
General Practical Cryptanalysis of the Sum of
Round-Reduced Block Ciphers and ZIP-AES

Antonio Flórez-Gutiérrez1[0000−0001−7749−8925],
Lorenzo Grassi2[0000−0003−1140−0520], Gregor Leander2[0000−0002−2579−8587],

Ferdinand Sibleyras1, and Yosuke Todo1[0000−0002−6839−4777]

1 NTT Social Informatics Laboratories, Tokyo, Japan
{antonio.florez,yosuke.todo}@ntt.com

2 Ruhr University Bochum, Bochum, Germany
{lorenzo.grassi,gregor.leander}@rub.de

Abstract. We introduce a new approach between classical security proofs
of modes of operation and dedicated security analysis for known crypt-
analysis families: General Practical Cryptanalysis. This allows us to ana-
lyze generically the security of the sum of two keyed permutations against
known attacks. In many cases (of course, not all), we show that the se-
curity of the sum is strongly linked to that of the composition of the two
permutations. This enables the construction of beyond-birthday bound
secure low-latency PRFs by cutting a known-to-be-secure block cipher
into two equal parts. As a side result, our general analysis shows an in-
evitable difficulty for the key recovery based on differential-type attacks
against the sum, which leads to a correction of previously published at-
tacks on the dedicated design Orthros.

1 Introduction

Symmetric primitives are used to encrypt most of our sensitive data in virtually
all applications. Block ciphers are arguably the most studied primitives.

Overhead of Modes. In order to encrypt actual data, primitives have to be used in
a mode-of-operation. As a consequence of block ciphers being the most studied
primitives, the majority of symmetric-key cryptographic schemes are built as
block cipher modes. The advantage of using primitives in a mode-of-operation
instead of directly designing an (authenticated) encryption is obvious: a well-
designed mode comes with a proof that reduces its security to the security of
the primitive. Using such a mode with a well-understood (block) cipher results
in a secure scheme. One example is the counter-mode, where a pseudo-random
function (PRF) is constructed by encrypting a counter. Indeed, AES-CRT is a
frequently used scheme for encryption. In this paper, we instead focus on the
sum of two block ciphers. Given two pseudo-random permutations (PRPs) (or
independent block ciphers) Ek and E′

k, the sum Ek(x)⊕E′
k(x) is a secure PRF.

However, modes have a significant overhead. For example, AES-CRT is only
secure only up to the birthday bound. For better security, modes with two (or

2 A. Flórez-Gutiérrez et al.

more) calls to the block cipher are required. Turning our focus to the sum-of-
PRP construction, we wonder whether it is necessary that both parts are secure
PRPs. This question was already posed by the dedicated PRF Orthros [BIL+21],
which consists of the sum of two specific keyed permutations that would not be
secure block ciphers individually. A similar approach was taken in [MN17b],
where AES-PRF is proposed as a round-reduced instance of the EDMD con-
struction presented in [MN17a]. The security of AES-PRF required dedicated
cryptanalysis to explain why known attacks do not apply. Interestingly, the au-
thors of [MN17b] state that the sum construction seems more risky than the
EDMD construction, an opinion we clearly object to as explained below. The
main difference with AES-PRF and Orthros is that we are interested in a more
general approach.

Link to Composition. As an example, consider a differential attack on the sum
construction. One would typically consider an input difference α that would be
input to both parts and try to find the most probable output differences β and
γ for the individual parts, leading finally to an output difference of β ⊕ γ.

P

C

E1 E2k1 k2

⊕

α

α α

β γ

β ⊕ γ

The starting point for our work is the observation that the probability for this
event, assuming the independence of the parts, is the same as the probability of
the following differential trail on the composition of E−1

1 and E2.

A BE−1
1 E2

β α γ

That is, at least intuitively, the sum construction is as secure as the composition
with respect to differential distinguishers. Ideally, we might hope for a result
stating that if E2 ◦E−1

1 is a secure (strong) PRP, then E1⊕E2 is a secure PRF.
Before discussing why this is not actually true, let us elaborate on how useful
such a statement would be. Such a statement would allow us to take any secure
block cipher, split it into two parts, and obtain a secure PRF . This would (i)
remove the overhead of having two calls to a secure cipher (ii) remove the need
for dedicated cryptanalysis as done in Orthros and (iii) result in a PRF with
roughly half the latency of the corresponding block cipher.

General Practical Cryptanalysis 3

The problem is, as mentioned, the result is wrong. The easiest example is to
take E−1

1 to be identity. Then, the resulting scheme is the classical feed-forward
construction for which distinguishing attacks exist with square-root complexity.
So the main question was if and how this statement might be corrected without
losing the great advantages it would provide.

Latency. Latency is an especially important fundamental criterion for the design
of symmetric primitives. Indeed, compared to other performance criteria, low la-
tency is much harder to achieve. In a nutshell, asking for a minimal latency cipher
is asking about the minimal amount of computation necessary to obtain a secure
cipher - a question as fundamental as it is open. Besides being a fundamental
property, low latency ciphers have important applications, with memory encryp-
tion being one of the most prominent. There are a few dedicated low-latency
designs, e.g. PRINCE [BCG+12], PRINCEv2 [BEK+20], MANTIS [BJK+16],
QARMA [Ava17], QARMAv2 [ABD+23], and SPEEDY [LMMR21]. While all
these designs use different ideas, their latency seems to converge. Differences in
latency are mainly due to different security margins. Substantially improving
latency with another block cipher design seems hard if not impossible, which
means the possibility of essentially halving the latency with the sum of permu-
tations construction is very enticing.

Our Contribution. It turns out it is possible to show that a practically iden-
tical statement holds to an extent. For this, we introduce a new approach which
lies between general security reduction on modes of operation and dedicated
security analysis of a specific primitive. Specifically, we compare, without ana-
lyzing the inside of each component, the security of the sum of two components
with their composition. We name this approach General Practical Cryptanalysis.

We show that for many attack families, distinguishers on the sum construc-
tion are related to distinguishers on the composition. In the case of the two main
attack families, differential and linear distinguishers, as well as their variants,
their behaviors are very similar. In particular, (i) differential and linear trails
have the same probability/correlation in E1⊕E2 as in E2 ◦E−1

1 or E−1
2 ◦E1 and

(ii) differential-linear and boomerang distinguishers on E2 ◦ E−1
1 are equivalent

to differential-and-linear and second order differential distinguishers on E1⊕E2.
Of course, there are exceptions; for example, the sum construction is only as
strong as the strongest part against the integral attack.

An attack on a symmetric primitive is, in most cases, built from a distin-
guisher and a key-recovery part. Equally interesting as the results on distin-
guishers is, therefore, to understand how one can add key-recovery rounds to
the different distinguishers on the sum construction. Returning to the example
of differential cryptanalysis, it is intuitively clear that adding key recovery at
the end is unpromising. Adding key recovery at the top is also more difficult
than for the composition, as one has to control both branches simultaneously.
We argue that this is only possible under strict conditions. As an interesting
side result, our general findings imply that the previous differential attack on
Orthros published in [LSW22] must be reviewed.

4 A. Flórez-Gutiérrez et al.

This novel practical general approach leads to our main result: with respect
to the most important attack vectors (with the exceptions mentioned above),
the sum E1 ⊕ E2 is as secure as the composition E2 ◦ E−1

1 . Taking a secure
block cipher and splitting it into equal parts, with some additional analysis to
cover the exceptions, leads to a PRF that is secure against all known attacks. Of
course, this does not rule out the existence of new attacks, but this is the case
for all new symmetric primitives.

Instances. To showcase the power and flexibility of our approach, we give a
concrete instance in Sect. 4: ZIP-AES, a variant built as the sum of two 5-round
AES. This results in a secure PRF with half the latency of AES-CTR and twice
the security in terms of data complexity. When implemented with AES-NI, as
inverse rounds are more costly, it does not achieve half the latency, but still
provides slightly better running times, as detailed in Sect. 4.3.

We finally mention that a ZIP cipher based on a 64-bit lightweight block
cipher is promising, e.g., ZIP-GIFT in Sect. 5. The resulting PRF is secure up
to the entire 264 blocks, which is enough for all practical cases, while the counter
mode of such a 64-bit block cipher can be broken with only 232 blocks of data
complexity. Again, not only would security double, but the latency would also
be halved, and therefore, it would be very competitive with the dedicated low-
latency designs mentioned above.

2 Preliminaries

2.1 Known Attacks on Symmetric Primitives

We work a lot with linear and differential attacks and their variants. We expect
the reader to be familiar with them and use this section to fix our notation.

Differential Cryptanalysis [BS90]. Differential attacks use pairs of plain-
texts with a well-chosen difference. For a function F : Fn

2 → Fm
2 , a given input

difference α ∈ Fn
2 , and an output difference β ∈ Fm

2 , we denote by

Prob(α
F−→ β) =

|{x ∈ Fn
2 | F(x)⊕ F(x⊕ α) = β}|

2n

the probability that the difference α results in the difference β. Given two (or
more) functions F : Fn

2 → Fm
2 and G : Fm

2 → Fℓ
2, a differential trail or character-

istic for G◦F also includes an intermediate difference γ. Its probability is usually
estimated by multiplying the probabilities

Prob(α
F−→ γ

G−→ β) ≃ Prob(α
F−→ γ) · Prob(γ G−→ β),

which can be justified if F and G are key-alternating ciphers with independent
round keys and considering the average probability over all keys. From now on,
we adopt this independence assumption. Without assumptions, it holds that

Prob(α
G◦F−−→ β) =

∑
γ

Prob(α
F−→ γ

G−→ β),

General Practical Cryptanalysis 5

which is referred to as a differential in contrast to a differential trail.

Linear cryptanalysis [Mat93]. A linear approximation is a linear combina-
tion of input and output bits of the cipher. The main measure of its quality is
its correlation. Given a function F, an input mask α, and output mask β, it’s

corF(α, β) = Probx (⟨β,F(x)⟩ = ⟨α, x⟩)− Probx (⟨β,F(x)⟩ ≠ ⟨α, x⟩) .

Again, given two functions, a linear trail for the composition is specified by an
input mask α, an intermediate mask γ, and an output mask β, and its correlation
contribution is formally defined as corF(α, γ) corG(γ, β). The set of all linear
trails sharing the same input and output masks is often called linear hull. This
definition is motivated by the fact that

corG◦F(α, β) =
∑
γ

corF(α, γ) corG(γ, β).

Similarly, given a Boolean function f : Fn
2 −→ F2, its correlation is

cor(f) = Probx (f(x) = 0)− Probx (f(x) = 1) .

Differential-linear cryptanalysis. The data complexity is given by the au-
tocorrelation, which for an input difference δ and output mask α is defined as

AutF(δ, α) = Probx (⟨α,F(x)⊕ F(x⊕ δ)⟩ = 0)−Probx (⟨α,F(x)⊕ F(x⊕ δ)⟩ = 1) .

In most cases, it is infeasible to obtain all trails in a linear hull or a differen-
tial. Hence, security arguments are often based on bounding the probability or
correlation of trails. We mainly stick to this approach in this work.

2.2 The Sum-of-PRPs

Constructing PRFs from PRPs is a well-studied topic from a provable security
perspective. The sum-of-PRPs construction is a well-known research topic. It
was initially introduced by Bellare et al. at EUROCRYPT 1998 [BKR98]. The
first proof of its security was given by Lucks at EUROCYPT 2000 [Luc00], where
he proved a suboptimal security bound up to 22n/3 queries. This was improved
by Bellare and Impagliazzo [BI99] to 2n/n. Finally, with the introduction of the
H-coefficient technique, Patarin [Pat10] proved the optimal full n-bit security,
and Dutta et at. in [DNS22] filled some gaps in Patarin’s proof. Very recently,
Dinur [Din24], using Fourier-analysis, proved optimal bounds for the general
case of the sum of permutations and the multi-user setting. A good survey of
the state of the art of this and other constructions is given in the later paper as
well as in [JN22].

Complementing this line of work, some recent work has focused on the ques-
tion of constructing a public function from public (i.e., non-keyed) permutations.

6 A. Flórez-Gutiérrez et al.

This setting requires the notion of indifferentiability and is technically more in-
volved. After several attempts that turned out to be flawed or non-optimal, the
work of Gunsing et al. finally settled the result at CRYPTO 2023 [GBJ+23].

Despite the general usefulness of constructing a pseudo-random function,
there was for a long time no practical cryptanalysis discussion against this con-
struction, mainly because there were no practical instances that have been used
or even proposed. The first concrete design was, to the best of our knowledge,
Orthros [BIL+21]. Motivated by the fact that the output of each pseudo-random
permutation is not visible to the attacker, the authors used the so-called proof-
then-prune approach [HKR15] to realize an efficient pseudo-random function by
reducing the rounds of the two parts. This significantly improved the latency
of the resulting scheme but required dedicated cryptanalysis. As discussed be-
low, getting this analysis right is more difficult than usual, in particular when
considering differential-type attacks with key recovery.

To capture all designs derived by summing two not necessarily pseudo-random
permutations, we give the following general definition.

Definition 1 (P ⊕Q). Let P,Q be two families of permutations, indexed by the
keys kp, kq in the sets P and Q, respectively:

(x, kP) ∈ Fn
2 × P 7→ Pkp(x) ∈ Fn

2 , (x, kQ) ∈ Fn
2 ×Q 7→ Qkq (x) ∈ Fn

2 .

We define the P ⊕Q construction as the following family of functions:

P ⊕Q : Fn
2 × P ×Q → Fn

2

(x, (kP , kQ)) 7→ Pkp
(x)⊕Qkq

(x).

Unlike in provable security analysis, it is not assumed that P and Q are
pseudo-random permutations. In other words, P and Q are not necessarily secure
block ciphers with sound security claims on their own. Our objective is to reveal
whether P ⊕Q enhances the practical security in the context of cryptanalysis.

3 General Practical Cryptanalysis of P ⊕ Q

This section discusses the resistance of the P⊕Q construction against well-known
attack families, and compares it to compositions of P , Q and their inverses. As
stated above, for our arguments, we make the usual assumption on the indepen-
dence of rounds and therefore multiply probabilities over multiple rounds. While
for attacks, this tends to lead to flawed complexity estimations, for security ar-
guments there is currently no alternative technique avoiding this.

3.1 Differential Cryptanalysis

Differential Characteristic Equivalence. The differential trails of the par-
allel construction P ⊕Q are tightly linked to those of the sequential construction
Q ◦ P−1, as shown by the following result:

General Practical Cryptanalysis 7

P Q P Q

Fig. 1: Differential and linear trail equivalence

Proposition 1. Let P,Q be two keyed permutations over Fn
2 , and let F := P⊕Q

and S := Q◦P−1. For each differential trail with probability p traversing F, there
is a trail traversing S with the same probability p.

Proof. Given δI , δO ∈ Fn
2 , we consider the differential δI

F−→ δO. All its trails take
the same form given by the choice of γ ∈ Fn

2 and have probability

p = Prob(δI
P−→ γ) · Prob(δI

Q−→ γ ⊕ δO).

Since Prob(δI
P−→ γ) = Prob(γ

P−1

−−−→ δI), p is also the probability of the differ-

ential trail γ
P−1

−−−→ δI
Q−→ γ ⊕ δO traversing S. ⊓⊔

The left diagram in Fig. 1 shows the trail equivalence between P⊕Q and Q◦P−1.

Aggregating the Trails. While individual trails of P ⊕ Q and Q ◦ P−1 are
equivalent (and thus both have the same maximum differential trail probability),
it is hard to compare the resulting differential probabilities when adding up all
the trail probabilities in a differential. We can try to compare the expected
differential probability (EDP) of both constructions:

Prob(δI
P⊕Q−−−→ δO) =

∑
γ

Prob(γ
P−1

−−−→ δI) · Prob(δI
Q−→ γ ⊕ δO),

Prob(δI
Q◦P−1

−−−−−→ δO) =
∑
γ

Prob(δI
P−1

−−−→ γ) · Prob(γ Q−→ δO).

However, we quickly realize that both sums cover sets of differential trails which
are non-equivalent, which makes further analysis difficult. Indeed, in the case of

P⊕Q, the sum covers all trails γ
P−1

−−−→ δI
Q−→ γ⊕δO for all γ, and δI

P−1

−−−→ γ
Q−→ δO

in the case of Q◦P−1. Therefore, the maximum expected differential probability
(MEDP) is not necessarily identical.

8 A. Flórez-Gutiérrez et al.

Taka et al. studied this effect on multiple-branch-based designs and inves-
tigated the differential clustering effect on Orthros [TISI23]. They focused on
several γ, evaluated the clustering effect on each branch for each γ, and com-
bined them. On the other hand, in general, we do not expect either P ⊕ Q or
Q◦P−1 to have a stronger clustering effect because the number of terms in both
sums is the same. More importantly, the clustering inside P and Q is exactly the
same in both cases. We also note that if P and Q are almost the same structure,

Prob(δI
P⊕Q−−−→ 0) is expected to be high, but so will be Prob(δI

Q◦P−1

−−−−−→ δI).

On Key Recovery in Differential Cryptanalysis. Regarding the key re-
covery based on the differential attack, P ⊕Q appears to be more resilient than
Q ◦P−1. More precisely, we find an inevitable difficulty in mounting an effective
key-recovery attack on P ⊕Q.

The most common strategy for the key-recovery attack is to append key-
recovery rounds to the differential distinguisher. We construct a differential dis-
tinguisher and append key-recovery rounds for attacking more rounds. The data
complexity depends on the probability of the differential distinguisher, since the
key-recovery rounds are deterministic under each key guess. We now consider
two possible key-recovery strategies: it is added to the output or input.

Key Recovery on the Output Side. The output is P (x)⊕Q(x), where P (x) and
Q(x) are unknown to the attacker. It is unlikely to add key recovery unless the
attacker can compute at least part of (differences in) P (x) or Q(x). We suppose
P and Q contain almost the same rounds. This implies that the key-recovery
part can cover half of the total round when we attack the composition. As long
as this is not the case, adding key-recovery at the output is not possible.

Key Recovery on the Input Side. Key recovery on the input side seems more
natural because the attacker knows or even chooses the inputs to P and Q. We
consider a differential key-recovery attack on F := (P2◦P1)⊕(Q2◦Q1), where the
input differences to P2 and Q2 are fixed to δP and δQ, respectively. Therefore,

we exploit a high differential probability p = Prob((δP , δQ)
P2⊕Q2−−−−→ δO) with key

recovery on P1 and Q1. Conventionally, the data complexity can be p−1 in the
optimal case, but we show such a strategy does not work.

Proposition 2. Let F = (P2 ◦ P1)⊕ (Q2 ◦Q1). We consider a differential key-
recovery attack where the input differences of P2 and Q2 are fixed to δP and δQ,
respectively, and the output difference is δO. The necessary key material from P1

and Q1 is guessed. Such an attack works only when

Prob((δP , δQ)
P2⊕Q2−−−−→ δO) · Prob(δP

Q1◦P−1
1−−−−−→ δQ) > 2−n .

General Practical Cryptanalysis 9

Proof. Let us count the number of input pairs X,X ′ to P ⊕ Q that produce a
difference of δP after P1 and δQ after Q1 simultaneously.

T = |{(X,X ′) | P1(X)⊕ P1(X
′) = δP and Q1(X)⊕Q1(X

′) = δQ}|
= |{(x, x⊕ δP) | Q1 ◦ P−1

1 (x)⊕Q1 ◦ P−1
1 (x⊕ δP) = δQ}|

= 2n · Prob(δP
Q1◦P−1

1−−−−−→ δQ)

Observing that the expected data complexity for the distinguisher is at least
the inverse of the probability of the differential and at most T , i.e.

Prob((δP , δQ)
P2⊕Q2−−−−→ δO)

−1 < T

leads to the claimed result. ⊓⊔

In practice, the attacker would choose a differential trail given by δP
P2−→ γ and

δQ
Q2−−→ γ ⊕ δO and estimate the probability of the resulting distinguisher as

Prob((δP , δQ)
P2⊕Q2−−−−→ δO) ≈ Prob(δP

P2−→ γ) · Prob(δQ
Q2−−→ γ ⊕ δO).

The usual condition Prob(δP
P2−→ γ) ·Prob(δQ

Q2−−→ γ⊕δO) > 2−n is not sufficient
for an attack to be possible. If

Prob(γ
P−1

2−−−→ δP) · Prob(δP
Q1◦P−1

1−−−−−→ δQ) · Prob(δQ
Q2−−→ γ ⊕ δO) < 2−n,

there may be no pairs satisfying the differential characteristic.

Review of the Differential Key-Recovery Attack against Orthros in [LSW22].
Proposition 2 implies that the data complexity of a differential key-recovery
attack must be estimated carefully. In a nice paper at Africacrypt 2022, Li, Sun,
and Wang proposed differential cryptanalysis against round-reduced Orthros.
Their attacks add a 1-round key recovery to the input side of both branches.
Specifically, they prepared pairs of chosen plaintexts whose differences take the
form

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, δ1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, δ2, 0, 0, 0, δ3, 0).

Branch 1 requires three nibble difference transitions in the Sbox layer: δ1
S−→ 0x2,

δ2
S−→ 0x2, and δ3

S−→ 0x8. Similarly, branch 2 requires δ1
S−→ 0x8, δ2

S−→ 0x1, and

δ3
S−→ 0x2. Excluding these first S-box layers, the differential probability on each

branch is estimated as 2−64 and 2−48, so the total probability is p = 2−112. They
finally estimated the data complexity as 2115 based on their attack framework.

Proposition 2 implies that a key-recovery attack is possible only when

p · Prob(0x2 S◦S−1

−−−−→ 0x8) · Prob(0x2 S◦S−1

−−−−→ 0x1) · Prob(0x8 S◦S−1

−−−−→ 0x2) > 2−128.

10 A. Flórez-Gutiérrez et al.

This probability highly depends on the key (difference) involved in S ◦S−1. The
detailed review is shown in Appendix A. We notice that the probability is zero
for more than half of the keys in each Sbox. Therefore, it is a weak-key attack
whose fraction of weak keys is 5/16× 7/16× 5/16 ≈ 2−4.55.

We assume that one of the weak keys is used. Since the attacker does not know
which (weak) key is used, the attacker must fully activate corresponding 12-bit
inputs. Among 12-bit active inputs, we can construct about 224 pairs. However,
given a fixed key, the number of pairs satisfying input differences of both branches
is limited. In some (weak) keys, the number is only 8 (see Appendix A for details).
Therefore, to observe differential characteristics with p = 2−112, we need at least
2109 texts in addition to the 12-bit active. As a result, the attacker must use at
least 2109+12 = 2121 chosen plaintexts to lead a valid key-recovery attack for
all keys belonging to the weak keys, which is more than 2115 by the analysis
of [LSW22].

Remark 1. Assuming that the keys in three active S-boxes are identical in P
and Q, the input differences of the two branches must be the same because

Prob(δP
S◦S−1

−−−−→ δQ) = 0 for δP ̸= δQ. In other words, to lead the key-recovery
attack that is valid for all keys, it is necessary to construct differential charac-
teristics whose input differences are equal in both branches.

3.2 Linear Cryptanalysis

Linear Characteristic Equivalence. Similarly to the differential cryptanaly-
sis, the linear trails of P⊕Q are equivalent to those of the sequential construction
Q−1 ◦ P , as shown in the right diagram of Fig. 1, and by the following result:

Proposition 3. Let P,Q be two keyed permutations over Fn
2 , and let F := P⊕Q

and S∗ := Q−1 ◦P . For each linear trail with correlation c traversing F, there is
a linear trail with the same correlation c traversing S∗.

Proof. Consider any masks α, γ, β ∈ Fn
2 , let c = corP (γ, β) corQ(γ⊕α, β) be the

correlation of a linear trail through F. Again, notice that

corP (γ, β) corQ(γ ⊕ α, β) = corP (γ, β) corQ−1(β, γ ⊕ α).

Thus, c is the correlation of the linear trail γ
P−→ β

Q−1

−−−→ γ⊕α traversing S∗. ⊓⊔

Similar to differential cryptanalysis, while individual trails or characteristics
are equivalent, it is hard to compare the resulting linear approximation correla-
tion when adding up the trail correlation contributions:

corF(α, β) =
∑
γ

corP (γ, β) corQ(γ ⊕ α, β),

corS∗(α, β) =
∑
γ

corP (α, γ) corQ(β, γ).

It is possible that the largest correlations of the linear approximations F and S∗

are not the same, due to differences in the clustering effect for both constructions.

General Practical Cryptanalysis 11

About Sequential Applications. One peculiar aspect of Propositions 1 and
3 is that the sequential function with equivalent trails or characteristics differs
between the differential (S := Q ◦ P−1) and linear (S∗ := Q−1 ◦ P) cases. This
occurs because differential trails traversing F must coincide in the input of the
two branches (the output differentials can be added) while linear trails must
coincide in the output of the two branches (the input masks can be added).

However, in the case in which Q = {P−1|P ∈ P}, then the compositions
S = S∗ conform the same set of permutations, and F has the same differential
and linear characteristics as P1 ◦ P2, where P1, P2 ∈ P. This is the ZIP-design
strategy we employ in Sections 4 and 5.

We note that the behavior of both constructions is not necessarily the same
when it comes to trail clustering (so that the maximum differential probability
or correlation may still differ). Again, all the clustering that happens within P
and/or Q is equivalent in S, S∗, and P ⊕ Q. Thus, even so our argument does
not cover all possible clustering, it covers more than done in both attacks in the
vast majority of cases.

On Key Recovery in Linear Cryptanalysis. Unlike with differential crypt-
analysis, it is possible to mount linear key-recovery attacks on P ⊕Q. While it
is not possible on the output side due to the irreversibility of the XOR opera-
tion, it is possible on the input side. Indeed, assume that the branches can be
written as P = P2 ◦P1 and Q = Q2 ◦Q1. We are given a linear approximation of
P2 ⊕Q2, and we want to perform key recovery over P1 and Q1. As long as the
combined size of the necessary key guesses to determine the parity of the input
masks to P2 and Q2 is small enough, it is possible to perform key recovery on
both P1 and Q1 simultaneously without increasing the data complexity. Linear
cryptanalysis is a known plaintext attack, so the cryptanalyst does not need
to control internal values in either branch and, most notably, does not need to
control both branches at the same time, which is the impediment to differential
key-recovery attacks). In summary, linear key-recovery attacks over the first few
rounds of P and Q can be carried out in the same manner as on an iterative
block cipher. Thus, assuming that differential and linear distinguishers cover the
same number of rounds, linear cryptanalysis may lead to stronger attacks.

3.3 Differential-Linear Cryptanalysis

We next look at differential-linear cryptanalysis. First, we investigate how the
autocorrelation of P ⊕ Q is related to the properties of P and Q, and we find
the following straightforward result:

Proposition 4. Let P,Q be keyed permutations over Fn
2 and let F = P ⊕Q. Let

δ ∈ Fn
2 be an input difference, and let α ∈ Fn

2 be an output linear mask. Then

AutF(δ, α) = AutP (δ, α) ·AutQ(δ, α).

12 A. Flórez-Gutiérrez et al.

Proof. From the definition of the autocorrelation:

AutF(δ, α) = cor (⟨α,F(x)⟩ ⊕ ⟨α,F(x⊕ δ)⟩)
= cor (⟨α, P (x)⟩ ⊕ ⟨α,Q(x)⟩ ⊕ ⟨α, P (x⊕ δ)⟩ ⊕ ⟨α,Q(x⊕ δ)⟩)
= cor (⟨α, P (x)⟩ ⊕ ⟨α, P (x⊕ δ)⟩ ⊕ ⟨α,Q(x)⟩ ⊕ ⟨α,Q(x⊕ δ)⟩) .

Assuming the independence of both halves of the expression (or, alternatively,
that cor (⟨α, P (x)⟩ ⊕ ⟨α,Q(x)⟩) is negligible), we deduce:

AutF(δ, α) = cor (⟨α, P (x)⟩ ⊕ ⟨α, P (x⊕ δ)⟩) · cor (⟨α,Q(x)⟩ ⊕ ⟨α,Q(x⊕ δ)⟩)
= AutP (δ, α) ·AutQ(δ, α)

from the piling-up-lemma [Mat93]. ⊓⊔

We note two important differences between this result and the ones for differ-
ential and linear distinguishers. It describes the behavior of a whole differential-
linear distinguisher without singling out an individual trail. However, the au-
tocorrelation cannot generally be related to that on the composition of P,Q or
their inverses, and relies just on the product of the autocorrelations for P and Q.
This does not make a large difference for constructions in which the logarithm
of the maximum autocorrelation decreases linearly with the number of rounds,
but it may create a gap when this exponent decreases very quickly.

Practical Strategies for Finding DL Distinguishers. The autocorrelation
of F is computed as the multiplication of the autocorrelations of P and Q having
the same input difference and output mask. On the other hand, in practice a DL
distinguisher is found by studying a trail perspective.

Traditionally, a cipher is separated into two parts, so that a differential trail
is considered over the first part and a linear trail over the second. Let P =

Pl ◦ Pd and Q = Ql ◦ Qd, where differentials δ
Pd−−→ δP and δ

Qd−−→ δQ and

linear approximations on αP
Pl−→ β and αQ

Ql−−→ β are known. We consider the
composition S := P−1

l ◦Ql ◦Qd ◦P−1
d . Then, the differential-linear distinguishers

δ
F−→ β and δP

S−→ αP are expected to have the same autocorrelation, assuming
that these trails are dominant and independent. When Pd and Pl are iterations
of the round function and Qd and Ql are iterations of the inverse round function,
P ⊕Q is equivalent to the composition.

On the other hand, we can consider truncated differentials, (δP , δQ) ∈ UP ×
UQ, instead of a single differential trail. As mentioned later, the behavior of the
truncated differential is different in P ⊕ Q and the composition. Moreover, the
differential-linear hull aggregates multiple intermediate masks instead of a single
intermediate mask. When we switch differential trails into linear trails, we also
have the so-called independence assumption issue. In particular, the strategy
above has two different switches for each side of P and Q. Considering such
a complicated situation, it is preferable to analyze the autocorrelation of each
branch rather than optimistically trusting the relationship to the composition.

General Practical Cryptanalysis 13

On Key Recovery in Differential-Linear Cryptanalysis. Considering the
differential-linear key recovery, a similar problem arises to the one shown in
the differential key recovery: it is necessary to control input differences in both
branches simultaneously, which puts a limitation on the usable distinguishers.

Proposition 5. Let F = (P2 ◦P1)⊕ (Q2 ◦Q1). We consider a differential-linear
key-recovery attack, where the input differences of P2 and Q2 are δP and δQ,
respectively. The output linear mask is α. The necessary key material from P1

and Q1 is guessed. Such an attack works only when

(AutP2
(δP , α) ·AutQ2

(δQ, α))
−2

< 2n · Prob(δP
Q1◦P−1

1−−−−−→ δQ).

Proof. Let δP and δQ be fixed input differences of P2 and Q2, respectively.
Let α be the output linear mask. Therefore, assuming the input pairs to P2

and Q2 already satisfy δP and δQ, the necessary number of pairs is estimated as

(AutP2
(δP , α) ·AutQ2

(δQ, α))
−2

. The number of available pairs satisfying δP and

δQ at the same time is expected as 2n · Prob(δP
Q1◦P−1

1−−−−−→ δQ). Therefore, when

this number is less than (AutP2
(δP , α) ·AutQ2

(δQ, α))
−2

, the attacker cannot
collect enough pairs to complete the attack. ⊓⊔

Review of the DL Key-Recovery Attack against Orthros in [LSW22]. We again
review the existing attack against Orthros proposed at [LSW22]. It also presents
differential-linear cryptanalysis. It uses a differential-linear distinguisher whose
autocorrelation is 2−46. They also estimated the data complexity to be 295 chosen
plaintexts.

This has the same problem as the key recovery in differential attacks, i.e.,
the attack is a weak-key attack and requires a higher data complexity than
their estimation. The key-recovery structure is the same as the differential case.
Therefore, the fraction of weak keys is 2−4.55. From 12-bit active inputs, there
are weak keys, where the number of pairs satisfying input differences of both
branches is only 8. Therefore, to recover any weak key, we need at least 246×2/8×
212 = 2101 chosen plaintexts, which is more than 295 by the previous estimation.

3.4 Differential-and-Linear Key-Recovery Attack

In previous sections, we have noted that attacks which require the adversary to
control an input difference in both branches are difficult to turn into key-recovery
attacks. On the other hand, linear attacks lend themselves well to key recovery
because of the known-plaintext nature. We next introduce a hybrid key-recovery
attack which uses a differential-linear distinguisher on one of the branches and
a linear distinguisher on the other. On the differential-linear branch, the key
recovery can be performed because the attacker can control the input difference
by choosing plaintexts as in a standard differential or differential-linear attack.
On the linear branch, the attacker only needs to establish the parity of the input
linear mask, so it does not interfere with the key recovery on the other branch.

14 A. Flórez-Gutiérrez et al.

Fig. 2: The differential-and-linear key-recovery attack on P ⊕ Q (left) and
differential-linear key-recovery attack on Q−1 ◦ P .

Let us describe this situation in more detail (see Figure 2). P is divided into
P = P2 ◦ P1. Key recovery will be carried out on P1 while a differential-linear
distinguisher is considered on P2 with input difference δ, output mask β, and
autocorrelation c1. Q is also divided into Q = Q2 ◦Q1 where Q1 is reserved for
key recovery, and a linear approximation with masks α and β and correlation c2
is considered for Q2. We note that the roles of P and Q can be exchanged.

By guessing parts of the key in P1 and Q1, the attacker can compute the
following parity from arbitrary X.

⟨β,F(X)⟩ ⊕ ⟨β,F(P−1
1 (P1(X)⊕ δ))⟩ ⊕ ⟨α,Q1(X)⟩ ⊕ ⟨α,Q1(P

−1
1 (P1(X)⊕ δ))⟩.

Thus, by querying enough plaintexts, the attacker can obtain the experimental
correlation.

We will first determine the correlation of this function, and then we will
briefly describe the key-recovery attack algorithm. For the former, we note that
we can, by expanding F, rearrange the formula as follows:

⟨β, P2(P1(X))⟩ ⊕ ⟨β, P2(P1(X)⊕ δ)⟩⊕
⟨α,Q1(X)⟩ ⊕ ⟨β,Q2(Q1(X))⟩⊕
⟨α,Q1(P

−1
1 (P1(X)⊕ δ))⟩ ⊕ ⟨β,Q2(Q1(P

−1
1 (P1(X)⊕ δ)))⟩

From the assumptions on the distinguishers for P2 and Q2, the correlation of
the first line is c1, and the correlations of the second and third lines are c2. As
a result, and from the piling-up lemma, we deduce that the correlation for the
whole expression is c1 · c22, which means an attack can be mounted with data
complexity c−2

1 c−4
2 .

We next sketch the key recovery algorithm for this attack. Using a key guess
in P1, the attacker can use structures to construct pairs (X,X ′) so that P1(X)⊕
P1(X

′) = δ in the same way they would for a differential or a differential-linear
attack, and at the same cost. Once these pairs (X,X ′) are constructed, a guess of

General Practical Cryptanalysis 15

part of the key in Q1 enables the attacker to determine the values of ⟨α,Q1(X)⟩
and ⟨α,Q1(X

′)⟩. With these, and for each key guess, the attacker can compute
the experimental correlations of

⟨β,F(X)⟩ ⊕ ⟨β, F (X ′)⟩ ⊕ ⟨α,Q1(X)⟩ ⊕ ⟨α,Q1(X
′)⟩,

where X and X ′ are constructed so that P1(X) ⊕ P1(X
′) = δ. We verified our

assumption and validity of our key-recovery attack by using ZIP-AES introduced
in the next section. In detail, we discuss it in Appendix B.2.

Interestingly, again this kind of attack is related to a cryptanalysis on the
composition of P and Q (see the right diagram of Fig. 2). Indeed, we notice that
the differential-linear distinguisher on P2 and the linear approximation of Q2 can
be combined into a differential-linear distinguisher on Q−1

2 ◦ P2. Furthermore,
the whole key-recovery attack corresponds to a differential-linear key-recovery
attack on Q−1 ◦ P guessing the same key material. However, we note that the
autocorrelation of the differential-linear distinguisher on the composition may
be larger, because the intermediate mask β is not fixed, while in the case of the
attack on F the mask β has to be fixed by the attacker.

3.5 Truncated Differential Cryptanalysis

A variant of classical differential cryptanalysis is truncated differential crypt-
analysis [Knu94], in which the attacker can predict only part of the difference
between pairs of texts. When considering truncated differentials cryptanalysis,
the parallel construction F := P ⊕ Q seems to offer a security that is hardly
comparable with any sequential construction and thus may require a dedicated
analysis, which is also to be expected when compared to differential-linear at-
tacks.

Firstly, the parallel and sequential constructions involving inverse permu-
tations become hardly comparable as truncated differentials do not propagate
backwards so that truncated differential characteristics in P generally differ from
characteristics in P−1.

Secondly, if we consider the sequential construction S := Q ◦ P−1 then a
truncated differential attack works as such for any linear subspaces U ,V,W:

Prob
(
P−1(x)⊕ P−1(x⊕ α) ∈ V | x ∈ Fn

2 , α ∈ U
)
= p

Prob (Q(x)⊕Q(x⊕ β) ∈ W | x ∈ Fn
2 , β ∈ V) = q

=⇒ Prob (S(x)⊕ S(x⊕ α) ∈ W | x ∈ Fn
2 , α ∈ U) ≥ p · q .

On the other hand, Proposition 6 shows how to mount a truncated differential
attack on P ⊕Q:

Proposition 6. Let P,Q be two keyed permutations over Fn
2 , and let F := P⊕Q.

Let UP ,UQ,VP ,VQ ⊆ Fn
2 be four non-trivial linear subspaces such that UP ∩

UQ is non-empty. Assume that the following truncated differentials hold with

16 A. Flórez-Gutiérrez et al.

probabilities p, q ∈ (0, 1] respectively:

Prob (P (x)⊕ P (x⊕ α) ∈ VP | x ∈ Fn
2 , α ∈ UP) = p ,

Prob (Q(x)⊕Q(x⊕ β) ∈ VQ | x ∈ Fn
2 , β ∈ UQ) = q .

Then:

Prob (F(x)⊕ F(x⊕ γ) ∈ VP ⊕ VQ | x ∈ Fn
2 , γ ∈ UP ∩ UQ) ≥ p · q .

We note that ⊕ denotes the sum of binary vector subspaces, which may not
necessarily be a direct sum. Obviously, if VP ⊕VQ = Fn

2 is the full space, the last
probability is equal to 1, making the truncated differential to be meaningless.
This is not the case for S.

Proof. Let x ∈ Fn
2 . We know that P (x)⊕P (x⊕ γ) ∈ VP with probability p over

γ ∈ UP , and that Q(x)⊕Q(x⊕γ) ∈ VQ with probability q over γ ∈ UQ. Assuming
that both events are statistically independent of each other, over γ ∈ UP ∩ UQ,
the probability that they both occur at the same time is p · q. Since VP and VQ
are vector subspaces, we have

F(x)⊕ F(x⊕ γ) = P (x)⊕Q(x)⊕ P (x⊕ γ)⊕Q(x⊕ γ) ∈ VP ⊕ VQ,

which concludes the proof. ⊓⊔
As shown in Proposition 6, an interesting constraint to find a truncated differ-
ential attack on P ⊕Q is to find two linear subspaces UP and UQ such that both
UP ∩ UQ is not empty and VP ⊕VQ is not the full space Fn

2 . As a result, even if
we find two truncated differentials, where p and q are high enough, it does not
always guarantee a non-trivial truncated differential on F.

Based on this, we encourage to pay particular attention when arguing the
security against truncated differentials.

On Key Recovery in Truncated Differential Attacks. Extending a trun-
cated differential distinguisher into a key recovery presents the same problems
discussed in Sect. 3.1 for the analogous case of differential cryptanalysis.

Proposition 7. Let F = (P2◦P1)⊕(Q2◦Q1). We consider a key-recovery attack,
where the truncated input differences of P2 and Q2 are in the affine subspace UP
and UQ respectively, and the key involved in P1 and Q1 is guessed. When N
pairs are needed for the distinguishing attacks based on the truncated differential

to succeed, (UP ,UQ)
P2⊕Q2−−−−→ V, such an attack works only when

2n · |UP | · Prob(UP
Q1◦P−1

1−−−−−→ UQ) > N .

As the input of P2, the number of pairs satisfying the truncated differential
is 2n · |UP |. To mount the key recovery, the attacker needs to find pairs that
satisfy the truncated differential in the input of Q2 simultaneously. Therefore,

the number of pairs we can collect is 2n · |UP | · Prob(UP
Q1◦P−1

1−−−−−→ UQ). If this
value is less than N , it is insufficient to execute the key-recovery attack.

General Practical Cryptanalysis 17

Impossible (Truncated) Differentials. An impossible (truncated) differen-
tial [BBS99] is a (truncated) differential that holds with probability 0. In general,
the existence of impossible differentials for the composition does not imply the
existence of non-trivial3 impossible differentials for F := P ⊕Q.

Assuming Prob(δI
Q−1◦P−−−−−→ δO) = 0, let VP and VQ denote a subset satisfying

Prob(δI
P−→ VP) = Prob(δO

Q−→ VQ) = 1, and VP ∩VQ = ϕ. In contrast, assuming

Prob(δI
F−→ δO) = 0, it implies Prob(δI

P−→ VP) = Prob(δI
Q−→ VQ) = 1, and

VP ∩ (VQ ⊕ δO) = ϕ. The former can choose both input differences for P and Q
arbitrarily. The latter restricts them to be the same, but we can add arbitrary
δO to VQ. While it finally depends on case by case, probably, the former is easier
to find impossible differentials than the latter.

3.6 Algebraic and Integral Attacks

The security of P ⊕Q against algebraic attacks does not seem much better than
the most secure between P and Q against this family of cryptanalysis. In this
section, we formulate the cipher as a polynomial on the key and input bits. More
precisely, we interpret the cipher as a multivariate polynomial of the n input bits
of x with coefficients that are functions of the key k,

F(k, x) :=
⊕
u∈Fn

2

fu(k)x
u .

The degree of F is defined as the highest degree monomial with a non-zero
coefficient, that is, deg(F) := maxu{wt(u) | fu(k) ̸= 0}, where wt(u) denotes
the Hamming weight of u. Since the attacker usually exploits the weakest bit, or
more generally component function, the minimum degree is more important than
the degree: minDeg(F) := minβ deg(⟨β,F(k, x)⟩). However, in terms of security,
we rather look at non-constant coefficients only, as any monomial that is key-

independent distinguishes the function from random. Therefore, we define d̃eg

and m̃inDeg as follows:

d̃eg(F) := max
u
{wt(u) | fu(k) is not constant},

m̃inDeg(F) := min
β

d̃eg(⟨β,F(k, x)⟩).

Proposition 8. Let P,Q be keyed permutations over Fn
2 and F := P ⊕Q, then:

m̃inDeg(F) = min
β

max{d̃eg(⟨β, P ⟩), d̃eg(⟨β,Q⟩)} .

Proof. Let kP and kQ in KP and KQ, respectively, and let:

⟨β, P (kP , x)⟩ :=
⊕
u∈Fn

2

pβ,u(kP)x
u , ⟨β,Q(kQ, x)⟩ :=

⊕
u∈Fn

2

qβ,u(kQ)x
u .

3 If F(x) belongs to U with probability 1 for each x ∈ V, then F(x) ∈ Uc with proba-
bility 0, where ·c is the complimentary subspace.

18 A. Flórez-Gutiérrez et al.

Given k := kP ∥kQ ∈ KP ×KQ, summing the polynomials for P and Q:

⟨β,F(k, x)⟩ =
⊕
u∈Fn

2

fβ,u(k)x
u =

⊕
u∈Fn

2

(pβ,u(kP) + qβ,u(kQ))x
u .

So we have fβ,u = pβ,u + qβ,u defined on inputs k ∈ KP ×KQ. Note that fβ,u is
constant if and only if pβ,u and qβ,u are constant. Therefore, we conclude by:

d̃eg(⟨β,F⟩) = max
u
{wt(u) : pβ,u is not constant or qβ,u is not constant}

= max
{
max
u
{wt(u) : pβ,u is not constant},max

u
{wt(u) : qβ,u is not constant}

}
= max{d̃eg(⟨β, P ⟩), d̃eg(⟨β,Q⟩)} .

⊓⊔

To show that a cipher is secure against algebraic attacks often involves arguing
that the cipher reaches a high degree. Proposition 8 shows that P ⊕Q can only
reach a high degree if either P or Q reaches it. Thus, integral attacks could be
one of the most powerful attacks on P ⊕ Q. Indeed, if a cipher has a degree
d then the cipher is vulnerable to an integral attack for any linear subspace
with dimension d+ 1. In particular, if P has degree d greater than Q, then any
dimension d + 1 linear subspace will allow an integral attack on both P and Q
simultaneously, so on P ⊕Q as well.

A similar statement holds for the stronger arguments against integral at-
tacks as given in [HLLT21]. Again, to argue for full resistance against integral
cryptanalysis either P or Q already has to be fully resistant.

On Key Recovery in Integral Attacks. On the other hand, we cannot
expect a strong integral key-recovery attack. Usually, the integral key-recovery
attack focuses on the ciphertext side, but it is impossible in P ⊕Q. In [FKL+00],
Ferguson et al. added one-round key recovery to the plaintext side, but it requires
almost the full code book even for one-branch analysis. Besides, we must control
the input of both branches in P ⊕Q. As discussed above, such a key recovery is
difficult because the inputs of both branches are unlikely to take sets satisfying
higher-order differences simultaneously after applying each key-recovery round
from the common plaintext set.

The cube attack [DS09] is another possible key-recovery strategy. It is pos-
sible only when fβ,u(k) is a very sparse polynomial. A common block cipher,
where subkey is XORed every round, tends to have complicated polynomials,
and the feature is used to guarantee the lower bound of the degree or the in-
tegral resistance property in [HLLT20,HLLT21]. Therefore, the cube attack is

unlikely in such ciphers unless m̃inDeg(F) is insufficient.

Zero-Correlation Linear. Instead of considering the zero-correlation linear
[BR14] explicitly, we first consider the link between the zero-correlation and

General Practical Cryptanalysis 19

integral [BLNW12,SLR+15]. When we have zero-correlation linear on F, we also
have an integral distinguisher on F. Therefore, if F is secure enough against the
integral, it should also be secure against the zero-correlation linear.

It is also possible to find the zero-correlation linear directly. However, because
of the analogous argument of the impossible differential, we do not suppose that
the sum is weaker than the composition against the zero-correlation linear.

3.7 Second-Order Differential Cryptanalysis

We look at attacks exploiting independent differential properties of P and Q.
Interestingly, this distinguisher on P ⊕ Q is linked to the Boomerang distin-
guisher [Wag99] on Q−1 ◦ P , as depicted in Figure 3.

Assuming we have two independent differential transitions that are Prob(δP
P−→

δ′P) = p and Prob(δQ
Q−→ δ′Q) = q, then for some x:{

P (x)⊕ P (x⊕ δP) = δ′P , P (x⊕ δQ)⊕ P (x⊕ δQ ⊕ δP) = δ′P ,

Q(x)⊕Q(x⊕ δQ) = δ′Q, Q(x⊕ δP)⊕Q(x⊕ δP ⊕ δQ) = δ′Q

=⇒ F(x)⊕ F(x⊕ δP)⊕ F(x⊕ δQ)⊕ F(x⊕ δQ ⊕ δP) = 0 .

With the usual independent assumptions, this happens with probability (p · q)2
for a random x when F = P ⊕ Q. Therefore, such a second-order differential
requires about 4(p · q)−2 queries to F.

We review the same differential transitions on S = Q−1 ◦ P and perform the
following boomerang attack. For some x,

P (x)⊕ P (x⊕ δP) = δ′P ,

P (S−1(S(x)⊕ δQ))⊕ P (S−1(S(x)⊕ δQ)⊕ δP) = δ′P ,

Q(S(x))⊕Q(S(x)⊕ δQ) = δ′Q,

Q(S(x⊕ δP))⊕Q(S(x⊕ δP)⊕ δQ) = δ′Q,

=⇒ S−1(S(x)⊕ δQ)⊕ S−1(S(x⊕ δP)⊕ δQ) = δP .

This well-known Boomerang holds with a probability of (p · q)2 with some inde-
pendent assumptions. It requires about 4(p · p⋆)−2 queries to S and S−1.

Note that the relationship above ignores some independent issues when switch-
ing differential trails. For example, although δP = δQ is a meaningful parameter
for the Boomerang distinguisher on Q−1 ◦ P , it is meaningless on P ⊕ Q. Due
to different independent issues, the resulting Boomerang probability on S and
the 2nd order differential probability on P ⊕Q differ. On the other hand, when
p and q are reasonably high, that is a natural setting in real cryptanalysis, we
would observe a similar feature in both cases.

On Key Recovery in 2nd-Order Differential Attacks. When considering
key recovery, we observe a similar difficulty to that of differential key recovery.

20 A. Flórez-Gutiérrez et al.

P Q P Q

P Q

P

P Q

x

x

P

P P

Fig. 3: 2nd-order differential on P ⊕Q (left) and Boomerang on P−1 ◦Q (right).

Let P = P2 ◦ P1 and Q = Q2 ◦ Q1. Assuming that there is a non-negligible
2nd-order differential distinguisher on P2 ⊕ Q2. We apply the key recovery to
P1 and Q1. Let (x1, y1), (x2, y2), (x3, y3), and (x4, y4) be the input of (P2, Q2).
Then, a quartet satisfying x1⊕ x2 = x3⊕ x4 = δP and y1⊕ y3 = y2⊕ y4 = δQ is
constructed by y1 = Q1◦P−1

1 (x1), x2 = x1⊕δP , y2 = Q1◦P−1
1 (x2), y3 = y1⊕δQ,

x3 = P1 ◦Q−1
1 (y3), x4 = x3 ⊕ δP , and

y4 = Q1 ◦ P−1
1 (x4) = y2 ⊕ δQ .

In general, Q1 ◦ P−1
1 (x4) = y2 ⊕ δQ does not hold with a probability of 1.

3.8 Meet-in-the-middle Attacks

The meet-in-the-middle (MitM) attack [DH77] is another of the typical crypt-
analysis of keyed symmetric primitives. In a traditional meet-in-the-middle at-
tack, the adversary obtains a plaintext-ciphertext pair, and aims to extract the
key faster than through an exhaustive search. The attacker guesses part of the
key on the plaintext side and part of the key on the ciphertext side, and con-
structs two tables: one consists of all possible partial encryptions of the plaintext
and the other of all possible partial decryptions of the ciphertext. When a colli-
sion between both tables is found, a candidate for both key guesses is obtained.

When applying this approach to the P ⊕ Q construction, we note that no
information about the outputs of both branches can be obtained directly from
the ciphertext. Thus, any MitM attack would require guessing part of one of
the branches. However, by xoring the known ciphertext, this is equivalent to
guessing part of an internal state of Q−1 ◦ P , which is an ineffective guessing
strategy in a MitM attack.

The DS-MitM attack [DS08] is an extension of the Meet-in-the-Middle attack
and consists of the distinguisher and key recovery. When the distinguisher cov-
ers the initial few rounds in both branches, the key recovery requires the inverse

General Practical Cryptanalysis 21

query but there is no such query in the PRF. When the distinguisher covers the
last few rounds in both branches, it involves the output of the PRF. Therefore,
the parameter size of the distinguisher significantly increases. Consequently, us-
ing the distinguisher in either the inside of P or that of Q is promising, but then,
such an attack is very similar to the attack against the composition, Q−1 ◦ P
too.

3.9 Summary and Other Attacks

In this section, we analyzed differential, linear, differential-linear, differential-
and-linear key recovery, (impossible) truncated differential, algebraic and inte-
gral, zero-correlation linear, the 2nd-order differential, and the MitM attacks.
Some of them are strongly linked to the cryptanalysis against the composition.

When we mount a key recovery, where we need to control differences in
two branches simultaneously, it is more difficult than the corresponding analysis
against the composition. Notably, linear key recovery and differential-and-linear
key recovery are promising attack strategies against the sum structure because
they are friendly to key recovery, but they are strongly linked to linear key
recovery and differential-linear key recovery against the composition.

Other well-known attacks exist. For example, Boomerang [Wag99] or Yo-
Yo [BBD+98] attacks require adaptive chosen-plaintext-ciphertext attacks. How-
ever, the sum structure does not provide the decryption query, so applying these
attacks is non-trivial. Note that an amplified Boomerang [KKS00] and Rectan-
gle [BDK01] attacks are a chosen-plaintext variant of the Boomerang attack.
However, it contains a probability of 2−2n because the intermediate state size is
2n bits. Thus, it is unlikely that those attacks are applicable.

4 The ZIP Structure: Designing PRF in Light Work

Respecting the discussions in Sect. 3, we introduce the ZIP structure, which is
defined as follows:

Definition 2 (ZIP structure). Let E = E1 ◦ E0 be a secure iterative block
cipher. We define the ZIP construction of E as the following family of functions
E0 ⊕ E−1

1 : Fn
2 → Fn

2 . We suppose E0 and E1 contain almost the same rounds.

The ZIP structure has three advantages:

– We can inherit many cryptanalysis results against E.
– Since the resulting primitive is a pseudo-random function, it derives beyond-

birthday security in some modes of operation.
– On performance, the latency is about half of the original block cipher.

Of course, the discussion in Sect. 3 never shows that the ZIP structure has
the same security as the original block cipher against all attack strategies. In
particular, algebraic (integral), differential-linear, and truncated differential have
to be carefully analyzed, but it is not as hard work as designing it from scratch.

22 A. Flórez-Gutiérrez et al.

In a practical application, the ZIP structure can achieve beyond-birthday
security in some modes of operation while keeping the throughput in the case
we use the original block cipher. It is useful in a wide situation. Moreover, its half
latency is promising in several practical applications such as memory encryption
or communication over the 5G and the beyond 5G as discussed in [ABC+24].

In this section, we focus on the ZIP-AES as an example.

4.1 ZIP-AES: A Concrete Instantiation via AES-128

AES-128. The Advanced Encryption Standard [DR20] is a SPN scheme de-
signed by Daemen and Rijmen, and based on theWide-Trail design strategy [DR01,
DR02]. Focusing on AES-128, the key size is of 128 bits, and the number of
rounds is 10. Each AES-round RAES : F4×4

28 → F4×4
28 applies three operations be-

sides the key-additon to the state x, that is, x 7→ RAES(x) := MC ◦SR ◦SB(x).
An additional AddRoundKey operation is applied at the input of the first round,
and the last MixColumns operation is omitted (we denote a round without MC
as R̂AES). We refer to [DR20] for the details of the key-schedule.

The ZIP-AES PRF. We define the ZIP-AES as

∀x ∈ F4×4
28 : ZIP-AES5(x) := AES5(x)⊕AES−1

5 (x) ,

where AES5 denotes 5 encryption rounds of AES-128

AES5(·) = AK ◦MC ◦ SR ◦ SB︸ ︷︷ ︸
RAES

◦ · · · ◦AK ◦MC ◦ SR ◦ SB︸ ︷︷ ︸
RAES

◦AK(·)

including the final MC in the last round as well, and where AES−1
5 denotes 5

decryption rounds of AES-128

AES−1
5 (·) = AK−1 ◦ (MC ◦ SR ◦ SB)−1︸ ︷︷ ︸

R−1
AES

◦AK−1 ◦ . . . ◦ (MC ◦ SR ◦ SB)−1︸ ︷︷ ︸
R−1

AES

◦AK−1(·)

where (MC ◦ SR ◦ SB)−1(·) := SB−1 ◦ SR−1 ◦MC−1(·), and including the
initial MC−1 in the first round as well.

Regarding the sub-keys, let k0 = k, k1, k2, . . . , k10 ∈ F4×4
28 be the sub-keys

generated by the key-schedule of AES-128, where k ∈ F4×4
28 is the whitening key.

– AES5 is instantiated with k0, k1, k2, k3, k4, k5;

– AES−1
5 is instantiated with k6, k7, k8, k9, k10, 0

128.

We claim that ZIP-AES is a 128-bit secure pseudo-random function.

General Practical Cryptanalysis 23

Design Rationale and Modified Versions of ZIP-AES. Before going on, we briefly
discuss some technical choices regarding ZIP-AES, with particular attention both
at the MixColumns operation at the end of AES5, and at the inverse MixColumns
operation at the beginning of AES−1

5 . As we pointed out, the final MC operation
is omitted in AES. However, we decided to keep it for ZIP-AES.

This choice is necessary considering our motivation: ZIP-AES shares many
cryptanalysis results to the original AES. As mentioned in Sect. 3, P ⊕ Q and
Q ◦ P−1 shares the same differential characteristic, and P ⊕ Q and Q−1 ◦ P
shares the same linear trail. If there is no inverse MixColumns in the beginning
of AES−1

5 , the inverse MixColumns is missing between Q and P−1 in Q ◦ P−1.
Similarly, if there is no MixColumns in the last of AES5, the MixColumns is
missing between Q−1 and P in Q−1 ◦ P . In other words, such a construction
corresponds to the variant of AES, where the MixColumns is omitted in the 5th
round, which is clearly more insecure than the AES.

In practice, in order to prove this fact, in App. C, we consider these variants
of ZIP-AES, in which the final MC operation for AES and/or the initial MC−1

operation for AES−1 are omitted. In there, we show that these modified versions
are (much) weaker against attacks such as truncated differentials and mixture
differentials with respect to the ZIP-AES defined here.

4.2 Security Analysis of ZIP-AES

In this section, we present our security analysis of ZIP-AES. Our results show
that the strongest attack against it is the integral attack, which can distinguish
up to 4 + 4 rounds (namely, ZIP-AES4,4) from a PRF. All other attacks (in-
cluding classical linear and differential attacks, truncated differentials, mixture
differentials, and so on) can only cover a smaller number of rounds. Moreover, in
App. B.6, we also show that the attacks against AES-PRF1,r and AES-PRF2,r

for any r ≥ 1 proposed in [MN17b] work against ZIP-AES1,r and ZIP-AES2,r as
well.

Unbalanced Variants. For the follow-up, we introduce “reduced-round variants”
of ZIP-AES defined as ZIP-AESr0,r1(x) := AESr0(x)⊕AES−1

r1 (x) . We encourage
to analyze its security with particular attention to the case r0 = r1 ≥ 2, in order
to better evaluate ZIP-AES’s resistance against attacks.

Differential and Linear Attacks. In the case of differential cryptanalysis, we
have seen in Prop. 1 that, given two independent keyed permutations P,Q, then
for each differential characteristic (trail) with probability p traversing P ⊕ Q,
there is a differential characteristic with the same probability p traversing Q ◦
P−1. Due to the wide-trail design strategy, it is well known that any differential
characteristic over 4-round AES has a probability of at least 2−150. This means
that ZIP-AES2,2 does not admit any differential characteristic with probability
lower than 2−150. Based on this, we claim that ZIP-AES5,5 is secure against
differential distinguishers and key-recovery attacks.

24 A. Flórez-Gutiérrez et al.

We have an analogous argument for linear cryptanalysis, differential-and-
linear key recovery, and the 2nd order differential attacks.

Differential-Linear Attacks. The differential-linear distinguisher (autocorre-
lation) is estimated as the product of each branch’s autocorrelation. In [HDE24a],
the authors evaluated the autocorrelation of the AES. They are 1, 2−7.66, 2−31.66,
and 2−55.66, for 2, 3, 4, and 5 rounds, respectively. Although there are no ref-
erences in the AES inverse, we expect the autocorrelations to be similar, con-
sidering the well-aligned structure of the AES. Then, the autocorrelation of
ZIP-AES5,5 is expected as 2−55.66×2, which is unlikely to be observed with 2128,
full code-book, queries. In practice, the input difference and output mask must
be the same in both branches. Such a restriction does not allow us to use the
optimal autocorrelation for both branches simultaneously. We verified this ob-
servation by using ZIP-AES3,3. When we used the 3-round differential-linear
distinguisher shown in [HDE24a] in the left branch, we could not observe a
significant autocorrelation in the right branch. Therefore, we expect that the
autocorrelation is worse than the squared value of the best autocorrelation of
each branch. In detail, see Appendix B.1.

Integral Attacks. Following [GRR16], we introduce the following subspaces
of F4×4

28 : the diagonal subspace Di, in which the i-th diagonal for i ∈ {0, 1, 2, 3}
is active and all the others are constant; the column subspace Ci := SR(Di), in
which the i-th column for i ∈ {0, 1, 2, 3} is active and all the others are con-
stant; the anti-diagonal subspace IDi := SR(Ci), in which the i-th anti/inverse
diagonal for i ∈ {0, 1, 2, 3} is active and all the others are constant; the mixed
subspaceMi := MC(IDi).

As it is well known [FKL+00,KR07,Gil14], the following integral attacks hold⊕
x∈Di⊕α

AES4(x) =
⊕

x∈Mi⊕β

AES−1
4 (x) = 0

for each i ∈ {0, 1, 2, 3} and for any α, β ∈ F4×4
28 . It follows that for each i, j ∈

{0, 1, 2, 3}: ⊕
x∈(Di⊕Mj)⊕α

ZIP-AES4,4(x) = 0

for each α ∈ F4×4
28 , where dim(Di ⊕ Mj) = 8 – the dimension is considered

at byte level. Therefore, we have the integral distinguisher by using 264 chosen
plaintexts.

Since no other integral distinguisher is known for 5 or more rounds of AES,
and since appending a key recovery to the plaintext side is not easy (see Sect. 3
for more details), we claim that ZIP-AES5,5 is secure against integral attacks.

Truncated Differential and Subspace Trail Attacks. With respect to the
previous attacks and distinguishers, truncated differential requires a more ded-

General Practical Cryptanalysis 25

Table 1: Practical tests on ZIP-AES over F4×4
28 . In the table, we assume |I| =

|I ′| = 3 and |J | = 2 (P ≡ Practical – Prob. ≡ Probability).

Rounds Input Subspace Output Subspace ZIP-AES P-Prob. PRF Prob.

1 + 1 Ci Di ∩Mi 1 2−64

2 + 2 Ci CI 2−32 + 2−52.8 2−32

2 + 2 MJ ∩ DI CI′ 2−32 + 2−53.7 2−32

icated analysis, since it is not possible to reduce the security of F := P ⊕ Q to
the one of any sequential construction (see Sect. 3.5 for more details).

We first re-call some results regarding the subspace trails presented in [GRR16].
Given DI :=

⊕
i∈I Di, CI :=

⊕
i∈I Ci, IDI :=

⊕
i∈I IDi, MI :=

⊕
i∈IMi for

each I ⊆ {0, 1, 2, 3}, we have that

– Di,i+2 = IDi,i+2 for each i ∈ {0, 1, 2, 3},
– for each I, J ⊆ {0, 1, 2, 3}: dim(CI ∩MJ) = dim(CI ∩ DJ) = |I| · |J |,
– for each I, J ⊆ {0, 1, 2, 3} with |I|+ |J | ≤ 4: DI ∩MJ = IDI ∩MJ = ∅,

where |I| and |J | represent the cardinality of I and J respectively.
Let AESr(·) be r rounds of AES. For each x ∈ F4×4

28 , and for each I, J ⊆
{0, 1, 2, 3}, the following truncated differentials hold:

Prob(AES1(x)⊕AES1(x⊕ δ) ∈ CI | δ ∈ DI) = 1 ,

Prob(AES1(x)⊕AES1(x⊕ δ) ∈MI | δ ∈ CI) = 1 ,

Prob(AES2(x)⊕AES2(x⊕ δ) ∈MI | δ ∈ DI) = 1 ,

Prob(AES3(x)⊕AES3(x⊕ δ) ∈MJ | δ ∈ DI) = 28·|I|·(|J|−4) .

We refer to [GR22,BR19] for truncated differentials up to 6-round AES.

Truncated Differentials for ZIP-AES1,1. Since Prob(AES1(x) ⊕ AES1(x ⊕ δ) ∈
Mi | δ ∈ Ci) = Prob(AES−1

1 (x)⊕AES−1
1 (x⊕ δ) ∈ Di | δ ∈ Ci) = 1, the following

truncated differentials on ZIP-AES1,1 holds:

Prob(ZIP-AES1,1(x)⊕ ZIP-AES1,1(x⊕ δ) ∈ Di ⊕Mi | δ ∈ Ci) = 1 .

For comparison, note that Prob(Π(x) ⊕Π(x ⊕ δ) ∈ Di ⊕Mi | δ ∈ Ci) = 2−64

for a PRF Π over F4×4
28 .

Truncated Differentials for ZIP-AES2,2: a Negative Result. Due to the exis-
tence of probability-1 truncated differentials for both 2-round AES and 2-round
AES−1, corresponding to R2(DI ⊕α) =MI ⊕ β and R−2(MJ ⊕α′) = DJ ⊕ β′,
it could seem natural to combine them in order to set up a truncated differential
for ZIP-AES2,2, defined via an initial subspace DI ∩MJ and a final subspace
MI ⊕DJ . However, a problem arises, since

– DI ∩MJ contains only the zero-element for each I, J with |I|+ |J | ≤ 4, and

26 A. Flórez-Gutiérrez et al.

– DJ ⊕MI is the full space F4×4
28 for each I, J with |I|+ |J | ≥ 4,

due to the results listed before. For this reason, it seems impossible to set up a
probability-1 truncated differential for ZIP-AES2,2 via this strategy.

Truncated Differentials for ZIP-AESr,r with r ≥ 2: Practical Results. At the
same time, probabilistic truncated differential distinguishers for ZIP-AESr,r with
r ≥ 2 exist. Our practical results for ZIP-AES and for small-scale ZIP-AES (that
is, AES over F4×4

24 as presented in [CMR05]) are summarized in Tables 1 and 4
in the appendix.4 We refer to App. B.3 for more details about these practical
results. As it is possible to observe, for all the considered cases, the probability
that a truncated differential distinguisher holds for ZIP-AESr,r with r ∈ {2, 3}
is only slightly higher than the corresponding probability for a generic PRF.

Conclusion. Based on our practical tests, we conjecture that if a bias between
the probability for ZIP-AESr,r for r ≥ 4 and a generic PRF exists, it would be
too small for being useful in practice. Together with the fact that extending a
distinguisher that ends with CI with |I| ≥ 2 by 1 round is not possible, we claim
that ZIP-AES5,5 is secure against truncated differential distinguishers.

Mixture Differential Attacks (and More). A powerful attack on round-
reduced AES is the mixture differential cryptanalysis [Gra18]. Given two plain-
texts p0, p1 in the same column space CI ⊕ γ ⊆ F4×4

28 , let p′0, p
′
1 ∈ CI ⊕ γ be

two new texts obtained by carefully swapping the generating variables of p0, p1.
Independently of the values of the round-keys, the difference between p0 and p1
after 2-round AES is equal to the corresponding difference of p′0 p′1, that is,

AES2(p0)⊕AES2(p1) = AES2(p
′
0)⊕AES2(p

′
1) . (1)

This is also known as the integral mixture distinguisher [GS20]. Moreover, p0
and p1 belong to the same coset of a mixed spaceMJ after 4-round AES if and
only if p0 and p1 satisfy the same property, that is, ∀J ⊆ {0, 1, 2, 3}:

AES4(p0)⊕AES4(p1) ∈MJ ⇐⇒ AES4(p
′
0)⊕AES4(p

′
1) ∈MJ .

Similar distinguishers hold in the backward direction. (A variant of such distin-
guisher – the exchange attack [BR19] – is discussed in App. B.5).

(Deterministic) Mixture Integral Distinguishers for ZIP-AES2,2: a Negative Re-
sult. At the current state, it does not seem possible to set up an integral mixture
distinguisher for ZIP-AES2,2, that is,

ZIP-AES2,2(p0)⊕ ZIP-AES2,2(p1) ̸= ZIP-AES2,2(p
′
0)⊕ ZIP-AES2,2(p

′
1)

4 Note that the truncated differentials are not affected by the details (as the degree)
of the S-Box. Hence, we believe that the results on small-scale AES over F4×4

24
are a

good representative of what happens for the “real” AES over F4×4
28

.

General Practical Cryptanalysis 27

Table 2: Performance comparison on the counter mode.

cycle-per-byte counter
16B 32B 256B 2KB 16KB 128KB

AES 3.56 1.84 0.51 0.36 0.34 0.34 integer
AES-PRF 3.63 1.94 0.55 0.39 0.37 0.37 integer
ZIP-AES 2.96 1.58 0.53 0.41 0.39 0.39 integer

AES 3.53 1.81 0.47 0.35 0.34 0.33 gray code
AES-PRF 3.57 1.88 0.51 0.36 0.34 0.34 gray code
ZIP-AES 2.90 1.61 0.47 0.34 0.33 0.33 gray code

in general, where p0, p1, p
′
0, p

′
1 ∈ CI ⊕ γ for I ⊆ {0, 1, 2, 3}, and where p′0 and

p′1 are constructed by carefully swapping the generating variables of p0, p1 in
the same way described in [Gra18]. As discussed in details in App. B.4, the
problem arises from the fact that generating variables of p0, p1 and the ones of
MC−1(p0),MC−1(p1) are different.

(Probabilistic) Mixture Differential Distinguishers for ZIP-AES2,2. Having said
that, it is possible to set up a probabilistic mixture differential distinguisher for
ZIP-AES2,2 by exploiting the following result.

Lemma 1. Let p0, p1 ∈ Ci ⊕ α. Let p′0, p
′
1 ∈ Ci ⊕ α be defined as the mixture

couples generated by p0 and p1 such that Eq. (1) holds. For any I ⊆ {0, 1, 2, 3}
with |I| = 3:

Prob
(
ZIP-AES2,2(p0)⊕ ZIP-AES2,2(p1)

⊕ ZIP-AES2,2(p
′
0)⊕ ZIP-AES2,2(p

′
1) ∈ DI

)
≥ 2−16 .

For comparison, Prob (Π(p0)⊕Π(p1)⊕Π(p′0)⊕Π(p′1) ∈ DI) = 2−32 for a PRF
Π over F4×4

28 .

See Appendix B.4 for the proof of Lemma 1.
At the current state, it does not seem possible to extend the previous dis-

tinguisher for more rounds of ZIP-AES. For this reason, we conjecture that
ZIP-AES5,5 is secure against such an attack.

4.3 Performance Evaluation

We implemented the counter mode of ZIP-AES to measure the performance.
For the comparison, we also implemented the counter modes of AES-128 and
AES-PRF-128 [MN17b]. All measurements were taken on a single core of Intel
Core i7-1185G7 (Tiger Lake) with Turbo Boost and Hyperthreading disabled,
and averaged over 100000× 4096

byte repetitions, where byte denotes the processing
data size in bytes. All subkeys are pre-computed, and the process is measured
when the IV and plaintext are given in a byte array. The counter mode uses

28 A. Flórez-Gutiérrez et al.

the 64-bit IV and 64-bit counter for the top and bottom halves of the input,
respectively.

Table 2 (top 3 rows) summarizes the cycle-per-byte of each cipher for each
size of processing message. As expected, ZIP-AES performs better than AES
and AES-PRF for small data because the latency for one block processing is
lower. On the other hand, when we encrypt more than 2KB, ZIP-AES performs
worse than AES and AES-PRF. The reason is that AESDEC performs AK−1 ◦
MC−1◦SR−1◦SB−1 and is not the straightforward AES inverse round function.
AES-NI consists of six instructions:

– AESENC performs AK ◦MC ◦ SR ◦ SB.
– AESENCLAST performs AK ◦ SR ◦ SB.
– AESDEC performs AK−1 ◦MC−1 ◦ SR−1 ◦ SB−1.
– AESDECLAST performs AK−1 ◦ SR−1 ◦ SB−1.
– AESIMC performs MC−1. It is prepared to prepare subkeys for decryption.
– AESKEYGENASSIST assists to create round keys.

To perform AES−1
5 , we first use AESIMC and then use AESDEC. Unfortunately,

AESIMC of the AES-NI is worse than the other main instructions. For example,
on Tiger Lake CPU, the latency and throughput of the main four instructions
are 3 and 0.5, respectively, but the latency and throughput of AESIMC are 6 and
1, respectively. The overhead by AESIMC is not negligible for long data.

To solve the overhead issue, we replace an integer counter with a gray code
counter. In the gray code, the counting up is implemented by one XOR with a
counter-dependent value. Notably, the counting up and MC−1 (and the whiten-
ing key XORing) is commutative. Given the IV, we first prepare the counter for
AES5 and prepare the counter for AES−1

5 by applying MC−1. Then, we perform
each counting up independently by one XOR. Then, we can avoid AESIMC for
every block. Modern CPUs can perform XOR instructions in 3 ports, and the
XOR instruction is executed with the AES instruction in parallel. Therefore, the
overhead can be negligible. Table 2 (bottom 3 rows) summarizes each cycle-per-
byte, where the counter is implemented by the gray code. We notice that the
overhead of ZIP-AES for the long data can be resolved, and the performance is
competitive with the case of AES and AES-PRF.

5 Future Work: Other ZIP Ciphers and Modes

In addition to ZIP-AES, one can consider several ZIP ciphers. Although we did
not discuss it in this paper, we are interested in ZIP-AES-256; does it successfully
derive the 256-bit secure PRF? Another interesting instance is the ZIP cipher us-
ing the 64-bit block cipher, e.g., ZIP-GIFT, instantiated by GIFT-64 [BPP+17].

GIFT-64 consists of 28 rounds. So, ZIP-GIFT consists of 14-round GIFT-64
and 14-round inverse GIFT-64. Unlike ZIP-AES, we do not provide a detailed
analysis, and it is left as an open problem. As a reference, the following is a
related analysis for GIFT-64. For the integral attack, in [HLLT21], the integral
resistance property is guaranteed in 12-round GIFT-64, and the best integral

General Practical Cryptanalysis 29

distinguisher is up to 10 rounds. Therefore, ZIP-GIFT also guarantees integral
resistance property. In [WLHL24], the autocorrelation is evaluated in GIFT-
64, where the squared autocorrelation is 2−57.22 in 12 rounds. Therefore, the
autocorrelation of ZIP-GIFT would be low enough.

Besides looking into more ZIP ciphers, it is promising to apply the gen-
eral practical cryptanalysis to other structures. In particular, the feed-forward
EDMD structure used in [MN17b,MN17a] to construct AES-PRF is a natural
candidate to check which attack vectors link to AES and which do not. Another
example is the generalization of the sum of two permutations, i.e., a sum of sev-
eral permutations. There is already a concrete instance that has been designed,
i.e., Gleeok [ABC+24] named after the multiple head dragon.

Finally, it is worth investigating if the new differential-and-linear attack that
we introduced and liked to a differential-linear attack on the composition, is
applicable to Orthros.

Acknowledgements. The authors would like to thank anonymous reviewers
for their useful feedback in preparing the final version of this paper and Jan
Vorloeper for performing the practical tests regarding the truncated differential
on ZIP-AES.

This work has been funded in parts by the German Research foundation
(DFG) within the framework of the Excellence Strategy of the Federal Govern-
ment and the States – EXC 2092 CaSa – 39078197 and by the ERC project
101097056 (SYMTRUST).

References

ABC+24. Ravi Anand, Subhadeep Banik, Andrea Caforio, Tatsuya Ishikawa,
Takanori Isobe, Fukang Liu, Kazuhiko Minematsu, Mostafizar Rahman,
and Kosei Sakamoto. Gleeok: A family of low-latency prfs and its applica-
tions to authenticated encryption. IACR TCHES, 2024(2):545–587, 2024.

ABD+23. Roberto Avanzi, Subhadeep Banik, Orr Dunkelman, Maria Eichlseder,
Shibam Ghosh, Marcel Nageler, and Francesco Regazzoni. The qarmav2
family of tweakable block ciphers. IACR ToSC, 2023(3):25–73, 2023.

Ava17. Roberto Avanzi. The QARMA block cipher family. almost MDS matrices
over rings with zero divisors, nearly symmetric even-mansour constructions
with non-involutory central rounds, and search heuristics for low-latency
s-boxes. IACR ToSC, 2017(1):4–44, 2017.

BBD+98. Eli Biham, Alex Biryukov, Orr Dunkelman, Eran Richardson, and Adi
Shamir. Initial observations on skipjack: Cryptanalysis of skipjack-3xor.
In Stafford E. Tavares and Henk Meijer, editors, SAC’98, volume 1556 of
LNCS, pages 362–376. Springer, 1998.

BBS99. Eli Biham, Alex Biryukov, and Adi Shamir. Cryptanalysis of skipjack
reduced to 31 rounds using impossible differentials. In Jacques Stern, editor,
EUROCRYPT ’99, volume 1592 of LNCS, pages 12–23. Springer, 1999.

BCG+12. Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof

30 A. Flórez-Gutiérrez et al.

Paar, Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga
Yalçin. PRINCE - A low-latency block cipher for pervasive computing
applications (full version). IACR Cryptol. ePrint Arch., page 529, 2012.

BDK01. Eli Biham, Orr Dunkelman, and Nathan Keller. The rectangle attack -
rectangling the serpent. In Birgit Pfitzmann, editor, EUROCRYPT 2001,
volume 2045 of LNCS, pages 340–357. Springer, 2001.

BEK+20. Dusan Bozilov, Maria Eichlseder, Miroslav Knezevic, Baptiste Lambin,
Gregor Leander, Thorben Moos, Ventzislav Nikov, Shahram Rasoolzadeh,
Yosuke Todo, and Friedrich Wiemer. Princev2 - more security for (al-
most) no overhead. In Orr Dunkelman, Michael J. Jacobson Jr., and
Colin O’Flynn, editors, SAC 2020, volume 12804 of LNCS, pages 483–511.
Springer, 2020.

BI99. Mihir Bellare and Russell Impagliazzo. A tool for obtaining tighter security
analyses of pseudorandom function based constructions, with applications
to PRP to PRF conversion. IACR Cryptol. ePrint Arch., page 24, 1999.

BIL+21. Subhadeep Banik, Takanori Isobe, Fukang Liu, Kazuhiko Minematsu, and
Kosei Sakamoto. Orthros: A low-latency PRF. IACR ToSC, 2021(1):37–77,
2021.

BJK+16. Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY family of block ciphers and its low-latency variant MANTIS. In
Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part II,
volume 9815 of LNCS, pages 123–153. Springer, 2016.

BKR98. Mihir Bellare, Ted Krovetz, and Phillip Rogaway. Luby-rackoff backwards:
Increasing security by making block ciphers non-invertible. In Kaisa Ny-
berg, editor, EUROCRYPT ’98, volume 1403 of LNCS, pages 266–280.
Springer, 1998.

BLNW12. Andrey Bogdanov, Gregor Leander, Kaisa Nyberg, and Meiqin Wang. In-
tegral and multidimensional linear distinguishers with correlation zero. In
Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658
of LNCS, pages 244–261. Springer, 2012.

BPP+17. Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki,
Siang Meng Sim, and Yosuke Todo. GIFT: A Small Present - Towards
Reaching the Limit of Lightweight Encryption. In Wieland Fischer and
Naofumi Homma, editors, CHES 2017, volume 10529 of LNCS, pages 321–
345. Springer, 2017.

BR14. Andrey Bogdanov and Vincent Rijmen. Linear hulls with correlation zero
and linear cryptanalysis of block ciphers. Des. Codes Cryptogr., 70(3):369–
383, 2014.

BR19. Navid Ghaedi Bardeh and Sondre Rønjom. The Exchange Attack: How to
Distinguish Six Rounds of AES with 288.2 Chosen Plaintexts. In Steven D.
Galbraith and Shiho Moriai, editors, ASIACRYPT 2019, Part III, volume
11923 of LNCS, pages 347–370. Springer, 2019.

BS90. Eli Biham and Adi Shamir. Differential cryptanalysis of des-like cryptosys-
tems. In Alfred Menezes and Scott A. Vanstone, editors, CRYPTO ’90,
volume 537 of LNCS, pages 2–21. Springer, 1990.

CMR05. Carlos Cid, Sean Murphy, and Matthew J. B. Robshaw. Small Scale Vari-
ants of the AES. In Henri Gilbert and Helena Handschuh, editors, FSE
2005, volume 3557 of LNCS, pages 145–162. Springer, 2005.

DH77. Whitfield Diffie and Martin E. Hellman. Exhaustive cryptanalysis of the
NBS data encryption standard. Computer, 10(6):74–84, 1977.

General Practical Cryptanalysis 31

Din24. Itai Dinur. Tight indistinguishability bounds for the XOR of independent
random permutations by fourier analysis. In Marc Joye and Gregor Le-
ander, editors, EUROCRYPT 2024, Part I, volume 14651 of LNCS, pages
33–62. Springer, 2024.

DNS22. Avijit Dutta, Mridul Nandi, and Abishanka Saha. Proof of mirror theory
for ξmax = 2. IEEE Trans. Inf. Theory, 68(9):6218–6232, 2022.

DR01. Joan Daemen and Vincent Rijmen. The Wide Trail Design Strategy. In
Bahram Honary, editor, 8th IMA, volume 2260 of LNCS, pages 222–238.
Springer, 2001.

DR02. Joan Daemen and Vincent Rijmen. Security of a Wide Trail Design. In
Alfred Menezes and Palash Sarkar, editors, INDOCRYPT 2002, volume
2551 of LNCS, pages 1–11. Springer, 2002.

DR20. Joan Daemen and Vincent Rijmen. The Design of Rijndael - The Advanced
Encryption Standard (AES), Second Edition. Information Security and
Cryptography. Springer, 2020.

DS08. Hüseyin Demirci and Ali Aydin Selçuk. A meet-in-the-middle attack on
8-round AES. In Kaisa Nyberg, editor, FSE 2008, volume 5086 of LNCS,
pages 116–126. Springer, 2008.

DS09. Itai Dinur and Adi Shamir. Cube attacks on tweakable black box polyno-
mials. In Antoine Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS,
pages 278–299. Springer, 2009.

FKL+00. Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Michael Stay,
David A. Wagner, and Doug Whiting. Improved Cryptanalysis of Rijndael.
In Bruce Schneier, editor, FSE 2000, volume 1978 of LNCS, pages 213–230.
Springer, 2000.

GBJ+23. Aldo Gunsing, Ritam Bhaumik, Ashwin Jha, Bart Mennink, and Yaobin
Shen. Revisiting the indifferentiability of the sum of permutations. In
Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part
III, volume 14083 of LNCS, pages 628–660. Springer, 2023.

Gil14. Henri Gilbert. A Simplified Representation of AES. In Palash Sarkar and
Tetsu Iwata, editors, ASIACRYPT 2014, Part I, volume 8873 of LNCS,
pages 200–222. Springer, 2014.

GR22. Lorenzo Grassi and Christian Rechberger. Truncated Differential Properties
of the Diagonal Set of Inputs for 5-Round AES. In Khoa Nguyen, Guomin
Yang, Fuchun Guo, and Willy Susilo, editors, ACISP 2022, volume 13494
of LNCS, pages 24–45. Springer, 2022.

Gra18. Lorenzo Grassi. Mixture Differential Cryptanalysis: a New Approach to Dis-
tinguishers and Attacks on round-reduced AES. IACR ToSC, 2018(2):133–
160, 2018.

GRR16. Lorenzo Grassi, Christian Rechberger, and Sondre Rønjom. Subspace Trail
Cryptanalysis and its Applications to AES. IACR ToSC, 2016(2):192–225,
2016.

GS20. Lorenzo Grassi and Markus Schofnegger. Mixture Integral Attacks on
Reduced-Round AES with a Known/Secret S-Box. In Karthikeyan Bhar-
gavan, Elisabeth Oswald, and Manoj Prabhakaran, editors, INDOCRYPT
2020, volume 12578 of LNCS, pages 312–331. Springer, 2020.

HDE24a. Hosein Hadipour, Patrick Derbez, and Maria Eichlseder. Revisiting
differential-linear attacks via a boomerang perspective with application to
aes, ascon, clefia, skinny, present, knot, twine, warp, lblock, simeck, and
SERPENT. In Leonid Reyzin and Douglas Stebila, editors, CRYPTO 2024,
Part IV, volume 14923 of LNCS, pages 38–72. Springer, 2024.

32 A. Flórez-Gutiérrez et al.

HDE24b. Hosein Hadipour, Patrick Derbez, and Maria Eichlseder. Revisiting
differential-linear attacks via a boomerang perspective with application to
aes, ascon, clefia, skinny, present, knot, twine, warp, lblock, simeck, and
SERPENT. IACR Cryptol. ePrint Arch., page 255, 2024.

HKR15. Viet Tung Hoang, Ted Krovetz, and Phillip Rogaway. Robust
authenticated-encryption AEZ and the problem that it solves. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume
9056 of LNCS, pages 15–44. Springer, 2015.

HLLT20. Phil Hebborn, Baptiste Lambin, Gregor Leander, and Yosuke Todo. Lower
bounds on the degree of block ciphers. In Shiho Moriai and Huaxiong Wang,
editors, ASIACRYPT 2020, Part I, volume 12491 of LNCS, pages 537–566.
Springer, 2020.

HLLT21. Phil Hebborn, Baptiste Lambin, Gregor Leander, and Yosuke Todo. Strong
and tight security guarantees against integral distinguishers. In Mehdi
Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part I, volume
13090 of LNCS, pages 362–391. Springer, 2021.

JN22. Ashwin Jha and Mridul Nandi. A survey on applications of h-technique:
Revisiting security analysis of PRP and PRF. Entropy, 24(4):462, 2022.

KKS00. John Kelsey, Tadayoshi Kohno, and Bruce Schneier. Amplified boomerang
attacks against reduced-round MARS and serpent. In Bruce Schneier, edi-
tor, FSE 2000, volume 1978 of LNCS, pages 75–93. Springer, 2000.

Knu94. Lars R. Knudsen. Truncated and higher order differentials. In Bart Preneel,
editor, FSE 2nd, volume 1008 of LNCS, pages 196–211. Springer, 1994.

KR07. Lars R. Knudsen and Vincent Rijmen. Known-Key Distinguishers for Some
Block Ciphers. In Kaoru Kurosawa, editor, ASIACRYPT 2007, volume
4833 of LNCS, pages 315–324. Springer, 2007.

LMMR21. Gregor Leander, Thorben Moos, Amir Moradi, and Shahram Rasoolzadeh.
The SPEEDY family of block ciphers engineering an ultra low-latency ci-
pher from gate level for secure processor architectures. IACR TCHES,
2021(4):510–545, 2021.

LSW22. Muzhou Li, Ling Sun, and Meiqin Wang. Automated key recovery attacks
on round-reduced orthros. In Lejla Batina and Joan Daemen, editors,
AFRICACRYPT 2022, volume 13503 of LNCS, pages 189–213. Springer
Nature Switzerland, 2022.

Luc00. Stefan Lucks. The sum of prps is a secure PRF. In Bart Preneel, editor,
EUROCRYPT 2000, volume 1807 of LNCS, pages 470–484. Springer, 2000.

Mat93. Mitsuru Matsui. Linear Cryptanalysis Method for DES Cipher. In Tor
Helleseth, editor, EUROCRYPT ’93, volume 765 of LNCS, pages 386–397.
Springer, 1993.

MN17a. Bart Mennink and Samuel Neves. Encrypted davies-meyer and its dual:
Towards optimal security using mirror theory. In Jonathan Katz and Hovav
Shacham, editors, CRYPTO 2017, Part III, volume 10403 of LNCS, pages
556–583. Springer, 2017.

MN17b. Bart Mennink and Samuel Neves. Optimal PRFs from Blockcipher Designs.
IACR ToSC, 2017(3):228–252, 2017.

Pat10. Jacques Patarin. Introduction to mirror theory: Analysis of systems of
linear equalities and linear non equalities for cryptography. IACR Cryptol.
ePrint Arch., page 287, 2010.

Rø19. Sondre Rønjom. A Short Note on a Weight Probability Distribution Related
to SPNs. IACR Cryptol. ePrint Arc., page 750, 2019.

General Practical Cryptanalysis 33

SLR+15. Bing Sun, Zhiqiang Liu, Vincent Rijmen, Ruilin Li, Lei Cheng, Qingju
Wang, Hoda AlKhzaimi, and Chao Li. Links among impossible differential,
integral and zero correlation linear cryptanalysis. In Rosario Gennaro and
Matthew Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS,
pages 95–115. Springer, 2015.

TISI23. Kazuma Taka, Tatsuya Ishikawa, Kosei Sakamoto, and Takanori Isobe. An
efficient strategy to construct a better differential on multiple-branch-based
designs: Application to orthros. In Mike Rosulek, editor, CT-RSA 2023,
volume 13871 of LNCS, pages 277–304. Springer, 2023.

Wag99. David A. Wagner. The boomerang attack. In Lars R. Knudsen, editor, FSE
’99, volume 1636 of LNCS, pages 156–170. Springer, 1999.

WLHL24. Shichang Wang, Meicheng Liu, Shiqi Hou, and Dongdai Lin. Differential-
linear cryptanalysis of GIFT family and GIFT-based ciphers. IACR Com-
munications in Cryptology, 1(1), 2024.

SUPPLEMENTARY MATERIAL

A Detail of the Review of Key Recovery Attacks
in [LSW22]

Table 3: Summary of possible differential transition by S(S−1(x)⊕ k).

0x2
S◦S−1

−−−−→ 0x8 0x2
S◦S−1

−−−−→ 0x1 0x8
S◦S−1

−−−−→ 0x2

k = 0x0 - - -
k = 0x1 (0x1, 0x3)→ (0x0, 0x8) - (0x0, 0x8)→ (0x1, 0x3)
k = 0x2 - - -
k = 0x3 - - -
k = 0x4 (0x9, 0xB)→ (0xF, 0x7) - (0xF, 0x7)→ (0x9, 0xB)
k = 0x5 (0x1, 0x3)→ (0x8, 0x0) - (0x8, 0x0)→ (0x1, 0x3)

(0xD, 0xF)→ (0x2, 0xA) - (0x2, 0xA)→ (0xD, 0xF)
k = 0x6 (0x9, 0xB)→ (0x7, 0xF) (0x8, 0xA)→ (0x4, 0x5) (0x7, 0xF)→ (0x9, 0xB)
k = 0x7 - - -
k = 0x8 - (0x0, 0x2)→ (0xA, 0xB) -
k = 0x9 - (0xC, 0xE)→ (0x3, 0x2) -
k = 0xA - (0x8, 0xA)→ (0x5, 0x4) -
k = 0xB - (0x0, 0x2)→ (0xB, 0xA) -
k = 0xC - - -
k = 0xD - - -
k = 0xE (0xD, 0xF)→ (0xA, 0x2) (0x5, 0x7)→ (0x1, 0x0) (0xA, 0x2)→ (0xD, 0xF)
k = 0xF - (0x5, 0x7)→ (0x1, 0x0) -

- (0xC, 0xE)→ (0x2, 0x3) -

34 A. Flórez-Gutiérrez et al.

Table 3 summarizes the input/output pairs satisfying the differential transi-
tion for each key. For example, when k = 0x1, only two pairs

(0x1, 0x3)→ (0x0, 0x8) (0x3, 0x1)→ (0x8, 0x0)

satisfy input differences 0x2 and 0x8 at the same time. When k = 0x5,

(0x1, 0x3)→ (0x8, 0x0), (0x3, 0x1)→ (0x0, 0x8),

(0xD, 0xF)→ (0x2, 0xA), (0xF, 0xD)→ (0xA, 0x2),

satisfy input differences 0x2 and 0x8 at the same time.
Note that the key k is the corresponding 4 bits of RK1

0 ⊕RK2
0 , where RK1

0

and RK2
0 denote the first round key for the 1st and 2nd branches, respectively.

As mentioned in [LSW22], the key-recovery attack involves 12 bits of RK1
0 and

RK2
0 , which are obtained from the 22 bits of the master key. Involved RK1

0⊕RK2
0

is represented by using the master key as follows:

(RK1
0 ⊕RK2

0)[56, 57, 58, 59] = (K85,K82,K37,K69)⊕ (K107,K22,K85,K113)

(RK1
0 ⊕RK2

0)[104, 105, 106, 107] = (K52,K96,K43,K61)⊕ (K46,K30,K102,K59)

(RK1
0 ⊕RK2

0)[120, 121, 122, 123] = (K98,K46,K23,K32)⊕ (K110,K65,K100,K73)

For the whole of the secret key, these 12-bit values take any value with uniform
probability. The key-recovery attack works only when three active S-boxes use
a key that allows differential transitions. Therefore, the fraction of weak keys is
5/16× 7/16× 5/16 ≈ 2−4.55.

Let us consider keys 0x1, 0x6, and 0x1 are used for 0x2
S◦S−1

−−−−→ 0x8, 0x2
S◦S−1

−−−−→
0x1, and 0x8

S◦S−1

−−−−→ 0x2, respectively. Then, each active S-box contains only
two pairs. Therefore, among about 224 pairs constructed by activating 12-bit
inputs, the number of pairs satisfying the input differences of both branches is
only 8. In other words, assuming such keys are used, we have only 8 pairs from
the 12-bit active. Note that the attacker must activate the 12-bit value to have
these 8 pairs because the attacker does not know which RK1

0 is used. Therefore,
to observe the differential distinguisher with a probability of 2−112, we need at
least 212 × 2112/8 = 2121 chosen plaintexts.

On Time Complexity for Differential Key-Recovery Attack. Let us
consider the following attack procedure. We first fix inactive 128 − 12 = 116
bits and query 212 chosen inputs. Then, we pick pairs satisfying the output
difference. After repeating c × 2110 times, where c is a small constant, we have
about c×2110×8×2−128 ≈ c×24 pairs. We analyze these pairs by guessing (weak)
keys, where the cost is negligible. We have c pairs satisfying input differences
simultaneously when the guess is correct. Otherwise, the number is a few.

The procedure above works on the time in about c× 2122, equivalent to the
data complexity. Note that since it is a weak-key attack, the exhaustive search
is 2128−4.55. Then, c ≤ 22.45. It is a tough condition, but we can expect a non-
negligible advantage.

General Practical Cryptanalysis 35

On Time Complexity for Differential-Linear Key-Recovery Attack.
We next discuss a considerable attack procedure for the key recovery of the
differential-linear attack.

We first prepare about 224 pairs, where the 3 active nibbles have non-zero
differences. For each pair, we activate other 128 − 12 = 116 bits and compute
an empirical correlation by using c × 296−3 = c × 293 pairs. The complexity is
224× c× 293 = c× 2117, and we have about 224 empirical correlations depending
on the pair. We finally guess the key, pick pairs that satisfy the input difference of
the differential-linear distinguisher, and combine them. When the correct key is
guessed, it computes the empirical correlation, where at least c×293×8 = c×296
pairs are used. Again, it is a weak-key attack, and the exhaustive search is
2128−4.55. Then c ≤ 26.45. We expect that this c is enough to achieve an advantage
in recovering the secret key.

B Distinguishers and Attacks on round-reduced
ZIP-AES: Details

B.1 Autocorrelation

We used the 3-round differential-linear distinguisher shown in [HDE24b]. The
input difference and output mask are

δ = 0x00000000B40000000000000000000000,

α = 0x00000000000000009866AB3200000000,

respectively. Note that this hexadecimal representation differs from [HDE24b],
but they are the same value. We experimentally evaluated the autocorrelation
for the left branch by using 230 pairs. As a result, it was 2−7.66, which is the same
as the estimation in [HDE24b]. Next, we observed the autocorrelation for the
right branch by using 230 Paris. Then, it was 2−16.077, which was not significant.
Thus, we expect that the autocorrelation for the right branch is much worse,
and the autocorrelation of ZIP-AES3,3 is significantly worse than 2−7.66×2.

B.2 Differential-and-Linear Key Recovery Attack

To verify the independent assumption and the validity of our key recovery at-
tack, we implemented reduced-round ZIP-AES and mounted the attack. We used
ZIP-AES3,3, where we used a 2-round differential-linear distinguisher for the left
branch and a 1-round linear distinguisher for the right branch. In detail, the in-
put difference of the left branch δ, the input mask of the right branch α, and
the output mask β are

δ = 0x00000000B40000000000000000000000,

α = 0x00000000000000000000007200000000,

β = 0x0000000000000000000000CC00000000,

36 A. Flórez-Gutiérrez et al.

Table 4: Practical tests on small-scale ZIP-AES over F4×4
24 . In the table, we

assume |I| = |I ′| = 3 and |J | = 2 (P ≡ Practical – Prob. ≡ Probability).

Rounds Input Subspace Output Subspace ZIP-AES P-Prob. PRF Prob.

1 + 1 Ci Di ∩Mi 1 2−32

2 + 2 MJ ∩ DI CI′ 2−16 + 2−19.7 2−16

2 + 2 Ci CI 2−16 + 2−24.5 2−16

2 + 2 MI ∩ DI CI′ 2−16 + 2−31 2−16

2 + 2 CJ CI 2−16 + 2−39 2−16

3 + 3 Ci CI 2−16 + 2−33 2−16

respectively. Note that α is the linear mask after applying the inverse Mix-
Columns. Therefore, there is only SubBytes (and ShiftRows) from α to β. We
experimentally evaluated the autocorrelation from δ to β by the 2-round left
branch and it was about 2−6.33. The correlation from α to β is 2−3. Therefore,
in total, the expected correlation is 2−12.33.

We experimentally evaluated the correlation when the right keys k0, k6, and
k7 are guessed. We use 230 pairs and repeat it by 10 keys. As a result, the
correlation was 2−12.41. We also experimentally evaluated the correlation when
the wrong keys are guessed. Then, the correlation was 2−17.61, i.e., we do not
observe significant correlation. Thus, this experiment justified our estimation.

B.3 Truncated Differential Distinguishers

Here, we provide more details regarding our practical results presented in the
Tables 1 and 4.

Before going on, we limit ourselves to mention that the subspace in output
is always fixed (e.g., CI for a fixed I). By allowing for any I with a fixed car-
dinality |I|, the probabilities are increased by a factor

(
4
|I|
)
. This could play a

crucial role in reducing the overall data and/or computational complexity of the
distinguishers/attacks. Moreover, we emphasize that we are not able to detect
the bias for truncated differentials that ends with Ci, that is, zero-difference in
three columns (note that the probability of such event is 2−96, and the bias – if
it exists – would be even smaller).

ZIP-AES2,2: Ci → CJ with |J | = 3. Let’s start by considering the case of
plaintexts in Ci. Due to the impossible differentials given before, for |J | = 3,
we know that (i) Prob(AES2(x) ⊕ AES2(x ⊕ δ) ∈ CJ | δ ∈ Ci) = 0, and (ii)
Prob(AES−1

2 (x)⊕AES−1
2 (x⊕ δ) ∈ CJ | δ ∈ Ci) = 0. Given AES2(x)⊕AES2(x⊕

δ) /∈ CJ and AES−1
2 (x) ⊕ AES−1

2 (x ⊕ δ) /∈ CJ , our practical tests on AES show
that ZIP-AES2,2(x)⊕ZIP-AES2,2(x⊕δ) belongs into CJ with probability slightly
higher than 232 (similar results hold on small-scale AES). We leave the open
problem to explain this fact for future work.

General Practical Cryptanalysis 37

ZIP-AES3,3: Ci → CJ with |J | = 3. Next, we examine the previous truncated
differential but for ZIP-AES3,3. Due to the results proposed in [GR22], we know
that

Prob(AES3(x)⊕AES3(x⊕ δ) ∈ CJ | δ ∈ Ci) = 2−32 + 2−53 ,

Prob(AES−1
3 (x)⊕AES−1

3 (x⊕ δ) ∈ CJ | δ ∈ Ci) = 2−32 + 2−53 ,

(respectively, approximately 2−16+2−24.7 for the case of small-scale AES). How-
ever, the biases of these two cases are too small for theoretically deriving some
useful information about Prob(ZIP-AES3,3(x)⊕ZIP-AES3,3(x⊕δ) ∈ CI | δ ∈ Ci).
Our practical tests on small-scale AES show that this event occurs with proba-
bility slightly higher than 2−16. We expect the same happening for real AES –
we leave the open problem to explain this fact for future work.

ZIP-AES2,2:MI∩DI′ → CJ with |I|+|I ′| ≥ 5 and |J | = 3. Finally, let’s consider
the case in which the plaintexts are inMI ∩ DI′ for I = I ′ with |I| = 3. As we
have seen before, since |I| = |J | = 3, we have that Prob(AES2(x)⊕AES2(x⊕δ) ∈
CJ | δ ∈ DI) = 2−24, and Prob(AES−1

2 (x) ⊕ AES−1
2 (x ⊕ δ) ∈ CJ | δ ∈ MI) =

2−24, whereMI∩DI ⊆ DI andMI∩DI ⊆MI . Moreover, if AES2(x)⊕AES2(x⊕
δ) /∈ CJ (which occurs with probability 1− 2−24) and if AES−1

2 (x)⊕AES−1
2 (x⊕

δ) /∈ CJ (which again occurs with probability 1− 2−24),5 then ZIP-AES2,2(x)⊕
ZIP-AES2,2(x ⊕ δ) belongs into CJ with probability approximately of 2−32 ± ε
for a very small 0 ≤ ε≪ 1. As a result, if |±ε| < Prob(AES2(x)⊕AES2(x⊕δ) ∈
CJ | δ ∈ MI ∩ DI) · Prob(AES−1

2 (x) ⊕ AES−1
2 (x ⊕ δ) ∈ CJ | δ ∈ MI ∩ DI), we

expect that ZIP-AES2,2(x)⊕ZIP-AES2,2(x⊕δ) belongs into CJ with probability
slightly higher than 2−32 (assuming δ ∈MI ∩DI). Our practical tests on small-
scale AES confirm such result. We leave the open problem to explain this fact
for future work. We also emphasize that an analogous conclusion holds also for
MI ∩ DI′ → CJ with (i) |I| = |J | = 3 and |I ′| = 2, and (ii) |I ′| = |J | = 3 and
|I| = 2.

B.4 Mixture Differential Distinguisher/Attack

As mentioned in Sect. 4.2, it is currently impossible to set up an integral mixture
distinguisher for ZIP-AES2,2, that is,

ZIP-AES2,2(p0)⊕ ZIP-AES2,2(p1) ̸= ZIP-AES2,2(p
′
0)⊕ ZIP-AES2,2(p

′
1)

in general, where p0, p1, p
′
0, p

′
1 ∈ CI ⊕ γ for I ⊆ {0, 1, 2, 3}, and where p′0 and p′1

are constructed by carefully swapping the generating variables of p0, p1 (in the
same way described in [Gra18]).

We limit ourselves to present the details for the specific case

p0 =

x0 0 0 0
x1 0 0 0
x2 0 0 0
x3 0 0 0

⊕ γ ≡ ⟨x0, x1, x2, x3⟩ ⊕ γ and p1 = ⟨y0, y1, y2, y3⟩ ⊕ γ ,

5 Given a subspace X, note that x⊕ y /∈ X cannot occur if x ∈ X and y /∈ X.

38 A. Flórez-Gutiérrez et al.

where ⟨·⟩ denotes the generating variables. Examples of p′0 and p′1 are given by
p′0 = ⟨y0, x1, x2, x3⟩ ⊕ γ and p′1 = ⟨x0, y1, y2, y3⟩ ⊕ γ. (We recall that if two
generating variables are equal, e.g., x0 = y0, then it is possible to replace them
with the same random value in F28 .)

Let SSB be the super-Sbox operation defined as SSB(·) := SB ◦ ARK ◦
MC ◦ SB(·). Hence:

AES2(p0)⊕AES2(p1) = MC ◦ SR ◦ (SSB ◦ SR(p0)⊕ SSB ◦ SR(p1))

=MC ◦ SR ◦ (SSB ◦ SR(p′0)⊕ SSB ◦ SR(p′1)) = AES2(p
′
0)⊕AES2(p

′
1)

since each column of SR(p0) and of SR(p1) depends on independent variables,
and since SSB works independently on each column of the input text.

The problem arises from the fact that AES−1
2 starts with a MC−1 operation,

which implies that the generating variables ofMC−1(p0) (similar forMC−1(p1))
are

x̂0 = e · x0 ⊕ b · x1 ⊕ d · x2 ⊕ 9 · x3, x̂1 = 9 · x0 ⊕ e · x1 ⊕ b · x2 ⊕ d · x3 ,

x̂2 = d · x0 ⊕ 9 · x1 ⊕ e · x2 ⊕ b · x3, x̂3 = b · x0 ⊕ d · x1 ⊕ 9 · x2 ⊕ e · x3 ,

and not x0, x1, x2, x3. It follows that swapping some variables among x0, x1, x2, x3

and y0, y1, y2, y3 does not correspond to swapping the variables x̂0, x̂1, x̂2, x̂3 and
ŷ0, ŷ1, ŷ2, ŷ3. Equivalently, the equivalence

AES−1
2 (p0)⊕AES−1

2 (p1) = AES−1
2 (p̂′0)⊕AES−1

2 (p̂′1)

holds for some unknown6 texts p̂′0 and p̂′1 that are different from p′0 and p′1, since
they are defined with respect to different generating variables.

Proof of Lemma 1. Due to the previous results, we have that

ZIP-AES2,2(p0)⊕ ZIP-AES2,2(p1)⊕ ZIP-AES2,2(p
′
0)⊕ ZIP-AES2,2(p

′
1)

=AES−1
2 (p0)⊕AES−1

2 (p1)⊕AES−1
2 (p′0)⊕AES−1

2 (p′1)

due to the fact that AES2(p0)⊕AES2(p1) = AES2(p
′
0)⊕AES2(p

′
1).

Since p0⊕p1 ∈ Ci, then the corresponding difference belongs to Di after R
−1
AES.

Moreover, it also belongs to CI with |I| = 3 with probability 2−8 (if one byte of
such difference is equal to zero). It follows that Prob(AES−1

2 (p0)⊕AES−1
2 (p1) ∈

DI | p0 ⊕ p1 ∈ Ci) = 2−8. A similar result holds for p′0 and p′1 as well, that is,
Prob(AES−1

2 (p′0) ⊕ AES−1
2 (p′1) ∈ DI | p′0 ⊕ p′1 ∈ Ci) = 2−8, which implies

probability (at least)7 equal to (2−8)2 = 2−16 for the considered event.

6 They are unknown due to the presence of the secret key.
7 Note that AES−1

2 (p0) ⊕ AES−1
2 (p1) ⊕ AES−1

2 (p′0) ⊕ AES−1
2 (p′1) can belong into DI

even if AES−1
2 (p0)⊕AES−1

2 (p1) /∈ DI and AES−1
2 (p′0)⊕AES−1

2 (p′1) /∈ DI .

General Practical Cryptanalysis 39

B.5 Exchange Distinguisher/Attack

The exchange attack [BR19] introduced by Bardeh and Rønjom is a variant
of the mixture differential cryptanalysis on 4-round AES. Given two pairs of
plaintexts p0, p1 in a diagonal subspace DI ⊕ α with I ⊆ {0, 1, 2, 3} and |I| = 3.
The attacker generates two new pairs of plaintexts p′0, p

′
1 in the same diagonal

subspace DI ⊕ α by exchanging two full diagonals. The following distinguisher
works

AES4(p0)⊕AES4(p1) ∈MJ ⇐⇒ AES4(p
′
0)⊕AES4(p

′
1) ∈MJ

for each J ⊆ {0, 1, 2, 3} with |J | ≥ 2.
The reason why such distinguisher works is the following. By working as

before, it is not hard to check that

AES2(p0)⊕AES2(p1) = AES2(p
′
0)⊕AES2(p

′
1) ,

since p′0, p
′
1 ∈ DI ⊕ α are obtained by swapping diagonals of p0, p1. Due to

the probability-1 2-round truncated differential AES2(DI ⊕ α) = MI ⊕ β, we
have that x ∈ MI can belong to DJ if and only if |I| + |J | ≥ 5. Hence, by
choosing |I| = 3 and |J | ≥ 2, we have that AES2(p0) ⊕ AES2(p1) ∈ DJ implies
AES2(p

′
0)⊕AES2(p

′
1) ∈ DJ and so the results.

Since the exchange attack is a variant of the mixture differential attacks, it
does not work on ZIP-AES due to the same reasons given before. In particular,
the generating variables corresponding to the diagonals of p0, p1 are different
than the generating variables of MC−1(p0),MC−1(p1).

B.6 Attacks on ZIP-AES1,r and ZIP-AES2,r

Finally, we show that the attacks proposed in [MN17b, Sect. 3.3] for the AES-
PRF construction apply to our constructions ZIP-AES1,r and ZIP-AES2,r as
well (analogous for ZIP-AESr,1 and ZIP-AESr,2). Here, we limit ourselves to
adapt the attacks from [MN17b, Sect. 3.3] to our construction.

Let’s first consider the case ZIP-AES1,r, which is defined as

ZIP-AES1,r(x) := AES−1
r (x)⊕RAES(x⊕ k0)⊕ k1 .

Consider inputs in a diagonal subspace Di⊕α. As we have seen, RAES(Di⊕α) =
Ci⊕β for a certain β. The attack strategy consists in guessing the i-th diagonal of
the key k0 (for a total of 4 bytes). If the guessed value is correct, the attacker can
predict the value of the i-th column of RAES(x⊕k0). By removing its contribution
from ZIP-AES1,r(x), the resulting function is the permutation AES−1

r (x) ⊕ γ
for a certain secret constant γ ∈ F4×4

28 . Hence, if the guessed key is correct,
we expect that no collision occurs on the image of Di ⊕ α via ZIP-AES1,r(x)
once we removed the i-th column of RAES(x ⊕ k0). Equivalently, if a collision
occurs, the guessed key is not the correct one. We refer to [MN17b, Sect. 3.3]
for more details. In there, Mennink and Neves show that the attack requires
approximately 267 queries, 2101 computations, and 267 memory.

40 A. Flórez-Gutiérrez et al.

A similar attack can potentially work for ZIP-AES2,r as well, by noting that
R2

AES(Di ⊕ α) = MC(IDi)⊕ β ≡Mi ⊕ β. In such a case, the attacker needs to
guess at least one diagonal of the first round-key and one column of the second
round-key, for a total of (at least) 8 bytes of the key. We leave the open problem
to estimate the cost of such attack for future work.

C Security Analysis of Modified ZIP-AES

In this section, we show that a modified version of ZIP-AES in which the initial
MC−1 operation of AES−1 and/or the final MC operation of AES are omitted
is much less secure than the ZIP-AES scheme analyzed before. In order to avoid
confusion, we denote this modified version as ZIP-AES′.

We summarize the results in the following, before presenting the details.

About Truncated Differentials: Effect of Omitting MC−1. Omitting
MC−1 at the beginning of AES−1 allows the attacker to break more rounds of
ZIP-AES′ via truncated differential distinguishers. In more details:

– the attacker can break 2+2 rounds of ZIP-AES via a probabilistic truncated
differential distinguisher. Even if it is not clear if analogous truncated differ-
ential distinguishers exist for more rounds, our results suggest that, if a bias
between the probability for ZIP-AESr,r for r ≥ 4 and a generic PRF exists,
it would be too small for being useful in practice. No distinguisher/attack is
known for more rounds;

– the attacker can break 2 + 2 rounds of ZIP-AES′ via a deterministic (i.e.,
probability 1) truncated differential distinguisher;

– the attacker can break 4+ 4 rounds of ZIP-AES′ via probabilistic truncated
differential distinguishers. We also do not exclude that an attacker can break
more rounds.

About Mixture Differentials: Effect of Omitting MC−1. As before, omit-
ting MC−1 at the beginning of AES−1 allows the attacker to break more rounds
of ZIP-AES′ via mixture differential distinguishers. In more details:

– the attacker can break 2 + 2 rounds of ZIP-AES via a probabilistic mixture
differential distinguisher. No distinguisher/attack is known for more rounds;

– the attacker can break 2 + 2 rounds of ZIP-AES′ via a deterministic (i.e.,
probability 1) mixture differential distinguisher;

– the attacker can break 4+ 4 rounds of ZIP-AES′ via a probabilistic mixture
differential distinguisher.

C.1 Omitting the Final MC Operation in AES

Let’s start with some observations about the consequence of omitting the final
MC operation in AES. As we have seen before, several truncated and mixture

General Practical Cryptanalysis 41

Table 5: Practical tests on small-scale ZIP-AES′ over F4×4
24 . The symbol ⋆ denotes

the fact that the final MixColumns operation is omitted in AESr. In the table,
we assume |I| = 3.
Rounds Input Subspace Output Subspace ZIP-AES T-Prob. ZIP-AES P-Prob. PRF Prob.

1 + 1 Ci Di ⊕Mi 1 1 2−32

1 + 1 Di ∩ IDi Ci 1 1 2−48

2 + 2 Di ∩ IDi Di ⊕Mi 1 1 2−32

3⋆ + 3 Di ∩ IDi DI ⊕ IDI 2−7 2−6.985 2−8

3 + 3 Di ∩ IDi CI – 2−16 + 2−19.75 2−16

3 + 3 Ci CI – 2−16 + 2−27.7 2−16

4⋆ + 4 Ci DI ⊕ IDI – 2−8 + 2−25.1 2−8

4⋆ + 4 Di ∩ IDi DI ⊕ IDI – 2−8 − 2−18.5 2−8

T ≡ Theoretical – P ≡ Practical – Prob. ≡ Probability

differentials for ZIP-AES end with the column space CI . Since CI is mapped into
MI after 1-round AES, and into DI after 1-round AES−1, one may think that
the simplest strategy to extend by 1 round a truncated/mixture differential that
ends with CI is by replacing CI with DJ ⊕ML. However, DJ ⊕ML corresponds
to the full space for each J, L ⊆ {0, 1, 2, 3} such that |J | + |L| ≥ 4. Hence, this
strategy could work only if we special cases.

If the final MC operation is omitted AES, then the result can be different.
Indeed, in such a case, one would replace CI with DJ ⊕ IDL, where DJ ⊕ IDL

is not necessarily the full space even if |J | + |L| ≥ 4. As a concrete example, if
L = J = {h, h + 2} for h ∈ {0, 1, 2, 3}, then Dh,h+2 = IDh,h+2, which implies
that Dh,h+2 ⊕ IDh,h+2 = Dh,h+2 which has dimension 8 out of 16. As a result,
some truncated and mixture differential distinguishers can be easily extended by
1 round if the final MC operation is omitted, as we are going to show concretely
in the following.

C.2 Truncated Differential and Subspace Trail Attacks

We refer to Sect. 4.2 for the details about truncated differential distinguishers
on ZIP-AES. Here we focus on the case of ZIP-AES′, which corresponds to
ZIP-AES with the initial MC−1 for AES−1 omitted. If the final MC operation
is also omitted, we denote this case as ZIP-AES⋆.

In the following, we discuss the truncated differentials for round-reduced
ZIP-AES. Our practical tests on small-scale ZIP-AES (that is, AES over F4×4

24

as presented in [CMR05]) are also summarized in Table 5.8 Before going on, we
recall that dim(DI ⊕IDJ) = 14 if |I| = |J | = 3 with |I ∩ J | ≥ 2 (e.g., if I = J).

Truncated Differentials for ZIP-AES′1,1. Based on the previous results, it is pos-
sible to set up truncated differentials on ZIP-AES1,1 by combining the facts that

8 Note that the truncated differentials are not affected by the details (as the degree)
of the S-Box. Hence, we believe that the results on small-scale AES are a good
representative of what happens for the ”real” AES.

42 A. Flórez-Gutiérrez et al.

(i) Prob(AES1(x)⊕AES1(x⊕ δ) ∈MI | δ ∈ CI) = 1 and (ii) Prob(AES−1
1 (x)⊕

AES−1
1 (x⊕ δ) ∈ DI | δ ∈ CI) = 1:

Prob(ZIP-AES′1,1(x)⊕ ZIP-AES′1,1(x⊕ δ) ∈ Ci | δ ∈ Di ∩ IDi) = 1 ,

Prob(ZIP-AES′1,1(x)⊕ ZIP-AES′1,1(x⊕ δ) ∈ Di ⊕Mi | δ ∈ Ci) = 1 .

In this second case, we limit ourselves to mention that if the final MC operation
is omitted in AES1(·), then it is sufficient to replace Mi with IDi. Moreover,
if AES−1

1 finishes with the MC−1 operation, then it is sufficient to replace Di

with MC−1(Di).
For comparison, note that Prob(Π(x)⊕Π(x⊕δ) ∈ Ci | δ ∈ Di∩IDi) = 2−96

and Prob(Π(x)⊕Π(x⊕ δ) ∈ Di ⊕Mi | δ ∈ Ci) = 2−64 for a PRF Π over F4×4
28 .

Truncated Differentials for ZIP-AES′2,2. By combining the two previous proba-

bilities, it is possible to set up a truncated differential for ZIP-AES′2,2. Indeed,
we have that

Prob(ZIP-AES′2,2(x)⊕ ZIP-AES′2,2(x⊕ δ) ∈ Di ⊕Mi | δ ∈ Di ∩ IDi) = 1 .

As before, the same event occurs with probability 2−64 in the case of a PRF
Π. Similar considerations as before hold if the final MixColumn operation is
omitted or/and the final inverse MixColumns operation is included.

Truncated Differentials for ZIP-AES′3,3. Besides assuming that the initialMC−1

is omitted, let’s first consider the case in which the final MixColumns operation
in AES3(·) is omitted as well – denoted by AES⋆3(·). By combining the previous
probability, it is possible to set up a truncated differential for ZIP-AES⋆3,3 as
follows:

Prob(ZIP-AES⋆3,3(x)⊕ ZIP-AES⋆3,3(x⊕ δ) ∈ DJ ⊕ IDJ | δ ∈ Di ∩ IDi) ≈ 2−15 ,

where i ∈ {0, 1, 2, 3} and J ⊆ {0, 1, 2, 3} with |J | = 3. Indeed:

– the event

AES1(x)⊕AES1(x⊕δ) ∈ DJ and AES−1
1 (x)⊕AES−1

1 (x⊕δ) ∈MJ

occurs with probability 2−16 (where AES−1
1 (·) = MC−1 ◦ SR−1 ◦ SB−1(·)).

If this happens, then ZIP-AES⋆3,3(x) ⊕ ZIP-AES⋆3,3(x ⊕ δ) ∈ DJ ⊕ IDJ oc-
curs with probability 1, due to the previous probability-1 2-round truncated
differentials;

– instead, the events

AES1(x)⊕AES1(x⊕δ) /∈ DJ and/or AES−1
1 (x)⊕AES−1

1 (x⊕δ) /∈MJ

occur with probability (1− 2−16). If this is the case, then ZIP-AES⋆3,3(x)⊕
ZIP-AES⋆3,3(x ⊕ δ) can still belong to DJ ⊕ IDJ with probability approxi-
mately 2−16 ± ε for a (very) small 0 ≤ ε≪ 1.

General Practical Cryptanalysis 43

Hence, the overall probability is well approximated by

2−16 · 1 + (1− 2−16) · (2−16 ± ε) ≈ 2−15 .

Note that the same event has probability 2−16 for the case of a PRF. We prac-
tically verified this case on small-scale AES, and we obtained a factor (slightly
bigger than) 2 between the ZIP-AESs,⋆ case and a generic PRF (as expected).

Remark 2. Before going on, we limit ourselves to point out that our theoretical
result from Sect. 3.5 just suggests us that the probability of such event is greater
than 2−16. However, this result by itself is not sufficient to set up a distinguisher.

A similar distinguisher holds when the finalMC is not omitted. In particular,
due to the same argument just given, we expect that an analogous truncated
differential for ZIP-AES′3,3 holds:

Prob(ZIP-AES′3,3(x)⊕ ZIP-AES′3,3(x⊕ δ) ∈ Dj ⊕Ml | δ ∈ Di,i+2 ≡ IDi,i+2)

=(2−64 ± ε) · (1− 2−96) + (2−48)2 ≈ 2−64 + 2−96 ,

assuming a (very) small 0 ≤ ε≪ 1, and where j, l ∈ {0, 1, 2, 3}. For comparison,
the same event occurs with probability 2−64 for the case of random function.
With respect to the case in which the finalMC operation is omitted, we highlight
that we cannot work with DI ⊕MI for |I| = 3, since this is equivalent to the
full space, and the probability would be trivially 1. For this reason, we chose
Dj ⊕Ml as the final subspace. Moreover, due to the MDS property of the MC
matrix, we are forced to work with Di,i+2 ≡ IDi,i+2 instead of Di,i+2 ∩IDi,i+2.

Truncated Differentials for ZIP-AES′r,r with r ≥ 3: Practical Results. As for the
case of ZIP-AES, we practically tested the probability of several truncated differ-
entials for small-scale ZIP-AES′r,r and ZIP-AES⋆r,r for r ∈ {3, 4}. Our practical
results are listed in Table 5. As it is possible to observe, truncated differentials for
up to ZIP-AES′4,4 and ZIP-AES⋆4,4 exist (we also do not exclude the possibility
that truncated differentials exist for r ≥ 5). We leave the open problems to ex-
plain them, and to set up analogous truncated differentials for ”real” ZIP-AES′r,r
and ZIP-AES⋆r,r as future work.

C.3 Mixture Differential Attacks (and More)

We refer to Sect. 4.2 for the details about mixture differential and the exchange
distinguishers on ZIP-AES. Here we focus on the case of ZIP-AES′, which corre-
sponds to ZIP-AES with the initial MC−1 for AES−1 omitted. If the final MC
operation is also omitted, we denote this case as ZIP-AES⋆.

Mixture Integral Distinguisher for ZIP-AES′
2,2 As we are going to show,

it is possible to set up an integral mixture distinguisher (using the same name
proposed in [GS20]) for ZIP-AES′2,2, that is,

ZIP-AES′2,2(p0)⊕ ZIP-AES′2,2(p1) = ZIP-AES′2,2(p
′
0)⊕ ZIP-AES′2,2(p

′
1) (2)

44 A. Flórez-Gutiérrez et al.

where p0, p1, p
′
0, p

′
1 ∈ CI ⊕ γ for I ⊆ {0, 1, 2, 3}, and where p′0 and p′1 are con-

structed by carefully swapping the generating variables of p0, p1 (in the same
way described in [Gra18]).

We limit ourselves to present the details for the specific case

p0 = ⟨x0, x1, x2, x3⟩ ⊕ γ and p1 = ⟨y0, y1, y2, y3⟩ ⊕ γ

as defined before, where ⟨·⟩ denotes the generating variables. We recall that ex-
amples of p′0 and p′1 are given by p′0 = ⟨y0, x1, x2, x3⟩⊕γ and p′1 = ⟨x0, y1, y2, y3⟩⊕
γ. Let SSB be the super-Sbox operation defined as SSB(·) := SB◦ARK◦MC ◦
SB(·). Hence:

AES2(p0)⊕AES2(p1) = MC ◦ SR ◦ (SSB ◦ SR(p0)⊕ SSB ◦ SR(p1))

=MC ◦ SR ◦ (SSB ◦ SR(p′0)⊕ SSB ◦ SR(p′1)) = AES2(p
′
0)⊕AES2(p

′
1)

since each column of SR(p0) and of SR(p1) depends on independent variables,
and since SSB works independently on each column of the input text. In an
analogous way, we have

AES−1
2 (p0)⊕AES−1

2 (p1) = SR−1 ◦
(
SSB−1 ◦ SR−1(p0)⊕ SSB−1 ◦ SR−1(p1)

)
=SR−1 ◦

(
SSB−1 ◦ SR−1(p′0)⊕ SSB−1 ◦ SR−1(p′1)

)
= AES−1

2 (p′0)⊕AES−1
2 (p′1) .

It is crucial to note that the generating variables remain independent (i.e., belong
to different columns) after both SR and SR−1:

x0 0 0 0
0 x1 0 0
0 0 x2 0
0 0 0 x3

 SR−1(·)←−−−−−

x0 0 0 0
x1 0 0 0
x2 0 0 0
x3 0 0 0

 SR(·)−−−→

x0 0 0 0
0 0 0 x1

0 0 x2 0
0 x3 0 0

 .

Hence, it is possible to construct mixing pairs that are simultaneously suitable
for both the encryption and the decryption.

By combining all these facts, that is,

AES2(p0)⊕AES2(p1) =AES2(p
′
0)⊕AES2(p

′
1) ,

AES−1
2 (p0)⊕AES−1

2 (p1) =AES−1
2 (p′0)⊕AES−1

2 (p′1) ,
(3)

the equality (2) follows immediately.

Global Mixture Differential on ZIP-AES′
3,3. In order to extend such distin-

guisher by 2 extra rounds as in [Gra18], it would be necessary to consider the case
in which (i) AES2(p0)⊕AES2(p1) ∈ DI and (ii) AES−1

2 (p0)⊕AES−1
2 (p1) ∈MJ

for certain I, J ⊆ {0, 1, 2, 3} in order to exploit the 1-/2-round probability-1
truncated differentials described before. However, the attacker can only observe
the fact that

ZIP-AES′3,3(p0)⊕ ZIP-AES′3,3(p1) ∈ CI or

ZIP-AES′4,4(p0)⊕ ZIP-AES′4,4(p1) ∈ Di ⊕Mj

General Practical Cryptanalysis 45

depending on the number of attacked rounds. By themselves, these conditions do
not imply AES3(p0)⊕AES3(p1) ∈ CI (respectively, AES4(p0)⊕AES4(p1) ∈Mi)
and AES−1

3 (p0)⊕AES−1
3 (p1) ∈ CI (respectively, AES−1

4 (p0)⊕AES−1
4 (p1) ∈ Dj).

Indeed, it is possible that x⊕ y ∈ X even if x, y /∈ X .
Here, we solve this by problem by introducing the “global mixture differen-

tial” distinguishers.

Lemma 2. Let p0, p1 ∈ CJ ⊕ α. Let Xp0,p1
⊆ (CJ ⊕ α) × (CJ ⊕ α) be the set

defined by the mixture couples generated by p0 and p1. (We recall that |Xp0,p1
| ∈

{0, 8, 210, 217}.)
The probability that there exists a set Xp0,p1

for which all the corresponding
pairs after ZIP-AES′3,3 differ in the I-th column(s) after is higher for ZIP-AES′3,3
then for a PRF. In particular, for |I| = 3, we have that

Prob
(
∀(p, p′) ∈ Xp0,p1

:ZIP-AES′3,3(p)⊕ ZIP-AES′3,3(p
′) ∈ CI

)
= 2−64 + (1− 2−32)2 · 2−32·|Xp0,p1 | ≈ 2−64

versus Prob (∀(p, p′) ∈ Xp0,p1
: Π(p)⊕Π(p′) ∈ CI) = 2−32·|Xp0,p1 | ≤ 2−256.

We called this distinguisher “global” since it is based on a property that must
holds for all the pairs in the set Xp0,p1 .

Proof. Let’s start with the random case. In such a case, all the output pairs are
independently. Since Prob(x ∈ CI) = 2−32·(4−|I|), that is, 2−32 for |I| = 3, the
result follows immediately.

Next, let’s consider the case of ZIP-AES3,3. Here, two cases can occur:

1. AES2(p0)⊕AES2(p1) ∈ DI and AES−1
2 (p0)⊕AES−1

2 (p1) ∈MI ;
2. AES2(p0)⊕AES2(p1) /∈ DI or/and AES−1

2 (p0)⊕AES−1
2 (p1) /∈MI .

In the first case, we have that

AES2(p0)⊕AES2(p1) ∈ DI −→ AES2(p)⊕AES2(p
′) ∈ DI

for each {p, p′} ∈ Xp0,p1
. This is due to the fact that {p, p′} is a mixture of

{p0, p1}, which implies

AES2(p0)⊕AES2(p1) = AES2(p)⊕AES2(p
′)

as proved before – see (3). Obviously, it follows that

AES2(p)⊕AES2(p
′) ∈ DI =⇒ AES3(p)⊕AES2(p

′) ∈ CI .

In an analogous way, we have that

AES−1
2 (p0)⊕AES−1

2 (p1) ∈MI =⇒ AES−1
2 (p)⊕AES−1

2 (p′) ∈MI

=⇒ AES−1
3 (p)⊕AES−1

3 (p′) ∈ CI .

46 A. Flórez-Gutiérrez et al.

The probability of this first event is well approximated by (2−32)2 = 2−64, since

Prob
(
AES2(p0)⊕AES2(p1) ∈ DI and AES−1

2 (p0)⊕AES−1
2 (p1) ∈MI

)
=Prob (AES4(p̂0)⊕AES4(p̂1) ∈ DI and p̂0 ⊕ p̂1 ∈MI)

=Prob (AES4(p̂0)⊕AES4(p̂1) ∈ DI | p̂0 ⊕ p̂1 ∈MI) · Prob (p̂0 ⊕ p̂1 ∈MI)

=2−32 · Prob (AES8(p̂0)⊕AES8(p̂1) ∈MI | p̂0 ⊕ p̂1 ∈ DI) ≈ (2−32)2 ,

where no truncated differential is known for 8-round AES – see [Rø19, GR22,
BR19]. (Analogous conclusion holds when including the condition p0 ⊕ p1 ∈ CJ
as well.)

Regarding the second case, the event AES2(p0) ⊕ AES2(p1) /∈ DI or/and
AES−1

2 (p0) ⊕ AES−1
2 (p1) /∈ MI occurs with probability 1 − 2−64. However, we

are only interested to the case AES2(p0) ⊕ AES2(p1) /∈ DI and AES−1
2 (p0) ⊕

AES−1
2 (p1) /∈MI , which occurs with probability (1− 2−32)2. Indeed, remember

that x⊕ y ∈ X cannot occur if x ∈ X and y /∈ X . Hence, working as before, we
know that for each {p, p′} ∈ Xp0,p1

:

AES2(p)⊕AES2(p
′) /∈ DI and AES−1

2 (p)⊕AES−1
2 (p′) /∈MI ,

which implies

AES3(p)⊕AES3(p
′) /∈ CI and AES−1

3 (p)⊕AES−1
3 (p′) /∈ CI .

It follows that the probability that the event AES3(p)⊕AES3(p
′)⊕AES−1

3 (p)⊕
AES−1

3 (p′) ∈ CI occurs is 2−32 for each entry of Xp0,p1
. The result follows im-

mediately. ⊓⊔

Next, we analyze the cost of such distinguisher. As showed e.g. in [GR22,
Theorem 4], we recall that each coset of Ci for i ∈ {0, 1, 2, 3} contains:

– 228 · (28 − 1)4 sets Xp0,p1
of pairs p0, p1 with no equal generating variables,

– 223 · (28 − 1)3 sets Xp0,p1
of pairs p0, p1 with exactly one equal generating

variable,
– 3 · 215 · (28− 1)2 sets Xp0,p1 of pairs p0, p1 with exactly two equal generating

variables,

for a total of

228 · (28 − 1)4 + 223 · (28 − 1)3 + 3 · 215 · (28 − 1)2 ≈ 259.98

different sets. Since each set satisfies the required event with probability 2−64,
in order to have a probability of success higher than 95%, we need N sets, where

1− (1− 2−64)N ≈ 1− e−N ·2−64

≥ 0.95 =⇒ N ≥ −264 · ln(0.05) ≈ 265.6 .

Hence, we need 265.6/259.98 = 25.7 initial cosets Ci, for a data complexity of
25.7 · 232 = 237.7 chosen plaintexts. This number can be reduced by a factor 4 by
considering all possible values of I with |I| = 3.

Regarding the computational complexity, a possible approach could be the
following. For each coset Ci:

General Practical Cryptanalysis 47

– re-order the ciphertexts (and the corresponding plaintexts) with respect to
the byte in column {0, 1, 2, 3} \ I (e.g., using an algorithm such as Heapsort
or Merge sort or others);

– working only on consecutive pair of sets, identify such pairs that belong to
the same coset of CI ;

– construct the corresponding set Xp0,p1
and check if the required property is

satisfied or not.

An estimation of the total is hence given by

25.7 ·

O (
232 · log2(232)

)︸ ︷︷ ︸
sort

+2−32 ·
(
232

2

)
︸ ︷︷ ︸

pairs in CI

· O
(
1 + 2−32 + . . .+ 2−32·|X|

)
︸ ︷︷ ︸

check set X

 ≈ 243

steps. The memory cost is also practical.

Global Mixture Differential on ZIP-AES⋆
4,4 and ZIP-AES′

4,4. Next, we

analyze the possibility to set up a similar distinguisher for ZIP-AES′4,4. We start
by considering the case the final MixColumns operation is omitted in which
AES4(·) – denoted by ZIP-AES⋆4,4. In such a case, it is trivial to extend the
previous distinguisher by considering DI ⊕ IDI instead of CI (remember that
dim(DI ⊕ IDI) = 14 for |I| = 3). Hence, due to an argument analogous to the
one given before,9 we have that

Prob
(
∀(p, p′) ∈ Xp0,p1

: ZIP-AES⋆4,4(p)⊕ ZIP-AES⋆4,4(p
′) ∈ DI ⊕ IDI

)
= 2−64 + (1− 2−64) · 2−16·|Xp0,p1 | ≈ 2−64

versus Prob (∀(p, p′) ∈ Xp0,p1
: Π(p)⊕Π(p′) ∈ DI ⊕ IDI) = 2−16·|Xp0,p1 | ≤ 2−128.

It follows that the distinguisher works exactly as before.
In the case in which the final MixColumns operation is not omitted, we are

forced to work with DI⊕MJ for |I|+|J | ≤ 3 in order to guarantee that DI⊕MJ

is not the full space F4×4
28 . By repeating an analogous computation given before,

and assuming |I|+ |J | = 3 (so that dim(DI ⊕MJ) = 12), we derive

Prob
(
∀(p, p′) ∈ Xp0,p1 : ZIP-AES′4,4(p)⊕ ZIP-AES′4,4(p

′) ∈ DI ⊕MJ

)
= 2−64 · 2−96 + (1− 2−160) · 2−32·|Xp0,p1 | ≈ 2−160

versus Prob (∀(p, p′) ∈ Xp0,p1
: Π(p)⊕Π(p′) ∈ DI ⊕MJ) = 2−32·|Xp0,p1 | ≤ 2−256.

Let’s analyze the cost of such distinguisher, by starting with considerations
about the way in which the mixture pairs are constructed. By taking texts in a

9 Note that x ∈ X ⊕ Y even if x /∈ X . Hence, we replaced the term (1 − 2−32)2 with
1− 2−64. However, this does not change the overall conclusion.

48 A. Flórez-Gutiérrez et al.

coset of Cl,l+2 for l ∈ {0, 1, 2, 3}, we have the following:
x0,0 0 x0,2 0
0 x1,0 0 x1,2

x2,2 0 x2,0 0
0 x3,2 0 x3,0

︸ ︷︷ ︸

∈Dl,l+2≡IDl,l+2

SR−1(·)←−−−−−

x0,0 0 x0,2 0
x1,0 0 x1,2 0
x2,0 0 x2,2 0
x3,0 0 x3,2 0

︸ ︷︷ ︸

∈Cl,l+2

SR(·)−−−→

x0,0 0 x0,2 0
0 x1,2 0 x1,0

x2,2 0 x2,0 0
0 x3,0 0 x3,2

︸ ︷︷ ︸

∈Dl,l+2≡IDl,l+2

.

Hence, it is possible to construct mixture pairs of texts that fit simultaneously
both encryption and decryption. Having said that, working as in [GR22], each
coset of CL for L ⊆ {0, 1, 2, 3} with |L| = 2 as before contains

–
(216·(216−1))

4

2·23 ≈ 2124 sets Xp0,p1
of pairs p0, p1 with no equal generating

variables,

–
4·216·(216·(216−1))

3

2·218 ≈ 295 sets Xp0,p1 of pairs p0, p1 with exactly one equal
generating variable,

–
6·232·(216·(216−1))

2

2·233 ≈ 264.6 sets Xp0,p1
of pairs p0, p1 with exactly two equal

generating variables,

for a total of 2124 + 295 + 264.6 ≈ 2124 mixture sets. Hence, we need approxi-
mately 3 · 2160 · 2−124 ≈ 237.6 different cosets CI for setting up the distiguisher
with probability higher than 95%, for a total cost of 237.6 · 264 = 2101.6 chosen
plaintexts.

An Open Problem for Future Work. By making use of the same strategy
proposed for ZIP-AES′3,3 the estimated cost complexity of the distinguisher is
slightly higher than 2128 (our rough estimation suggests a cost of 2132.6). We
leave the open problem to optimize it in order to achieve a complexity smaller
than 2128 for future work.

The Exchange Attack. Finally, we briefly consider the exchange attack on
ZIP-AES′. As we are going to show, it does not outperfom the mixture differential
distinguishers just discussed.

Global Exchange Attack on ZIP-AES′3,3. Consider plaintexts in the same coset
of Di,i+2 ∩ Ci,i+2 ≡ IDi,i+2 ∩ Ci,i+2, that is,

p0 =

x0 0 x1 0
0 0 0 0
x2 0 x3 0
0 0 0 0

⊕γ ≡ ⟨x0, x1, x2, x3⟩⊕γ and p1 = ⟨y0, y1, y2, y3⟩⊕γ .

Construct p′0, p
′
1 ∈ Di,i+2 ∩ Ci,i+2 ⊕ γ ≡ IDi,i+2 ∩ Ci,i+2 ⊕ γ by exchanging the

two diagonal/anti-diagonals, noting that they are independent:
x0 0 x1 0
0 0 0 0
x2 0 x3 0
0 0 0 0

 SR≡SR−1

−−−−−−−→

x0 0 x1 0
0 0 0 0
x3 0 x2 0
0 0 0 0

 .

General Practical Cryptanalysis 49

Moreover, new pairs can be generated by changing the values of the bytes in the
other two diagonals/anti-diagonals with other equal values, with the conditions
that they are equal for the two pairs.10 Let Ep0,p1

be the set containing the
exchanged differential pairs just generated (note that |Ep0,p1

| = 29). Hence,
given {p0, p1}, {p′0, p′1} ∈ Ep0,p1 ⊆ ∪γ∈ΓDi,i+2 ∩ Ci,i+2 ⊕ γ for a particular Γ , we
have that

AES2(p0)⊕AES2(p1) = AES2(p
′
0)⊕AES2(p

′
1) ∈Mi,i+2

AES−1
2 (p0)⊕AES−1

2 (p1) = AES−1
2 (p′0)⊕AES−1

2 (p′1) ∈ Di,i+2.

This would allow us to set up a distinguisher on 2+2 rounds. A similar probabilis-
tic distinguisher (in which the previous event happens with probability strictly
less than 1) can be set up for 5- and 6-round AES.

As before, it is not possible to set up an exchange differential attack directly,
since ZIP-AES′3,3(p0) ⊕ ZIP-AES′3,3(p1) ∈ CI does not imply ZIP-AES′3,3(p

′
0) ⊕

ZIP-AES′3,3(p
′
1) ∈ CI . However, we can set up a global exchange differential

attack on ZIP-AES′3,3 as following

Prob
(
∀(p, p′) ∈ Ep0,p1

: ZIP-AES′3,3(p)⊕ ZIP-AES′3,3(p
′) ∈ CI

)
= 2−64 · 1 + (1− 2−64) · 2−32·|Ep0,p1 | ≈ 2−64

for |I| = 3 and where |Ep0,p1
|, since

– the probability that AES2(p0)⊕AES2(p1) = AES2(p
′
0)⊕AES2(p

′
1) ∈Mi,i+2

belongs into DI for |I| = 3 is 2−32 (note that the probability is zero for
|I| ≤ 2);

– the probability that AES−1
2 (p0)⊕ AES−1

2 (p1) = AES−1
2 (p′0)⊕ AES−1

2 (p′1) ∈
Di,i+2 belongs intoMI for |I| = 3 is 2−32 (note that the probability is zero
for |I| ≤ 2);

– if the two previous events are satisfied, then ZIP-AES3,3(p)⊕ZIP-AES3,3(p
′) ∈

CI with probability 1;
– if AES2(p0) ⊕ AES2(p1) /∈ DI and AES−1

2 (p0) ⊕ AES−1
2 (p1) /∈ MI , then

the event ZIP-AES3,3(p)⊕ ZIP-AES3,3(p
′) ∈ CI is satisfied with probability

approximately 2−32 for each pair in Ep0,p1
.

Hence, it is possible to set up a distinguisher similar to the previous global
mixture differential on 3 + 3 rounds.

About Global Exchange Attack on ZIP-AES′4,4: an Open Problem. At the current
state, it does not seem possible to set up a similar distinguisher on 4+4 rounds.
Indeed, as we already pointed out, the probability that AES2(p0)⊕AES2(p1) =
AES2(p

′
0) ⊕ AES2(p

′
1) ∈ Mi,i+2 belongs into DI for |I| ≤ 2 is zero. Still, we

are forced to consider |I| ≤ 2 if we aim to finish in a non-trivial subspace of
the form DI ⊕MJ after 4 + 4 rounds. Moreover, note that it is not possible to

10 We limit ourselves to point out that this step can be further generalize and improve.
However, we decided to omit the details since they are not useful for our goals.

50 A. Flórez-Gutiérrez et al.

exchange diagonals and anti-diagonals in a compatible way when working with
the full space Di,i+2 ≡ IDi,i+2. Indeed, the resulting exchanged pairs are not
compatible:

x0,0 0 x0,2 0
0 x1,1 0 x1,3

x2,0 0 x2,2 0
0 x3,1 0 x3,3

 SR−−→

x0,0 0 x0,2 0
x1,1 0 x1,3 0
x2,2 0 x2,0 0
x3,3 0 x3,1 0

 versus

x0,0 0 x0,2 0
x1,3 0 x1,1 0
x2,2 0 x2,0 0
x3,1 0 x3,3 0

 SR−1

←−−−−

x0,0 0 x0,2 0
0 x1,1 0 x1,3

x2,0 0 x2,2 0
0 x3,1 0 x3,3

 .

	General Practical Cryptanalysis of the Sum of Round-Reduced Block Ciphers and ZIP-AES
	Introduction
	Preliminaries
	Known Attacks on Symmetric Primitives
	The Sum-of-PRPs

	General Practical Cryptanalysis of P Q
	Differential Cryptanalysis
	Linear Cryptanalysis
	Differential-Linear Cryptanalysis
	Differential-and-Linear Key-Recovery Attack
	Truncated Differential Cryptanalysis
	Algebraic and Integral Attacks
	Second-Order Differential Cryptanalysis
	Meet-in-the-middle Attacks
	Summary and Other Attacks

	The ZIP Structure: Designing PRF in Light Work
	ZIP-AES: A Concrete Instantiation via AES-128
	Security Analysis of ZIP-AES
	Performance Evaluation

	Future Work: Other ZIP Ciphers and Modes
	Detail of the Review of Key Recovery Attacks in DBLP:conf/africacrypt/LiSW22
	Distinguishers and Attacks on round-reduced ZIP-AES: Details
	Autocorrelation
	Differential-and-Linear Key Recovery Attack
	Truncated Differential Distinguishers
	Mixture Differential Distinguisher/Attack
	Exchange Distinguisher/Attack
	Attacks on ZIP-AES1, r and ZIP-AES2, r

	Security Analysis of Modified ZIP-AES
	Omitting the Final MC Operation in AES
	Truncated Differential and Subspace Trail Attacks
	Mixture Differential Attacks (and More)

