
Hash-Prune-Invert: Improved Differentially Private
Heavy-Hitter Detection in the Two-Server Model

Borja Balle∗, James Bell†, Albert Cheu†, Adria Gascon†,
Jonathan Katz‡, Mariana Raykova‡, Phillipp Schoppmann‡, and Thomas Steinke∗

∗Google DeepMind
†Google Research

‡Google

Abstract—Differentially private (DP) heavy-hitter detection is
an important primitive for data analysis. Given a threshold t
and a dataset of n items from a domain of size d, such detection
algorithms ignore items occurring fewer than t times while
identifying items occurring more than t+∆ times; we call ∆ the
error margin. In the central model where a curator holds the
entire dataset, (ε, δ)-DP algorithms can achieve error margin
Θ(1

ε
log 1

δ
), which is optimal when d� 1/δ.

Several works, e.g., Poplar (S&P 2021), have proposed
protocols in which two or more non-colluding servers jointly
compute the heavy hitters from inputs held by n clients.
Unfortunately, existing protocols suffer from an undesirable
dependence on log d in terms of both server efficiency (compu-
tation, communication, and round complexity) and accuracy
(i.e., error margin), making them unsuitable for large domains
(e.g., when items are kB-long strings, log d ≈ 104).

We present hash-prune-invert (HPI), a technique for com-
piling any heavy-hitter protocol with the log d dependencies
mentioned above into a new protocol with improvements across
the board: computation, communication, and round complexity
depend (roughly) on logn rather than log d, and the error
margin is independent of d. Our transformation preserves
privacy against an active adversary corrupting at most one
of the servers and any number of clients. We apply HPI to an
improved version of Poplar, also introduced in this work, that
improves Poplar’s error margin by roughly a factor of

√
n

(regardless of d). Our experiments confirm that the resulting
protocol improves efficiency and accuracy for large d.

1. Introduction

Distributed heavy-hitter detection is a ubiquitous analy-
tics task. Here, given n clients each holding an item from a
large domain of size d, the goal is to identify items held by
at least some threshold t of the clients. In many settings—
e.g., identifying URLs associated with browser crashes—
maintaining privacy of the item held by any particular client
is paramount. In those same applications, the domain size d
can be massive (e.g., log d ≈ 104), as it depends on the
space of possible URLs, the types of errors that may occur,
and other metadata. (See, e.g., Mastic [1] for a description
of Network Error Logging [2].)

A line of work [1], [3], [4], [5], [6], [7] has looked at
preserving client privacy by assuming the clients share their
data among two or more non-colluding servers, which then
interact to compute the heavy hitters. Two of these solutions,
Poplar [4] and Prio [3], are currently part of a standardization
effort [8] by the Crypto Forum Research Group (CFRG), part
of the Internet Engineering Task Force (IETF); they have
also been adopted in a number of real-world settings [9].

Unfortunately, Poplar and its subsequent extensions offer
weak privacy guarantees if one of the servers is malicious,
since a malicious server can bias the counts used to identify
heavy hitters and, as we illustrate in Section 3.1.3, these bi-
ases may completely expose a client holding an outlier input.
Both the Poplar authors and the CFRG [8, Section 9.4.1]
explicitly recognize differential privacy (DP) as a way to
defend against such attacks and to offer additional privacy
protection for clients.

DP uses noise to perturb an algorithm’s output. As a
consequence, it is not possible for a DP heavy-hitter detection
algorithm A to always output all items held by t or more
users while never outputting items held by fewer than t users;
rather, A must have some error margin ∆. Roughly, this
means A guarantees that (1) any item held by fewer than t
users is output with low probability, while (2) any item held
by more than t + ∆ users is output with high probability.
Items held by at least t users but at most t+ ∆ users may
or may not be output.

Boneh et al. [4, Appendix E] sketch an approach to
perform DP heavy-hitter detection based on Poplar; we call
the resulting protocol DP-Poplar. The error margin of DP-
Poplar grows roughly as

√
n log d, which is significantly

worse than what can be achieved by DP algorithms in the
centralized setting where ∆ = O(1

ε log 1
δ) is achievable in

the typical case when δ = O(1/n) [10], [11], [12]. Moreover,
DP-Poplar has an undesirable dependence on log d (inher-
ited from Poplar) in server computation, communication,
and round complexity. These drawbacks make DP-Poplar
impractical for very large d.

This motivates the following question:

Is there a two-server protocol for actively secure
DP heavy-hitter detection whose server efficiency
and error margin (per-heavy hitter) is independent
of the size of the input domain?

1.1. Our Contributions

We show a positive answer to the above question. First,
and of independent interest even for small d, we show an
improvement to DP-Poplar that reduces the error margin by
roughly a factor of

√
n. Second, and what we consider our

main contribution, we show how to use hashing to further
improve accuracy while also improving server efficiency.
While hashing is a natural approach to handle large domains—
and was also suggested for Poplar [4, App. B]—it is difficult
to use hashing while (1) ensuring the ability to recover
the heavy hitters themselves (and not just their hashes),
and (2) maintaining differential privacy with error margin
independent of d. In particular, the hashing-based solution
described for Poplar applies only when computing exact
heavy hitters, and does not apply to DP-Poplar.

In more detail, our contributions include the following:
• GaussTrie, an improvement to DP-Poplar that removes

a
√
n term from its error margin. See Sections 3.2.1

and 4.1 for further details.
• Hash-prune-invert (HPI), a generic framework for com-

piling any DP heavy-hitter detection protocol to improve
its efficiency and accuracy in the large-domain setting
(log d � log n). At a high level, we run the original
protocol on hashed inputs to obtain a set of frequent
hashes, and then invert those hashes to recover the heavy
hitters themselves.1 A simple way to invert a hash h
would be to output the preimage of h in the input dataset
with the largest frequency; this, however, would not be
differentially private. We address this by using pruning
to remove a hash if a DP test indicates that its inversion
is sensitive. Pruning ensures that inverting the surviving
hashes does not leak information. Section 3.2 gives a
more detailed overview of our HPI framework, and full
details are in Section 4.3.

• An efficient secure two-party computation (2PC) pro-
tocol implementing HPI+GaussTrie (Section 5). The
protocol ensures privacy against any number of mali-
cious clients colluding with a single malicious server.
Our key contributions here are an efficient approach for
distributed hash inversion along with carefully designed
boolean circuits for noise generation. We empirically
find that these steps add little overhead beyond what is
already needed in Poplar.

• We evaluate GaussTrie and HPI+GaussTrie on synthetic
datasets (Section 6.2) to assess recall, F1 score, and

1. Privacy holds even if there are hash collisions, but for good accuracy
we require collisions to occur with low probability.

efficiency. Consistent with theory, we find that hashing
improves accuracy and efficiency.

We summarize the performance of our 2PC protocols for
GaussTrie and HPI+GaussTrie in Table 1. Our two-server
protocol improves upon Poplar in terms of both error margin
and server efficiency. Replacing log d factors by log n factors
allows for scaling to applications where log d� log n.

1.2. Other Related Work

Besides relying on two or more non-colluding servers,
other approaches to private heavy-hitter detection have been
considered. Some works [13], [14] have looked at DP heavy-
hitter detection in the local model where the clients add noise
to their own inputs before sending them to a curator. Those
works have error margin that scales with

√
n and log d. In

the shuffle model, which augments the local model with a
primitive for anonymizing messages, it is possible to achieve
error margin O(1

ε2 log 1
δ) [15]. However, the only known way

to achieve that bound is with a protocol that requires each
client to send Ω(d) messages in expectation. Moreover, the
most common implementation of the shuffle model already
requires an additional trusted party to shuffle messages before
forwarding them to the curator.

Bell et al. [16] use secure 2PC to implement the (optimal)
centralized DP heavy-hitter algorithm [10], [11], [12]. Their
protocol is only secure for semi-honest adversaries. In
subsequent work, Braun et al. [17] show how to make their
protocol actively secure. Both solutions are less efficient
than Poplar, and are much less efficient than our protocol
for large d.

Durak et al. [18] propose Precio, a three-server histogram
estimation protocol. Although there are similarities between
their work and ours, they assume a semi-honest adversary
and work in the honest-majority setting (i.e., at most one
server can be corrupted). Their experiments consider data
from domains of size ≤ 222, which is significantly smaller
than the regime we target.

2. Definitions and Notation

2.1. Setting and Threat Model

We consider n clients and two servers executing some
protocol Π. We assume a static adversary A who may corrupt
any number of clients and at most one of the servers. We
let xi ∈ D = [d] denote the input of the ith client, and let
X be the multiset of honest clients’ inputs. We let λ be a
computational security parameter given as input to the clients,
the servers, and the adversary. We write REALΠ,A(1λ, X)
for the random variable corresponding to the view of A and
the output of the honest clients in an execution of Π when
honest clients have inputs given by X .

2

DP-Poplar
GaussTrie HPI+GaussTrie

[4, Appendix E]

Error margin
√
n
t

log d logn log(n
t

log d)
√

log d logn log(Heavyt log d) logn ·
√

log(Heavyt logn)

Servers
Computation Heavyt · n · log d Heavyt · n · log d Heavyt · (n · logn+ log d)

Communication (bits) Heavyt · logn · log d Heavyt · logn · log d Heavyt · (log2 n+ log d)
Rounds log d log d logn

TABLE 1: DP heavy-hitter detection protocols in the 2-server model. All costs are asymptotic, and omit big-O notation as
well as dependencies on ε, δ for clarity. We let n denote the number of clients (i.e., the number of inputs), let d� n denote
the domain size, and let Heavyt denote the number of heavy hitters. We assume δ � 1/n.

We also define an ideal world that allows us to charac-
terize the security properties of Π. Here we have a trusted
entity evaluating an ideal functionality F for n clients in the
presence of an adversary A (also called a simulator) who
may again statically corrupt any number of clients and at
most one server. Honest clients send their inputs to F , and A
sends inputs to F on behalf of the corrupted clients. We again
let X denote the honest clients’ inputs, and let X̂ denote
the multiset of malicious clients’ inputs; the total input is
X̄ := X ∪ X̂ . The computation of F may be interactive, and
thus involve sending intermediate values to A and receiving
additional inputs (whose purpose depends on the specifics
of F) from A. In particular, A can send ABORT to F and
prevent honest clients from receiving the output. Following
the computation, A may output an arbitrary function of
its view. We let IDEALF,A(1λ, X) be the random variable
corresponding to the output of A and the output of the honest
clients when honest clients have inputs given by X .

Definition 1 (Secure computation). Π securely computes F
if for every polynomial-time real-world adversary A there is a
polynomial-time ideal-world adversary A′ such that for all X ,
the distributions REALΠ,A(1λ, X) and IDEALF,A′(1

λ, X)
are computationally indistinguishable.

2.2. Differential Privacy (DP)

For random variables V, V ′, we write V ≈ε,δ V ′ if the
following holds for any S:

Pr [V ∈ S] ≤ exp(ε) · Pr [V ′ ∈ S] + δ

Pr [V ′ ∈ S] ≤ exp(ε) · Pr [V ∈ S] + δ.

We write V ≈ε V ′ for V ≈ε,0 V ′. Two equal-sized multisets
X,X ′ ∈ D∗ are neighboring if they differ in exactly one
element, and we write X ∼ X ′ in that case.

Definition 2. An ideal functionality F satisfies (ε, δ)-
differential privacy ((ε, δ)-DP) if, for all A, λ, and X ∼ X ′,

IDEALF,A(1λ, X) ≈ε,δ IDEALF,A(1λ, X ′).

We define a notion of computational differential privacy
for protocols by adapting the definition of SIM+-CDP [19].

Definition 3. A protocol Π satisfies (ε, δ)-computational
differential privacy ((ε, δ)-CDP) if there is an (ε, δ)-DP ideal
functionality F such that Π securely computes F .

2.3. Heavy-Hitter Detection

Roughly, the goal of heavy-hitter detection is to identify
the elements Heavyt(X̄) that occur ≥ t times in the input X̄ ,
for some t ≥ 1. When DP is required, however, it is not
possible to have a sharp threshold t.2 Instead there must be
some error margin ∆ around t; ∆ may depend on X̄ .

Definition 4. Ideal functionality F performs t-heavy-hitter
detection over D with error margin ∆(·) and error rate β if
(when A is passive) given any X̄ over D, with probability
at least 1− β it outputs a set S ⊆ D such that
• all elements that occur fewer than t times in X̄ are not

included in S
• all elements that occur more than t+ ∆(|X̄|) times in
X̄ are included in S.

Our work focuses on identifying heavy hitters, not report-
ing estimates of their frequencies (“histogram estimation”).
In Appendix A, however, we show that such estimates are
straightforward to obtain once detection is performed. As
a corollary, lower bounds on the error of DP histogram
estimation imply lower bounds on the error margin of DP
heavy-hitter detection.

Remark 5 (Implications for recall & F1 score). Suppose
F1,F2 both perform t-heavy hitter detection but the error
margins satisfy ∆1 < ∆2. Then for any dataset, the recall
& F1 score3 for F1 are at least that of F2. This is because
F1 will find any item with count ∈ [t+ ∆1, t+ ∆2] while
F2 lacks that property.

In the case where F1 performs t-heavy hitter detection
but F2 performs t− γ-heavy-hitter detection with the same
margin, the impact on F1 score (defined w.r.t. t) is data-
dependent.

2. If we were to report a set S containing exactly the inputs with count
≥ t then one client can wholly determine membership in S.

3. The F1 score on a given dataset is equal to 2TP/(2TP + FP + FN),
where TP is the number of true positives, and FP (resp., FN) is the
number of false positives (resp., false negatives). “Positive” (resp. “negative”)
corresponds to elements with frequency at least (resp. below) t.

3

3. Technical Overview

We provide a high-level overview of our protocol for
differentially private heavy-hitter detection. We begin by
reviewing prior work on which our solution is based.

3.1. Trie-Based Heavy-Hitter Detection

Recall that in our setting there are n users with the
ith user holding xi ∈ [d]; and we denote by X = {xi}
the multiset of users’ inputs (assuming all users are honest
for simplicity). In the exact version of the heavy-hitters
problem (without differential privacy), the goal is to securely
identify heavy hitters, i.e., items held by at least some public
threshold t of the users, using two non-colluding servers.

One natural solution to this problem is to have each user
generate a 1-hot encoding ~vi of its input—that is, ~vi will
be a length-d binary vector with a single 1 at the index
corresponding to xi—and then secret share ~vi with the two
servers. Each server can locally sum its shares, and then the
servers can run a lightweight 2PC protocol to identify the
indices whose count is at least t. This becomes useless when
items are even moderately long since client-to-server and
server-to-server communication are both Θ(d).

3.1.1. Using DPFs. Distributed point functions (DPFs) [20],
[21], [22] can be used to reduce the client-to-server com-
munication in the above approach. A DPF allows the ith
user to generate (short) keys keyi,0, keyi,1 such that for all
x ∈ {0, 1}log d it holds that

Evalkeyi,0(x) + Evalkeyi,1(x) =

{
1 x = xi
0 otherwise.

On the other hand, each key on its own reveals nothing
about xi. By sending keyi,j to server j, the user can share
its 1-hot vector ~vi with the servers as before, but with much
less communication. While this improves the client-to-server
communication, the server computation and server-to-server
communication remain Θ(d).

3.1.2. Trie-based Solutions and Poplar. Trie-based solu-
tions [23], [24], [25], [26] can be used to compute heavy
hitters more efficiently than the approach above, leading to
solutions that are feasible even for large domains. Consider
the central setting for the moment, where a single server
holds X . If elements in the domain are represented as strings
over [b] of length h (so d ≤ bh), then a trie-based algorithm
constructs an incomplete tree of branching factor ≤ b and
height ≤ h such that the node corresponding to a prefix p
is extended iff the count cp of the items in X with prefix p
exceeds some (possibly variable) threshold. Leaves will
correspond to heavy hitters. The overhead of this approach
scales as O(Heavyt), where Heavyt is the number of heavy
hitters in X , regardless of the size of the domain.

In the Poplar work [4], Boneh et al. observe that trie-
based algorithms can also be efficiently computed in the
distributed setting using DPFs. The main idea is for the ith
client to generate keys keyi,0, keyi,1 so that for all p ∈ [b]≤h

it holds that

Evalkeyi,0(p) + Evalkeyi,1(p) =

{
1 p is a prefix of xi
0 otherwise.

(While this can be done by having each user generate h
independent DPF keys, Boneh et al. show how it can be
done more efficiently using incremental DPFs.) As in the
approach described earlier, the servers can use these keys
to securely check whether cp exceeds some threshold for
any desired prefix p, and thus securely emulate a trie-based
algorithm. Assuming b = O(1), the resulting 2PC protocol
requires O(h) = O(log d) rounds of communication between
the servers and O(Heavyt) server-to-server communication.

3.1.3. Adding Differential Privacy. Unfortunately, Poplar
and subsequent improvements [1], [7] do not provide good
privacy guarantees in the presence of an actively corrupted
server. To illustrate this, we describe a simple adversary who
learns any input(s) held by exactly one user. This is clearly
inconsistent with an intuitive notion of privacy by which
the output should only reveal inputs whose multiplicity is at
least t. (We remark that, irrespective of this attack, differential
privacy provides stronger guarantees than securely computing
the set of exact heavy hitters. The purpose of describing this
attack is to show that privacy issues for Poplar-like protocols
are even more significant.)

The root of the problem is that a corrupted server can shift
counts while exploring the trie described above. Concretely,
assume server 1 is corrupted. While it is expected to output
cp,1 :=

∑
i Evalkeyi,1(p) for paths p in the trie, it can output

cp,1 + ∆p for ∆p an arbitrary offset the adversary’s choice.
The observed count cp,0 + cp,1 is then shifted by ∆p from
the true count. Our attacker sets ∆p = t−1 for all prefixes p
starting from the root. As soon as a prefix p with observed
count equal to t is observed, the attacker knows it has
identified a prefix that corresponds to an input x held by
a single user. To completely recover x the attacker sets
∆p′ = t− 1 for all prefixes p′ that extend p.

The above attack does not contradict the security claims
of Poplar; in fact, the authors of Poplar themselves note
that differential privacy is needed if there are not “good
statistical guarantees on the entropy of the inputs contributed
by honest clients.” Motivated by this, Boneh et al. propose a
differentially private variant of Poplar that we call DP-Poplar
[4, Appendix E]. The main idea is to have each server add
Laplace noise (calibrated to provide ε-DP) to its share of cp,
so the observed counts are noisy rather than exact.

4

3.2. Our Solution

As discussed already in the introduction, the main
drawbacks of DP-Poplar are that it has relatively large
error margin proportional to

√
n log d, and server efficiency

depending on log d (cf. Table 1). We describe here how we
address these issues.

3.2.1. GaussTrie. Our first contribution is a variant of DP-
Poplar called GaussTrie, which incorporates three differences
in the underlying trie-based algorithm. First, we replace
Laplace noise with Gaussian noise to facilitate tighter privacy
accounting. Second, we improve the sensitivity bound of
Boneh et al. Together, these changes eliminate a factor of√
n from the error margin (cf. Table 1). As an additional

modification, we give the option to negatively bias the noisy
counts at each level (by a public amount); this has the
effect of reducing the number of nodes explored, trading off
accuracy for efficiency (which is a worthwhile tradeoff when
the trie-based algorithm is emulated by a 2PC protocol as it
will be in the two-server setting we consider).

Even with these improvements, GaussTrie’s error margin
still depends on log d, and server efficiency is unchanged as
compared to DP-Poplar (cf. Table 1).

3.2.2. The Promise and Challenges of Hashing. A natural
idea to avoid dependence on d is to use hashing to reduce
the size of the domain, i.e., each client will hash its input
and then the parties will run a private heavy-hitter detection
algorithm (e.g., GaussTrie) on the hashed results. Assuming
no collisions, this results in a set Sinit containing hashes of
heavy hitters. The elements in Sinit can then be inverted to
recover the heavy hitters themselves.

It is crucial, however, for the hash inversion to be done in
a way that preserves differential privacy. To see the subtleties
that can arise, consider the following protocol: each client
shares (xi, H(xi)) with the servers, which (1) run a private
heavy-hitter detection protocol on the hashes to compute Sinit

and then (2) use generic 2PC to find elements of X = {xi}
that are preimages of elements of Sinit. Malicious clients
can violate privacy of an honest client by sending malformed
values to the servers.4 Specifically, fix neighboring datasets
X,X ′ of honest clients’ inputs, where some value x is held
by one honest client in X but by no honest clients in X ′.
Malicious clients can share inputs of the form (⊥, H(x)) with
the servers to ensure that H(x) ends up in Sinit regardless
of whether honest clients use X or X ′. But inversion of
H(x) will succeed iff dataset X was used.

The above discussion highlights the fact that inversion re-
lies on the input dataset. However, while a given dataset may

4. While such an attack could potentially be prevented by having clients
give ZK proofs of correctness, this imposes significant additional work on
the clients. In general, we view clients as being much more computationally
limited than the servers.

have the information required to invert H(x), a neighboring
dataset might not. Malicious clients complicate the situation,
as they might misbehave and contribute to the protocol a
pair (x, h) where h 6= H(x).

3.2.3. Intuition for HPI. We solve the aforementioned
issues using a technique we call Hash-Prune-Invert (HPI).
Our key idea is to prune certain hashes from Sinit before
performing the inversion step so we can avoid inverting
hashes that might violate privacy. Details follow.

We start by describing concretely how inversion is done.
To compute a preimage of a given hash s ∈ Sinit, the servers
run a series of “elections”: for j ∈ {1, . . . , log d}, the servers
compute count[j, 0], the number of preimages of s in X with
jth bit equal to 0, and count[j, 1], the number of preimages
of s in X with jth bit equal to 1. Let gapj = count[j, 0]−
count[j, 1]. The protocol releases 0 as the value of the jth
bit of the preimage if gapj ≥ 0, and 1 otherwise. It is now
even more clear that differential privacy is not guaranteed
by inversion because, e.g., changing the input of a single
client may change the outcome of one of the elections.

At the heart of our contribution is the observation that
we can prune hash values in Sinit if their computed inverse
is “unstable” to a client substitution, that is, if there is an
index j such that |gapj | is “too small.” A naive attempt
to prune in a differentially private way is to add noise to
each of the 2 log d counts and then post-process the results.
This would cause privacy loss to accumulate across all the
counts, and the error margin would still scale with log d. A
crucial observation is that we can incur just O(1) privacy
loss here, since we do not need to add noise to all the vote
totals; instead, we consider the minimum margin of victory
gap = min{|gapj |}. If gap is sufficiently large, then no
single client’s input can change any election outcome. Thus
it suffices to obtain a DP estimate of gap whose magnitude
we can compare against a threshold. Since gap itself can
change by at most 1 in neighboring datasets, a DP estimate
of gap requires only O(1) noise. It is also worth noting that
malicious inputs do not change the sensitivity of gap.

Concretely, then, we prune (i.e., refuse to invert) a partic-
ular hash s if gap+η is too small, where η ← Laplace(1/ε).
(This pruning step is performed obliviously, i.e., by evaluating
gap + η and comparing the result to a public threshold using
a 2PC protocol, which we discuss in Section 5.2.) This
allows us to bound the probability of the bad event that was
central to the attack on Poplar described in Section 3.1.3.
More generally, it ensures that the protocol’s behavior on
neighboring datasets does not change too much.

Table 1 shows the resulting costs when applying HPI
to GaussTrie. Choosing the hash function to have a range
of size O(n2) suffices to avoid collisions with sufficiently
high probability, and allows performance and error margin

5

to scale5 with O(log n) rather than O(log d).

3.2.4. DPF-based HPI. As discussed above, the blueprint
for our protocol is to first identify heavy hashes and then
invert them privately. To facilitate this, each client i will
secret share with the servers information about its input xi
and the hash hi := H(xi). More concretely, each client
generates incremental DPF keys keyi,0, keyi,1 such that

∑
b∈{0,1}

Evalkeyi,b(p) =

1 p @ hi
1‖BinHist(xi) p = hi
0 otherwise,

(1)

where p @ hi means that p is a strict prefix of hi, and
BinHist(xi) is a 2 log2 d-bit encoding of xi obtained from
its binary encoding by replacing ‘1’ with ‘01’ and ’0’ with
‘10’. (For example, BinHist(12) = 01011010 since the
binary encoding of 12 is 1100.) This allows the servers
to construct a trie over the hash values, with the leaves
corresponding to heavy hashes along with an encoding of
their inverses (as reported by clients). The encoding, in turn,
allows the servers to efficiently compute the counts needed
to determine whether to prune or not and, if not, to perform
inversion. We emphasize in particular that our approach
avoids the need to evaluate the hash function H using 2PC.
As we show in Section 5, there is instead a 2PC protocol
for evaluating HPI that uses just a small number of secure
comparisons and additions.

4. Ideal Functionalities: GaussTrie & HPI

In this section, we describe ideal functionalities for our
HPI framework and the underlying GaussTrie algorithm with
which we instantiate that framework. Our functionalities ex-
plicitly incorporate interactions with an adversary, indicated
in the pseudocode by the symbol I. Our accuracy and privacy
analyses carry over to protocols that securely compute these
functionalities in a two-server setting.

Our description in this section is “bottom-up”: We begin
in Section 4.1 by formalizing GaussTrie, the heavy-hitter
detection algorithm we run on (hashed) user data. We
introduce a subroutine for pruning and inverting the output
of that algorithm in Section 4.2. We put everything together
in Section 4.3.

4.1. GaussTrie

Given a multiset X̄ containing strings in [b]h, the
GaussTrie algorithm constructs a trie of branching factor
≤ b and height ≤ h. (See Ideal Functionality 1.) Nodes
in the trie correspond to prefixes in the natural way (with

5. Note that just outputting the result has a cost of log d per heavy
hitter, which explains why there is still a dependence on log d in the
computation/communication.

the root node corresponding to the empty string), and the
main idea of the algorithm is to iteratively extend a node
corresponding to a string p only if the number of elements
in X̄ having prefix p is sufficiently large (cf. line 23). To
preserve differential privacy, the algorithm cannot make this
decision based on the exact count cp of the number of
elements in X̄ with prefix p; instead, a noisy count c̃p is
used (cf. line 21). As noted earlier (and in contrast to Poplar),
GaussTrie uses Gaussian noise6 to compute c̃p.

Another difference from Poplar is that GaussTrie can
be configured to negatively bias the noisy counts before
comparing to a threshold. We introduce this bias to reduce
the probability of exploring prefixes that occur fewer than
t times. Increasing the magnitude of the bias makes nodes
less likely to be extended, and so decreases the false-positive
rate but increases the false-negative rate. More importantly,
it improves efficiency (since fewer nodes are extended),
something that is critical when we securely realize the
functionality by a two-server protocol. We stress that privacy
of GaussTrie holds whether or not biases are used.

The functionality gives the noisy counts of the explored
nodes to the adversary A. Those noisy counts incorporate
noise from the functionality itself, as well as an arbitrary
contribution from A. The adversary’s contribution may affect
correctness, but will not affect privacy since noise is also
added by the functionality. We allow A to simply abort
the functionality at any point. A semi-honest (or passive)
adversary chooses its noise contributions from the same
distribution N(0, σ2) as the noise chosen by the functionality.

We now state the privacy guarantee of GaussTrie.

Theorem 6 (Privacy of GaussTrie). Let σ satisfy

Φ

(√
h

2σ
− εσ√

h

)
− eε · Φ

(
−
√
h

2σ
− εσ√

h

)
≤ δ.

(For ε < 1, taking σ =
√

2h
ε ·

√
log 5

4δ suffices.) Then
GaussTrie guarantees (2ε, 2δ)-DP.

The proof can be found in Appendix B.1. At a high level,
we invoke the privacy offered by the Gaussian mechanism
and apply composition over the h levels of the trie. Neither
the adversarial offsets ηp,A nor the biases αi affect privacy
because they do not influence sensitivity of the computation
or the noise generated by the functionality.

We analyze accuracy when bias = 1.7

6. We let N(0, σ2) denote the standard normal (i.e., Gaussian) distri-
bution with mean 0 and standard deviation σ. Φ denotes the cumulative
distribution function (CDF) of the distribution N(0, 1), and Φ−1 is the
associated quantile function, i.e., Prx←N(0,1)[x ≤ Φ−1(p)] = p.

7. We perform an empirical evaluation for bias = 0 in Section 6.2. We
also note that bias = 0 will result in t− γ-heavy-hitter detection, for some
positive γ.

6

Ideal Functionality 1: GaussTrie

Input: X̄ ∈ ([b]h)n

Output: S ⊆ [b]h (heavy-hitters)
1 Parameters: domain [b]h, threshold t ∈ N, variance

σ2 > 0, target error rate β, flag bias ∈ {0, 1}
2 S := ∅
3 Q := queue initialized with the empty string
4 i := −1 /* Tree level; prefix length */

5 While |Q| > 0
6 q := head of Q
7 If i 6= |q| :

/* Update for new level */

8 i := |q|
9 ni := |Q| (# of prefixes w/ length i)

10 γi := (2h · b · ni/β)−1

11 αi :=

{√
2σ · Φ−1(γi) if bias = 1

0 otherwise

12 Dequeue q from Q
13 For char ∈ [b]
14 Create p by appending char to q
15 cp := count of strings in input w/ prefix p
16 If A is passive: ηp,A ← N(0, σ2)
17 Else
18 I A sends ηp,A ∈ Z or ABORT
19 If ABORT was sent, halt

20 ηp ← N(0, σ2)
21 c̃p := cp + ηp + ηp,A + αi
22 I Send p, c̃p to A

23 If c̃p ≥ t :
/* At leaves? Add to output */

24 If |p| = h: Add p to S
/* Otherwise enqueue */

25 Else: Enqueue p in Q

26 Output S (and I send S to A)

Theorem 7 (Accuracy of GaussTrie). GaussTrie with bias
set to 1 performs t-heavy-hitter detection with error margin

4σ ·

√√√√ln

(√
2

π
· Heavyt(X̄) · b · h

β

)

and error rate β. Moreover, the probability that GaussTrie
enqueues a prefix having frequency < t is ≤ β.

We defer the proof to Appendix B.1. At a high level, we
use concentration bounds to argue that sufficiently frequent
strings are detected and infrequent ones are not.

4.2. Pruning and Inverting Hashes

Here we describe and analyze PrunedInvert, a DP al-
gorithm for finding a preimage of a hashed value s in the
input X̄ . We assume d is a power of 2 for simplicity, so
inputs in the dataset can be represented as log2 d-bit binary
strings. We write x[j] for the jth bit of binary string x.

PrunedInvert uses the truncated discrete Laplace distri-
bution.

Definition 8. For r ∈ (0, 1) and B ∈ N, the dis-
crete Laplace distribution with rate r truncated to B
(denoted by dLap(r,B)) has probability mass function
fdLap(r,B)(i) ∝ r|i| for i ∈ {−B, . . . , B}.

Ideal Functionality 2: PrunedInvert

Input: X̄ ∈ ({0, 1}log2 d)n; hashed value s
Output: Either ⊥ or y ∈ {0, 1}log2 d

1 Parameters: hash function H , t ∈ N, ε > 0,
δ ∈ (0, 1)

2 tail := d 1
ε ln 1

δ e
3 Let Xs := {x ∈ X̄ : H(x) = s}
4 If A is passive :
5 offset[j, v] := 0 for all j ∈ [log2 d], v ∈ {0, 1}
6 Else
7 I A sends {offset[j, v] ∈ Z}j,v or ABORT
8 If ABORT was sent, halt

/* Collect votes for preimage’s bits */

9 For j ∈ [log2 d]
10 count[j, 0] := offset[j, 0]+|{x ∈ Xs : x[j] = 0}|
11 count[j, 1] := offset[j, 1]+|{x ∈ Xs : x[j] = 1}|
12 If count[j, 0] ≥ count[j, 1]: y[j] := 0
13 Else: y[j] := 1

/* Check if smallest margin of victory

is too small */

14 gap := minj |count[j, 0]− count[j, 1]|
15 η ← dLap(exp(−ε), tail)
16 If gap + η ≤ t+ tail, then prune := 1 else

prune := 0
/* If smallest margin of victory is too

small, inverse may violate privacy */

17 If prune = 1: z := ⊥
18 Else

/* Here, inversion is stable */

19 z := y

20 Output z (and I send z to A)

As discussed in Section 3.2.3, our functionality finds
a preimage y of s bit-by-bit. Specifically, let Xs be the
multiset of elements of X̄ that are preimages of s. Then
for j = 1, . . . , log2 d the functionality sets the jth bit of y
equal to the “majority vote” for the jth bit among elements

7

of Xs, breaking ties arbitrarily. The adversary is allowed
to bias these votes. Nevertheless, a single-client change can
only alter the returned preimage if any of the votes are
close, i.e., if gap is small. To achieve differential privacy, we
cannot prune based on a strict threshold for gap; thus, the
functionality computes a noisy estimate of gap and bases
the decision to prune on that estimate.

Privacy. Our privacy analysis makes no assumptions on H
and, in particular, holds even if it is easy to find collisions
in H . Because we will do a careful privacy accounting
when we use PrunedInvert as a subroutine in our larger
framework, we prove separate DP bounds corresponding to
different possibilities for s, based on the following definition:

Definition 9. Fix X ∼ X ′ with X∆X ′ = {x, x′} such that
x ∈ X and x′ ∈ X ′. We say that s
• does not match the targets if s 6= H(x) and s 6= H(x′)
• matches one target if s = H(x) but s 6= H(x′), or vice

versa
• matches both targets if s = H(x) and s = H(x′).

Fix some X ∼ X ′ as above. We write z, gap, prune
(resp., z′, gap′, prune′) to denote the values of internal
variables when the honest input is X (resp., X ′). For each
of the above possibilities for s, we quantify closeness of the
distributions of z, z′.

Claim 10. If s does not match the targets, then z and z′

are identically distributed.

Proof. Observe that all entries of the array count are the
same regardless of whether the honest inputs are X or X ′.
All other variables are derived by post-processing count.

Claim 11. If s matches one target, then z ≈ε,δ z′.

A full proof appears in Appendix B.2, but we sketch the
main ideas here.

Proof Sketch. Note that |gap− gap′| ≤ 1. This means that
gap + η ≈ε,δ gap′ + η when η ← dLap(− exp(ε), tail).
As a result, prune ≈ε,δ prune′. Conditioned on prune =
prune′ = 1, the distributions of z and z′ are identical (since
z = z′ = ⊥). Although the distributions of z and z′ may
not be close if prune = prune′ = 0, those events each only
occur with probability at most δ.

Claim 12. If s matches both targets, then z ≈2ε,2δ z
′.

Proof. Consider a dataset X ′′ that differs from X,X ′ in a
single element x′′ 6∈ {x, x′} with s 6= H(x′′), and let z′′

be the corresponding random variable. Claim 11 shows that
z ≈ε,δ z′′ and z′ ≈ε,δ z′′. Combining these two yields the
desired result.

Correctness. We next show correctness of PrunedInvert
when there is a unique preimage of s in X̄ .

Theorem 13 (Correctness of PrunedInvert). Assume there is
a unique x ∈ X̄ with H(x) = s, and that x appears at least
t+ 2 · tail times in X̄ . If A is passive, PrunedInvert(X̄, s)
outputs z := x with probability 1.

Proof. Because all offset values are 0 and x is the unique
preimage of s in X̄ , for all j ∈ [log2 d] the value of
count[j, x[j]] is the number of times x appears in X̄ ,
and count[j, 1 − x[j]] = 0. So gap > 2 · tail. Because
η ∈ [−tail,+tail], line 16 ensures prune = 0. Hence, the
output is z = x.

4.3. Hash-Prune-Invert

Here we fully describe the hash-prune-invert (HPI)
functionality, which relies on GaussTrie and PrunedInvert
using a random hash function. HPI is generic, and supports
any heavy-hitter detection algorithm, but we focus on its
instantiation with GaussTrie for concreteness.

Ideal Functionality 3: HPI+GaussTrie

Input: X̄ ∈ ([b]h)n

Output: S ⊆ [d]
1 Parameters: b, h, k, t ∈ N, ε, σ2 > 0, β, δ ∈ (0, 1),

bias ∈ {0, 1}
2 Sample H from a family H = {H : [b]h → [b]k}
3 I Send H to A
4 If A is not passive :
5 I A sends ABORT or CONTINUE
6 If ABORT was sent: halt

7 Compute Sinit := GaussTrie(H(X̄)) using
parameters b, k, t, σ2, β, bias

8 Sfinal := ∅
9 For s ∈ Sinit

10 Compute z := PrunedInvert(X̄, s) using
parameters H, t, ε, δ

11 If z 6= ⊥ and H(z) = s, add z to Sfinal

/* (Optional:) If z 6= ⊥ but H(z) 6= s,
log error msg. */

12 Output Sfinal (and I send Sfinal to A)

Theorem 14 (Privacy of HPI+GaussTrie). If σ is set as in
Theorem 6, then HPI+GaussTrie satisfies (4ε, 4δ)-DP.

Proof. Theorem 6 shows that the invocation of GaussTrie
satisfies (2ε, 2δ)-DP. We show that for any H,Sinit the
computation (in the for-loop) of Sfinal satisfies (2ε, 2δ)-DP.
Basic composition concludes the proof.

For X ∼ X ′ and any H,Sinit, there are three cases:
(1) every s ∈ Sinit does not match the targets, (2) at most
two values s1, s2 ∈ Sinit each match one target, or (3) exactly
one s ∈ Sinit matches both targets (cf. Def. 9). Claim 10
implies there is no leakage in the first case. In the second

8

case, Claim 11 implies that each invocation of PrunedInvert
on s1, s2 satisfies (ε, δ)-DP; basic composition completes
the claim. In the third case, the invocation of PrunedInvert
ensures (2ε, 2δ)-DP via Claim 12.

We analyze correctness of when A is passive, as an
adversary who actively corrupts a server can simply abort
the computation. Even then, HPI+GaussTrie only guarantees
correctness when there are no hash collisions in the input.
To ensure that (with high probability) there are no collisions,
we sample H from a family of universal hash functions and
restrict attention to the case where no clients are corrupted
(so the adversary cannot choose the inputs of corrupted
clients after seeing H). In Appendix C, we explore defenses
against corrupted clients.

Definition 15. H = {H : [b]h → [b]k} is a universal hash
family if, for any distinct x1, x2 ∈ [b]h,

Pr
H←H

[H(x1) = H(x2)] = 1/bk.

Theorem 16 (Accuracy of HPI). Let H be a universal hash
family with k ≥ logb(n

2/2γ), and set bias = 1. If no clients
are corrupted, HPI performs t-heavy-hitter detection with
error margin

∆ = max

 2 ·
⌈

1

ε
ln

1

δ

⌉
,

4σ ·

√√√√ln

(√
2

π

Heavyt(X̄) · b · k
β

)
and error rate ≤ β + γ.

The proof can be found in Appendix B.3.

5. A Two-Server Protocol

In the previous section we described ideal functionalities
for the HPI framework and the underlying heavy-hitter
detection algorithm GaussTrie. In this section we discuss
how HPI+GaussTrie can be implemented efficiently by a
two-server protocol.

The protocol is given in Figure 1, and relies on the
subroutines in Figures 2 and 3. We give an outline of the
overall protocol here, and describe the components of the
protocol in more detail in the subsections that follow:

1) The servers jointly sample H : [b]h → [b]k, and send it
to the clients.8

2) A client with input xi ∈ [b]h computes hi :=
H(xi) ∈ [b]k. It then generates incremental DPF keys

8. To prevent inconsistencies, each server can sign H before sending
it to the clients; if any client receives inconsistent (signed) H’s from the
servers, it echos them to the servers who then abort. For simplicity we omit
this from the protocol description.

Overall protocol

Parties: Two non-colluding servers; n clients

Input: Client i holds xi

1) Using a coin-tossing protocol the servers select a hash function H and
send it to each client

2) Each client i does:

a) Set hi := H(xi)
b) Compute DPF keys keyi,0, keyi,1 as described in the text, and send

keyi,j to server j ∈ {0, 1}
3) The servers then do:

a) Run protocol GaussTrie to obtain Sinit

b) Set S := ∅. Then for s ∈ Sinit do:

i) Run protocol PrunedInvert on input s to obtain output z
ii) If z 6= ⊥ and H(z) = s, add z to S. (If z 6= ⊥ but H(z) 6= s

an optional error message can be output.)

c) Output S

Figure 1: Two-server protocol computing HPI+GaussTrie.

GaussTrie

Parties: Two non-colluding servers

Parameters: b, k, t, σ2, β, bias

Input: Server j holds {keyi,j}i∈[n]

1) Each server initializes S := ∅, i := −1, and Q to a queue initialized
with the empty string.

2) While |Q| > 0, the servers then do:

a) Set q := head of Q
b) If i 6= |q|, set:

i) i := |q|
ii) ni := |Q|

iii) γi := (2h · b · ni/β)−1

iv) αi :=

{√
2σ · Φ−1(γi) if bias = 1

0 otherwise

c) Dequeue q from Q
d) For char ∈ [b]

i) Create p by appending char to q
ii) Server j sets cp,j := Evalj(p)

iii) Sample ηp,j ← N(0, σ2) and set c̃p,j := cp,j + ηp,j
iv) Send c̃p,j to the other server; set c̃p := c̃p,0 + c̃p,1 + αi

v) If c̃p ≥ t and |p| = h: Add p to S
vi) If c̃p ≥ t and |p| < h: Enqueue p in Q

3) Output S

Figure 2: Protocol computing GaussTrie.

keyi,0, keyi,1 satisfying Eq. (1), and sends keyi,j to
server j. We define Evalj(p) =

∑
i∈[n] Evalkeyi,j (p).

3) The servers run a 2PC protocol to evaluate GaussTrie
(cf. Figure 2 and Section 5.1) and obtain output Sinit.

4) For each element of Sinit, the servers run a 2PC protocol
to evaluate PrunedInvert (cf. Figure 3 and Section 5.2)
and obtain output S.

We defer a discussion of the security of the protocol to
Section 5.4.

9

PrunedInvert

Parties: Two non-colluding servers

Input: Server j holds {keyi,j}i∈[n]; both servers hold a hash value s.

1) Server j sets cj := Evalj(s) ∈ {0, 1}1+2 log d

2) Using an actively secure, generic 2PC protocol, the servers evaluate the
randomized functionality f(c0, c1) defined as:

a) Set c := c0 + c1
b) For 0 < k ≤ log2 d, do:

y[k] :=

{
0 c[2k] ≥ c[2k + 1]
1 otherwise

c) gap := mink |c[2k + 1]− c[2k]|
d) η ← dLap(exp(−ε), tail)
e) If gap + η ≤ t+ tail, return ⊥; else return y

Figure 3: Protocol computing PrunedInvert.

5.1. Securely Computing GaussTrie

Securely computing the GaussTrie algorithm is fairly
straightforward given the incremental DPFs set up by the
users. When processing prefix p in an execution of the
inner loop of GaussTrie (cf. Ideal Functionality 1), each
server j ∈ {0, 1} (independently) samples ηp,j and locally
computes9 and releases Evalj(p) + ηp,j . The servers sum
these values to obtain cp + ηp,0 + ηp,1 + αi, and compare
the result to the threshold t. Note that since all decisions
about placing elements in Q or S are known to both servers,
they can each locally compute all the necessary values.

We stress that it is not necessary to generate the noise
ηp,0, ηp,1 securely since Theorem 6 shows that privacy holds
as long as either ηp,0 or ηp,1 is generated correctly, which
is true whenever at least one server is honest.

5.2. Securely Computing PrunedInvert

In contrast to GaussTrie, the noise for computing Pruned-
Invert (i.e., η in Figure 3) must be generated securely. If an
adversary could make η large (even if unpredictable) then it
could force a non-heavy hitter y 6= ⊥ to be returned. If no
honest party has a value that hashes to s, then y = 0log d,
but if one party has such a value then y will take that value.
This distinguishes two neighboring datasets with certainty,
violating differential privacy.

The protocol computing PrunedInvert proceeds as fol-
lows. Each server uses Evalj(s) as an additive share of a
vector c encoding “votes” for each bit of a preimage of s (cf.
Eq. (1)). The servers then securely compute a (randomized)
function f that does the following:

1) Reconstruct c and compute, for each position in the
binary expansion of a possible preimage y, whether 0
or 1 is more common.

9. When |p| = k, the servers use only the first field of Eval(p).

2) Compute the smallest margin gap and sample η.
3) If gap + η < t + tail, prune s (i.e., output nothing).

Otherwise output y.
We defer to Section 5.3 a discussion of how to construct a
circuit for sampling η; note that the rest of f involves only
simple computations such as additions and comparisons.

5.3. Secure Noise Generation

We consider two approaches for securely sampling from
dLap(r, tail), assuming the availability of uniform bits
(which are easy to generate using 2PC). Note that since
Prη←dLap(r)[|η| > tail] = O(δ), it suffices to sample
from dLap(r).

Inversion sampling. The first approach is to use inversion
sampling. Let FdLap(r) be the CDF of dLap(r). Then
we sample uniform u ∈ [0, 1] (of some fixed precision `;
see below), and let η ∈ Z be the smallest value for which
FdLap(r)(η) ≥ u. To implement the latter securely, we can
let F be a public array containing the values of FdLap(r)(i)
for −tail ≤ i ≤ tail, and then do a linear scan to find the
least index η with F (η) ≥ u. As an optimization, we can
exploit the fact that dLap is symmetric; thus, it suffices to
use the array F|dLap(r)|(i) for 0 ≤ i ≤ tail, and then use
one additional bit to determine the sign of η.

We set ` = O(log(tail/δ)). This ensures that the total
variation distance between dLap(r) and the actual distribu-
tion we sample from is bounded by O(δ), and suffices for
(ε,O(δ))-DP since in the analysis of differential privacy we
only care about the effect of the noise on the (hashed) input
of one client.

Direct sampling. Dwork et al. [27], observed that sam-
pling from dLap(r) reduces to sampling once from the
geometric distribution Geo(1 − r), once from a biased
Bernoulli distribution, and once from the unbiased Bernoulli
distribution. In turn, sampling from Geo(1− r) with `-bit
precision can be reduced to sampling from ` biased Bernoulli
distributions. Sampling from a biased Bernoulli distribution
with `-bit precision can be done by sampling a uniform value
in [0, 1] with `′ = d− log2(δ/(`+ 1))e bits of precision and
comparing it to the desired bias. This incurs < δ/` error for
each sample and thus O(δ) error overall for O(`) samples.

For practical settings of the parameters, we find that
securely sampling dLap(r) using direct sampling is sub-
stantially more efficient than using inversion sampling.

5.4. Security Guarantees

Accuracy of the protocol when no clients are corrupted
and the adversary is passive (and a universal hash family is
used) follows from Theorem 16. In Appendix C we discuss
the effect of malicious clients.

10

ε Circuit size (non-XOR gates) Running time (ms)

1 45573 153
2 45797 147
4 45495 136
8 45463 136

TABLE 2: Running times and circuit sizes for different values
of ε, for a single run of PrunedInvert. We allow for 1M
clients , each holding a 256-bit string (i.e., log2 d = 256).

We next argue that our protocol achieves computational
differential privacy against an active adversary corrupting one
of the servers and any number of clients. Theorem 14 already
shows that a centralized version of the HPI+GaussTrie algo-
rithm satisfies (4ε, 4δ)-DP. Our protocol securely computes
that algorithm, with the only discrepancy being that samples
of η are within O(δ) statistical difference of the correct dis-
tribution. We stress in particular that this holds even though
malicious clients may generate incorrect DPF keys, since our
ideal functionalities for GaussTrie and PrunedInvert already
allow the adversary to choose arbitrary offsets for all values
computed using the DPF keys in the protocol.

Theorem 17. The protocol in Figure 1, implemented as
described above and with parameters matching those of The-
orem 14, satisfies (4ε, O(δ))-DP against an active adversary
corrupting one server and an arbitrary number of clients.

6. Experimental Results

6.1. Implementation

The main overhead of our solution compared to Poplar
(using domain [b]k) is from the 2PC protocol for securely
computing PrunedInvert, and so we focus on that aspect of
our protocol. We implement the required 2PC protocol for
PrunedInvert in C++ using the state-of-the-art authenticated
garbling scheme [28] in the EMP toolkit [29]. The circuit
itself was generated using CBMC-GC [30], [31].10

In Table 2 we show experimental results for a single run
of PrunedInvert, with both servers on the same machine,
each using a single core. Since we use garbled circuits,
our protocol has O(1) round complexity, so latency is not
expected to be an issue in practice. Overall, our results
indicate that our protocol adds little overhead as compared
to Poplar. For comparison, the implementation of Poplar
achieves a throughput of 124 clients per second for a 256-bit
domain [4]. Note further than PrunedInvert only needs to
be computed once per heavy hitter.

10. Available at https://gitlab.com/securityengineering/CBMC-GC-2.

100 150 200
Heavy Hitter Frequency

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

100 150 200
Heavy Hitter Frequency

100

101

102

Vi
sit

ed
 N

od
es Mechanism

GaussTrie
GaussTrie+HPI (0.25)
GaussTrie+HPI (0.33)
GaussTrie+HPI (0.50)

Bias Count
False
True

Figure 4: Identifying a single heavy hitter.

6.2. Utility

We compare the utility of GaussTrie and HPI+GaussTrie
using synthetic data. In the first experiment we consider a
dataset with a single heavy hitter of varying frequency, and
evaluate the average recall (i.e., the probability of correctly
identifying the heavy hitter). In the second experiment
we consider a dataset where element frequencies follow
a power-law distribution, and evaluate the F1 score as a
function of the heavy-hitter threshold. In both cases we
evaluate HPI+GaussTrie with and without biasing the noisy
counts; this leads to different trade-offs between utility and
computation, where the latter is measured by the total number
of trie nodes expanded. We also explore the effect of different
splits between the privacy budgets of HPI and GaussTrie,
with HPI being allocated 1/2, 1/3, or 1/4 of the total privacy
budget.

In all our experiments, we set k = logb(n
2)+40/ log2(b)

to guarantee that the probability of a collision is smaller
than min{2−40, 1/n} . All results are averaged over 500
independent runs and satisfy δ ≤ (1 + e)/n and failure
rate β ≤ 1/10.

Single heavy hitter. We create datasets of n = 103 strings,
each 256 bits long, where each dataset contains a single
heavy hitter whose frequency varies from 80–240. We fix
the threshold t = 80, and set ε = 2. We set b = 256 and
h = 32, so k = 8. We evaluate the average recall (i.e.,
probability of correctly identifying the heavy hitter) and
number of expanded trie nodes. Results are presented in
Figure 4. We observe that:
• Whether or not we bias counts, HPI+GaussTrie has

superior recall compared to GaussTrie. This is due to
the reduction in the error margin (cf. Remark 5).

• Biasing the counts degrades recall, but also improves
efficiency by reducing the number of visited nodes.

• When not biasing the counts, HPI+GaussTrie is superior
to GaussTrie in terms of both recall and efficiency.

• As we reduce the privacy budget allocated to HPI, recall
improves while efficiency gets worse. This effect is more
pronounced when bias is added.

Power-law dataset. We generate datasets of n = 105 items,
each 256 bits long, where items follow a power-law (Pareto)

11

https://gitlab.com/securityengineering/CBMC-GC-2

100 200
Threshold

0.00

0.25

0.50

0.75

1.00

F1
 S

co
re

Epsilon = 2.0

100 200
Threshold

Epsilon = 4.0

100 200
Threshold

Epsilon = 8.0

100 200
Threshold

103

105

107

Vi
sit

ed
 N

od
es

Epsilon = 2.0

100 200
Threshold

Epsilon = 4.0

100 200
Threshold

Epsilon = 8.0
Mechanism

GaussTrie
GaussTrie+HPI (0.25)
GaussTrie+HPI (0.33)
GaussTrie+HPI (0.50)

Bias Count
False
True

Figure 5: Identifying heavy hitters in a power-law dataset.

distribution with parameter 1.25. This ensures a small number
of elements have high frequency while the vast majority
have low frequency, and is representative of real datasets of
interest for heavy-hitter identification. We again set b = 256
and h = 32; now k = 10. We vary the threshold t from
50–250, and run the experiment with ε ∈ {2, 4, 8}. Results
are presented in Figure 5. Overall, we observe that (when
not biasing the counts) HPI+GaussTrie performs better than
GaussTrie in terms of both accuracy and efficiency across
all values of ε, with the benefit being more pronounced in
the high-privacy regime. We also find that biasing the counts
can significantly improve efficiency when the threshold is
low (so the number of heavy hitters is large).

References

[1] D. Mouris, C. Patton, H. Davis, P. Sarkar, and N. G. Tsoutsos, “Mastic:
Private weighted heavy-hitters and attribute-based metrics,” Proc. Priv.
Enhancing Technol., 2025.

[2] “Network Error Logging,” https://www.w3.org/TR/network-error-
logging, W3C working draft, accessed 11-14-2024.

[3] H. Corrigan-Gibbs and D. Boneh, “Prio: Private, robust, and scalable
computation of aggregate statistics,” in NSDI, 2017, pp. 259–282.

[4] D. Boneh, E. Boyle, H. Corrigan-Gibbs, N. Gilboa, and Y. Ishai,
“Lightweight techniques for private heavy hitters,” in IEEE Security
& Privacy. IEEE, 2021, pp. 762–776.

[5] S. Addanki, K. Garbe, E. Jaffe, R. Ostrovsky, and A. Polychroniadou,
“Prio+: Privacy preserving aggregate statistics via boolean shares,” in
SCN, 2022.

[6] H. Davis, C. Patton, M. Rosulek, and P. Schoppmann, “Verifiable
distributed aggregation functions,” Proc. Priv. Enhancing Technol.,
2023.

[7] D. Mouris, P. Sarkar, and N. G. Tsoutsos, “Plasma: Private, lightweight
aggregated statistics against malicious adversaries,” Proc. Priv. En-
hancing Technol., 2024.

[8] R. Barnes, D. Cook, C. Patton, and P. Schoppmann, “Verifiable
distributed aggregation functions,” Internet Engineering Task
Force, Internet-Draft draft-irtf-cfrg-vdaf-13, 2024, available at
https://datatracker.ietf.org/doc/draft-irtf-cfrg-vdaf.

[9] “Divvi up: A privacy respecting telemetry service,” 2024, available at
https://datatracker.ietf.org/wg/ppm/about/.

[10] A. Korolova, K. Kenthapadi, N. Mishra, and A. Ntoulas, “Releasing
search queries and clicks privately,” in Proc. 18th Intl. Conf. on the
World Wide Web. ACM, 2009, p. 171–180.

[11] M. Bun, K. Nissim, and U. Stemmer, “Simultaneous private learning
of multiple concepts,” in Innovations in Theoretical Computer Science.
ACM, 2016.

[12] S. Vadhan, “The complexity of differential privacy,” Tutorials on
the Foundations of Cryptography: Dedicated to Oded Goldreich, pp.
347–450, 2017.

[13] R. Bassily and A. Smith, “Local, private, efficient protocols for succinct
histograms,” in STOC, 2015, pp. 127–135.

[14] R. Bassily, K. Nissim, U. Stemmer, and A. Thakurta, “Practical locally
private heavy hitters,” J. Machine Learning Research, vol. 21, no. 16,
pp. 1–42, 2020.

[15] V. Balcer and A. Cheu, “Separating local & shuffled differential
privacy via histograms,” in 1st Conference on Information-Theoretic
Cryptography (ITC 2020). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2020.

[16] J. Bell, A. Gascón, B. Ghazi, R. Kumar, P. Manurangsi, M. Raykova,
and P. Schoppmann, “Distributed, private, sparse histograms in the
two-server model,” in ACM Conf. on Computer and Communications
Security. ACM, 2022, pp. 307–321.

[17] L. Braun, A. Gascón, M. Raykova, P. Schoppmann, and K. Seth,
“Malicious security for sparse private histograms,” 2024, available at
https://eprint.iacr.org/2024/469.

[18] F. B. Durak, C. Weng, E. Anderson, K. Laine, and M. Chase, “Precio:
Private aggregate measurement via oblivious shuffling,” Cryptology
ePrint Archive, 2021.

[19] I. Mironov, O. Pandey, O. Reingold, and S. Vadhan, “Computational
differential privacy,” in Crypto, 2009, pp. 126–142.

[20] N. Gilboa and Y. Ishai, “Distributed point functions and their applica-
tions,” in Adv. in Cryptology—Eurocrypt 2014, ser. LNCS. Springer,
2014, pp. 640–658.

[21] E. Boyle, N. Gilboa, and Y. Ishai, “Function secret sharing,” in Adv.
in Cryptology—Eurocrypt 2015, ser. LNCS. Springer, 2015, pp.
337–367.

[22] ——, “Function secret sharing: Improvements and extensions,” in
ACM Conference on Computer and Communications Security (CCS),
2016, pp. 1292–1303.

[23] J. Zhang, X. Xiao, and X. Xie, “PrivTree: A differentially private
algorithm for hierarchical decompositions,” in SIGMOD. ACM, 2016,
pp. 155–170.

[24] W. Zhu, P. Kairouz, B. McMahan, H. Sun, and W. Li, “Federated
heavy hitters discovery with differential privacy,” in 23rd Intl. Conf.
on Artificial Intelligence and Statistics (AISTATS), ser. Proc. Machine
Learning Research, vol. 108. PMLR, 2020, pp. 3837–3847, available
at https://arxiv.org/abs/1902.08534.

[25] G. Cormode and A. Bharadwaj, “Sample-and-threshold differential
privacy: Histograms and applications,” in Intl. Conf. on Artificial
Intelligence and Statistics (AISTATS), ser. Proc. Machine Learning
Research, vol. 151. PMLR, 2022, pp. 1420–1431, available at
https://arxiv.org/abs/2112.05693.

[26] K. Chadha, J. Chen, J. Duchi, V. Feldman, H. Hashemi, O. Javidbakht,
A. McMillan, and K. Talwar, “Differentially private heavy hitter
detection using federated analytics,” in IEEE Conf. on Secure and
Trustworthy Machine Learning (SaTML). IEEE, 2024, pp. 512–533,
available at https://arxiv.org/abs/2307.11749.

12

https://eprint.iacr.org/2024/469

[27] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor, “Our
data, ourselves: Privacy via distributed noise generation,” in Advances
in Cryptology—Eurocrypt 2006. Springer, 2006, pp. 486–503.

[28] X. Wang, S. Ranellucci, and J. Katz, “Authenticated garbling and
efficient maliciously secure two-party computation,” in CCS. ACM,
2017, pp. 21–37.

[29] X. Wang, A. J. Malozemoff, and J. Katz, “EMP-toolkit: Efficient
multi-party computation toolkit,” https://github.com/emp-toolkit.

[30] N. Büscher, A. Holzer, A. Weber, and S. Katzenbeisser, “Compiling
low depth circuits for practical secure computation,” in ESORICS,
Part II, ser. LNCS, vol. 9879. Springer, 2016, pp. 80–98.

[31] A. Holzer, M. Franz, S. Katzenbeisser, and H. Veith, “Secure two-party
computations in ANSI C,” in CCS. ACM, 2012, pp. 772–783.

[32] J. Dong, A. Roth, and W. J. Su, “Gaussian differential privacy,” CoRR,
vol. abs/1905.02383, 2019.

[33] C. Dwork, A. Roth et al., “The algorithmic foundations of differential
privacy,” Foundations and Trends R© in Theoretical Computer Science,
vol. 9, no. 3–4, pp. 211–407, 2014.

[34] L. Wasserman, “Stat 700 lecture notes 5,” available at
https://www.stat.cmu.edu/~larry/=stat700/Lecture5.pdf.

Appendix A.
Histogram Estimation

We show that a DP heavy-hitter detector implies a DP
histogram estimator.

Definition 18. An algorithm performs histogram estimation
with `∞ error ∆ and error rate β if, on any multiset X ,
it produces an associative data structure a(X) such that
Pr [∃s ∈ D |cs(X)− as(X)| > ∆] < β.

Lemma 19. If there is an (ε, δ)-DP algorithm that performs
heavy-hitter detection with ∆ error margin and error rate β,
there is a (2ε, δ)-DP algorithm that performs histogram
estimation with `∞ error ∆ + 1

ε ln n
β and error rate 2β.

Proof. Let A be the heavy-hitter detection algorithm. His-
togram estimator A′ does the following: run A(X) with
threshold t = 1 to create a set S. Then, for s ∈ S, let
as = cs + Lap(1/ε) where cs is its true count. For s 6∈ S,
set as := 0.

By definition of heavy-hitter detection, every item that
occurs at least t+ ∆ times will be in S. Hence, every s 6∈ S
satisfies cs ≤ ∆. Since as = 0, we have |cs−as| = |cs| ≤ ∆.

By a tail bound on the Laplace distribution and a
union bound over the set {as}s∈S , we can conclude that
Pr
[
∃s ∈ S : |cs − as| > 1

ε ln |S|β

]
< β. After we factor in

the β error rate of A, the following holds except with
probability ≤ 2β:

|cs − as| <
1

ε
ln
|S|
β

+ ∆ ≤ 1

ε
ln
n

β
+ ∆

for all s ∈ D.

A corollary of the above is that lower bounds for DP
histogram estimation imply lower bounds for DP heavy-hitter
detection. We use one by Vadhan [12].

Theorem 20 (Lower bound for DP histograms). If an (ε, δ)-
DP algorithm performs histogram estimation with `∞ error
∆ and error rate 1/10, then ∆ ≥ κ

ε min
(
log 1

δ , log d
)

for
some constant κ.

Theorem 21 (Lower bound for DP heavy-hitters). If an
(ε, δ = o(1/n))-DP algorithm solves heavy-hitter detection
with error margin ∆ and error rate 1/20, then

∆ ≥ κ

2ε
min

(
log

1

δ
, log d

)
− 1

ε
log 20n.

Proof. Assume some algorithm A achieves ∆∗ =
κ
2ε min

(
log 1

δ , log d
)
− 1

ε log 20n error margin and error
rate 1/20. By Lemma 19, there is some (2ε, δ)-DP histogram
estimator with error κ

2ε min
(
log 1

δ , log d
)
. This contradicts

Theorem 20.

Appendix B.
Deferred Proofs

B.1. GaussTrie

We first prove that GaussTrie ensures differential privacy,
then prove accuracy and efficiency.

Theorem 6 (Privacy of GaussTrie). Let σ satisfy

Φ

(√
h

2σ
− εσ√

h

)
− eε · Φ

(
−
√
h

2σ
− εσ√

h

)
≤ δ.

(For ε < 1, taking σ =
√

2h
ε ·

√
log 5

4δ suffices.) Then
GaussTrie guarantees (2ε, 2δ)-DP.

Proof. We prove (ε, δ)-add/remove DP for datasets X,X ′

differing in the presence of exactly one entry. We then use the
fact that (ε, δ)-add/remove DP implies (2ε, 2δ)-replacement
DP (which is the notion used in this work).

Fix X,X ′ with X ′ = X ∪ {x}, and arbitrary inputs X̂
for the corrupted clients. Let X̄ = X ∪ X̂ . We append a
“prime” to a variable to indicate the corresponding variable
when the honest parties’ input is X ′ as opposed to X .

Fix some p. If p is not a prefix of x, then c̃p, c̃
′
p are

identically distributed. If p is a prefix of x, then cp+ηp,A+αi
and c′p + ηp,A + αi differ by one, and hence c̃p, c̃′p are each
the sum of a 1-sensitive function and a random variable
from N(0, σ2). It follows that c̃p, c̃′p satisfy 1/σ-Gaussian
differential privacy [32, Theorem 2.7].

Since there are at most h prefixes of x that are en-
countered during execution of GaussTrie, the algorithm
overall ensures

√
h/σ-Gaussian differential privacy [32,

Corollary 3.3].

13

https://github.com/emp-toolkit

To convert to approximate differential privacy, we simply
invoke [32, Corollary 2.13]. In the special case where ε ≤ 1,
we rely on [33, Appendix A].

Theorem 7 (Accuracy of GaussTrie). GaussTrie with bias
set to 1 performs t-heavy-hitter detection with error margin

4σ ·

√√√√ln

(√
2

π
· Heavyt(X̄) · b · h

β

)
and error rate β. Moreover, the probability that GaussTrie
enqueues a prefix having frequency < t is ≤ β.

Proof. We first show that 2αi ≤ ηp + ηp,A + αi ≤ 0 for all
prefixes p, except with probability at most β. The distribution
of ηp+ηp,A is N(0, 2σ2). By definition of αi and symmetry
of the Gaussian distribution, |ηp + ηp,A| ≤ |αi| for some
fixed p except with probability ≤ 2γi = 2 ·(β/2hbni). There
are b · ni extensions of enqueued prefixes of length i, so a
union bound over all such extensions, and then over all h
possible prefix lengths, completes the proof of the claim.

The remainder of the proof conditions on 2αi ≤ ηp +
ηp,A + αi ≤ 0 for all p. Since p is enqueued in Q or added
to S iff cp + ηp + ηp,A + αi ≥ t, we see that p is not
added to Q or S when cp < t, but is added to Q or S
when cp ≥ t + 2 · maxi |αi|. Hence the error margin is
2 ·maxi |αi| =

√
2σmaxi |Φ−1(γi)|.

To find an upper bound on |Φ−1(γi)|, it suffices to find
some ` > 0 for which Pr [N(0, 1) ≥ `] ≤ γi. Mill’s inequal-

ity [34] implies ` =

√
2 ln

(
1√

2πγi

)
works. Substitution

of γi and then ni ≤ Heavyt(X) completes the proof of the
theorem.

B.2. PrunedInvert

Claim 11. If s matches one target, then z ≈ε,δ z′.

Proof. It is easy to see that |gap−gap′| ≤ 1. Assume w.l.o.g.
that gap ≤ gap′.

Case 1 gap′ ≤ t. Then prune = 1 and prune′ = 1 with
probability 1, so both z, z′ are ⊥.

Case 2 gap > t. Since t ≥ 1, this means that all
the elections to determine the preimages y and y′ have
unambiguous victors (i.e., there are no ties). We claim this
implies y = y′. Indeed, because s matches one target, for all
j exactly one of count[j, 0], count[j, 1] goes up or down by
one when switching from X̄ to X̄ ′. But the only way this
could cause a change in the result would be by breaking or
causing a tie, and we have just noted that no ties occur.

Since y = y′, the values z, z′ are the same when prune =
prune′ = 0. Thus, it suffices to argue that prune ≈ε,δ prune′.
We do this by showing gap+η ≈ε,δ gap′+η and invoking the
data-processing inequality. If gap = gap′ this is immediate,
so we assume gap′ = gap + 1.

Observe that, for any v and η ← dLap(exp(−ε), tail),

Pr
η

[gap + η = v] = Pr
η

[η = v − gap]

and Pr
η

[gap′ + η = v] = Pr
η

[η = v − gap′]

= Pr
η

[η = v − gap− 1].

If both v−gap and v−gap−1 are outside [−tail, tail], both
probabilities are 0. If both are in [−tail, tail], the definition
of dLap(exp(−ε), tail) implies the probabilities differ by a
multiplicative factor of exp(ε). Otherwise, one probability
is 0 while the other is

Pr
η

[η = tail] =
exp(−tail · ε)∑tail

i=−tail exp(−|i| · ε)
≤ exp(−tail · ε)
≤ δ, (2)

where the first inequality uses the fact that i can take on
value 0 and all terms in the summation are positive. The
second inequality comes from our relatively large choice of
tail. We conclude that, for any V ,

Pr
η

[gap + η ∈ V] =
∑
v∈V

Pr
η

[gap + η = v]

=
∑
v∈V

Pr
η

[η = v − gap]

≤ δ +
∑
v∈V

eε · Pr
η

[η = v − gap− 1]

= eε · Pr
η

[gap′ + η ∈ V] + δ.

(The additive term δ appears exactly once because there
is at most one v ∈ V for which Pr

η
[gap + η = v] > 0

but Pr
η

[gap′ + η = v] = 0.) A symmetric argument implies

Pr
η

[gap′ + η ∈ V] ≤ eε · Pr
η

[gap + η ∈ V] + δ.

Case 3 gap′ > t, gap = t. Here z =⊥, and since gap′ =
t + 1 we have z′ =⊥ except with probability at most δ
(using (2)).

B.3. HPI

Theorem 16 (Accuracy of HPI). Let H be a universal hash
family with k ≥ logb(n

2/2γ), and set bias = 1. If no clients
are corrupted, HPI performs t-heavy-hitter detection with
error margin

∆ = max

 2 ·
⌈

1

ε
ln

1

δ

⌉
,

4σ ·

√√√√ln

(√
2

π

Heavyt(X̄) · b · k
β

)
and error rate ≤ β + γ.

14

Proof. Because H is universal, each pair of distinct inputs
collides with probability ≤ 2γ/n2. By a union bound over
at most

(
n
2

)
pairs, there are no hash collisions between any

pair of inputs except with probability ≤ γ; in what follows
we condition on that event.

Theorem 7 shows that, except with probability ≤ β,
the set Sinit contains all hash values that appear at least

t + 4σ ·
√

ln
(√

2
π

Heavyt(X̄)·b·k
β

)
times in H(X̄), and will

not contain any hashes appearing < t times. PrunedInvert is
called on each s ∈ Sinit. Let x be the (unique) preimage of s.
Theorem 13 implies that if x occurs more than t+2·d1

ε ln 1
δ e

times in X̄ , it will be output by PrunedInvert and hence
included in Sfinal.

Appendix C.
Correctness of HPI with Corrupted Clients

We consider correctness in the presence of actively
corrupted clients (assuming a passively corrupted server).
There are two aspects of correctness to consider. The first is
suppression of true heavy hitters (among the honest clients);
the second is undue influence in causing items to be identified
as heavy hitters (beyond what the adversary can do by simply
changing the inputs of malicious clients).

HPI does not prevent suppression of heavy hitters by
malicious clients. This is because malicious clients can
potentially cause all hashes in Sinit to be pruned, so none
of them will be inverted.

HPI+GaussTrie can be adapted to prevent undue influ-
ence. To do so, there are two issues that need to be addressed.
First, we need to ensure that malicious clients cannot choose
inputs that would cause a collision in H . (Note this is a
concern even if clients run the protocol honestly, but may
choose their inputs freely during the protocol execution.)
This can be done simply by choosing H to be a second-
preimage resistant hash function. Second, we need to make
sure that each client can contribute at most one (hashed)
input. To do so, we can rely on a protocol by Boneh et al. [4]
that allows the servers to check that at most one entry of a
shared vector is 1 and the rest are 0. The servers can run
this protocol level-by-level using the incremental DPF keys
provided by each client, rejecting a client’s contribution if
verification fails at any level.

15

	Introduction
	Our Contributions
	Other Related Work

	Definitions and Notation
	Setting and Threat Model
	Differential Privacy (DP)
	Heavy-Hitter Detection

	Technical Overview
	Trie-Based Heavy-Hitter Detection
	Using DPFs
	Trie-based Solutions and Poplar
	Adding Differential Privacy

	Our Solution
	GaussTrie
	The Promise and Challenges of Hashing
	Intuition for HPI
	DPF-based HPI

	Ideal Functionalities: GaussTrie & HPI
	GaussTrie
	Pruning and Inverting Hashes
	Hash-Prune-Invert

	A Two-Server Protocol
	Securely Computing GaussTrie
	Securely Computing PrunedInvert
	Secure Noise Generation
	Security Guarantees

	Experimental Results
	Implementation
	Utility

	References
	Appendix A: Histogram Estimation
	Appendix B: Deferred Proofs
	GaussTrie
	PrunedInvert
	HPI

	Appendix C: Correctness of HPI with Corrupted Clients

