is odd and positive (perhaps having common factors with 𝑛), we will have

(
𝑎
𝑛)

= (−1)(𝑎−1)(𝑛−1)/4 (
𝑛
𝑎)

.

(In the case that 𝑎, 𝑛 have common factors, both sides will be 0.)

9

Corollary 2.5. Let 𝜎 ∈ {−1, 1}. If 𝑁 is odd and not a square, the number of integers 𝑎 ∈ [1, 𝑁] such that
(𝑎𝑁) = 𝜎 is 𝜑(𝑁)/2.

Proof. Since 𝑁 is not a square, there exists a prime 𝑝0 and odd integer 𝑒0 such that 𝑝𝑒00 divides 𝑁 but 𝑝𝑒0+10
does not. Let the other primes dividing 𝑁 be 𝑝1, 𝑝2,… , 𝑝𝑘 . Then let 𝑏 ∈ [1, 𝑁] be such that 𝑏 is a quadratic
non-residue mod 𝑝0, and 𝑏 ≡ 1 mod 𝑝𝑖 for all 𝑖 > 0. Such 𝑏 exists by the Chinese Remainder Theorem, and
moreover we have for some exponents 𝑒0,… , 𝑒𝑘 that (𝑏𝑁) = (

𝑏
𝑝0)

𝑒0
⋅∏𝑘

𝑖=1 (
𝑏
𝑝𝑖)

𝑒𝑖
= (−1)𝑒0 = −1.

Then by property 2 of Theorem 2.4, 𝑎 ↦ 𝑎𝑏 mod 𝑁 provides a bijection between the elements of{
𝑥 ∈ ℤ∗

𝑁 ∶ (𝑥𝑁) = 1
}
and

{
𝑥 ∈ ℤ∗

𝑁 ∶ (𝑥𝑁) = −1
}
. It follows that these two sets have equal cardinality.

They are disjoint, and in total they comprise 𝜑(𝑁) elements by property 1 of Theorem 2.4, so the conclusion
follows.

2.3 Computational Number Theory

We survey the classical and quantum complexity of various computational number theory problems that
are relevant to this work. Recall the well-known result that if we have a classical circuit that uses 𝐺 gates to
compute a function 𝑓 (𝑥) of an input 𝑥 , we can implement unitary computing |𝑥⟩ |0⟩ ↦ |𝑥⟩ |𝑓 (𝑥)⟩ in 𝑂(𝐺)
gates and 𝑂(𝐺) ancilla qubits [Ben73].

ArithmeticOperations. The fastest known classical circuits for 𝑛-bit integermultiplication use𝑂(𝑛 log 𝑛)
gates [HvdH21], and can be made quantum through standard reversibility techniques [Ben73, Ben89, LS90].
If space is a concern, one can use the multiplier due to [KMY24] which uses no ancilla qubits (i.e. it operates
entirely in-place on the input and output registers), and has 𝑂𝜖(𝑛1+𝜖) gates for any pre-specified 𝜖 > 0.
The depth of multiplication can be reduced to 𝑂(log2 𝑛) with the use of 𝑂(𝑛) ancilla qubits, via a parallel
quantum circuit for the Schönhage-Strassen algorithm which has gate count 𝑂(𝑛) [NZLS23, SS71]. Via
Newton iteration it is possible to perform division with the same complexity as multiplication (up to
constant factors in the gate count and space, and a logarithmic factor in the depth) [Knu98].

Algorithms for Computing Jacobi Symbols and GCDs. The best-known algorithms for computing
Jacobi symbols and GCDs of two 𝑛-bit integers are:

• The extended Euclidean algorithm, which can be classically done in 𝑂(𝑛2) gates [BS96]. Moreover,
this can be done quantumly in 𝑂(𝑛2) gates while also keeping the space down to 𝑂(𝑛) qubits [PZ03].

• The binary GCD algorithm, which has the same asymptotic complexities as extended Euclidean both
classically and quantumly [BS96, PZ03].

However, there is a faster divide-and-conquer algorithm which was conceived by Schönhage [Sch71]
and [BS96, solution to exercise 5.52], and later expounded by Möller [Möl08]. This algorithm runs in 𝑂(𝑛)
gates6 (and hence at most that much space and depth).

6While these algorithms are usually formulated in the Turing machine model, they can be readily transformed into circuits at
the expense of multiplicative polylog(𝑛) overheads [PF79].

10

Classical Algorithms for Factoring. The best-known classical algorithm for factoring arbitrary 𝑛-bit
integers is the general number field sieve [Pol93, LLMP90, BLP93], which runs in heuristic time

exp (𝑂(𝑛1/3(log 𝑛)2/3)) .

However, there has also been extensive research towards generating faster classical algorithms, which
exploit specific number theoretic structure present in the integer 𝑁 < 2𝑛 being factored. For example, if
𝑝 < 2𝑚′ is the smallest divisor of 𝑁 , Lenstra’s elliptic curve method [Len87] recovers 𝑝 in heuristic time:

poly(𝑛) ⋅ exp(𝑂 (
√
𝑚′ log𝑚′

)) .

Furthermore, Mulder [Mul24] presents a classical algorithm specifically for squarefree decomposition,
targeting the same structure as we do with the quantum algorithm in the present work. If 𝑁 = 𝐴2𝐵 with
𝐵 < 2𝑚 squarefree, then Mulder’s algorithm can recover 𝐴, 𝐵 in heuristic time7

poly(𝑛) ⋅ exp (𝑂 (
√
𝑚 log𝑚)) .

Thus, for 𝑛-bit integers of the form 𝑁 = 𝑝2𝑞 with 𝑝, 𝑞 prime and log 𝑞 = 𝑂(𝑛2/3), all known classical
algorithms for factoring 𝑁 require heuristic time

exp (𝑂(𝑛1/3)) .

Finally, we remark that it is well-known that fully factoring an 𝑛-bit integer 𝑁 in the special case where 𝑁
is a prime power can be done in classical poly(𝑛) time. This is because of two straightforward facts: (a) we
can find integers 𝐴, 𝑘 > 1 such that 𝑁 = 𝐴𝑘 if they exist by computing 𝑁 1/𝑘 for all possible values of 𝑘
(and 𝑘max < log𝑁 since 𝑁 = 𝐴𝑘 ≥ 2𝑘); and (b) we can efficiently test whether 𝐴 is prime [AKS04].

QuantumAlgorithms for Factoring. Shor’s algorithm [Sho97] was the first to show that arbitrary 𝑛-bit
integers could be factored using quantum circuits of size 𝑂(𝑛2). However, Shor’s algorithm does not benefit
if 𝑁 has a small prime divisor or small squarefree part, like the classical algorithms by [Len87, Mul24] do.
The same holds of Regev’s [Reg23] improvement on Shor’s algorithm to use 𝑂(𝑛3/2) gates.

To the best of our knowledge, the only polynomial-time8 quantum factoring circuit that benefits from
special structure in 𝑁 is the aforementioned Jacobi factoring circuit by [LPDS12], combined with the
near-linear time algorithms for computing Jacobi symbols [Sch71, BS96, Möl08]. Putting these constructions
together yields a circuit of only 𝑂(𝑛) gates and space for finding a factor of 𝑁 when 𝑁 is not squarefree.
Viewed in this context, one of our contributions is showing that we can further drive down the space and
depth of this circuit when the squarefree part 𝐵 of 𝑁 = 𝐴2𝐵 is much smaller than 𝑁 .

7It may initially seem that this is subsumed by Lenstra’s elliptic curve method [Len87]. However, the constant hidden in the
big 𝑂 is different between the two algorithms: for [Len87] it is

√
2, while for [Mul24] it is 1.

8An alternative approach to factoring with quantum computers is to use quantum subroutines (e.g. Grover search) inside
classical factoring algorithms. The benefits this yields, which can include sublinear qubit count and gains from special structure in
𝑁 , come at the expense of superpolynomial gate count and depth [BHLV17, BBM17, MBV20].

11

2.4 Sums of Phases

2.4.1 Basic Lemmas

Lemma 2.6. For any 𝑥 ∈ ℝ ⧵ ℤ and positive integer 𝑀 , we have:

𝑀−1
∑
𝑘=0

exp (−2𝜋𝑖𝑘𝑥) =
1 − exp(−2𝜋𝑖𝑥𝑀)
1 − exp(−2𝜋𝑖𝑥)

.

Proof. This is just the summation formula for a geometric series. We require 𝑥 ∉ ℤ so that the denominator
of the RHS is non-zero.

Lemma 2.7. For any 𝑥 ∈ ℝ, we have |1 − exp(2𝜋𝑖𝑥)| = 2 ⋅ | sin(𝜋𝑥)|.

Proof. We have:

|1 − exp(2𝜋𝑖𝑥)|2 = (1 − cos(2𝜋𝑥))2 + sin(2𝜋𝑥)2

= 2 − 2 cos(2𝜋𝑥)
= 4 sin2(𝜋𝑥).

Corollary 2.8. For any 𝑥 ∈ ℝ, we have |1 − exp(2𝜋𝑖𝑥)| ≤ 2𝜋 |𝑥 |.

Proof. This is immediate from Lemma 2.7 and the well-known inequality that | sin 𝑥 | ≤ |𝑥 |.

Corollary 2.9. For any 𝑥 ∈ ℝ such that |𝑥 | ≤ 1 − Ω(1), we have |1 − exp(2𝜋𝑖𝑥)| = Ω(|𝑥 |).

Proof. This is immediate from Lemma 2.7 and the fact that | sin 𝑥 | = Ω(|𝑥 |) for 𝑥 ∈ [−𝜋+Ω(1), 𝜋−Ω(1)].

We now combine these results in the following lemma:

Lemma 2.10. For any 𝑥 ∈ ℝ and positive integer 𝑀 such that |𝑥𝑀 | ≤ 1 − Ω(1), we have

|||||

𝑀−1
∑
𝑘=0

exp(−2𝜋𝑖𝑘𝑥)
|||||
= Θ(𝑀).

Proof. First, if 𝑥 ∈ ℤ then each term in the summation will be 1, so the LHS will be exactly 𝑀 . Hence we
assume from now on that 𝑥 ∈ ℝ/ℤ. In this case, the upper bound is straightforward: the LHS is ≤ 𝑀 by a
straightforward triangle inequality. For the lower bound, note that:

|||||

𝑀−1
∑
𝑘=0

exp(−2𝜋𝑖𝑘𝑥)
|||||
=

||||
1 − exp(−2𝜋𝑖𝑥𝑀)
1 − exp(−2𝜋𝑖𝑥)

||||
(Lemma 2.6)

= Ω(
|𝑥𝑀 |)

|1 − exp(−2𝜋𝑖𝑥)|)
(Corollary 2.9)

≥ Ω(𝑀) (Corollary 2.8).

12

2.4.2 Gauss Sums

Here, we state results that essentially imply that the Jacobi symbol is appropriately “pseudorandom” for the
purposes of our algorithm and that by [LPDS12]. We follow the lecture notes by Conrad [Con].

Definition 2.11 (Dirichlet characters). For 𝑚 ∈ ℕ, we say that 𝜒 ∶ ℤ𝑚 → ℂ is a Dirichlet character mod 𝑚
if the following properties all hold:

1. 𝜒 (𝑎) = 0 if and only if gcd(𝑎, 𝑚) > 1.

2. 𝜒 (𝑎𝑏) = 𝜒 (𝑎)𝜒 (𝑏) for all 𝑎, 𝑏 .

Definition 2.12 ((Im)primitive Dirichlet characters ([Con], Definition 3.3)). We say that a Dirichlet character
𝜒 mod 𝑚 is imprimitive if there is a proper divisor 𝑚′ of 𝑚 and a Dirichlet character 𝜒 ′ mod 𝑚′ such that, for
all 𝑎 ∈ ℤ𝑚 such that gcd(𝑎, 𝑚) = 1, we have 𝜒 (𝑎) = 𝜒 ′(𝑎 mod 𝑚′).

If 𝜒 is not imprimitive, we call it primitive.

Before continuing, wemake a simple observation that the Jacobi symbol is a primitive Dirichlet character
modulo any squarefree integer:

Lemma 2.13. If 𝑚 > 1 is odd and squarefree, then the Jacobi symbol 𝜒 (𝑎) = (𝑎𝑚) is a primitive Dirichlet
character mod 𝑚.

Proof. We know 𝜒 is a Dirichlet character from properties 1 and 2 of Theorem 2.4. It remains to check that
it is primitive.

To this end, consider any proper divisor 𝑚′ of 𝑚 and a character 𝜒 ′ mod 𝑚′. Let 𝑚 = 𝑝1…𝑝𝑟 for distinct
primes 𝑝1,… , 𝑝𝑟 (since 𝑚 is squarefree); since 𝑚′ is a proper divisor of 𝑚, assume without loss of generality
that 𝑝1 does not divide 𝑚′.

Now consider 𝑎 ∈ ℤ𝑚 such that 𝑎 is a quadratic non-residue mod 𝑝1 and is congruent to 1 modulo
𝑝2,… , 𝑝𝑟 . Such 𝑎 exists by the Chinese Remainder Theorem. Then 𝜒 (𝑎) = −1. On the other hand, since 𝑝1
does not divide𝑚′ we have 𝑎 mod 𝑚′ = 1 ⇒ 𝜒 ′(𝑎 mod 𝑚′) = 𝜒 ′(1) = 1. (The final step is because we have
𝜒 ′(1) = 𝜒 ′(1 ⋅ 1) = 𝜒 ′(1)2 and 𝜒 ′(1) ≠ 0, forcing 𝜒 ′(1) = 1.) Hence for this 𝑎, we have 𝜒 (𝑎) ≠ 𝜒 ′(𝑎 mod 𝑚′).
Such 𝑎 exists for any 𝑚′, 𝜒 ′, so 𝜒 is indeed primitive.

Definition 2.14 (Gauss sums ([Con], Definition 3.1)). For a Dirichlet character 𝜒 on ℤ𝑚, we define its Gauss
sum to be

𝐺(𝜒) = ∑
𝑎∈ℤ𝑚

𝜒 (𝑎) exp(
2𝜋𝑖𝑎
𝑚) .

Theorem 2.15 ([Con], Theorem 3.12). For any primitive Dirichlet character 𝜒 on ℤ𝑚, we have |𝐺(𝜒)| =
√
𝑚.

This allows us to prove the final result we need. For this, we first need a preliminary lemma:

Lemma 2.16. Let 𝑚 ∈ ℕ be squarefree with 𝑟 prime divisors. Then we have

∑
𝑗∈ℤ𝑚∶gcd(𝑗 ,𝑚)=1

exp(
2𝜋𝑖𝑗
𝑚) = (−1)𝑟 .

13

Proof. It is well-known that the LHS and RHS are both equal to the Möbius symbol 𝜇(𝑚) [HW75, Theorem
271].

We next state the specific form of the Gauss sum bound that we will need. We refer the reader to
Section 1.1 for an overview of where these sums of phases come from, and reiterate the intuition here.
Informally, if we want to recover 𝑄 given 𝑁 = 𝑃2𝑄 as input, we will end up with a superposition of several
periodic signals with period 𝑄. The below lemma (with 𝑚 = 𝑄) examines the result of applying a QFT to
this superposition, and tells us that these signals will essentially interfere like a randomly chosen collection
of periodic signals.

Lemma 2.17. Suppose 𝑚 is odd and squarefree and 𝑘 ∈ ℤ𝑚 is such that gcd(𝑘, 𝑚) = 1. Then for any
𝜎 ∈ {−1, 1}, we have:

||||||
∑

𝑗∈ℤ𝑚∶(𝑗𝑚)=𝜎
exp(−

2𝜋𝑖𝑗𝑘
𝑚)

||||||
=

√
𝑚
2

+ 𝑂(1).

Proof. First, note by a simple change of variables that

∑
𝑗∈ℤ𝑚∶(𝑗𝑚)=𝜎

exp(−
2𝜋𝑖𝑗𝑘
𝑚) = ∑

𝑗∈ℤ𝑚∶(𝑗𝑚)=𝜎′

exp(
2𝜋𝑖𝑗
𝑚) ,

where 𝜎′ = 𝜎 ⋅ (−𝑘
𝑚) ∈ {−1, 1}. Denote the RHS of this expression by 𝑆𝜎′ , then note that on the one hand, by

Lemma 2.16, we have 𝑆1 + 𝑆−1 = (−1)𝑟 . On the other hand, we have:

|𝑆1 − 𝑆−1| =
|||||
∑
𝑗∈ℤ𝑚

(
𝑗
𝑚) exp(

2𝜋𝑖𝑗
𝑚)

|||||
=

√
𝑚,

by Theorem 2.15. So for any 𝜎 ∈ {−1, 1}, we have:

|𝑆𝜎 | =
1
2
|(𝑆1 + 𝑆−1) + (𝑆𝜎 − 𝑆−𝜎)|

=
√
𝑚
2

+ 𝑂(1),

as desired.

3 Factoring Squarefull Integers

In this section we prove the following theorem which refines the result by [LPDS12]. Crucially, we build
on [LPDS12], showing that it suffices for the initial superposition to extend only to poly(𝐵max), rather than
poly(𝑁) (where 𝐵max is an upper bound on 𝐵, explicitly defined in the theorem statement below). We will
leverage this to factor a large class of integers with sublinear space and depth in Section 4.

14

Theorem 3.1. Let 𝑁 , 𝑛 be positive integers such that 2𝑛−1 ≤ 𝑁 < 2𝑛, and let 𝐴, 𝐵 be the unique positive
integers such that 𝐵 is squarefree and 𝑁 = 𝐴2𝐵. We will further assume that 𝑁 is neither squarefree nor a
square i.e. 𝐴, 𝐵 > 1. Suppose there exists a quantum circuit that implements the operation

|𝑥⟩ |0𝑆+2⟩ ↦ |𝑥⟩ |||(
𝑥
𝑁)⟩ |0𝑆⟩

using 𝑆 ∶= 𝑆(𝓁, 𝑛) ancilla qubits with 𝐺(𝓁, 𝑛) gates and 𝐷(𝓁, 𝑛) depth, for any positive integer 𝑥 such that
𝑥 < 2𝓁.

Suppose we are also given an upper bound 𝐵max on 𝐵, and define 𝓁 ∶= ⌊2 log𝐵max⌋ + 𝜔(1). Then there is a
quantum algorithm that, given as input 𝑁 and 𝐵max, outputs either 𝐵 or a prime dividing 𝑁 , with probability
Ω(1). The quantum circuit uses

𝐺(𝓁, 𝑛) + 𝑂(𝓁 log 𝓁)

gates, 𝐷(𝓁, 𝑛) +𝑂(𝓁) depth, and 𝑆(𝓁, 𝑛) + 𝓁+ 2 qubits, and any classical pre/post-processing is polynomial-time.

Beforewe prove the theorem, notice that plugging in the Jacobi symbol algorithm due to [Sch71, BS96,Möl08]
(discussed in Section 2.3) and simply setting 𝐵max = 𝑁 immediately yields the following corollary:9

Corollary 3.2 ([LPDS12, Sch71]). Let 𝑁 ,𝐴, 𝐵, 𝑛 be as in Theorem 3.1. Then there exists a quantum algorithm
that, given as input 𝑁 , outputs either 𝐵 or a prime dividing 𝑁 , with probability Ω(1). The quantum circuit
uses 𝑂(𝑛) gates.

We now turn to the proof of Theorem 3.1. Our algorithm is detailed in Algorithm 3.1 and very closely follows
Shor’s period-finding algorithm [Sho97]; the main difference is that we will end up with a superposition of
multiple periodic signals with the same period rather than just one periodic signal. Nevertheless, we can
argue using Gauss sums (see Section 2.4.2) that taking a QFT with this “somewhat periodic” signal still
suffices to factor 𝑁 .

We first address efficiency, then turn to correctness. We have the following costs:

• The uniform superposition over [1, 2𝓁] can be initialized in depth 𝑂(1) and gates 𝑂(𝓁), using no
ancilla qubits.

• The Jacobi symbol computation can be carried out in depth 𝐷(𝓁, 𝑛), gates 𝐺(𝓁, 𝑛), and space 𝑆(𝓁, 𝑛) by
supposition.

• For the QFT mod 2𝓁, we rely on Coppersmith’s 𝑜(1)-approximate QFT [Cop02], which uses 𝑂(𝓁 log 𝓁)
gates, 𝑂(𝓁) depth, and no ancilla qubits.

As stated at the beginning of Algorithm 3.1, let 𝑐 > 1 be a constant parameter. We will assume
throughout this section that 𝑁 = 𝐴2𝐵, where 𝐵 is squarefree, 𝐴, 𝐵 > 1, and any prime divisor of 𝐴, 𝐵 is
≥ 𝑛𝑐 . In our calculations, we will sometimes use big-𝑂 notation to denote an arbitrary complex number
within a certain magnitude i.e. the notation 𝑂(𝑡) denotes some 𝑧 ∈ ℂ such that |𝑧| ≤ 𝑂(𝑡).

9We note that the original paper by [LPDS12] does not appear to state a result using Schönhage’s near-linear size Jacobi algo-
rithm [Sch71]; rather, they work with the better-known quadratic-time algorithms for computing the Jacobi symbol. Nevertheless,
we credit [LPDS12] with this result since this result does essentially follow directly from their analysis (they need only set 𝓁 = Θ(𝑛)
in Theorem 3.1).

15

Algorithm 3.1: The Jacobi Factoring Circuit for Squarefull Integers
Input: Positive integer 𝑁 = 𝐴2𝐵 and a bound 𝐵max ≤ 𝑁 such that 𝐵 ∈ [2, 𝐵max] is squarefree.
Output: Either the value of 𝐵, or a prime divisor 𝑝 of 𝑁 (with probability Ω(1)).

1. First, we dispose of easy cases classically (in poly(𝑛) time). Let 𝑐 > 1 be some real constant parameter.
If 𝑁 has any prime divisor ≤ 𝑛𝑐 , output that prime and terminate. We may hence assume from now
on that all prime divisors of 𝐴, 𝐵 are > 𝑛𝑐 , and hence also 𝐵max ≥ 𝑛𝑐 .

2. Set 𝓁 ∶= ⌊2 log𝐵max⌋ + 1 and 𝑆 ∶= 𝑆(𝓁, 𝑛).

3. Initialize a uniform superposition
1

2𝓁/2
2𝓁

∑
𝑥=1

|𝑥⟩ |0𝑆+2⟩ .

4. Compute the Jacobi symbol (𝑥𝑁) in superposition, to obtain the following state:

1
2𝓁/2

2𝓁

∑
𝑥=1

|𝑥⟩ |||(
𝑥
𝑁)⟩ |0𝑆⟩ .

5. Measure the register containing (𝑥𝑁) to obtain a value 𝜎 ∈ {−1, 0, 1}. If 𝜎 = 0, abort and terminate.
Otherwise, we proceed as follows:

• Apply a QFT mod 2𝓁 to the 𝑥 register, and measure to obtain an integer 𝑥∗ ∈ [0, 2𝓁 − 1].
• For the classical post-processing, use the continued fraction expansion of 𝑥∗2𝓁 (as in
Shor [Sho97]; see [HW75, Chapter X] for details) to find positive integers 𝑋1 and 𝑋2 such that
𝑋2 ≤ 𝐵max and

|||
𝑥∗
2𝓁 −

𝑋1
𝑋2

||| is minimal. Output 𝑋2 and terminate. (We will show that with
probability Ω(1), we will in fact have 𝑋2 = 𝐵.)

16

It now remains to prove the correctness of Algorithm 3.1. To do this, we first prove a preliminary
technical lemma, then turn our attention to proving the theorem. Let us briefly motivate the need for
this technical lemma. Ideally we would like to be able to say that for any 𝑥 in our superposition, we have
(𝑥𝑁) = (𝑥𝐴)

2
(𝑥𝐵) = (𝑥𝐵), and hence after measuring we end up with a superposition over values 𝑥 such

that (𝑥𝐵) = 𝜎. The problem is that this is only true if (𝑥𝐴) ∈ {−1, 1}. This is true most of the time, but there
will be a small fraction of inputs 𝑥 (specifically, those that share common factors with 𝐴 but not 𝐵) such
that (𝑥𝐵) ∈ {−1, 1} but (𝑥𝐴) = 0 ⇒ (𝑥𝑁) = 0. The following lemma informally says that because there are
not many such 𝑥’s, we can safely ignore this technicality: even though our algorithm prepares the state
|𝜓2⟩, we can safely pretend that it in fact prepares the simpler state |𝜓1⟩ (by a trace distance argument).

Lemma 3.3. Let 𝑀 = Ω(𝐵𝑛𝑐) be some parameter. Let 𝜎 ∈ {−1, 1}, define |𝜓1⟩ and |𝜓2⟩ to be the following
unnormalized states:

|𝜓1⟩ = ∑
1≤𝑥≤𝑀
(𝑥𝐵)=𝜎

|𝑥⟩

|𝜓2⟩ = ∑
1≤𝑥≤𝑀
(𝑥𝐵)=𝜎

gcd(𝑥,𝑁)=1

|𝑥⟩ .

Then the corresponding normalized states are 𝑂(𝑛(1−𝑐)/4)-close in trace distance. Moreover, we have ‖|𝜓1⟩‖22 =
𝑀𝜑(𝐵)
2𝐵 (1 + 𝑜(1)). (Note that these two states may not be identical, since there could be integers 𝑥 that share a

common factor with 𝑁 but not 𝑏 .)

Proof. We will use [Che24, Lemma 2.11]. We first estimate ‖|𝜓1⟩‖2. We have:

‖|𝜓1⟩‖22 =
|||

{
𝑥 ∈ [1, 𝑀] ∶ (

𝑥
𝐵)

= 𝜎
}|||

= ∑
𝑗∈[1,𝐵−1]∶(𝑗𝐵)=𝜎

|{𝑥 ∈ [1, 𝑀] ∶ 𝑥 ≡ 𝑗 mod 𝐵}|

= ∑
𝑗∈[1,𝐵−1]∶(𝑗𝐵)=𝜎

(⌊
𝑀 − 𝑗
𝐵 ⌋ − ⌈

1 − 𝑗
𝐵 ⌉ + 1) (Proposition 2.1)

= ∑
𝑗∈[1,𝐵−1]∶(𝑗𝐵)=𝜎

(
𝑀 − 𝑗
𝐵

−
1 − 𝑗
𝐵

+ 𝑂(1))

=
𝑀 − 1
𝐵

⋅
𝜑(𝐵)
2

+ 𝑂(𝜑(𝐵)) (Corollary 2.5)

=
𝑀𝜑(𝐵)
2𝐵

(1 + 𝑜(1)) (noting that 𝑀 = 𝜔(𝐵)).

Next, we upper bound ‖|𝜓1⟩ − |𝜓2⟩‖2. Let 𝑝1,… , 𝑝𝑟 be the distinct primes dividing 𝑁 but not 𝐵. Note that 𝑟
must be at most 𝑛, and moreover by assumption we have 𝑝𝑖 ≥ 𝑛𝑐 for all 𝑖. With this in mind, we have:

‖|𝜓1⟩ − |𝜓2⟩‖22 =
|||

{
𝑥 ∈ [1, 𝑀] ∶ (

𝑥
𝐵)

= 𝜎 and gcd(𝑥, 𝑁) > 1
}|||

≤
𝑟
∑
𝑖=1

|||

{
𝑥 ∈ [1, 𝑀] ∶ (

𝑥
𝐵)

= 𝜎 and 𝑝𝑖 ∣ 𝑥
}|||

17

=
𝑟
∑
𝑖=1

∑
𝑗∈[1,𝐵−1]∶(𝑗𝐵)=𝜎

|𝑥 ∈ [1, 𝑀] ∶ 𝑥 ≡ 𝑗 mod 𝐵 and 𝑥 ≡ 0 mod 𝑝𝑖| .

For each 𝑖, 𝐵 and 𝑝𝑖 are relatively prime so the conditions 𝑥 ≡ 𝑗 mod 𝐵 and 𝑥 ≡ 0 mod 𝑝𝑖 can be condensed
into one condition that 𝑥 ≡ 𝑥𝑖 mod 𝐵𝑝𝑖 by the Chinese Remainder Theorem (for some unique residue
𝑥𝑖 ∈ ℤ𝐵𝑝𝑖). With this in mind, we continue as follows:

‖|𝜓1⟩ − |𝜓2⟩‖22 =
𝑟
∑
𝑖=1

∑
𝑗∈[1,𝐵−1]∶(𝑗𝐵)=1

|𝑥 ∈ [1, 𝑀] ∶ 𝑥 ≡ 𝑗 mod 𝐵 and 𝑥 ≡ 0 mod 𝑝𝑖|

=
𝑟
∑
𝑖=1

∑
𝑗∈[1,𝐵−1]∶(𝑗𝐵)=1

|𝑥 ∈ [1, 𝑀] ∶ 𝑥 ≡ 𝑥𝑖 mod 𝐵𝑝𝑖|

=
𝑟
∑
𝑖=1

∑
𝑗∈[1,𝐵−1]∶(𝑗𝐵)=𝜎

(⌊
𝑀 − 𝑥𝑖
𝐵𝑝𝑖 ⌋ − ⌈

1 − 𝑥𝑖
𝐵𝑝𝑖 ⌉ + 1)

≤
𝑟
∑
𝑖=1

∑
𝑗∈[1,𝐵−1]∶(𝑗𝐵)=𝜎

(
𝑀 − 1
𝐵𝑝𝑖

+ 1)

≤ 𝑛 ⋅
𝜑(𝐵)
2

⋅(
𝑀 − 1
𝐵𝑛𝑐

+ 1) (𝑟 ≤ 𝑛; Corollary 2.5)

= 𝑂 (
𝑀𝜑(𝐵)
𝐵𝑛𝑐−1) (since 𝑀 = Ω(𝐵𝑛𝑐)).

It then follows by [Che24, Lemma 2.11] that the trace distance we are concerned with is at most:

𝑂
(

√
‖|𝜓1⟩ − |𝜓2⟩‖2

‖|𝜓1⟩‖2)
≤ 𝑂

(
4

√
𝑀𝜑(𝐵)/(𝐵𝑛𝑐−1)
𝑀𝜑(𝐵)/(2𝐵))

≤ 𝑂 (𝑛(1−𝑐)/4) ,

as desired.

We now prove Theorem 3.1. Our proof breaks down into a few steps: we will first show that the measured
Jacobi symbol 𝜎 will be nonzero most of the time, before setting up some notation and writing out the state
computed by the algorithm after the QFT. We then lower bound the amplitude this state places on certain
values 𝑦 ∈ [0, 2𝓁 − 1], and use this to complete the proof.

Step 1: disposing of the case where 𝜎 = 0 and the algorithm aborts. To do this, we will simply
argue that this event occurs with probability 𝑜(1):

Lemma 3.4. We have Pr[𝜎 = 0] = 𝑜(1).

Proof. Note that the probability of 𝜎 = 0 is exactly

1
2𝓁

||
{
𝑥 ∈ [1, 2𝓁] ∶ gcd(𝑥, 𝑁) > 1

}|| .

18

Our analysis to bound this is similar to the proof of Lemma 3.3. Let 𝑝1,… , 𝑝𝑟 be the distinct primes dividing
𝑁 . We must have 𝑟 ≤ 𝑛 and 𝑝𝑖 ≥ 𝑛𝑐 for all 𝑖. With this in mind, we have:

1
2𝓁

||
{
𝑥 ∈ [1, 2𝓁] ∶ gcd(𝑥, 𝑁) > 1

}|| ≤
1
2𝓁

𝑟
∑
𝑖=1

||
{
𝑥 ∈ [1, 2𝓁] ∶ 𝑥 ≡ 0 mod 𝑝𝑖

}||

=
1
2𝓁

𝑟
∑
𝑖=1⌊

2𝓁

𝑝𝑖 ⌋

≤
𝑟
∑
𝑖=1

1
𝑝𝑖

≤
𝑟
𝑛𝑐

≤ 𝑛1−𝑐 ,

which is 𝑜(1) as claimed.

Remark. Note that aborting in the 𝜎 = 0 case is unnecessary if the goal is just to output some nontrivial
factor of 𝑁 ; if we get 𝜎 = 0, the resulting superposition would be over integers 𝑥 such that gcd(𝑥, 𝑁) > 1, so
all we need to do is measure the 𝑥 register and take the gcd of the result with 𝑁 (the probability of the bad
case that we end up with 𝑁 can be shown to be 𝑜(1)). For convenience, we rule out the possibility of 𝜎 = 0
(which happens with small probability) and focus on establishing a stronger claim about what our algorithm
accomplishes, namely that it either outputs 𝐵 or a prime dividing 𝑁 . This in turn enables us to prove that this
algorithm can be used for fully factoring a large class of integers in Section 5.

Step 2: notation and setup. By Lemma 3.4, we may assume going forward that 𝜎 ∈ {−1, 1}. In this case,
we will use the observation that for any 𝑥 , such that gcd(𝑥, 𝑁) = 1, we have

(
𝑥
𝑁) = (

𝑥
𝐴)

2

(
𝑥
𝐵)

= (
𝑥
𝐵)

,

since (𝑥𝐴) ∈ {−1, 1}. Thus in this case, we have a state proportional to

|𝜓2⟩ = ∑
1≤𝑥≤2𝓁
(𝑥𝐵)=𝜎

gcd(𝑥,𝑁)=1

|𝑥⟩ .

Noting that 2𝓁 ≥ 𝐵2 = Ω(𝐵𝑛𝑐), we can use Lemma 3.3 to change this to the state

|𝜓1⟩ =

√
(2 + 𝑜(1))𝐵
2𝓁𝜑(𝐵)

∑
1≤𝑥≤2𝓁
(𝑥𝐵)=𝜎

|𝑥⟩ ,

incurring a trace distance loss of only 𝑂(𝑛(1−𝑐)/4) = 𝑜(1). The normalization factor follows from Lemma
3.3. After the QFT, we obtain the state:

√
(2 + 𝑜(1))𝐵
22𝓁𝜑(𝐵)

2𝓁−1
∑
𝑦=0

⎛
⎜
⎜
⎜
⎜
⎝

∑
1≤𝑥≤2𝓁
(𝑥𝐵)=𝜎

exp(−
2𝜋𝑖𝑥𝑦
2𝓁)

⎞
⎟
⎟
⎟
⎟
⎠

|𝑦⟩ . (2)

19

At a high level, our analysis from this point mirrors the analysis by Shor [Sho97] of his period-finding
procedure; we would like to show that this state places Ω(1) weight on states |𝑦⟩ such that 𝑦/2𝓁 is close to
a multiple of 1/𝐵 with numerator relatively prime to 𝐵.

Step 3: lower bounding the amplitude on |𝑦⟩. In this section, we will lower bound the magnitude of
the amplitude on |𝑦⟩ in Equation (2). Let 𝑀 = 2𝓁 and 𝜖 = 1

2𝑀 (this will be our target closeness bound). Note
then by definition of 𝓁 (in Algorithm 3.1) that 𝑀 > 𝐵2max. It will be convenient for us to write 𝑀 = 𝑞𝐵 + 𝑟 ,
where 0 < 𝑟 < 𝐵 (we can assume 𝑀 is not divisible by 𝐵 since 𝐵 > 1 is odd).

Lemma 3.5. Consider a fixed 𝑦 ∈ [0, 𝑀 − 1] such that there exists an integer 𝑘 ∈ [1, 𝐵 − 1] and 𝛿 ∈ [−𝜖, 𝜖]
such that gcd(𝑘, 𝐵) = 1 and 𝑦

𝑀 = 𝑘
𝐵 + 𝛿. (Note in particular that this means 𝑦 ≠ 0.) Then we have:

||||||||

∑
1≤𝑥≤𝑀
(𝑥𝐵)=𝜎

exp(−
2𝜋𝑖𝑥𝑦
𝑀)

||||||||

≥ Ω(𝑞
√
𝐵).

Proof. The high-level idea is to use the fact that 𝑦
𝑀 ≈ 𝑘

𝐵 to replace 𝑦
𝑀 in the LHS with 𝑘

𝐵 . This will of course
not be completely correct, but we will carefully track the errors that arise from doing this. This will allow
us to obtain the desired lower bound using a Gauss sum modulo 𝐵 (see Lemma 2.17). We proceed as follows:

∑
1≤𝑥≤𝑀
(𝑥𝑏)=𝜎

exp(−
2𝜋𝑖𝑥𝑦
𝑀) = ∑

𝑗∈[1,𝐵−1]
(𝑗𝐵)=𝜎

∑
1≤𝑥≤𝑀
𝑥≡𝑗 mod 𝐵

exp(−
2𝜋𝑖𝑥𝑦
𝑀)

= ∑
𝑗∈[1,𝐵−1]
(𝑗𝐵)=𝜎

∑
0≤𝑙≤⌊𝑀−𝑗

𝐵 ⌋
exp(−

2𝜋𝑖(𝑙𝐵 + 𝑗)𝑦
𝑀) (writing 𝑥 = 𝑙𝐵 + 𝑗)

= ∑
𝑗∈[1,𝐵−1]
(𝑗𝐵)=𝜎

⎡
⎢
⎢
⎣
exp(−

2𝜋𝑖𝑗𝑦
𝑀) ⋅ ∑

0≤𝑙≤⌊𝑀−𝑗
𝐵 ⌋

exp(−
2𝜋𝑖𝑙𝐵𝑦
𝑀)

⎤
⎥
⎥
⎦

(3)

We now analyze the inner sum. Note that 𝑀 − 𝑗 = 𝑞𝐵 + 𝑟 − 𝑗 ⇒ ⌊𝑀−𝑗
𝐵 ⌋ ∈ {𝑞 − 1, 𝑞}. We hence have:

⌊𝑀−𝑗
𝐵 ⌋

∑
𝑙=0

exp(−
2𝜋𝑖𝑙𝐵𝑦
𝑀) =

𝑞−1

∑
𝑙=0

exp(−
2𝜋𝑖𝑙𝐵𝑦
𝑀) + 𝑂(1)

=
𝑞−1

∑
𝑙=0

exp(−2𝜋𝑖𝑙𝐵(
𝑘
𝐵
+ 𝛿)) + 𝑂(1)

=
𝑞−1

∑
𝑙=0

exp (−2𝜋𝑖𝑙𝐵𝛿) + 𝑂(1)

= 𝑅 + 𝑂(1),

20

where we define 𝑅 ∶= ∑𝑞−1
𝑙=0 exp(−2𝜋𝑖𝑙𝐵𝛿). Since |𝑞𝐵𝛿| ≤ 𝑞𝐵𝜖 ≤ 1/2, we have by Lemma 2.10 that

|𝑅| = Θ(𝑞). Bearing this in mind, we plug this into and continue from Equation (3) as follows:

∑
𝑗∈[1,𝐵−1]
(𝑗𝐵)=𝜎

⎡
⎢
⎢
⎣
exp(−

2𝜋𝑖𝑗𝑦
𝑀) ⋅ ∑

0≤𝑙≤⌊𝑀−𝑗
𝐵 ⌋

exp(−
2𝜋𝑖𝑙𝐵𝑦
𝑀)

⎤
⎥
⎥
⎦

= ∑
𝑗∈[1,𝐵−1]
(𝑗𝐵)=𝜎

[exp(−
2𝜋𝑖𝑗𝑦
𝑀) ⋅ (𝑅 + 𝑂(1))]

=𝑅 ⋅

⎡
⎢
⎢
⎢
⎢
⎣

∑
𝑗∈[1,𝐵−1]
(𝑗𝐵)=𝜎

exp(−
2𝜋𝑖𝑗𝑦
𝑀)

⎤
⎥
⎥
⎥
⎥
⎦

+ 𝑂(𝜑(𝐵))

=𝑅 ⋅

⎡
⎢
⎢
⎢
⎢
⎣

∑
𝑗∈[1,𝐵−1]
(𝑗𝐵)=𝜎

exp(−2𝜋𝑖𝑗 (
𝑘
𝐵
+ 𝛿))

⎤
⎥
⎥
⎥
⎥
⎦

+ 𝑂(𝜑(𝐵))

=𝑅 ⋅

⎡
⎢
⎢
⎢
⎢
⎣

∑
𝑗∈[1,𝐵−1]
(𝑗𝐵)=𝜎

exp(−
2𝜋𝑖𝑗𝑘
𝐵) (1 + 𝑂(𝐵𝜖))

⎤
⎥
⎥
⎥
⎥
⎦

+ 𝑂(𝜑(𝐵)) (Corollary 2.8)

=𝑅 ⋅

⎡
⎢
⎢
⎢
⎢
⎣

⎛
⎜
⎜
⎜
⎜
⎝

∑
𝑗∈[1,𝐵−1]
(𝑗𝐵)=𝜎

exp(−
2𝜋𝑖𝑗𝑘
𝐵)

⎞
⎟
⎟
⎟
⎟
⎠

+ 𝑂(𝐵𝜑(𝐵)𝜖)

⎤
⎥
⎥
⎥
⎥
⎦

+ 𝑂(𝜑(𝐵))

=𝑅 ⋅ [

√
𝐵
2

+ 𝑂(1)] + 𝑂(𝜑(𝐵)) (Lemma 2.17).

The final step follows from Gauss sums; we state their key properties (including Lemma 2.17) in Section 2.4.2.
We also use the fact that 𝐵𝜑(𝐵)𝜖 ≤ 𝐵2/𝑀 ≤ 1. Finally, we lower bound the magnitude of this amplitude as
follows:

|||||
𝑅 ⋅ [

√
𝐵
2

+ 𝑂(1)] + 𝑂(𝜑(𝐵))
|||||

≥
|||||
𝑅 ⋅

√
𝐵
2

|||||
− 𝑂 (|𝑅|) − 𝑂(𝜑(𝐵))

≥Ω(𝑞
√
𝐵) − 𝑂(𝑞) − 𝑂(𝜑(𝐵)) (since 𝑅 = Θ(𝑞))

≥Ω(𝑞
√
𝐵),

as desired. To justify the final step, note that 𝑞
√
𝐵 ≥ 𝑞

√
𝑛𝑐 ≫ 𝑞 ≥ 𝐵 ≥ 𝜑(𝐵).

Proof of Theorem 3.1. Call 𝑦 ∈ [0, 𝑀−1] successful if there exists an integer 𝑘 ∈ [1, 𝐵−1] and real 𝛿 ∈ [−𝜖, 𝜖]
such that gcd(𝑘, 𝐵) = 1 and 𝑦

𝑀 = 𝑘
𝐵 +𝛿. By Lemma 3.5 and Equation (2), for any successful 𝑦, the probability

21

that we measure and get the classical outcome 𝑥∗ = 𝑦 is at least

Ω(
2𝐵

𝑀2𝜑(𝐵)
⋅ (𝑞

√
𝐵)2) = Ω(

𝑞2𝐵2

𝑀2𝜑(𝐵))
≥ Ω(

1
𝜑(𝐵))

.

Next, we argue that there are at least 𝜑(𝐵) successful values of 𝑦. Indeed, for any 𝑘 ∈ [1, 𝐵 − 1] such that
gcd(𝑘, 𝐵) = 1, consider the interval [𝑘𝐵 − 𝜖, 𝑘𝐵 + 𝜖] ⊂ (0, 1). It has width 2𝜖 = 1

𝑀 , so there must be at least
one multiple of 1/𝑀 in this interval i.e. there exists an integer 𝑦𝑘 such that |𝑦𝑘𝑀 − 𝑘

𝐵 | ≤ 𝜖 (which in turn
implies 𝑦𝑘/𝑀 ∈ (0, 1) ⇒ 𝑦𝑘 ∈ [1, 𝑀 − 1]); in other words, 𝑦𝑘 is successful. Moreover, we claim that 𝑦𝑘 ≠ 𝑦𝑘′
for any 𝑘 ≠ 𝑘′. If this were not true, then the triangle inequality would force |||

𝑘
𝐵 − 𝑘′

𝐵
||| ≤ 2𝜖 ⇒ 1

𝐵 ≤ 2𝜖,
which is false. Since there are 𝜑(𝐵) many such values of 𝑘, there are at least 𝜑(𝐵) distinct successful values
of 𝑦, each of which we obtain with probability ≥ Ω(1

𝜑(𝐵)). It follows that with Ω(1) probability, we will
obtain such a 𝑦, as claimed.

Now to finish, we have some integer 𝑦 = 𝑥∗ such that ||
𝑦
𝑀 − 𝑘

𝐵
|| ≤

1
2𝑀 < 1

2𝐵2max
. It follows that 𝑘/𝐵 is the

closest fraction to 𝑦
𝑀 with denominator at most 𝐵max. Hence our algorithm will obtain 𝑋1 = 𝑘 and 𝑋2 = 𝐵

in the final step, and output the denominator 𝐵. This completes the proof of the theorem.

Remark. Algorithm 3.1, and its associated Theorem 3.1, receive as input a bound 𝐵max on the size of 𝐵, the
squarefree part of the input integer 𝑁 . Here we note that if 𝐵max is not known, the algorithm can still be used
to find 𝐵 (or a prime dividing 𝑁) with high probability, and with roughly the same quantum circuit sizes,
as follows. Via Lemma 5.2, for any 𝐵max > 𝐵 the probability of success of the algorithm can be boosted to
1 − 𝜖 using 𝑂(log 1/𝜖) calls to Algorithm 3.1 and a small amount of classical computation. Starting with
some 𝐵max = 𝑂(1), this larger algorithm can then be iterated, doubling log𝐵max every iteration until a value
that divides 𝑁 is found and the algorithm halts. The number of iterations is expected to be log log𝐵 and with
high probability the algorithm will halt with log𝐵max < 2 log𝐵 on the last iteration. This implies that the
complexity of the algorithm will be only worse by a constant factor if 𝐵max is not supplied.

Remark. In Algorithm 3.1, we take a superposition over all 𝑥 < 𝑂(𝐵2max) in order to recover the period
of a periodic function with period ≤ 𝐵max. This is in direct analogy with Shor’s original period-finding
subroutine [Sho97]: to factor an integer 𝑁 , Shor considers a periodic function with period ≤ 𝑁 and takes a
superposition over all inputs 𝑥 < 𝑂(𝑁 2) to recover this period.

Works subsequent to Shor’s original paper [Sei01, EH17] show that it can suffice to use a superposition only
over all 𝑥 < 𝑂(𝑁 1+𝜖) for any 𝜖 > 0. The circuit must then be run independently 𝑂(1/𝜖) times; the period is
subsequently recovered using a more sophisticated classical post-processing procedure. Analogously, we believe
it is likely possible to modify Algorithm 3.1 to only take the superposition up to 𝑂(𝐵1+𝜖max), and run the resulting
circuit 𝑂(1/𝜖) times and classically post-process the results as in [Sei01]. This would enable constant-factor
improvements to the space and depth, which would be important when instantiating this circuit in practice as a
proof of quantumness (see Corollary 4.8).

4 Algorithm for Computing Jacobi Symbols

In this section we present one of our core technical contributions: an algorithm to compute the Jacobi
symbol of 𝑥 mod 𝑁 , where 𝑁 is classical and 𝑥 could be in superposition. We remark that our algorithm
is also readily adaptable to computing the gcd of 𝑥 and 𝑁 , much like other algorithms for computing the

22

Jacobi symbol [Sch71, BS96, Möl08]. When 𝑁 < 2𝑛 and 𝑥 < 2𝑚, our construction requires circuit-size
𝑂(𝑛) and space 𝑂(𝑚), which we can exploit due to our analysis in Section 3 which allows 𝑚 to be smaller
than 𝑂(𝑛). In contrast, the 2012 result of Li, Peng, Du and Suter [LPDS12], together with near-linear time
algorithms due to [Sch71, BS96, Möl08] for computing Jacobi symbols, uses gates and space 𝑂(𝑛) (see
Corollary 3.2 for a formal statement of this result by [LPDS12]). Our improvements are thus along the axes
of space and, as we will see in Section 4.2, depth.

We begin with an abstract algorithm (formalized in Theorem 4.1) that makes black-box use of circuits
for multiplying and for computing the Jacobi symbol between equally-sized inputs. We then instantiate the
circuits using explicit constructions for these subroutines [Sch71, BS96, Möl08, NZLS23] in Section 4.2.

4.1 Abstract Construction

Let us first summarize the main idea of our construction; we refer the reader to the technical overview in
Section 1.2 for further discussion of our high-level approach.

The standard algorithms for computing the Jacobi symbol are the extended Euclidean algorithm and
the binary GCD; out of the box, neither one achieves the efficiency we desire, in particular when one input
is much smaller than the other. Indeed, the extended Euclidean algorithm requires space proportional to
the length of the larger input, and the binary GCD’s circuit size is quadratic in the length of the larger
input. Nevertheless, we can draw inspiration from an observation about the extended Euclidean algorithm:
after just one iteration, the larger input is reduced to roughly the same size as the smaller one, and the
entire rest of the computation has cost that scales only with the length of the smaller input. Unfortunately,
it is not clear how to implement that first step—an integer division with remainder—in sublinear space. Our
algorithm provides an alternative, which is both space- and depth-efficient, to this first step.

Our approach is to find a multiple 𝑘𝑥 of 𝑥 such that both of the following are true (where we let
𝑚 ≥ ⌈log 𝑥⌉): (a) 𝑁 − 𝑘𝑥 is divisible by 2𝑛−𝑚; and (b) 𝑘𝑥 < 2𝑛. Thus we can (implicitly) carry out the
following chain of transformations to compute (𝑥𝑁), using the properties of the Jacobi symbol stated in
Theorem 2.4:

(
𝑥
𝑁) → (

𝑁
𝑥) → (

𝑁 − 𝑘𝑥
𝑥) → (

(𝑁 − 𝑘𝑥)/2𝑛−𝑚

𝑥) .

To determine such a 𝑦 = 𝑘𝑥 , we stream through𝑁 from lowest-order bit to higher-order bits, considering
blocks of 𝑚 bits at a time. For each block, we find the appropriate multiple of 𝑥 to add to 𝑦, such that those
𝑚 bits of 𝑦 match with the corresponding bits of 𝑁 (and thus the corresponding bits of 𝑁 − 𝑦 are zero). At
each step, we compute the needed multiplicative factor in an 𝑚-bit control register ctrl; crucially, we show
that ctrl is efficient to both compute and uncompute (see our analyis of Algorithm 4.2).

The fact that ctrl can be uncomputed efficiently is key to our space savings, as it means each individual
iteration of our algorithm is reversible and no garbage bits accumulate throughout the iterations. Further-
more, once the current block of 𝑚 bits matches those of 𝑁 , these bits will not depend on anything quantum
(since 𝑁 is classical). The qubits representing them are thus in a classically-known state, and unentangled
from all other qubits in the computation. We use this fact to recycle these qubits. Ultimately, we only ever
store the leading 𝑂(𝑚) bits of the partial value 𝑦 that is being computed. In Algorithm 4.2, we denote the
register holding this sliding window of 𝑂(𝑚) bits as 𝑧.

In this section, we first describe how to utilize the value 𝑘𝑥 to compute the Jacobi symbol (Algorithm
4.1), then present our procedure for obtaining the value 𝑘𝑥 (Algorithm 4.2), and then finally prove our

23

claimed performance guarantees.

Algorithm 4.1: Reversible algorithm for computing Jacobi symbols
Data: Efficiency parameters 𝑚, 𝑛 such that 𝑚|𝑛, and positive integers 𝑁 < 2𝑛 and 𝑥 < 2𝑚

Result: The Jacobi symbol (𝑥𝑁)
1. Compute the integers 𝑥′ and 𝑡 such that 𝑥′ = 𝑥/2𝑡 is an odd integer.

2. Set the register out, which will ultimately store the Jacobi symbol (𝑥𝑁), as follows:

out = ((−1)
𝑁2−1

8)
𝑡
⋅ (−1)

(𝑥′−1)(𝑁−1)
4 ⋅ ((−1)

𝑥′2−1
8)

𝑛−𝑚
. (4)

3. Use Algorithm 4.2 on inputs 𝑁 and 𝑥′ to compute some integer 𝑧, then set 𝑠 = ⌊ 𝑁
2𝑛−𝑚 ⌋ − 𝑧. (We will

show in Lemma 4.4 that 𝑠 = (𝑁 − 𝑘𝑥′)/2𝑛−𝑚 for some integer 𝑘. Note that 𝑠 could be negative.)

4. Compute out ← out ⋅ (𝑠𝑥′), where the Jacobi symbol (𝑠𝑥′) is computed via the algorithms of
[Sch71, BS96, Möl08], made reversible via standard techniques [Ben73, Ben89, LS90].

5. Uncompute 𝑠, 𝑧, 𝑥′, and 𝑡 by running steps 3 and 1 in reverse.

6. Return out.

Theorem 4.1. Suppose there exists a quantum multiplication circuit on 𝑡-bit inputs with gates 𝐺mult(𝑡), space
𝑆mult(𝑡), and depth 𝐷mult(𝑡). Also, suppose there exists a quantum circuit for computing the Jacobi symbol
between two 𝑡-bit inputs with gates 𝐺Jac(𝑡), space 𝑆Jac(𝑡), and depth 𝐷Jac(𝑡).

Let 𝑁 < 2𝑛 be a classically known odd integer. Then, there exists a quantum circuit implementing the
unitary

|𝑥⟩ |0⟩⊗2 ↦ |𝑥⟩ |(
𝑥
𝑁)⟩ , (5)

acting on 𝑚-qubit quantum inputs 𝑥 ∈ [0, 2𝑚 − 1] that runs in gates 𝑂 (𝑛𝑚 ⋅ 𝐺mult(𝑚) + 𝐺Jac(𝑚) + 𝑚 log𝑚),
space 𝑂 (max(𝑆mult(𝑚), 𝑆Jac(𝑚))), and depth 𝑂 ((𝑛𝑚 + log𝑚) ⋅ 𝐷mult(𝑚) + 𝐷Jac(𝑚) + log2𝑚).

Correctness. We first show the correctness of Algorithm 4.2. For each value of the iteration index
𝑗 = 0, 1,… , 𝑛−2𝑚𝑚 for the loop in step 3, we define the following variables:

• 𝑧𝑗 : the value stored in register 𝑧 at the beginning of iteration 𝑗 of the loop;

• ctrl𝑗 : the value of ctrl computed in iteration 𝑗 ;

• 𝑧′𝑗 : the intermediate value of 𝑧 in iteration 𝑗 i.e. 𝑧𝑗 + ctrl𝑗 ⋅ 𝑥; and

• 𝑦𝑗 : this is defined as 𝑧𝑗 ⋅ 2𝑗𝑚 + (𝑁 mod 2𝑗𝑚). This is the multiple of 𝑥 that we are tracking implicitly
throughout the algorithm; we use 𝑦𝑗 to represent the value of this multiple at the beginning of
iteration 𝑗 .

24

Algorithm 4.2: Reversible subroutine for finding a value 𝑘𝑥 , whose 𝑛−𝑚 lowest-order bits equal
the corresponding bits of 𝑁
Data: Efficiency parameters 𝑚, 𝑛 such that 𝑚|𝑛, and positive integers 𝑁 < 2𝑛 and 𝑥 < 2𝑚

Result: The highest-order 𝑚 bits of 𝑦 = 𝑘𝑥 for some 𝑘, such that 𝑘𝑥 < 2𝑛 and 𝑁 − 𝑘𝑥 is divisible
by 2𝑛−𝑚.

1. Set a 2𝑚 bit register 𝑧 = 0. The low-order half of this register will ultimately store the leading 𝑚 bits
of 𝑦. (All other, lower-order bits of 𝑦 match the corresponding bits of 𝑁 , and thus do not need to be
stored explicitly.)

2. Precompute the following values:

(a) 𝑥minv, the inverse of 𝑥 mod 2𝑚

(b) 𝑥inv = 1
𝑥 with 2𝑚 bits of precision

3. Repeat the following for 𝑗 ∈ {0, 1, 2, ...𝑛−2𝑚𝑚 }

(a) Compute an 𝑚-bit register ctrl = [𝑥minv ⋅ (𝑁𝑗 − 𝑧)] mod 2𝑚, where 𝑁𝑗 = ⌊𝑁/2𝑗𝑚⌋ mod 2𝑚.
(b) Compute 𝑧 ← 𝑧 + ctrl ⋅ 𝑥 . Now, 𝑧 mod 2𝑚 = 𝑁𝑗 .
(c) Using 𝑧 and 𝑥inv, uncompute ctrl ← ctrl ⊕ ⌊ 𝑧𝑥 ⌋ via [RV24, Lemma A.2].
(d) Zero the 𝑚 lowest-order bits of 𝑧 using 𝑁𝑗 , then swap them with the highest-order 𝑚 bits:

𝑧 ← ⌊ 𝑧2𝑚 ⌋.

4. Uncompute the values from Step 2.

5. Return 𝑧.

25

Also note the definition of 𝑁𝑗 in step 3 of Algorithm 4.2, and let 𝑧(𝑛−𝑚)/𝑚 denote the value stored in register
𝑧 at the end of the algorithm i.e. the final output. As we will see, correctness of Algorithm 4.2 boils down to
the following lemma:

Lemma 4.2. For all 𝑗 = 0, 1,… , (𝑛 − 𝑚)/𝑚, all of the following hold:

1. 𝑦𝑗 ≡ 𝑁 (mod 2𝑗𝑚);

2. 0 ≤ 𝑦𝑗 < 2𝑗𝑚 ⋅ 𝑥 ; and

3. 𝑦𝑗 is divisible by 𝑥 .

Proof. We proceed by induction on 𝑗 . For the base case where 𝑗 = 0, we have 𝑧0 = 0 ⇒ 𝑦0 = 0. All three
conditions are now evident. Now, for the inductive step, assume that we have shown the result for some
𝑗 ≥ 0 and wish to show the result for 𝑗 + 1. We will examine the execution of iteration 𝑗 of step 3 of
Algorithm 4.2 to complete the induction. Firstly, by definition we have the following:

𝑧′𝑗 = 𝑧𝑗 + ctrl𝑗 ⋅ 𝑥
≡ 𝑧𝑗 + 𝑥minv ⋅ (𝑁𝑗 − 𝑧𝑗) ⋅ 𝑥 (mod 2𝑚)
≡ 𝑁𝑗 (mod 2𝑚)

⇒ 2𝑗𝑚𝑧′𝑗 ≡ 2𝑗𝑚𝑁𝑗 (mod 2(𝑗+1)𝑚)

⇒ 2𝑗𝑚𝑧′𝑗 + (𝑁 mod 2𝑗𝑚) ≡ 2𝑗𝑚𝑁𝑗 + (𝑁 mod 2𝑗𝑚) (mod 2(𝑗+1)𝑚)

≡ 𝑁 (mod 2(𝑗+1)𝑚). (6)

This implies that the 𝑚 lowest-order bits of 𝑧′𝑗 match 𝑁𝑗 and thus we can indeed use the bits of 𝑁𝑗 to zero
out the 𝑚 lowest-order bits of 𝑧′𝑗 . Hence we have

2𝑗𝑚𝑧′𝑗 + (𝑁 mod 2𝑗𝑚) = 2(𝑗+1)𝑚𝑧𝑗+1 + (𝑁 mod 2(𝑗+1)𝑚),

and Equation (6) can also be written as:

2(𝑗+1)𝑚𝑧𝑗+1 + (𝑁 mod 2(𝑗+1)𝑚) ≡ 𝑁 (mod 2(𝑗+1)𝑚)

⇔ 𝑦𝑗+1 ≡ 𝑁 (mod 2(𝑗+1)𝑚),

thus establishing condition 1. Now, we also have that:

𝑦𝑗+1 = 2(𝑗+1)𝑚𝑧𝑗+1 + (𝑁 mod 2(𝑗+1)𝑚)
= 2𝑗𝑚𝑧′𝑗 + (𝑁 mod 2𝑗𝑚)
= 2𝑗𝑚(𝑧𝑗 + ctrl𝑗 ⋅ 𝑥) + (𝑁 mod 2𝑗𝑚)
= 𝑦𝑗 + 2𝑗𝑚 ⋅ ctrl𝑗 ⋅ 𝑥. (7)

Since 𝑦𝑗 is divisible by 𝑥 by the induction hypothesis, this immediately implies condition 3. Finally, we can
obtain condition 2 since:

𝑦𝑗+1 = 𝑦𝑗 + 2𝑗𝑚 ⋅ ctrl𝑗 ⋅ 𝑥

26

< 2𝑗𝑚 ⋅ 𝑥 + 2𝑗𝑚 ⋅ ctrl𝑗 ⋅ 𝑥 (induction hypothesis)
≤ 2𝑗𝑚 ⋅ 𝑥 + 2𝑗𝑚 ⋅ (2𝑚 − 1) ⋅ 𝑥 (since ctrl𝑗 is reduced mod 2𝑚)
= 2(𝑗+1)𝑚𝑥.

We complete our proof of correctness for Algorithm 4.2 with the following claim:

Proposition 4.3. For all 𝑗 = 0, 1,… , (𝑛 − 𝑚)/𝑚, we have 0 ≤ 𝑧𝑗 < 𝑥 . For 𝑗 = 0, 1,… , (𝑛 − 2𝑚)/𝑚, we have
0 ≤ 𝑧′𝑗 < 22𝑚. Moreover, we have ctrl𝑗 = ⌊

𝑧′𝑗
𝑥 ⌋. (This establishes that 2𝑚 qubits are sufficient to hold the 𝑧

register, and that the uncomputation of ctrl𝑗 proceeds correctly.)

Proof. Since 𝑦𝑗 = 𝑧𝑗 ⋅ 2𝑗𝑚 + (𝑁 mod 2𝑗𝑚), we have:

𝑧𝑗 = ⌊
𝑦𝑗
2𝑗𝑚 ⌋

≤ ⌊
(2𝑗𝑚 − 1)𝑥

2𝑗𝑚 ⌋ (Lemma 4.2)

∈ [0, 𝑥 − 1].

Since 𝑧′𝑗 = 𝑧𝑗 + ctrl𝑗 ⋅ 𝑥 , it follows that ctrl𝑗 = ⌊
𝑧′𝑗
𝑥 ⌋. Finally, we have:

𝑧′𝑗 = 𝑧𝑗 + ctrl𝑗 ⋅ 𝑥
< (1 + ctrl𝑗) ⋅ 𝑥
≤ 2𝑚 ⋅ 𝑥 (ctrl𝑗 is reduced mod 2𝑚)
< 22𝑚,

as desired.

Finally, we show the correctness of Algorithm 4.1:

Lemma 4.4. Algorithm 4.1 correctly computes the Jacobi symbol (𝑥𝑁). Moreover, we have |𝑠| < 2𝑚 (thus the
step of computing (𝑠𝑥′) only needs to work with 𝑚-bit inputs).

Proof. We retain all notation introduced in Algorithm 4.1. We first show that |𝑠| < 2𝑚 and that there exists
an integer 𝑘 such that 𝑁 − 𝑘𝑥′ = 2𝑛−𝑚 ⋅ 𝑠. To this end, recall that the output of Algorithm 4.2 is exactly
𝑧 = 𝑧(𝑛−𝑚)/𝑚, where 𝑧(𝑛−𝑚)/𝑚 ⋅ 2𝑛−𝑚 + (𝑁 mod 2𝑛−𝑚) = 𝑦(𝑛−𝑚)/𝑚 is equal to 𝑘𝑥′ for some integer 𝑘 by
Lemma 4.2. Then note firstly that:

|𝑠| ≤ max(⌊
𝑁

2𝑛−𝑚 ⌋
, 𝑧(𝑛−𝑚)/𝑚)

< 2𝑚,

since 𝑁 < 2𝑛 and 𝑧(𝑛−𝑚)/𝑚 < 𝑥 ≤ 2𝑚 by Proposition 4.3. Secondly, we have:

2𝑛−𝑚 ⋅ 𝑠 = 2𝑛−𝑚 ⋅(⌊
𝑁

2𝑛−𝑚 ⌋
− 𝑧(𝑛−𝑚)/𝑚) ⋅

27

= 2𝑛−𝑚 ⋅ ⌊
𝑁

2𝑛−𝑚 ⌋
− 2𝑛−𝑚 ⋅ 𝑧(𝑛−𝑚)/𝑚

= 𝑁 − (𝑁 mod 2𝑛−𝑚) − 2𝑛−𝑚 ⋅ 𝑧(𝑛−𝑚)/𝑚
= 𝑁 − 𝑦(𝑛−𝑚)/𝑚
= 𝑁 − 𝑘𝑥′.

The conclusion will now follow from the standard properties of the Jacobi symbol stated in Theorem 2.4:

(
𝑥
𝑁) = (

2𝑡𝑥′

𝑁)

= ((−1)
𝑁2−1

8)
𝑡
⋅(
𝑥′

𝑁) (Theorem 2.4, properties 2 and 6)

= ((−1)
𝑁2−1

8)
𝑡
⋅ (−1)

(𝑥′−1)(𝑁−1)
4 ⋅(

𝑁
𝑥′)

(Theorem 2.4, property 7)

= ((−1)
𝑁2−1

8)
𝑡
⋅ (−1)

(𝑥′−1)(𝑁−1)
4 ⋅(

𝑁 − 𝑘𝑥′

𝑥′) (Theorem 2.4, property 4)

= ((−1)
𝑁2−1

8)
𝑡
⋅ (−1)

(𝑥′−1)(𝑁−1)
4 ⋅(

2𝑛−𝑚 ⋅ 𝑠
𝑥′)

= ((−1)
𝑁2−1

8)
𝑡
⋅ (−1)

(𝑥′−1)(𝑁−1)
4 ⋅ ((−1)

𝑥′2−1
8)

𝑛−𝑚
⋅ (
𝑠
𝑥′)

, (Theorem 2.4, properties 2 and 6)

which implies the conclusion.

Efficiency. We now turn our attention to establishing the desired efficiency guarantees:

Lemma 4.5. Algorithm 4.1 achieves the efficiency guarantees claimed in Theorem 4.1.

Proof. We proceed by showing that each step of Algorithm 4.1 can be implemented reversibly with the
stated complexities. We note that 𝑆Jac(𝑚) must be at least linear in 𝑚 because the Jacobi symbol depends
on the entire input; therefore our space complexity is lower bounded by 𝑂(𝑚).

Step 1 computes the number of trailing zeros 𝑡 of a length-𝑚 value 𝑥 , and then computes 𝑥′, which
is 𝑥 shifted to the right by 𝑡 bits. This can be performed reversibly in 𝑂(𝑚 log𝑚) gates, 𝑂(𝑚) space, and
𝑂(log2𝑚) depth, as follows. We first compute 𝑡 by using a tree of 𝑂(𝑚) Toffoli gates to compute the unary
representations of ⌊𝑡/2𝑖⌋ for 𝑖 from 1 up to ⌈log𝑚⌉, and then a tree of controlled-NOT gates to compute the
parity of each unary value, which is equal to bit 𝑖 of 𝑡. The value 𝑥′ can then be computed by applying
the map |𝑎⟩ → |⌊𝑎/2𝑖𝑡𝑖⌋⟩ repeatedly for each bit 𝑡𝑖 of 𝑡, beginning with 𝑎 = 𝑥 . In turn, this map can be
implemented with 𝑚 ancilla bits by applying the out-of-place controlled bit-shift map |𝑎⟩ |0⟩ → |𝑎⟩ |⌊𝑎/2𝑖𝑡𝑖⌋⟩,
followed by |𝑎⟩ |𝑏⟩ → |𝑎 ⊕ 2𝑖𝑡𝑖𝑏⟩ |𝑏⟩ to uncompute the input register (using the fact that the shifted-out
bits were zero). Both of those out-of-place operations can be implemented in 𝑂(𝑚) gates, 𝑂(𝑚) space, and
𝑂(log𝑚) depth, by using a tree of controlled-NOT gates to create 𝑚 copies of the control bit and then
performing two layers of 𝑚 Toffoli gates between the control, input, and output registers, separated by
a layer of NOT gates on the controls: the first layer XORs the output register by the shifted value of the
input if the control is on, and the second layer XORs the output by the unshifted value if the control is off.
Finally, the 𝑚 copies of the control bit are uncomputed by another tree of 𝑂(𝑚) controlled-NOT gates.

28

Step 2 of Algorithm 4.1 can be implemented in 𝑂(1) gates, depth, and space, because it only depends on
a constant number of the bits of 𝑡 and 𝑥′. Step 3 of Algorithm 4.1 requires calling Algorithm 4.2, which
by Lemma 4.6 can be performed with the complexities specified in the Theorem. Step 4 consists of the
computation of the Jacobi symbol of two 𝑚-bit inputs, which can be performed in 𝐺Jac(𝑚), space 𝑆Jac(𝑚),
and depth 𝐷Jac(𝑚) by supposition. Finally, step 5 can be performed with the stated complexities given that
steps 3 and 1 can.

Thus all steps can be implemented reversibly with the stated complexities, completing the proof.

Lemma 4.6. Suppose there exists a quantum multiplication circuit on 𝑡-bit inputs with gates 𝐺mult(𝑡), space
𝑆mult(𝑡), and depth 𝐷mult(𝑡). Then, there exists a quantum circuit implementing Algorithm 4.2 with gates
𝑂 (𝑛𝑚 ⋅ 𝐺mult(𝑚)), space 𝑂(𝑆mult(𝑚)) qubits, and depth 𝑂 ((𝑛𝑚 + log𝑚) ⋅ 𝐷mult(𝑚)).

Proof. We proceed by showing that each step of the algorithm can be performed reversibly with the stated
complexity. We note that 𝑆mult(𝑡) ≥ 𝑂(𝑚) because its inputs are quantum, so the overall algorithm’s space
is lower bounded by 𝑂(𝑚); and 𝐷mult(𝑡) ≥ 𝑂(log𝑚) because each bit of a multiplier’s input can affect 𝑂(𝑚)
bits of its output, so the overall depth is lower bounded by 𝑂(log𝑚). Both bounds hold for any choice of
(reversible) multiplier.

Both parts of Step 2 (and its uncomputation, Step 4) are arithmetic divisions. When implemented
via Newton iteration, the gate and space complexity of division is the same as multiplication up to a
constant factor [Knu98]; the depth complexity for 𝑡-bit inputs is bounded by 𝑂(log 𝑡 ⋅ 𝐷mult(𝑡)) (although
the bound improves to 𝑂(𝐷mult(𝑡)) if 𝐷mult(𝑡) ≥ Ω(𝑡𝜖) for any 𝜖 > 0). For step 3, each iteration of the loop
consists of a constant number of additions, subtractions, and multiplications, all of size 𝑂(𝑚). The additions
and subtractions can be implemented in gate count and space 𝑂(𝑚), and depth 𝑂(log𝑚), via quantum
carry-lookahead addition [DKRS06]. The multiplications can be performed with gates 𝐺mult(𝑚), space
𝑆mult(𝑚), and depth 𝐷mult(𝑚) by supposition. The loop has 𝑛/𝑚 − 1 iterations, so overall, step 3 can be
implemented in 𝑂 (𝑛𝑚 ⋅ 𝐺mult(𝑚)) gates, 𝑂(𝑆mult(𝑚)) qubits of space, and 𝑂 (𝑛𝑚 ⋅ 𝐷mult(𝑚)) depth. Thus all
of Algorithm 4.2 can be implemented in the stated depth, space, and gate count, completing the proof.

4.2 Implications: Factoring Certain Integers in Sublinear Space and Depth

In this section, we instantiate Algorithms 4.1 and 4.2. Here we focus on asymptotic costs, leaving the
optimization of circuits for practical problem sizes to future work. For multiplication, we use a parallelized
quantum circuit for Schönhage-Strassen multiplication [SS71], by which the product of two 𝑡-bit quantum
integers can be computed in gate count 𝑂(𝑡) and depth polylog(𝑡), using 𝑂(𝑡) total qubits [NZLS23]. For
computing the Jacobi symbol of two inputs of size 𝑡, there exist classical algorithms with complexity
𝑂(𝑡) [Sch71, BS96, Möl08]; by standard reversible circuit techniques these algorithms can be made into
quantum circuits with gate count, depth, and qubit count all at most 𝑂(𝑡) [Ben73, Ben89, LS90]. The
following corollary results directly from instantiating Algorithms 4.1 and 4.2 with these constructions.

Corollary 4.7 (Compare with Corollary 3.2). There exists a quantum circuit for the unitary of Equation (5)
with gate count 𝑂(𝑛), depth 𝑂(𝑛/𝑚 + 𝑚), and space 𝑂(𝑚) qubits.

Consequently, by Theorem 3.1, we can recover prime 𝑃 and 𝑄 (with 𝑄 < 2𝑚) from an 𝑛-bit input 𝑁 = 𝑃2𝑄
with 𝑂(𝑛) gates in 𝑂(𝑛/𝑚 + 𝑚) depth, using 𝑂(𝑚) qubits.

29

Remark (Near-optimal parallelism for small 𝑄). It is possible to achieve depth 𝑂(𝑛/𝑚 + log𝑄) using 𝑂(𝑚)
qubits for any 𝑚 ≥ log𝑄, by using block size 𝑚 in Algorithm 4.1 but implementing step 4 via a recursive call
to Algorithm 4.1 with a smaller block size (and possibly further levels of recursion if needed). This optimization
becomes relevant when log𝑄 < 𝑂(

√
𝑛), such that the 𝑛/𝑚 term in the depth could dominate. In that regime,

this trick allows the depth to be reduced as low as 𝑂(log𝑄) at the expense of qubit count 𝑂(𝑛/ log𝑄) (by
setting 𝑚 = 𝑛/ log𝑄). In general, for a target depth 𝑑 where log𝑄 ≤ 𝑑 ≤ 𝑛/ log𝑄, at the 𝑖th level of recursion
the block size 𝑚𝑖 should be set to 𝑚𝑖 = 𝑚𝑖−1/𝑑 (with 𝑚1 = 𝑛/𝑑) and the recursion stops when 𝑚𝑖 < 𝑑. This
construction yields a depth 𝑂(𝑑) and qubit count 𝑂(𝑛/𝑑). The space-time product (qubit count times depth) is
𝑂(𝑛), the same as the gate count, thus nearly achieving the asymptotically optimal limit for parallelism of
𝑂(1) operations per qubit per time step (up to polylogarithmic factors).

Our Factoring-Based Proof of Quantumness. We now state the implications of Corollary 4.7 when
factoring numbers of the form 𝑁 = 𝑃2𝑄 with log𝑄 = Θ̃((log𝑁)2/3) and 𝑃, 𝑄 are prime. As summarized in
Section 2.3, there are no known classical special-purpose factoring algorithms that perform better than
the general number field sieve [Pol93, LLMP90, BLP93] on integers of this form. Yet by Corollary 4.7, it is
possible to quantumly factor these integers in much less space and depth than would be required for generic
integers [Sho97, Reg23] or even generic squarefull integers [LPDS12]. Indeed, applying Corollary 4.7 to
numbers of that form yields the following result:

Corollary 4.8. Consider 𝑛-bit numbers of the form 𝑁 = 𝑃2𝑄, where 𝑃, 𝑄 are primes and log𝑄 = Θ̃(𝑛2/3).
There exist quantum circuits for recovering 𝑃 and 𝑄 from 𝑁 with 𝑂(𝑛) gates, 𝑂(𝑛2/3) depth, and 𝑂(𝑛2/3)
qubits.

5 Fully Factoring Integers with Distinct Exponents in their Prime Fac-
torization

Here, we provide a black-box reduction that shows that any algorithm achieving the guarantees of Theo-
rem 3.1 can in fact be used to fully factor integers of the form 𝑁 = 𝑝𝛼11 …𝑝𝛼𝑟𝑟 with 𝛼1,… , 𝛼𝑟 positive and
distinct.

Definition 5.1 ([AM17]). We say an integer 𝑁 is special if all the exponents in its prime factorization are
distinct i.e. we can write 𝑁 = 𝑝𝛼11 …𝑝𝛼𝑟𝑟 for distinct primes 𝑝1,… , 𝑝𝑟 and distinct positive integers 𝛼1,… , 𝛼𝑟 .

Remark. One might wonder whether special integers turn out to be classically easy to factor as well. We
state some evidence that this is not the case here. Indeed, the density of these integers was studied by Aktaş
and Murty [AM17], who showed that for any integer 𝑁max, the number of special integers 𝑁 ∈ [1, 𝑁max] is
≈ 1.7𝑁max

ln𝑁max
. The following classes of integers that are classically even slightly easier than general to fully factor

do not contain enough elements in total to cover all special numbers:

• Prime numbers: there are ≈ 𝑁max
ln𝑁max

of these by the prime number theorem.

• Integers of the form 𝑎𝑏 for 𝑏 > 1: there are at most 𝑂 (
√
𝑁max) of these.

• Sub-exponentially smooth integers (i.e. integers whose largest prime divisor is at most say
exp (𝑂((log𝑁max)0.99)): there are 𝑁max ⋅ exp (−𝑂((log𝑁max)0.01) of these [Gra00].

30

With this in mind, we now turn our attention to fully factoring special integers. We first begin with a
simple lemma. At a high level, we want to show that the Ω(1) success probability in Theorem 3.1 can be
boosted to be very close to 1. This is not obvious since given 𝑁 = 𝐴2𝐵 with 𝐵 squarefree, it may not be
possible to efficiently determine whether the algorithm has succeeded in recovering 𝐵. We show that this is
not difficult to work around.

Lemma 5.2. Let 𝑁 be a positive integer, with unique representation as 𝑁 = 𝐴2𝐵 for 𝐵 squarefree. Moreover,
we say 𝑁 is very good if it is composite and neither squarefree nor a square.

Assume there exists an algorithm that given a very good integer 𝑁 , outputs either 𝐵 or a prime dividing
𝑁 with probability Ω(1).

Then for any positive integer 𝑇 , there exists another algorithm′ that given a positive integer 𝑁 = 𝐴2𝐵
with 𝐵 squarefree, either outputs 𝐵 or a prime divisor of 𝑁 with probability 1 − exp(−Ω(𝑇)). This algorithm
makes at most 𝑇 calls to with the same input 𝑁 . Outside of calls made to, the algorithm is classical and
runs in time poly(log𝑁).

Proof. First, we state the main idea. Suppose that produces some composite 𝐵′ as output. The main
observation is that while we cannot efficiently check whether 𝐵′ = 𝐵, we can efficiently check that 𝑁/𝐵′ is
a square. Moreover, if 𝐵′ satisfies this condition then 𝐵′ must be divisible by 𝐵. With this in mind, ′ will
proceed as follows. We will use 𝐵∗ to denote the algorithm’s final output:

1. If 𝑁 is prime, we can output 𝑁 itself and terminate. If 𝑁 is a square, we can easily check this and
output 𝐵∗ = 1 and terminate. Henceforth we can assume that 𝑁 is either very good or squarefree.

2. Now run 𝑇 times and let the outputs be 𝐵1,… , 𝐵𝑇 . If there exists some 𝑗 such that 𝐵𝑗 is a prime
divisor of 𝑁 , output 𝐵𝑗 and terminate.

3. Otherwise, let 𝑆 ⊆ {𝐵1,… , 𝐵𝑇 } be the set of all values 𝐵′ in this list such that 𝐵′ divides 𝑁 and 𝑁/𝐵′

is a square.

4. If 𝑆 = ∅, output 𝐵∗ = 𝑁 (this is equivalent to declaring that 𝑁 is squarefree). Otherwise, output 𝐵∗
as the smallest element in 𝑆 and terminate.

First, suppose 𝑁 is very good. In this case, at least one of the runs of will be successful (i.e. it outputs 𝐵
or a prime divisor of 𝑁) with probability 1 − exp(−Ω(𝑇)). Then, assuming at least one of the runs of is
successful, we have two cases:

• If the successful run produced a prime divisor,′ will detect this and output accordingly.

• If the successful run produced 𝐵, then this will be included in 𝑆. Moreover, all elements of 𝑆 must be
divisible by 𝐵 (and hence ≥ 𝐵). Hence taking the minimal element in 𝑆 will output 𝐵.

Finally, suppose 𝑁 is squarefree. In this case, we have no guarantee on the behavior of. But if it produces
a prime divisor of 𝑁 ,′ will detect and output this. Otherwise, note that the only integer that could be
included in 𝑆 is 𝑁 itself. So either 𝑆 will be empty or its smallest element will be 𝑁 , and in either case′

will output 𝑁 . The conclusion follows.

31

Theorem 5.3. Assume there exists an algorithm that given a positive integer 𝑁 = 𝐴2𝐵 with 𝐵 squarefree
and parameter 𝑇 , either outputs 𝐵 or a prime divisor of 𝑁 with probability with 1 − exp(−Ω(𝑇)).

Then there exists another algorithm that, given a special integer 𝑁 as input, recovers the full prime
factorization of 𝑁 with probability 1 − negl(log𝑁). This algorithm makes at most 𝑂(

√
log𝑁) calls to with

inputs 𝑁 ′ that are always ≤ 𝑁 and with repetition parameter 𝑇 = 𝜔(log𝑁). Outside of calls made to the
algorithm is classical and runs in time poly(log𝑁).

Proof. Let us write 𝑁 = 𝑝𝛼11 …𝑝𝛼𝑟𝑟 . Then note firstly that since the 𝛼𝑖’s are distinct, we have 𝑁 ≥ 2𝛼1+…+𝛼𝑟 ≥
2Ω(𝑟2) ⇒ 𝑟 ≤ 𝑂(

√
log𝑁). It hence suffices to show that we can accomplish the desired task with 𝑂(𝑟) calls.

We present our algorithm in Algorithm 5.1. The efficiency is clear since after every call to , the
number of distinct prime divisors of 𝑀 decreases by 1. As for correctness, note firstly that our procedure
clearly preserves the fact that 𝑀 is special at each step. Updating 𝑀 ←

√
𝑀 will halve all the exponents in

its prime factorization which keeps them distinct. Otherwise, we take a prime and remove as many factors
of it from 𝑀 as possible. This effectively just removes an element from the set of nonzero exponents in the
prime factorization of 𝑀 , which clearly preserves distinctness.

It then remains to justify that if 𝑀 is special, then with all but negligible probability 𝐵/gcd(𝑘, 𝐵) will
be prime. Write 𝑀 = ∏𝑠

𝑖=1 𝑞
𝛽𝑖
𝑖 for distinct primes 𝑞𝑖 and distinct positive integers 𝛽𝑖. Then if the output 𝐵

of is not prime, we will have (with probability 1 − negl(log𝑁)) that

𝐵 = ∏
𝑖∈[𝑠]∶𝛽𝑖 odd

𝑞𝑖.

Now among the indices 𝑖 ∈ [𝑠] such that 𝛽𝑖 is odd, let 𝑖∗ be the index such that 𝛽𝑖 is minimal. Then 𝛾 = 𝛽𝑖∗ ,
and hence

𝑘 =
(

∏
𝑖∈[𝑠]∶𝛽𝑖 even

𝑞𝛽𝑖𝑖)
⋅
(

∏
𝑖∈[𝑠]∶𝛽𝑖 odd

𝑞𝛽𝑖−𝛽𝑖∗𝑖)
.

The crucial point is that for any 𝑖 ∈ [𝑠] with 𝑖 ≠ 𝑖∗ we will have 𝛽𝑖 ≠ 𝛽𝑖∗ , because 𝑀 is special. In particular,
for 𝑖 ∈ [𝑠] such that 𝛽𝑖 is odd and 𝑖 ≠ 𝑖∗, 𝑘 must be divisible by 𝑞𝑖. On the other hand, 𝑘 is clearly not
divisible by 𝑞𝑖∗ . It follows that

gcd(𝑘, 𝐵) = ∏
𝑖∈[𝑠]∶𝛽𝑖 odd and 𝑖≠𝑖∗

𝑞𝑖 ⇒
𝐵

gcd(𝑘, 𝐵)
= 𝑞𝑖∗ ,

which is indeed prime. This completes our proof of the theorem.

Combining Corollary 3.2, Lemma 5.2, and Theorem 5.3 yields the following result:

Corollary 5.4. A special integer 𝑁 can be fully factored with success probability 1 − negl(log𝑁) using
𝜔((log𝑁)3/2) calls to a quantum circuit of size 𝑂(𝑛).

Proof. The circuit in Corollary 3.2 only requires 𝑂(𝑛) gates. Then the algorithm in 5.2 can be realized with
𝑇 = 𝜔(log𝑁) calls to the circuit in Corollary 3.2 (here, the choice of 𝑇 is specified by Theorem 5.3.) Finally,
the algorithm in Theorem 5.3 can be realized with 𝑂(

√
log𝑁) calls to the algorithm of Lemma 5.2. Putting

these together, the conclusion follows.

32

Algorithm 5.1: Fully factoring special integers (see Theorem 5.3)
Data: A special positive integer 𝑁 .
Result: A full factorization of 𝑁 (with probability 1 − negl(log𝑁)).

1. Initialize 𝑀 to be 𝑁 , and initialize 𝐹 to be the “empty factorization” (i.e. the factorization of 1). We
will maintain the invariants that 𝑀 is a special divisor of 𝑁 and 𝐹 is the factorization of 𝑁/𝑀 .

2. Repeat the following until 𝑀 = 1:

(a) If 𝑀 is a prime or prime power, add the prime factorization of 𝑀 to 𝐹 , and update 𝑀 ← 1 (it is
well-known that this can be efficiently done classically; we sketch this in Section 2.3).

(b) Else if 𝑀 is square, recurse, calling Algorithm 5.1 on input
√
𝑀 ; add two entries to 𝐹 for each

prime factor in the result. Then set 𝑀 ← 1.
(c) Otherwise, if neither the conditions in (a) nor (b) hold, apply algorithm to 𝑀 , with

𝑇 = 𝜔(log𝑁) so that the success probability is 1 − negl(log𝑁). Now proceed as follows:
• If the output 𝐵 is prime: repeatedly divide 𝑀 by 𝐵 until 𝑀 is not divisible by 𝐵. Update 𝐹
accordingly and continue to the next step of the loop.

• Otherwise, we can assume that assume that 𝐵 is squarefree and 𝑀/𝐵 is square (with
probability 1 − negl(log𝑁)). Then by repeatedly dividing 𝑀 by 𝐵, we can find integers 𝑘, 𝛾
such that 𝑀 = 𝑘 ⋅ 𝐵𝛾 and 𝑘 is not divisible by 𝐵.
Then compute 𝑝 = 𝐵/gcd(𝑘, 𝐵) (which can be done efficiently; see Section 2.3 for an
overview of some algorithms for computing GCDs) and check whether 𝑝 is prime. If it is
not, abort (we will show that this almost never occurs). Otherwise, divide 𝑀 by as many
factors of 𝑝 as possible and update 𝐹 accordingly.

3. Output 𝐹 .

33

Acknowledgements. The authors would like to thank Isaac Chuang, Mikhail Lukin, and Peter Shor for
insightful discussions.

References

[AAB+19] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak
Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell, Brian Burkett, Yu Chen,
Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward
Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob Graff, Keith Guerin,
Steve Habegger, Matthew P. Harrigan, Michael J. Hartmann, Alan Ho, Markus Hoffmann,
Trent Huang, Travis S. Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri,
Kostyantyn Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov,
Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore
Mandrà, Jarrod R. McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen,
Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen
Niu, Eric Ostby, Andre Petukhov, John C. Platt, Chris Quintana, Eleanor G. Rieffel, Pedram
Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J. Sung,
Matthew D. Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore White, Z. Jamie
Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, and John M. Martinis. Quantum supremacy
using a programmable superconducting processor. Nature, 574(7779):505–510, October 2019. 2

[AGGM24] Petia Arabadjieva, Alexandru Gheorghiu, Victor Gitton, and Tony Metger. Single-Round
Proofs of Quantumness from Knowledge Assumptions, May 2024. 4

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. Primes is in p. Annals of Mathematics,
160(2):781–793, September 2004. 11

[AM17] Kevser Aktaş and M. Ram Murty. On the number of special numbers. Proceedings - Mathe-
matical Sciences, 127:423–430, 2017. 8, 30

[AMMW24] Yusuf Alnawakhtha, Atul Mantri, Carl A. Miller, and Daochen Wang. Lattice-Based Quantum
Advantage from Rotated Measurements. Quantum, 8:1399, July 2024. 3

[AZ24] Scott Aaronson and Yuxuan Zhang. On verifiable quantum advantage with peaked circuit
sampling, April 2024. 3

[BBM17] Daniel J. Bernstein, Jean-François Biasse, and Michele Mosca. A Low-Resource Quantum Fac-
toring Algorithm. In Tanja Lange and Tsuyoshi Takagi, editors, Post-Quantum Cryptography,
pages 330–346, Cham, 2017. Springer International Publishing. 11

[BCDP96] David Beckman, Amalavoyal N Chari, Srikrishna Devabhaktuni, and John Preskill. Efficient
networks for quantum factoring. Physical Review A, 54(2):1034, 1996. 1

[BCM+21] Zvika Brakerski, Paul Christiano, Urmila Mahadev, Umesh Vazirani, and Thomas Vidick. A
Cryptographic Test of Quantumness and Certifiable Randomness from a Single Quantum
Device. Journal of the ACM (JACM), August 2021. 3

34

[BDH99] Dan Boneh, Glenn Durfee, and Nick Howgrave-Graham. Factoring N = prq for large r. In
Michael J. Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings, volume
1666 of Lecture Notes in Computer Science, pages 326–337. Springer, 1999. 1, 5

[Bea03] Stéphane Beauregard. Circuit for Shor’s algorithm using 2n+3 qubits. Quantum Inf. Comput.,
3(2):175–185, 2003. 1

[Ben73] C. H. Bennett. Logical Reversibility of Computation. IBM Journal of Research and Development,
17(6):525–532, November 1973. Conference Name: IBM Journal of Research and Development.
10, 24, 29

[Ben89] Charles H. Bennett. Time/Space Trade-Offs for Reversible Computation. SIAM Journal
on Computing, 18(4):766–776, August 1989. Publisher: Society for Industrial and Applied
Mathematics. 10, 24, 29

[BHLV17] Daniel J. Bernstein, Nadia Heninger, Paul Lou, and Luke Valenta. Post-quantum RSA. In Tanja
Lange and Tsuyoshi Takagi, editors, Post-Quantum Cryptography, pages 311–329, Cham, 2017.
Springer International Publishing. 11

[BKVV20] Zvika Brakerski, Venkata Koppula, Umesh Vazirani, and Thomas Vidick. Simpler Proofs
of Quantumness. In Steven T. Flammia, editor, 15th Conference on the Theory of Quantum
Computation, Communication and Cryptography (TQC 2020), volume 158 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 8:1–8:14, Dagstuhl, Germany, 2020. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik. 3, 4

[BL94] Johannes A. Buchmann and Hendrik W. Lenstra Jr. Approximating rings of integers in number
fields. Journal Theorie de Nombres Bordeaux, 6:221–260, 1994. 5

[BL96] Dan Boneh and Richard J. Lipton. Algorithms for black-box fields and their application to
cryptography (extended abstract). In Neal Koblitz, editor, Advances in Cryptology - CRYPTO
’96, 16th Annual International Cryptology Conference, Santa Barbara, California, USA, August
18-22, 1996, Proceedings, volume 1109 of Lecture Notes in Computer Science, pages 283–297.
Springer, 1996. 5

[BLP93] J. P. Buhler, H. W. Lenstra, and Carl Pomerance. Factoring integers with the number field
sieve. In Arjen K. Lenstra and Hendrik W. Lenstra, editors, The development of the number
field sieve, pages 50–94, Berlin, Heidelberg, 1993. Springer Berlin Heidelberg. 1, 11, 30

[BS96] E. Bach and J.O. Shallit. Algorithmic Number Theory: Efficient algorithms. Number v. 1 in
Algorithmic Number Theory. MIT Press, 1996. 2, 6, 7, 9, 10, 11, 15, 23, 24, 29

[BS11] Gaetan Bisson and Andrew V. Sutherland. Computing the endomorphism ring of an ordinary
elliptic curve over a finite field. Journal of Number Theory, 131(5):815–831, 2011. Elliptic Curve
Cryptography. 5

35

[CFRZ16] Jean-Sébastien Coron, Jean-Charles Faugère, Guénaël Renault, and Rina Zeitoun. Factoring
n=pˆrqˆs for large r and s. In Kazue Sako, editor, Topics in Cryptology - CT-RSA 2016 - The
Cryptographers’ Track at the RSA Conference 2016, San Francisco, CA, USA, February 29 - March
4, 2016, Proceedings, volume 9610 of Lecture Notes in Computer Science, pages 448–464. Springer,
2016. 1, 5

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited.
Journal of the ACM, 51(4):557–594, July 2004. 4

[Che24] Yilei Chen. Quantum algorithms for lattice problems. IACR Cryptol. ePrint Arch., page 555,
2024. 17, 18

[CJLN09] Guilhem Castagnos, Antoine Joux, Fabien Laguillaumie, and Phong Q. Nguyen. Factoring pq2
with quadratic forms: Nice cryptanalyses. In Mitsuru Matsui, editor, Advances in Cryptology -
ASIACRYPT 2009, 15th International Conference on the Theory and Application of Cryptology and
Information Security, Tokyo, Japan, December 6-10, 2009. Proceedings, volume 5912 of Lecture
Notes in Computer Science, pages 469–486. Springer, 2009. 1, 5

[CL09] Guilhem Castagnos and Fabien Laguillaumie. On the security of cryptosystems with quadratic
decryption: The nicest cryptanalysis. In Antoine Joux, editor, Advances in Cryptology -
EUROCRYPT 2009, 28th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Cologne, Germany, April 26-30, 2009. Proceedings, volume 5479 of
Lecture Notes in Computer Science, pages 260–277. Springer, 2009. 1, 5

[Con] Keith Conrad. Gauss and Jacobi sums on finite fields and ℤ/𝑚ℤ. http://kconrad.
math.uconn.edu/blurbs/gradnumthy/Gauss-Jacobi-sums.pdf. 13

[Cop02] Don Coppersmith. An approximate Fourier transform useful in quantum factoring. arXiv
preprint quant-ph/0201067, 2002. 1, 15

[CW00] Richard Cleve and John Watrous. Fast parallel circuits for the quantum Fourier transform. In
41st Annual Symposium on Foundations of Computer Science, FOCS 2000, 12-14 November 2000,
Redondo Beach, California, USA, pages 526–536. IEEE Computer Society, 2000. 1, 3, 4

[CW24] Henry Corrigan-Gibbs and David J. Wu. The one-wayness of jacobi signatures. In Leonid
Reyzin and Douglas Stebila, editors, Advances in Cryptology - CRYPTO 2024 - 44th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2024, Proceedings,
Part V, volume 14924 of Lecture Notes in Computer Science, pages 3–13. Springer, 2024. 5

[DKRS06] Thomas G. Draper, Samuel A. Kutin, Eric M. Rains, and Krysta M. Svore. A logarithmic-depth
quantum carry-lookahead adder. Quantum Information & Computation, 6(4):351–369, July
2006. 29

[EG24a] Martin Ekerå and Joel Gärtner. Extending Regev’s factoring algorithm to compute discrete
logarithms. In Markku-Juhani Saarinen and Daniel Smith-Tone, editors, Post-Quantum Cryp-
tography, pages 211–242, Cham, 2024. Springer Nature Switzerland. 1

36

http://kconrad.math.uconn.edu/blurbs/gradnumthy/Gauss-Jacobi-sums.pdf
http://kconrad.math.uconn.edu/blurbs/gradnumthy/Gauss-Jacobi-sums.pdf

[EG24b] Martin Ekerå and Joel Gärtner. A high-level comparison of state-of-the-art quantum algorithms
for breaking asymmetric cryptography. CoRR, abs/2405.14381, 2024. 1

[EH17] Martin Ekerå and Johan Håstad. Quantum algorithms for computing short discrete logarithms
and factoring RSA integers. In Tanja Lange and Tsuyoshi Takagi, editors, Post-Quantum
Cryptography - 8th International Workshop, PQCrypto 2017, Utrecht, The Netherlands, June
26-28, 2017, Proceedings, volume 10346 of Lecture Notes in Computer Science, pages 347–363.
Springer, 2017. 1, 22

[GE21] Craig Gidney and Martin Ekerå. How to factor 2048 bit RSA integers in 8 hours using 20
million noisy qubits. Quantum, 5:433, 2021. 1, 2, 4

[Gid17] Craig Gidney. Factoring with 𝑛 + 2 clean qubits and 𝑛 − 1 dirty qubits. arXiv preprint
arXiv:1706.07884, 2017. 1

[Gid19] Craig Gidney. Asymptotically efficient quantum Karatsuba multiplication. arXiv preprint
arXiv:1904.07356, 2019. 1

[Gra00] Andrew Granville. Smooth numbers: Computational number theory and beyond. Math. Sci.
Res. Inst. Publ., 44, 01 2000. 30

[HH00] Lisa Hales and Sean Hallgren. An improved quantum Fourier transform algorithm and
applications. In 41st Annual Symposium on Foundations of Computer Science, FOCS 2000, 12-14
November 2000, Redondo Beach, California, USA, pages 515–525. IEEE Computer Society, 2000.
2, 5

[HH22] David Harvey and Markus Hittmeir. A deterministic algorithm for finding r-power divisors.
Research in Number Theory, 8(4), October 2022. 1, 5

[HJN+20] Thomas Häner, Samuel Jaques, Michael Naehrig, Martin Roetteler, and Mathias Soeken.
Improved Quantum Circuits for Elliptic Curve Discrete Logarithms. In Jintai Ding and Jean-
Pierre Tillich, editors, Post-Quantum Cryptography, Lecture Notes in Computer Science, pages
425–444, Cham, 2020. Springer International Publishing. 4

[HRS17] Thomas Häner, Martin Roetteler, and Krysta M. Svore. Factoring using 2𝑛 + 2 qubits with
Toffoli based modular multiplication. Quantum Inf. Comput., 17(7&8):673–684, 2017. 1

[HvdH21] David Harvey and Joris van der Hoeven. Integer multiplication in time 𝑂(𝑛 log 𝑛). Annals of
Mathematics, 193(2), March 2021. 10

[HW75] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. Oxford, fourth
edition, 1975. 14, 16

[KCVY21] Gregory D. Kahanamoku-Meyer, Soonwon Choi, Umesh V. Vazirani, and Norman Y. Yao.
Classically-verifiable quantum advantage from a computational bell test. CoRR, abs/2104.00687,
2021. 3, 4

37

[KLVY23] Yael Kalai, Alex Lombardi, Vinod Vaikuntanathan, and Lisa Yang. Quantum Advantage
from Any Non-local Game. In Proceedings of the 55th Annual ACM Symposium on Theory of
Computing, STOC 2023, pages 1617–1628, New York, NY, USA, June 2023. Association for
Computing Machinery. 3

[KM15] Neal Koblitz and Alfred J. Menezes. The random oracle model: A twenty-year retrospective.
Designs, Codes and Cryptography, 77(2):587–610, December 2015. 4

[KMY24] Gregory D. Kahanamoku-Meyer and Norman Y. Yao. Fast quantum integer multiplication
with zero ancillas, 2024. 1, 10

[Knu98] Donald Ervin Knuth. The Art of Computer Programming, Volume II: Seminumerical Algorithms,
3rd Edition. Addison-Wesley, 1998. 10, 29

[Len87] H. W. Lenstra. Factoring integers with elliptic curves. Annals of Mathematics, 126(3):649–673,
1987. 1, 3, 11

[LLMP90] Arjen K. Lenstra, Hendrik W. Lenstra Jr., Mark S. Manasse, and John M. Pollard. The number
field sieve. In Harriet Ortiz, editor, Proceedings of the 22nd Annual ACM Symposium on Theory
of Computing, May 13-17, 1990, Baltimore, Maryland, USA, pages 564–572. ACM, 1990. 1, 11, 30

[LPDS12] Jun Li, Xinhua Peng, Jiangfeng Du, and Dieter Suter. An efficient exact quantum algorithm
for the integer square-free decomposition problem. Scientific Reports, 2, 2012. 2, 3, 4, 5, 6, 11,
13, 14, 15, 23, 30

[LS90] Robert Y. Levine and Alan T. Sherman. A Note on Bennett’s Time-Space Tradeoff for Reversible
Computation. SIAM Journal on Computing, 19(4):673–677, August 1990. Publisher: Society for
Industrial and Applied Mathematics. 10, 24, 29

[May10] Alexander May. Using lll-reduction for solving RSA and factorization problems. In Phong Q.
Nguyen and Brigitte Vallée, editors, The LLL Algorithm - Survey and Applications, Information
Security and Cryptography, pages 315–348. Springer, 2010. 1, 5

[MBV20] Michele Mosca, JoaoMarcos Vensi Basso, and Sebastian R. Verschoor. On speeding up factoring
with quantum SAT solvers. Scientific Reports, 10(1):15022, September 2020. 11

[Mil24] Carl A. Miller. Hidden-State Proofs of Quantumness, October 2024. 3

[Möl08] Niels Möller. On schönhage’s algorithm and subquadratic integer gcd computation. Math.
Comput., 77:589–607, 2008. 2, 6, 7, 10, 11, 15, 23, 24, 29

[Mul24] Erik Mulder. Fast square-free decomposition of integers using class groups. 2024. 1, 3, 5, 11

[MY23] Tomoyuki Morimae and Takashi Yamakawa. Proofs of quantumness from trapdoor permuta-
tions. In Yael Tauman Kalai, editor, 14th Innovations in Theoretical Computer Science Conference
(ITCS 2023), volume 251 of Leibniz International Proceedings in Informatics (Lipics), pages 87:1–
87:14, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. 3

38

[NZLS23] Junhong Nie, Qinlin Zhu, Meng Li, and Xiaoming Sun. Quantum Circuit Design for Integer
Multiplication Based on Schönhage–Strassen Algorithm. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 42(12):4791–4802, December 2023. 3, 4, 7, 10, 23, 29

[Oka90] T. Okamoto. A fast signature scheme based on congruential polynomial operations. IEEE
Transactions on Information Theory, 36(1):47–53, 1990. 1, 5

[OU98] Tatsuaki Okamoto and Shigenori Uchiyama. A new public-key cryptosystem as secure as
factoring. In Kaisa Nyberg, editor, Advances in Cryptology - EUROCRYPT ’98, International
Conference on the Theory and Application of Cryptographic Techniques, Espoo, Finland, May 31 -
June 4, 1998, Proceeding, volume 1403 of Lecture Notes in Computer Science, pages 308–318.
Springer, 1998. 1, 5

[PF79] Nicholas Pippenger and Michael J. Fischer. Relations among complexity measures. J. ACM,
26(2):361–381, 1979. 10

[PO96] René Peralta and Eiji Okamoto. Faster factoring of integers of a special form. IEICE Transactions
on Fundamentals of Electronics, Communications and Computer Sciences, 79:489–493, 1996. 1, 5

[Pol93] J. M. Pollard. Factoring with cubic integers. In Arjen K. Lenstra andHendrikW. Lenstra, editors,
The development of the number field sieve, pages 4–10, Berlin, Heidelberg, 1993. Springer Berlin
Heidelberg. 1, 11, 30

[PT00] Sachar Paulus and Tsuyoshi Takagi. A new public-key cryptosystem over a quadratic order
with quadratic decryption time. J. Cryptol., 13(2):263–272, 2000. 1, 5

[PZ03] John Proos and Christof Zalka. Shor’s discrete logarithm quantum algorithm for elliptic
curves. Quantum Inf. Comput., 3(4):317–344, 2003. 10

[Reg23] Oded Regev. An efficient quantum factoring algorithm. arXiv preprint arXiv:2308.06572, 2023.
1, 3, 4, 11, 30

[RNSL17] Martin Roetteler, Michael Naehrig, Krysta M Svore, and Kristin Lauter. Quantum resource esti-
mates for computing elliptic curve discrete logarithms. In Advances in Cryptology–ASIACRYPT
2017: 23rd International Conference on the Theory and Applications of Cryptology and Informa-
tion Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part II 23, pages 241–270.
Springer, 2017. 7

[RV24] Seyoon Ragavan and Vinod Vaikuntanathan. Space-efficient and noise-robust quantum
factoring. In Leonid Reyzin and Douglas Stebila, editors, Advances in Cryptology - CRYPTO
2024 - 44th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 18-22,
2024, Proceedings, Part VI, volume 14925 of Lecture Notes in Computer Science, pages 107–140.
Springer, 2024. 1, 3, 4, 25

[Sch71] A. Schönhage. Schnelle berechnung von kettenbruchentwicklungen. Acta Informatica,
1(2):139–144, 1971. 2, 3, 4, 6, 7, 10, 11, 15, 23, 24, 29

39

[Sei01] Jean-Pierre Seifert. Using fewer qubits in Shor’s factorization algorithm via simultaneous
Diophantine approximation. In Cryptographers’ Track at the RSA Conference, pages 319–327.
Springer, 2001. 1, 22

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on
a quantum computer. SIAM J. Comput., 26(5):1484–1509, 1997. 1, 3, 4, 5, 6, 11, 15, 16, 20, 22, 30

[SS71] Arnold Schönhage and Volker Strassen. Fast multiplication of large numbers. Computing,
7:281–292, 1971. 7, 10, 29

[SS06] Katja Schmidt-Samoa. A new rabin-type trapdoor permutation equivalent to factoring. Elec-
tronic Notes in Theoretical Computer Science, 157(3):79–94, 2006. Proceedings of the First
International Workshop on Security and Trust Management (STM 2005). 1, 5

[Tak98] Tsuyoshi Takagi. Fast rsa-type cryptosystemmodulo pkq. In Hugo Krawczyk, editor, Advances
in Cryptology - CRYPTO ’98, 18th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 23-27, 1998, Proceedings, volume 1462 of Lecture Notes in Computer
Science, pages 318–326. Springer, 1998. 1, 5

[TK06] Yasuhiro Takahashi and Noboru Kunihiro. A quantum circuit for Shor’s factoring algorithm
using 2n+ 2 qubits. Quantum Information & Computation, 6(2):184–192, 2006. 1

[VBE96] Vlatko Vedral, Adriano Barenco, and Artur Ekert. Quantum networks for elementary arith-
metic operations. Physical Review A, 54(1):147, 1996. 1

[YZ22] Takashi Yamakawa and Mark Zhandry. Verifiable Quantum Advantage without Structure. In
2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pages 69–74,
October 2022. 3

[Zal06] Christof Zalka. Shor’s algorithm with fewer (pure) qubits, 2006. 1

40

	Introduction
	The LPDS Circuit for Squarefree Decomposition
	Technical Overview

	Preliminaries
	Notation
	Jacobi Symbol
	Computational Number Theory
	Sums of Phases
	Basic Lemmas
	Gauss Sums

	Factoring Squarefull Integers
	Algorithm for Computing Jacobi Symbols
	Abstract Construction
	Implications: Factoring Certain Integers in Sublinear Space and Depth

	Fully Factoring Integers with Distinct Exponents in their Prime Factorization

