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Abstract. One-way functions are essential tools for cryptography. How-
ever, the existence of one-way functions is still an open conjecture. By
constructing a function with classical bits as input and quantum states
as output, we prove for the first time the existence of quantum one-way
functions. It provides theoretical guarantees for the security of many
quantum cryptographic protocols.
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1 Introduction

One-way function f is that f can be computed by a polynomial-time algorithm,
but f−1 can not be computed by any polynomial-time algorithm.

Definition 1 (One-Way Function (OWF)). A function f : {0, 1}∗ →
{0, 1}∗ is a one-way function, if f can be computed by a polynomial-time
algorithm, and for any polynomial-time algorithm A, any positive integers c and
any sufficiently large |x|,

Pr[f(A(f(x))) = f(x)] < |x|−c, (1)

where x is chosen from the discrete uniform distribution on {0, 1}|x|.

The existence of one-way functions would prove P ̸= NP [11,13], thus ad-
dressing a fundamental problem in computer science. However, a proof of P
̸= NP does not imply the existence of one-way functions, as the difficulty in
one-way functions must be the average-case, not the worst-case for complex-
ity theory [10]. Candidates for one-way functions in information theory include
problems such as large integer factorization, discrete logarithm problems, and



cryptographic hash functions. One-way functions are fundamental tools for cryp-
tography, pseudorandom generators [14], digital signature schemes [20,24,28], bit
commitment protocols [16,17], and other security applications.

The existence of one-way functions is still unknown. However, if one considers
using quantum states as the output of a function, it may not be feasible to derive
the input bit without knowing the exact information (one copy) of the output
quantum states based on the principles of quantum mechanics: quantum no-
cloning theorem [22,27] and quantum superposition principle [9,18]. Therefore,
a quantum one-way function with classical input and quantum output may exist.
We have the following definition of classical to quantum one-way function.

Definition 2 (Classical to Quantum One-Way Function (CQOWF)).
A classical to quantum function f : {0, 1}∗ → H (Hilbert space) is a one-way
function, if f can be computed by a polynomial-time algorithm, and for any
polynomial-time classical or quantum algorithm A, any positive integers c and
any sufficiently large |x|,

Pr[f(A(f(x))) = f(x)] < |x|−c, (2)

where x is chosen from the discrete uniform distribution on {0, 1}|x|.

Functions that require quantum operations or involve quantum states are
called quantum functions. The concept of quantum OWF was first introduced
in [4,12]. Nikolopoulos [21] proposed a quantum trapdoor function that achieves
classical to quantum mapping using single-qubit rotations. This function maps
any n bit string to a qubit. Although the design can be used to construct quantum
public-key cryptography, it is clear that it fails to meet the criterion of a quantum
one-way function: let the outputs corresponding to any two inputs x1 and x2 be
|φ1⟩ and |φ2⟩, and comparing |φ1⟩ and |φ2⟩ by swap-test, it is impossible to
obtain an error probability less than n−c.

Inspired by the BB84 quantum key distribution protocol [2], we introduce
a new classical to quantum one-way function, which maps classical information
to quantum states, and show that the proposed function satisfies the properties
of the quantum one-way function, thereby proving the existence of quantum
one-way functions.

2 Proposed CQOWF

2.1 The definition

We consider the following function f with classical bits as input and quantum
states as output:

f : {0, 1}2n → H⊗n,
f(x) = f(x′ ∥ x′′) = |φ⟩,

x′, x′′ ∈ {0, 1}n; |φ⟩ = ⊗n
i=1|φi⟩,
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where x = x′ ∥ x′′ (“ ∥ ” denotes the concatenation of bit strings). Taking x′ as
the bit string to be encoded and x′′ as the encoding basis (where 0 represents
the standard basis and 1 represents the Hadamard basis), we get the output as
follows:

|φi⟩ =


|0⟩, x′i = 0 and x′′i = 0;
|1⟩, x′i = 1 and x′′i = 0;
|+⟩, x′i = 0 and x′′i = 1;
|−⟩, x′i = 1 and x′′i = 1.

2.2 Proof of the function satisfying the CQOWF properties

For the proposed classical to quantum one-way function: f : x→ |φ⟩, the process
of generating |φ⟩ from the input x is the process of encoding classical bits into
qubits. That is, encoding x′ into quantum states based on x′′. Therefore, f can
be computed efficiently with a polynomial-time complexity of O(n).

Therefore, the key to satisfying the one-wayness of a function is the prop-
erty of hard to invert. It means that the success probability for any prob-
abilistic polynomial-time quantum algorithm to compute f−1 is negligible:

Pr[f(A(|φ⟩)) = |φ⟩] < n−c,
for any positive integers c and any sufficiently large n. In the proposed classical
to quantum one-way function, different inputs correspond to different combina-
tions of x′ and x′′, resulting in distinct output quantum states. This guarantees
that the function is a one-to-one mapping.

The one-wayness of the proposed classical to quantum one-way function lies
in the fact that it is not possible to obtain full information about the output
based on (one copy of) the output quantum states, therefore, it is not possible
to obtain the input bits. Regarding f : x → |φ⟩, deriving the input bits im-
plies successful decoding of |φ⟩. Decoding |φ⟩ means accurately identifying each
qubit in |φ⟩. More precisely, if one wants to decode each qubit in |φ⟩ without
x, then for each qubit, the probability of selecting the correct encoding basis
to measure it is 1/2, and the probability Px of obtaining the correct result for
a single qubit is Px = 1/2 × 1 + 1/2 × 1/2 = 3/4. Therefore, the probability
of correctly decoding the corresponding output (i.e., getting the input bits) is
(3/4)n, which exponentially decreases as n increases. According to the principles
of quantum mechanics, measurement leads to quantum collapse, resulting in ir-
reversible effects on the quantum state, making it infeasible to directly derive
the input through measurement.

However, an adversary with infinite computational resources can exhaust
the inputs and compare the corresponding outputs (forming the set Q, where
|Q| = 2n) with |φ⟩. Thus, the exhaustive attack to reverse |φ⟩ can be viewed as
a quantum state discrimination problem based on the set Q. Note that |Q| = 2n

contains not only completely orthogonal quantum states but also some non-
orthogonal ones. The orthogonal quantum states can be correctly distinguished
with a probability of 1 through projection measurement. However, for an un-
known state |φ⟩, the probability of selecting the same state as |φ⟩ or its orthog-
onal state from Q is 1/2n−1. Hence, the probability of successfully getting x by
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projecting two orthogonal states is Pr(succeed) = 1× 1/2n−1 = 1/2n−1. On the
other hand, the unambiguous discrimination of non-orthogonal quantum states
through Ivanović-Dieks-Peres (IDP) measurement [8,15,23], as a general mea-
surement, can explicitly distinguish them. This “unambiguous” means knowing
deterministically whether successful discrimination is achieved, though the mea-
surement may still yield inconclusive results. Under the assumption of equal prior
probabilities for the two states, the probability of obtaining a deterministic result
with IDP measurement is 1 − |⟨φ|ψ⟩|, known as the IDP limit. The maximum
average success probability of distinguishing multiple non-orthogonal quantum
states is given by Pr(succeed) =

∑n
j=1 ηjPj , where ηj represents the prior prob-

ability and Pj is the probability of successfully discriminating the system under
the condition of |φj⟩. However, note that Chefles [5] proved that a necessary and
sufficient condition for the existence of unambiguous measurement strategies is
that these states must be linearly independent. As the quantum states in set Q
are linearly dependent, the unambiguous quantum state discrimination (UQSD)
[3,6] strategy is not applicable.

In fact, for the proposed classical to quantum function f , if the input can
be derived based on |φ⟩, then it will lead to the breaking of the BB84 protocol
[29]. More precisely, the purpose of the BB84 protocol is to establish a shared
key between two parties. Alice encodes classical bits into qubits using randomly
chosen base (for each classical bit, Alice chooses one at random between the
computational basis and the Hadamard basis), and sends the qubits to Bob. If
one can derive the inputs from the outputs of the above function f , then an
adversary can derive the base and classical bits chosen by Alice from the qubits
she sends to Bob, and thus can get all the information Alice sends to Bob without
being detected. This contradicts that BB84 protocol is unconditionally secure.
The security of both the quantum function f and the BB84 protocol relies on the
difficulty of decoding qubits into classical bits without additional information.
This difficulty arises from the no-cloning theorem and superposition properties
in quantum mechanics. Therefore, the proposed quantum one-way function’s
security can be deduced from the security of the BB84 protocol. In other words,
if f : x→ |φ⟩ can be reversed, then an adversary could also effectively eavesdrop
on the BB84 protocol. The unconditional security of the BB84 protocol has
been proven [19,25], thus the quantum one-way function f : x → |φ⟩ satisfies
one-wayness. The fundamental principles of quantum mechanics guarantee that
f is unconditionally irreversible.

3 Conclusion

In this paper, by constructing a classical to quantum function that is not just
irreversible within polynomial-time but unconditionally irreversible, we prove
for the first time the existence of quantum one-way functions. In fact, the one-
wayness of this function lies at the heart of the security of many quantum cryp-
tographic protocols [1,2,7,26] and is the reason why quantum cryptography can
surpass classical cryptography to achieve unconditional security.
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