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ABSTRACT
Private deep neural network (DNN) inference based on secure two-

party computation (2PC) enables secure privacy protection for both

the server and the client. However, existing secure 2PC frameworks

suffer from a high inference latency due to enormous communi-

cation. As the communication of both linear and non-linear DNN

layers reduces with the bit widths of weight and activation, in this

paper, we propose PrivQuant, a framework that jointly optimizes

the 2PC-based quantized inference protocols and the network quan-

tization algorithm, enabling communication-efficient private infer-

ence. PrivQuant proposes DNN architecture-aware optimizations

for the 2PC protocols for communication-intensive quantized oper-

ators and conducts graph-level operator fusion for communication

reduction. Moreover, PrivQuant also develops a communication-

aware mixed precision quantization algorithm to improve the

inference efficiency while maintaining high accuracy. The net-

work/protocol co-optimization enables PrivQuant to outperform

prior-art 2PC frameworks. With extensive experiments, we demon-

strate PrivQuant reduces communication by 11×, 2.5 × and 2.8×,
which results in 8.7×, 1.8 × and 2.4× latency reduction compared

with SiRNN, COINN, and CoPriv, respectively.

1 INTRODUCTION
With deep learning being applied to increasingly sensitive data

and tasks, privacy has emerged as one of the major concerns in

the deployment of deep neural networks (DNNs). To enable DNN

inference on private data, secure two-party computation (2PC)

is proposed as a promising solution and has attracted increasing

attention in recent years [1–4].

Secure 2PC helps solve the following dilemma: the server owns a

private DNN model and the client owns private data. The server is

willing to provide the model as a service but is reluctant to disclose

it. Simultaneously, the client wants to apply the model to private

data without revealing the data as well. Secure 2PC frameworks

can fulfill both parties’ requirements: the two parties can learn the

inference results but nothing else beyond what can be derived from

the results [5, 6].
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(a) (b)

Figure 1: Profile the ResNet50 building block with repre-
sentative 2PC protocols, i.e., CrypTFlow2 (first column) and
SiRNN (other columns): the scaling and breakdown of (a)
total communication and (b) online communication with
different bit-widths of weight and activation.

However, the privacy protection offered by secure 2PC frame-

works comes at the expense of high communication complexity,

which stems from the extensive interaction required between the

server and the client [6]. This leads to orders of magnitude latency

gap compared to the conventional inference on plaintext. Recently,

2PC protocols for quantized inference are proposed together with

the application of low bit-width networks in the 2PC framework

[1–4]. As shown in Figure 1, in the prior-art work SiRNN [4], both

total and online communication of the 2PC inference reduces signif-

icantly as the operands’ bit-widths decrease, demonstrating promis-

ing efficiency improvements [2, 4].

Though promising, existing 2PC frameworks based on quantized

DNNs still face the following limitations: 1) complex protocols
unaware of quantized DNN architectures: 2PC-based quantized
DNN inference requires complex protocols to align the bit-widths

and scales for different operands, including truncation, extension,

re-quantization, etc [4]. These 2PC protocols are designed without

considering the DNN architectures, e.g., tensor shapes, bit-widths,

etc., and suffer from significant communication overhead; 2) DNN
quantization algorithms unaware of 2PC protocols: existing
network quantization algorithms are designed or optimized for

plaintext inference, ignoring the characteristics of 2PC-based in-

ference. This may lead to sub-optimal quantization solutions with

large accuracy degradation or high communication complexity. As

a result, as shown in Figure 1, mixed bit-width inference protocol

SiRNN requires almost the same total communication and more on-

line communication compared to the uniformly quantized protocol

CrypTFlow2 [3] even with less than half the bits.

To address the aforementioned limitations, we propose PrivQuant,

which jointly optimizes the 2PC protocols for quantized DNN in-

ference and the network quantization strategy. Compared with

existing works, our contributions can be summarized as follows:

• We propose both operator-level and graph-level optimiza-

tions of 2PC protocols. At the operator level, DNN-aware

https://doi.org/10.1145/3676536.3676661


Table 1: Notations used in the paper.

Notations Meanings

𝜆 Security parameter that measures the attack hardness

≫ Shift right

𝑙, 𝑠 Bit width, scale of an operand

𝑙𝑤 , 𝑙𝑥 , 𝑙𝑎𝑐𝑐 The bit width of weights, activations and accumulation.

𝑙𝑟𝑒𝑠 , 𝑙𝑎𝑑𝑑
The bit width of residual tensor and residual addition.

Usually, 𝑙𝑎𝑑𝑑 = 𝑙𝑟𝑒𝑠 + 1 to avoid addition overflow.

𝑠𝑤 , 𝑠𝑥 , 𝑠𝑎𝑐𝑐 The scale of weights, activations and accumulation.

𝑠𝑟𝑒𝑠 , 𝑠𝑎𝑑𝑑 The scale of residual tensor and residual addition.

𝑥 (𝑙 ) , ⟨𝑥⟩ (𝑙 ) An 𝑙-bit integer 𝑥 and 𝑙-bit secret shares

protocol optimizations are proposed for communication-

intensive quantized operators, including convolution and

residual addition. At the graph level, operator fusion and

sign propagation are proposed for further communication

reduction.

• We propose a network optimization algorithm that leverages

high bit-width residuals and communication-aware mixed

bit-width quantization to enable accurate yet efficient 2PC-

based quantized inference.

• We demonstrate communication reduction for individual

operators and whole networks. PrivQuant reduces commu-

nication by 2 ∼ 16× compared to prior-art 2PC frameworks,

including CrypTFlow2, SiRNN, COINN, and CoPriv, which

leads to 1.3 ∼ 12× latency reduction.

2 PRELIMINARIES
2.1 Network Quantization for 2PC Inference
Quantization converts floating-point numbers into integers [7].

Specifically, a floating point number 𝑥 𝑓 can be approximated by

an 𝑙𝑥 -bit integer 𝑥𝑞 and a scale 𝑠𝑥 through quantization as 𝑥𝑞/𝑠𝑥 1,
where

𝑥𝑞 = max(−2𝑙𝑥−1,min(2𝑙𝑥−1 − 1, round(𝑠𝑥𝑥 𝑓 ))).
The multiplication of two floating point numbers 𝑥 𝑓 and 𝑤 𝑓 ,

denoted as 𝑦𝑓 , can be approximately computed as 𝑥𝑞𝑤𝑞/(𝑠𝑤𝑠𝑥 ),
which is a quantized number with 𝑙𝑥 + 𝑙𝑤 bit and 𝑠𝑤𝑠𝑥 scale. Then,

𝑦𝑓 usually needs to be re-quantized to 𝑦𝑞 with 𝑙𝑦 bit and 𝑠𝑦 scale

as follows:

𝑦𝑞 = max(−2𝑏𝑦−1,min(2𝑏𝑦−1 − 1, round(
𝑠𝑦

𝑠𝑤𝑠𝑥
𝑤𝑞𝑥𝑞))) .

For the addition of two quantized numbers 𝑥𝑞 and 𝑦𝑞 , directly

computing 𝑥𝑞 and 𝑦𝑞 leads to incorrect results. Instead, the scales

and the bit-widths of 𝑥𝑞 and 𝑦𝑞 need to be aligned first. Uniform

quantization protocol CrypTFlow2 leverages the same bit-widths

and scales for the tensors, e.g. 37-bit bit-width and 13-bit scale

across all layers while mixed bit-width protocol SiRNN uses dif-

ferent quantization parameters for weight and activation, which

introduces large communication overhead.

2.2 Notations
We now briefly introduce the security primitives used in the paper.

We also summarize the notations in Table 1.

1
We consider symmetric quantization without zero shift and force 𝑠𝑥 to be power of 2

to reduce communication following [4].

Secret Share (SS). We use 2-out-of-2 secret sharing to keep the

input data private throughout the whole inference. For an 𝑙-bit

value 𝑥 ∈ Z
2
𝑙 , we denote its shares by ⟨𝑥⟩ (𝑙 ) = (⟨𝑥⟩ (𝑙 )𝑠 , ⟨𝑥⟩ (𝑙 )𝑐 )

such that 𝑥 = ⟨𝑥⟩ (𝑙 )𝑠 + ⟨𝑥⟩ (𝑙 )𝑐 mod 2
𝑙
where the server holds ⟨𝑥⟩ (𝑙 )𝑠

and the client holds ⟨𝑥⟩ (𝑙 )𝑐 .

Oblivious Transfer (OT). We use 1-out-of-2 OT, denoted by

(
2

1

)
−

OT𝑙 , where one party is the sender with 2 𝑙-bit messages 𝑥0, 𝑥1
and the other party is the receiver with an index 𝑗 ∈ {0, 1}. The
receiver learns 𝑥 𝑗 as the output, and the sender learns nothing. The

communication cost for a

(
2

1

)
− OT𝑙 is 𝑂 (𝜆 + 2𝑙) bits.

Underlying Protocols. PrivQuant relies on several underlying

protocols from SiRNN [4], briefly introduced in Table 2.

2.3 Related works
Existing secure 2PC-based frameworks mainly leverage two classes

of techniques: homomorphic encryption (HE) [9], which is compu-

tation intensive, and OT [10] which is communication intensive.

In this paper, we focus on OT-based methods instead of HE-based

methods as HE usually requires the client to have a high computing

capability for encryption and decryption. SecureML [11] is the first

OT-based framework for secure 2PC-based DNN inference. It suf-

fers from high communication and takes around 1 hour to finish a

simple two-layer network. To improve the 2PC inference efficiency,

follow-up works can be roughly categorized into two classes: 1)

protocol optimizations at the operator level, e.g., convolutions [12–

14], matrix multiplications [15, 16], activation functions [3], and at

network level, e.g., hybrid protocols [17, 18]; 2) 2PC-aware network

optimization, such as using 2PC friendly activation functions [19]

and 2PC-aware DNN architecture optimization [8, 20–26].

Previous works leveraging quantized networks to improve the

efficiency of private inference may fall into either class. XONN [1]

leverages binary weight and activation to reduce communication

cost but suffers from large accuracy degradation. CrypTFlow2 [3]

proposes a hybrid protocol that supports OT-based linear layers

with uniform bit-widths. SiRNN [4] further proposes 2PC protocols

for bit width extension and reduction to allow mixed bit-width

inference. COINN [2] simultaneously optimizes both the quantized

network as well as the protocols for linear and non-linear layers.

However, COINN uses approximations extensively and also has

both the least significant bit (LSB) error and the most significant

error (MSB) 1-bit error during truncation. In Table 3, we compare

PrivQuant with these works qualitatively, and as can be observed,

PrivQuant leverages both protocol and network optimization to

support efficient and faithful mixed bit-width inference.

2.4 Threat Model and Security of PrivQuant
PrivQuant works in a general private inference scenario, where a

server holds a private DNN model and a client owns private data

[13, 16]. PrivQuant enables the client to obtain the inference while

keeping the model and the client’s data private. Besides, the model

parameters are privately held by the server in plaintext while the

activations are in secret sharing form during the whole inference.

Consistent with previous works [2, 4, 6, 11], PrivQuant adopts

an honest-but-curious security model
2
in which both parties follow

the specification of the protocol but also try to learn more from

the protocols than allowed. PrivQuant is built upon underlying OT

2
Malicious security model is also an important research direction but is not the focus

of this paper



Table 2: Base protocols used in PrivQuant.

Protocol Description Comm. Complexity

⟨𝑦⟩ (𝑙2 ) = Π𝑙1,𝑙2
Ext

(⟨𝑥⟩ (𝑙1 ) ) Bit-width extension. Extending 𝑙1-bit 𝑥 to 𝑙2-bit 𝑦 such that 𝑦 (𝑙2 ) = 𝑥 (𝑙1 ) 𝑂 (𝜆(𝑙1 + 1))

⟨𝑦⟩ (𝑙1 ) = Π𝑙1,𝑙2
Trunc

(⟨𝑥⟩ (𝑙1 ) ) Truncate (right shift) 𝑙1-bit 𝑥 by 𝑙2-bit such that 𝑦 (𝑙1 ) = 𝑥 (𝑙1 ) ≫ 𝑙2 O(𝜆(𝑙1 + 3))

⟨𝑦⟩ (𝑙1−𝑙2 ) = Π𝑙1,𝑙2
TR

(⟨𝑥⟩ (𝑙1 ) ) Truncate (right shift) 𝑙1-bit 𝑥 by 𝑙2-bit and discard the high 𝑙2-bit such that 𝑦 (𝑙1−𝑙2 ) =

𝑥 (𝑙1 ) ≫ 𝑙2

O(𝜆(𝑙2 + 1))

⟨𝑦⟩𝑙2 = Π𝑙1,𝑠1,𝑙2,𝑠2
Requant

(⟨𝑥⟩𝑙1 ) Re-quantize 𝑥 of 𝑙1-bit and 𝑠1-scale to 𝑦 of 𝑙2-bit and 𝑠2-scale. It’s a combination of

ΠExt,ΠTrunc,ΠTR with detailed description in Algorithm 1.

in Algorithm 1

Table 3: Qualitative comparison with prior-art 2PC frame-
works of quantized network.

Framework Network Optimization
Protocol Optimization

Error free
Operator Level Graph Level

XONN [1] Binary Quant. / / ✓

CrypTFlow2 [3] Uniform Quant. ReLU Protocol / Accumulation Overflow

SIRNN [4] Mixed Bit-width Quant.
∗

Mixed Bit-width Protocol MSB Opt. ✓

COINN [2] Layer-wise bit-width Quant. Factorized Conv. Protocol Conversion

Accumulation Overflow

LSB and MSB error in ΠTrunc

CoPriv [8] Winograd Conv. Winograd Conv. / ✓

Ours

Layer-wise Mixed bit-width Quant.

High Bit-width Residual

DNN-aware Conv.

Simplified Residual

MSB Opt.

Protocol Fusion

✓

∗
Mixed Bit-width Quant. means the bit-width of output is dynamically determined by the input, the weight and the dimension of the layer.

primitives, which are proven to be secure in the honest-but-curious
adversary model in [27] and [28], respectively. Utilizing quantized

neural networks does not affect OT primitives in any way.

3 MOTIVATION
In Figure 1, we profile the communication cost of a ResNet block

with both CrypTFlow2 and SiRNN protocol [3, 4]. We observe the

total communication of SiRNN is dominated by convolution (offline)

while the online communication bottleneck comes from the residual

addition and re-quantization. Notably, the communication of all

these operators decreases significantly with the reduction of weight

and activation bit-width. Therefore, ideally, SiRNN should have

achieved substantially higher efficiency compared to the uniform

quantized protocol CrypTFlow2.

However, from Figure 1, we find that the communication of

the 16-bit SiRNN protocol is comparable to or even higher than

CrypTFlow2 with 37-bit. We further compare the detailed protocols

for one convolution with residual connection in CrypTFlow2 and

SiRNN in Figure 2. This identifies two critical issues with SiRNN:

• Complex protocols unaware of quantized network architecture:
to enable mixed bit-width inference without introducing

errors, SiRNN requires complex protocols to align the bit-

widths and scales of operands, including bit-width extension,

truncation, and re-quantization. These protocols are agnos-

tic to the model architecture and introduce extremely high

communication overhead, as shown in Table 2 for commu-

nication complexity.

• Network quantization unaware of protocols: SiRNN uniformly

applies the same bit-width to weights and activations. Such

a strategy ignores the cost of the protocol under different

bit-width settings and results in sub-optimal communication

efficiency or network accuracy.

Based on the observations above, we propose PrivQuant which

features a network/protocol co-optimization. As shown in Figure 3,

we propose network-aware protocol optimizations at both the op-

erator level (Section 4.1) and the graph level (Section 4.2), directly

(a) CrypTFlow2 (b) SiRNN

+

…

Truncation

ReLU

Re-quant

Conv2D

Truncation

ReLU

Conv2D

Bit Extension

Bit Extension Bit Extension

Truncation

Re-quant

…

+

Residual

Align bit-width

Align scale

Figure 2: Detailed protocols for one convolution with resid-
ual connection in (a) CrypTFlow2 and (b) SiRNN. The bit
extension, truncation, and re-quantization are required
in SiRNN to align the bit-widths and scales of quantized
operands.

Efficient Mixed Bit-width 

2PC Protocols 

Communication-Aware

Quantization

Communicaiton-Aware

Bit-Width Optimizaion

High Bit-width

Residual

Residual

Convolution
Operator

Fusion

MSB

Optim.

Operator Level Graph Level

Cost Model

Quantized

Network

Priv Quant

Figure 3: Overview of PrivQuant.

targeting the communication-intensive operations, i.e., convolution

and residual addition. For network optimization, we leverage high

bit-width residual (Section 5.1) and communication-aware mixed

bit-width quantization (Section 5.2), enabling efficient-yet-accurate

2PC inference.

4 EFFICIENT MIXED BIT-WIDTH 2PC
PROTOCOLS

We now describe the protocol optimization of PrivQuant at both

the operator level and the graph level.

4.1 Operator Level Protocol Optimization
4.1.1 DNNArchitecture-Aware Convolution Protocol. Baseline Pro-
tocol in SiRNN. In SiRNN, a convolution is first converted to



𝑊𝑖,𝑗

1

1

0

0 1 1

2
− OT𝑙2+𝑒

1 ⋅ 𝑋𝑗,:

𝑋𝑗,:

1 ⋅ 𝑋𝑗,:

 2𝑏𝑊𝑖,𝑗 𝑏

×

×

×

  𝑌𝑖,: =

𝑊𝑖,𝑗 𝑋𝑗,:×

𝑌𝑖,:

𝑌 ∈ ℝ𝑑1×𝑑3 𝑊 ∈ ℝ𝑑1×𝑑2 𝑋 ∈ ℝ𝑑2×𝑑3

𝑊𝑖,𝑗 𝑋𝑗,:

×=

𝑙𝑎𝑐𝑐 = 𝑙1 + 𝑙2 + 𝑒-bit 𝑙1-bit 𝑙2-bit 𝑙2 + 𝑒-bit
ΠExt

②1-out-of-2 OT-based Mult.

①

ClientServer

① Extension selection

② Sender selection

Figure 4: An illustration of OT-based matrix multiplication
protocol which extends 𝑋 and chooses the client to be the
sender. We omit ⟨·⟩ for simplicity.
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(a) SiRNN (b) Ours

Figure 5: (a) The baseline protocol for the residual addition
in SiRNN; and (b) our proposed simplified protocol. The 𝑙_, 𝑠_
means the bit-width and scale of the activations.

matrix multiplication with im2col. Hence, we focus on optimiz-

ing the matrix multiplication protocol where we want to compute

⟨𝑌 ⟩ = 𝑊 ⟨𝑋 ⟩ = 𝑊 ⟨𝑋 ⟩𝑠 +𝑊 ⟨𝑋 ⟩𝑐 . The𝑊 ⟨𝑋 ⟩𝑠 can be computed

locally by the server. To compute𝑊 ⟨𝑋 ⟩𝑐 , both parties invoke an

OT-based protocol as shown in Figure 4, where𝑊 ∈ R𝑑1×𝑑2 with
𝑙1-bit, ⟨𝑋 ⟩𝑐 ∈ R𝑑2×𝑑3 with 𝑙2-bit. The 𝑖-th row of𝑌 , denoted as𝑌𝑖,: is

computed by

∑𝑑2
𝑖=1

𝑊𝑖, 𝑗𝑋 𝑗,:. To prevent numerical overflow during

the multiplication and accumulation, the bit-width of 𝑌𝑖,: should be

𝑙1 + 𝑙2 +𝑒 where 𝑒 = log
2
(𝑑2). Therefore, there exists a bit-width ex-

tension step before the multiplication where we can either extend

𝑊 or 𝑋 by 𝑒 bits. To compute one𝑊𝑖, 𝑗𝑋 𝑗,:, as shown in Figure 4,

the server split𝑊𝑖, 𝑗 into bits. For each bit𝑊𝑖, 𝑗 [𝑏] , 𝑏 ∈ [1, 2, . . . , 𝑙1],
both parties invoke a

(
2

1

)
− OT𝑙2+𝑒 and obtain𝑊𝑖, 𝑗 [𝑏] 𝑋 𝑗,:. Finally,

both parties can get 𝑌 by computing each 𝑌𝑖,::

𝑌𝑖,: =

𝑑2∑︁
𝑖=1

𝑙1∑︁
𝑏=1

𝑊𝑖, 𝑗 [𝑏] 𝑋 𝑗,: (1)

The total number of OTs invoked is 𝑑1𝑑2𝑙1 and the communication

of each OT is 𝑂 (𝜆 + 2(𝑙2 + 𝑒)𝑑3).
Our Protocol.We first split the convolution protocol into three

steps:

• Bit-width extension. We can either invoke Π𝑙1,𝑙1+𝑒
Ext

(𝑊 ) or
Π𝑙2,𝑙2+𝑒
Ext

(⟨𝑋 ⟩). When we extend𝑊 , the communication cost

is 0 since 𝑊 is in plaintext on the server side; when we

extend ⟨𝑋 ⟩, the communication cost is 𝑂 (𝑑2𝑑3𝜆(𝑙2 + 1)).
• OT-based Multiplication. In this step, we find two execution

ways with different communication costs. The first way is

Equation 1which is SiRNN’s protocol in Figure 4. The second

way is 𝑌:, 𝑗 =
∑𝑑2
𝑖=1

∑𝑙2+𝑒
𝑏=1

𝑊:,𝑖𝑋𝑖, 𝑗 [𝑏] where the client splits
𝑋𝑖, 𝑗 into bits and the server is the sender with input𝑊:,𝑖 .

Suppose we extend 𝑋 in the first step, the communication

cost of the first way is 𝑂 (𝑑1𝑑2𝑙1 (𝜆 + 2(𝑙2 + 𝑒)𝑑3)) and the

second way is 𝑂 (𝑑2𝑑3 (𝑙2 + 𝑒) (𝜆 + 2𝑙1𝑑1)).
• Wrap&MUX. This step prevents theMSB error in the output.

The communication cost is related to both bit-widths and

dimensions of𝑊 and 𝑋 . Since we do not optimize this step,

we omit the detailed protocols and refer interested readers

to SiRNN Section III .E [4].

Based on the analysis above, the communication varies when we

choose to extend 𝑋 or𝑊 and also when we choose a different

party to be the OT sender, resulting in four possible communica-

tion costs. We analyze in detail the communication cost of the four

choices in Table 4. Furthermore, we observe that the communica-

tion of different choices can be completely determined given the

DNN architecture before the inference. Hence, in PrivQuant, we

propose a DNN architecture-aware protocol for the matrix multi-

plication, which calculates the communication of all options for

each convolution and selects the extension and sender adaptively

to minimize the communication. On the contrary, SiRNN is agnos-

tic to the DNN architecture and always extends 𝑋 and selects the

client as the sender. This strategy is sub-optimal because we find

in experiments that it is not always the lowest communication cost

choice.

4.1.2 Simplified Residual Protocol. As shown in Figure 1, residual

addition takes up a large portion of online communication due to

the complex alignment of both bit-widths and scales (Figure 2 (b)).

The aligned operands are then added and quantized back to 𝑙𝑥 -bit

as shown in Figure 5 (a). The baseline protocol is quite expensive

because both re-quantization and extension requiremultiple rounds

of communication. Therefore, we propose a simplified residual

protocol in Figure 5 (b) which aligns the bit-width and scale of the

residual directly to the convolution output for addition. Through

simplification, we get rid of all the operators for the convolution

output’s quantization while keeping the high bit-width residual

addition since 𝑙𝑎𝑐𝑐 is usually quite large. As we will demonstrate

in Section 6.2, this approach significantly reduces communication

cost.

4.2 Graph Level Protocol Optimization
At the graph level, we propose both activation sign propagation and

fused protocol for quantization to reduce communication. Figure 6

shows an example of a residual block.

4.2.1 Activation Sign Propagation. Previous work has proposed

the most significant bit (MSB) optimization. Specifically, when the

MSB of the operands is known, several protocols can be optimized



Table 4: Impact of expansion and sender on the communication of the matrix multiplication protocol. And the communication
comparison of SiRNN and PrivQuant.

Method Expansion Sender

Communication (bits)

Extension OT-based Mult. Wrap & MUX

① 𝑊 Server 0 𝑂 (𝑑2𝑑3𝑙2 (𝜆 + 2(𝑙1 + 𝑒)𝑑1)) 𝑂 (𝑑2𝑑3 (𝜆 + 14)𝑙2 + 𝑑1𝑑2 (𝜆 + 2(𝑙1 + 𝑒)𝑑3))
② 𝑊 Client 0 𝑂 (𝑑1𝑑2 (𝑙1 + 𝑒) (𝜆 + 2𝑙2𝑑3)) 𝑂 (𝑑2𝑑3 (𝜆 + 14)𝑙2 + 𝑑1𝑑2 (𝜆 + (𝑙1 + 𝑒)𝑑3))
③ 𝑋 Server 𝑂 (𝑑2𝑑3𝜆(𝑙2 + 1)) 𝑂 (𝑑2𝑑3 (𝑙2 + 𝑒) (𝜆 + 2𝑙1𝑑1)) 𝑂 (𝑑2𝑑3 (𝜆 + 14) (𝑙2 + 𝑒) + 𝑑1𝑑2 (𝜆 + 𝑙1𝑑3))
④ 𝑋 Client 𝑂 (𝑑2𝑑3𝜆(𝑙2 + 1)) 𝑂 (𝑑1𝑑2𝑙1 (𝜆 + 2(𝑙1 + 𝑒)𝑑3)) 𝑂 (𝑑2𝑑3 (𝜆 + 14) (𝑙2 + 𝑒) + 𝑑1𝑑2 (𝜆 + 𝑙1𝑑3))

SiRNN [4]: ④ X Client ④

PrivQuant : min(①,②,③,④) Adaptive Adaptive min(①,②,③,④)

⋯
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Figure 6: The graph level protocol optimization in an exam-
ple residual block. (a) The baseline, (b) uses activation sign
propagation, and (c) uses fused protocol for quantization.

including ΠExt, ΠTrunc, etc., with detailed communication cost in

Table 5. Since the output of ReLU is non-negative, we utilize this

optimization thoroughly by searching the computation graph and

making use of MSB optimization in every non-negative operand.

Table 5: Communication of several protocols with/without
MSB optimization.

Protocol Comm. w/o MSB Optimization (bits) Comm. w/ MSB Optimization (bits)

Π𝑙1,𝑙2
Ext

𝑂 (𝜆(𝑙1 + 1)) 𝑂 (2𝜆 − 𝑙1 + 𝑙2)

Π𝑙1,𝑙2
Trunc

𝑂 (𝜆(𝑙1 + 3)) 𝑂 (3𝜆 + 𝑙1 + 𝑙2)

Π𝑙1,𝑙2
TR

𝑂 (𝜆(𝑙2 + 1)) 𝑂 (𝜆 + 2)

4.2.2 Fused Protocol forQuantization. Π𝑙1,𝑙2
Trunc

is widely used in the

quantized inference to avoid overflow. We observe opportunities to

fuse neighboring truncation and extension protocols as well as re-

quantization protocols at the graph level to reduce communication.

First, we introduce the following propositions for the protocol

fusion.

Proposition 4.1. For a given ⟨𝑥⟩ (𝑙1 ) , Π𝑙1,𝑙2
Trunc

(⟨𝑥⟩ (𝑙1 ) ) can be de-

composed into Π𝑙1,𝑙2
TR

followed by Π𝑙1−𝑙2,𝑙1
Ext

as

Π𝑙1,𝑙2
Trunc

(⟨𝑥⟩ (𝑙1 ) ) = Π𝑙1−𝑙2,𝑙1
Ext

(Π𝑙1,𝑙2
TR

(⟨𝑥⟩ (𝑙1 ) ))
The decomposition reduce the communication from O(𝜆(𝑙1 + 3)) to
O(𝜆(𝑙1 + 2)).

Proposition 4.2. Two consecutive extension protocols can be fused
into one as

Π𝑙2,𝑙3
Ext

(Π𝑙1,𝑙2
Ext

(⟨𝑥⟩ (𝑙1 ) )) = Π𝑙1,𝑙3
Ext

(⟨𝑥⟩ (𝑙1 ) )
Extension fusion reduces communication from O(𝜆(𝑙1 + 𝑙2 + 2)) to
O(𝜆(𝑙1 + 1)).

Proposition 4.3. For a given ⟨𝑥⟩ (𝑙1 ) , the consecutive truncation
and extension protocol can be fused as

Π𝑙1,𝑙3
Ext

(Π𝑙1,𝑙2
Trunc

(·)) = Π𝑙1,𝑙3
Ext

(Π𝑙1−𝑙2,𝑙1
Ext

(Π𝑙1,𝑙2
TR

(·)))

= Π𝑙1−𝑙2,𝑙3
Ext

(Π𝑙1,𝑙2
TR

(·))

Combining Proposition 4.1 and 4.2, this fusion reduces communication
from O(𝜆(2𝑙1 + 4)) to O(𝜆(𝑙1 + 2)).

Proposition 4.3 enables us to fuse the re-quantization and exten-

sion protocols further.We first describe the proposed re-quantization

protocol in Algorithm 1. The key idea of fusion is when ΠRequant

ends up with ΠTrunc or ΠExt, we can further fuse them.

Algorithm 1 Re-quantization, Π𝑙1,𝑠1,𝑙2,𝑠2
Requant

(⟨𝑥⟩ (𝑙1 ) )

Input: 𝑃0 & 𝑃1 hold ⟨𝑥⟩ (𝑙1 ) with scale 𝑠1

Output: 𝑃0 & 𝑃1 get ⟨𝑦⟩ (𝑙2 ) with scale 𝑠2

1: if 𝑙1 ≥ 𝑙2 then
2: if 𝑠1 ≤ 𝑠2 then
3: ∀𝑏 ∈ {0, 1}, 𝑃𝑏 sets ⟨𝑡⟩ (𝑙1 ) = ⟨𝑥⟩ (𝑙1 ) ≪ (𝑠2 − 𝑠1)
4: ∀𝑏 ∈ {0, 1}, 𝑃𝑏 sets ⟨𝑦⟩ (𝑙2 ) = ⟨𝑡⟩ (𝑙1 )
5: else if (𝑙1 − 𝑙2) ≥ (𝑠1 − 𝑠2) then
6: 𝑃0 and 𝑃1 invokeΠ

𝑙1,𝑠1−𝑠2
TR

(
⟨𝑥⟩ (𝑙1 )

)
and learn ⟨𝑡⟩ (𝑙1−𝑠1+𝑠2 )

7: ∀𝑏 ∈ {0, 1}, 𝑃𝑏 sets ⟨𝑦⟩ (𝑙2 ) = ⟨𝑡⟩ (𝑙1−𝑠1+𝑠2 )
8: else
9: 𝑃0 and 𝑃1 invoke Π

𝑙1,𝑠1−𝑠2
Trunc

(
⟨𝑥⟩ (𝑙1 )

)
and learn ⟨𝑡⟩ (𝑙1 )

10: ∀𝑏 ∈ {0, 1}, 𝑃𝑏 sets ⟨𝑦⟩ (𝑙2 ) = ⟨𝑡⟩ (𝑙1 )
11: end if
12: else
13: if 𝑠1 > 𝑠2 then
14: 𝑃0 and 𝑃1 invokeΠ

𝑙1,𝑠1−𝑠2
TR

(
⟨𝑥⟩ (𝑙1 )

)
and learn ⟨𝑡⟩ (𝑙1−𝑠1+𝑠2 )

15: 𝑃0 and 𝑃1 invoke Π𝑙1−𝑠1+𝑠2,𝑙2
Ext

(
⟨𝑡⟩ (𝑙1−𝑠1+𝑠2 )

)
and learn

⟨𝑦⟩ (𝑙2 )
16: else
17: ∀𝑏 ∈ {0, 1}, 𝑃𝑏 sets ⟨𝑡⟩ (𝑙1 ) = ⟨𝑥⟩ (𝑙1 ) ≪ (𝑠2 − 𝑠1)
18: 𝑃0 and 𝑃1 invoke Π

𝑙1,𝑙2
Ext

(
⟨𝑡⟩ (𝑙1 )

)
and learn ⟨𝑦⟩ (𝑙2 )

19: end if
20: end if



Table 6: Accuracy comparison of different quantized net-
works on ResNet32. Here, residual has the same bit-width as
activation, and scales are enforced to power-of-2.

Network Weight (bits) Activation (bits) Acc. (%)

Baseline FP FP 68.68

Weight Quantized 2 FP 66.89

Activation Quantized FP 2 45.30

Fully Quantized 2 2 43.18
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Figure 7: Communication of a single convolution from dif-
ferent stages of ResNet50 with different bit-widths, where
W and A mean the bit-width of weight and activation.

Table 7: The impact of residual bit-width on inference accu-
racy and communication for ResNet32.

Activation (bits) Weight (bits) Residual (bits) Comm. (GB) Acc. (%)

3 4 3 0.910 66.29

3 4 6 0.972 67.56

3 4 8 0.973 68.10

3 4 16 1.045 68.11

5 COMMUNICATION-AWARE QUANTIZATION
In this section, we introduce our communication-aware network

quantization strategy based on the optimized 2PC protocols pro-

posed before.

To reduce communication and improve inference efficiency, we

propose leveraging low bit-width quantization for convolutions.We

follow [1] and directly quantize the network with ternary weight

and activation in Table 6. However, we find it incurring a large

accuracy degradation. To improve the accuracy while minimizing

the communication of the 2PC-based inference, we consider the

following two optimizations during quantization-aware training

(QAT).

5.1 High Bit-width Residual
As previous works have revealed[29, 30], we also found through

experiments that the quantized ternary activation is indeed the

root cause of the accuracy loss.

To improve the network accuracy, we observe the widely used

residual connections in a ResNet block can act as a remedy and we

propose to use the high bit-width residual connections to improve

the activation precision without impacting the operands’ bit-widths

for the convolution, which incurs negligible overhead as shown in

Table 7.

Table 8: PrivQuant evaluation benchmarks.

Model Layers # Params (M) MACs (G) Dataset

MiniONN [9] 7 Conv, 1 FC, 2 AP, 7 ReLU 0.16 0.061 CIFAR-10

ResNet32 31 Conv, 1 FC, 1 AP, 31 ReLU 0.46 0.069 CIFAR-100

ResNet50 49 CONV, 1 FC, 1, MP, 1 AP, 49 ReLU 2.5 4.1 ImageNet

5.2 Communication-Aware bit-width
Optimization

We also use a mixed bit-width quantization strategy to allocate the

bit-widths based on communication cost. Existing works [30, 31]

widely use the sum of 𝑙𝑤 · 𝑙𝑥 · FLOPs for each layer as a proxy to

estimate the inference cost. However, we observe the 2PC-based

inference latency does not correlate well with 𝑙𝑤 · 𝑙𝑥 . We profile

the communication of our optimized protocols for different stages

with different bit-widths in Figure 7. As we can see, the most effi-

cient bit-width configurations for different layers are different. For

example, stage 1 prefers W4A2 while stage 4 prefers W2A4. Hence,

we propose a communication-aware mixed bit-width quantization

algorithm based on HAWQ [32–34] and leverage our theoretic com-

munication analysis to form a communication cost model to guide

the bit-width optimization.

Let 𝐻𝑖 denote the Hessian matrix of the 𝑖-th layer with a weight

tensor𝑊𝑖 . HAWQ finds that layers with a larger trace of 𝐻𝑖 are

more sensitive to quantization. Hence, the perturbation of the 𝑖-th

layer, denoted as Ω𝑖 , due to the quantization error can be computed

as:

Ω𝑖 = 𝑇𝑟 (𝐻𝑖 ) · | |𝑄 (𝑊𝑖 ) −𝑊𝑖 | |22,

where 𝑇𝑟 (𝐻𝑖 ) is the average Hessian trace, and | |𝑄 (𝑊𝑖 ) −𝑊𝑖 | |2
is the 𝐿2 norm of quantization perturbation. Given the commu-

nication bound and a network with 𝐿 layers, we formulate the

communication-aware bit-width optimization as an integer linear

programming problem:

Objective: min

{𝑏𝑖 }𝐿𝑖=1

𝐿∑︁
𝑖=1

Ω𝑏𝑖
𝑖

Subject to:

𝐿∑︁
𝑖=1

Comm
𝑏𝑖
𝑖

≤ Communication Limit

Here, Ω𝑏𝑖
𝑖

is the 𝑖-th layer’s sensitivity with bit-width𝑏𝑖 ,Comm
𝑏𝑖
𝑖

is

the associated communication cost in private inference. The objec-

tive is to minimize the perturbation of the whole model under the

communication constraint. Here we fix the activation quantization

to 4-bit on MiniONN and 6-bit on ResNet and only search for the

quantization scheme of weight.

6 EXPERIMENTAL RESULTS
6.1 Experimental Setup
PrivQuant consists of two important parts, i.e., efficient proto-

cols for quantized inference and communication-aware quantiza-

tion. For network quantization, we use quantization-aware training

(QAT) on three architectures and three datasets as shown in Table 8.

We first load 8-bit quantization networks as the checkpoints. For

MiniONN and ResNet32, we fine-tune the networks on CIFAR-10

and CIFAR-100 for 200 and 100 epochs, respectively, and we fine-

tune ResNet50 on ImageNet for 30 epochs. Following [35] and [36],

various widely used augmentation techniques are combined to

improve the performance of quantized networks. In specific, for



Table 9: Comparing the communication (GB) of our convo-
lution protocol with SOTA (the dimensions are represented
by activation resolution, channels, and kernel size.). W2A4
means 2-bit weights and 4-bit activations, and the like.

Conv Dim.

W2A4 W2A6 W2A8

SiRNN PrivQuant SiRNN PrivQuant SiRNN PrivQuant

(56, 64, 3) 1.26 0.99 1.88 1.10 2.63 1.26

(28, 128, 3) 1.21 0.78 1.80 0.87 2.53 0.96

(14, 256, 3) 1.23 0.71 1.82 0.78 2.55 0.84

(7, 512, 3) 1.30 0.75 1.90 0.82 2.63 0.84

(7, 512, 1) 0.11 0.069 0.17 0.084 0.24 0.081

Table 10: Communication comparison (MB) of residual addi-
tion protocols on a basic block of different layers in ResNet32
and ResNet50.

Block SiRNN PrivQuant

ResNet32 (1st layer, W2A6) 12.37 (2.6×) 4.86

ResNet32 (3rd layer, W4A6) 3.18 (2.6×) 1.24

ResNet50 (1st layer, W4A6) 605.81 (9.1×) 66.38

ResNet50 (4th layer, W3A6) 87.98 (5.9×) 14.98

CIFAR-10/100, random horizontal flip, random crop, and random

erasing are used. For ImageNet, we use AutoAugment [37], Cut-

Mix [38], Mixup [39], etc.

For ciphertext execution, we implement protocols based on the

Ezpc library in C++ [40–42]. We set 𝜆 = 128 and run our ciphertext

evaluation on machines with 2.2 GHz Intel Xeon CPU and 256 GB

RAM. For runtime measurements, we follow [43] which is based

on a connection between a local PC and an Amazon AWS server.

Specifically, we set the bandwidth to 200 Mbps and set the round-

trip time to 13 ms.

Our baselines include prior-art frameworks for quantized net-

works including CrypTFlow2, SiRNN, and COINN. Among them,

CrypTFlow2 only supports uniform bit-widths, hence, consistent

with [3], we use 37-bit for weight and activation to maintain accu-

racy. SiRNN supports convolutions with non-uniform bit-widths

and following [4], SiRNN uses 16-bit for weight and activation and

has at least 32-bit accumulation bit-width. However, we also apply

our quantization algorithm to SiRNN to fairly evaluate the effec-

tiveness of our protocols. COINN uses layer-wise mixed bit-width

quantization for both weight and activation. Following [2, 17],

we evaluate and compare PrivQuant on MiniONN [9], ResNet32

and ResNet50 networks on CIFAR-10, CIFAR-100 and ImageNet

datasets, the details are in Table 8.

6.2 Micro-Benchmark Evaluation
Convolution Protocol Evaluation. In Table 9, we compare the per-

formance of the proposed convolution protocols with SiRNN under

our low bit-width quantization strategy including W2A4, W2A6,

and W2A8 (W2A4 means 2-bit weight and 4-bit activation). We

select convolution layers with different dimensions from ResNet50.

Due to the unavailability of open-source code for COINN’s protocol,

we are unable to evaluate the performance of each operation. As

shown in Table 9, compared to SiRNN under the same quantization

strategy, PrivQuant achieves 1.6 ∼ 3.0× communication reduction

through DNN architecture-aware protocol optimization.

Residual Protocol Evaluation. In Table 10, we compare the per-

formance of the simplified residual protocol with SiRNN. We focus

Table 11: End-to-end communication and latency compari-
son with prior-art methods.

Framework

MiniONN+CIFAR-10 ResNet32+CIFAR-100 ResNet50+ImageNet

Comm. (GB) Latency (s) Comm. (GB) Latency (s) Comm. (GB) Latency (s)

MiniONN [9] 9.27 (22×) 544.2 (22×) / / / /

Chameleon [44] 2.65 (6×) 52.7 (2×) / / / /

LLAMA [45] 1.09 (2.6×) 105.98 (4.2×) / / / /

GAZELLE [12] 4.90 (12×) 139.4 (6×) 8.90 (10×) 238.7 (4×) / /

CrypTFlow2 [3] 6.83 (16×) 291.4 (12×) 8.60 (9×) 374.1 (6×) 377.5 (10×) 16530 (8×)
SiRNN [4] 4.89 (12×) 234.1 (9×) 6.55 (7×) 373.0 (6×) 484.8 (13×) 22153 (11×)
COINN [2] 1.00 (2.4×) 43.0 (1.7×) 1.90 (2×) 78.1 (1.3×) 122.0 (3.2×) 5161 (2.5×)
CoPriv

∗
[8] / / 3.69 (3.9×) 166.52 (2.9×) 60.1 (1.6×) 3755 (1.8×)

PrivQuant (ours) 0.42 25.3 0.94 58.4 38.1 2088

∗
Note that CoPriv is evaluated on MobileNetV2.

on the comparison with SiRNN as other baselines usually ignore

these protocols and suffer from computation errors. As shown in

Table 10, PrivQuant achieve 2.6 ∼ 9.1× communication reduction

on different network layers.

6.3 End-to-End Inference Evaluation
Networks Accuracy and Communication Comparison. We now

perform an end-to-end inference evaluation.We use communication-

aware quantization to sample several quantized networks and per-

form end-to-end private inference. We draw the Pareto curve of

accuracy and communication in Figure 8.

Result and analysis. From Figure 8, we make the following

observations: (1) PrivQuant achieves SOTA Pareto front of accu-

racy and communication in all three benchmarks. More specifically,

compared with COINN, PrivQuant achieves 2.4× communication

reduction and still 1% higher accuracy in MiniONN. In ResNet32

and ResNet50, PrivQuant can achieve 2.2× and 3.4× communication

reductionwith the same accuracy. (2) PrivQuant has achieved an im-

provement of an order of magnitude over CrypTFlow2 and SiRNN.

With higher accuracy, PrivQuant can achieve 16×, 12×, 10× commu-

nication reduction compared with CrypTFlow2 and 10×, 6.6×, 13×
communication reduction compared with SiRNN on MiniONN,

ResNet32 and ResNet50, respectively.

Compared with COINN. Our experiments reveal that COINN

suffers significant accuracy degradation across all three datasets,

for instance, a 3.5% drop in ResNet50. This issue primarily stems

from COINN’s inability to implement reliable quantization proto-

cols such as extension and re-quantization, leading to errors in both

the LSB and MSB. Under conditions of low bit-width quantization,

even a 1-bit error can result in a substantial decrease in accuracy. In

contrast, PrivQuant avoids such errors entirely and achieves con-

siderably lower communication cost while maintaining accuracy.

Compared with other network optimization work. In Fig-

ure 8, we also compare PrivQuant with CoPriv [8] which utilizes

winograd convolution to reduce communication. PrivQuant achieves

2.6% higher accuracy with the same communication on ImageNet,

demonstrating the effectiveness of our quantization strategy and

corresponding protocol optimizations.

Communication and Latency Comparison. To evaluate the com-

munication and latency reduction clearly, we selected one point

from each of the three Pareto graphs marked with red circles in

Figure 8.

Results and analysis. As shown in Table 11, compared with

previous works, with higher accuracy, PrivQuant reduces the com-

munication by 2.4 ∼ 22× and the latency by 1.7 ∼ 22× onMiniONN.

On ResNet32, PrivQuant reduces the communication by 2 ∼ 10×
and the latency by 1.3 ∼ 6×. On ResNet50, PrivQuant reduces the

communication by 1.6 ∼ 13× and the latency by 1.8 ∼ 11×.



(a) CIFAR-10 (b) CIFAR-100 (c) ImageNet

Figure 8: Comparison with prior-art methods on (a) CIFAR-10, (b) CIFAR-100 and (c) ImageNet.
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6.4 Ablation Study
Effectiveness of the proposed quantization strategy To un-

derstand the importance of the proposed quantization strategy,

we use SiRNN’s protocol with our quantization strategy called

“SiRNN+our Quant” in Figure 8. We can see that our quantization

strategy can achieve 3.8×, 5.9 × and 6.6× communication reduc-

tion with higher accuracy compared with SiRNN baseline on three

benchmarks, respectively.

Moreover, we evaluate the performance of uniform quantiza-

tion to demonstrate the importance of communication-aware bit

width optimization. Specifically, we use W4A4 and W5A5 for both

ResNet32 and ResNet50. As shown in Figure 8 (Uniform Quant+our

Protocol), communication-aware quantization is clearly superior

to uniform quantization. For example, on ResNet32, it outperforms

uniform quantization by 2.4% higher accuracy with the same 1.1GB

of communication.

Effectiveness of the proposed efficient protocols To prove

the effectiveness of our optimized protocols, we dive into a basic

Table 12: Comm. comparison in LLAMA-7B self-attention
layers (linear part) with different sequence lengths.

Sequence Length SiRNN PrivQuant

1 4.86 MB (5×) 0.98 MB

32 767.20 MB (6×) 122.12 MB

128 10769.02 MB (13×) 818.50MB

block in 3rd stage of ResNet32 with input shape (8, 8, 64). Through
our optimizations, we can reduce the total communication and

the online communication by 2.4× and 1.6×, respectively, with the

detailed breakdown shown in Figure 9. At the end-to-end inference,

when comparing PrivQuant with “SiRNN+our Quant” in Figure 8,

our optimized protocols can reduce the communication by 1.9 ∼
2.4× with the same quantization settings. All of these emphasize

the significance of our optimized protocols.

Blockwise Comparison We show the block-wise communica-

tion comparison between SiRNN, SiRNN+ourQuant and PrivQuant on

ResNet32 in Figure 10. From Figure 10, it is clear that our proto-

col/network co-optimization is effective, and different layers benefit

from PrivQuant differently, which demonstrates the importance of

both protocol optimization and network optimization.

7 CONCLUSION
To reduce the communication complexity and enable efficient se-

cure 2PC-based inference, we propose PrivQuant to jointly optimize

the secure 2PC-based inference protocols and the quantized net-

works. Our DNN architecture-aware protocol optimization achieves

more than 2.4× communication reduction compared to prior-art

protocols. Meanwhile, by network and protocol co-optimization,

we can achieve in total 1.6 ∼ 22× communication reduction and

1.3 ∼ 22× inference latency reduction, which improves the practi-

cality of the secure 2PC-based private inference by one step further.

8 FUTUREWORK
Scalability to LLMs. We find PrivQuant can be applied to large

languagemodels (LLMs). Recent work [46] has shown the feasibility

of quantizing LLMs to low precision, e.g., 3-bit for weights. We

conduct an experiment on an attention layer of LLAMA-7B and

demonstrate 5 ∼ 13× communication reduction over SiRNN in

Table 12. We will further research the scalability of PrivQuant to

LLMs in the future.
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