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AByzantine consensus protocol is essential in decentralized systems as the protocol ensures system consistency

despite node failures. Research on consensus in wireless networks receives relatively less attention, while

significant advancements in wired networks. However, consensus in wireless networks has equal significance

as in wired networks.

In this paper, we propose a new reliable broadcast protocol that can achieve reliability with high fault
tolerance over than the SOTA (PODC ’05). With the new protocol, we further develop the first wireless network

Byzantine consensus protocol under the assumption of partial synchrony. Notably, this consensus protocol
removes the requirement of leaders and fail-over mechanism in prior works. We formally prove the correctness

of both our new broadcast protocol and consensus protocol.

1 INTRODUCTION
The enduring challenge of Byzantine consensus has experienced a resurgence in recent years, gain-

ing renewed attention as the recognized cornerstone of blockchain technology. While noteworthy

breakthroughs have been achieved, these endeavors predominantly concentrate on wired networks,

overlooking the crucial aspect of wireless networks. Conversely, Byzantine consensus holds equal

significance for applications in wireless (or radio) networks. For instance, in a swarm of unmanned

aerial vehicles (UAVs), achieving consensus on a common destination is crucial [18]. We underscore

two pivotal distinctions in achieving Byzantine consensus in a wireless network, with one being

advantageous and the other detrimental:

• Each node has a broadcast radius 𝑟 , and any message transmitted by a source node is

uniformly received by all its neighbors (i.e., those within a distance of 𝑟 from the source

node). As a result, a node cannot equivocate to its neighbors.

• When two nodes are situated beyond a distance of 𝑟 , their communication relies on the

assistance of intermediary nodes for forwarding. Consequently, a source node colluding

with an intermediary node retains the potential for equivocation.

Reliable broadcast serves as a vital building block for Byzantine consensus. The process begins

with a source node intending to disseminate messages to all other nodes in the system; once a correct

node delivers a message, all other correct nodes will eventually deliver the same message, even if the

source node equivocates. When all nodes exchange their messages by calling reliable broadcast, all

correct nodes will eventually receive the same set of messages (maybe in different orders). Byzantine

consensus takes this step further by imposing a specific order on these messages. To our knowledge,

there is currently no asynchronous or partially synchronous Byzantine consensus established for

wireless networks. Koo [14] proved that achieving reliable broadcast in an asynchronous wireless

network is possible only when 𝑓 < 1

2
𝑟 (2𝑟 + 1) in 𝐿∞ or 𝑓 < 0.23𝜋𝑟 2 in 𝐿2,

1
where 𝑓 denotes the

number of Byzantine nodes in any single neighborhood. Bhandari et al. [1] further introduced a

reliable broadcast protocol that aligns with these established bounds
2
. However, these bounds are

not tight as signatures are not considered in the proof.

Our contribution. In this paper, we revisit the upper-bounds presented by Bhandari et al., revealing

∗
Corresponding author.

1
The distance between two nodes N(𝑥1,𝑦1 ) and N(𝑥2,𝑦2 ) is defined to be: max{ |𝑥1 − 𝑥2 |, |𝑦1 − 𝑦2 | } in 𝐿∞, and√︁
(𝑥1 − 𝑥2 )2 + (𝑦1 − 𝑦2 )2 in 𝐿2.

2
A simplified version was presented in [2].

Authors’ address: Hao Lu, luhao@zju.edu.cn; Jian Liu, liujian2411@zju.edu.cn; Kui Ren, kuiren@zju.edu.cn.

HTTPS://ORCID.ORG/0000-0002-3783-1348
HTTPS://ORCID.ORG/0000-0003-2636-5561
HTTPS://ORCID.ORG/0000-0002-1969-2591
https://orcid.org/0000-0002-3783-1348
https://orcid.org/0000-0003-2636-5561
https://orcid.org/0000-0002-1969-2591


2 Hao Lu, Jian Liu, and Kui Ren

that these bounds could, in fact, be higher. Specifically, we propose a new reliable broadcast protocol

for asynchronous wireless networks, which can tolerate more Byzantine nodes:

• 𝑓 < ⌊ 1
2
(2𝑟 + 1) (𝑟 + 1)⌋ in 𝐿∞, and

• 𝑓 < ⌊0.3𝜋𝑟 2⌋ in 𝐿2.

It also reduces the message complexity in a single neighborhood from 𝑂 (𝑛2) to 𝑂 (𝑛) compared to

the state-of-the-art[1], where 𝑛 denotes the number of nodes in a single neighborhood. Based on

this reliable broadcast protocol, we propose the first Byzantine consensus for wireless networks
under the assumption of partial synchrony.

2 PRELIMINARIES
2.1 Model
Grid wireless network. In a grid wireless network, nodes are located on a grid consisting of 1 × 1

square units. Each node can be uniquely identified by its grid location (𝑥,𝑦), denoted as N(𝑥,𝑦) . All
nodes have a broadcast radius of 𝑟 , where 𝑟 ∈ Z. The messages broadcast byN(𝑥,𝑦) can be received

by all the nodes within a distance 𝑟 from it. We refer to these nodes as the neighbors of N(𝑥,𝑦) . We

remark that N(𝑥,𝑦) and all its neighbors are termed as the neighborhood of (𝑥,𝑦). For brevity, we
may use N𝑖 to denote N(𝑥,𝑦) (i.e., use 𝑖 to denote (𝑥,𝑦)). In this paper, we consider two distance

metrics, namely 𝐿∞ and 𝐿2.

For reliable broadcast, we consider an infinite grid characterized by an unbounded number of

nodes (each neighborhood has 𝑛 nodes). For Byzantine consensus, we extend it to a finite grid that

comprises 𝑁 nodes. Specifically, nodes are located on a 𝑃 ×𝑄 grid, hence 𝑁 = 𝑃 ·𝑄 with 𝑃 = 𝑝 · 𝑟 ,
𝑄 = 𝑞 · 𝑟 (𝑝 and 𝑞 are positive integers).

Communication assumptions. For reliable broadcast, we assume an asynchronous communica-

tion, where the sent message will eventually be received but there is no time bound on message

delay. For Byzantine consensus, we assume the communication is partially synchronous. There

exists a known finite time bound Δ and a special event called Global Stabilization Time (𝐺𝑆𝑇 ) under

this environment. The adversary must eventually cause the𝐺𝑆𝑇 event to occur after some unknown

finite time. Any message sent at time 𝑡 must be received by time𝑚𝑎𝑥 (𝑡,𝐺𝑆𝑇 ) + Δ. Informally, the

system behaves asynchronously till 𝐺𝑆𝑇 and synchronously after 𝐺𝑆𝑇 .

Following [1], we assume that message collision does not exist, and the channel is an idealized
shared wireless channel where the messages broadcast by a source node will eventually received

by its neighbors in the sent order.

Adversary. In this paper, we use the term “faulty node” to denote a Byzantine node that can behave

arbitrarily but cannot cause collisions. In an infinite grid, we assume up to 𝑓 faulty nodes can exist

in any neighborhood; in a finite grid, we impose an additional assumption that the total number of

faulty nodes is bounded by 𝐹 .

2.2 Multisignatures
In a naive approach to signing a message, each node has a public/private pair of keys. All nodes

know the public keys of others, while they only know their own private key. Nodes use private keys

to sign a message and output a signature. A signature can be verified by using the corresponding

public key. The multisignatures scheme allows multiple nodes to sign a common message and

output a single aggregate signature. They can verify the aggregate signature via an aggregate public

key. This scheme significantly reduces the space and computation needed for verification compared

to the naive approach when multiple signatures are required as certificates. We can implement this

approach based on BLS [4], a well-known pairing-based signature scheme. The key operations of

the multisignatures scheme are as follows:
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• Sign(𝑚): outputs a signature, where𝑚 is the input message.

• Aggre(𝜎1, ..., 𝜎𝑛): outputs an aggregate signature, where 𝜎1, ..., 𝜎𝑛 are the signatures of a

common message.

• Verify(𝜎,𝑚): outputs 𝑡𝑟𝑢𝑒 or 𝑓 𝑎𝑙𝑠𝑒 : judges whether the 𝜎 is a valid signature of message𝑚.

In fact, the Aggre operation also outputs a bitmap that indicates which node has the contribution to

the aggregate signature. This bitmap enables the Verify operation to compute the aggregate public

key correspondingly. For the sake of brevity, we omit the bitmap in subsequent sections. Each

node only processes the messages with valid signatures. We also omit the signature verification

subsequent sections for brevity.

2.3 Problem Definition
Reliable Broadcast. Here we assume a source node reliably broadcasts messages by calling

𝑟_𝑏𝑐𝑎𝑠𝑡 (𝑚,𝛾), where𝑚 is a message, 𝛾 is a round number. Every node reliably delivers messages

by outputting 𝑟_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑚,𝛾,N𝑖 ), where𝑚 is a message, 𝛾 is a round number andN𝑖 is the identity

of the source node. The round number is used to differentiate the messages broadcast by a single

node. A reliable broadcast protocol satisfies the following properties:

• Validity: if a correct node N𝑖 calls 𝑟_𝑏𝑐𝑎𝑠𝑡 (𝑚,𝛾), then all correct nodes will eventually

output 𝑟_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑚,𝛾,N𝑖 ).
• Agreement: if a correct node N𝑖 outputs 𝑟_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑚,𝛾,N𝑗 ), then all other correct nodes

will output 𝑟_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑚,𝛾,N𝑗 ).
At first glance, these two properties are identical, which is true only when the source node is correct.

When the source node is faulty, it could broadcast two different messages by calling 𝑟_𝑏𝑐𝑎𝑠𝑡 twice

with𝑚 and𝑚′
respectively. Due to the nature of an idealized shared channel, the neighbors of the

source node will receive𝑚 and𝑚′
in the same order (i.e., receiving𝑚 before𝑚′

); correct neighbors

will forward𝑚 and drop𝑚′
. However, faulty neighbors could forward𝑚′

instead. If the protocol

is not carefully designed, different correct nodes might deliver different messages with the same

round number, violating the agreement property.

We remark that when we describe the reliable broadcast protocol, we consider only one run.

When we need to consider multiple runs of the reliable broadcast (e.g., being used as a building

block for Byzantine consensus), we could have the source node attach a sequence number to the

message. Then the above example could be considered as attaching the same sequence number to

two different messages.

Byzantine consensus. In this paper, we focus on the Byzantine Atomic Broadcast problem. Here,

we suppose each node can call 𝑎_𝑏𝑐𝑎𝑠𝑡 (𝑚,𝛾) and output 𝑎_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑚,𝛾,N𝑖 ), where𝑚 is a message,

𝛾 is a round number, and N𝑖 is the identity of the corresponding source node. A Byzantine Atomic

Broadcast protocol satisfies all the following properties:

• Validity: if a correct node N𝑖 calls 𝑎_𝑏𝑐𝑎𝑠𝑡 (𝑚,𝛾), then all correct nodes will eventually

output 𝑎_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑚,𝛾,N𝑖 ).
• Agreement: if a correct node N𝑖 outputs 𝑎_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑚,𝛾,N𝑗 ), then all other correct nodes

will output 𝑎_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑚,𝛾,N𝑗 ).
• Total order: if a correct node N𝑖 outputs 𝑎_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑚,𝛾,N𝑗 ) before 𝑎_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑚′, 𝛾 ′,N𝑗 ′ ),
then all correct nodes output 𝑎_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑚,𝛾,N𝑗 ) before 𝑎_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑚′, 𝛾 ′,N𝑗 ′ ).

2.4 Revisiting reliable broadcast in wireless networks
The protocol proposed in [1] is the only reliable broadcast protocol that works in our considered

model (i.e., in an asynchronous and infinite grid wireless network under Byzantine faults but no

collision). In that protocol, when a node commits a message, it notifies its neighbors about this
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by broadcasting a committed message; when a node receives a committed message, it also notifies

its neighbors about this by broadcasting a heard message. We use "node-disjoint" to indicate that

paths do not share the same nodes.

• Nodes that are neighbor to the source node. They can directly deliver the message because

the source node cannot equivocate to its neighbors.

• Nodes that are not neighbor to the source node. They deliver a message when they learn the

message delivery within a neighborhood through (𝑓 + 1) node-disjoint paths. It is for sure
that at least one correct node has delivered the corresponding message because up to 𝑓

nodes can be faulty in any single neighborhood.

Figure 1 shows the communication pattern of this protocol. The blue square represents a node.

The arrow line on the left side of the node represents the received messages, while the one on the

right represents the sent messages.

(1) Upon receiving the first message from the source node, a neighbor of the source node

delivers the message and broadcasts a committed message (Figure 1a).

(2) Upon receiving a committed message, a node broadcasts a heard message. (Figure 1b).

(3) Upon receiving (𝑓 + 1) node-disjoint committed or heard messages that signal a message

delivery within a neighborhood, a node delivers the corresponding message and broadcasts

a committed (Figure 1c).

… … …

… …

Neighbors of the source node. All nodes, including the source node,
its neighbors, and other nodes. The nodes that not the neighbors of 

the source node.

Neighbors of the source node. All nodes, including the source node,
its neighbors, and other nodes, are included.

…

…

All nodes, including the source node,
its neighbors, and other nodes, are included.

…

(a) Neighbors of the source node.

… … …

… …

Neighbors of the source node.
All nodes, including the source node,
its neighbors, and other nodes. The nodes that not the neighbors of 

the source node.

Neighbors of the source node.
All nodes, including the source node,
its neighbors, and other nodes, are included.

…

(b) All nodes, including the
source node, its neighbors,
and other nodes.

… … …

… …

Neighbors of the source node.
All nodes, including the source node,
its neighbors, and other nodes. The nodes that not the neighbors of 

the source node.

Neighbors of the source node.
All nodes, including the source node,
its neighbors, and other nodes, are included.

…

(c) The nodes that are not the
neighbors of the source node.

Fig. 1. Communication pattern of the reliable broadcast protocol in [1].

The message complexity of a single neighborhood with 𝑛 nodes is 𝑂 (𝑛2) as each node needs to

broadcast 𝑛 messages (one committed message and 𝑛 − 1 heard messages).

3 RELIABLE BROADCAST IN AN INFINITE GRID
Recall that reliable broadcast enables a source node to disseminate messages to all other nodes

in the system, s.t. once a correct node delivers a message, all other correct nodes will eventually

deliver the same message, even if the source node equivocates. Similar to [1], we consider two

types of nodes:

• Nodes that are neighbor to the source node. They can directly deliver the message because

the source node cannot equivocate to its neighbors.

• Nodes that are not neighbor to the source node. We allow them to deliver a message upon

receiving a certificate that is an aggregate signature generated by at least (𝑓 + 1) neighbors
of the source node. Recall that at most 𝑓 nodes can be malicious in any single neighborhood,

a node receiving this certificate is convinced that at least one correct node has delivered

the corresponding message.

Figure 2 shows the communication pattern of our reliable broadcast.
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(1) Upon receiving a message from the source node, a neighbor of the source node delivers the

message and broadcasts a signed committed message (Figure 2a).

(2) Upon receiving a committed message from a neighbor of the source node, (instead of

broadcasting a heardmessage as in Figure 1b), a node waits for (𝑓 + 1) committedmessages

from other neighbors of the source node, aggregates them into a certificate, and broadcasts

the certificate (Figure 2b).

(3) Upon receiving a certificate, if the node has not delivered any message in this round, it

delivers the corresponding message and forwards the certificate to others (Figure 2c).

… … …

… …

Neighbors of the source node. All nodes, including the source node,
its neighbors, and other nodes. The nodes that not the neighbors of 

the source node.

Neighbors of the source node. All nodes, including the source node,
its neighbors, and other nodes, are included.

…

…

All nodes, including the source node,
its neighbors, and other nodes, are included.

…

(a) Neighbors of the source node.

… … …

… …

Neighbors of the source node. All nodes, including the source node,
its neighbors, and other nodes. The nodes that not the neighbors of 

the source node.

Neighbors of the source node. All nodes, including the source node,
its neighbors, and other nodes, are included.

…

…

All nodes, including the source node,
its neighbors, and other nodes, are included.

…

(b) Neighbors of the source node.

… … …

… …

Neighbors of the source node. All nodes, including the source node,
its neighbors, and other nodes. The nodes that not the neighbors of 

the source node.

Neighbors of the source node. All nodes, including the source node,
its neighbors, and other nodes, are included.

…

…

All nodes, including the source node,
its neighbors, and other nodes, are included.

…

(c) All nodes, including the
source node, its neighbors, and
other nodes.

Fig. 2. The communication pattern of our reliable broadcast protocol.

The message complexity in any neighborhood is 𝑂 (𝑛) as each node in the system only needs to

broadcast a certificate (neighbors of the source node also broadcast a committed message). In order

to validate a signed committed message, a node must know the sender’s public key in advance.

That means each node should store the public keys of all the source nodes and their neighbors

beforehand. Therefore, in an infinite grid, we assume a finite number of nodes can be the source

node of reliable broadcast. The details of our reliable broadcast protocol are shown in Figure 3.

By calling 𝑟_𝑏𝑐𝑎𝑠𝑡 (𝑚,𝛾), the source node N𝑠 broadcasts a ⟨propose, 𝑠,𝑚,𝛾⟩ message.

Then, nodes run as the following:

(1) Neighbors of the source node.
• Upon receiving the first ⟨propose, 𝑠,𝑚,𝛾⟩ message in round 𝛾 , N𝑖 computes

𝜎𝛾,𝑖 := Sign(committed| |𝑠 | |𝑚 | |𝛾) and broadcasts

〈
committed, 𝑠,𝑚,𝛾, 𝜎𝛾,𝑖

〉
.

• Upon receiving 𝑓 + 1 committed messages for 𝑚 in round 𝛾 , N𝑖 computes

𝐶𝛾 (𝑚) := Aggre({𝜎∗}𝑓 +1) and broadcasts

〈
certificate, 𝑠,𝑚,𝛾,𝐶𝛾 (𝑚)

〉
.

• Upon receiving a

〈
certificate, 𝑠,𝑚,𝛾,𝐶𝛾 (𝑚)

〉
, if N𝑖 has not forwarded a

certificate message in round 𝛾 , it forwards this one.

(2) Non-Neighbors of the source node.
Upon receiving a

〈
certificate, 𝑠,𝑚,𝛾,𝐶𝛾 (𝑚)

〉
, if N𝑖 has not delivered any message in

round 𝛾 , it delivers 𝑚 and forwards this certificate message.

Reliable broadcast

Fig. 3. The details of our reliable broadcast.
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3.1 Correctness proof when 𝑓 < ⌊ 1
2
(2𝑟 + 1) (𝑟 + 1)⌋ in 𝐿∞

Next, we prove the validity and agreement of our reliable broadcast when 𝑓 < ⌊ 1
2
(2𝑟 + 1) (𝑟 + 1)⌋

in 𝐿∞. The intuition of our proof is that “a valid certificate will be constructed, and received by all
correct nodes”. We consider the worst case where the “important” nodes that are near the source

node are faulty. The derivation of 𝑓 < ⌊ 1
2
(2𝑟 + 1) (𝑟 + 1)⌋ can be found in Appendix A.

We first prove the validity.

Lemma 3.1. Suppose 𝑓 < ⌊ 1
2
(2𝑟 + 1) (𝑟 + 1)⌋, a valid certificate will be constructed and broadcast if

a source node calls 𝑟_𝑏𝑐𝑎𝑠𝑡 (𝑚,𝛾) before other calls to 𝑟_𝑏𝑐𝑎𝑠𝑡 .

Proof. Due to the nature of an idealized shared wireless channel, all neighbors of the source

node will receive𝑚 before other messages sent from the source node (if the source node is faulty,

it will broadcast other messages after𝑚). Then, each correct neighbor will broadcast a committed
message for𝑚.

Each of the nodes within the yellow area of Figure 4a (including the boundary) has at least

(2𝑟 + 1) (𝑟 + 1) shared neighbors with the source node. For example, node 𝑃 has the least number

of shared neighbors with the source node, i.e., the dark green area in Figure 4b, which locates

(2𝑟 + 1) (𝑟 + 1) nodes. Notice that the nodes within the yellow area will receive the committed
messages for𝑚 from the correct shared neighbors. As a result, each of them can receive at least

(2𝑟 + 1) (𝑟 + 1) − 𝑓 ≥ 𝑓 + 1 committed messages. That means any of them is able to construct a

certificate. Then, we only need to prove that there is at least one correct node within this area,

which is straightforward because the number of the nodes in this area is 2𝑟 (𝑟 + 1) + 1 > 𝑓 (cf.

Appendix B). Therefore, a valid certificate will be constructed by at least one correct node. □

Lemma 3.2. Suppose 𝑓 < ⌊ 1
2
(2𝑟 + 1) (𝑟 + 1)⌋, if a valid certificate is constructed and broadcast by a

correct node, all correct nodes will receive it.

Proof. If a correct node N(𝑎,𝑏 ) broadcasts a certificate and at least one correct neighbors in
each of four directions (i.e., up N(∗,𝑏+𝑦) , down N(∗,𝑏−𝑦) , left N(𝑎−𝑥,∗) , right N(𝑎+𝑥,∗) , 0 < 𝑥,𝑦 ≤ 𝑟 )

forwards it, then all correct nodes will receive the certificate. Next, we prove that the certificate
can be propagated in four directions.

We prove this by contradiction. Suppose a correct node broadcasts a certificate, but no neighbor

in the right direction forwards the certificate. Then, all these 𝑟 (2𝑟 + 1) neighbors (the red area of

Figure 4c) should be faulty. However, 𝑟 (2𝑟 + 1) > 𝑓 , which leads to a contradiction. Therefore,

if a correct node broadcasts a certificate, at least one correct neighbor in the right direction will

forward the certificate. The same reasoning applies to the other three directions, enabling the

message to spread in four directions. □

Theorem 3.3 (Validity). Suppose 𝑓 < ⌊ 1
2
(2𝑟 + 1) (𝑟 + 1)⌋, if a correct nodeN𝑖 calls 𝑟_𝑏𝑐𝑎𝑠𝑡 (𝑚,𝛾),

then all correct nodes will output 𝑟_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑚,𝛾,N𝑖 ).

Proof. By Lemma 3.1, a valid certificate will be generated and broadcast. By Lemma 3.2, all

correct nodes will receive this certificate and output 𝑟_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑚,𝛾,N𝑖 ). □

Next, we prove the agreement.

Lemma 3.4. Suppose 𝑓 < ⌊ 1
2
(2𝑟 + 1) (𝑟 + 1)⌋, if a source node calls 𝑟_𝑏𝑐𝑎𝑠𝑡 (𝑚,𝛾) before other calls

to 𝑟_𝑏𝑐𝑎𝑠𝑡 , no valid certificate for𝑚′ (𝑚′ ≠𝑚) can be constructed.

Proof. We prove this by contradiction. All correct neighbors of the source node will broadcast a

committed message for𝑚 because they will receive𝑚 before other messages sent from the source
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(a) The more important nodes. (b) Shared neighbors. (c) Neighbors in the right direction.
The neighbors of the source node N(𝑎,𝑏 ) . The more important nodes. The neighbors of the node N𝑃 .

The neighbors in the right direction of N(𝑎,𝑏 ) .

Fig. 4. The 𝐿∞ metric in an infinite grid wireless network.

node. Suppose a valid certificate for𝑚′
(𝑚′ ≠𝑚) is constructed. Then, at least one correct neighbor

of the source node has broadcast a committed message for𝑚′
, which leads to a contradiction.

□

Theorem 3.5 (Agreement). If a correct nodeN𝑖 outputs 𝑟_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑚,𝛾,N𝑗 ), then all other correct
nodes will output 𝑟_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑚,𝛾,N𝑗 ).

Proof. Suppose a correct node N𝑖 outputs 𝑟_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑚,𝛾,N𝑗 ) and consider the following two

cases:

• The node N𝑖 is the neighbor of the source node N𝑗 . In this case, the source node must have

called 𝑟_𝑏𝑐𝑎𝑠𝑡 (𝑚,𝛾) before other calls. By Lemma 3.1, a valid certificate for 𝑚 will be

constructed. By Lemma 3.4, no valid certificate for𝑚′
(𝑚′ ≠𝑚) can be constructed. Then,

by Lemma 3.2, all correct nodes will receive it and output 𝑟_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑚,𝛾,N𝑗 ).
• The node N𝑖 is not the neighbor of the source node N𝑗 . In this case, N𝑖 must have received a

valid certificate for𝑚 and forwarded it. By Lemma 3.2, all correct nodes will receive it and

output 𝑟_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑚,𝛾,N𝑗 ).
Therefore, if a correct node outputs 𝑟_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑚,𝛾,N𝑗 ), other correct nodes will also output

𝑟_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑚,𝛾,N𝑗 ).
□

3.2 Correctness proof when 𝑓 < ⌊0.3𝜋𝑟 2⌋ in 𝐿2

Next, we prove the validity and agreement of our reliable broadcast when 𝑓 < ⌊0.3𝜋𝑟 2⌋ and 𝑟 ≥ 4

in 𝐿2. The derivation of 𝑓 < ⌊0.3𝜋𝑟 2⌋ can be found in Appendix C. Notice that the base for the

deductions in the 𝐿2 metric is that for sufficiently large 𝑟 , the area is a good approximation for the

number of nodes in these regions.

We first prove the validity.

Lemma 3.6. Suppose 𝑓 < ⌊0.3𝜋𝑟 2⌋, a valid certificate will be constructed and broadcast if a source
node calls 𝑟_𝑏𝑐𝑎𝑠𝑡 (𝑚,𝛾) before other calls to 𝑟_𝑏𝑐𝑎𝑠𝑡 .

Proof. Similar to the proof of Lemma 3.1, each correct neighbor of the source node will broadcast

a committed message for𝑚.
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Denote each of the nodes within the yellow area of Figure 5a (including the boundary) has at

least 𝑁1 shared neighbors with the source node. For example node 𝑃 shares the least number of

neighbors with the source node. Specifically, their shared neighbors are within the dark green area

in Figure 5b, and their number can be approximated as (cf. Appendix D):

𝑁1 = 2𝑟 2 cos −1
√
0.3

2

− 1

2

𝑟 2
√
1.11

When 𝑟 ≥ 4, each node within the yellow area can receive at least 𝑁1 − 𝑓 ≥ 𝑓 + 1 committed
messages because each of them will receive the committed messages for𝑚 from the correct shared

neighbors. That means any of them is able to construct a certificate. Furthermore, there is at

least one correct node within this area because 𝑓 < ⌊0.3𝜋𝑟 2⌋. Therefore, a valid certificate can be

constructed by at least one correct node. □

Lemma 3.7. Suppose 𝑓 < ⌊0.3𝜋𝑟 2⌋, if a valid certificate is constructed and broadcast by a correct
node, all correct nodes will receive it.

Proof. Similar to the proof of Lemma 3.2, we prove this by proving adversaries can not prevent

a certificate from spreading in any direction. For example, to prevent a certificate from spreading

to the right, all nodes located on the right should be faulty, i.e., the red area of Figure 5c, which

locates (0.5𝜋𝑟 2−2𝑟 −1) nodes. However, (0.5𝜋𝑟 2−2𝑟 −1) − 𝑓 ≥ 1 when 𝑟 ≥ 4, which means at least

one correct node on the right. Then, the adversary can not prevent a certificate from spreading to

the right. Therefore, by symmetry, the adversary can not prevent the messages from spreading in

any direction. □

(a) The more important nodes. (b) Shared neighbors. Neighbors of  a node.(c) Neighbors in the right direction.
The neighbors of the node N(𝑎,𝑏 ) . The more important nodes.

The neighbors of the node N𝑃 . The neighbors in the right direction of N(𝑎,𝑏 ) .

Fig. 5. Analysis in an infinite grid radio network and 𝐿2 metric.

Theorem 3.8 (Validity). If a correct nodeN𝑖 calls 𝑟_𝑏𝑐𝑎𝑠𝑡 (𝑚,𝛾), then all correct nodes will output
𝑟_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑚,𝛾,N𝑖 ).

Proof. Based on the Lemma 3.6, and Lemma 3.7, the proof of this theorem remains identical to

the Theorem 3.3. □

Then, we prove the agreement.

Lemma 3.9. Suppose 𝑓 < ⌊0.3𝜋𝑟 2⌋, if a source node calls 𝑟_𝑏𝑐𝑎𝑠𝑡 (𝑚,𝛾) before other calls to 𝑟_𝑏𝑐𝑎𝑠𝑡 ,
no valid certificate for𝑚′ (𝑚′ ≠𝑚) can be constructed.
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Proof. The proof remains identical to that of Lemma 3.4.

□

Theorem 3.10 (Agreement). If a correct nodeN𝑖 outputs 𝑟_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑚,𝛾,N𝑗 ), then all other correct
nodes will output 𝑟_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑚,𝛾,N𝑗 ).

Proof. With the Lemma 3.6, Lemma 3.7, and Lemma 3.9, the agreement proof remains identical

to that of Theorem 3.5.

□

4 RELIABLE BROADCAST IN A FINITE GRID
In a finite grid, a corner node has fewer neighbors than other nodes. For example, in Figure 6a, the

node N(𝑎,𝑏 ) only has neighbors in its right and up directions. Thus, we need a new bound 𝑓 to

achieve reliable broadcast even when the source node is in the corner.

4.1 Correctness proof when 𝑓 < ⌊ 1
2
(𝑟 + 1)2⌋ in 𝐿∞

We prove the validity and agreement of our reliable broadcast when 𝑓 < ⌊ 1
2
(𝑟 + 1)2⌋ in 𝐿∞. The

derivation of 𝑓 < ⌊ 1
2
(𝑟 + 1)2⌋ in 𝐿∞ can be found in Appendix E. We first prove the validity.

Lemma 4.1. Suppose 𝑓 < ⌊ 1
2
(𝑟 + 1)2⌋ in 𝐿∞, a valid certificate will be constructed and broadcast if

a source node calls 𝑟_𝑏𝑐𝑎𝑠𝑡 (𝑚,𝛾) before other calls to 𝑟_𝑏𝑐𝑎𝑠𝑡 .

Proof. We consider the worst case where the source node is in the corner as shown in Figure 6a.

For the same reason as in the proof of the Lemma 3.1, each neighbor of the source node will

broadcast a committed message for𝑚. The neighbors of the corner source node N(𝑎,𝑏 ) are in the

yellow area, which locates (𝑟 + 1)2 nodes, and they are all within the broadcast radius of each

other. Therefore, each of them can receive at least (𝑟 + 1)2 − 𝑓 ≥ 𝑓 + 1 committed messages for𝑚.

Furthermore, at least one neighbor of the source node is correct because (𝑟 + 1)2 > 𝑓 . Therefore, a

valid certificate will be constructed by at least one correct node. □

Lemma 4.2. Suppose 𝑓 < ⌊ 1
2
(𝑟 + 1)2⌋ in 𝐿∞, if a valid certificate is constructed and broadcast by a

correct node, all correct nodes will receive it.

Proof. Again, we consider the worst case where the certificate is broadcast by a corner node

N(𝑎,𝑏 ) . As shown in Figure 6b,N(𝑎,𝑏 ) has 𝑟 (𝑟 + 1) > 𝑓 neighbors in the right direction. Therefore, if

a correct N(𝑎,𝑏 ) broadcasts a certificate, at least one correct node in its right direction will receive

and forward the certificate. The same reasoning applies to the up direction, enabling the certificate
to spread in the up direction. Thus, the certificate from the corner nodeN(𝑎,𝑏 ) can always propagate
to the right and the up directions (if necessary) and be received by all correct nodes.

□

Theorem 4.3 (Validity). If a correct nodeN𝑖 calls 𝑟_𝑏𝑐𝑎𝑠𝑡 (𝑚,𝛾), then all correct nodes will output
𝑟_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑚,𝛾,N𝑖 ).

Proof. Based on Lemma 4.1, and Lemma 4.2, the proof of this theorem remains identical to the

proof of Theorem 3.3. □

Lemma 4.4. Suppose 𝑓 < ⌊ 1
2
(𝑟 + 1)2⌋ in 𝐿∞, if a source node calls 𝑟_𝑏𝑐𝑎𝑠𝑡 (𝑚,𝛾) before other calls

to 𝑟_𝑏𝑐𝑎𝑠𝑡 , no valid certificate for𝑚′ (𝑚′ ≠𝑚) can be constructed.

Proof. The proof remains identical to that of Lemma 3.4.

□
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(a) Neighbors of the corner node. (b) Neighbors in the right direction. (c) Range transformation.

All nodes in a finite grid wireless network. The neighbors of the corner node N(𝑎,𝑏 ) .
The neighbors of the node N(𝑎,𝑏 ) in the right direction. The actual broadcast range of a node.

The transformed broadcast range of a node.

Fig. 6. The 𝐿∞ and 𝐿2 metric in a finite grid wireless network.

Theorem 4.5 (Agreement). If a correct nodeN𝑖 outputs 𝑟_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑚,𝛾,N𝑗 ), then all other correct
nodes will output 𝑟_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑚,𝛾,N𝑗 ).

Proof. With the Lemma 4.1, Lemma 4.2 and Lemma 4.4, the agreement proof of Theorem 3.5 is

applicable for this case. □

4.2 Correctness proof when 𝑓 < ⌊ 1
2
(⌊

√
2

2
𝑟⌋ + 1)2⌋ in 𝐿2

We transform the problem from the 𝐿2 metric to the 𝐿∞ metric at the cost of reducing nodes’

broadcast range. In more detail, we consider the nodes with a radius distance 𝑟 in the 𝐿2 metric as

having a radius distance 𝑟 ′ = ⌊
√
2

2
𝑟⌋ in the 𝐿∞ metric. As is shown in Figure 6c, we consider the

green area to be the neighborhood of the node N(𝑎+𝑟,𝑏+𝑟 ) whose real neighborhood is within the

black circle area.

5 BYZANTINE CONSENSUS IN A FINITE GRID
The famous FLP result [10] states the impossibility of achieving deterministic consensus in an

asynchronous network where at least one replica may crash. In this paper, we consider the partial

synchrony to circumvent the FLP impossibility result. Specifically, the proposed consensus protocol

ensures both safety and liveness in a synchronous network but does not guarantee liveness when

the network behaves asynchronously. Furthermore, consensus among infinite nodes can be achieved

by PoW or PoS protocols. PoW is notorious for its high costs, whereas PoS offers a solution to

this issue. The core of PoS is to select a finite number of nodes based on some rules, then reach a

consensus among them, and finally synchronize with other nodes. Thus, we focus on the Byzantine

consensus with finite nodes in a finite grid. In this section, we present a Byzantine consensus

protocol for wireless networks under the assumption of partial synchrony. We consider a finite

grid, which locates 𝑁 = 𝑃 ·𝑄 nodes where 𝑃 = 𝑝 · 𝑟 ,𝑄 = 𝑞 · 𝑟 . This consensus protocol can tolerant

𝐹 ≤ ⌊⌈𝑝
2
⌉ ⌈𝑞

2
⌉ 𝑓 ⌋ (cf. Appendix F) faulty nodes among 𝑁 nodes.

In this protocol, nodes use the protocol proposed in Section 4 to reliably broadcast proposals

round by round. Then, they construct their Directed Acyclic Graph (DAG) locally based on the

delivered proposals. Then, each of them orders the DAG’s vertices to make all nodes agree on the
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same sequence of vertices (i.e., proposals). Next, we introduce the DAG construction and vertices

ordering more specifically.

• Local Data Structure
𝛾 := 0 ⊲ The round number.

DAG𝑖 [] ⊲ The local DAG, DAG𝑖 [0] is harded coded and |DAG𝑖 [0] | ≥ 𝑁 − 𝐹 .

A node N𝑖 executes the following operations in background:

• Proposal Construct. When constructing a proposal in round 𝛾 , N𝑖 puts DAG𝑖 [𝛾 − 1]
to a set 𝑝1 and puts the DAG𝑖 ’ proposals that there is no path to them to a set 𝑝2.

Then, N𝑖 constructs a proposal 𝑀 = ⟨propose, 𝑏, 𝑝1, 𝑝2⟩, where 𝑏 is a batch of

requests.

• Propose. Upon |DAG𝑖 [𝛾] | ≥ 𝑁 − 𝐹 , and N𝑖 meets either of the following conditions:

– 𝛾 mod 2 = 0.
– 𝛾 mod 2 = 1. The propose-timer𝛾,𝑖 expires or the N𝑖 has added the leader

proposal in round 𝛾 to DAG𝑖 .

N𝑖 sets 𝛾 = 𝛾 + 1, constructs a proposal 𝑀 in round 𝛾 and calls 𝑎_𝑏𝑐𝑎𝑠𝑡 (𝑀.𝑏,𝛾) by
calling 𝑟_𝑏𝑐𝑎𝑠𝑡 (𝑀,𝛾).

• Jumping Propose. Upon |DAG𝑖 [𝛾 ′] | ≥ 𝑁 − 𝐹 and 𝛾 ′ > 𝛾 , N𝑖 sets 𝛾 = 𝛾 ′, constructs a
proposal 𝑀 in round 𝛾 and calls 𝑎_𝑏𝑐𝑎𝑠𝑡 (𝑀.𝑏,𝛾) by calling 𝑟_𝑏𝑐𝑎𝑠𝑡 (𝑀,𝛾). It also
starts propose-timer𝛾,𝑖 when 𝛾 mod 2 = 1.

• DAG Update. Upon 𝑟_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑀,𝛾 ′′,N𝑗 ), where 𝑀 = ⟨propose, 𝑏, 𝑝1, 𝑝2⟩, N𝑖 waits

for that DAG𝑖 contains all the proposals pointed by 𝑝1 and 𝑝2. Then, it adds 𝑀 to

DAG𝑖 [𝛾 ′′].
• Proposal Commit. Upon DAG𝑖 [𝛾+] contains 𝐹 + 1 proposals that point to the leader

proposal in round 𝛾+ − 1, N𝑖 commits all the uncommitted leader proposals in its

causal histories (include itself) in the order of round number.

When committing a leader proposal, N𝑖 also commits all its uncommitted causal

histories in a deterministic order.

N𝑖 commits a proposal 𝑀 from N𝑗 in round 𝛾 by calling 𝑎_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑀.𝑏,𝛾,N𝑗 ).

Byzantine Consensus In Details

Fig. 7. The details of our Byzantine consensus protocol.

DAG construction. Nodes reliably broadcast their proposals with some metadata in an infinite

sequence of rounds to help them form a DAG. Specifically, each proposal has references pointing to

the proposals from previous rounds. The vertices and edges in a DAG represent the proposals and

references, respectively. Notice that only when the causal history of a vertex has been added to the

DAG, the replica can add that vertex to the DAG, thereby avoiding the DAG’s vertices pointing to a

fabricated vertex. When a node adds (𝑁 − 𝐹 ) vertices in the current round to the DAG, it enters the

next round and proposes a new vertex, which points to these (𝑁 − 𝐹 ) vertices and the vertices that

there is no path to them in the previous rounds.

Vertices ordering. We interpret the structure of the DAG as a consensus protocol by considering

the edges as votes. We introduce a leader in each odd round and refer to the vertex proposed by the

leader as the leader vertex. We say the leader vertex has one vote if the vertex in the next round

points to it. If a leader vertex has (𝐹 + 1) votes, nodes commit all the uncommitted leader vertices in
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this leader vertex’s causal histories (including this leader vertex) in the order of the round number.

Recall that a replica enters the next round and proposes a new vertex when it has added (𝑁 − 𝐹 )
vertices in the current round to the DAG. Then, if replicas always add the leader vertex to the DAG

after adding (𝑁 − 𝐹 ) other vertices, the leader vertex will have no votes. As a result, adversaries can
prevent nodes from committing vertices by controlling the order in which nodes deliver vertices.

To tackle this problem, we have nodes to wait for some time in each odd round to deliver the leader

vertex and add it to the DAG. Surprisingly, when the leader is correct, the protocol progresses at

network speed without extra waiting.

The core of our consensus protocol is to make replicas to agree on the same sequence of leader

vertices. Due to the reliable broadcast, all nodes agree on the causal histories of the leader vertices.

Thus, they can order the causal histories by some pre-defined deterministic rule to agree on the

total order of the DAG’s vertices (i.e., proposals). The details of our proposed consensus protocol

are shown in Figure 7. A formal proof is available in Appendix G.

6 RELATEDWORK
6.1 Reliable broadcast in grid wireless networks
Kranakis et al. propose a time-efficient broadcasting algorithm [16] for finite radio networks with

a regular grid pattern and crash-stop failures. Koo [14] assumes that there are no collisions and

address spoofing. Koo provides the first analysis of broadcasting algorithms for an infinite grid radio

network with Byzantine failures and proves the impossibility of achieving reliable broadcast when

the adversary corrupts ⌈ 1
2
𝑟 (2𝑟 + 1)⌉ neighbors of any honest node. Vaikuntanathan [22] proves

that the protocol proposed in [14] indeed tolerates
1√
2

𝑟 2 Byzantine faults. Bhandari et al. present a

reliable broadcast algorithm [1] that matches the impossibility bound. Then they present a simpler

characterization [2] and proofs for results proved earlier in [1]. In [15], Koo et al. present a reliable

broadcast protocol up to the maximum tolerable Byzantine fault threshold when known bounded

number of collisions and spoofs are allowed. Gilbert et al. [11] examine a model characterized by

single-hop and collision-bounded, where a faulty node and a non-faulty node are allowed to send a

maximum of 𝛽 and 𝛽 ′ messages, respectively. Notably, the value of 𝛽 is assumed to be unknown

to non-faulty nodes beforehand, while the source is assumed to be good. The authors establish

the maximum ratio between the disruption caused by the adversary and the cost associated with

causing that disruption. Additionally, they investigate the adversary’s ability to delay the protocol

without executing a single broadcast.

6.2 Reliable broadcast in general graph wireless networks
Pelc et al. [19] investigate the possibility of achieving reliable broadcast in a general graph under

Byzantine failures. While they do not provide specific thresholds, the research presents upper

and lower bounds that establish the feasibility of reliable broadcast. In [20], they investigate the

possibility of achieving reliable broadcast under random transient failures. Each node may fail

at each step with a constant probability 𝑝 < 1. They provide the time complexity of almost-safe

broadcasting and the tight bounds on 𝑝 . Bhandari et al. [3] investigate the impact of random

transient failures in a wireless grid network and provide necessary and sufficient conditions for

achieving reliable broadcast in this model. In [9], they explore a scenario where Byzantine nodes

have the capability to disrupt communication and interfere with the airwaves in an unrestricted

manner. They assume that devices have access to multiple communication channels and propose

an 𝜖-gossip algorithm to mitigate the impact of Byzantine behavior.
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6.3 Consensus in wireless networks
Chockler et al.[5] investigate the solvability of consensus for single-hop wireless networks under

crash-stop failures and a realistic collision-prone model with an unknown number of participants.

Considine et al. [7] consider the model that “multicast” channels of bounded size are available to

the parties. They assume the existence of a multicast channel among every subset of players of

some size 𝑏 and give solutions for reliable broadcast and consensus problems. Clement et al. [6]

investigate a non-equivocation model and show how to obtain a generic transformation from

a consensus protocol that works under the crash-stop model into a protocol that provides the

same guarantees under the Byzantine failure without increasing the number of participants. Some

previous works [17, 23] aim to achieve an approximate Byzantine consensus under the wireless

network model. These algorithms follow an iterative approach, where the state variable at each

node is updated in each iteration as a linear interpolation of the states of selected neighbors. Khan

et al. [13] explore the problem of Byzantine consensus with binary inputs under local broadcast

model. They provide a comprehensive analysis and establish the necessary and sufficient conditions

for achieving Byzantine consensus in this specific model.

6.4 DAG-based consensus
Keidar et al. [12] propose a consensus protocol called DAG-Rider based on a directed acyclic graph

(DAG), which utilizes reliable broadcast as a fundamental component to construct the DAG. In this

protocol, replicas order proposals solely based on the local DAG without further communication.

However, DAG-Rider exhibits a long tail latency of approximately six rounds of reliable broadcast.

In contrast, Tusk [8] and Bullshark [21] aim to improve the number of rounds required for reliable

broadcast. Tusk reduces the rounds to five, while Bullshark further enhances it to only two rounds

by leveraging synchronous periods. However, they are all designed for the classical point-to-point

wired networks, not optimized for wireless networks.

7 CONCLUSION
In this paper, we first design a protocol that achieves reliable broadcast when 𝑓 < ⌊ 1

2
(𝑟 + 1) (2𝑟 + 1)⌋

in the 𝐿∞ metric and 𝑓 < ⌊0.3𝜋𝑟 2⌋ in the 𝐿2 metric. Then, we propose the first Byzantine consensus

protocol for wireless networks under the assumption of partial synchrony, which is leaderless and

eliminates the fail-over mechanism. Finally, we provide the detailed descriptions and formal proofs

for these two protocols.
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A DERIVATION OF 𝑓 < ⌊ 1
2
(2𝑟 + 1) (𝑟 + 1)⌋

The intuition of this derivation is that “a valid certificate will be constructed, and received by all
correct nodes”.

We first consider how the neighborhood of a source node ensures that “a valid certificate will be
constructed”. As shown in Figure 8a, the node 𝑃 among the nodes within the yellow area has the

least shared neighbors with the source node. Specifically, their shared neighbors are within the dark

green area in Figure 8b, which locates (2𝑟 + 1) ((2 − 𝛽)𝑟 + 1) nodes. Recall that the neighbors of the
source node broadcast the committed messages, which implies that nodes may receive committed
messages from their shared neighbors with the source node. As a result, each node within the

yellow area can receive at least 𝑓 + 1 committed messages and constructs a valid certificate when
(2𝑟 + 1) ((2 − 𝛽)𝑟 + 1) − 𝑓 ≥ 𝑓 + 1. Then, a valid certificate will be constructed when there is at

least one correct node within the yellow area in Figure 6a, which locates 2𝛽𝑟 (𝛽𝑟 + 1) + 1 nodes.

Thus, the number 𝑓 of the faulty nodes in each neighborhood of a source node should meet the

following two rules:

https://doi.org/10.1145/3149.214121
https://doi.org/10.1016/j.ipl.2004.10.007
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(1) (2𝑟 + 1) ((2 − 𝛽)𝑟 + 1) − 𝑓 ≥ 𝑓 + 1

(2) 𝑓 < 2𝛽𝑟 (𝛽𝑟 + 1) + 1

Then, we consider how every neighborhood ensures that “a valid certificate will be received by
all correct nodes”. As shown in Figure 8c, all neighbors of the nodeN(𝑎,𝑏 ) in the right are within the

red area, which locates (2𝑟 + 1)𝑟 nodes. Then, by symmetry, each node has (2𝑟 + 1)𝑟 nodes in every

direction. In order to allow a certificate to spread to all directions (i.e., up, down, left, and right),

nodes should have at least one correct node in each direction, which requires 𝑓 < (2𝑟 + 1)𝑟 .
In summary, the number 𝑓 of the faulty node in each neighborhood should meet:

(1) (2𝑟 + 1) ((2 − 𝛽)𝑟 + 1) − 𝑓 ≥ 𝑓 + 1

(2) 𝑓 < 2𝛽𝑟 (𝛽𝑟 + 1) + 1

(3) 𝑓 < (2𝑟 + 1)𝑟
Actually, when the 𝛽 = 0.8, we get the maximum 𝑓 < 1

2
(2𝑟 + 1) (1.2𝑟 + 1). Notice that the node 𝑃

should located on the grid. We make 𝛽 = 1 conservatively and get 𝑓 < 1

2
(2𝑟 + 1) (𝑟 + 1) because

the node 𝑃 can not located on the grid when 𝑟 mod 5 ≠ 0. Therefore, in our protocol, each single

neighborhood should tolerate 𝑓 < 1

2
(2𝑟 + 1) (𝑟 + 1) faulty nodes.

(a) The more important nodes. (b) Shared neighbors. (c) Neighbors in the right direction.
The neighbors of the node N(𝑎,𝑏 ) . The more important nodes. The neighbors of the node N𝑃 .

The neighbors in the right direction of N(𝑎,𝑏 ) .

Fig. 8. The 𝐿∞ metric in an infinite grid wireless network.

B DERIVATION OF 2𝑟 (𝑟 + 1) + 1

The yellow area in Figure 4a locates 2𝑟 (𝑟 + 1) + 1 nodes. Specifically, it locates

1 + 3 + 5 + · · · + (2𝑟 − 1) + (2𝑟 + 1) + (2𝑟 − 1) + · · · + 5 + 3 + 1

= 2[1 + 3 + 5 + · · · + (2𝑟 − 1)] + (2𝑟 + 1)
= 2𝑟 2 + (2𝑟 + 1) = 2𝑟 (𝑟 + 1) + 1

nodes.

C DERIVATION OF 𝑓 < ⌊0.3𝜋𝑟 2⌋
The intuition of this derivation is that “a valid certificate will be constructed, and received by all
correct nodes”.
Among the nodes within the yellow area in Figure 9a, which locates 𝜋 (𝛼𝑟 )2 nodes, the node 𝑃

has the least shared neighbors with the source node (i.e., the dark green area in Figure 9b, which

locates 2𝑟 2𝑐𝑜𝑠−1 𝛼
2
− 1

2
𝑟 2𝛼

√
4 − 𝛼2

nodes). All neighbors of the nodeN(𝑎,𝑏 ) in the right are within the
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red area in Figure 9c, which locates 0.5𝜋𝑟 2 − 2𝑟 − 1 nodes. Similar to the derivation in Appendix A,

the number 𝑓 of the faulty nodes in each neighborhood should meet:

(1) 𝑓 < 𝜋 (𝛼𝑟 )2
(2) 2𝑓 + 1 ≤ 2𝑟 2𝑐𝑜𝑠−1 𝛼

2
− 1

2
𝑟 2𝛼

√
4 − 𝛼2

(3) 𝑓 < 0.5𝜋𝑟 2 − 2𝑟 − 1

When the 𝛼 =
√
0.3, we get the maximum 𝑓 < 0.3𝜋𝑟 2. Therefore, in our protocol, each single

neighborhood should tolerate 𝑓 < 0.3𝜋𝑟 2 faulty nodes. We do not select a strictly 𝛼 to allow the

node 𝑃 to locate on a grid because the bound in this metric is approximate (but it is increasingly

accurate for large 𝑟 ).

(a) The more important nodes. (b) Shared neighbors. Neighbors of  a node.(c) Neighbors in the right direction.

The neighbors of the node N(𝑎,𝑏 ) . The more important nodes. The neighbors of the node N𝑃 .

Neighbors of  a node.

The neighbors of the node N(𝑎,𝑏 ) in the right direction.

Fig. 9. The 𝐿2 metric in an infinite grid wireless network.

D DERIVATION OF 2𝑟 2 cos −1
√
0.3
2

− 1

2
𝑟 2
√
1.11

Let two circles of radius 𝑅 and 𝑟 and centered at (0, 0) and (𝑑, 0) intersect in a region shaped like

an asymmetric lens. The area of this lens is
3
:

𝑟 2𝑐𝑜𝑠−1
(
𝑑2 + 𝑟 2 − 𝑅2

2𝑑𝑟

)
+ 𝑅2𝑐𝑜𝑠−1

(
𝑑2 + 𝑅2 − 𝑟 2

2𝑑𝑅

)
−1

2

√︁
(−𝑑 + 𝑟 + 𝑅) (𝑑 + 𝑟 − 𝑅) (𝑑 − 𝑟 + 𝑅) (𝑑 + 𝑟 + 𝑅)

Thus, we can calculate the area of the dark green area in Figure 5b by making 𝑅 = 𝑟 and 𝑑 =
√
0.3𝑟 ,

and get the area:

2𝑟 2 cos −1
√
0.3

2

− 1

2

𝑟 2
√
1.11

E DERIVATION OF 𝑓 < ⌊ 1
2
(𝑟 + 1)2⌋

The intuition of this derivation is that “a valid certificate will be constructed, and received by all
correct nodes”. In the finite grid, there exist corner nodes that have the least neighbors. Thus, we

consider the worst case, i.e., when a corner node becomes a source node, to decide the 𝑓 .

3
https://mathworld.wolfram.com/Circle-CircleIntersection.html
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We first consider how the neighborhood of a corner source node ensures “a valid certificate
will be constructed”. As shown in Figure 6a, all neighbors of the corner source node are within the

yellow area, which locates (𝑟 +1)2 nodes. Interestingly, they are all within each other’s broadcasting

range, which means that they have the same number (i.e., (𝑟 + 1)2) of shared neighbors with the

source node. Similar to the derivation in Appendix A, the number 𝑓 of the faulty nodes in the

neighborhood of a source node should meet:

(1) 𝑓 < (𝑟 + 1)2
(2) 2𝑓 + 1 ≤ (𝑟 + 1)2

Then, we consider how every neighborhood ensures that “a valid certificate will be received by
all correct nodes”. As shown in Figure 6b, all neighbors of the node N(𝑎,𝑏 ) in the right are within

the red area, which locates (𝑟 + 1)𝑟 nodes. Similar to the derivation in Appendix A, the number 𝑓

of the faulty nodes in each neighborhood should meet:

(1) 𝑓 < (𝑟 + 1)𝑟
In summary, the number 𝑓 of the faulty node in each neighborhood should meet:

(1) 𝑓 < (𝑟 + 1)2
(2) 2𝑓 + 1 ≤ (𝑟 + 1)2
(3) 𝑓 < (𝑟 + 1)𝑟

Then, we get the maximum 𝑓 < 1

2
(𝑟 + 1)2. Therefore, in our protocol, each single neighborhood

should tolerate 𝑓 < 1

2
(𝑟 + 1)2 faulty nodes.

F DERIVATION OF 𝐹 ≤ ⌈𝑝
2
⌉ ⌈𝑞

2
⌉ 𝑓

Recall that each neighborhood tolerates at most 𝑓 faulty nodes. The 𝑝 · 𝑟 × 𝑞 · 𝑟 finite grid consists

of ⌈𝑝
2
⌉ ⌈𝑞

2
⌉ neighborhoods, including incomplete neighborhoods on the periphery of the system.

Thus, it can tolerate ⌈𝑝
2
⌉ ⌈𝑞

2
⌉ 𝑓 faulty nodes, i.e.,𝐹 ≤ ⌈𝑝

2
⌉ ⌈𝑞

2
⌉ 𝑓 .

G CORRECTNESS OF OUR BYZANTINE CONSENSUS PROTOCOL
We first prove the validity.

Lemma G.1. After 𝐺𝑆𝑇 , if the predefined leader in round 𝛾 is correct, all correct nodes will commit
this leader proposal.

Proof. After 𝐺𝑆𝑇 , the network becomes synchronous, where all correct nodes can 𝑟_𝑑𝑒𝑙𝑖𝑣𝑒𝑟

propose messages from others in a known finite time. The exact time is related to the size of the

𝑁 ×𝑀 finite grid wireless network. In this proof, we assume the time bound is Δ. Specifically, if a
correct replica 𝑟_𝑏𝑐𝑎𝑠𝑡s or 𝑟_𝑑𝑒𝑙𝑖𝑣𝑒𝑟s a message at time 𝑡 , all correct replicas 𝑟_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 it by time

𝑡 + Δ. Then, we prove this lemma to have all correct nodes to set their propose-timer to 2Δ.
First, we prove that all correct nodes enter the round 𝛾 and 𝑟_𝑏𝑐𝑎𝑠𝑡 proposals within Δ. We

suppose the fastest node N𝑖 𝑟_𝑏𝑐𝑎𝑠𝑡s a proposal in round 𝛾 at time 𝑡 , which implies that the

DAG𝑖 [𝛾 − 1] ≥ 𝑁 − 𝐹 at time 𝑡 . As a result, all correct nodes can 𝑟_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 these proposals

corresponding to the DAG𝑖 [𝛾 − 1] and all their dependencies by time 𝑡 + Δ, thus adding them

to the local DAG∗ [𝛾 − 1]. Then, the most sluggish nodes can enter the round 𝛾 − 1 and 𝑟_𝑏𝑐𝑎𝑠𝑡

proposals because they meet the Jumping Propose rule. Then, they can immediately propose new

proposals in round 𝛾 by time 𝑡 + Δ because they meet the Propose rule (i.e., they are in round 𝛾 − 1,

|DAG∗ [𝛾 − 1] | ≥ 𝑁 − 𝐹 and (𝛾 − 1) mod 2 = 0). Therefore, all correct nodes enter the round 𝛾 and

𝑟_𝑏𝑐𝑎𝑠𝑡 proposals within Δ.
Next, we show that all proposals in round 𝛾 + 1 from correct nodes point to the leader proposal in

round 𝛾 . Recall that each correct node enters round 𝛾 and 𝑟_𝑏𝑐𝑎𝑠𝑡s proposals within Δ. As a result,
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after entering the round 𝛾 , each of them can 𝑟_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 proposals from each other in the round 𝛾

within 2Δ (i.e., before the timeout of propose-timer). Before entering the round 𝛾 + 1, the DAG∗ [𝛾]
must contain the leader proposal. Thus, when they enter the round 𝛾 + 1 and 𝑟_𝑏𝑐𝑎𝑠𝑡 proposals,

their proposals must point to the leader proposal in round 𝛾 .

Finally, we prove that all correct nodes can commit the leader proposal in round 𝛾 . When

|DAG∗ [𝛾 + 1] | ≥ 𝑁 − 𝐹 , there are at least 𝑁 − 2𝐹 ≥ 𝐹 + 1 proposals that from the correct nodes.

Then, at least 𝐹 + 1 proposals in DAG∗ [𝛾 + 1] point to the leader proposal in round 𝛾 , which meets

the commit rule. Thus, all correct nodes can commit the leader proposal in round 𝛾 .

Therefore, after 𝐺𝑆𝑇 , all correct nodes can commit the leader proposal in round 𝛾 when this

leader is correct.

□

Theorem G.2 (Validity). If a correct nodeN𝑖 calls 𝑎_𝑏𝑐𝑎𝑠𝑡 (𝑏,𝛾), then all correct nodes will output
𝑎_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑏,𝛾,N𝑖 ).

Proof. If a correct node N𝑖 calls 𝑎_𝑏𝑐𝑎𝑠𝑡 (𝑏,𝛾), it reliably broadcasts a proposal 𝑀 with 𝑏 to

others. By the validity of the reliable broadcast, the proposal 𝑀 will eventually be added to the

DAG[𝛾]. After that, all correct nodes create the new proposals that must point to the 𝑀 . By

Lemma G.1, after 𝐺𝑆𝑇 , all correct nodes will commit the leader proposal in round 𝛾 ′ when this

leader is correct. Recall that when nodes commit a proposal, they also commit its causal histories,

including the𝑀 . Thus, all correct nodes will output 𝑎_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑏,𝛾,N𝑖 ). □

Then, we prove the agreement.

Lemma G.3. If a correct node N𝑖 directly commits a leader proposal 𝑀 in round 𝛾 , all future
committed leader proposals have paths to the𝑀 .

Proof. Suppose a nodeN𝑖 directly commits𝑀 in round 𝛾 , which requires at least 𝐹 +1 proposals
inDAG𝑖 [𝛾+1] (denotes𝑉 ) point to the𝑀 . Then, we prove that all future committed leader proposals

have paths to at least one proposal in the 𝑉 . Recall that each proposal points to at least 𝑁 − 𝐹

proposals in the previous round. Then, each proposal from correct nodes in the round 𝛾 + 2 points

to at least one proposal in𝑉 because any quorum of 𝑁 − 𝐹 proposals intersects with any quorum of

𝐹 + 1 proposals. When |DAG[𝛾 + 2] | ≥ 𝑁 − 𝐹 , it must include proposals from the correct nodes in

the round 𝛾 + 2. As a result, the proposals from correct nodes in the round 𝛾 + 3 must have paths to

at least one proposal in 𝑉 because they point to the proposals in DAG[𝛾 + 2]. For the same reason,

all proposals in the round 𝛾 ′ > 𝛾 + 3, have paths to at least one proposal in 𝑉 . Thus, all future

committed leader proposals have paths to the leader proposal𝑀 . □

Theorem G.4 (Agreement). If a correct nodeN𝑖 outputs 𝑎_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑏,𝛾,N𝑗 ), then all other correct
nodes will output 𝑎_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑏,𝛾,N𝑗 ).

Proof. Suppose N𝑖 outputs 𝑎_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑏,𝛾,N𝑗 ) by committing the proposal𝑀 . In more detail,

the𝑀 is in the causal histories of the𝑀 ′
in the round 𝛾 ′ > 𝛾 , and 𝐹 + 1 proposals in DAG𝑖 [𝛾 ′ + 1]

points to the𝑀 ′
. By Lemma G.1, after 𝐺𝑆𝑇 , all correct nodes will commit a leader proposal𝑀 ′′

in

round 𝛾 ′′ > 𝛾 ′ when this leader is correct. By Lemma G.3, the𝑀 ′′
has a path to the𝑀 ′

. Recall that

before committing𝑀 ′′
, they first commit the𝑀 ′

. By the agreement property of reliable broadcast,

all correct nodes 𝑟_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 the same proposal in a round from the same sender. Thus, when they

commit the causal histories of𝑀 ′
including the𝑀 , they output 𝑎_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑏,𝛾,N𝑗 ). Therefore, all

other correct nodes will output 𝑎_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑏,𝛾,N𝑗 ). □

Next, we prove the total order.
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Theorem G.5 (Total order). If a correct node N𝑖 outputs 𝑎_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑏,𝛾,N𝑗 ) before outputting
𝑎_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑏′, 𝛾 ′,N𝑗 ′ ), then every correct node must output 𝑎_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑏,𝛾,N𝑗 ) before outputting
𝑎_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑏′, 𝛾 ′,N𝑗 ′ ).

Proof. In our protocol, before committing a leader proposal, each node first commits the

uncommitted leader proposals in its causal histories in the order of the round number. Thus, each

node commits the leader proposals in the order of the round number. When committing a leader

proposal, each node commits its causal histories by a deterministic rule. By the agreement property

of the reliable broadcast, the leader proposals in a round across different nodes have the same

causal histories. Thus, all correct nodes 𝑎_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 proposals (blocks) in the same order. □
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