
Application-Aware Approximate Homomorphic Encryption:
Configuring FHE for Practical Use

Andreea Alexandru1, Ahmad Al Badawi1, Daniele Micciancio1,2, and Yuriy Polyakov1

1Duality Technologies
2University of California, San Diego

Abstract
Fully Homomorphic Encryption (FHE) is a powerful tool for
performing privacy-preserving analytics over encrypted data.
A promising method for FHE over real and complex numbers
is approximate homomorphic encryption, instantiated with the
Cheon-Kim-Kim-Song (CKKS) scheme. The CKKS scheme
enables efficient evaluation for many privacy-preserving ma-
chine learning applications. Despite its high efficiency, there
is currently a lot of confusion on how to securely instanti-
ate CKKS for a given application, especially after secret-key
recovery attacks were proposed by Li and Micciancio (EURO-
CRYPT’21) for the IND-CPAD setting, i.e., where decryption
results are shared with other parties. On the one hand, the
generic definition of IND-CPAD is application-agnostic and of-
ten requires impractically large parameters. On the other hand,
practical CKKS implementations target specific applications
and use tighter parameters. A good illustration are the recent
secret-key recovery attacks against a CKKS implementation
in the OpenFHE library by Guo et al. (USENIX Security’24).
We show that these attacks misuse the library by employing
different (incompatible) circuits during parameter estimation
and run-time computation, yet they do not violate the generic
(application-agnostic) IND-CPAD definition.

To address this confusion, we introduce the notion of
application-aware homomorphic encryption and devise re-
lated security definitions, which correspond more closely to
how homomorphic encryption schemes are implemented and
used in practice. We then formulate the guidelines for im-
plementing the application-aware homomorphic encryption
model to achieve IND-CPAD security for practical applications
of CKKS. We also show that our application-aware model
can be used for secure, efficient instantiation of exact homo-
morphic encryption schemes.

1 Introduction

Homomorphic encryption is a cryptographic primitive that
enables the evaluation of certain computations over encrypted

inputs without intermediate decryptions during the compu-
tation. In its most powerful form, Fully Homomorphic En-
cryption (FHE) allows the evaluation of arbitrary arithmetic
or boolean circuits, and has seen considerable improvements
and extensions since Gentry’s breakthrough [21] in 2009.

Today, there are several families of efficient FHE schemes,
which can be divided along several axes. One of such axes is
whether the result of the encrypted computations is exact or ap-
proximate. In the exact FHE family, we have schemes which
achieve a negligible correctness error when homomorphically
computing arithmetic circuits over finite fields: Brakerski-
Gentry-Vaikuntanathan (BGV) [7] and Brakerski/Fan-
Vercauteren (BFV) [6, 18]), or when performing bit-wise or
small plaintext-space operations homomorphically: Ducas-
Micciancio (DM/FHEW) [16], Chillotti-Gama-Georgieva-
Izabachene (CGGI/TFHE) [11], and Lee-Micciancio-Kim-
Choi-Deryabin-Eom-Yoo (LMKCDEY) [36]. The second
family consists of approximate FHE schemes, which allow for
small errors to corrupt the least significant bits of the message.
Cheon-Kim-Kim-Song (CKKS) [10] is the main representa-
tive of this family and can be seen as an FHE scheme over
fixed-point numbers, which enables significantly more effi-
cient computations than exact FHE schemes over real-valued
data in privacy-preserving large-scale applications such as
secure genome-wide association studies [3], logistic regres-
sion [26], and convolutional neural network inference [35].

However, the efficiency of the CKKS scheme comes at
a cost. First, correct decryption now takes a more involved
meaning compared to the other exact (Ring) Learning With
Errors-based FHE schemes, as it also requires the scheme
parameters to be set so that the decrypted output is not “too far”
from the expected cleartext output. Second, its approximate
nature makes CKKS depart from the exact FHE schemes not
only conceptually, but also in terms of security, since the error
corrupting the decrypted output can be used in certain passive
attacks to recover some information about the secret key.

IND-CPAD Security. The security model for FHE schemes
is passive, i.e., FHE schemes are proven secure against Cho-

1

sen Plaintext Attacks (CPA), where the adversary does not
have access to arbitrary decryption oracles and cannot choose
and submit malicious ciphertexts. It is folklore that no FHE
scheme can achieve IND-CCA2 security (arbitrary decryption
oracle access), and only FHE schemes without the circular
security assumption can achieve IND-CCA1 security (decryp-
tion oracle access only available before the challenge). Thus,
FHE schemes are not resilient to active attacks without ad-
ditional security measures, e.g., zero-knowledge proofs, and
should not be used in this scope.

Notwithstanding, the passive scenario needs to be extended
in the case of homomorphic encryption schemes, as there are
vulnerabilities arising from incomplete security definitions. In
particular, IND-CPA-security (where the attacker has access
only to an encryption oracle) is too weak for approximate
FHE schemes. Li and Micciancio [37] devised a key recovery
attack on the CKKS scheme when the plaintext output of the
computation is revealed to the adversary, i.e., when giving the
adversary a very weak decryption oracle. The Li-Micciancio
attack runs in expected polynomial time and exploits the fact
that only from the input plaintext, output ciphertext, and out-
put plaintext, an adversary can retrieve the error from the
ciphertext and use it to compute the secret key via linear alge-
bra techniques. To better capture the security of approximate
FHE schemes, the authors introduced a new definition for
passive security, IND-CPAD, which additionally gives the ad-
versary access to an evaluation oracle and limited access to a
decryption oracle for outputs of the evaluation oracle [37].

In terms of countermeasures to this kind of attack, Li et
al. [38] showed how to postprocess the raw decryption out-
put of the CKKS scheme to achieve IND-CPAD security. The
mitigation adds Gaussian noise, a.k.a. flooding noise, the mag-
nitude of which depends on the worst-case1 error growth of
the homomorphic computation.

As a response to the Li-Micciancio attack, most of the
FHE libraries that implement CKKS added practical miti-
gations and/or security disclaimers. For instance, Microsoft
SEAL [44] included a security disclaimer advising against
sharing the decrypted CKKS ciphertexts. OpenFHE [41], HE-
lib [28], and HEAAN [27] implemented the Gaussian flood-
ing technique, whereas Lattigo [34] implemented a rounding
procedure (which can be shown to be equivalent to noise
flooding). Two primary strategies are employed to estimate
the Gaussian noise used for flooding: static noise estimation
and dynamic noise estimation [38]. Static noise estimation
can be performed offline and computes the flooding noise
distribution parameter based on publicly known bounds on
the inputs and the function to be evaluated. For instance, this
can be done by selecting a representative input from the set of
allowed inputs, executing the computation, and observing the
resulting noise bound, or by using heuristic noise estimation

1Here, “worst-case” is over the choice of the input and computation to be
performed. Error growth can still be analyzed on the average with respect to
the encryption randomness.

expressions. This approach is supported by the OpenFHE [41],
HElib [28], Lattigo [34] and HEAAN libraries [27] (under
restricted conditions). Dynamic noise estimation, on the other
hand, computes the approximation error during decryption (at
run-time) using input ciphertext and secret key, which may
provide very tight approximation error estimates but may still
leak some (practically small) information about the secret key.
The OpenFHE library [41] supports this approach as well. All
libraries allow sophisticated users to further enhance these
protective measures by estimating desired output precision
and establishing tighter bounds for the flooding noise.

Although using worst-case estimation indiscriminately
to determine the decryption noise achieves security, it of-
ten leads to impractically large parameters. All the above
libraries implement noise estimation procedures based on
heuristics [13, 14, 40] to obtain more practical parameters.
Generally, the focus in practice is to design parameters for par-
ticular applications specified by the users at run-time, rather
than design parameters suitable for all applications.

Attacks by Guo et al. Recently, Guo et al. [23] claimed
that any non-worst-case countermeasure added as part of the
CKKS decryption is still vulnerable to the Li-Micciancio key
recovery attack. In [23], “worst-case” refers not only to the
input choice, but also the encryption randomness. The authors
focus on the OpenFHE library and illustrate two attacks.

Their first attack employs a worst-case example against
an average-case estimation by evaluating different circuits.
The attacker uses the circuit corresponding to the addition
of n (zero-valued) inputs in order to estimate the noise to
be added during decryption. However, in the computation
phase, the attacker provides as the n inputs the same copy of
one ciphertext, along with the addition circuit. Notice that
indeed, the error obtained from adding n independent encryp-
tions differs from the noise from adding the same encryp-
tion n times, and the latter is significantly larger, leading to a
key recovery attack. Notwithstanding, from a circuit perspec-
tive, although the circuits C(x1, . . . ,xn) = x1 + . . .+ xn and
C′(x1, . . . ,xn) = x1 + . . .+ x1 have the same worst-case error
estimate and the same output when the inputs to the first cir-
cuit are all equal to x1, their representations are not the same
and they are two different circuits. Hence, for each of the two
circuits, a different noise estimate should be computed and
employed, which is what libraries do in practice.

In the second attack, the authors of [23] specify a circuit
with n inputs in the noise estimation phase, and a circuit with
n′ >> n inputs in the evaluation phase. As mentioned before,
different circuits are expected to produce different errors, and
the noise added in the decryption phase by the libraries is
only valid for a specific circuit (from the same class).

Generic IND-CPAD-security requires that one should per-
form noise estimation over all circuits which satisfy the de-
sired level of correctness, and use the obtained maximum
bound in the decryption mechanism. Therefore, note that even
using the worst-case estimates for the circuit C as suggested

2

in [23] would not necessarily ensure generic IND-CPAD-
security, as there might be other circuits satisfying correctness
for which this noise is not sufficient. Although [38]’s FHE
with a differentially private mechanism formulation hinted
at a formalization for classes of allowed circuits, IND-CPAD

was still used in its application-agnostic form; [23] also did
not formalize this aspect, despite making certain choices in
how the noise estimates were computed. This signals a gap
in the literature on the IND-CPAD-security and led to a mis-
use of the OpenFHE library in [23], which devises the noise
flooding bounds for classes of circuits using a tuned heuristic
estimation with confidence intervals, and assumes that during
the evaluation phase the user queries only allowed functions.

A broader perspective. In fact, these attacks can also be
viewed from the perspective of specifying a certain set of
encryption parameters, computed to achieve correctness for a
given circuit using noise estimation heuristics, but then using
those parameters to evaluate a different circuit corresponding
to correlated ciphertexts and worst-case noise estimation.

Note that such an attack is not specific to approximate
FHE. We discuss a folklore attack [2] on the family of ex-
act FHE schemes, which exploits the same idea. In the case
of Learning with Errors (LWE)-based exact FHE, evaluat-
ing a different circuit than the one for which the encryption
parameters were computed can lead to an overflow in the
ciphertext error, corrupting the underlying plaintext. Such de-
cryption failures can be used to mount a key recovery attack;
see also [15, 39]. Moreover, concurrent works [8, 9] propose
key recovery attacks similar to [2, 23] that take advantage of
incorrect decryption results in exact FHE schemes. Hence, a
more refined definition for exact FHE schemes (exact in the
given applications class and inexact outside), which accounts
for the allowed class of circuits, is also of practical interest.

A different, stronger notion for FHE security is function
privacy, which should also hide the computation which was
performed over the encrypted inputs; in other words, all hon-
estly produced ciphertexts should have the same distribution.
Note that achieving function privacy for the popular FHE
schemes requires expensive procedures such as superpolyno-
mial noise flooding or bootstrapping [5, 17, 20, 32, 33]. The
IND-CPAD definition does not include function privacy but
can be extended to do so.

Finally, we note that the Li-Micciancio attack and the miti-
gation of noise flooding are also known to be applicable in the
threshold encryption setting (for all FHE schemes), where dis-
tributed decryption is achieved by parties publishing a partial
decryption using their secret key shares [1, 33].

1.1 Our Contribution
There is a major gap between the generic IND-CPAD definition
and the use of approximate homomorphic encryption in prac-
tice for scenarios where decryption results may be publicly
shared. To achieve compliance with the generic definition,

impractically large parameters would need to be used. The
practical implementations of approximate homomorphic en-
cryption in common FHE libraries typically work with more
efficient parameter sets and assume that these parameters can
be used only for specific applications. This leads to confusion
and misuse of FHE libraries, resulting in attacks like [23].

The main goal of our work is to close this gap by introduc-
ing the notion of application-aware homomorphic encryption
scheme, related definitions, and guidelines for practical use
of IND-CPAD-secure approximate homomorphic encryption.
Concretely, our contributions can be summarized as follows:

• We present the notion of application-aware homomor-
phic encryption scheme and devise related security def-
initions, which correspond more closely to how homo-
morphic encryption schemes are implemented and used
in practice. Application-aware homomorphic encryption
adds a description of an application specification to be
supported to the correctness and security of the scheme.

• We formulate the guidelines for implementing the
application-aware homomorphic encryption model in
practice. We also discuss how these guidelines can be
supported by FHE libraries, for instance, by having val-
idators for checking the compliance of a given compu-
tation with the application specification. We highlight
that libraries by themselves cannot prevent all possible
misuses, but can provide helper capabilities to minimize
the risks of unsafe use.

• We show that the attacks by Guo et al. [23] automati-
cally become invalid when properly formulated using
our application-aware homomorphic encryption model.
At a high level, the authors use one computation during
the parameter estimation phase and then use a different
computation (not compatible with the application speci-
fication) during the evaluation phase. Therefore, these
attacks are a result of misuse (similar to IND-CCA1 ac-
tive security attacks) of the library rather than an actual
vulnerability. Moreover, our application-aware defini-
tions provide a useful tool to understand the correct way
to use the library, and detect possible misuses.

• We demonstrate that our definitions are applicable to
both approximate and exact homomorphic encryption
schemes. In the exact case, the goal is to forbid the output
of incorrect decryption results, as the latter can be used to
mount secret key recovery attacks like those in [8,9]. We
show how our application-aware security model can also
address these very recent attacks. For instance, the BFV
attack in [9] bypasses the normal OpenFHE mechanism
to generate the parameters for a given application class
and then employs this user-chosen, aggressive parameter
set to yield incorrect decryption results, which are then
used for a successful secret key recovery attack. Clearly,
this violates our application-aware model.

3

1.2 Organization

We describe the foundational concepts and background in
Section 2. Section 3 introduces our new application-aware
security model and defines its properties. Section 4 proves
the equivalence of IND-CPA and IND-CPAD security notions
for application-aware FHE schemes. Section 5 discusses the
guidelines for implementing the application-aware model in
practice. Section 6 examines the recent secret-key recovery at-
tacks for both approximate and exact homomorphic schemes
from the perspective of this model. We summarize our contri-
butions in Section 7 and outline future research directions.

2 Preliminaries

We denote scalars as lowercase letters, vectors as lowercase
boldface letters, and matrices as uppercase boldface letters. A
function f : N→ [0,1] is negligible if for every polynomial p,
there exists a positive scalar m such that f (n) < 1/p(n) for
all n≥ m. Let κ denote the computational security parameter.
For a finite set S, sampling it uniformly at random is denoted
as s← S. We denote general sampling as x← Xκ where Xκ is
a distribution parameterized by κ.

Since we will describe several security notions, it is useful
to introduce some general notation and definitions for security
and correctness properties of encryption schemes. There are
two types of properties, described by either a decision game
(e.g., indistinguishability of ciphertexts) or a search game
(e.g., security against key recovery attacks), that we define
in Appendix A.1. We will use search games also to model
correctness properties, in which case we say that a scheme is
G-correct for a game G .

We first describe describe (homomorphic) encryption syn-
tax, using the notation from [37, 38]. For ease of exposition,
we do not distinguish between the notation of public encryp-
tion keys and public evaluation keys, and denote all by pk.

Definition 1 (PK-FHE scheme). A public-key homomorphic
encryption scheme with plaintext space M , ciphertext space
C , public key space P K , secret-key space SK , and space
of evaluatable circuits L , is a tuple of four probabilistic
polynomial-time algorithms

KeyGen : 1N→ P K ×SK , Enc : P K ×M → C
Dec : SK ×C →M , Eval : P K ×L×C → C .

To illustrate some issues related to the probabilistic defi-
nition of correctness for (homomorphic) encryption, we first
describe a very strong notion of perfect correctness. For
any positive integer k, we write Lk for the set of all circuits
C(x1, . . . ,xk) ∈ L that take precisely k inputs.

Definition 2 (Perfect Correctness). An FHE scheme E =
(KeyGen,Enc,Dec,Eval) with message space M is perfectly

correct for some class of circuits L if for all x1, . . . ,xk ∈M ,
C ∈ Lk and security parameter κ,

Decsk (Evalpk(C,Encpk(x1), . . . ,Encpk(xk))) =C(x1, . . . ,xk)

with probability 1 over the choice of (pk,sk)← KeyGen(1κ)
and the randomness of Enc and Eval.

Requiring correctness to hold with probability 1 may seem
unrealistically strong, as a negligible failure probability is
usually acceptable. However, simply relaxing the above cor-
rectness property to hold except with negligible probability is
usually too weak to capture a meaningful notion of correct-
ness.2 In order to capture the adaptive selection of the input
messages xi and circuit C, correctness properties need to be
formulated as security games.

Definition 3 (Exact FHE Correctness). The correctness of
an FHE scheme E = (KeyGen,Enc,Dec,Eval) with message
space M and class of circuits L is defined by the following
search game:

Exprexact,E [A](κ) : (sk,pk)← KeyGen(1κ)

(x1, . . . ,xn)← A(1κ,pk)

cti← Encpk(xi) for i = 1, . . . ,n
C← A(ct1, . . . ,ctn)

ct← Evalpk(C,ct1, . . . ,ctn)

if Decsk(ct) ̸=C(x1, . . . ,xn)

then return 1 else return 0.

The above definition illustrates some adaptive choices, but
for simplicity we have considered an adversary that chooses
the messages x1, . . . ,xn non-adaptively from each other. (They
may still depend on the public key.) More generally, one
may let A choose the messages xi sequentially, one at a time,
after seeing the encryption of the previous messages, perform
multiple evaluation queries, etc. We provide the adaptive
definitions in full generality in Appendix A.2.

Remark 1. Since Definition 12 allows for nonzero (but negli-
gible) advantage, the definition of correctness for exact FHE
schemes also allows for some small probability that cipher-
texts do not decrypt correctly. However, just like any game
based property, this failure probability is required to be neg-
ligible. If an FHE scheme has a non-negligible correctness
error, then it does not satisfy Definition 3, and it is not consid-
ered a correct exact FHE scheme.

In the case of an approximate FHE scheme, such as CKKS,
it is never (or very rarely) the case that the correctness prop-
erty is satisfied. In other words, any adversary will typically

2For example, consider a pathological encryption scheme Encpk(x) that,
if the input message equals the public key x = pk, outputs garbage. This still
satisfies the definition, because for any message m, the probability that any
specific public key pk = m is chosen is negligible. Still, the scheme is not
correct if messages can be chosen after (and possibly depend on) pk. Similar
issues arise if the circuit C may depend on pk or the input ciphertexts.

4

achieve advantage very close to 1 in the search game of Def-
inition 3. Capturing approximate FHE schemes requires a
different correctness definition, with respect to an error esti-
mation function Estimate. While there can be multiple ap-
proximate correctness definitions (see [38]), here we will
focus on the static approximate correctness, where Estimate
can be computed as a function of the circuit C alone.

Definition 4 (Static Approximate Correctness). Let E =
(KeyGen,Enc,Dec,Eval) be an FHE scheme with normed
message space M . Let L be a space of circuits, and let
Estimate : L → R≥0 be an efficiently computable function.
The tuple Ẽ = (E ,Estimate) satisfies static approximate cor-
rectness if it is correct for the following search game:

Exprapprox,Ẽ [A](κ) : (sk,pk)← KeyGen(1κ)

(x1, . . . ,xn)← A(1κ,pk)

cti← Encpk(xi) for i = 1, . . . ,n
C← A(ct1, . . . ,ctn)

ct← Evalpk(C,ct1, . . . ,ctn)

x← Decsk(ct)

if ∥x−C(x1, . . . ,xn)∥> Estimate(C)

then return 1 else return 0.

In practice, the error estimation function Estimate is de-
fined in a modular way, starting from the error estimate of
the input ciphertexts cti (which are fresh encryptions of the
messages xi), and then proceeding gate by gate, computing
an error estimate for each wire of the circuit C. The Estimate
function can be used to compute either a (provable) worst-
case bound on the error or a (possibly heuristic) average-case
bound. In this work, we will touch upon both cases. But,
in either case, the adversary advantage in the (approximate)
correctness game is always assumed to be negligible.

2.1 Generic Security Definitions
The standard definition of secure encryption (not necessarily
homomorphic), against passive adversaries, is that of indistin-
guishability against chosen plaintext attacks.

Definition 5 (IND-CPA Security). Let E = (KeyGen,Enc,
Dec,Eval) be a homomorphic encryption scheme. IND-CPA
security is defined by the following decision game:

Expr
cpa
b [A](1κ) : (sk,pk)← KeyGen(1κ)

(x0,x1)← A(1κ,pk)

ct← Encpk(xb)

b′← A(ct)

return(b′).

The above experiment defines a corresponding notion of se-
curity, and that for a scheme to be secure, efficient adversaries
should only achieve negligible advantage.

For simplicity, and as common in homomorphic encryption
schemes, we assume all messages belong to a fixed message
space M . In particular, all messages have (or can be padded
to) the same length. An enhanced definition (called IND-CPAD

with decryption oracles) was proposed in [37] to properly
model the security of approximate homomorphic encryption
schemes. Here we describe a simplified version of the defini-
tion which corresponds to the common application scenario
where a dataset (x1, . . . ,xn) is encrypted at the outset, then
a homomorphic computation is performed on it, and finally
the result of the homomorphic computation is decrypted. The
more general definition can be found in Appendix A.2.

Definition 6 (IND-CPAD Security). Let E = (KeyGen,
Enc,Dec,Eval) be a public-key homomorphic (possibly ap-
proximate) encryption scheme with plaintext space M and
ciphertext space C . IND-CPAD security is defined by the fol-
lowing decision game:

Expr
cpad
b [A](1κ) : (sk,pk)← KeyGen(1κ)

(x0,x1,C)← A(1κ,pk)

if x0,x1 /∈M n or C /∈ L then abort

if C(x0) ̸=C(x1) then abort

ct← Encpk(xb)

ct′← Evalpk(C,ct)

y← Decsk(ct′)

b′← A(ct,ct′,y)

return(b′).

3 Application-Aware Security Models

Ideally, the key generation procedure of a (fully) homomor-
phic encryption scheme would take as input a required se-
curity level, and produce a key that allows to perform ar-
bitrary computations on encrypted data. However, the only
known method to achieve FHE (i.e., the ability to perform
arbitrary computations using a fixed key) requires the use of a
costly bootstrapping procedure. So, many schemes settle for
the weaker notion of “somewhat homomorphic” encryption,
where the user provides some information about the compu-
tation to be performed at key generation time, and obtains a
key that supports that type of computations.

In theory, computations (specified by circuits) are often pa-
rameterized by a “depth” d, and the corresponding keys can
be used to evaluate any depth-d arithmetic circuit C. Since
d can be set to any value, this allows to perform arbitrary
computations. However, the depth d needs to be specified at
key generation time. The depth of the circuit and the type
of computation performed can have a big impact on the key
generation parameters and efficiency of the scheme. For ex-
ample, it is often useful to distinguish between the addition
and multiplication operations, as the multiplicative depth of
the computation has a much bigger impact on efficiency.

5

In practice, in most applications, the circuit C to be eval-
uated is known in advance, and only the input data x is pro-
vided at run-time. In fact, this is also the reason why the
standard notion of security for homomorphic encryption most
commonly used does not provide function privacy: only the
encrypted data is considered confidential, while the computa-
tion performed on them is publicly known. For approximate
encryption schemes (and also some exact ones, like the GSW
cryptosystem [22] and its Ring LWE adaptation [16]), the
size of the input messages can also have an impact on the
correctness and security properties of the scheme. To capture
this, the application may specify a set M̄ ⊆M k of possible
inputs to the computation C : M k →M . This allows even
better fine-tuning of the key generation parameters, producing
an evaluation key ek (part of the public keys pk) that supports
the computation of interest C(x) on the type of inputs x ∈ M̄
that can occur in practice. Since homomorphic encryption
algorithms are naturally parameterized by the (multiplicative)
depth of the computation, and can encrypt arbitrary messages
in M , ek is syntactically similar to any key that supports
the evaluation of arbitrary circuits of the same depth as C
on any input x ∈M k. However, it is important to note that
using ek to evaluate such circuits and input data does not
provide any correctness or even security guarantees. Unfor-
tunately, theoretical definitions of homomorphic encryption
do not explicitly model restrictions on the computation (be-
yond specifying the circuit depth), and this has led to some
confusion and misuse of homomorphic encryption libraries.

In order to clarify the situation, we introduce the notion of
application-aware homomorphic encryption scheme and as-
sociated security notions which more closely correspond to
how homomorphic encryption schemes are implemented and
(should be) used in practice. Our definitions apply both to
exact and approximate homomorphic schemes. For simplicity,
in this section, we focus on the simplest (yet general) type
of computations/applications, where the whole input data is
provided at the beginning of the computation, the circuit to be
evaluated on it is chosen non-adaptively, and a single value
is provided as the final output at the end of the computation.
We refer to Appendix A.2 for the fully adaptive definitions.

Definition 7. Let M and L be the message space and function
space of a homomorphic encryption scheme. A computation
C̄ is described by a circuit C : M k →M , and a subset of
its inputs dom(C̄)⊆M k. The computation C̄ represents the
restriction of a circuit C ∈ L to the domain dom(C̄). We write
L̄ for the set of computations, i.e., circuits C̄ with restricted
domain dom(C̄). An application App ⊆ L̄ is simply a set of
computations that admits a compact description.3

We define an application App to be a subset of L̄ to capture

3For example, App may be specified by a pair of numbers (d,µ) to rep-
resent the set of all computations C̄ where C : M k →M is an arithmetic
circuit of depth at most d, and dom(C̄) is the set of all inputs x ∈M k such
that ∥xi∥ ≤ µ for all i.

scenarios where the user wants to generate a single set of
parameters that supports one of several possible computations
C̄ ∈ App, e.g., when the specific C̄ that needs to be evaluated is
not known at key generation time, or when the same keys are
used to perform multiple, different computations C̄1, . . . ,C̄i.
However, a common setting in practice is when there is a sin-
gle computation C̄ to be performed (possibly multiple times,
but on different inputs x ∈ dom(C̄)). In this case, App = {C̄}
is a singleton set, and one can think of the application be-
ing described by a single circuit C and associated domain
dom(C̄). We can now define the notion of application-aware
homomorphic encryption scheme.

Definition 8. An application-aware public-key homomor-
phic encryption scheme for application App ⊆ L̄ is a tu-
ple of four probabilistic polynomial-time algorithms E =
(KeyGen,Enc,Dec,Eval) as in Definition 1 with the only dif-
ference that the key generation algorithm takes an application
specification App⊆ L̄ as an additional parameter:

KeyGen : 1N×2L̄ → P K ×SK .

The intuition is that KeyGen(κ,App) will produce keys that
can be used to encrypt data in dom(C̄), and then evaluate C̄
homomorphically, only for C̄ ∈ App. In the common scenario
where App = {C̄} consists of a single computation which is
known at key generation time, one can think of KeyGen(κ,C̄)
as taking as input just C̄ ∈ L̄ rather than a subset of L̄ .

Naturally, the correctness and security definitions should be
modified accordingly. In the case of approximate homomor-
phic encryption, the estimation function Estimate(C̄) takes
as input not only a circuit C, but also a specification of the
application input domain dom(C̄). We provide a unified defini-
tion that applies both to exact and approximate homomorphic
encryption schemes. Exact schemes corresponds simply to
setting Estimate(C̄) = 0, i.e., no approximation is allowed in
the final result of the computation.

Definition 9 (Static Approximate Correctness). Let E =
(KeyGen,Enc,Dec,Eval) be an (approximate) FHE scheme
with (normed) message space M and application space from
L̄ , and let Estimate : 2L̄ → R≥0 be an efficiently computable
function. We say that the tuple Ẽ = (E ,Estimate) satisfies
application-aware static approximate correctness if it is cor-
rect for the following search game:

Exprapprox,Ẽ [A](κ) : App← A(κ)

(sk,pk)← KeyGen(κ,App)

x← A(pk)

cti← Encpk(xi) for i = 1, . . . ,n
C̄← A(ct1, . . . ,ctn)

if C̄ /∈ App or x /∈ dom(C̄) then abort

ct′← Evalpk(C̄,ct)

y← Decsk(ct′)

6

if ∥y−C̄(x)∥> Estimate(C̄)

then return 1 else return 0.

Definition 10 (Application-aware IND-CPAD Security). Let
E = (KeyGen,Enc,Dec,Eval) be an (approximate) FHE
scheme with (normed) message space M and application
space from L̄ . Application-aware IND-CPAD security is de-
fined by the following decision game:

Expr
cpad
b [A](κ) : App← A(κ)

(sk,pk)← KeyGen(κ,App)

(x0,x1,C)← A(pk)

ct← Encpk(xb)

C̄← A(ct)

if C̄ /∈ App or x0,x1 /∈ dom(C̄) then abort

if C̄(x0) ̸= C̄(x1) then abort

ct′← Evalpk(C̄,ct)

y← Decsk(ct′)

b′← A(ct′,y)

return(b′).

The exact FHE correctness definition (Definition 3) and
IND-CPA-security definition (Definition 5) can be also triv-
ially extended to the application-aware model.

We now briefly discuss extensions of the computation and
security models. In the description provided so far, the boot-
strapping procedure of a FHE scheme, which resets the noise
of a ciphertext, was also treated as a computation of a certain
depth using an evaluation key (which is the encryption of
the secret key—in Ring LWE-based FHE, all evaluation keys
require circular security). One could have a separate treat-
ment of the bootstrapping procedure, e.g., as a distinct ora-
cle. Furthermore, while the IND-CPAD definition (both in its
application-agnostic and application-aware forms) assumes
public evaluated functions, it can be generalized to the case
of private functions. In the application-aware model, the func-
tion private IND-CPAD definition allows the adversary to also
specify two distinct computations in the application class in
the evaluation query. However, function privacy often requires
security even against adversaries that know the secret key, so
the corresponding definition needs to restrict the adversary to
only see ciphertexts that decrypt to equal messages.

Finally, it is important to note that performing computa-
tions that are not in App may result not only in incorrect
results, but also in security loss, including a total key recovery
attack. An adversary (to the correctness or security property)
that specifies a certain App during key generation, and then
carries out a computation C̄(x) for C̄ /∈ App or x /∈ dom(C̄)
during the attack is not a valid adversary. Showing that an
encryption scheme can be broken using an invalid adversary
does not demonstrate that the scheme is insecure because no
security (or even correctness) claim is made about invalid ad-
versaries. Rather, it should be considered as a warning against

misusing the encryption scheme to carry out a homomorphic
computation that it was not designed to handle. In the subse-
quent sections, we will show that the IND-CPA and IND-CPAD

security in the application-aware model holds as expected
against valid adversaries, describe how libraries instantiate
the application-aware model, and illustrate how the recent
attacks in the literature use adversaries that do not respect the
application-aware model.

4 Equivalence between IND-CPA and
IND-CPAD for Application-Aware Schemes

Here, we adapt the results of [37,38] to the application-aware
model. The proofs are deferred to Appendix A.5.

4.1 Exact Schemes
The equivalence between IND-CPA and IND-CPAD security
for exact FHE schemes can be extended from its generic
formulation [37, Lemma 1] to the application-aware model.
As expected, for the allowed application classes, as long as
the scheme satisfies exact correctness, then the decryption
oracle does not give any new information to the adversary.

Theorem 1. Let E be a correct4 application-aware exact ho-
momorphic scheme for application App⊆ L̄ . E is IND-CPA-
secure if and only if it is IND-CPAD-secure.

4.2 Approximate Schemes
The starting point of the transformation to achieve IND-CPAD-
security is an application-aware approximate FHE scheme
Ẽ = (E ,Estimate). The scheme is assumed to satisfy only a
IND-CPA-security notion, in addition to the correctness prop-
erty. In our setting, the relevant correctness notion is that of
static approximate correctness, given in Definition 9. The
transformation from [38], described in Algorithm 1, uses a
mechanism M to define new KeyGen′ and Dec′ algorithms,
producing a new scheme M[Ẽ] = (KeyGen′,Enc,Eval,Dec′).
The mechanism Mt is simply a randomized algorithm that
adds some flooding noise, parameterized by t, to the out-
put of the (IND-CPAD-insecure) decryption function Decsk.
The amount of noise required in the decryption algorithm to
achieve IND-CPAD-security is quantified in [38] by the no-
tion of ρ-KLDP (Kullback-Leibler Differential Privacy, see
Appendix A.3), for a sufficiently small value of ρ.

We remark that the input scheme Ẽ is required to satisfy
the static notion of approximate correctness with respect to
the Estimate function given as input to the transformation,
in order for the output scheme M[Ẽ] to be secure. M[Ẽ] will

4Recall that a scheme is correct if it satisfies Definition 3 or Definition 4
with Estimate(C̄) = 0, and that, like all search games, this requires decryp-
tion errors to have negligible probability. This theorem provides no security
guarantees for "exact" encryption schemes that are not correct.

7

Algorithm 1 Application-aware M[Ẽ] for App.
KeyGen′(κ,App) :=

1: (sk,pk)← KeyGen(κ,App)
2: t← Estimate(App)
3: sk′ = (sk, t)
4: return (sk′,pk)

Dec′sk′(ct) :=
1: return Mt(Decsk(ct))

also satisfy approximate correctness, but with respect to a
different (typically larger) Estimate′ = Mt [Estimate] func-
tion, which includes the additional error introduced by the
mechanism Mt . However, since the definition of IND-CPAD

security (Definition 10) does not involve the estimation func-
tion, we will not be concerned with Estimate′. Determining
Estimate′ is important to assess the quality of the output and
usefulness of an application that performs secure approximate
computations on encrypted data, but it is not directly relevant
to security. What is critical for security is that the original
(IND-CPA-secure) scheme is correct with respect to the origi-
nal Estimate function, used to determine the parameter t used
by the security mechanism Mt . The formal security statement
is given in the following theorem.

Theorem 2. Let E = (KeyGen,Enc,Dec,Eval) be an approx-
imate FHE scheme with normed message space M and ap-
plication space from L̄ . Let Estimate : 2L̄ → R≥0 be an ef-
ficiently computable function such that Ẽ = (E ,Estimate)
be application-aware statically approximate. Let Mt be a
ρ−KLDP mechanism on M̃ , where ρ≤ 2−κ−7. If E is (κ+8)-
bit secure in the application-aware IND-CPA game, then M[Ẽ]
is κ-bit secure in the application-aware IND-CPAD-game.

Li et al. [38] also illustrate how to use the notion of bit-
security to achieve IND-CPAD-security with a lower amount of
DP noise than in Theorem 2. Concretely, having (c,s)-security
corresponds to ensuring c bits of computational security for
the computational cryptographic primitives and s bits of sta-
tistical security for the unconditional cryptographic primitives
used in an cryptosystem. The idea is that the statistical se-
curity level s cannot be lowered by the adversary simply by
investing more running time: any adversary running in time
T will have advantage at most 2−min(s,c/ logT) in breaking the
scheme. So, it is often acceptable to use s < c. Since the statis-
tical parameter s directly influences the additional noise used
by the mechanism Mt , this results in a scheme M[Ẽ] which
is approximately correct with respect to a better Estimate′

function, and produce higher quality results. However, it is
important to understand that the adversary running time does
not affect the statistical security level s only as long as the
adversary makes the same number of decryption queries. This

is the case, for example, in Theorem 2 which uses a defini-
tion of security where the adversary is limited to a single
computation/decryption. This is typically not an issue in ap-
plications of approximate FHE schemes like CKKS, where
the application can control the number of decryption queries.
Issuing multiple (say ℓ) decryption queries (e.g., as in the
fully adaptive security definition) allows the adversary to gain
a 2ℓ factor in both statistical and computational security. So,
while s = 60 (or even lower values) may be acceptable in
some applications that make a single or small number of de-
cryption queries, it can result in a total break in settings where
the same key is used to perform a large number (say, 230)
homomorphic evaluation.

Let CKKS denote an instantiation of the application-secure
scheme E = (KeyGen,Enc,Eval,Dec) with algorithms cor-
responding to the CKKS algorithms form [10, 30]. Practi-
cally, Mt from Theorem 2 is instantiated via a discrete Gaus-
sian mechanism (Definition 18 in Appendix A.3). Specifi-
cally, in Algorithm 1 for CKKS, for a positive σ, Dec′sk′(ct) =
Decsk(ct)+NZn(0,σ2 · t2 · In). To capture the dependency on
σ, we denote the corresponding CKKS scheme instantiation
from Algorithm 1 as M[C̃KKS]σ. Using the bit-security notion,
one can obtain the following result for an IND-CPAD-secure
instantiation, adapted from [38], which can be extended to
ℓ-decryptions queries in the fully adaptive model.

Theorem 3. If CKKS is (c+ log2 24)-bit application-aware
IND-CPA-secure, then, for σ =

√
12 ·2s/2, M[C̃KKS]σ is (c,s)-

bit application-aware IND-CPAD-secure.

5 Practical Guidelines for Application-Aware
Homomorphic Encryption

Recall that homomorphic encryption schemes are only pas-
sively-secure. Viewing the outsourced computation as a pro-
tocol between parties (with the roles of encryptor, evaluator
and decryptor), parties are assumed to be honest-but-curious,
meaning they do not deviate from the protocol design. Under
Definition 10, this translates to the attacker not being allowed
to submit invalid ciphertexts or functions not part of the appli-
cation App selected during key generation. Therefore, users
should ensure they adequately follow these specifications
when working with FHE schemes.

However, misuses of cryptography can occur in practice,
and one could try to make the use of the library less error-
prone. Instead of relying simply on the user expertise and
discipline, the library can make the application specification
App an explicit parameter of the key generation procedure,
store App as part of the key or evaluation context, and then
implement the appropriate checks when the user makes calls
to the encryption and evaluation functions. In the following,
we provide a practical description of the secure application-
aware FHE schemes from Section 4, as well as instructions
for the FHE libraries’ users and developers.

8

5.1 Application-Aware Approximate FHE

Definitions 8–10 and Algorithm 1 assume (implicit) validators
which ensure the validity of the attacker’s queries. However, in
practice, homomorphic encryption implementations typically
do not include any validity checks and rely on the user’s
discipline to avoid improper use of the library.

Protocol 2 makes the presence of the validators explicit and
provides guidelines for correct usage of approximate FHE
schemes in the IND-CPAD setting with respect to an applica-
tion class App. Compared to the notation of KeyGen′ from
Section 4, in Protocol 2, we separate the part of deriving the
public parameters pp and noise estimates {ti} from the secret
key sk sampling and public key pk computation. Specifically,
the protocol includes two phases: offline, when the noise esti-
mates are computed and scheme parameters are found without
using the secret key, and online, when the actual homomor-
phic computation is performed using the secret key (the secret
key is used to derive the evaluation keys and to perform the
decryption, and is not used by the evaluator).

The offline phase may require multiple iterations to achieve
both the desired functionality/precision and the security work
factor; more concretely, to find the ciphertext modulus Q and
ring dimension N in the case of CKKS. The online phase
may invoke one or more validators to check whether the ex-
ecuted computation belongs to App. Such validation can be
performed during evaluation and/or during decryption.

If needed, Protocol 2 can be run for a set of representative
samples, and the maximum noise over all these runs can be
used to instantiate the parameters.

Application Specification. In approximate homomorphic en-
cryption, the application specification needs to include the de-
scription of supported computations as well as the bounds on
the input messages, which makes it challenging to find a com-
pact form for the specification. When CKKS bootstrapping is
used, one also has to check that the probability of decryption
failure during bootstrapping is small enough (see [4] for more
details). The multiplicative depth d is often a useful parameter
in guiding the parameter selection during the offline phase,
but it may often be insufficient by itself. Therefore, the guide-
lines provided by libraries typically recommend running full
computations (in the estimation or execution mode) to obtain
tight noise bounds and generate scheme parameters.

Library-Specific Guidelines. The OpenFHE and HElib
libraries already provide guidelines [29, 43] for configur-
ing IND-CPAD-secure approximate homomorphic encryption,
which informally correspond to Protocol 2. Both libraries fol-
low the two-phase approach and require running full compu-
tations (step-by-step procedures) during the estimation phase.

During the offline phase, OpenFHE finds tight estimates
for approximation noise by computing the variance over the
slots corresponding to the imaginary components of the de-
crypted plaintext vector (these slots are set to zero during

Protocol 2 Application-Aware FHE scheme for App.
Offline Noise Estimation and Parameter Generation
Input: κ,App.
Output: pp.

1: Initialize pp for the given application App (using an opti-
mistic value of lattice dimension).

2: Compute noise estimates t using current pp on represen-
tative inputs for all computations C̄, for each C̄ ∈ App:
{ti← Estimate(App)}i∈O(C).a

3: Update pp based on current t.
4: If current pp do not satisfy κ, update pp (increase the

lattice dimension) and go to Step 2.

Online Execution
Input: pp,App to all, C̄,{mi}i∈I(C) to the Encryptor.
Output: {Dec′sk(cti)}i∈O(C) to all.

1: The Decryptor runs KeyGen′(pp,App) and outputs the
public key pk (including the evaluation keys) and keeps
the secret key sk private.

2: The Encryptor checksb that {mi}i∈I(C) ∈ dom(C̄), and, if
so, computes the ciphertexts {cti← Encpk(mi)}i∈I(C) and
sends them to the evaluator, along with C̄.

3: The Evaluator checksc if C̄ ∈ App and if yes, runs {cti←
Evalpk(C̄,{ct j} j∈I(C))}i∈O(C) and outputs it. Otherwise,
it outputs ⊥.

4: The Decryptor outputs {Dec′sk(cti)}i∈O(C) (noise checks
may also be performed before outputting the result; the
decryptor may also output ⊥ if the current noise estimate
is above the boundd t).

aI(C) and O(C) denote all inputs and all outputs of the circuit C.
bThis check may be hard to enforce in practice if the messages mi are

provided as different encryption calls, unless the domain dom(C̄) = M|I(C)|

restricts each message independently to the same set M ⊆M .
cNotice that the evaluation cannot check that {mi}i∈I(C) ∈ dom(C̄) be-

cause it is only provided for encrypted messages, and it does not have the
decryption key. Any validity check on the encrypted messages needs to be
performed at encryption time.

dWe remark that if parameters are properly set, with negligible correctness
error, failure of a noise bound check should not happen in practice. If it does,
it should be interpreted as a critical error that the scheme parameters are not
set properly and the scheme may provide no security guarantees. Checking
for error bounds is good for security because it limits possible information
leakage to only one bit.

encoding). OpenFHE also implements the flooding noise esti-
mation method proposed in [38] based on differential privacy.

HElib provides a ciphertext-specific noise tracking func-
tionality that can be used to check whether the computation
run during the online phase belongs to the application class
App. Although the HElib validator cannot cover all possible
ways of misusing the library for IND-CPAD-secure approxi-
mate homomorphic encryption, the validator can detect many
instances of accidental CKKS misconfiguration.

9

Library Tools. The user is ultimately responsible for com-
plying with the application-aware model formulated in our
work, as there is no current design that can capture all possi-
ble invalid actions by an adversary (e.g., submitting invalid
ciphertexts or correlated ciphertexts for independent inputs).
However, libraries can provide helper capabilities, such as
validators or noise estimators for application specifications,
that can make it significantly easier to achieve the compliance
in practice. One such tool is a ciphertext-specific noise esti-
mation capability, similar to the one available in HElib, which
can detect a large approximation error before the output is
presented to the user. Another useful tool is a generator of
a more compact description of an application class, which
could be then used to validate whether a given computation
satisfies the application specification. Such a validator may
be replaced by static analysis of the user program, or, when
App= {C̄} contains just a single computation, one could store
C̄ during key generation as part of the evaluation key, and then
use an evaluation function EvalC̄ with the circuit C̄ hardwired
in it (while still checking that input data x ∈ dom(C̄)).

5.2 Application-Aware Exact FHE

Protocol 2 can also be applied in the case of the exact FHE
family. However, there are a couple of practical differences
between exact and approximate FHE settings:

• The goal of the protocol in the exact setting is to guar-
antee correct decryption with negligible probability of
failure. Therefore, the probability of failure may also be
taken as a parameter in application specification. (Note
that in the approximate setting, this parameter explicitly
comes up only when bootstrapping is needed.)

• The message bounds are not needed in the application
specification because all plaintext operations are per-
formed over finite fields (i.e., modulo the plaintext mod-
ulus), which significantly simplifies the noise estimation.

Application Specification. As the message bounds are not
needed, compact descriptions of application specifications can
be used. For example, the BGV implementation of OpenFHE
takes three parameters to describe the application class: the
multiplicative depth, the maximum (over all levels) number of
additions per level, and the maximum number of key switch-
ing operations per level. Using these three input parameters,
OpenFHE finds all scheme parameters via the procedure de-
scribed in [31, Sec. 4]. The probability of failure is not set
by the user because the heuristic estimates used internally for
BGV/BFV estimation are conservatively chosen to achieve
negligible probability of failure. More concretely, the conser-
vative expansion factor bound of 2

√
N is used for all multipli-

cations of random polynomials (see [24, Sec. 6]), resulting in
the probability of decryption failure below 2−100. OpenFHE

finds all scheme parameters for BGV and BFV using analyti-
cal expressions; there is no need to run the full step-by-step
procedure in contrast to the approximate FHE setting.

In HElib, a more complicated representation of application
specification is supported for BGV. The concept of level is not
explicitly used and ciphertext-specific noise estimation using
the canonical embedding (see [25] for details) is employed
to make decisions on when to invoke modulus switching
(or bootstrapping) as well as enforce the correctness of the
decryption output.

Library Tools. As before, although libraries cannot prevent
all possible ways of misuse, there are several tools that could
help users minimize the chances of unsafe library use.

First, libraries should clearly describe the application spec-
ifications in the user API to generate the parameter set. This
would minimize the risk of generating a parameter set that is
not compliant with the desired application class.

Second, libraries can implement validators to detect an in-
valid computation during run-time. For instance, for BGV,
OpenFHE could check whether the depth, maximum number
of additions, or maximum number of key switching opera-
tions is exceeded. Alternatively, a ciphertext-specific noise
estimator, like the one implemented in HElib, could be used.

Third, the probability of decryption failure for a single
bootstrapping operation can be exposed as an input parameter
for certain schemes where the probability of failure has a
major impact on the efficiency, e.g., DM or CGGI. The moti-
vation for exposing this parameter is to support larger circuits
(where the default bootstrapping probability of failure may be
too high for the current application class). This application-
specific configurability can be used to achieve better efficiency
while still providing a negligibly small probability of failure
for a given application class (ensuring this is required to pre-
vent an attack described in Section 6.2). OpenFHE already
provides a parameter generation tool [42] for DM, CGGI, and
LMKCDEY that takes the bootstrapping probability of failure
as an input argument.

6 Discussion of Key Recovery Attacks

We briefly summarize the Li-Micciancio attack [37], as all
attacks are based on the same methodology.

Let us consider a toy version of symmetric-key CKKS
based on the Ring LWE hardness problem (see Appendix A.4),
where the encoding and decoding are considered errorless (the
attack can be extended to the efficient CKKS scheme used
in practice [10, 30]). Let the secret key be sk = (1,s), where
s← {0,−1,1}N is sampled from the uniform ternary distri-
bution. The encryption of a (possibly encoded) message is
Encsk(m) = (a,b) ∈ R2

Q, where a← RQ and b = a · s+e+m,
for e←N (0,σ) with support RQ. To decrypt a ciphertext of
form ct = (a,b) encrypting m, one performs Decsk((a,b)) =
b− a · s mod Q. An attacker can specify m := 0 to the en-

10

cryption oracle to obtain ct = (a,b), where b = a · s+ e, then
nothing or the identity function to the evaluation oracle, and
can finally request the decryption of ct from the decryption
oracle, which return Decsk(ct) = e mod Q. The attacker re-
trieves b−e = a ·s mod Q. Making N such queries allows the
adversary to form a system of linear equations in the secret s
with high probability. When a is invertible, as few as a single
query is sufficient to recover the secret key.

The gist of the attack is retrieving the error from the de-
cryption query, which can then be used, along with public
information such as the ciphertexts, to recover the secret key.
This implies that the basic CKKS scheme is not IND-CPAD-
secure. Li et al. [38] further analyzed the IND-CPAD definition
and introduced a mechanism for achieving this security level
for CKKS, through estimating and adding Gaussian noise dur-
ing the decryption procedure such that the decryption query
output does not reveal any useful information, described in
Section 4.2. However, they did not formally include the es-
timation procedure and its relation to the evaluated function
class in the definition, something which is done by libraries
like OpenFHE that implement their security countermeasures.
In Sections 3 and 4, we clarified the IND-CPAD definition in
the context of practical use cases of user applications, and gave
precise formulations of (application-aware) security state-
ments that support the use of the libraries. Software libraries
that implement approximate FHE schemes with the counter-
measures proposed in [38], or instantiate exact FHE schemes
with parameters that satisfy appropriate correctness bounds
(Section 5), satisfy the application-aware notion of IND-CPAD-
security as described in Sections 3 and 4, and should be im-
mune to the Li-Micciancio attack [37] and its variants.

Recently a number of other attacks have appeared, claiming
to extend the attack of [37] either (i) to defeat the security
countermeasures for approximate FHE [23], in violation of
the security properties proved in [38], or (ii) to break exact
FHE schemes [8, 9], in violation of the equivalence between
IND-CPA and IND-CPAD-security proved in [37]. As in the
original attack [37], these works use an IND-CPAD adversary
that extracts the LWE encryption noise via decryption queries,
and then uses this information to recover the secret key or
break the indistinguishability of the scheme. However, in [8,9]
this is achieved by exploiting queries to the evaluator or de-
cryptor that are invalid according to Definition 10. In the
case of approximate FHE, this bypasses the intended effect
of the noise flooding mechanism proposed in [23]. In the
case of exact schemes [8, 9], this breaks the equivalence be-
tween IND-CPA and IND-CPAD-security. Note that in both
cases the attack violates the assumptions of the security re-
sults from Theorems 1 and 2. So, more than a vulnerability
in the schemes or in the libraries implementing them, these
attacks [8, 9, 23] highlight the dangers associated to using the
libraries improperly.

In this section we describe the attacks [8, 9, 23] using our
application-aware security definitions. This serves two pur-

poses: one is to properly evaluate the significance of those
works, as an incorrect use of the libraries rather than an attack
on the FHE schemes. The other is to show how application-
aware security can be used to explain the security guarantees
offered by FHE schemes and provide robust guidelines on the
use of the libraries to avoid the pitfalls of [8, 9, 23].

6.1 “Attacks” on Approximate FHE

Guo et al. [23] proposed two attacks which have the goal of
injecting a smaller noise in the decryption procedure than
required by Theorem 2. This allows the attacker to retrieve
sufficient information about the original noise in order to
recover the secret key under some parameter settings.

We now translate the attacks from [23] to the language of
the application-aware IND-CPAD from Section 3. The attacks
are not adaptive, meaning the attacker does not use the results
of previous queries before submitting new ones, so we can use
the simplified definition of IND-CPAD. (In Appendix A.6, we
show the formulation under the adaptive definition as well.)

In the case of the first attack (“average-case estimation at-
tack” in [23]), the attacker specifies an application App = {C̄}
on n inputs, described by the circuit C(x1, . . . ,xn) = x1 + . . .+
xn, for which the parameters and noise estimate for the differ-
entially private mechanism are being computed.5 The attacker
then asks for the encryption of (identical) inputs x1, . . . ,xn (all
equal to the same value xi = x1), and specifies the function6

C′(x1, . . . ,xn) = x1 + . . .+ x1 for evaluation. Despite the fact
that when xi = x1, for i = 2, . . . ,n, the outputs of the two
computations are the same, the computations C̄′ and C̄ are
different, and, importantly, C̄′ /∈ App. This means C̄′ is not
a valid query according to Definition 10. We remark there
is nothing wrong about the circuit C′ itself, and a user may
want legitimately evaluate C′ on encrypted inputs. But, if so,
it should have included C̄′ in the application specification
App = {C̄,C̄′} during key/parameter generation. (See below
for additional discussion about this.) The same holds for a dif-
ferent computation which computes the addition recursively
(in a tree shape), which was also explored in [23].

In the second case of the “empirical noise attack”, the at-
tacker now specifies for the runtime evaluation the circuit
C′′(x1, . . . ,xu) = x1 + . . .+ xu, for u ̸= n, while still using
App = {C̄} defined above. But C̄′′ ̸= C̄ and C̄′′ /∈ App, also
rendering this query invalid according to Definition 10.

The authors of [23] suggest that in order to avoid attacks,

5The noise estimate for the encrypted computation is not performed worst-
case over the ciphertexts input to the homomorphic evaluation of C̄, but using
heuristics assuming independently honestly generated ciphertexts; however,
this is not relevant to our discussion of the application-aware model.

6Technically, the attack in [23] does not specify a function, but it is
described informally as adding n copies of the first ciphertext ct1 =Encpk(x1)
obtained from the encryption queries. But since in an IND-CPAD attack the
adversary can only choose input messages xi (and not ciphertexts cti,) the
correct (and only) way to add a ciphertext to itself ct1 + . . .+ ct1 is to use a
circuit that reuses the same (encrypted) input like C′.

11

one should always use worst-case noise estimates. But from
the description above it should be clear that the real issue
exploited by their attack is not the difference between average-
case and worst-case error estimates. Choosing the scheme pa-
rameters based on worst-case error estimates for C̄, and then
evaluating C̄′ homomorphically using the same key based on
the ad-hoc analysis that C̄ and C̄′ produce similar worst-case
noise estimates, is error-prone and theoretically unjustified.
If the user also wants to evaluate C̄′, it is both easier and less
error-prone to include C̄′ in App at key generation time, and
let the library choose the parameters accordingly. Moreover,
while C̄ and C̄′ have the same worst-case noise bounds, this is
not the case for the worst-case noise bound of other circuits
like C̄′′. In any case, if C̄′ /∈ App, one cannot invoke Theo-
rem 2 and claim generic IND-CPAD-security. Note that this
is true even if the differentially-private mechanism applied
in decryption uses worst-case noise bounds over C̄ and C̄′.
The reason for this is because the generic IND-CPAD-security
definition (Definition 6) requires worst-case noise bounds
over all possible circuits allowed by the scheme’s parameters
(for instance, the ciphertext modulus).

Instead, for application-aware IND-CPAD-security (Defini-
tion 10), one can clearly define and focus on a specific com-
putation class App. The practical significance of this model
is that one can thus compute smaller parameters (leading to
more efficient implementation), as long as only valid com-
putations are performed, and still achieve application-aware
IND-CPAD-security. Importantly, this also allows the use of
non-worst-case noise bound estimation, and refutes the claim
from [23] that any usage of non-worst-case estimates is inse-
cure. The estimation should be performed globally over the
class of allowed computations with confidence intervals over
the noise introduced by the FHE schemes operations, but it
does not have to account for disallowed computations.

From the perspective of Section 5, these attacks violate
Protocol 2 as the computation they run during the online
phase does not belong to the application class App specified
during the offline estimation phase. These attacks are also not
compliant with the OpenFHE guidelines, which refer to the
same computation during offline and online phases.

Finally, another claim from [23] against non-worst-case
estimates is that “the user in possession of the secret key may
lack prior knowledge of the function to be evaluated, as could
occur in cases involving private circuits”. Presuming the func-
tion is private falls under the function privacy model. We dis-
cussed in Section 3 that function privacy requires a different
definition of IND-CPAD, both in the generic and application-
aware models. Satisfying these new definitions would require
different estimations than in the non-function-private model.

6.2 Attacks on “Exact” FHE schemes

By definition, exact FHE schemes (Definition 3) are a special
case of approximate FHE schemes with a perfect estimation

function Estimate(App) = 0 that leaves no space for approxi-
mation errors. There is still a way in which decryption may de-
viate from recovering the input message: a decryption failure,
and the Li-Micciancio attack [37] extends to such schemes.
According to Definition 3, decryption failures should occur
with at most negligible probability (see Remark 1). However,
if a cryptographic library is misconfigured, or used improperly,
then decryption failures may occur with noticeable probability
and be exploited in attacks.

There are several folkore attacks on schemes such as
BGV/BFV where decryption is allowed despite an overflown
ciphertext error. We briefly describe in the following such an
attack from [2], as part of a discussion following the respon-
sible disclosure of the attack in [37].

Consider a toy version of the BGV scheme with plaintext
space Zp and ciphertext space RQ, with the secret key sk =
(1,s), where s← {0,−1,1}N is sampled from the uniform
ternary distribution. The encryption of a (possibly encoded)
message Encsk(m) = (a,b) ∈ R2

Q, where a← RQ and b =

a · s+ p ·e+m, for e←N (0,σ) with support RQ. To decrypt
a ciphertext of form ct = (a,b), one performs Decsk((a,b)) =
b−a ·s mod p. An attacker submits the message m = 0 to the
encryption oracle, resulting in a ciphertext ct = (a,b) with
randomly sampled a and b = a · s+ p · e mod Q. The attacker
then requests the evaluation of a circuit adding the input to
itself p−1−1 mod Q times and finally asks for the resulting
ciphertext ct′ = ct+ . . .+ ct = (a′,b′). Note that ct′ = (a ·
p−1 mod Q,(a ·s+ p ·e) · p−1 mod Q). As such,Decsk(ct′) =
(p ·e) · p−1 mod p= e mod p. It is clear that when e< p, then
one can recover the secret key via linear algebra. The attack
can also be extended for when e≥ p.

What makes this attack possible is allowing for so many
additions, which leads to an incorrect decryption result (and
implicitly, to a scheme that does not satisfy exact correct-
ness even probabilistically, with negligible failure probabil-
ity). Note that in this attack, p and Q are specified first, and
the number of additions required depends on their values.
However, in Definitions 8–10, one specifies the application
class as part of the key generation algorithm. In the context
of this attack, this translates to one specifying the addition
circuit, which fixes the number of inputs and the number of
addition gates, and obtaining public parameters that are cor-
rect with respect to this computation (one can specify multiple
circuits, but all have the number of inputs and gates fixed).
Then, during run-time, only the evaluation of this computation
is allowed, which with high probability, disallows adding a
value p−1−1 mod Q times.

Recently, Checri et al. [8] and Cheon et al. [9] proposed sim-
ilar key recovery attacks against OpenFHE and other libraries.
Their attacks on BGV/BFV schemes fix the parameters of
the schemes—implicitly, by specifying a computation class
App which returns parameters for achieving exact correct-
ness for App—and then use these parameters to perform a
different computation C̄ /∈ App. This computation C̄ is cho-

12

sen such that Decsk(Evalpk(C̄,ct1, . . . ,ctn)) ̸= C̄(m1, . . . ,mn),
for cti← Encpk(mi) , i = 1, . . . ,n, see [8, 9] for details. Since
C̄ /∈App, neither application-aware correctness nor IND-CPAD-
security is guaranteed. So, there is no reason to expect en-
cryption to be secure. The attacks in [8, 9] demonstrate that
this lack of security is not just a (well-known, but theoretical)
possibility, but a concrete threat in practice.

Concretely, this is a good example of the risks of not follow-
ing Protocol 2. For instance, in the case of the attack in [9] the
proper OpenFHE use of BGV/BFV for this scenario would
require the user to supply the number of additions before
generating the parameters using SETEVALADDCOUNT, or
an equivalent multiplicative depth using SETMULTIPLICA-
TIVEDEPTH. One can check that, when this is done, a larger
parameter set is generated by OpenFHE than the one used for
the attack. The same can be done for the attack in [8] where
the circuit is purely made of addition gates. Additionally, to
reduce the number of additions, [8] uses an optimization in-
volving rotations, which should also be accounted for when
specifying the allowed application class via SETKEYSWITCH-
COUNT, as it affects the noise estimation bound.

The works [8, 9] also describe attacks against the TFHE
scheme as implemented in the TFHE-rs [45] and TFHE-
Lib [12] libraries, which fall in a slightly different category.
TFHE/CGGI is a FHEW/DM-like cryptosystem that allows
to evaluate arbitrary (boolean) circuits performing bootstrap-
ping after each gate. In this context, the set of functions L
supported by the scheme does not represent entire applica-
tions, but individual gates, which are combined together to
evaluate a complex function. Since bootstrapping is applied
after every gate, this should make the library easier to use, and
parameter configuration less error-prone. Something that sets
these attacks [8,9] apart is that they use the default parameters
of specific libraries. However, these attacks do not necessary
apply to custom parameters and/or other libraries, e.g., the
FHEW/TFHE implementation in OpenFHE allows the user
to generate a custom parameter set with a user-defined boot-
strapping probability of failure that corresponds to negligible
decryption error even for large circuits.

The attack in [8] exploits the fact that TFHE (just like
essentially all lattice-based cryptosystems) is linearly homo-
morphic and supports the evaluation of addition operations
(in fact, exclusive-or, as addition is performed modulo 2) very
efficiently, without resorting to bootstrapping. Then, by eval-
uating a huge number of additions (beyond what can be sup-
ported by the selected scheme parameters; TFHELib [12] does
not automatically apply bootstrapping after evaluating a gate)
one can trigger decryption errors and recover the secret key.
Conceptually this attack is similar to the attacks described
against approximate schemes: since addition is performed
without bootstrapping, the maximum number of homomor-
phic additions (before bootstrapping) should be specified at
key generation time, and taken into account during parameter
generation. Then, our application-aware security definition

would allow only the evaluation of circuits that respect that
bound. Alternatively, as the number of additions approaches
the allowed limit, the library (or user) may inject a bootstrap-
ping operation to reset the noise to acceptable levels.

The attack in [9] exploits a weakness of the TFHE-rs li-
brary: the choice of a fairly large correctness error of 2−40 or
even 2−17 (for Concrete-python). Note that such parameters
are not correct according to Definition 3, which requires de-
cryption errors to have negligible probability. Selecting such
parameters to maximize performance allows [8, 9] to trigger
decryption errors and mount a key recovery attack.

7 Concluding Remarks

In this work, we proposed a framework for secure and effi-
cient configuration of approximate FHE schemes by introduc-
ing the concept of application-aware FHE and its associated
security definitions. Our framework addresses the current
confusion surrounding the secure instantiation of the CKKS
scheme in practice, especially after the recent secret-key re-
covery attacks which highlighted the practical limitations of
the generic IND-CPAD security model. Unlike generic and
potentially hard-to-satisfy security models, our application-
aware security model reflects the real-world use of FHE. We
provide practical guidelines for FHE developers and users to
achieve IND-CPAD security in the application-aware setting.
We also demonstrate that our application-aware model can be
used to securely instantiate exact FHE schemes.

We see this work as a first step in establishing the prac-
tical procedures for the secure, efficient use of FHE in the
IND-CPAD setting. In the future, we envision multiple tools
that could help FHE users to enforce the application-aware
model. For instance, more compact application specifications
could be developed for approximate FHE. Automated val-
idators that check that a specific computation belongs to the
allowed application class could also be useful. Online noise
estimation tools could provide a mechanism to detect unsafe
use of a library. An important research problem is to reduce
the cost of noise flooding, which currently requires increasing
the CKKS scaling factor by 30 or more bits.

Note that while FHE has a great potential for privacy-
preserving computations, realizing it in practice brings about
many challenges. First, library developers aim for better
usability to hide complicated details of underlying FHE
schemes. However, these simplified interfaces might increase
the chance of library misconfiguration and misuse. Second,
the honest-but-curious assumption in the FHE security model
is hard to satisfy in practice. Although cryptography pro-
vides tools such as authentication, commitments, and zero-
knowledge proofs to ensure adherence to established proto-
cols, these solutions are often too computationally expensive
in the context of FHE applications [19]. A more practical
alternative are legal auditing and other non-cryptographic ap-
proaches, which can offer valuable complementary measures.

13

Acknowledgements. The authors would like to thank
Nicholas Genise for helpful discussions on the CKKS noise
estimation and IND-CPAD security.

References
[1] ASHAROV, G., JAIN, A., LÓPEZ-ALT, A., TROMER, E., VAIKUN-

TANATHAN, V., AND WICHS, D. Multiparty computation with low
communication, computation and interaction via threshold FHE. In
EUROCRYPT 2012 (Apr. 2012), D. Pointcheval and T. Johansson, Eds.,
vol. 7237 of LNCS, Springer, Heidelberg, pp. 483–501.

[2] BERGAMASCHI, F., CHEON, J. H., DAI, W., HALEVI, S., KIM, A.,
KIM, D., LAINE, K., LI, B., MICCIANCIO, D., PAPADIMITRIOU, A.,
POLYAKOV, Y., SHOUP, V., SONG, Y., AND VAIKUNTANATHAN, V.
Personal Communication, 2020. Email thread on October 30, 2020.

[3] BLATT, M., GUSEV, A., POLYAKOV, Y., AND GOLDWASSER, S. Se-
cure large-scale genome-wide association studies using homomorphic
encryption. Proceedings of the National Academy of Sciences 117, 21
(2020), 11608–11613.

[4] BOSSUAT, J.-P., MOUCHET, C., TRONCOSO-PASTORIZA, J., AND
HUBAUX, J.-P. Efficient bootstrapping for approximate homomorphic
encryption with non-sparse keys. In Advances in Cryptology – EU-
ROCRYPT 2021 (Cham, 2021), A. Canteaut and F.-X. Standaert, Eds.,
Springer International Publishing, pp. 587–617.

[5] BOURSE, F., DEL PINO, R., MINELLI, M., AND WEE, H. FHE cir-
cuit privacy almost for free. In CRYPTO 2016, Part II (Aug. 2016),
M. Robshaw and J. Katz, Eds., vol. 9815 of LNCS, Springer, Heidelberg,
pp. 62–89.

[6] BRAKERSKI, Z. Fully homomorphic encryption without modulus
switching from classical GapSVP. In CRYPTO 2012 (Aug. 2012),
R. Safavi-Naini and R. Canetti, Eds., vol. 7417 of LNCS, Springer,
Heidelberg, pp. 868–886.

[7] BRAKERSKI, Z., GENTRY, C., AND VAIKUNTANATHAN, V. (Leveled)
fully homomorphic encryption without bootstrapping. In ITCS 2012
(Jan. 2012), S. Goldwasser, Ed., ACM, pp. 309–325.

[8] CHECRI, M., SIRDEY, R., BOUDGUIGA, A., BULTEL, J.-P., AND
CHOFFRUT, A. On the practical CPAD security of “exact” and thresh-
old FHE schemes and libraries. Cryptology ePrint Archive, Paper
2024/116, 2024. https://eprint.iacr.org/2024/116.

[9] CHEON, J. H., CHOE, H., PASSELÈGUE, A., STEHLÉ, D., AND SU-
VANTO, E. Attacks against the INDCPA-D security of exact FHE
schemes. Cryptology ePrint Archive, Paper 2024/127, 2024. https:
//eprint.iacr.org/2024/127.

[10] CHEON, J. H., KIM, A., KIM, M., AND SONG, Y. S. Homomorphic en-
cryption for arithmetic of approximate numbers. In ASIACRYPT 2017,
Part I (Dec. 2017), T. Takagi and T. Peyrin, Eds., vol. 10624 of LNCS,
Springer, Heidelberg, pp. 409–437.

[11] CHILLOTTI, I., GAMA, N., GEORGIEVA, M., AND IZABACHÈNE, M.
Faster packed homomorphic operations and efficient circuit bootstrap-
ping for TFHE. In ASIACRYPT 2017, Part I (Dec. 2017), T. Takagi and
T. Peyrin, Eds., vol. 10624 of LNCS, Springer, Heidelberg, pp. 377–408.

[12] CHILLOTTI, I., GAMA, N., GEORGIEVA, M., AND IZABACHÈNE,
M. TFHE: Fast fully homomorphic encryption library, August 2016.
https://tfhe.github.io/tfhe/.

[13] COSTACHE, A., CURTIS, B. R., HALES, E., MURPHY, S., OGILVIE,
T., AND PLAYER, R. On the precision loss in approximate homomor-
phic encryption. Cryptology ePrint Archive, Report 2022/162, 2022.
https://eprint.iacr.org/2022/162.

[14] COSTACHE, A., NÜRNBERGER, L., AND PLAYER, R. Optimisations
and tradeoffs for HElib. In CT-RSA 2023 (Apr. 2023), M. Rosulek, Ed.,
vol. 13871 of LNCS, Springer, Heidelberg, pp. 29–53.

[15] D’ANVERS, J.-P., VERCAUTEREN, F., AND VERBAUWHEDE, I. The
impact of error dependencies on ring/mod-LWE/LWR based schemes.
In Post-Quantum Cryptography - 10th International Conference,
PQCrypto 2019 (2019), J. Ding and R. Steinwandt, Eds., Springer,
Heidelberg, pp. 103–115.

[16] DUCAS, L., AND MICCIANCIO, D. FHEW: Bootstrapping homomor-
phic encryption in less than a second. In EUROCRYPT 2015, Part I
(Apr. 2015), E. Oswald and M. Fischlin, Eds., vol. 9056 of LNCS,
Springer, Heidelberg, pp. 617–640.

[17] DUCAS, L., AND STEHLÉ, D. Sanitization of FHE ciphertexts. In
EUROCRYPT 2016, Part I (May 2016), M. Fischlin and J.-S. Coron,
Eds., vol. 9665 of LNCS, Springer, Heidelberg, pp. 294–310.

[18] FAN, J., AND VERCAUTEREN, F. Somewhat practical fully homomor-
phic encryption. Cryptology ePrint Archive, Report 2012/144, 2012.
https://eprint.iacr.org/2012/144.

[19] FRANKLE, J., PARK, S., SHAAR, D., GOLDWASSER, S., AND
WEITZNER, D. J. Audit: Practical accountability of secret processes.
Cryptology ePrint Archive (2018).

[20] GENTRY, C. A fully homomorphic encryption scheme. Stanford uni-
versity, 2009.

[21] GENTRY, C. Fully homomorphic encryption using ideal lattices. In
41st ACM STOC (May / June 2009), M. Mitzenmacher, Ed., ACM
Press, pp. 169–178.

[22] GENTRY, C., SAHAI, A., AND WATERS, B. Homomorphic encryption
from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based. Cryptology ePrint Archive, Report 2013/340, 2013.
https://eprint.iacr.org/2013/340.

[23] GUO, Q., NABOKOV, D., SUVANTO, E., AND JOHANSSON, T. Key
recovery attacks on approximate homomorphic encryption with non-
worst-case noise flooding countermeasures. In Usenix Security (2024).

[24] HALEVI, S., POLYAKOV, Y., AND SHOUP, V. An improved rns variant
of the bfv homomorphic encryption scheme. In Topics in Cryptology
– CT-RSA 2019 (Cham, 2019), M. Matsui, Ed., Springer International
Publishing, pp. 83–105.

[25] HALEVI, S., AND SHOUP, V. Design and implementation of helib: a
homomorphic encryption library. Cryptology ePrint Archive, Paper
2020/1481, 2020. https://eprint.iacr.org/2020/1481.

[26] HAN, K., HONG, S., CHEON, J. H., AND PARK, D. Logistic regression
on homomorphic encrypted data at scale. In Proceedings of the AAAI
conference on artificial intelligence (2019), vol. 33, pp. 9466–9471.

[27] HEAAN v2.1. https://github.com/snucrypto/HEAAN, Dec 2020.
SNUCRYPTO.

[28] HElib v2.3. https://github.com/homenc/HElib, Jul 2023. IBM.

[29] Security of Approximate-Numbers Homomorphic Encrypt. https:
//github.com/homenc/HElib/blob/master/CKKS-security.md,
2024. [Online; accessed 7-Feb-2024].

[30] KIM, A., PAPADIMITRIOU, A., AND POLYAKOV, Y. Approximate
homomorphic encryption with reduced approximation error. In CT-
RSA 2022 (Mar. 2022), S. D. Galbraith, Ed., vol. 13161 of LNCS,
Springer, Heidelberg, pp. 120–144.

[31] KIM, A., POLYAKOV, Y., AND ZUCCA, V. Revisiting homomorphic
encryption schemes for finite fields. In Advances in Cryptology –
ASIACRYPT 2021 (Cham, 2021), M. Tibouchi and H. Wang, Eds.,
Springer International Publishing, pp. 608–639.

[32] KLUCZNIAK, K. Circuit privacy for FHEW/TFHE-style fully homo-
morphic encryption in practice. Cryptology ePrint Archive, Report
2022/1459, 2022. https://eprint.iacr.org/2022/1459.

[33] KLUCZNIAK, K., AND SANTATO, G. On circuit private, multikey and
threshold approximate homomorphic encryption. Cryptology ePrint
Archive, Report 2023/301, 2023. https://eprint.iacr.org/2023/
301.

14

https://eprint.iacr.org/2024/116
https://eprint.iacr.org/2024/127
https://eprint.iacr.org/2024/127
https://eprint.iacr.org/2022/162
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2013/340
https://eprint.iacr.org/2020/1481
https://github.com/snucrypto/HEAAN
https://github.com/homenc/HElib
https://github.com/homenc/HElib/blob/master/CKKS-security.md
https://github.com/homenc/HElib/blob/master/CKKS-security.md
https://eprint.iacr.org/2022/1459
https://eprint.iacr.org/2023/301
https://eprint.iacr.org/2023/301

[34] Lattigo v5. https://github.com/tuneinsight/lattigo, Nov
2023. EPFL-LDS, Tune Insight SA.

[35] LEE, E., LEE, J.-W., LEE, J., KIM, Y.-S., KIM, Y., NO, J.-S., AND
CHOI, W. Low-complexity deep convolutional neural networks on
fully homomorphic encryption using multiplexed parallel convolu-
tions. In International Conference on Machine Learning (2022), PMLR,
pp. 12403–12422.

[36] LEE, Y., MICCIANCIO, D., KIM, A., CHOI, R., DERYABIN, M., EOM,
J., AND YOO, D. Efficient FHEW bootstrapping with small evalua-
tion keys, and applications to threshold homomorphic encryption. In
EUROCRYPT 2023, Part III (Apr. 2023), C. Hazay and M. Stam, Eds.,
vol. 14006 of LNCS, Springer, Heidelberg, pp. 227–256.

[37] LI, B., AND MICCIANCIO, D. On the security of homomorphic en-
cryption on approximate numbers. In EUROCRYPT 2021, Part I (Oct.
2021), A. Canteaut and F.-X. Standaert, Eds., vol. 12696 of LNCS,
Springer, Heidelberg, pp. 648–677.

[38] LI, B., MICCIANCIO, D., SCHULTZ, M., AND SORRELL, J. Securing
approximate homomorphic encryption using differential privacy. In
CRYPTO 2022, Part I (Aug. 2022), Y. Dodis and T. Shrimpton, Eds.,
vol. 13507 of LNCS, Springer, Heidelberg, pp. 560–589.

[39] MARINGER, G., FRITZMANN, T., AND SEPÚLVEDA, J. The influence
of LWE/RLWE parameters on the stochastic dependence of decryption
failures. In ICICS 20 (Aug. 2020), W. Meng, D. Gollmann, C. D.
Jensen, and J. Zhou, Eds., vol. 11999 of LNCS, Springer, Heidelberg,
pp. 331–349.

[40] MURPHY, S., AND PLAYER, R. A central limit framework for ring-
LWE decryption. Cryptology ePrint Archive, Report 2019/452, 2019.
https://eprint.iacr.org/2019/452.

[41] OpenFHE v1.2. https://github.com/openfheorg/openfhe-
development, Dec 2023. OpenFHE Org.

[42] OpenFHE Lattice Estimator. https://github.com/openfheorg/
openfhe-lattice-estimator, 2024. [Online; accessed 7-Feb-
2024].

[43] CKKS Noise Flooding. https://github.com/openfheorg/
openfhe-development/blob/main/src/pke/examples/
CKKS_NOISE_FLOODING.md, 2024. [Online; accessed 7-Feb-2024].

[44] Microsoft SEAL v4.1. https://github.com/Microsoft/SEAL, Jan.
2023. Microsoft Research, Redmond, WA.

[45] ZAMA. TFHE-rs: A Pure Rust Implementation of the TFHE Scheme for
Boolean and Integer Arithmetics Over Encrypted Data, 2022. https:
//github.com/zama-ai/tfhe-rs.

A Appendix

A.1 More preliminaries
Definition 11 (Decision game). A decision game G is de-
fined by an experiment ExprG ,S

b [A] parameterized by a bit
b ∈ {0,1}, (encryption) scheme S and adversary A , that on
input a security parameter κ, runs a computation (using the
algorithms of S and A) and outputs a bit. The advantage
AdvS

G [A](κ) of A in breaking the G-security of S is

|Pr{ExprG ,S
0 [A](κ) = 1}−Pr{ExprG ,S

1 [A](κ) = 1}.|

The scheme S is G-secure if for any efficient (probabilis-
tic, polynomial time, stateful) adversary A , the advantage
AdvS

G [A](κ) is negligible in κ.

Definition 12 (Search game). A search game G is defined
by an experiment ExprG ,S [A] parametrized by a (encryption)
scheme S and adversary A , that on input a security parameter
κ, outputs a bit. The advantage of A is simply the probability

AdvS
G [A](κ) = Pr{ExprG ,S [A](κ) = 1}

that the experiment outputs 1. The scheme S is G-secure
if for any efficient (probabilistic, polynomial time, stateful)
adversary A , the advantage AdvS

G [A](κ) is negligible in κ.

As a standard convention, if at any point in an experiment
the adversary makes a syntactically incorrect query (e.g., in-
dices out of range) or an invalid query (e.g., a circuit C not
supported by the scheme), the experiment returns an error
symbol ⊥ in the case of a decision game and 0 in the case of
search game.

A.2 Fully adaptive definitions
For simplicity, in the main body of the paper, we have con-
sidered applications where all input data is specified (and
encrypted) in advance, and then a single homomorphic com-
putation is performed on it. In practice, homomorphic encryp-
tion schemes (and libraries) allow to interleave encryption,
evaluation and decryption queries, performing computations
incrementally (possibly based on the result of decryption
queries), reuse intermediate results of previous homomorphic
computations, etc. In this section, we provide general defi-
nitions of correctness and security properties for this more
general form of encrypted computations. We remark that,
while the mathematical formalization of the properties in this
general setting is somehow more complex (which is why we
postponed it to the appendix), the essence of the definition
is the same, and the main insights of our work can be al-
ready understood from the basic treatment of non-adaptive
definitions.

The first thing that we need to generalize our definitions of
application-aware correctness and security is a formalization
of adaptive, incremental computations. Here, the set L of
functions supported by a homomorphic encryption scheme
should be understood as the set of basic operations that can be
performed by a single call to Eval, and corresponding to the
functions associated to the individual gates of a larger circuit
representing the entire computation.

Definition 13. Let M and L be the message space and (basic)
function space of a homomorphic encryption scheme. A com-
putation trace is a sequence of basic operations [op1,op2, . . .]
where each opi can be one of the following:

• an encryption query E(m), where m ∈M

• an evaluation query H(f , i1, . . . , ik) where f : M k→M
is a function in L and i1, . . . , ik ∈ {1, . . . , i− 1} are in-
dexes corresponding to previous E or H operations

15

https://github.com/tuneinsight/lattigo
https://eprint.iacr.org/2019/452
https://github.com/openfheorg/openfhe-development
https://github.com/openfheorg/openfhe-development
https://github.com/openfheorg/openfhe-lattice-estimator
https://github.com/openfheorg/openfhe-lattice-estimator
https://github.com/openfheorg/openfhe-development/blob/main/src/pke/examples/CKKS_NOISE_FLOODING.md
https://github.com/openfheorg/openfhe-development/blob/main/src/pke/examples/CKKS_NOISE_FLOODING.md
https://github.com/openfheorg/openfhe-development/blob/main/src/pke/examples/CKKS_NOISE_FLOODING.md
https://github.com/Microsoft/SEAL
https://github.com/zama-ai/tfhe-rs
https://github.com/zama-ai/tfhe-rs

• a decryption query D(j) where j ∈ {1, . . . , i−1} is the
index of a previous E or H operations.

Let Ops∗ be the set of all computation sequences. An ap-
plication is specified by a subset App ⊆ Ops∗ of computa-
tion traces that is closed under prefixes, i.e., such that if
[op1, . . . ,opn] ∈ App, then [op1, . . . ,opi] is also in App for
all i < n.

As usual, we assume that the set App admits a compact
description, and not all possible applications (i.e., subsets of
Ops∗) may be supported by a scheme. For example, App may
be described by a single sequence of operations op1, . . . ,opn
where encryption operations opi = E(µi) carry not a single
message m ∈M but a bound µi on the message size. This
single sequence represents the set of all possible computation
traces obtained by replacing each µi by any message xi ∈M
satisfying the given size bound ∥xi∥ ≤ µi. Since the details of
how App may be specified are scheme and application depen-
dent, we formulate our definition using general set notation.

Remark 2. The basic applications App′ = {C̄1,C̄2, . . .} intro-
duced in Definition 8 correspond to a special case of Defini-
tion 13, where App is the set of all computation traces of the
form

[E(x1), . . . ,E(xk),H(Ci,1,2, . . . ,k),D(k+1)]

such that Ci : M k→M and (x1, . . . ,xk) ∈ dom(C̄i) for some
C̄i ∈ App′. Naturally, if Ci is specified by a circuit with gates
in L (rather than a single function Ci ∈L), then the operation
H(Ci,1,2, . . . ,k) should be replaced by a sequence of oper-
ations H(g j,1, . . . ,k j) corresponding to the individual gates
of Ci.

Using this definition of computation we can generalize the
definitions of correctness and security as follows.

Definition 14 (Approximate Correctness). Let E =
(KeyGen,Enc,Dec,Eval) be an (approximate) FHE scheme
with (normed) message space M and application space from
L̄ , and let Estimate : 2L̄ → R≥0 be an efficiently computable
function. We say that the tuple Ẽ = (E ,Estimate) satisfies
application-aware static approximate correctness if it is cor-
rect for the following search game:

Exprapprox,Ẽ [A](κ) : App← A(κ)

(sk,pk)← KeyGen(κ,App)

AOps(·)(pk)

return 0

where Ops(·) is an oracle defined as follows. The oracle
accepts E,H and D queries, and stores a pair (xi,cti) ∈M ×
C for each E or H query. Each time A issues a new query opi:

• If the sequence of queries issued so far [op1, . . . ,opi] /∈
App, then abort the experiment with output 0

• if opi = E(xi), then let cti← Encpk(xi) and return cti to
A

• if opi =H(fi, i1, . . . , ik), then compute xi = fi(xi1 , . . . ,xik)
and cti← Evalpk(fi,ct1, . . . ,ctk) using previously stored
pairs (xi j ,cti j). Then store the new pair (xi,cti), and
return cti to A .

• if opi =D(j), then compute yi←Decsk(ct j) using previ-
ously stored pair (x j,ct j). If ∥yi− x j∥ ≤ Estimate(App)
return y to A . Otherwise terminate the experiment im-
mediately with output 1.

For simplicity, in the above definition we have used an
Estimate function that outputs the same bound for all decryp-
tion queries. This can be easily generalize to an estimate func-
tion that allows difference decryption queries to be answered
with a varying degree of accuracy. As before, our definition
applies to both exact and approximate FHE schemes, where a
scheme is exact when Estimate(App) = 0 is the perfect accu-
racy estimation function, so that when answering decryption
queries it must be yi = x j.

Again, it can be seen that basic correctness from Defini-
tion 9 is a special case of Definition 14 when restricted to the
simple applications App′ described in Remark 2.

The definition of IND-CPAD security is generalized simi-
larly.

Definition 15 (IND-CPAD Security). Let E = (KeyGen,Enc,
Dec,Eval) be an (approximate) FHE scheme with (normed)
message space M and application space from L̄ , and let
Estimate : 2L̄ → R≥0 be an efficiently computable function.
Application-aware IND-CPAD security is defined by the fol-
lowing decision game:

Expr
cpad
b [A](κ) : App← A(κ)

(sk,pk)← KeyGen(κ,App)

b′← AOps(·)(pk)

return(b′).

where Ops(·) is an oracle defined as follows. The oracle
accepts E,H, and D queries. H and D queries are similar to
Definition 14. E queries take the form opi = E(x0

i ,x
1
i) instead

of E(xi). For each such query let opb
i be the corresponding

encryption operation E(xb
i). The oracle Ops(·) stores a triplet

(xi,0,xi,1,cti) ∈M 2×C for each E or H query. Each time A
issues a new query opi:

• If for either b = 0 or b = 1, the sequence of queries
issued so far [op1, . . . ,opi] satisfies [opb

1, . . . ,op
b
i] /∈ App,

then abort the experiment with output 0

• if opi = E(x0
i ,x

1
i), then compute cti← Encpk(xb

i), store
(x0

i ,x
1
i ,cti), and return cti to A

16

• if opi = H(fi, i1, . . . , ik), then compute xb
i =

fi(xb
i1 , . . . ,x

b
ik) for both b ∈ {0,1}, and cti ←

Evalpk(fi,ct1, . . . ,ctk) using previously stored pairs
(x0

i j
,x1

i j
,cti j). Then store the new triplet (x0

i ,x
1
i ,cti), and

return cti to A .

• if opi = D(j), then retrieve previously stored triplet
(x0

j ,x
1
j ,ct j) and check that x0

j = x1
j . If not, abort the exper-

iment. Otherwise, compute yi← Decsk(ct j) and return
y j to A .

A.3 Differential Privacy
Definition 16 (KL Divergence). Let P and Q be dis-
crete distributions with common support X . The Kullback-
Leibler (KL) divergence between P and Q is D(P ||Q) :=

∑x∈X P (x) ln
(

P (x)
Q (x)

)
.

Definition 17 (Norm KLDP [38]). For t ∈ R≥0, let Mt : B→
C be a family of randomized algorithms, where B is a normed
space with norm ∥·∥ : B→R≥0. Let ρ∈R be a privacy bound.
We say that the family Mt is ρ-Kullback-Leibler differentially
private (ρ-KLDP) if, for all x,x′ ∈B with ∥x−x′∥≤ t, it holds:

D
(
Mt(x)||Mt(x′)

)
≤ ρ.

Definition 18 (Gaussian Mechanism). Let ρ > 0 and n ∈ N.
Define the (discrete) Gaussian Mechanism Mt : Zn→ Zn be
the mechanism that, on input x ∈ Zn outputs a sample from
NZn(x, t2

2ρ
In).

A.4 Ring Learning With Errors
Let N be a power two. Then, the polynomial ring R :=
Z[X]/(XN + 1) is the 2N-th cyclotomic field’s ring of inte-
gers. Let RQ := R/QR be the ring with coefficients reduced
modulo Q.

The Ring Learning With Errors (Ring LWE) distribution
with secret s ∈ ZN under a distribution χs and error distri-
bution χ, denoted as RLWEs(N,Q,χ), outputs pairs of form
(a,b) ∈ R2

Q, where a← RQ and b := a · s+ e for e← χ. The
decisional Ring LWE assumption with error distribution χ,
secret distribution χs and m samples, states that for s← χs,
the product distribution RLWEs(N,Q,χ)m is computationally
indistinguishable from the uniform distribution over (R2

Q)
m.

A.5 Proofs of Section 4
Proof of Theorem 1. First, application-aware IND-CPAD-
security implies application-aware IND-CPA-security, since
for the application class App, the adversary in the IND-CPA
definition is an IND-CPAD adversary making an Encpk call,
and no other Evalpk or Decsk calls.7

7Technically, for the adversary to issue no evaluation and decryption
calls one needs to use the fully adaptive Definition 15. For the simplified

In the reverse direction, assume towards a contradiction that
E is application-aware IND-CPA-secure but not application-
aware IND-CPAD-secure. Given an adversary A that breaks
the IND-CPAD-security of E for an application App, we
show how to build a series of adversaries B(i) breaking the
IND-CPA-security of E , for 1 ≤ i ≤ n, where n is the maxi-
mum number of inputs of computations inside App. We can
only have equivalence for the same application class App, so
both A and B(i) will select the same App and computations C̄
in the experiments.

The adversaries select an App based on the security pa-
rameter κ and receive pk← (κ,App). Then each B(i) runs
A(κ,App,pk) and answers its queries as follows:

• For each j’th encryption query (x0,x1), it stores the plain-
texts and the computed ciphertexts, and returns to A :

ct j←

Encpk(x1), if j < i
Encpk(x0), if j > i
Expr

cpa
b [B(i)], if j = i.

• For the query C̄, it lets ct′ ← Evalpk(C̄,ct) if C̄ ∈
App,C̄(x0) = C̄(x1) and x0,x1 ∈ dom(C̄), and returns
ct′ to A .

• For the decryption query for ct′, it returns C̄(x0) to A .

Finally, when A outputs bit b′, B(i) also outputs b′.
Define the following hybrid distributions H (i) =

Expr
cpa
0 [B(i)] for 1≤ i≤ n and H (n+1) = Expr

cpa
1 [B(n)]. Note

that by construction, H (i) = Expr
cpa
1 [B(i−1)] for 2≤ i≤ n. Us-

ing the exact correctness of E with respect to App, it holds that
the decryption response from B(i) to A are indistinguishable
from those received by A in Expr

cpad
b [A]. This leads to hav-

ing indistinguishability between H (1) and Expr
cpad
0 [A] and

between H (n+1) and Expr
cpad
1 [A]. Therefore, using a union

bound over the hybrid distributions gives that the advantage
of A in the IND-CPAD game is smaller than the sum over the
advantages of the n adversaries B(i) in the IND-CPA game.
Given E was assumed to be IND-CPA-secure for App, the ad-
vantage of each B(i) is negligible and n is polynomial in κ,
therefore the advantage of A in the IND-CPAD game for App
is also negligible.

Sketch-proof of Theorem 2. The proof follows the same steps
as the proof in Theorem 2 in [38], using similar modifications
for the application-aware non-adaptive case as in the proof of
Theorem 1.

Sketch-proof of Theorem 3. The proof follows the
proof of Corollary 2 in [38], with the correction
mentioned in https://github.com/openfheorg/

Definition 9, the adversary is required to make exactly one evaluation and
decryption call. In this case, one can require App to always contain a constant
function mapping all x ∈M to a fixed value C(x) = 0. This ensures C(x0) =
C(x1) is trivially satisfied. Then, the adversary can simply ignore the results
ct′,y of the trivial evaluation and decryption functions.

17

https://github.com/openfheorg/openfhe-development/blob/main/src/pke/examples/CKKS_NOISE_FLOODING.md
https://github.com/openfheorg/openfhe-development/blob/main/src/pke/examples/CKKS_NOISE_FLOODING.md
https://github.com/openfheorg/openfhe-development/blob/main/src/pke/examples/CKKS_NOISE_FLOODING.md
https://github.com/openfheorg/openfhe-development/blob/main/src/pke/examples/CKKS_NOISE_FLOODING.md
https://github.com/openfheorg/openfhe-development/blob/main/src/pke/examples/CKKS_NOISE_FLOODING.md
https://github.com/openfheorg/openfhe-development/blob/main/src/pke/examples/CKKS_NOISE_FLOODING.md

openfhe-development/blob/main/src/pke/examples/
CKKS_NOISE_FLOODING.md.

For the fully adaptive version of the application-aware
IND-CPAD game, where the adversary can make multiple de-
cryption queries, one has to parameterize Theorem 2 and
Theorem 3 by the number of decryption queries ℓ, as done
in [38].

A.6 More on Section 6
In [23], the attack is described using the adaptive definition
of IND-CPAD (we gave the definition of application-aware
IND-CPAD in Definition 15). The attack specifies the same
circuit C(x1, . . . ,xn) = x1 + . . .+ xn in the estimation and run-
time evaluation, but in one the inputs are on different database
indices, and in the other they are all at the same database
index. This translates to using independent ciphertexts in the
estimations but using correlated ciphertexts at run-time. The
adversary does not have chosen-ciphertexts capabilities, so
below we illustrate how this is achieved through the language
of Definition 15.

Concretely, the computation trace specified by the at-
tacker when choosing App is not the same as the com-
putation trace specified to the evaluation oracle. In par-
ticular, the computation class is specified as App =
{E(x1), . . . ,E(xn),H(C̄,1,2, . . . ,n),D(n + 1)}. During the
IND-CPAD experiment, the attacker specifies a sequence of
calls {E(x1), . . . ,E(xn),H(C̄,1,1, . . . ,1),D(n+ 1)} which is
not allowed in the application-aware model, since it has a
different computation trace.

18

https://github.com/openfheorg/openfhe-development/blob/main/src/pke/examples/CKKS_NOISE_FLOODING.md
https://github.com/openfheorg/openfhe-development/blob/main/src/pke/examples/CKKS_NOISE_FLOODING.md

	Introduction
	Our Contribution
	Organization

	Preliminaries
	Generic Security Definitions

	Application-Aware Security Models
	Equivalence between IND-CPA and IND-CPAD for Application-Aware Schemes
	Exact Schemes
	Approximate Schemes

	Practical Guidelines for Application-Aware Homomorphic Encryption
	Application-Aware Approximate FHE
	Application-Aware Exact FHE

	Discussion of Key Recovery Attacks
	``Attacks'' on Approximate FHE
	Attacks on ``Exact'' FHE schemes

	Concluding Remarks
	Appendix
	More preliminaries
	Fully adaptive definitions
	Differential Privacy
	Ring Learning With Errors
	Proofs of Section 4
	More on Section 6

