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Abstract. Pairing-based arguments offer remarkably small proofs and space-efficient provers,
but aggregating such proofs remains costly. Groth16 SNARKs and KZG polynomial commit-
ments are prominent examples of this class of arguments. These arguments are widely deployed
in decentralized systems, with millions of proofs generated per day. Recent folding schemes have
greatly reduced the cost of proving incremental computations, such as batch proof verification.
However, existing constructions require encoding pairing operations in generic constraint sys-
tems, leading to high prover overhead. In this work, we introduce Mira, a folding scheme that
directly supports pairing-based arguments. We construct this folding scheme by generalizing
the framework in Protostar to support a broader class of special-sound protocols. We demon-
strate the versatility and efficiency of this framework through two key applications: Groth16
proof aggregation and verifiable ML inference. Mira achieves 5.8x faster prover time and 9.7x
lower memory usage than the state-of-the-art proof aggregation system while maintaining a
constant-size proof. To improve the efficiency of verifiable ML inference, we provide a new
lincheck protocol with a verifier degree that is independent of the matrix order. We show that
Mira scales effectively to larger models, overcoming the memory bottlenecks of current schemes.

1 Introduction

Succinct non-interactive arguments of knowledge (SNARKs) are powerful cryptographic primitives
that enable a prover to convince a verifier of the validity of a claim with a short proof. These primitives
enable verifiable computation [BFLS91,GGP10], where a client can outsource a difficult task to an
untrusted cloud provider and then check via a proof that the task was performed correctly. While
theoretical SNARK constructions have been known for decades [Kil92, Mic94, BCI+13], there have
been numerous efforts to minimize the prover complexity and proof size for practical applications.

Pairing-based SNARKs have achieved widespread adoption due to a remarkable property: the
proof consists of only a few group elements, regardless of the complexity of the claim. A well-known ex-
ample is the Groth16 SNARK [Gro16], which can prove the validity of any NP statement. As SNARKs
have grown in adoption, there have been efforts to develop domain-specific SNARKs for various ap-
plications, including zero-knowledge theorem proving [LOB24, LKA+24], regular expression match-
ing [AIM+24], and training and inference of deep neural networks [LXZ21,WK23,SLZ24,APKP24].

In the domain of verifiable ML inference, pairing-based SNARKs have recently achieved impressive
results [WK23]. In deep neural networks, the primary operations are matrix-vector multiplication and
nonlinear function evaluation. To prove the correctness of a matrix-vector multiplication, a prover
may use cqlin [EG23a], a pairing-based lincheck protocol with constant-size proofs that requires
only O(n) prover operations, where n is the matrix order. To prove the correctness of a nonlinear
function evaluation, a prover may employ a lookup argument for greater efficiency. In this case, all
valid input-output pairs for the function are stored in a lookup table, and the prover argues that the
selected pairs are present in this table. For example, cq [EFG22] is a pairing-based lookup argument
where the prover complexity is independent of the table size. Other pairing-based arguments, such
as KZG polynomial commitment schemes [KZG10], have also seen broad adoption in decentralized
systems [FK23,TSZ+24] and verifiable machine learning [WK23,SCJ+24].

As SNARKs are applied to increasingly complex computations, it may be infeasible for a single
machine to produce a proof with its limited computational resources. To address this issue, there have
been efforts to distribute the work of proof generation across multiple machines. One strategy is to
partition the work of existing SNARKs across multiple machines. DIZK [WZC+18] developed an ap-
proach of this nature for distributing the workload of the Groth16 prover. Another strategy is to split
a single large statement into N smaller statements, which are proved in multiple steps. At each step,
the prover generates a proof that: (1) the current statement is valid, and (2) the proof of the previous
statement is valid. This strategy is formalized as incrementally verifiable computation (IVC) [Val08].



This strategy can be generalized to verify any distributed computation over a directed acyclic graph
of nodes. In this more general setting, the technique is known as proof-carrying data (PCD) [CT10].
PCD has been highly impactful in real-world applications, enabling efficient zero-knowledge virtual
machines [BCTV14,MAG+24], verifiable MapReduce computations [CTV15], image authentication
systems [NT16], succinct ledgers [BMRS20,CCDW20], append-only dictionaries [TFZ+22], and veri-
fiable financial disclosures [BF24]. These techniques are useful not only for coordinating the efforts of
multiple independent provers, but also for reducing the resource requirements for a single prover that
aims to prove the correctness of a complex local computation. For example, to prove the correctness
of inference of an ML model with N layers, a prover could partition the work by layer. Alternatively,
the prover could further partition the work, separately proving the correctness of each matrix-vector
multiplication or nonlinear function evaluation and then aggregating the resulting proofs.

To achieve concrete efficiency improvements, it is critical to minimize the recursive overhead, i.e.,
the additional work that the prover performs at each step, beyond proving each statement’s validity. In
traditional constructions of IVC/PCD [BCTV14,CTV15], the recursive overhead was substantial due
to the costs of representing the pairing operations in the step circuit. Halo [BGH19] pioneered a novel
approach to minimize the recursive overhead by leveraging the additive property of the polynomial
commitment scheme [BDFG21]. Subsequent work further reduced the prover overhead by introducing
accumulation/folding schemes [BCMS20,BCL+21,KST22]. These elegant techniques avoid the costly
verification of the previous proof at each step, instead performing a lightweight check for the validity
of a related claim. There has been tremendous progress in reducing the complexity of this related
claim. In recent folding schemes such as Nova [KST22] and Protostar [BC23], the dominant cost of
these checks is just a few group operations, which are far less expensive than pairings in arithmetic
circuit format. However, if the main claim involves pairings, folding will still be resource-intensive.

Recently, there have been efforts to generalize the supported relations for folding schemes. For
instance, the initial constructions [BCL+21,KST22] of accumulation/folding1 schemes only supported
rank-one constraint systems (R1CS). Subsequently, Protostar [BC23] generalized these techniques to
handle a broader set of special-sound protocols with an algebraic verifier, while HyperNova [KS24b]
generalized the construction in Nova [KST22] to support Customizable Constraint Systems, which
can represent R1CS, Plonkish and AIR arithmetizations without significant overheads. However, none
of these works have optimized for the important class of pairing-based protocols.

1.1 Technical overview

To address these significant limitations, we present a generic accumulation scheme for a broader class
of special-sound protocols. In the class of special-sound protocols that are considered in Protostar, the
prover sends messages consisting of field elements, and the verifier performs algebraic checks on these
messages and other values in the transcript. In our expanded class of special-sound protocols, the
prover messages and the public inputs are encoded with a linear-only encoding scheme [BCI+13]. In
these schemes, an encoding of a linear combination of elements can be obtained from the encodings
of the underlying elements using a homomorphic evaluation algorithm. An algebraic test can be
performed on the encoded elements to check an algebraic relation on the underlying elements. The
pairing operation is an example of a degree-two algebraic test, where the encoded values are group
elements. In this setting, the verifier performs algebraic tests on the encoded values and the challenges.

Two constructions of linear-only encoding schemes are particularly relevant in this setting. The
first construction is the trivial identity encoding. This yields a class of protocols where the prover
messages are field elements and the verifier checks the output of an algebraic map defined over these
field elements. In this case, the Protostar accumulation scheme is directly applicable. The second
construction is based on bilinear maps, which allow for degree-two algebraic tests. This yields a class
of protocols where the prover messages are group elements, and the verifier performs the algebraic
test using pairings. This allows usage of the trivial identity commitment in the accumulation scheme
since the prover messages are already succinct due to the choice of the linear-only encoding scheme.

To construct an accumulation scheme for a specific protocol, it suffices to specify the relevant de-
tails of the protocol and apply the generic accumulation scheme in a black-box manner. The relevant
details include the public inputs, the prover’s messages, the verifier’s challenges, and the verifier’s

1 As in prior work, we use these terms interchangeably, except when providing the precise technical definitions.



algebraic tests. We specify these details to evaluate the concrete efficiency and clarify the implemen-
tation aspects. However, the security of the accumulation scheme for a given protocol will follow
directly from our result that establishes the security for the entire class of protocols.

The degree of the relation has a great impact on the efficiency of the folding scheme, since a higher
degree relation requires the prover to compute additional cross terms. The verifier must then check
that the linear combination of these cross terms is correct. As a result, it is important to design the
special-sound protocol to minimize the complexity of the folding verifier. The lincheck protocol from
cqlin [EG23a] has a verifier degree that is linear in the matrix order, which would create prohibitive
overhead in folding. We propose a modified protocol that achieves a verifier degree that is independent
of the matrix order n, while only requiring O(log n) additional field elements to be sent by the prover.

1.2 Our contributions

We propose a generic accumulation scheme for a broader class of special-sound protocols, building
upon the framework in Protostar [BC23] and Protogalaxy [EG23b]. This scheme enables folding of
a variety of useful pairing-based arguments without the need to encode the expensive pairing-based
checks in the step circuit, thereby improving the folding efficiency for this class of arguments. We im-
plemented this scheme and demonstrated major performance improvements for two key applications:

– The first application is proof aggregation for Groth16 SNARKs. Prior work [BMM+21,GMN22]
achieves logarithmic-size proofs or incurs high recursive overhead [BCTV14]. We are able to
achieve constant-size proofs with low prover complexity via our SnarkStar protocol, a specific
instantiation of our scheme that achieves 5.8x faster prover time and 9.7x lower memory usage than
the state-of-the-art proof aggregation system. This protocol enables aggregation of proofs with
different verification keys, offering a flexible approach to aggregation in prover markets [WZY+24].

– The second application is verifiable ML inference. TensorPlonk [WK23] is a recent SNARK for
ML inference that uses cq [EFG22], cqlin [EG23a], and KZG polynomial commitments [KZG10]
as building blocks. To reduce the prover’s space complexity, we apply our folding scheme to
these pairing-based arguments. To further improve efficiency, we provide an optimized lincheck
protocol with a folding verifier degree that is independent of the matrix order. We assemble
these subprotocols to form the TensorStar protocol, which enables fast proof generation for
ML inference on resource-constrained devices. We show that our scheme scales to larger models,
whereas current solutions are unable to generate proofs for such models due to memory limitations.

2 Preliminaries

2.1 Building blocks

Notation We use λ ∈ N to denote the security parameter with unary representation 1λ. We use
negl(λ) to denote the class of negligible functions. We use [l] to denote the set of integers {1, . . . , l}.
We use F to denote a field of prime order p such that log(p) = Ω(λ).

Commitment schemes A commitment scheme C = (Com,Vfy) is a pair of efficient algorithms defined
over a message space M and a randomness space R where:

– cm ← Com(m; r) is a commit algorithm that produces a commitment cm given the message
m ∈M to be committed and the randomness r ←$R.

– b← Vfy(cm,m, r) is a verification algorithm that checks whether (m, r) is the correct opening of
the commitment cm and outputs a bit b ∈ {0, 1} representing accept if b = 1 and reject otherwise.

Informally, a commitment scheme is called binding if it is infeasible to open a commitment to a
different message. It is called hiding if the commitments of any two messages are indistinguishable.
Commitment schemes can be built from collision-resistant hash functions.



Linear-only encoding schemes A linear-only encoding scheme E = (Gen,Enc,Vfy,Add,QuadTest) is a
tuple of efficient algorithms defined over an encoding space C and a domain F where:

– C, pk← Gen(1λ) is a generation algorithm that outputs the encoding space C and public key pk.
– c← Enc(pk, x) is an encoding algorithm that outputs the encoded value c ∈ C for input x ∈ F.
– b← Vfy(pk, c) is a verification algorithm that outputs a bit b ∈ {0, 1} representing whether c ∈ C

is a valid encoding of some element in the domain F.
– c∗ ← Add(pk, c1, c2) is a homomorphic evaluation algorithm that outputs c∗ = Enc(pk, x1 + x2)

for c1 = Enc(pk, x1) and c2 = Enc(pk, x2).
– b ← QuadTest(pk, (c1, c2, c3),α) is a degree-two algebraic test algorithm that takes a vector

(c1, c2, c3) ∈ C3n and a vector α ∈ Fn as input and outputs a bit b ∈ {0, 1} representing whether
cij = Enc(pk, xij) and ⟨x1,x2⟩ = ⟨α,x3⟩ for some vectors x1,x2,x3 ∈ Fn.

This scheme must satisfy the linear-only property. Informally, this property ensures that if an
adversary A receives encodings {ci}i∈[n] of {xi}i∈[n] and outputs a valid encoding c∗, then c∗ must
encode a linear combination of {xi}i∈[n]. We do not specifically require that the scheme satisfies the
one-way property. Informally, this property ensures that it is infeasible to decode the encoding of a
random element x. However, the pairing-based construction does satisfy this property.

Linear-only. A linear-only encoding scheme has the linear-only property if for any polynomial-
size adversary A there is a polynomial-size extractor Ext such that for any sufficiently large λ ∈ N,
any auxiliary input z ∈ {0, 1}poly(λ), and any plaintext generator M, and some Π ∈ Fk×m, b ∈ Fk:

Pr


(a′1, . . . , a

′
k)

⊤ = Π · (a1, . . . , am)⊤ + b
∧
∃i ∈ [k] : Vfy(pk, c′i) = 1, c′i /∈ Enc(pk, a′i)

∣∣∣∣∣∣∣∣∣∣
C, pk← Gen(1λ)
(a1, . . . am)← Fm

(c1, . . . , cm)← (Enc(pk, a1), . . . ,Enc(pk, am))
(c′1, . . . , c

′
k)← A(pk, c1, . . . , cm; z)

(Π, b)← Ext(pk, c1, . . . , cm; z)

 ≤ negl(λ).

For c ∈ Cn, x ∈ Fn, we introduce the notation c = Enc(pk,x) if ci = Enc(pk,xi) for i ∈ [n].

Bilinear group structures Pairing-based arguments rely on cryptographic assumptions about bilinear
groups. We formalize these assumptions via a bilinear group sampler, which is an efficient algorithm
SampleGrp that given a security parameter λ (represented as 1λ), returns (G1,G2,GT , q, g1, g2, e)
where G1,G2,GT are groups with order divisible by the prime q ∈ N, g1 generates G1, g2 generates
G2, and e : G1×G2 → GT is a (non-degenerate) bilinear map. We use the additive bracket notation,
writing [a]κ to denote a · gκ where gκ = [1]κ is a fixed generator of Gκ for κ ∈ {1, 2, T}. A bilinear
group structure is of type 3 if there is no efficiently computable homomorphism from G2 to G1. We
consider pairings of type 3 only. We rely on the q-DLOG assumption [FKL18,EG23a], which states
that for any PPT algorithm A:

Pr

[
y = x

∣∣∣∣ grp := (G1,G2,GT , q, g1, g2, e)← SampleGrp(1λ);x←$ F
y ← A(grp, [1]1, [x]1, . . . , [xq]1, [1]2, [x]2, . . . , [x

q]2)

]
≤ negl(λ).

2.2 Interactive proofs

We adopt the definitions of [BCL+21,AFK22,BC23] in the following preliminary sections.

Public-coin interactive proof An interactive proof Π = (P,V) for a relation R consists of an interactive
protocol whereby the prover P, holding a witness w, interacts with the verifier V on common input
pi to convince V that (pi,w) ∈ R. At the end, V outputs a bit for accept/reject. Accordingly, we
say that the protocol’s transcript (i.e., the set of all messages exchanged in the protocol execution)
is accepting or rejecting. The protocol is considered to be public coin if the verifier randomness is
public. The verifier messages are referred to as challenges. Π is a (2k − 1)-move protocol if there are
k prover messages and k − 1 verifier messages.



2.3 Non-interactive arguments in the ROM

Random-Oracle Non-Interactive Argument of Knowledge (RO-NARK) A non-interactive random or-
acle proof for a relation R is a pair (P,V) of probabilistic random oracle algorithms such that: Given
(pi,w) ∈ R and access to a random oracle ρNARK, the prover PρNARK(pi,w) outputs a proof π. Given pi,
a proof π, and access to the same random oracle ρNARK, the verifier VρNARK(pi, π) outputs 0 to accept
or any other value to reject. These algorithms have the following security properties:

Perfect completeness. The NARK has perfect completeness if for all (pi,w) ∈ R:

Pr[VρNARK(pi,PρNARK(pi,w)) = 0] = 1

Knowledge soundness. The NARK has adaptive knowledge-soundness with knowledge error
κ : N× N→ [0, 1] if there exists a knowledge extractor Ext, with the following properties:

The knowledge extractor, given input n, and oracle-access to any polynomial-time Q-query random
oracle prover P∗ that outputs statements of size n, runs in expected polynomial time in |pi|+Q, and
outputs {(pi, π, aux, v;w)} such that a) {(pi, π, aux, v)} is identically distributed to {(pi, π, aux, v) :
(pi, π, aux)← P∗,ρNARK , v ← VρNARK(pi, π)} and b)

Pr

[
(pi,w) ∈ R

∧ VρNARK(pi, π) = 0

∣∣∣∣ (pi, π, aux, v;w)← ExtP
∗
]
≥ ϵ(P∗)− κ(n,Q)

poly(n)
,

where ϵ(P∗) is P∗’s success probability, i.e., ϵ(P∗) = Pr[VρNARK(pi, π) = 0 : π, aux)← P∗,ρNARK ]. The
knowledge extractor Ext can arbitrarily program the random oracle for the prover P∗.

Fiat-Shamir transformation Let FS[Π] denote the Fiat-Shamir transformation of a public-coin in-
teractive proof Π. Specifically, FS[Π] = (PFS,VFS) is a RO-NARK, where PρNARK(pi,w) runs P(pi,w)
but instead of receiving challenge ri, on message mi, from the verifier, it computes it as follows:
ri = ρNARK(ri−1,mi) and r0 = ρNARK(pi). The prover PρNARK

FS outputs π = (m1, . . . ,mk). The verifier
VρNARK

FS accepts, if V accepts the transcript (m1, r1, . . . ,mk, rk,mk+1) for input pi and the challenges
that are computed as specified above. The Fiat-Shamir heuristic states that a random-oracle NARK
with negligible knowledge error yields a NARK that has negligible knowledge error in the standard
model if the random oracle is replaced with a secure cryptographic hash function H.

2.4 Special-sound protocols

Tree of transcripts Let Π be a (2k + 1)-move public-coin interactive proof for a relation R with
challenge spaces Ch1, . . . ,Chk. For n = (n1, . . . , nk) ∈ Nk, we say that T is an n-tree of transcripts if:

– T is a tree of depth k + 1.
– For each i ∈ [k+1], each vertex at depth i is labeled with a prover’s i-th message mi, and if i ≤ k,

has exactly ni outgoing edges to its children with with each edge labeled with a verifier’s i-th
challenge ri,1, . . . , ri,ni

. We require that the challenges ri,1, . . . , ri,ni
are distinct. Additionally, the

root’s label is prepended with the public input pi, so the label becomes (pi,m1).
– The labels on any root-to-leaf path form a valid input-transcript pair (pi, tr).

We simply write the n-tree of transcripts as an nk-tree of transcripts when n = n1 = n2 = · · · = nk.
We assume for simplicity that the challenge spaces Ch1, . . . ,Chk all have the same cardinality N .

Special-soundness Given k,N ∈ N and n = (n1, . . . , nk) ∈ Nk, a (2k+1)-move public-coin interactive
proof Π for a relation R where the verifier samples its challenges from sets of size N is n-out-of-N
special-sound if there exists a polynomial time algorithm that, on input pi and any n-tree of transcripts
for Π outputs (pi,w) ∈ R. We simply denote the protocol as an nk-out-of-N (or nk) special-sound
protocol if n = n1 = n2 = · · · = nk.

Knowledge error As shown in [AFK22], the Fiat-Shamir transformation of an n-out-of-N special-
sound protocol Π is knowledge sound with knowledge error κFS(Q) = (Q + 1)κ, where we consider
κ = (1−

∏k
i=1(1−

ni

N )) to be the knowledge error of the public-coin interactive proof Π.



2.5 Accumulation schemes

We adopt the definition from Protostar [BC23]. An accumulation scheme for a NARK (PNARK,VNARK)
is a triple of algorithms ACC = (Pacc,Vacc,D), all of which have access to the same random oracle ρacc
as well as ρNARK, the oracle for the NARK. The algorithms have the following syntax and properties:

– Pacc(pi, π = (π.x, π.w), acc = (acc.x, acc.w)) → (acc′ = (acc′.x, acc′.w), pf). The accumulation
prover Pacc takes as input the public input pi, the NARK proof π, and the accumulator acc and
returns a new accumulator acc′ and the correction terms pf.

– Vacc(pi, π.x, acc, acc
′, pf) → b. The accumulation verifier Vacc takes as input the public input pi,

the instance of the NARK proof π.x, the old accumulator acc, the new accumulator acc′, and the
correction terms pf. The verifier ‘accepts’ by outputting 0 and ‘rejects’ otherwise.

– D(acc)→ b. The decider D ‘accepts’ an accumulator acc by outputting 0 and ‘rejects’ otherwise.

An accumulation scheme is knowledge sound with knowledge error κ if the RO-NARK (P′,V′) has
knowledge error κ for the relation:

Racc

(
(pi, π.x, acc.x); (π.w, acc.w)

)
:
(
VNARK(pi, π) = 0 ∧D(acc) = 0

)
where P′ outputs (acc′, pf) and V′ on input ((pi, π.x, acc.x), (acc′, pf)) accepts if D(acc′) = 0 and
Vacc(pi, π.x, acc.x, acc

′.x, pf) = 0. An accumulation scheme is perfectly complete if the RO-NARK
(P′,V′) has perfect completeness for the relation Racc.

2.6 Proof-carrying data

Proof-carrying data (PCD) [CT10] enables a set of parties to carry out an arbitrarily long distributed
computation where every step is accompanied by a proof of correctness.

Let V (G) and E(G) denote the vertices and edges of a graph G. A transcript T is a directed acyclic
graph where each vertex u ∈ V (T) is labeled by local data z

(u)
loc and each edge e ∈ E(T) is labeled

by a message z(e) ̸= ⊥. The output of a transcript T, denoted o(T), is z(e
′) where e′ = (u, v) is the

lexicographically-first edge such that v is a sink.
A vertex u ∈ V (T) is φ-compliant for a predicate φ ∈ F if for all outgoing edges e = (u, v) ∈ E(T)

either: (1) if u has no incoming edges, φ(z(e), z(u)loc ,⊥, . . . ,⊥) evaluates to true or (2) if u has m incoming
edges e1, ..., em, φ(z(e), z(u)loc , z

(e1), . . . , z(em)) evaluates to true. A transcript T is φ-compliant if all of
its vertices are φ-compliant.

A proof-carrying data system PCD for a class of compliance predicates F consists of a tuple of
efficient algorithms (G, I,P,V), known as the generator, indexer, prover, and verifier algorithms, for
which the properties of completeness, knowledge soundness, and zero knowledge are defined.

Completeness. PCD has perfect completeness if for every adversary A the following holds:

Pr


φ ∈ F

∧ φ(z, zloc, z1, . . . , zm) = 1
∧ (∀i, zi = ⊥ ∨ ∀i,V(ivk, zi, πi) = 1)

⇓
V(ivk, z, π) = 1

∣∣∣∣∣∣∣∣∣∣
pp← G(1λ)

(φ, z, zloc, [zi, πi]
m
i=1)← A(pp)

(ipk, ivk)← I(pp, φ)
π ← P(ipk, z, zloc, [zi, πi]

m
i=1)

 = 1.

Knowledge soundness. PCD has knowledge soundness with respect to an auxiliary input distri-
bution D if for every expected polynomial-time adversary P̃ there exists an expected polynomial-time
extractor EP̃ such that for every set Z:

Pr

 φ ∈ F
∧ (pp, ai, φ, o(T), ao) ∈ Z
∧ T is φ-compliant

∣∣∣∣∣∣
pp← G(1λ)
ai← D(pp)

(φ,T, ao)← EP̃(pp, ai)



≥ Pr

 φ ∈ F
∧ (pp, ai, φ, o, ao) ∈ Z
∧ V(ivk, o, π) = 1

∣∣∣∣∣∣∣∣
pp← G(1λ)
ai← D(pp)

(φ, o, π, ao)← P̃(pp, ai)
(ipk, ivk)← I(pp, φ)

− negl(λ).



Zero knowledge. PCD has (statistical) zero knowledge if there exists a PPT simulator S such
that for every honest adversary A the distributions below are statistically indistinguishable:

 (pp, φ, z, π)

∣∣∣∣∣∣∣∣
pp← G(1λ)

(φ, z, zloc, [zi, πi]
m
i=1)← A(pp)

(ipk, ivk)← I(pp, φ)
π ← P(ipk, z, zloc, [zi, πi]

m
i=1)

 and

 (pp, φ, z, π)

∣∣∣∣∣∣
(pp, τ)← S(1λ)

(φ, z, zloc, [zi, πi]
m
i=1)← A(pp)

π ← S(τ, φ, z)


An adversary is honest if their output results in the implicant of the completeness condition being

satisfied with probability 1, i.e., φ ∈ F, φ(z, zloc, z1, . . . , zm) = 1, and either zi = ⊥ or V(ivk, zi, πi) = 1
for each incoming edge zi. A proof π has size poly(λ, |φ|); that is, the proof size is not allowed to grow
with each application of the prover algorithm P.

2.7 Algebraic group model

The pairing-based arguments that we consider in this work have been proven secure in the algebraic
group model (AGM) [FKL18]. However, the special-sound protocols that we consider do not rely on
the AGM. In particular, we define simple interactive proofs where the prover sends group elements and
the verifier performs algebraic tests that are directly related to the original pairing-based argument.

3 Construction

3.1 Special-sound protocols

Protostar considered a specific class of special-sound protocols where the verifier checks algebraic
equations. In this case, the protocol Πsps is parametrized by k, d, ℓ ∈ Z+ such that Πsps is a (2k + 1)-
move protocol with verifier degree d and output length ℓ. The verifier checks ℓ degree-d algebraic
equations. In each round i (1 ≤ i ≤ k), the prover Psps(pi,w, [mj , rj ]

i−1
j=1) generates the next message

mi based on the public input pi, the witness w, and the current transcript [mj , rj ]
i−1
j=1, and sends mi

to the verifier; the verifier replies with a random challenge ri ∈ F. After receiving the final message
mk, the verifier computes the algebraic map Vsps and checks that the output is a zero vector of length
ℓ. This algebraic map is defined as follows:

Vsps(pi, [mi]
k
i=1, [ri]

k−1
i=1 ) :=

d∑
j=0

f
Vsps

j

(
pi, [mi]

k
i=1, [ri]

k−1
i=1

)
.

In this work, we consider a broader class of special-sound protocols, where the verifier performs
algebraic tests. The protocol Πlin is parametrized by k, d, ℓ ∈ Z+ such that Πlin is a (2k + 1)-move
protocol with a verifier that computes a map Vlin over encoded values and field elements, resulting in
an output vector in {0, 1}ℓ. In each round i (1 ≤ i ≤ k), the prover Plin(pi,w, [mj , rj ]

i−1
j=1) generates

the next message mi ∈ C∗ based on the public input pi ∈ C, the witness w ∈ C∗, and the current
transcript [mj , rj ]

i−1
j=1 ∈ (C∗×F)i−1. The prover sends mi to the verifier, and the verifier replies with

a challenge ri ∈ F. After receiving the final message mk, the verifier computes Vlin and checks that
the map’s output is a zero vector of length ℓ. The map Vlin performs algebraic tests that directly
correspond to degree-d algebraic checks.

To define the map Vlin, we first need to define sets Aj,i, Bj,i, and Dj,i, corresponding to subsets of
the set M = {mi}ki=1 ∪ {pi}, which consists of the prover messages and the public input. Specifically,
we let Aj,i = {mA

j,i}, Bj,i = {mB
j,i} and Dj,i = {mD

j,i} such that Aj,i ⊆ M , Bj,i ⊆ M and Dj,i ⊆
M . For each of these sets, we consider the set consisting of the corresponding decoded elements.
Specifically, we let A′

j,i = {m̂A
j,i}, B′

j,i = {m̂B
j,i}, and D′

j,i = {m̂D
j,i} such that Enci(pki, m̂

A
j,i) = mA

j,i,
Enci(pki, m̂

B
j,i) = mB

j,i, and Enci(pki, m̂
D
j,i) = mD

j,i. We let R = {ri}k−1
i=1 denote the set of challenges.

We also introduce vectors of constant field elements (âj,i, b̂j,i, d̂j,i) ∈ F3n−k and sj,i ∈ Fn−k+1. To
simplify the subsequent definitions, we define vectors of field elements ĉ1,j,i, ĉ2,j,i, ĉ3,j,i,γj,i ∈ Fn such
that ĉ1,j,i = A′

j,i∥âj,i, ĉ2,j,i = B′
j,i∥b̂j,i, ĉ3,j,i = D′

j,i∥d̂j,i, and γj,i = R∥sj,i.



Special-sound Protocol Πlin = (Plin,Vlin) for relation R
Prover Plin(pi,w) Verifier Vlin(pi)

mi ← Plin(pi,w, [mj , rj ]
i−1
j=1)

mi

ri ri ←$ F

Repeat k − 1 times Repeat k − 1 times

Final message mk

Vlin(pi, [mi]
k
i=1, [ri]

k−1
i=1 )

?
= 0ℓ

We require f
V′
lin

j to be a homogeneous degree-j algebraic map that outputs a vector of ℓ field
elements. In an algebraic map, each output element is given by a polynomial over field elements. In
this context, homogeneous simply means that the nonzero terms of the polynomial have identical
degree, where the degree is defined with respect to the decoded messages and challenges. Specifically,
we let fV′

lin
j ([m̂i]

k
i=1, [ri]

k−1
i=1 ) = [⟨A′

j,κ∥âj,κ, B′
j,κ∥b̂j,κ⟩ − ⟨R∥sj,κ, D′

j,κ∥d̂j,κ⟩]ℓκ=1. Equivalently, we have

f
V′
lin

j ([m̂i]
k
i=1, [ri]

k−1
i=1 ) = [⟨ĉ1,j,κ, ĉ2,j,κ⟩ − ⟨γj,κ, ĉ3,j,κ⟩]ℓκ=1. Recall that A′

j,κ, B′
j,κ, D′

j,κ, R are defined
by the prover messages and verifier challenges, whereas âj,κ, b̂j,κ, d̂j,κ, sj,κ are vectors of constant field
elements that do not contribute to the degree of the algebraic map f

V′
lin

j . From these algebraic maps,

we define a degree-d algebraic map V′
lin([m̂i]

k
i=1, [ri]

k−1
i=1 , µ, ê) =

∑d
j=0 µ

d−j · fV′
lin

j ([m̂i]
k
i=1, [ri]

k−1
i=1 )− ê.

Next, we define corresponding algebraic tests. First, we define encoded vectors (c1,j,i, c2,j,i, c3,j,i) ∈
C3n such that c1,j,i = Enci(pki, µ

d−j · ĉ1,j,i), c2,j,i = Enci(pki, ĉ2,j,i), and c3,j,i = Enci(pki, µ
d−j ·

ĉ3,j,i). We introduce an error map hVlin(e) = [QuadTestκ(pkκ,Encκ(pkκ, e1,κ),Encκ(pkκ, e2,κ)]
ℓ
κ=0

where e1,κ and e2,κ are disjoint subsets of ê, whose encodings map to G1 and G2 elements, respec-
tively, in the main construction. We define the map of algebraic tests gVlin

j (pi, [mi]
k
i=1, [ri]

k−1
i=1 , µ) =

[QuadTesti(pki, (c1,j,i, c2,j,i, c3,j,i),γj,i)]
ℓ
i=1. We let⃝ denote the entry-wise combination of algebraic

tests. The verifier’s map Vlin is given by:

Vlin(pi, [mi]
k
i=1, [ri]

k−1
i=1 , µ, e) = [

d

⃝
j=0

gVlin
j (pi, [mi]

k
i=1, [ri]

k−1
i=1 , µ)]⃝ hVlin(e)

Recall that gVlin
j and hVlin are maps consisting of algebraic tests on encoded values and field elements.

The output of the map Vlin is a vector in {0, 1}ℓ. By the definitions above, we can see that the output
of the map of algebraic tests Vlin(pi, [mi]

k
i=1, [ri]

k−1
i=1 , µ, e) is equal to the zero vector if the output of

the map of direct algebraic checks V′
lin([m̂i]

k
i=1, [ri]

k−1
i=1 , µ, ê) is equal to the zero vector.

3.2 Protocol transformations

We define a standard commit-and-open transformation for a special-sound protocol. In each round
of the protocol, instead of sending the message mi, the prover sends a commitment to the message
given by Ci = Commit(ck,mi). In some cases, this will be the trivial identity commitment, however
in the regular Protostar case, it will be the elliptic curve Pedersen commitment. In the final round,
the prover sends openings to the commitments, and the verifier checks these openings, in addition to
performing the algebraic tests. We omit the details for brevity, since this is the same as the commit-
and-open transformation that is described in Sec. 3.2 of [BC23]. We let Πcm = cm[Πlin] denote the
committed protocol for the special-sound protocol Πlin.

We let FS[Πcm] denote the Fiat-Shamir transformation of the committed protocol. Per Lemma 1
and Lemma 2 of [BC23], FS[Πcm] is knowledge sound if Πlin is special-sound.



3.3 Accumulation scheme

In this section, we provide a formal description of the accumulation scheme, which adapts the core
approach in Sec. 3.4 of [BC23] to support our broader class of protocols. Let ρacc be the random oracle
for the accumulation scheme. Let ρNARK be the random oracle for the NARK FS[Πcm], and let VNARK

be the NARK verifier. The NARK proof has instance π.x = [Ci]
k
i=1 and witness π.w = {[mi]

k
i=1}.

We define the accumulator format as follows:

– The instance is denoted by:
• acc.x = {pi, [Ci]

k
i=1, [ri]

k
i=1, E, µ}

– The witness is denoted by:
• acc.w = {[mi]

k
i=1, e}

We define the accumulated predicate as follows:

– The challenge derivation is valid:
• ri = ρNARK(ri−1, Ci) for all i ∈ [k − 1]
• r0 = ρNARK(pi)

– The commitment openings are valid:2
• Commit(ck,mi) = Ci for all i ∈ [k]

– The relaxed algebraic test holds:
• Vlin(pi, [mi]

k
i=1, [ri]

k−1
i=1 , µ, e) :=

[
⃝d

j=0 gVlin
j (pi, [mi]

k
i=1, [ri]

k−1
i=1 , µ)

]
⃝ hVlin(e) = 0ℓ

Accumulation prover Given commitment key ck, accumulator acc, and an instance-proof pair (pi, π),
the accumulation prover Pρacc,ρNARK

acc works as follows:

1. Derive challenges ri ← ρNARK(ri−1, Ci) for all i ∈ [k − 1] where r0 := ρNARK(pi)
2. Compute error terms [ej ]

d−1
j=1 such that e = Enc(pk, ê), ej = Enc(pk, êj) for j ∈ [d− 1], and∑d

j=0(X + µ)d−j · fV′
lin

j ([X · m̂i + m̂′
i]
k
i=1, [X · ri + r′i]

k−1
i=1 )

=
∑d

j=0 µ
d−j · fV′

lin
j ([m̂′

i]
k
i=1, [r

′
i]
k−1
i=1 ) +Xd ·

∑d
j=0 f

V′
lin

j ([m̂i]
k
i=1, [ri]

k−1
i=1 ) +

∑d−1
j=1 êjX

j

= ê+
∑d−1

j=1 êjX
j

3. Compute committed error terms:
– Ej ← Commit(ck, ej)

4. Derive γ ← ρacc(acc.x, pi, π.x, [Ej ]
d−1
j=1) ∈ F

5. Compute random linear combinations:
– Set vector v := (1, pi, [ri]

k−1
i=1 , [Ci]

k
i=1, [mi]

k
i=1)

– Set vector v′ := (µ, pi′, [r′i]
k−1
i=1 , [C

′
i]
k
i=1, [m

′
i]
k
i=1)

– Set vector v′′ := (µ′, pi′′, [r′′i ]
k−1
i=1 , [C

′′
i ]

k
i=1, [m

′′
i ]

k
i=1)← γ · v + v′

– E′ ← E +
∑d−1

j=1 γ
j · Ej

– e′ ← e+
∑d−1

j=1 γ
j · ej

6. Compute new accumulator acc′:
– Set instance acc′.x = {pi′′, [C ′′

i ]
k
i=1, [r

′′
i ]

k
i=1, E

′, µ′}
– Set witness acc′.w = {[m′′

i ]
k
i=1, e

′}
7. Set correction terms: pf = [Ej ]

d−1
i=1

Accumulation verifier Given public input pi, NARK instance π.x = [Ci]
k
i=1, accumulator instance

acc.x = {pi′, [C ′
i]
k
i=1, [ri]

k
i=1, E, µ}, correction terms pf, and updated accumulator instance acc′.x =

{pi′′, [C ′′
i ]

k
i=1, [r

′
i]
k
i=1, E

′, µ′}, the accumulation verifier Vρacc,ρNARK
acc works as follows:

– Derive challenges ri ← ρNARK(ri−1, Ci) for all i ∈ [k − 1] where r0 := ρNARK(pi)
– Derive γ ← ρacc(acc.x, pi, π.x, pf) ∈ F
– Set vector v := (1, pi, [ri]

k−1
i=1 , [Ci]

k
i=1)

– Set vector v′ := (µ, pi′, [r′i]
k−1
i=1 , [C

′
i]
k
i=1)

– Check acc′.x.(µ′, pi′′, [r′′i ]
k−1
i=1 , [C

′′
i ]

k
i=1)

?
= γ · v + v′

– Check acc′.x.E′ ?
= acc.x.E +

∑d−1
j=1 γ

j · Ej

2 These checks can be omitted if the trivial identity commitment is used in the accumulation scheme.



Accumulation decider Given accumulator acc with instance acc.x = {pi, [Ci]
k
i=1, [ri]

k
i=1, E, µ} and

witness acc.w = {[mi]
k
i=1, e}, the accumulation decider Dacc works as follows:

– Check Ci
?
= Commit(ck,mi) for all i ∈ [k]

– Check Vlin(pi, [mi]
k
i=1, [ri]

k−1
i=1 , µ, e)

?
= 0ℓ

– Check E
?
= Commit(ck, e)

Error term computation By the bilinearity of the inner product, each coefficient of the error polyno-
mial can be expressed as an inner product of the form ⟨x1,x2⟩ = ⟨α,x3⟩ for some x1,x2,x3,α ∈ Fn.
An explicit formula for error term calculation is provided in Sec. 3.6 of Protostar [BC23]. The prover
may compute error terms using optimized formulas for each application.

Security proof Completeness follows from the homomorphism of the linear-only encoding scheme.
Knowledge soundness follows from the linear-only property of the linear-only encoding scheme and
the special-soundness of the underlying interactive proof (i.e., the protocol that performs the corre-
sponding algebraic checks). We prove that our scheme satisfies the knowledge soundness property.

We first define an adversary Aenc for the linear-only encoding scheme E with a polynomial-
size extractor Extenc. Suppose we have an accumulation scheme ACC = (Pacc,Vacc,D) for a NARK
(Ptest,Vtest). Let ACC′ = (P′

acc,V
′
acc,D

′) be an accumulation scheme for the NARK (Pcheck,Vcheck) that
performs the corresponding algebraic checks on the underlying field elements.

Recall that the accumulation scheme ACC is knowledge sound with knowledge error κ if the
RO-NARK (P′

test,V
′
test) has knowledge error κ for the relation:

Racc

(
(pi, π.x, acc.x); (π.w, acc.w)

)
:
(
Vtest(pi, π) = 0 ∧ D(acc) = 0

)
where P′

test outputs (acc′, pf) and V′
test on input ((pi, π.x, acc.x), (acc′, pf)) accepts if D(acc′) = 0 and

Vacc(pi, π.x, acc.x, acc
′.x, pf) = 0.

We let Πtest denote the underlying (d+1)-special-sound protocol. This is the public-coin interactive
protocol Πtest = (PI(pi, π, acc),VI(pi, π.x, acc.x)) where PI sends correction terms pf = [Ej ]

d−1
j=1 as

computed by Pacc to VI . The verifier sends a random challenge α ∈ F, and the prover PI responds
with acc′ as computed by Pacc. VI accepts if Dacc(acc

′) = 0 and Vacc(π, π.x, acc.x, pf, acc
′.x) = 0

using the random challenge α, instead of a Fiat-Shamir challenge. Similarly, we let Πcheck denote the
underlying special-sound protocol for ACC′. Per Theorem 2 of Protostar [BC23], knowledge soundness
of ACC follows from the special-soundness of Πtest. Similarly, knowledge soundness of ACC′ follows
from the special-soundness of Πcheck.

Let Extcheck be an extractor for the special-sound protocol Πcheck. We will construct an extractor
Exttest that computes a witness for Racc given a transcript tree for Πcheck. The extractor Exttest
builds a transcript tree for Πcheck by replacing each encoded group element with its decoded field
element by running the extractor Extenc for the linear-only encoding scheme. The extractor Exttest
then runs the extractor Extcheck on the transformed transcript tree to obtain the witness. By Lemma
1 of Protostar [BC23], the Fiat-Shamir transformed protocol is knowledge sound if the interactive
protocol Πcheck is special-sound. Hence, the accumulation scheme ACC is knowledge sound.

4 SnarkStar: Efficient Groth16 Proof Aggregation

In this section, we present the SnarkStar protocol for the Groth16 proof verification relation.
By applying our general result, we can construct an accumulation scheme for this relation, and
thereby construct a PCD scheme for this relation. The resulting scheme is an efficient Groth16 proof
aggregation protocol with constant-size proofs.

4.1 Background on Groth16 SNARKs

We recall the basic details of Groth16 SNARKs:

– The verification key vk := (P = [α]1, Q = [β]2, [Sj = [
βvj(s)+αwj(s)+yj(s)

ϵ ]1]
t
j=0, H = [ϵ]2, D = [δ]2)

is generated from a secret s ∈ F that is discarded at the end of the setup procedure. The public
polynomials vj(x), wj(x), yj(x) define the QAP representation of the computation. To simplify
notation, we define sj =

βvj(s)+αwj(s)+yj(s)
ϵ ∈ F, s =

∑t
j=0 aj ·sj ∈ F, and S =

∑t
j=0 aj ·Sj ∈ G1.



– The proof has the form (A,B,C) ∈ G1 ×G2 ×G1 for NP instance x = (a0, . . . , at) ∈ Ft+1.
– The verifier checks a pairing equation between the proof elements π = (A,B,C) using the verifi-

cation key vk: e(A,B) = e(P,Q) · e(S,H) · e(C,D).

4.2 Generic proof verification

We first consider the case of proof aggregation for arbitrary circuits, i.e., circuits with different
verification keys.

Verification relation Given public input x = (P,Q, [Sj ]
t
j=0, H,D), the relation RGPV consists of a set

of tuples (x,w) where w = (A,B,C) ∈ G1×G2×G1 such that e(A,B) = e(P,Q)·e(S,H)·e(C,D). The
decoded public input is a tuple x̂ = (α, β, [aj ·sj ]tj=0, ϵ, δ), and the decoded message is ŵ = (Â, B̂, Ĉ).
We obtain the verifier’s tests by defining the corresponding algebraic checks:

V′
GPV(x̂, ŵ, µ, ê) = µ · (Â · B̂ − α · β − Ĉ · δ)− (

t∑
j=0

aj · sj) · ϵ− ê1

We define encoded vectors c1 = (µ · A,−µ · P,−µ · C,−a0 · S0, . . . ,−at · St, [1]1) ∈ Gt+5
1 and c2 =

(B,Q,D,H, . . . ,H, [1]2) ∈ Gt+5
2 . In this case, we have the identity vector c3 = ([1]2, . . . , [1]2) ∈ Gt+5

2

and γ = (0t+4, ê1) ∈ Ft+5. The verifier’s map VGPV is:

VGPV(x,w, µ, e) = QuadTest(pk, (c1, c2, c3),γ)

We simplify the map VGPV to obtain the optimized version of the relaxed pairing checks:

e(µ ·A,B) = e(µ · P,Q) · e(S,H) · e(µ · C,D) · e1

4.3 Circuit-specific proof verification

We now consider the case of proof aggregation for a specific circuit. While the generic relation has a
degree-3 verifier, the circuit-specific relation has a degree-2 verifier.

Verification relation Given configuration CSPV = (P,Q,H,D, [Sj ]
t
j=0) and public input x = ([aj ]

t
j=0),

the relation RSPV consists of a set of tuples (x,w) where w = (A,B,C) ∈ G1 × G2 × G1 such that
e(A,B) = e(P,Q) · e(S,H) · e(C,D). The decoded public input is a tuple x̂ = ([aj ]

t
j=0), and the

decoded message is ŵ = (Â, B̂, Ĉ). We first define the corresponding algebraic checks:

V′
SPV(x̂, ŵ, µ, ê) = (Â · B̂)− µ · (Ĉ · δ − (

t∑
j=0

ajsj) · ϵ)− µ2 · α · β − ê1

We define encoded vectors c1 = ([A,−µ · C, [−µ · a0s0]1, . . . , [−µ · atst]1,−µ2 · P, [1]1) ∈ Gt+5
1

and c2 = (B,D,H, . . . ,H,Q, [1]2) ∈ Gt+5
2 . In this case, we simply have the identity vector c3 =

([1]2, . . . , [1]2) ∈ Gt+5
2 and γ = (0t+4, ê1) ∈ Ft+5. The verifier’s map VSPV is:

VSPV(x,w, µ, e) = QuadTest(pk, (c1, c2, c3),γ)

We simplify the map VSPV to obtain the optimized version of the relaxed pairing checks:

e(A,B) = e(µ2 · P,Q) · e(µ · S,H) · e(µ · C,D) · e1

4.4 Instance aggregation

For a complete proof aggregation protocol, we require a subprotocol for committing to the instances
and verification keys. If we directly constructed a PCD scheme using one of the previous subprotocols,
we would not preserve the history of instances and structures that were aggregated. The verifier would
only know that some set of proofs was correctly aggregated without the ability to check the result
with respect to a specific set of instances and verification keys.

We address this issue by updating a vector commitment (VC) at each step i, where the value being
inserted at position i is a commitment to the instance and the verification key. This updatable vector
commitment may be instantiated with a Merkle tree using a collision-resistant hash function. Since
the update can be expressed using Plonkish arithmetization, the Protostar protocol is applicable.



4.5 Main protocol

Below we present the main protocol for the Groth16 proof aggregation relation, which is a composition
of the building block protocols that were presented above. We present the case of generic proof
aggregation, since the case of circuit-specific aggregation immediately follows.

Aggregation relation Given public I/O xagg = (P,Q, [ajSj ]
t
j=0, H,D, pi), the proof aggregation relation

RAGG consists of a set of tuples (xagg,wagg) where wagg = (w,w′), w = (A,B,C) ∈ G1×G2×G1 such
that e(A,B) = e(P,Q) ·e(S,H) ·e(C,D), and (pi ∈ Fℓin ,w′ ∈ Fn−ℓin) is an instance-witness pair in the
instance aggregation relation. The decoded public input is a tuple x̂agg = (α, β, [ajsj ]

t
j=0, ϵ, δ, i, cm, cm′).

The decoded message is ŵagg = (ŵ,w′) where ŵ = (Â, B̂, Ĉ).

Special-soundness The subprotocols are 1-move protocols where special-soundness follows trivially.
Since the main protocol is a composition of special-sound protocols, the main protocol is special-sound.

5 TensorStar: Efficient PCD for Tensor Computations

In this section, we describe the TensorStar accumulation scheme for a language of tensor com-
putations. We support the basic operations of matrix-vector multiplication and vector addition. We
additionally support complex nonlinearities through the usage of lookup arguments. Finally, we enable
provers to commit to the model weights using KZG commitments to the weight vectors. For simplicity,
we do not support non-uniform computations. It suffices to use an identity matrix, identity vector,
or identity mapping for the operations that are not relevant at a given step.

5.1 Preliminaries

Let H ⊂ F be a multiplicative subgroup of order n. Let L1(X), . . . , Ln(X) be a Lagrange basis for H.
For ω ∈ H, Li(X) is the unique element of F<n[X] with Li(ω

i) = 1 and Li(ω
j) = 0 for i ̸= j ∈ [n].

Denote Z(X) := Xn2 − 1, and ZH(X) := Xn − 1. For a polynomial f(X) ∈ F[X], define f |H as the
vector v ∈ Fn with vi = f(ωi). For polynomials f(X), g(X) ∈ F[X] where d := deg(g(X)) > 0, we
denote by f(x) mod g(X) the unique polynomial R(X) ∈ F<d[X] such that for some Q(X) ∈ F[X],

f(X) = Q(X) · g(X) +R(X).

5.2 Matrix-vector multiplication

Standard protocol We recall the definition of the cqlin protocol [EG23a] for verifiable matrix-vector
multiplication. This is a pairing-based protocol where the matrix M is fixed in advance. In particular,
this yields a 3-move linear special-sound protocol parametrized by the matrix order n.

Setup. Given parameter n ∈ N and matrix M ∈ Fn × Fn, the generation algorithm G outputs a
structured reference string srs consisting of group elements in G1 and G2.

1. Sample a random element x ∈ F.
2. Compute and output the elements {[xi]1}i∈{0,...,n2−1} and {[xi]2}i∈{0,...,n2}.
3. Compute and output the elements

{
[xn2−n · Li(x)]1, [Li(x

n)]1

}
i∈[n]

, {[Li(x
n)Lj(x)]1}i,j∈[n].

4. Compute and output z := [Z(x)]2.
5. Given the polynomials Ri(X) :=

∑
j∈[n] Mi,jLj(X) for i ∈ [n] and M(X) :=

∑
i∈[n] Li(X

n)Ri(X),

compute and output m := [M(x)]2.
6. For i ∈ [n], compute and output:

(a) ri = [Ri(x)]1 where Ri(X) := Li(X
n) · Ri(X).

(b) qi = [Qi(x)]1 such that Li(X
n) ·M(X) = Qi(X)Z(X) +Ri(X).

(c) si = [Si(x)]1 such that (Li(X
n)− 1/n) · Ri(X) = XnSi(X).

Lincheck. A lincheck protocol is an interactive public-coin protocol between a prover P and
a verifier V where P has private input f(X), g(X) ∈ F<n[X], and both parties have access to f =
[f(X)]1, g = [g(X)]1, and the structured reference string srs. P aims to convince V that f |H ·M = g|H.

The first round of the lincheck protocol involves checking that the matrix-vector multiplication is
correct and checking the degree of the polynomial g(X).



1. Let A(X) := f(Xn) =
∑

i∈[n] ai · Li(X
n). Prover P computes and sends a := [A(x)]1.

2. P computes r := [R(x)]1 and q := [Q(x)]1 where R,Q ∈ F<n2 [X] are such that

A(X) ·M(X) = Q(X) · Z(X) +R(X)

.
3. P sends r, q to the verifier V.
4. Verifier V checks the correctness of r via the pairing check

e(a,m) = e(q, z) · e(r, [1]2).
5. P computes s := [S(x)]1 where S(X) ∈ F<n2 [X] is such that

R(X)− (1/n) · g(X) = S(X) ·Xn.

6. V checks that R(X) = (1/n) · g(X) mod Xn via the pairing check

e(r − (1/n) · g, [1]2) = e(s, [xn]2)

7. P computes p := [P (x)]1 where P (X) := g(X) ·Xn2−n.
8. V checks that deg(g) < n via the pairing check

e(g, [xn2−n]2) = e(p, [1]2)

The second round of the lincheck protocol involves checking that A(X) = f(Xn) on a random
challenge sent by the verifier.

1. Verifier V sends random challenge γ ∈ F.
2. Let z := f(γn) = A(γ). Prover P computes π = [h(x)]1 and π1 = [h1(x)]1 where

h(X) :=
f(X)− z

X − γn
,

h1(X) :=
A(X)− z

Xn − γn
.

3. V checks that A(γ) = f(γn) via the pairing checks:

e(f − [z]1 + γn · π, [1]2) = e(π, [x]2),

e(a− [z]1 + γn · π1, [1]2) = e(π1, [x
n]2).

4. V outputs reject if any of the pairing checks failed, and accept otherwise.

Optimized protocol A key issue with the standard lincheck protocol is the verifier degree, which is
O(n) due to the checks in the second round of the protocol. We address this issue by providing an
optimized protocol where the verifier degree is independent of the matrix order n at the cost of an
additional O(log n) degree-2 checks. Specifically, the prover compute powers of the challenge, and the
verifier can check that these powers are correct. Since these checks involve field elements only, this
significantly reduces the verifier costs. In the optimized variant of Round 2 below, we highlight the
modifications in orange. We let k := log n.

Round 2 (low-degree variant). The second round of the lincheck protocol involves checking
that A(X) = f(Xn).

1. Verifier V sends random challenge γ ∈ F.
2. Let z := f(γn) = A(γ). Prover P computes π = [h(x)]1 and π1 = [h1(x)]1 where

h(X) :=
f(X)− z

X − γn
,

h1(X) :=
A(X)− z

Xn − γn
.

3. Prover P computes and sends βi = γ2i for i ∈ [k].
4. Verifier V checks γ = β0.
5. Verifier V checks βi · βi = βi+1 for i ∈ [k].
6. V checks that A(γ) = f(γn) via the pairing checks:

e(f − [z]1 + βk · π, [1]2) = e(π, [x]2),

e(a− [z]1 + βk · π1, [1]2) = e(π1, [x
n]2).

7. V outputs reject if any of the pairing checks failed, and accept otherwise.



Accumulation First, we summarize the key aspects of the optimized protocol. The following constant
terms are used in the protocol: [1]2 ∈ G2, [xn2−n]2 ∈ G2, [xn]2 ∈ G2, [x]2 ∈ G2 and [Z(x)]2 ∈ G2. The
public input x consists of the group elements m = [M(x)]2, f = [f(x)]1, and g = [g(x)]1. These are
commitments to the matrix and the I/O vectors. The prover sends two messages: m1 := (a, r, q, s, p) ∈
G5

1, m2 := ([z1]1, π, π1, [βi]
k
i=0) ∈ (F ∪G1)

3+k. The verifier issues a random challenge γ ∈ F.
Given the lincheck protocol configuration CMUL = {n, [1]1, [1]2, [xn2−n]2, [x

n]2, [x]2, [Z(x)]2}, the
verification relation RMUL consists of a set of (x,w) where x = (m, f, g) ∈ G2 × G1 × G1 and
w = (m1,m2, γ) such that

e(a,m) = e(q, z) · e(r, [1]2)

e(r − (1/n) · g, [1]2) = e(s, [xn]2)

e(g, [xn2−n]2) = e(p, [1]2)

e(f − [z]1 + βk · π, [1]2) = e(π, [x]2)

e(a− [z]1 + βk · π1, [1]2) = e(π1, [x
n]2)

The decoded public input is a tuple x̂ = (M(x), f(x), g(x)). The decoded protocol messages and
challenges are:

ŵ =

(
A(x), R(x), Q(x), S(x), P (x),
h(x), h1(x), γ, β1, β2, . . . , βk

)
The corresponding algebraic checks are:

A(x)M(x)− µ · (Q(x)Z(x) +R(x)) = ê1

µ ·
(
R(x)− 1

n
· g(x)− S(x) · xn

)
= ê2

µ ·
(
g(x) · xn2−n − P (X)

)
= ê3

µ · (f(x)− z − h(x) · x) + βk · h(x) = ê4

µ · (A(x)− z − h1(x) · x2) + βk · h1(x) = ê5

γ − β0 = ê6

∀i ∈ [k], βi · βi − µ · βi+1 = ê7+k

The relaxed pairing and algebraic checks are:

e(a,m) = e(µ · q, z) · e(µ · r, [1]2) · e1

e

(
µ ·

(
r − 1

n
· f
)
, [1]2

)
= e(µ · s, xn) · e2

e(µ · g, xn2−n) = e(µ · p, [1]2) · e3

e(µ · (f − [z]1) + βk · π, [1]2) = e(µ · π, [x]2) · e4

e(µ · (a− [z]1) + βk · π1, [1]2) = e(µ · π1, [x
2]2) · e5

γ − β0 = e6

∀i ∈ [k], βi · βi − µ · βi+1 = e7+k



5.3 Vector lookup

Background We recall the definition of the cq protocol [EFG22]. This is a pairing-based lookup ar-
gument that supports vector lookups via random linear combinations of homomorphic commitments.
Given commitments cm1, cm2 to tables T1, T2 with elements {ai}, {bi}, and a random challenge α, we
check membership in the set {ai + α · bi} and use cm = cm1 + α · cm2 as the table commitment.

Given a table T = {ti}i∈[N ] of distinct values and lookups F = {fj}j∈[m], we want to show that
the lookups are all contained in the table, i.e., F ⊆ T . Let V be a subgroup of order N , and H be a
subgroup of order m. Let ZV and ZH denote the vanishing polynomials on these subgroups, i.e., the
low-degree polynomials such that ZV (x) =

∏
v∈V (x− v) and ZH(x) =

∏
h∈H(x− h).

Setup. Given parameter n ∈ N and table T = {ti}i∈[N ], the generation algorithm G outputs a
structured reference string srs consisting of group elements in G1 and G2.

1. Sample a random element x ∈ F.
2. Compute and output {[xi]1}i∈{0,...,N−1}.
3. Compute and output {[xi]2}i∈{0,...,N}.
4. Compute and output [ZV (x)]2.
5. Compute T (X) =

∑
i∈[N ] tiLi(X).

6. Compute and output [T (x)]2.
7. For i ∈ [N ], compute and output:

(a) qi = [Qi(x)]1 such that

Li(X) · T (X) = ti · Li(X) + ZH(X) ·Qi(X).

(b) [Li(x)]1.
(c)

[
Li(x)−Li(0)

x

]
1
.

Lookup. The lookup protocol is an interactive public-coin protocol between a prover P and a
verifier V where P has a private input f ∈ F<m[x] corresponding to the lookup values and both parties
have access to the table T , the table commitment cm = [f(x)]1, and the structured reference string
srs. The prover aims to convince the verifier that f |H ⊂ T . We say a lookup protocol is homomorphic
if the structured reference strings are homomorphic.

The first round of the lookup protocol involves committing to the multiplicities vector.

1. P computes the polynomial M(x) ∈ F<N [X], which is defined by setting the value Mi to the
number of times that ti appears in f |H.

2. P sends m = [M(x)]1.

The second round of the lookup protocol involves interpolating the rational identity at a random
β, checking the correctness of A’s values, and performing a degree check for B using pairings.

1. V send random challenge β ∈ F.
2. P computes A ∈ F<N [X] such that for i ∈ [N ], Ai = mi/(ti + β).
3. P computes and sends a := [A(x)]1.
4. P computes and sends qa := [QA(x)]1 where QA ∈ F<N [X] is such that

A(X)(T (X) + β)−M(x) = QA(X) · ZV (X)

5. P computes B(X) ∈ F<m[X] such that for i ∈ [m], Bi = 1/(fi + β).
6. P computes B0(X) := B(X)−B(0)

X ∈ F<m−1[X].
7. P computes and sends b0 := [B0(x)]1.
8. P computes QB(X) such that

B(X)(f(x) + β)− 1 = QB(X) · ZH(X).

9. P computes and sends qb := [QB(x)]1.
10. P computes and sends p = [P (x)]1 where

P (X) := B0(X) ·XN−1−(m−2).



11. V checks that A encodes the correct values:

e(a, [T (x)]2) = e(qa, [ZV (x)]2) · e(m− β · a, [1]2)

12. V checks that B0 has the appropriate degree:

e(b0, [x
N−1−(m−2)]2) = e(p, [1]2).

The final round of the lookup protocol involve checking the correctness of B at a random γ.
To simplify the accumulation scheme, we do not leverage the batching technique in the final round.

1. V sends random challenge γ ∈ F.
2. P sends b0,γ := B0(γ), fγ := f(γ).
3. P computes and sends the value a0 := A(0).
4. P computes and sends the value b0 := (N · a0)/m.
5. V checks that b0 is computed correctly:

b0 ·m = N · a0

6. To check the correctness of the value b0,γ :
(a) P computes and sends the value π = [h(x)]1 where

h(X) :=
B0(X)− b0,γ

X − γ

(b) V checks that
e([b0 − [b0,γ ]1 + γ · π, [1]2) = e(π, [x]2)

7. To check the correctness of the value fγ :
(a) P computes and sends π1 = [h1(x)]1 where

h1(X) :=
f(X)− fγ
X − γ

(b) V checks that
e(cm− [fγ ]1 + γ · π1, [1]2) = e(π1, [x]2)

8. To check the correctness of the value Qb,γ :
(a) P and V separately compute ZH(γ) = γm − 1, bγ := b0,γ · γ + b0.
(b) P computes and sends the value:

Qb,γ :=
bγ · (fγ + β)− 1

ZH(γ)

(c) V checks that Qb,γ is computed correctly:

Qb,γ · ZH(γ) = bγ · (fγ + β)− 1

(d) P computes and sends π2 = [h2(x)]1 where

h2(X) :=
QB(X)−Qb,γ

X − γ

(e) V checks that
e(qb − [Qb,γ ]1 + γ · π2, [1]2) = e(π2, [x]2)

9. To check the correctness of the value a0:
(a) P computes and sends a0 := [A0(x)]1 for

A0(x) =
A(X)− a0

X

(b) V checks that
e(a− [a0]1, [1]2) = e(a0, [x]2)

.



Optimized protocol We previously assumed that a single lookup is performed at each step. To extend
this to multiple lookups (m > 1) while maintaining a low-degree verifier, additional optimizations are
necessary. We describe these optimizations in detail for the final round of the lookup protocol. Briefly,
the prover computes powers of the challenges, and the verifier checks these powers using additional
degree-2 equations, similar to the optimizations for the lincheck protocol in Sec. 5.2.

Round 3 (low-degree variant). The final round of the lookup protocol involve checking the
correctness of B at a random γ. To simplify the accumulation scheme, we do not leverage the batching
technique in the final round.

1. V sends random challenge γ ∈ F.
2. P sends b0,γ := B0(γ), fγ := f(γ).
3. P computes and sends the value a0 := A(0).
4. P computes and sends the value b0 := (N · a0)/m.
5. V checks that b0 is computed correctly:

b0 ·m = N · a0

6. To perform a check for the correctness of the value b0,γ :
(a) P computes and sends the value π = [h(x)]1 where

h(X) :=
B0(X)− b0,γ

X − γ

(b) V checks that
e([b0 − [b0,γ ]1 + γ · π, [1]2) = e(π, [x]2)

7. To perform a check for the correctness of the value fγ :
(a) P computes and sends the value π1 = [h1(x)]1 where

h1(X) :=
f(X)− fγ
X − γ

(b) V checks that
e(cm− [fγ ]1 + γ · π1, [1]2) = e(π1, [x]2)

8. Prover P computes and sends βi = γ2i for i ∈ [k].
9. Verifier V checks γ = β0.

10. Verifier V checks βi · βi = βi+1 for i ∈ [k].
11. To perform a check for the correctness of the value Qb,γ :

(a) P and V separately compute ZH(γ) = βk − 1, bγ := b0,γ · γ + b0.
(b) P computes and sends the value:

Qb,γ :=
bγ · (fγ + β)− 1

ZH(γ)

(c) V checks that Qb,γ is computed correctly:

Qb,γ · ZH(γ) = bγ · (fγ + β)− 1

(d) P computes and sends the value π2 = [h2(x)]1 where

h2(X) :=
QB(X)−Qb,γ

X − γ

(e) V checks that
e(qb − [Qb,γ ]1 + γ · π2, [1]2) = e(π2, [x]2)

12. To perform a check for the correctness of the value a0:
(a) P computes and sends a0 := [A0(x)]1 for

A0(x) =
A(X)− a0

X

(b) V checks that
e(a− [a0]1, [1]2) = e(a0, [x]2)

.



Accumulation For simplicity, we assume that m = 1, i.e., a single vector lookup is performed at each
step. This simplification reduces the degree of the verifier. If multiple lookups are needed at each
step, the prover may compute powers of the challenges, and the verifier can check that these powers
are correct with additional degree-2 equations, similar to the lincheck optimizations in Sec. 5.2.

The following constant terms are used in the protocol: [1]2 ∈ G2, [x]2 ∈ G2, [xN−2]2 ∈ G2, and
[ZV (x)]2 ∈ G2. The public input x consists of the group element cm = [T (x)]2, which is a commitment
to the table elements. The prover sends three messages: m1 := (m) ∈ G1

1, m2 := (a, qa, b0, qb, p) ∈ G5
1,

m3 = (a0, b0, b0,γ , π, fγ , π1, Qb,γ , π2, a0) ∈ (F ∪G1)
9. The verifier issues random challenges β, γ ∈ F.

Given the lookup protocol configuration CLKP = {N, [1]1, [1]2, [x]2, [x
N−2]2, [ZV (x)]2}, the relation

RLKP consists of a set of tuples (x,w) where x = cm ∈ G2 and w = (m1,m2,m3, β, γ) such that

e(a, cm) = e(qa, [ZV (x)]2) · e(m− β · a, [1]2)

e(b0, [x
N−2]2) = e(p, [1]2)

b0 = N · a0
e(b0 − [b0,γ ]1 + γ · π, [1]2) = e(π, [x]2)

e(cm− [fγ ]1 + γ · π1, [1]2) = e(π1, [x]2)

Qb,γ · (γ − 1) = (b0,γ · γ + b0) · (fγ + β)− 1

e(qb − [Qb,γ ]1 + γ · π2, [1]2) = e(π2, [x]2)

e(a− [a0]1, [1]2) = e(a0, [x]2)

The decoded public input is a tuple x̂ = T (x). The decoded protocol messages and challenges are
given by:

ŵ =


M(x), A(x), QA(x), B0(x), QB(x),
P (x), a0, b0, b0,γ , h(x),
fγ , h1(x), Qb,γ , h2(x),
A0(x), β, γ


The corresponding algebraic checks are:

A(x)T (x)− µ · (QA(x)ZV (x)−M(x))− β ·A(x) = ê1

B0(x) · xN−2 − P (x) = ê2

b0 −N · a0 = ê3

B0(x)− b0,γ − h(x) · x+ γ · h(x) = ê4

T (x)− fγ − h1(x) · x+ γ · h1(x) = ê5

−µ3 + µ2 ·Qb,γ + µ · (b0 · (fγ + β)−Qb,γ · γ) + b0,γ · γ · (fγ + β) = ê6

µ · (QB(x)−Qb,γ − h2(x) · x) + γ · h2(x) = ê7

A(x)− a0 −A0(x) · x = ê8

The relaxed pairing checks and algebraic checks are:

e(a, cm) = e(µ · qa, [ZV (x)]2) · e(µ ·m− β · a, [1]2) · e1
e(b0, [x

N−2]2) = e(p, [1]2) · e2
b0 −N · a0 = e3

e(b0 − [b0,γ ]1 + γ · π, [1]2) · e4 = e(π, [x]2)

e(cm− [fγ ]1 + γ · π1, [1]2) · e5 = e(π1, [x]2)

−µ3 + µ2 ·Qb,γ + µ · (b0 · (fγ + β)−Qb,γ · γ) + b0,γ · γ · (fγ + β) = e6

e(µ · (qb − [Qb,γ ]1 + γ · π2), [1]2) · e7 = e(µ · π2, [x]2)

e(a− [a0]1, [1]2) · e8 = e(a0, [x]2)



5.4 KZG opening proofs

The setup phase generates a KZG commitment to the model’s weight and bias vectors and the step
at which they are used during proving. This is a vector commitment to values of the form (i, C) where
i is the step index and C is a commitment to a weight or bias vector that is generated in the setup.

Background We recall the details of the KZG polynomial commitment scheme [KZG10]. It is easy
to see that KZG can also serve as a vector commitment scheme. In this case, the evaluation points
correspond to the vector indices and the evaluation values correspond to the vector elements.

Suppose we have a set of points U = {u0, . . . , ut} and want to prove the opening f(ui) = vi for
i ∈ [t] for a univariate polynomial f ∈ F(<d)[x] of degree at most d. Let f be a vector consisting of the
coefficients of the polynomial f(x). The receiver key consists of ([1]1, [1]2, [τ ]2) where [1]1 generates
G1 and [1]2 generates G2. The committer key consists of a vector G := ([1]1, [τ ]1, . . . , [τ

d]1). These
values are generated in a setup procedure using a secret value τ ∈ F. A commitment to a polynomial
f(x) is formulated as cmf := ⟨f ,G⟩, i.e., the inner product of the coefficients and the committer key.

An opening proof π for f at the point ui consists of a polynomial commitment to the quotient
obtained when f(x)− vi is divided by x−ui. This relies on the fact that the quotient is a polynomial
if and only if f(ui) = vi. When considering multiple points {u0, . . . , ut}, the quotient of f(x) by a
polynomial Z (whose roots are {ui}) is used. The remainder, a polynomial R(x), satisfies R(ui) =
f(ui). Specifically, f(x) = Q(x)Z(x) + R(x). Commitments to Z and R are denoted by cmZ ∈ G2

and cmR ∈ G1, respectively. Verification of the proof π works as follows.
For a single point, the verifier checks if:

e(π, [τ ]2 − [u]2) = e(cmf − [v]1, [1]2)

For multiple points, the verifier checks if:

e(π, cmZ) = e(cmf − cmR, [1]2)

Accumulation for single-point opening proofs Given configuration CSKZG = {cmf , [τ ]2}, the relation
RSZKG consists of a set of tuples (x,w) where x = ([u]2, [v]1) ∈ G2 × G1 and w = π ∈ G1 such that
e(π, [τ ]2 − [u]2) = e(cmf − [v]1, [1]2). We let π̂, ĉmf be the decoded values such that π = [π̂]1 and
cmf = [ĉmf ]1. The decoded public input is a tuple x̂ = (u, v), and the decoded protocol message is
ŵ = π̂. We first define the corresponding algebraic checks:

V′
SKZG(x̂, ŵ, µ, ê) = −µ2 · ˆcmf + µ · (π̂ · τ + v)− π̂ · u− ê1

We define the following encoded vectors: c1 = ([−µ2 · ĉmf ]1, [µ · π̂]1, [µ · v]1, [−π̂]1, [1]1) ∈ G5
1 and

c2 = ([1]2, [τ ]2, [1]2, [u]2, [1]2) ∈ G5
2. We additionally have c3 = 15 ∈ G5

2 and γ = (04, ê1) ∈ F5.
We can express the verifier’s map VSKZG as

VSKZG(x,w, µ, e) = QuadTest(pk, (c1, c2, c3),γ)

We simplify the map VSZKG to obtain the optimized version of the relaxed pairing checks:

e(−µ2 · cmf + µ · [v]1, [1]2) · e(µ · π, [τ ]2) · e1 = e(π, [u]2)

Accumulation for batch opening proofs Given configuration CBKZG = {cmf}, the relation RBZKG

consists of a set of tuples (x,w) where x = (cmZ , cmR) ∈ G2 × G1 and w = π ∈ G1 such that
e(π, cmZ) = e(cmf − cmR, [1]2). We let π̂, ĉmf , ĉmZ , ĉmR be the decoded values such that π = [π̂]1,
cmf = [ĉmf ]1, cmZ = [ĉmZ ]2, cmR = [ĉmR]1. The decoded public input is a tuple x̂ = (ĉmZ , ĉmR),
and the decoded protocol message is ŵ = π̂. We define the corresponding algebraic checks:

V′
BKZG(x̂, ŵ, µ, ê) = −µ2 · ˆcmf + µ · ˆcmR + π̂ · ĉmZ − ê1

We can express the verifier’s map VBKZG as

VBKZG(x,w, µ, e) = QuadTest(pk, (c1, c2, c3),γ)

We simplify the map VBZKG to obtain the optimized version of the relaxed pairing checks:

e(−µ2 · cmf + µ · cmR, [1]2) · e(π, cmZ) = e1



5.5 Vector addition

To complete the protocol description, we provide a simple subprotocol for vector addition.
Setup. Given parameter n ∈ N and vector b ∈ Fn, the generation algorithm G outputs a structured

reference string srs consisting of b := [B(x)]1.
Addition. The vector addition protocol is an interactive public coin protocol between a prover

P and a verifier V where P has private input f(X), g(X) ∈ F<n[X], and both parties have access
to f = [f(X)]1, g = [g(X)]1, and the structured reference string srs. P aims to convince V that
f |H + b|H = g|H. P send f, g and V checks that f + b = g.

Accumulation. In the accumulation scheme, the relaxed verifier check is: f + b− g = e1.

5.6 Main protocol

Given the subprotocols for matrix-vector multiplication, vector lookup, KZG opening proofs, and
vector addition, the main protocol is simply a parallel composition of these four subprotocols and the
Protostar protocol for Plonkish circuits. A small Plonkish circuit updates the current node index and
type at each step. We employ a “universal circuit” model for tensor computations, in contrast to the
circuit selection approach of Protostar. An identity matrix is used if no matrix-vector multiplication is
performed at the given step. Similarly, an identity vector is used if no vector addition is performed at
the given step. We use a single lookup table with vector elements. The first element specifies the node
type, indicating the particular nonlinear activation function to be applied. The remaining elements
are the identity vectors or the input-output values of the activation function. Since the main protocol
is a composition of special-sound protocols, the main protocol is special-sound.

6 Evaluation

In this section, we compare Mira to other techniques for Groth16 proof aggregation and verifiable
ML inference. Recall that SnarkStar refers to the instantiation of our scheme for Groth16 proof
aggregation and TensorStar refers to the instantiation for verifiable ML inference.

Our implementation is available open source.3 We ran all of our benchmarks on Google Cloud
Platform using c2-standard-60 instances with 60 vCPUs and 240 GB RAM.

For Groth16 proof aggregation, we compare to Protostar, Nebra UPA4 and Succinct SP1.5 Nebra
UPA is an implementation of Groth16 proof aggregation based on Halo2, an implementation of
Plonk [GWC19] that uses the KZG univariate polynomial commitment scheme [KZG10]. Succinct
SP1 is a zero-knowledge virtual machine (zkVM) for Rust programs, which is based on Plonky3, an
implementation of FRI-based univariate polynomial commitment schemes [BBHR18].

For verifiable ML inference, we compare to Protostar, EZKL,6 and Succinct SP1. EZKL is a
specialized Halo2-based library for verifiable machine learning. We benchmark a 10-layer feedforward
network for MNIST image classification, varying the hidden layer size from 25 to 213.

As shown in Figure 1, Mira offers significantly better prover time and memory usage for the
application of Groth16 proof aggregation while maintaining a constant-size proof. Mira aggregates 16
Groth16 proofs in 80.3 seconds using 6.9 GB of memory, yielding 5.8x faster prover time and 9.7x
lower memory usage than Nebra UPA, a state-of-the-art Groth16 proof aggregation system. Mira
achieves 3.5x faster prover time and 2.9x lower memory usage than Protostar for proof aggregation.

For realistic model sizes with matrix order of 29 or greater, Mira offers a faster prover with lower
memory usage for verifiable ML inference, as illustrated in Figure 2. For a feedforward network with
matrix order 28, Mira achieves 1.8x faster prover time and 1.9x lower memory usage than Protostar
for verifiable ML inference. These results demonstrate Mira’s scalability for larger models, whereas
EZKL and Succinct were unable to generate proofs for larger models due to memory limitations.

3 https://github.com/joshbeal/mira
4 https://github.com/NebraZKP/upa
5 https://github.com/succinctlabs/sp1
6 https://github.com/zkonduit/ezkl
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Fig. 1: Comparison of prover time/space complexity for Groth16 proof aggregation. We evaluated Mira
- SnarkStar (▲), Protostar (■), Nebra UPA (◦), and Succinct SP1 (x). Nebra UPA encountered out-
of-memory errors at 32 proofs aggregated. Succinct SP1 has precompiles for BN254 group operations.
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TensorStar (▲), Protostar (■), EZKL (◦), and Succinct SP1 (x). EZKL encountered out-of-memory
errors at matrix orders 211 and higher. Succinct SP1 encountered such errors at matrix order 213.



7 Discussion

Further performance optimizations are possible using the techniques in CycleFold [KS24b]. Folding
schemes are typically instantiated over a two-cycle of elliptic curves [BCTV14,NBS23]. In a further
optimized scheme, the protocol would use a circuit on the second curve in the cycle to represent each
group operation. The prover would fold multiple invocations of these smaller circuits on the first curve
in the cycle using Protogalaxy [EG23b]. This would avoid encoding multiple group operations in the
step circuit. An alternative strategy from [KTW24] that defers the group operations is also appli-
cable in this setting. By leveraging a space-efficient realization of the KZG polynomial commitment
scheme [BCHO22], the prover memory usage could be further reduced. We leave implementing and
evaluating these potential performance optimizations to future work.

8 Related work

Proof-carrying data Our scheme generalizes the construction in Protostar [BC23] and leverages the
IVC/PCD compiler of [BCL+21]. Other PCD constructions are described in [BCCT13], [BCTV14],
Halo [BGH19], [BCMS20], [COS20], Halo Infinite [BDFG21], Nova [KST22], HyperNova [KS24b]
and NeutronNova [KS24a]. Lattice-based [BC24a] and hash-based [BMNW24a, BMNW24b] folding
schemes have recently been proposed. These schemes are quite effective for relations defined over
small fields. However, pairing-based arguments use elliptic curves over large fields.

Distributed proving DIZK [WZC+18] proposes a method for distributing the work of Groth16 proof
generation across many machines. Several follow-on works have developed similar techniques for other
proof systems [OB22,GGJ+23, LXZ+24,RMH+24], while also improving the privacy and malicious
security guarantees. Our work focuses on aggregation of the resulting proofs, regardless of how they
were generated, and is therefore complementary to these techniques for distributed proof generation.

Proof aggregation Other works have proposed protocols for Groth16 proof aggregation with notable
limitations. TIPP [BMM+21] and SnarkPack [GMN22] obtain a logarithmic-size proof, while Snark-
Fold [LGZX23] and FLIP-and-prove R1CS [NPR24] can only aggregate proofs for the same R1CS
structure. Mira enables aggregation of proofs for multiple structures while achieving a constant-size
proof. Furthermore, we offer a generic framework that extends to new pairing-based SNARKs [DMS24].

Verifiable machine learning Several works have proposed specialized monolithic proof systems for
ML inference [LXZ21,WYX+21,WK23,CWSK24,SLZ24,LVA+24]. In concurrent work, aggregation
schemes for sumcheck-based proofs were developed for verifiable ML training [APKP24,BC24b], which
also enables bounded-depth PCD for ML inference. On the other hand, our work has no bound on the
computation depth, which supports model composability and simplifies the implementation aspects.
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