
An Abstract Multi-Forking Lemma

Charanjit S. Jutla

IBM T. J. Watson Research Center,
Yorktown Heights,
NY 10598, USA

Abstract. In this work we state and prove an abstract version of the
multi-forking lemma of Pointcheval and Stern from EUROCRYPT’96.
Earlier, Bellare and Neven had given an abstract version of forking lemma
for two-collisions (CCS’06). While the original purpose of the forking
lemma was to prove security of signature schemes in the random oracle
methodology, the abstract forking lemma can be used to obtain security
proofs for multi-signatures, group signatures, and compilation of inter-
active protocols under the Fiat-Shamir random-oracle methodology.

1 Forking Lemma

We start by introducing the forking lemma of Pointcheval and Stern [PS96].
Forking Lemma was introduced and proved in [PS96] to prove the unforgeability
of signatures in the random-oracle model for signature schemes like DSA and
EC-DSA. The main idea of the proof is to show that if an adversary can forge a
signature, then the same adversary can be used to break the discrete-log problem.
This is accomplished by rewinding the Adversary, so that the random-oracle can
be programmed differently (yet, randomly). The adversary’s responses in the
different forks allow one to obtain the discrete log of the discrete log challenge.
Of course, the Adversary’s queries may adaptively change with each change
in the random-oracle responses, and hence the forking lemma is a non-trivial
probabilistic lemma.

Amore abstract version of the forking lemma was stated and proved in [BN06].
However, the original lemma of [PS96] is more powerful in the sense that it
can lower bound the probability of obtaining multi-collisions (in multi-forks).
The [BN06] abstract version only handles a single fork and lower bounds the
probability of a single collision. While the original purpose of the forking lemma
was to prove security of signature schemes in the random-oracle methodology, the
abstract forking lemma can be used to obtain security proofs for multi-signatures,
group signatures, and compilation of interactive protocols under the Fiat-Shamir
random-oracle methodolgy [FS87]. We remark that the forking lemma is not
always useful, and alternate strategies are sometimes employed in compiling in-
teractive proofs such as Valiant’s extractor strategy [Val08] (see also [BCS16]).
In [BDL19] a different local forking lemma was considered in which the random
oracle is reprogrammed on just a single fork point rather than on all points past
the fork.

In this work, borrowing some ideas from [BPVY00], we prove a stronger
multi-collision version of the abstract forking lemma1. We first state the lemma
as proved in [BN06], and then follow it with the more advanced lemma and its
proof.
Notation. If A is a randomized algorithm, then A(x1, x2, ..., xn; ρ) denotes the

output of A on inputs x1, x2, ..., xn and coins ρ. We write σ
$
←− A(x1, x2, ...xn)

to indicate that σ was obtained as output of running A on inputs x1, x2, ..., xn

with randomly chosen coins.

Lemma 1. (Abstract Forking Lemma) Fix an integer q ≥ 1 and a set H of size
h ≥ 2. Let A be a randomized algorithm that on input x, h1, ...hq returns a pair,
the first element of which is an integer in the range [0..q] and the second element
of which we reer to as a side output. Let IG be a randomized algorithm with
output in X and which we call the input generator. The accepting probability of
A, denoted acc, is defined as the probability that J ≥ 1 in the experiment

x
$
←− IG; h1, ...hq

$
←− H ; (J, σ)

$
←− A(x, h1, ..., hq).

The forking algorithm FA associated to A is the randomized algorithm that takes
input x and proceeds as follows:

Algorithm FA
Pick coins ρ for A at random

h1, ..., hq
$
←− H

(I, σ)← A(x, h1, ...hq; ρ)
If I == 0 then return (0, ǫ, ǫ)

h′
I , ...h

′
q

$
←− H

(I ′, σ′)← A(x, h1, ..., hI−1, h
′
I , ..., h

′
q; ρ)

If (I == I ′) and (hI 6= h′
I) then return (1, σ, σ′)

Else return (0, ǫ, ǫ).

Let
frk = Pr[b = 1 : x

$
←− IG; (b, σ, σ′)

$
←− FA].

Then,

frk ≥ acc ·

(

acc

q
−

1

h

)

.

2 Abstract Multi-Forking Lemma

Lemma 2. (Abstract Multi-Forking Lemma) Under the conditions and defini-
tions of randomized algorithm A in the previous lemma, the accepting probability
of A, denoted acc, is defined as the probability that J ≥ 1 in the experiment

x
$
←− IG h1, ...hq

$
←− H ; (J, σ)

$
←− A(x, h1, ..., hq).

1 The forking lemma in [PS96] is stated in terms of an adversary’s interaction with a
signature scheme.

2

The multi-forking algorithm FA associated to A is the randomized algorithm that
takes a parameter T as input and runs in two phases as follows:

Algorithm FA(T)
Phase I:

Set t = 0; Repeat
t = t+ 1;
Pick coins ρ(t) for A at random;

x(t) $
←− IG; h

(t)
1 , ..., h

(t)
q

$
←− H;

(I(t), σ(t))← A(x(t), h
(t)
1 , ...h

(t)
q ; ρ(t))

Until (I(t) > 0) or (t > T − 1).

Phase II:

Let I = I(t). If I == 0 then return (0, I, ǫ, ǫ, ǫ, ǫ).

Else, choose h′
I , ...h

′
q

$
←− H.

(I ′, σ′)← A(x(t), h
(t)
1 , ..., h

(t)
I−1, h

′
I , ..., h

′
q; ρ

(t))

If (I == I ′) then return (1, I, σ(t), σ′, h
(t)
I , h′

I)
Else return (0, I, ǫ, ǫ, ǫ, ǫ).

1. Let
succ = Pr[I ≥ 1 : (b, I, σ, σ′, h, h′)

$
←− FA(T)].

Then, succ = 1− (1− acc)T .
2. Define frk to be

Pr[(b = 1) ∧ (h 6= h′) : (b, I, σ, σ′, h, h′)
$
←− FA(T)].

Then,

frk ≥ succ ·

(

acc

q
−

1

|H |

)

.

3. Fix a positive integer ν. Let p = (1/q)∗acc−(ν/|H |). Suppose, after executing
Phase I, the phase II part is repeated N = (ν/p) ∗ log 2ν times, with outputs
designated (bj , I, σ, σj , h, hj) for j ∈ [1..N]. Let N be a subset of [1..N] such
that

(a) for all j ∈ N : bj = 1 and hj 6= h,
(b) and for all j, j′ ∈ N , j 6= j′: hj 6= hj′ .

Then, probability that there exists an N such that |N | ≥ ν is at least succ ∗
e−1.

We state two important basic lemmas from probability theory.

Lemma 3. Let X be a real-valued random variable. Then E[X2] ≥ E[X]2.

Lemma 4. Suppose q ≥ 1 is an integer, and x1, ...xq ≥ 0 are real numbers.
Then

q
∑

i=1

x2
i ≥

1

q

(

q
∑

i=1

xi

)2

.

3

Proof. (of Lemma 2)

Proof of (1): I ≥ 1 iff at the end of phase I, I(t) ≥ 1. Thus, I == 0 iff Phase
I ran through all T repetitions and all of them produced I(t) = 0. The claim
follows as all repetitions in Phase I are completely independent.

Proof of (2) (similar to [BN06]): Let hI stand for h
(t)
I at the end of Phase I.

Note that the predicate in the definition of frk is equivalent to (I ′ = I)∧ (I ≥
1) ∧ (h′

I 6= hI). Now,

Pr[I ′ = I ∧ I ≥ 1 ∧ h′
I 6= hI] = Pr[I ′ = I ∧ h′

I 6= hI | I ≥ 1] ∗ succ

Also, Pr[I ′ = I ∧ h′
I 6= hI |I ≥ 1] is same as Pr[I ′ = I(t) ∧ h′

I 6= hI |I(t) ≥ 1],
where t is the value of the variable at the end of Phase I. Now, since all
repetitions of phase I are completely independent, and in particular use
independent randomness, this probability is same if algorithm FA(T) was
run with parameter T set to one. Thus, with T = 1, the above probability
is same as Pr[I ′ = I(1) ∧ h′

I 6= hI | I(1) ≥ 1]. Again, we will just refer to I(1)

as I. This probability is then

Pr[I ′ = I ∧ h′
I 6= hI ∧ I ≥ 1] ∗

1

acc

≥ (Pr[I ′ = I ∧ I ≥ 1]− Pr[h′
I = hI ∧ I ≥ 1]) ∗

1

acc

≥ (Pr[I ′ = I ∧ I ≥ 1]− Pr[h′
I = hI | I ≥ 1]) ∗

1

acc

≥ (Pr[I ′ = I ∧ I ≥ 1]−
1

|H |
) ∗

1

acc
.

We now focus on lower-bounding Pr[I ′ = I ∧ I ≥ 1]. For each i ∈ [1..q],
Define Xi : X ×R×Hi−1 → [0, 1] to be

Xi(x̂, ρ̂, ĥ1, ..., ĥi−1) =

Pr[Î = i; ĥi, ..., ĥq
$
←− H, (Î , σ̂)← A(x̂, ĥ1, ...ĥq, ρ̂)].

For each i ∈ [1..q], we show that Pr[I = i ∧ I ′ = i] = E[X2
i].

4

Now, for i > 0,

Pr[I = i ∧ I ′ = i] =
∑

x∗,ρ∗,h∗

1
,...,h∗

i−1

Pr[ρ = ρ∗ ∧ x = x∗ ∧

~h|i−1 = ~h∗
|i−1 ∧ (I = i) ∧ (I ′ = i); x

$
←− X , ~h, h′

i, ..., h
′
q

$
←− H,

(I, σ)← A(x∗, h∗
1, ..., h

∗
i−1, hi, ..., hq; ρ

∗),

(I ′, σ′)← A(x∗, h∗
1, ..., h

∗
i−1, h

′
1, ..., h

′
q; ρ

∗)]

=
∑

Pr[ρ = ρ∗ ∧ x = x∗ ∧ ~h|i−1 = ~h∗
|i−1] ∗

Pr[(I = i) ∧ (I ′ = i);hi, ..., hq, h
′
i, ..., h

′
q

$
←− H,

(I, σ)← A(x∗, h∗
1, ..., h

∗
i−1, hi, ..., hq; ρ

∗),

(I ′, σ′)← A(x∗, h∗
1, ..., h

∗
i−1, h

′
1, ..., h

′
q; ρ

∗)]

=
∑

Pr[ρ = ρ∗ ∧ x = x∗ ∧ ~h|i−1 = ~h∗
|i−1] ∗ Xi(x

∗, ρ∗,~h∗
|i−1)

2

=E[X2
i]

Thus, using basic probability theory [BN06],

q
∑

i=1

Pr[I = i ∧ I ′ = i] =

q
∑

i=1

E[X2
i] ≥

q
∑

i=1

E[Xi]
2 ≥

1

q
(

q
∑

i=1

E[Xi])
2 ≥

1

q
acc2.

Proof of (3): Let the experiment in the statement of the lemma (part(3)), , i.e.
repetition of Phase II, be called Expt0 . We consider an alternate experiment
Expt1 in which before the start of Phase II a variable D, called bad set, is
initialized to singleton set {hI} if I ≥ 1. If I = 0, phase II terminates as
before. The set D maybe updated at the end of each repetition of Phase
II, to be described next. During the sampling of h′

I , ..., h
′
q in a repetition of

Phase II, if h′
I is in set D, then it outputs (0, I, ǫ, ǫ, ǫ, ǫ) instead now. At the

end of j-th repetition of Phase II, if the repetition was a success, i.e. bj = 1,
then the value h′

I chosen in this repetition is added to the set D.
In Expt1, after N repetitions, denote by pν,N the probability of existence
of a subset N of size at least ν satisfying: (a′) for all j ∈ N bj = 1. We
now claim that the probability of existence of a subset N of size at least ν
satisfying (a) and (b) in the original experiment Expt0 is at least pν,N . This
follows easily because the underlying probability distribution is same in both
experiments, and for every choice of h′ variables and subset N satisfying (a’)
in Expt1 there is the same choice of h′ variables and subset N satisfying (a)
and (b) in Expt0.
We note that the probability of frk in each repetition is slightly different
now. In particular, the probability of frk in the j-th repetition of Phase II
(j ∈ [1..N]) is now lower bounded by succ ∗ (acc/q − |Dj |/|H |), where Dj

5

is the set D at the start of the j-th repetition. This is most conveniently
shown by considering for each i ∈ [1..q] and D ∈ 2H , s function Yi,D :
X ×R×Hi−1 → [0, 1] to be

Yi(x̂, ρ̂, ĥ1, ..., ĥi−1) =

Pr[Î = i ∧ ĥi 6∈ D; ĥi, ..., ĥq
$
←− H, (Î , σ̂)← A(x̂, ĥ1, ...ĥq, ρ̂)].

For any D of size d, note that Yi,D on its arguments is at least Xi on
the same arguments minus d/|H |. Next, For each i ∈ [1..q], we show that
Pr[I = i ∧ I ′D = i] = E[Xi ∗ Yi,D], where I ′D is I ′ in Phase II in Expt1 with
the bad set initialized to D. Now, for i > 0,

Pr[I = i ∧ I ′D = i] =
∑

x∗,ρ∗,h∗

1
,...,h∗

i−1

Pr[ρ = ρ∗ ∧ x = x∗ ∧

~h|i−1 = ~h∗
|i−1 ∧ h′

i 6∈ D ∧ (I = i) ∧ (I ′ = i); x
$
←− X , ~h, h′

i, ..., h
′
q

$
←− H,

(I, σ)← A(x∗, h∗
1, ..., h

∗
i−1, hi, ..., hq; ρ

∗),

(I ′, σ′)← A(x∗, h∗
1, ..., h

∗
i−1, h

′
1, ..., h

′
q; ρ

∗)]

=
∑

Pr[ρ = ρ∗ ∧ x = x∗ ∧ ~h|i−1 = ~h∗
|i−1] ∗

Pr[h′
i 6∈ D ∧ (I = i) ∧ (I ′ = i);hi, ..., hq, h

′
i, ..., h

′
q

$
←− H,

(I, σ)← A(x∗, h∗
1, ..., h

∗
i−1, hi, ..., hq; ρ

∗),

(I ′, σ′)← A(x∗, h∗
1, ..., h

∗
i−1, h

′
1, ..., h

′
q; ρ

∗)]

=
∑

Pr[ρ = ρ∗ ∧ x = x∗ ∧ ~h|i−1 = ~h∗
|i−1] ∗ Xi(x

∗, ρ∗,~h∗
|i−1) ∗

Yi,D(x∗, ρ∗,~h∗
|i−1)

= E[Xi ∗ Yi,D]

Thus, again using basic probability theory, and denoting I ′ in the j-th rep-
etition of Phase II in Expt1 by I ′j ,

q
∑

i=1

Pr[I = i ∧ I ′j = i]

≥

q
∑

i=1

E[Xi ∗ (Xi − |Dj|/|H |)]

≥

q
∑

i=1

(E[Xi]
2 − (|Dj |/|H |) ∗ E[Xi])

≥ (1/q) ∗ acc2 − (|Dj |/|H |) ∗ acc.

Similarly to [BPVY00], we now analyze the probability of existence of set N
of size at least ν with (a′) holding in Expt1. Recall, p = (1/q)∗acc−(ν/|H |).
We first focus on the first N/ν repetitions till a repetition j, j ≤ N/ν reports

6

success, i.e. bj = 1. Conditioned on I ≥ 1, the probability that none of the
first N/ν repetitions reports success is at most (1 − p)N/ν , since all these
repetitions are independent (in particular bad set D is not updated). Thus,
the probability of success in the first N/ν repetitions is at least 1 − (1 −
p)N/ν ≥ 1− (1− p)log 2ν∗(1/p) ≥ 1− (2ν)−1. We next focus on the next N/ν
repetitions, starting from the last success (or N/ν if none found). Again,
the probability of success in this bunch is at least 1 − (2ν)−1. Thus after ν
such bunched-repetitions, probability that all the ν bunches had success (and
which are independent events) is at least2 (1− (2ν)−1)ν ≥ e−ν/(2ν−1) ≥ e−1.

References

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interac-
tive oracle proofs. Cryptology ePrint Archive, Report 2016/116, 2016.
https://eprint.iacr.org/2016/116.

[BDL19] Mihir Bellare, Wei Dai, and Lucy Li. The local forking lemma and its
application to deterministic encryption. In Steven D. Galbraith and Shiho
Moriai, editors, ASIACRYPT 2019, Part III, volume 11923 of LNCS, pages
607–636. Springer, Heidelberg, December 2019.

[BN06] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key
model and a general forking lemma. In Ari Juels, Rebecca N. Wright, and
Sabrina De Capitani di Vimercati, editors, ACM CCS 2006, pages 390–399.
ACM Press, October / November 2006.

[BPVY00] Ernest F. Brickell, David Pointcheval, Serge Vaudenay, and Moti Yung.
Design validations for discrete logarithm based signature schemes. In Hideki
Imai and Yuliang Zheng, editors, PKC 2000, volume 1751 of LNCS, pages
276–292. Springer, Heidelberg, January 2000.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, Heidelberg,
August 1987.

[PS96] David Pointcheval and Jacques Stern. Security proofs for signature schemes.
In Ueli M. Maurer, editor, EUROCRYPT’96, volume 1070 of LNCS, pages
387–398. Springer, Heidelberg, May 1996.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge
imply time/space efficiency. In Ran Canetti, editor, TCC 2008, volume 4948
of LNCS, pages 1–18. Springer, Heidelberg, March 2008.

2 Using the inequality (1−p)1/p ≥ e
−1/(1−p) for 0 < p < 1, which in turn follows from

e
x
≥ 1 + x.

7

