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Abstract. This paper studies an extension of the Linear Approximation Table (LAT) of vec-
torial Boolean mappings (also known as Substitution boxes) used in Linear Cryptanalysis
(LC). This extended table was called NonLinear Approximation Table (NLAT).
Similar concepts and parameters of a LAT are associated to the NLAT as well such as the
nonlinear uniformity, the nonlinear spectrum and the nonlinear bias/correlation.
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1 Introduction

Linear Cryptanalysis (LC) is a statistical method to distinguish a given block cipher from a (family)
of random permutations with the same block size.

LC was first described by Matsui and Yamagishi to attack the FEAL block cipher [9] in 1992.
Later, in 1993-1994, Matsui [8, 7] applied LC to analyze the DES block cipher [11].

The analyses on DES were initially focused on the 6× 4 Substitution boxes (S-boxes) which are
the only nonlinear components in DES. One of the tools Matsui built to study systematically the
propagation of linear relations across the DES S-boxes is the Linear Approximation Table (LAT),
that allows to identify for each 6-bit input linear relation, the most probable 4-bit output linear
relation for each S-box.

Further studying the LATs combined with the diffusion properties of the P permutation in DES
allowed Matsui to multi-round linear relations.

Therefore, the analysis approach was bottom-up, from small nonlinear components (the S-boxes
and the P permutation) to larger cipher components such as a full round, and then covering
multiple-rounds.

This report is organized as follows: Section 2 contains notations and definitions. Section 2.1
describes the NonLinear Approximation Table (NLAT) of a vectorial Boolean mapping (or S-box).
Section 3 describes an application of nonlinear approximations. Section 4 presents the conclusions.

2 Notation

Substitution boxes (S-boxes) are vectorial Boolean mappings [4] defined as S : IFn
2 → IFm

2 with
n,m ∈ IN+.

The inner-product or dot-product of two Boolean vectors u, x ∈ IFn
2 is defined as

< u, x >= u.xT =< x, u >= x.uT =
⊕

0≤i≤n−1

ui.xi, (1)



where uT is the transpose vector of u = (un−1, . . . , u0).
In the LC setting, u is a fixed n-bit mask, while x is a n-bit word in the cipher state. The

meaning of < u, x > is that the bits in u select specific bits of x when ui = 1. The result of < u, x >
is the parity of the bits of x selected by the bits of u.

A systematic analysis of all linear approximations involving all possible input and output bits
of a given S-box S is summarized in its Linear Approximation Table or LAT.

Definition 1. Let S : IFn
2 → IFm

2 be an S-box, and let u ∈ IFn
2 , v ∈ IFm

2 . The Linear Approximation
Table (LAT) of S is the 2n × 2m matrix whose entries are defined as

LATS(u, v) = γS(u, v)

where

γS(u, v) = |{x ∈ IFn
2 | < u, x >=< v, S[x] >}| − 2n−1

The linear approximation (or linear relation) < u, x >=< v, S[x] > implies a 0/1 parity value
< u, x > ⊕ < v, S[x] >. Therefore, γS(u, v) counts how often this parity value deviates from a
balanced parity distribution.

From the definition of LATS , if S is a bijective and involutory S-box, then LATS is a symmetric
matrix ie. the LAT of S−1 is the transpose of the LAT of S.

The strength of a linear approximation of S with bit-masks u, v is measured by its bias:

ϵS(u, v) = |γS(u, v)/2n| ∈ [0, 1/2]. (2)

The closer the bias ϵS(u, v) is to 1/2, the better the approximation of S is to a linear function given
by the masks (u, v).

If the bias is nonzero, then the input linear relation represented by the n-bit mask ’u’ is said to
propagate across S to the output linear relation represented by the m-bit mask ’v’, and the S-box

is said to be (linearly) active. This linear approximation is denoted u
S→ v.

If we consider the mapping lu(x) =< u, x > then the correlation between the mappings lu(x)
and lv(S[x]) is:

corr(lu(x), lv(S[x])) = 2 ∗ ϵs(u, v), (3)

which normalizes the range to the interval [0, 1].
The signed values of γS(u, v) tabulated in the LATS constitute linear spectrum [4] of S.
Outstanding values in the LATS refer to the pairs of input/output bit-masks (u, v) with the

highest bias which is denoted as ΓS :

ΓS = maxu∈(IFn
2 )

∗,v∈(IFm
2 )∗ |γS(u, v)|, (4)

where (IFn
2 )

∗ means IFn
2\ 0, and 0 is the zero vector.

The S-box S is called a linearly ΓS-uniform mapping [12], which means that the absolute value
of all LATS entries are smaller than or equal to ΓS .

Table 1 lists the linear uniformity of the 6 × 4 DES S-boxes [8, 7] and that of the AES S-
box [5]. In AES, ΓS is used along with the diffusion components ShiftRows and MixColumns to
upperbound the bias of linear relations across multiple rounds, and therefore demonstrate AES’s
resistance against conventional LC.
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Table 1. Examples of S-boxes and their linear uniformity.

S-box linear uniformity maximum bias

DES S1 18 18/26 ≈ 2−1.83

DES S2 16 16/26 = 2−2

DES S3 16 16/26 = 2−2

DES S4 16 16/26 = 2−2

DES S5 20 20/26 ≈ 2−1.67

DES S6 14 14/26 ≈ 2−2.19

DES S7 18 18/26 ≈ 2−1.83

DES S8 16 16/26 = 2−2

AES S-box 16 16/28 = 2−4

Also, in [8], Matsui exploited the fact that ΓS5 = 20 to develop linear relations across up to
20 rounds of DES. According to Table 1, ΓS5

is the largest linear uniformity among all eight DES
S-boxes.

As an example of a LAT, consider the 4×4 S-box S1 : IF4
2 → IF4

2 used in the Serpent block cipher
[2]. The truth table of S1 is in Table 4 in the Appendix, where the subscript x denotes hexadecimal
notation.

The LAT of S1 is in Table 2. Therefore, S1 is a linearly 4-uniform mapping.

Table 2. LAT of S-box S1 of the Serpent cipher with input bit-mask ’u’ (row) and output bit-mask ’v’
(column). For instance, γS1(6x, 1x) = −2.

u\v 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

0x 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1x 0 -2 -2 -4 0 -2 2 0 2 0 0 -2 2 0 -4 2
2x 0 -2 2 0 0 -2 2 0 -2 4 0 -2 2 0 4 2
3x 0 0 0 0 0 0 4 -4 0 0 0 0 -4 -4 0 0
4x 0 0 -2 2 0 0 2 -2 -2 -2 0 -4 2 2 0 -4
5x 0 2 0 -2 0 2 0 -2 0 2 4 2 4 -2 0 -2
6x 0 -2 0 2 0 -2 -4 -2 0 -2 4 -2 0 -2 0 2
7x 0 -4 2 2 0 4 2 2 2 -2 0 0 2 -2 0 0
8x 0 0 0 0 0 4 0 -4 0 0 0 0 0 4 0 4
9x 0 -2 2 0 0 2 -2 0 -2 4 0 -2 -2 0 -4 -2
Ax 0 2 2 4 0 -2 2 0 -2 0 0 2 2 0 -4 2
Bx 0 -4 -4 0 0 0 0 0 -4 0 0 4 0 0 0 0
Cx 0 0 -2 2 -4 0 -2 -2 2 2 -4 0 2 -2 0 0
Dx 0 2 -4 2 4 2 0 2 0 2 0 -2 0 -2 0 2
Ex 0 2 0 -2 -4 2 0 2 -4 -2 0 -2 0 -2 0 2
Fx 0 0 -2 2 -4 0 2 2 2 2 4 0 -2 2 0 0
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2.1 Nonlinear Approximation Table (NLAT)

A natural extension of the LAT of an S-box is to consider nonlinear bit-masks instead of linear
ones.

Consider an S-box S : IFn
2 → IFm

2 , with n,m ∈ IN+. In LC, the LAT of S lists all 2n × 2m linear
combinations of the input and output bits of S.

As an example, consider a 3-bit linear mask operating on an input x = (x2, x1, x0). The 2
3 linear

masks are typically ordered as {0, x0, x1, x0 + x1, x2, x0 + x2, x1 + x2, x0 + x1 + x2}, where ’+’
denotes bitwise exclusive-or.

The nonlinear masks for this same 3-bit word would include all possible combinations of the
23 − 1 = 7 nonzero monomials {x0, x1, x0.x1, x2, x0.x2, x1.x2, x0.x1.x2}, where ’.’ means bitwise-
AND. There are 27 − 1 possible combinations of nonzero monomials.

In general, for n-bit data, while linear masks are n bits long, the nonlinear masks are 2n − 1
bits long.

The use of nonlinear masks requires the dot-product (1) to be redefined. We call this new concept
a nonlinear dot-product.

Due to the asymmetry in size, the order of the parameters matter in the nonlinear dot-product
which is the following binary operator:

�u, x� : IF2n−1
2 × IFn

2 → IF2,

because the nonlinear mask u is 2n − 1 bits long, while the second parameter (on which the mask
is applied) is only n bits long.

The nonlinear dot-product is defined as

�u, x� =
⊕
∀xi

fu(x), (5)

where fu(x) is a nonlinear Boolean function of the bits of x = (xn−1, . . . , x0).
For instance, consider a 3-bit input x = (x2, x1, x0). Nonlinear masks applied to x may include

any of the 23 − 1 = 7 monomials derived from the 3 bits (x2, x1, x0). These monomials, in reverse
lexicographic order, are: (x0.x1.x2, x1.x2, x0.x2, x2, x0.x1, x1, x0).

For instance, the 7-bit nonlinear mask u = 11110002 stands for fu(x) = x2 + x0.x2 + x1.x2 +
x0.x1.x2, and �u, x� =

⊕
xi;0≤i≤2(x2 + x0.x2 + x1.x2 + x0.x1.x2). Table 5 in the Appendix shows

how to translate a binary representation of a nonlinear mask to its ’symbolic’ representation.
A systematic analysis of all nonlinear approximations involving all the input and output bits of

a given S-box S is summarized in its NonLinear Approximation Table or NLAT.

Definition 2. Let S : IFn
2 → IFm

2 be an S-box and u ∈ IF2n−1
2 and v ∈ IF2m−1

2 be nonlinear masks.
The NonLinear Approximation Table (NLAT) of S is the 22

n−1 × 22
m−1 matrix whose entries are

defined as
NLATS(u, v) = γ∗

S(u, v)

where
γ∗
S(u, v) = |{x ∈ IFn

2 |� u, x� = �v, S[x]�}| − 2n−1

Corollary 1. If S is a bijective and involutory S-box then the NLAT of S is symmetric, that is,
the NLAT of S−1 is the transpose the NLAT of S.
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Similar to linear approximations, the nonlinear approximations �u, x� = �v, S[x]� imply a
parity value �u, x�+� v, S[x]�. Therefore, γ∗

S(u, v) counts how often the parity of the nonlinear
approximation deviates from that of a balanced or uniform distribution.

The strength of a nonlinear approximation of S with bit-masks u, v is measured by its bias:

ϵ∗S(u, v) = |γ∗
S(u, v)/2

n| ∈ [0, 1/2]. (6)

The closer the bias is to 1/2, the better the nonlinear approximation is.
If we consider the mapping l∗u(x) = �u, x� then the correlation between the mappings l∗u(x)

and l∗v(S[x]) can be defined as:

corr(l∗u(x), l
∗
v(S[x])) = 2 ∗ ϵ∗S(u, v), (7)

which normalizes the range to the interval [0, 1].

Definition 3. The values γ∗
S(u, v) in the NLAT of S constitute its nonlinear spectrum.

Outstanding values in the NLATS refer to the pairs of input/output nonlinear bit-masks (u, v)
with the highest bias. Masks that reach the maximum bias in the NLATS are associated to the
nonlinear uniformity of S.

Let the highest bias in the NLAT of S be denoted:

Γ ∗
S = maxu∈(IF2n−1

2 )∗,v∈(IF2m−1
2 )∗ |γ∗

S(u, v)|, (8)

where (IF2n−1
2 )∗ means IF2n−1

2 \ 0, and 0 is the zero vector.

Definition 4. The S-box S is called a nonlinearly Γ ∗
S -uniform mapping, which means that the abso-

lute value of all NLATS entries are smaller than or equal to Γ ∗
S .

As an example of an NLAT, consider the S1 S-box in Table 4. Its 22
4−1×22

4−1 NLAT is too large
to be displayed in this report but S1’s nonlinear uniformity can be found to be 8. Comparatively,
S1’s linear uniformity is 4.

The NLAT of a n×m S-box S can be partitioned into four non-overlapping sub-tables denoted:
(L-L), (L-NL), (NL-L) and (NL-NL) to indicate the nature of the masks used at the input and
output of S, respectively.

(L-L) a 2n × 2m sub-table with linear masks (u, v), which is the LAT of S. This fact shows that the
NLAT is a natural extension of the LAT.

(L-NL) a 2n × (22
m−1 − 2m) sub-table with masks (u, v) where u is linear but v is nonlinear.

(NL-L) a (22
n−1 − 2n)× 2m sub-table with masks (u, v) where u is nonlinear but v is linear.

(NL-NL) a (22
n−1 − 2n)× (22

m−1 − 2m) sub-table with masks (u, v) where both u and v are nonlinear.

For instance, for n = m = 3, (L-L) is an 8×8 matrix, while (L-NL) is an 8×120 matrix, (NL-L)
is a 120× 8 matrix, and (NL-NL) is a 120× 120 matrix.

In the NLAT of an S-box S, some nonlinear masks are expected to reach the maximum possible
bias 1/2. Examples of such nonlinear expressions are the Algebraic Normal Form (ANF) [4] of the
output coordinates yi of S because equality in the ANFs always hold. If S is bijective then the ANF
of the output coordinates xi of S

−1 are also present in the NLATS .
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Therefore, the nonlinear uniformity of an S-box S : IFn
2 → IFm

2 is 2n−1 and is achieved by the
nonlinear masks associated to the ANF of the S-box output coordinates (among other nonlinear
relations).

For instance, let (y3, y2, y1, y0) = S1[x3, x2, x1, x0]. Then, the (NL-L) sub-table of the NLAT of
S1 contains the nonlinear relations corresponding to its ANF coordinates [13]:

(a) y3 = 1 + x1 + x2.x0 + x3 + x3.x0 + x3.x1.x0 + x3.x2.x0 + x3.x2.x1,
(b) y2 = 1 + x1 + x1.x0 + x2 + x3,
(c) y1 = 1 + x0 + x1.x0 + x2 + x2.x0 + x3 + x3.x1 + x3.x1.x0 + x3.x2.x0 + x3.x2.x1,
(d) y0 = 1 + x0 + x1 + x2.x1 + x3.x0 + x3.x2 + x3.x2.x0 + x3.x2.x1

and likewise the (L-NL) sub-table of the NLATS1 contains the following ANFs [13] of S−1
1 :

(e) x3 = y0 + y2 + y3 + y3.y1,
(f) x2 = 1 + y0 + y1 + y2.y0 + y2.y1 + y2.y1.y0 + y3 + y3.y2.y0,
(g) x1 = y1 + y2 + y2.y1.y0 + y3 + y3.y0 + y3.y1 + y3.y2.y0 + y3.y2.y1,
(h) x0 = 1 + y0 + y1 + y1.y0 + y2.y1.y0 + y3.y1 + y3.y2.y0 + y3.y2.y1.

In the NLATS1
, we have also found the ’negation’ of (h): x0 = y0+y1+y1.y0+y2.y1.y0+y3.y1+

y3.y2.y0 + y3.y2.y1, with bias 1/2, and (g) whose equality always holds (bias is 1/2).
Actually, these nonlinear approximations with maximum possible bias are not approximations

but rather deterministic nonlinear relations, in contrast to the majority of the entries in the NLATS1 ,
which are probabilistic.

Since the ANFs of every output coordinate of an n ×m S-box S will be in the NLAT (as well
as the ANF of the input coordinates), the nonlinear uniformity of S will be maximum (2n−1), and
their biases will be the maximum possible (1/2).

Moreover, there are other nonlinear relations in the NLATS1
(holding with maximum possible

bias 1/2), that are not the ANFs of S1’s input or output coordinates, such as:

x0.x1 = y2 + y0.y2 + y1.y2 + y3 + y0.y3 + y1.y2.y3,
x0.x2 = y0 + y1 + y0.y1 + y3 + y0.y3 + y0.y2.y3 + y1.y2.y3,
x1.x2 = y0.y1 + y2 + y1.y2 + y0.y1.y2 + y1.y3 + y2.y3,
x0.x1.x2 = y2 + y0.y2 + y1.y2 + y0.y1.y2 + y1.y3 + y0.y1.y3 + y2.y3 + y0.y2.y3,
x0.x3 = y2 + y0.y2 + y1.y2 + y0.y1.y2 + y3 + y0.y3 + y1.y3 + y0.y2.y3

These deterministic nonlinear relations may be of independent interest for algebraic cryptanalysis
[1].

While the absolute value of all entries in the LAT of S1 are even integers, in the NLAT of S1

there are odd integer values.
These odd-valued entries in the NLAT are due the monomial

∏
0≤i≤3 yi that never happens in

the ANF of bijective S-boxes.
For instance, for S1, the monomial y3.y2.y1.y0 never happens in S1’s ANF and the nonlinear

relations that contain y3.y2.y1.y0, the NLATS1 entries are odd valued.

3 Applications

In [6], Knudsen and Robshaw had the idea of using nonlinear approximations (along with linear
ones) to improve the linear analysis of block ciphers.

6



For instance, they noticed that for the DES cipher, there are nonlinear approximations with
larger bias than linear approximations could provide.

But, there are clear difficulties of: (i) combining nonlinear relations across successive rounds,
and (ii) linking nonlinear relations of S-boxes with those of linear components (such as the diffusion
layers) in a single round.

In this section, we exploit their idea of using nonlinear relations only in the beginning and at
the end of an existing linear relation.

The most promising targets to test this idea of combining linear and nonlinear relations are
ciphers designed for a hardware environment and that use bit-based diffusion components.

In particular, we will experiment with the PRESENT block cipher [3].
PRESENT is a 64-bit block cipher with an SPN design, key sizes of 80 or 128 bits, and iterating

31 rounds. PRESENT uses only one 4 × 4 S-box SP whose truth table is listed in Table 6 in the
Appendix.

Each full round in PRESENT consists of the following operation (in order):

(i) bitwise-xor of a 64-bit round key with the cipher state;
(ii) an S-box layer where each nibble is input to SP ;
(iii) a diffusion layer called pLayer, which consists of bit permutation involving the 64 bits in the

state.

In [10], linear distinguishers for a variable number of rounds of the PRESENT block cipher were
described.

All the linear distinguishers in [10] use the one-round iterative linear relation (9):

0000000000200000x
1r→ 0000000000200000x, (9)

where each hexadecimal digit stands for a 4-bit piece of a linear mask applied to a single nibble
(4-bit word) in the 64-bit state of PRESENT.

The 11th nibble (from left to right) is the only active nibble at both the input and the output of

(9). This iterative linear relation is based on the (u, v) = (2, 2) linear mask across SP : 2
SP→ 2, with

bias 2−3. It is a fix-point linear relation across SP . The LAT of SP can be found in the appendix
of [10].

Moreover, (9) exploits a fix-point of the pLayer of PRESENT, which is just a bit permutation.
This fix-point connects the second least significant output bit of SP to the second input bit of SP

in the next round. For further details about the pLayer, see [10].
Concatenating (9) with itself allows to extend this linear relation across several rounds with a

fixed decrease in the bias due to the Piling-Up Lemma [7].
Further, exploiting the linear hull effect [12], several linear trails can be counted when (9) covers

multiple rounds. For instance, after 20 rounds of (9), there are 20466576 linear trails inside it, and
the estimated bias of 2−41 (without considering the linear hull effect) becomes 2−28.85 when all the
internal linear trails are accounted for.

Let (y3, y2, y1, y0) = SP [x3, x2, x1, x0]. The ANF of the output coordinates of SP are:

y3 = 1 + x0 + x1 + x1.x2 + x0.x1.x2 + x3 + x0.x1.x3 + x0.x2.x3,
y2 = 1 + x0.x1 + x2 + x3 + x0.x3 + x1.x3 + x0.x1.x3 + x0.x2.x3,

(*) y1 = 1 + x0.x1.x2 + x3 + x1.x3 + x0.x1.x3 + x2.x3 + x0.x2.x3,
y0 = x0 + x2 + x1.x2 + x3.
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and the ANF of the output coordinates of S−1
P are:

x3 = y0 + y1 + y0.y1 + y2 + y0.y1.y2 + y3 + y0.y2.y3,
x2 = 1 + y0.y1 + y0.y2 + y1.y2 + y0.y1.y2 + y3 + y0.y3 + y1.y3 + y0.y1.y3 + y0.y2.y3,

(**) x1 = y0 + y1 + y0.y2 + y0.y1.y2 + y3 + y1.y3 + y0.y1.y3 + y2.y3 + y0.y2.y3,
x0 = 1 + y0 + y2 + y1.y3.

The ANF of SP and those of its inverse are interesting nonlinear relations to combine with (9)
because:

(i) they holds with maximum possible bias;
(ii) one end of the equality has only one bit, which makes them attractive to combine with linear

relations in (9). Here it becomes clear the advantage of attacking ciphers that employ bit
permutations as diffusion components.

Now, we can extend the 20-round relation using (9) by adding the ANF of SP at the top and
the ANF of S−1

P at the end.
At the top-end of 20 rounds of (9), the second least significant input bit to the 11th nibble in

(9) is connected to the second output bit of SP one round above. That is bit y1, whose nonlinear
expression is described in (*). It is an exact nonlinear expression from the ANF of SP with maximum
bias 1/2.

At the bottom-end of 20 rounds of (9), the second least significant output bit of the 11th nibble
in (9) is connected to the second input bit of SP one round below. That is bit x1, whose nonlinear
expression is described in (**). It is an exact nonlinear expression from the ANF of S−1

P with
maximum bias 1/2.

Combining both nonlinear expression, the result is a 22-round nonlinear relation with the same
bias as the original 20-round linear relation (since the ANF correspond to nonlinear relations with
maximum bias).

4 Conclusions

In this report, an extension of the Linear Approximation Table (LAT) of an S-box was investigated
using nonlinear bit masks. The extemded table was called NonLinear Approximation Table (NLAT).

Table 3 compares some features of the LAT and NLAT of an n×m-bit S-box.

Table 3. Some features of the LAT and the NLAT of an n×m-bit S-box S : IFn
2 → IFm

2 .

LAT NLAT

n-bit linear input mask (2n − 1)-bit nonlinear input mask
m-bit linear output mask (2m − 1)-bit nonlinear output mask

linear uniformity nonlinear uniformity

2n × 2m matrix 22
n−1 × 22

m−1 matrix
absolute entry values are even integers absolute entry values can be even or odd integers
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A Tables

Table 4. Truth Table (TT) of S-box S1 used in the Serpent block cipher.

i 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

S1[i] Fx Cx 2x 7x 9x 0x 5x Ax 1x Bx Ex 8x 6x Dx 3x 4x
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Table 5. Notation for 7-bit nonlinear masks based on reverse lexicographic order of monomials.

nonlinear mask Monomials

binary symbolic x0.x1.x2 x1.x2 x0.x2 x2 x0.x1 x1 x0

00000012 x0 0 0 0 0 0 0 1
00000102 x1 0 0 0 0 0 1 0
00000112 x0 + x1 0 0 0 0 0 1 1
00001002 x0.x1 0 0 0 0 1 0 0
00001012 x0.x1 + x0 0 0 0 0 1 0 1
00001102 x0.x1 + x1 0 0 0 0 1 1 0
00001112 x0.x1 + x1 + x0 0 0 0 0 1 1 1

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
11111112 x0.x1.x2 + x1.x2 + ...+ x0 1 1 1 1 1 1 1

Table 6. Truth Table (TT) of S-box SP and S−1
P used in the PRESENT block cipher.

i 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

SP [i] Cx 5x 6x Bx 9x 0x Ax Dx 3x Ex Fx 8x 4x 7x 1x 2x
S−1
P [i] 5x Ex Fx 8x Cx 1x 2x Dx Bx 4x 6x 3x 0x 7x 9x Ax
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