
Universal SNARGs for NP from Proofs of Correctness

Zhengzhong Jin
Northeastern University

Yael Tauman Kalai
MIT

Alex Lombardi
Princeton University

Surya Mathialagan
MIT

December 13, 2024

Abstract
We give new constructions of succinct non-interactive arguments (SNARGs) for NP in the

settings of both non-adaptive and adaptive soundness.
Our construction of non-adaptive SNARG is universal assuming the security of a (leveled or

unleveled) fully homomorphic encryption (FHE) scheme as well as a batch argument (BARG)
scheme. Specifically, for any choice of parameters ℓ and L, we construct a candidate SNARG
scheme for any NP language L with the following properties:

• the proof length is ℓ · poly(λ),
• the common reference string crs has length L · poly(λ), and
• the setup is transparent (no private randomness).

We prove that this SNARG has non-adaptive soundness assuming the existence of any SNARG
where the proof size is ℓ, the crs size is L, and there is a size L Extended Frege (EF) proof of
completeness for the SNARG.

Moreover, we can relax the underlying SNARG to be any 2-message privately verifiable ar-
gument where the first message is of length L and the second message is of length ℓ. This yields
new SNARG constructions based on any “EF-friendly” designated-verifier SNARG or witness
encryption scheme. We emphasize that our SNARG is universal in the sense that it does not
depend on the argument system.

We show several new implications of this construction that do not reference proof complexity:
• a non-adaptive SNARG for NP with transparent crs from evasive LWE and LWE. This gives

a candidate lattice-based SNARG for NP.
• a non-adaptive SNARG for NP with transparent crs assuming the (non-explicit) existence

of any iO and LWE.
• a non-adaptive SNARG for NP with a short and transparent (i.e., uniform) crs assuming

LWE, FHE and the (non-explicit) existence of any hash function that makes Micali’s SNARG
construction sound.

• a non-adaptive SNARG for languages such as QR and DCR assuming only LWE.
In the setting of adaptive soundness, we show how to convert any designated verifier SNARG

into publicly verifiable SNARG, assuming the underlying designated verifier SNARG has an EF
proof of completeness. As a corollary, we construct an adaptive SNARG for UP with a transparent
crs assuming subexponential LWE and evasive LWE.

We prove our results by extending the encrypt-hash-and-BARG paradigm of [Jin-Kalai-
Lombardi-Vaikuntanathan, STOC ’24].

Contents

1 Introduction 1
1.1 Result I: Non-Adaptive Unviersal SNARG for NP . 2
1.2 Result II: Adaptively Sound SNARGs . 6
1.3 Organization . 7

2 Our Techniques 7
2.1 Prior work . 8
2.2 Our Non-adaptive SNARG and Analysis . 10
2.3 Adaptive Soundness . 13
2.4 Overview of Applications . 14

2.4.1 SNARGs for NP from Evasive LWE . 15
2.4.2 SNARGs for Quadratic Residuousity and (QR) and Nth-Residuousity (DCR) 17
2.4.3 Transparent Non-Adaptive SNARG and Adaptive SNARG via iO 18
2.4.4 Transparent adaptive SNARG for UP . 19
2.4.5 Universal Micali SNARG . 19

3 Preliminaries 21
3.1 LWE Assumption . 21
3.2 Fully Homomorphic Encryption . 22
3.3 Succinct Non-Interactive Arguments . 23
3.4 Batch Arguments (BARGs) . 24
3.5 Propositional Logic Systems . 26

3.5.1 Extended Frege . 26
3.5.2 Cook’s Theory PV . 27

3.6 Local Assignment Generators . 29
3.7 Relevant Theorems based on [JKLV24] . 31

4 Universal SNARG Construction 33
4.1 Main Theorem Statement . 33
4.2 Proof of Main Theorem . 34

5 Constructions of Adaptively Sound SNARGs 38
5.1 Adaptively Sound SNARGs from Designated-Verifier SNARGs 38
5.2 Proof of Adaptive Soundness . 41

6 Application I: Non-Adaptive SNARGs from Witness Encryption 44
6.1 Witness Encryption . 45
6.2 Main theorem statement (WE) . 45
6.3 SNARG for NP from Evasive LWE . 46

6.3.1 PV Proofs for Properties of Linear Algebra 46
6.3.2 Evasive LWE . 48
6.3.3 Matrix Branching Programs . 49
6.3.4 Matrix Branching Program Encoding of CNF 49
6.3.5 Trapdoor and Pre-image Sampling . 50

6.3.6 GGH Encodings . 50
6.3.7 σ-PRF Obfuscation . 51
6.3.8 Witness Encryption from Evasive LWE with PV Proof 54

6.4 SNARGs for QR and DCR from LWE. 57

7 Application II: Transparent and Adaptive SNARGs from iO and LWE 60
7.1 Indistinguishability Obfuscation for Circuits . 61
7.2 Single-Key Functional Encryption . 61
7.3 Upgrading iO to have a PV proof of correctness . 63

7.3.1 Slow XiO with PV proof of correctness . 63
7.3.2 Slow XiO to Fast XiO with CRS . 64
7.3.3 Single-Key Compact FE for Bounded-Depth Circuits 66
7.3.4 Single-Key Compact FE for all circuits . 67
7.3.5 Output-Compressing Randomized Encodings for Turing Machines 69
7.3.6 iO from Output-Compressing RE . 71

7.4 Non-adaptive Transparent SNARGs for NP from iO and LWE 71
7.5 Adaptive SNARGs for NP from iO and LWE . 72

8 Application III: Adaptive Transparent SNARGs for UP from Evasive LWE 73

9 Application IV: Universal Micali SNARGs 74
9.1 Probabilistically Checkable Proofs . 75
9.2 Merkle Tree Hash . 76
9.3 PV Proof of Completeness for Merkle Hash . 77

10 Acknowledgements 80

A Deferred proofs and constructions from Section 6.3.2 88
A.1 Proof of Lemma 6.10 . 88
A.2 Read-c σ-PRFs . 90
A.3 Modified Designated-Verifier SNARG for UP based on [MPV24] 92

B PV Proof for Leveled GSW Fully Homomorphic Encryption 96

C PV Proof for Succinct Functional Encryption 99
C.1 PV Proof for Garbled circuits . 99

C.1.1 Construction and PV proof . 100
C.2 PV Proof for Two-Outcome Attribute-Based Encryption 103
C.3 Putting it all together . 107

1 Introduction

Succinct non-interactive arguments (SNARGs) are a cryptographic primitive in which a polynomial-
time prover, given a witness w for an NP statement x along with a common reference string crs,
generates a short, efficiently verifiable proof π that x is true. Since their introduction by Micali
[Mic94], SNARGs have proved themselves to be a powerful, versatile tool both in theory and in
practice. Despite their importance, constructing SNARGs, and proving their security, has remained
a challenging task over the last three decades. In this work, we tackle this problem head-on and
make progress on the following questions.

Do there exist SNARGs for all NP languages? Under what computational assumptions can we
prove this? Which useful properties of SNARGs can we provably guarantee?

To describe the state-of-the-art, prior known SNARG constructions can be roughly broken down
into the following three categories.

SNARGs based on unfalsifiable assumptions. SNARGs were first defined and constructed by
Micali [Mic94], who constructed a SNARG and proved its soundness in the Random Oracle Model
[BR94]. Starting with [BCS16], a line of research has attempted to optimize SNARGs in the random
oracle model, mostly for practical efficiency. There are also many SNARG (or SNARK) constructions
in the literature that are based on unfalsifiable “knowledge assumptions,” which assume the existence
of a knowledge extractor for every efficient adversary. These include assumptions such as knowledge-
of-exponent [Gro10, Gro16], extractable collision resistant hash functions [BCC+17], linear-only
encryption schemes [BCI+13], and more [DCL08].

A key drawback of all of these constructions is that their security is not proved based on a
falsifiable assumption [Nao03], and thus fail to achieve the gold standard “win-win” security guaran-
tee. Indeed, an impossibility result of Gentry and Wichs [GW11] demonstrates a serious barrier to
achieving SNARGs for NP with adaptive soundness (where the cheating prover is allowed to choose
the NP statement x as a function of the crs) based on falsifiable assumptions.

SNARGs based on iO. Despite the Gentry-Wichs barrier, there are several SNARG constructions
for all of NP based on indistinguishability obfuscation (iO). This includes the work of Sahai and
Waters that constructs a SNARG with non-adaptive soundness [SW14] and three recent works that
construct SNARGs with adaptive soundness [WW24a, WZ24, WW24b]. These can either be based
on heuristic iO constructions, or can be proved sound under the 2n-security of certain falsifiable
assumptions [BV15, AJ15, JLS21].1

While the 2n-security assumption is justifiable due to the Gentry-Wichs barrier, the iO-based
constructions satisfy several other drawbacks:

• iO is currently only known assuming a combination of three specific hardness assumptions
[JLS21, JLS22],

• In particular, there is no known iO scheme based on post-quantum falsifiable assumptions,
1This use of complexity leveraging increases the length of the crs but does not affect the length of π in the above

SNARG constructions.

1

• These SNARGs have a long, structured crs, whose size is proportional to that of the verification
circuit of the underlying NP language.

SNARGs for restricted languages. The majority of theoretical SNARG constructions in the
literature have restricted their scope to sub-classes of NP languages rather than working with NP-
complete languages [KR09, KRR14, KP16, BHK17, BKK+18, CCH+19, KPY19, JKKZ21, CJJ21,
CJJ22, WW22, DGKV22, PP22, JJ22, KLVW23, KLV23, CGJ+23, BBK+23, JKLV24]. These
SNARGs all have soundness proofs under falsifiable assumptions such as learning with errors (LWE).
The set of NP languages captured by this line of work is different in the cases of adaptive and
non-adaptive soundness:

• Adaptively sound SNARGs are known for all NP languages that have (adaptive) non-signaling
PCPs of low locality [KRR14, BHK17, CJJ22, KVZ21]. Such languages are known to be
decidable in deterministic sub-exponential time [KRR14], which is consistent with the Gentry-
Wichs barrier.

• Non-adaptively sound SNARGs are known for all NP languages that have a “co-nondeterministic
variant” of non-signaling PCP of low locality [JKLV24]. Such languages are known to be decid-
able in co-nondeterministic sub-exponential time, and thus are likely to form a strict subclass
of NP.

In this work, we apply the techniques from this third category of results – SNARGs for restricted
languages – to help construct and analyze new candidate SNARGs for all of NP.

1.1 Result I: Non-Adaptive Unviersal SNARG for NP

We first describe our results for SNARGs with non-adaptive soundness. In this setting, we give a
universal SNARG construction based on the encrypt-hash-and-BARG paradigm [JKLV24], which in
turn can be constructed from the following cryptographic building blocks:

• a non-interactive batch argument system (BARG) for NP [CJJ22].

• a fully2 homomorphic encryption scheme [Gen09, BV11].

Moreover, this SNARG can be instantiated with a transparent setup: the crs can be taken to be a
uniformly random string along with a (public-coin) hash of that string.3 In particular, this means
that one does not need a trusted party to set up the crs. The need for such a trusted setup has been
a major bottleneck for using SNARGs in practice.

We prove the following theorem on the soundness of this SNARG.

Theorem 1.1 (Informal). For any NP language L, our SNARG is non-adaptively sound assuming
the security of the above building blocks as well as assuming the existence of any two-message

2There are versions of this construction using either leveled or unleveled FHE; the construction based on unleveled
FHE has a shorter common reference string. We defer a more detailed discussion to the body of the paper.

3This requires that the FHE has pseudorandom ciphertexts and that the BARG has pseudorandom public param-
eters.

2

laconic4 argument system (P,V) for L, provided that the completeness of (P,V) can be proved via
a polynomial-length Extended Frege (EF) propositional proof.

In particular, Theorem 1.1 reduces (modulo, e.g., LWE) the long-standing problem of constructing
SNARGs for NP to the seemingly much easier problem of building 2-message laconic arguments!
Moreover, this soundness reduction holds “instance-wise:” our SNARG is non-adaptively sound
when restricted to any subset of instances for which such laconic arguments exist.

What is a proof of completeness? Let us specify more carefully what we mean by an EF proof
of completeness in the statement of Theorem 1.1. In the argument system (P,V), the prover and
verifier may make use of random coins (rP , rV). The requirement is that for all strings x and all
random coins rV , there is a polynomial-length EF proof of the following claim:

For all w ∈ RLx , and all rP , if ch = V(x; rV) and π = P(x,w, ch; rP), then V(x, π; rV) = accept.5

We elaborate on the definition of an EF proof system in Section 3.5.

EF proofs of completeness should be “for free.” Theorem 1.1 begs the following question:
should we expect a laconic proof system to have a polynomial-length EF proof of completeness? We
first note that it must have unconditional completeness. That is, if a cryptographic construction
only has completeness under a hardness (e.g. derandomization) assumption,6 we cannot hope to
prove that it has an EF proof of completeness (without proving the assumption to be true).

We believe that subject to this condition, most cryptographic constructions in the literature
that have perfect correctness should be instantiable with EF proofs of correctness. The reason for
this is that the correctness of a cryptosystem – when all users behave honestly – typically follows
from basic properties of arithmetic. Indeed, proofs of honest-user correctness that appear in papers
often simply say that it “follows immediately from the definitions.” Following a line of research
including [Par71, Coo75, Bus86], it should be possible to formulate such “simple” proofs in bounded
arithmetic, which yields polynomial-length EF proofs by Cook’s correspondence.

However, to derive formal corollaries, this meta-principle must be verified on a case-by-case
basis. In this work, we show that Gentry-Sahai-Waters FHE scheme (Appendix B), Yao’s garbled
circuits (Appendix C.1.1), Merkle trees (Section 9.3) and many other cryptographic constructions
(see [JJ22] for more examples) in fact have EF proofs of correctness. For the special case of iO, we
are also able to prove the following theorem (see Section 7), stating that EF proofs of correctness
can be generically added to any iO scheme:

Theorem 1.2. Assuming any subexponentially-secure iO scheme and subexponential LWE, there
exists an iO scheme with EF proofs of correctness.7

4A laconic argument system is an argument system in which the prover-to-verifier communication is small; however,
the verifier’s message may be long, and may depend on the NP statement x.

5Indeed, this is implied by a similar requirement where the quantifiers over x and rV are inside the claim, but this
weaker requirement suffices for our result.

6One example of a scheme that relies on a hardness assumption to argue completeness is the witness encryption
construction of [CVW18, VWW22] from evasive LWE. Looking forward, we in fact have to modify this construction
to obtain perfect completeness for our corollary of SNARG for NP from evasive LWE.

7In fact, we show a stronger claim that this scheme has a PV proof of correctness. This implies that the scheme
has EF proofs of correctness that can be uniformly generated.

3

Universality of our SNARG. One immediate corollary of Theorem 1.1 is an explicit construction
of SNARGs for NP that is universal with respect to SNARGs with EF proofs of completeness: if a
SNARG for NP with an EF proof of completeness exists, then our (transparent CRS) construction
is secure.8

Due to this universality result, we view our specific candidate SNARG as a “best possible”
SNARG (somewhat akin to [GR07]) among all SNARGs that have EF proof of correctness (assuming
FHE and BARG). For example, as we will see in Corollary 1.7, the mere existence of a post-quantum
iO scheme is sufficient for our SNARG to be post-quantum secure (assuming LWE is post-quantum
secure).

Moreover, our SNARG is non-adaptively sound if there exists any privately verifiable SNARG,
and moreover, even if there exists a two-message laconic argument systems, which is potentially a
far weaker object than (even privately verifiable) SNARGs for NP. Thus, our construction can be
seen as a transformation boosting any of these weaker proof systems into a full-fledged transparent
SNARG for NP. In more concrete terms, an adversary breaking the non-adaptive soundness of our
SNARG effectively proves that a 2-message laconic argument system for NP (with poly-size EF
proofs of completeness and the appropriate size parameters) does not exist!

As we will see, this universality result turns out to have powerful implications.

Implication: SNARGs from Witness Encryption. Note that two-message laconic arguments
for NP are immediately implied by any witness encryption scheme [GGSW13]; moreover, complete-
ness of the argument system has an EF proof if the underlying witness encryption has an EF proof
of honest decryption correctness. As a result, we obtain the following corollary.

Corollary 1.3 (Informal). Our SNARGs for NP is sound assuming the hardness of LWE as well as
the existence of a witness encryption scheme for NP whose correctness property

∀w,R(x,w) = 1→ Dec(w,Enc(x,m)) = m

has a family of polynomial-length EF proofs.
Moreover, if the witness encryption is succinct (does not grow with the instance or witness length)

and if there is a uniform machine that prints the EF proof, then we can get a SNARG for NP with
a short, uniformly random crs.

We can concretely instantiate such a witness encryption scheme based on the evasive LWE as-
sumption, which has received significant attention recently [Wee22, Tsa22, VWW22, ARYY23,
HLL23, MPV24]. Although the lattice-based witness encryption schemes of [CVW18, Tsa22, VWW22]
only guarantee computational correctness (and hence do not have EF proofs), we show that a modi-
fied construction (following [MPV24]) does have perfect (and EF -provable) correctness. As a result,
we obtain the following corollary.

Corollary 1.4 (Informal). Our SNARGs for NP is sound assuming the sub-exponential hardness of
LWE as well as evasive LWE. The SNARG has transparent setup and a crs of length poly(|x|, |w|, λ).

8We note that compared to Levin-style universal constructions of cryptographic primitives which enumerate over
all possible constructions, our construction does not suffer from “galactic inefficiency;” moreover, our construction
can also make use of the existence of SNARGs with non-uniform honest provers.

4

Since LWE and evasive LWE are both plausibly post-quantum secure, this yields a candidate
post-quantum SNARG for NP. We note that SNARGs from evasive LWE, even in the designated
verifier setting, were previously only known for a subclass of NP known as UP9 [MPV24]. This
demonstrates the power of our relaxation from SNARGs to 2-message laconic arguments. While
evasive LWE is not a falsifiable assumption, we hope that this relaxation will provide new insights
towards constructions of SNARGs for NP from standard assumptions.

Finally, by using unconditional, statistical witness encryption schemes for explicit languages
such as QR and DCR10 (with EF proofs of correctness), we can obtain SNARGs for such languages
assuming only LWE.

Corollary 1.5 (informal). Assuming the hardness of LWE, our SNARG is sound for the QR and
DCR languages.

It was not previously known how to obtain SNARGs for these languages without iO or heuris-
tics. In particular, the prior work [JKLV24] builds SNARGs for NP languages with EF proofs of
unsatisfiability, which are not known for these languages.

Implication: Transparent SNARGs for NP from iO. Combining Theorem 1.1 with the existing
construction of SNARG for NP from iO [SW14], we have the following corollary:

Corollary 1.6. Our SNARG for NP is sound assuming the (non-explicit) existence of an iO with
EF proofs of correctness and LWE.

Combining this corollary with Theorem 1.2, which states that subexponential iO and subexpo-
nential LWE can be used to construct an iO scheme with EF proofs of correctness, we can instead
state the corollary as follows:

Corollary 1.7. Our transparent SNARG for NP is sound assuming the (non-explicit) existence of
subexponential iO as well as subexponential LWE.

This is the first SNARG for NP with transparent setup that is provably sound under stan-
dard cryptographic assumptions. We emphasize that all previous SNARG constructions based on
iO [SW14, WW24a, WZ24, WW24b] do not have transparent setup.

Implication: Universal Micali SNARGs. In addition to our evasive LWE-based instantiation,
we show that Micali’s protocol, with any hash function instantiation, has a poly-size EF proof of
completeness, as long as the underlying PCP has a poly-size EF proof of completeness. By the
work of [Pic15], the PCP construction of Dinur [Din07] in fact has an EF proof of completeness.
Thus, we obtain the following corollary.

Corollary 1.8 (Informal). Our SNARG for NP is sound with short and transparent crs assuming
LWE, (unleveled) FHE and and the (non-explicit) existence of any hash function that makes Micali’s
SNARG construction non-adaptively sound (with the PCP from [Din07]).

9UP is a subclass of NP where every instance x has at most one witness.
10DCR denotes the complement of the DCR promise language.

5

1.2 Result II: Adaptively Sound SNARGs

In the adaptive setting, we give the first generic transformation from privately-verifiable to publicly-
verifiable SNARGs.

Theorem 1.9 (informal). Assume the existence of a privately verifiable adaptively sound SNARG
for some language L with an “instance-universal”11 EF proof of completeness. Then, assuming the
existence of (leveled) FHE and BARGs for NP, there is a publicly verifiable adaptively sound SNARG
for L.

Moreover, if the BARG public parameters are pseudorandom, the FHE ciphertexts are pseudoran-
dom, and the proving key of the privately verifiable SNARG is 2n-indistinguishable from uniform,
the publicly verifiable SNARG can be made to have transparent setup.

We emphasize that Theorem 1.9 also applies to preprocessing SNARGs, whose proving keys may
be long and/or take a long time to generate. While the construction in Theorem 1.9 is not universal
(for reasons that will become in our technical overview in Section 2), it does not depend on the EF
proof (only on its length).

Unlike our non-adaptive universal SNARG construction, the transformation in Theorem 1.9 does
not generically give a transparent set-up. However, we obtain an adaptively sound SNARG with
transparent set-up by plugging in a slight variant of the adaptively sound, privately verifiable SNARG
for UP of [MPV24].

Corollary 1.10. Assuming the sub-exponential hardness of LWE and evasive LWE, there are trans-
parent adaptively sound SNARGs for UP.

To the best of our knowledge, this is the only transparent adaptively sound SNARG candidate
proven sound under an explicit assumption, aside from [Mic94] and its close relatives [BCS16] in
the random oracle model. Moreover, it gives a plausibly post-quantum adaptively sound SNARG
for UP. This is in contrast to the knowledge assumption underlying prior lattice-based (privately
verifiable) candidates, whose underlying hardness assumption was recently broken [DFS24].

Implication: Adaptive SNARGs via Witness PRFs. More generally, [MPV24] showed that
a subexponentially sound witness PRF (a primitive introduced by [Zha16]) for a language L can be
used to construct adaptively sound designated-verifier SNARGs for L. A witness PRF, in short, can
be seen as a generalization of witness encryption. Coupled with our result (Theorem 1.9), we have
the following corollary.

Corollary 1.11 ((Informal)). Assuming LWE and a witness PRF with an EF proof of completeness
for a language L, there exists an adaptively sound SNARG for L.

In fact, [MPV24] show that the privately verifiable variant of the [SW14] SNARG based on
sub-exponential iO and one-way functions gives such a witness PRF. Therefore, combined with
Theorem 1.2, we have the following corollary.

Corollary 1.12. Assuming subexponential iO and subexponential LWE, there exists an adaptively
sound SNARG for NP.

While this corollary is not new (a sequence of works [WW24a, WZ24, WW24b] construct such
a SNARG from iO and OWFs), this gives an alternative pathway to obtaining adaptively sound
publicly verifiable SNARGs for NP.

11As discussed previously, we include the quantification over all statements x in the EF tautology.

6

Comparison with [JJ22, JKLV24]. The idea of using EF proofs in the analysis of SNARG
schemes originated in [JJ22] and was recently used in [JKLV24]. In [JJ22], EF proofs were used
to obtain a non-adaptive SNARGs from iO with a reduction that does not run in time 2n, and in
fact is independent of the input length n. More recently, [JKLV24] constructed SNARGs via the
encrypt-hash-and-BARG paradigm (which we elaborate on in Section 2).

However, the SNARGs of both [JJ22, JKLV24] are only proved sound for NP languages that
have polynomial-size [JJ22] (or more generally, polynomial space [JKLV24]) EF proofs of non-
membership. That is, for a fixed NP language L with NP verification circuit C, these works required
efficient EF proofs that C(x, ·) is unsatisfiable for each fixed x /∈ L. This places a complexity-
theoretic constraint on the language L, since such languages are decidable in co-nondeterministic
sub-exponential time [JKLV24].

In contrast, we use a variant of the [JKLV24] encrypt-hash-and-BARG construction, but rather
than requiring an EF proof about language non-membership, we make use of an EF proof of cor-
rectness of a cryptographic primitive that we introduce in the security analysis. Interestingly, the
completeness property of a 2-message argument is required to hold for true statements x ∈ L rather
than false x /∈ L, but we use these EF proofs in our soundness analysis! Thus, no complexity-
theoretic constraint is placed on the language and we obtain candidate SNARGs for NP.

1.3 Organization

In Section 2, we give a high level overview of our techniques used to achieve our main results:
Theorem 1.1, Theorem 1.9, and their applications. In Section 3, we recall basic definitions and tools
from prior work that we use throughout the paper. We present our universal SNARG construction
and prove Theorem 1.1 in Section 4. We then present our transformation from adaptively sound
privately-verifiable SNARGs to publicly verifiable SNARGs and prove Theorem 1.9 in Section 5. In
Section 6, we show two constructions of SNARGs for NP via witness encryption: one from evasive
LWE and LWE, and another for languages such as QR and DCR from just LWE. In Section 7, we first
show that any subexponential iO scheme can be transformed into an iO scheme with a PV proof of
correctness by assuming subexponential LWE (Theorem 1.2). As corollaries, we show transparent
SNARG for NP as well as an adaptively sound (non-transparent) SNARG for NP. In Section 8,
we construct an adaptive SNARG for UP with transparent crs. Finally, in Section 9, we construct
a universal SNARG for NP with non-adaptive soundness, assuming the (non-explicit) existence of
a hash function that can securely instantiate Micali’s SNARG, and assuming LWE and FHE, thus
proving Corollary 1.8. We defer many details to the appendix.

2 Our Techniques

In this section, we describe our main techniques. We recap prior work in Section 2.1. In Section 2.2,
we give an overview of the security proof of our universal non-adaptive SNARG (Theorem 1.1). In
Section 2.3, we discuss extending our approach to adaptive SNARGs (Theorem 1.9). Finally, in
Section 2.4, we discuss how to obtain the various applications of Theorem 1.1 and Theorem 1.9.

7

2.1 Prior work

Our starting point is the work of Jin et al. [JKLV24], which developed the encrypt-hash-and-BARG
paradigm for constructing SNARGs. Before explaining this paradigm, we briefly recall the simpler
hash-and-BARG paradigm from [CJJ22, KVZ21], for constructing SNARGs for deterministic and
(certain special) non-deterministic computations.

Hash-and-BARG. In the hash-and-BARG candidate SNARG for an NP language L, the prover
sends the verifier a hash v of an assignment to all wires of the verification circuit Cx, described as
follows:

• Cx has the instance x as a hard-coded input.

• Cx takes as additional input the NP witness w (this input will be empty if the computation
is deterministic).

• The output of Cx is a bit b indicating whether the NP verifier accepts (x,w).

The hash that is used is a somewhere extractable hash function with local opening, as defined in
[HW15, OPWW15].12 Finally, the prover appends to this hash value a batch argument (BARG)
proof.13 The BARG proof asserts that all the gates in the verification circuit are satisfied, i.e., for
every gate:

1. there are local openings of the hash value v to bits bi, bj , bk in the three locations (two inputs,
one output) associated to this gate, and

2. the wire values bi, bj , bk are consistent with the gate.

3. Finally, it is asserted that the output wire value bout is 1.

A hash-and-BARG scheme is known to satisfy local soundness [CJJ22, KVZ21]. Suppose the
somewhere extractable hash function is extractable on ℓ locations. Then, one can convert any
cheating prover for the BARG into a local assignment generator LocalGen that takes as input a set
of ℓ wires, outputs ℓ values, and has the following two properties: (1) the output values are locally
consistent (i.e., they satisfy all gates of Cx incident on this wire set, and the output wire value is
assigned 1), and (2) the output values are non-signaling, which means that for any set of wires, S
and T of size at most ℓ, the distribution of the the output of LocalGen on input S restricted to the
wires in S ∩ T is indistinguishable from the output of LocalGen on input T restricted to the wires
in S ∩ T .

Unfortunately, it is not known, and is in fact believed to be false, that this local soundness
property implies the full soundness of the Hash-and-BARG scheme in general.

12Loosely speaking, such hash functions have local openings (such as Merkle hashes [Mer88]), and have the addi-
tional property that a few coordinates of the preimage can be extracted from the hash value given a corresponding
trapdoor. Moreover, these coordinates are hidden in the hash key.

13A BARG is a succinct argument for proving k claims x1, . . . , xk ∈ L′, for any given NP language L′, where the
length of the proof is proportional to that of a single witness. BARGs are known to exist under a variety of standard
assumptions such as LWE [CJJ22], bilinear maps [WW22, KLVW23], and DDH [CGJ+23].

8

From local soundness to soundness for P. For deterministic computations, it was shown in
[KRR14] how to introduce redundancies to, or “extend,” a circuit Cx(⊥) so that local soundness
of the above scheme – applied to the extended circuit – does imply full soundness. However, they
also argued that this technique is limited. In particular, if the hash is extractable on ℓ locations
(which in particular means that the SNARG is of size ≥ ℓ) then soundness is guaranteed only if the
underlying language has a non-signaling PCP with locality ℓ, and such languages are known to be
computable in time roughly 2ℓ. This posed a “non-signaling barrier” to obtaining SNARGs for NP
that stood for roughly 10 years.

Encrypt-hash-and-BARG. The works [BBK+23, JKLV24] get around this “non-signaling barrier”
in the non-adaptive setting using the following modification of the Hash-and-BARG scheme, called
“Encrypt-hash-and-BARG” in [JKLV24]:

• The SNARG crs is defined to contain an FHE-encryption of the description of a circuit ⟨E⟩, in
addition to the previous hash key and BARG public parameters.

• The honest prover homomorphically evaluates E on its NP-witness w, and generates a hash-
and-BARG proof of both the original verification circuit and the homomorphic extended com-
putation.

We emphasize that this proof is is still publicly verifiable, and the secret key of the encryption
scheme is not used in SNARG proof generation or verification.

The reason that this modified construction is useful is that in the non-adaptive soundness analy-
sis, there is a fixed false statement x∗ /∈ L, and one can consider circuit extensions Ex∗ that depend
non-uniformly on the instance x∗. Specifically, it was proven in [JKLV24] that a cheating prover
for this SNARG implies the existence of a local assignment generator LocalGenEx∗ for any circuit
Ex∗ extending Cx∗ . Therefore, [JKLV24] reduced the problem of constructing a SNARG for L to
the problem of proving the existence of a suitable circuit extension Ex∗ for every x∗ /∈ L. Crucially
for them, Ex may not be easy to construct given the instance x, and may not even be well-defined
for x ∈ L.

Moreover, [JKLV24] showed the existence of such families {Ex}x/∈L for any language L that has
poly-size EF proofs of the non-membership tautology for each fixed x /∈ L:

∀w,Cx(w) = 0.

Loosely speaking, their associated extended circuit Ex contains the gates corresponding to this EF
proof. Since an EF proof can be checked by reading only constant many bits at a time, the existence
of a local assignment generator implies that the output of the verification circuit, that checks the
validity of a given NP witness, must be 0.

Unfortunately, this approach still has a crucial drawback for obtaining SNARGs for all of NP:
any language with EF proofs as above lies in the complexity class NP ∩ coNP, which is believed
to be strictly contained in NP. In addition, there is little hope of this idea achieving adaptive
soundness: roughly speaking, adaptive soundness would at least require these EF proofs to be
efficiently generatable from the instance x, but this would place the language L in P.

9

Beyond NP ∩ coNP? In an effort to capture languages outside NP ∩ coNP, [JKLV24] consider
certain structured circuit extensions Ex of super-polynomial size, which (in their case) correspond
to EF proofs with super-polynomial size but polynomial space. Their specific theorem statement is
not important for our results, but they consider a slightly modified Encrypt-hash-and-BARG scheme
that we build upon to obtain our results. We discuss this in more detail in Section 2.2.

Nevertheless, the improved SNARG of [JKLV24] is still limited to languages in the complexity
class NP ∩ coNTIME(2ℓ), where their SNARG proofs have length greater than ℓ. This limitation is
inherent to their approach, as formalized in [JKLV24] Theorem 5.8.

2.2 Our Non-adaptive SNARG and Analysis

The [JKLV24] approach cannot directly be extended to NP due to the following fundamental limi-
tation: their security analysis crucially makes use of a form of efficient proof of the statement that
x∗ /∈ L. However, observe that their approach can be reformulated as working with the claim:

∀w,
(
C(x∗, w) = 1→ 1 = 0

)
.

In this work, we consider a simple but powerful generalization of their approach that requires EF
proofs of claims of the form

∀w,
(
C(x,w) = 1→ f(w) = 1

)
,

for an appropriately chosen function f . The advantage of this generalization is that one can hope
to work with claims that can even hold for all statements x (true and false), which reopens the
possibility of building SNARGs for all of NP.

Informally, we make use of the following paradigm generalizing [JKLV24]:

Any claim about real NP witnesses that can be proved in EF can also
be enforced to hold for local assignment generators.

We will use this approach to deduce the security of our SNARG assuming the security of another
cryptographic primitive, which will only appear in the security analysis! This is accomplished by con-
sidering circuit extensions Ex that themselves employ cryptography, rather than being information-
theoretic.

Cryptography to the rescue! For simplicity, we exemplify our approach assuming the ex-
istence of a witness encryption scheme. Recall that a witness encryption scheme consists of a
randomized algorithm Enc(x,m) = Enc(x,m; r) along with an algorithm Dec(w, ct) such that
Dec(w,Enc(x,m)) = m for all (x,w) such that Cx(w) = 1. Given such a scheme, consider a
candidate SNARG defined as follows:

• The crs includes an FHE encryption of a witness encryption ciphertext ct = Enc(x,m) for a
uniformly random message m← {0, 1}λ.

• The honest prover homomorphically evaluates the witness decryption circuit Dec(w, ct) on
the FHE ciphertext, and provides a Hash-and-BARG proof that (i) Cx(w) = 1 and (ii) the
homomorphic computation was computed correctly.

10

We emphasize that, as before, the honest verifier does not have the FHE secret key and merely
verifies the BARG proof.

Nevertheless, suppose (wishful thinking, for now) that it were possible to prove that for any
cheating prover P ∗ for the SNARG, P ∗ outputs a valid FHE encryption of the message m (as the
honest prover does when x ∈ L). This would constitute a security reduction proving that the
SNARG is secure assuming the security of the witness encryption scheme! This is because P ∗, even
it were additionally given the FHE secret key, cannot efficiently recover the message m without
breaking the witness encryption.

Unfortunately, it is not clear how to instantiate this wishful thinking in general – after all, the
verifier V does not decrypt the prover’s ciphertext, so perhaps an adversary P ∗ can make V accept
using an incorrect evaluated ciphertext.

EF proofs of correctness to the rescue. The final piece of the puzzle is to employ an ap-
propriate EF proof that forces a cheating P ∗ to correctly send an FHE encryption of m. Roughly
speaking, we consider the following modification of the above SNARG:

• The crs includes (1) an FHE encryption of a witness encryption ciphertext ct = Enc(x,m), and
(2) a separate FHE encryption of the description of a circuit ⟨E⟩.

• The honest prover homomorphically evaluates Dec(w, ct) on the first FHE ciphertext, homo-
morphically evaluates ⟨E⟩ 7→ E(w) on the second ciphertext, and provides a Hash-and-BARG
proof that:

(i) Cx(w) = 1, and

(ii) the homomorphic computations on ciphertexts (1) and (2) were computed correctly.

Our analysis assumes the existence of an EF proof of the following decryption correctness
statement for every fixed statement x, message m and randomness r:

∀w,
(
Cx(w) = 1→ Dec(w,Enc(x,m; r)) = m

)
.

In our security analysis, we replace ⟨E⟩ with the description of a circuit Ex,m,r described in Fig. 1.
This circuit consists of the following sub-computations:

1. Hard-coded inputs: encryption randomness r, random message m, the instance x.

2. Input: a hypothetical NP witness w.

3. The encryption procedure Enc(x,m; r)→ ct.

4. The decryption procedure (w, ct) 7→ Dec(w, ct) = m′.

5. A circuit Equalitym that checks whether m′ = m. Call the resulting output bit b.

6. An encoding of the EF proof that if Cx(w) = 1 then b = 1.

11

  

Hardwire

𝖤𝗇𝖼
x, m, r

  

Inputs:

𝖣𝖾𝖼
𝖼𝗍, w

 𝖼𝗍

 m′

Input:
Equalitym

m′

 proof of the fact that:ℰℱ
Cx(w) = 1 → b = 1

 w Cx(⋅)

All wires given  
as input

Extended
Circuit Ex,m,r

All wires given as input

 b

Figure 1: Visual depiction of the extended circuit Ex,m,r. Note that here, w is an input to both the
relation circuit Cx, as well as the decryption circuit Dec. The EF proof of completeness takes as input
all the wires in w, Cx, Enc,Dec and Equalitym (since these appear as variables in the EF proof).

Similarly to before, a cheating prover P ∗ for this SNARG (in this hybrid) implies the existence of
a local assignment generator for computations Items (i) and (ii). By our basic principle, one can
deduce that this local assignment generator assigns 1 to the bit b (i.e., the local assignment generator
is “as good as a real NP witness” in this respect). Finally, we argue that this fact actually implies
that the FHE decryption of P ∗’s output of computation (1) must actually be equal to m. This
contradicts the security of the witness encryption scheme, and thus we can prove the soundness of
our SNARG for any NP language.

We remark that this security proof makes use of the EF proof of correctness – which intuitively
is a claim about true x ∈ L – in our soundness analysis, where x /∈ L! The key point is that this
EF correctness proof is useful precisely under the assumption that a cheating P ∗ exists, because:

1. P ∗ implies the existence of a kind of “pseudo-witness” for x, and

2. The EF proof of correctness also applies to this “pseudo-witness” (and false statement x) in
the security proof.

Our Universal SNARG. We make the following brief observations about our presented analysis:

• Rather than using a witness encryption scheme, we could employ any 2-message laconic argu-
ment system for the language L. What is required for the analysis to work is a family of EF
proofs of completeness for the argument system:

∀w,
(
Cx(w) = 1→ V (x, P (w, µ), r) = 1

)
12

where r denotes the verifier’s randomness, µ = V1(x; r) denotes an honestly computed verifier
message, and V (·) denotes the laconic argument verification procedure.

• Our construction does not need to depend on the choice of laconic argument: the relevant
pieces of the crs in our SNARG can always be set to FHE encryptions of “dummy” all-zeroes
strings, and the prover can be asked to homomorphically evaluate a universal circuit on this
ciphertext.

As a result, our Encrypt-hash-and-BARG proof system is secure assuming that any 2-message laconic
argument system for NP, with EF proofs of correctness, exists! As usual, our scheme can also be
made to have transparent crs under the assumption that the FHE has pseudorandom ciphertexts.

Technical details: universal local assignment generators. Although we have outlined the
main new ideas behind Theorem 1.1, there are several details missing in the above security proof
sketch. In the body of the paper, we handle these details by abstracting out a security property of
the multi-ciphertext Encrypt-hash-and-BARG scheme of [JKLV24] Section 5 (which was originally
employed for their “bounded space” result). Specifically, we observe that any cheating prover P ∗

for this scheme implies the existence of what we call a universal local assignment generator

LocalGen(E,S)

that takes as input the description of a circuit E (containing Cx) along with a wire set S (while an
ordinary local assignment generator is defined with respect to a fixed circuit E and only takes S as
input). This universal local assignment generator satisfies two properties:

• For every fixed extension E of Cx, we have that LocalGen(E, ·) is a valid local assignment
generator for E, and

• LocalGen is also non-signaling with respect to the choice of E: for any two extensions E and
E′ (of some bounded size) and for every set of wires S that are present in both E and E′ it
holds that

LocalGen(E,S) ≈c LocalGen(E
′, S).

This formalism turns out to capture what is needed to carry out the above security analysis, with-
out having to explicitly refer to multiple FHE ciphertexts encrypted under different keys. While
[JKLV24] did not formalize this property of their construction, their security proof implicitly es-
tablishes it. Subsequent to this work, the authors of [JKLV24] updated their paper to include this
formalism for ease of understanding.

2.3 Adaptive Soundness

We next show how to convert any dv-SNARG with a polynomial size EF proof of correctness, into
a (publicly verifiable) SNARG. The construction is simple: append to the dv-SNARG π an encrypt-
hash-and-BARG proof that π was generated by (honestly) running the dv-SNARG prover on a valid
witness w (i.e., on w for which (x,w) ∈ RL). Now rather than verifying the dv-SNARG π, which
requires a secret verification key, the verifier only verifies the encrypt-hash-and-BARG proof, which
can be done publicly.

13

At first it may seem unclear why the encrypt-hash-and-BARG is at all helpful in the adaptive
setting since in this setting changing the crs in the analysis, may cause a change to the distribution
of the instance provided by the cheating prover. In particular, the distribution of the instance may
change from being not in the language to being in the language.14 Surprisingly, even though this
may indeed be the case, we can still argue that the prover will be rejected, even if it did change the
instance to one in the language.

In the analysis, we start with a cheating prover who successfully cheats with adaptively chosen
(x∗, π∗), where x∗ is not in the language and π∗ is a dv-SNARG. The adaptive soundness of the
underlying dv-SNARG implies that π∗ must be rejecting. Next, in the analysis we modify the crs
in a similar way as in the non-adaptive case. Specifically, we change the ciphertext encrypting the
all zero string to one that encrypts a description of the extended circuit, that on input (x∗, π∗),
computes the verdict b = V(vk, x∗, pk∗) and then adds gates corresponding to the EF proof that if
Cx(w) = 1 then b = 1.

We argue that after this change, π∗ must still be rejecting, whether or not x∗ is in the language.
This is due to the security of the underlying FHE scheme which says that the distribution of π∗

even given vk should look the same as before, and thus should remain rejecting. At this point, the
adversary P ∗ is outputting an instance x∗ (possibly true or false), a rejecting dv-SNARG proof π∗,
and an accepting encrypt-hash-and BARG proof that π∗ was computed by running the honest prover
P on a valid NP witness w for x∗, and that the extended circuit was homomorphically evaluated on
this w.

From here, we can derive a contradiction similarly to our argument in the non-adaptive setting.
The main difference is that we need to rely on the fact that in the adaptive setting, the encrypt-hash-
and-BARG scheme can be used to convert an adaptive cheating prover into an adaptive universal
and non-signaling local assignment generator.15

Obtaining a transparent crs. Finally we mention that if the public key pk of the dv-SNARG is
2|x|-indistinguishable from uniform, then we can make our crs transparent! The idea is to replace pk
with a truly random string, and thus obtain a transparent crs, since the crs of our encrypt-hash-and-
BARG scheme is already transparent (under LWE). The observation is that since we changed the crs
in a 2|x|-indistinguishable way, we can use complexity leveraging to argue that adaptive soundness
still holds.

2.4 Overview of Applications

In this section, we describe how to apply Theorems 1.1 and 1.9 to obtain several of our applications.
Obtaining these applications requires two key ingredients, that we exemplify in this overview:

• Constructing EF proofs of correctness for various instantiations of cryptographic primitives.

• Showing how transformations between primitives preserve EF proofs of correctness.

We remark that similarly to [JJ22, JKLV24], almost all16 polynomial-length EF proofs constructed
14This can be overcome by using standard complexity leveraging techniques, and assuming that the change in

the crs is harder to detect than the hardness of the language. However, this will make our proofs grow at least
poly-logarithmically with the hardness of the language, which limits the result.

15We mention that this was not done explicitly in [JKLV24], but their proof directly extends to this setting, similarly
to how the hash-and-BARG scheme extends to the adaptive setting.

16The exceptions are the results about QR and DCR; see Section 6.4.

14

in this paper can be derived from a stronger object in proof complexity called a PV proof [Coo75].
While EF proofs are asymptotic families of proofs about growing families of inputs, PV proofs
are finite-length proofs about the behavior of a Turing machine on all inputs in {0, 1}∗. Roughly
speaking, PV proofs are a restricted family of proofs in Peano Arithmetic that make use of com-
putationally efficient proofs by induction – e.g., induction over {0, 1}∗ with respect to the input
length n rather than standard induction over Z. It is well known [Coo75] that PV proofs can be
converted, in uniform poly(n) time, into an associated EF proof about inputs of length n. For a more
comprehensive introduction to the PV and EF proof systems, we refer the reader to Section 3.5.

2.4.1 SNARGs for NP from Evasive LWE

To construct a SNARG for NP from evasive LWE, as argued in Section 2.2, it suffices to construct a
witness encryption scheme from evasive LWE that has an EF proof of decryption correctness.

Prior constructions of witness encryption from evasive LWE. While the works of [CVW18,
VWW22, Tsa22] already construct witness encryption schemes from evasive LWE, these schemes do
not have perfect correctness. We refer the reader to the respective works for the actual constructions,
but we give intuition for why these schemes incur correctness error.

The scheme [VWW22, Tsa22] schemes on input x and message m output a program PK,m,x :
{0, 1}m → Zq which has the following (abridged) form:

PK,m,x(w) =

{
m · PRFK(w) + ew If R(x,w) = 1

PRFK(w) + ew otherwise.

where each ew is some term bounded by some |ew| ≤ B, where B ≪ q. The decryption algorithm
of the witness encryption then computes y ← PK,m,x(w), and outputs 0 if |y| ≤ B, and 1 otherwise.
It is easy to see that in general, such a witness encryption scheme may not have perfect correctness
if the encrypted message is m = 1. For example, if PRFK,m,x(w) = 0, then |y| ≤ B and the
decoder will deduce that the message is 0. For appropriate parameter settings, this scheme achieves
statistical correctness because with high probability, |PRFK(w)| ≥ B (otherwise, this allows us to
distinguish PRF from a uniformly random function). In particular, it is not perfectly correct, and it
is not clear that such schemes should have (appropriately defined) EF proofs of correctness.

New construction admitting an EF proof. Therefore, we instead construct a witness encryp-
tion scheme with perfect correctness using the techniques of the recent work of [MPV24]. We then
show that the scheme does in fact have an EF proof of correctness. We proceed in a few steps:

Step 1: EF proof of approximate correctness of MPV Obfuscation. First, we show that
“σ-PRF obfuscation”, an object defined by [MPV24], in fact has a polynomial-sized EF proof
of approximate correctness:

for all circuits f : {0, 1}h → Zq and all randomness r,
if g ← O(f ; r), then for all x ∈ {0, 1}h, |g(x)− f(x)| ≤ B

for some bound B. Since the construction is lattice-based, we show the correctness of the
scheme by mainly appealing to basic arithmetic properties and linear algebra facts which are

15

known to be provable in EF [Coo75, Bus86, SC04]. We refer the reader to Section 6.3.1 for
more details.

Step 2: New witness encryption scheme with EF proof, Consider the following keyed pro-
gram:

PK,m,x(w) =

{
m · ⌊q/2⌋ if R(x,w) = 1

fK(w) otherwise

where fK is some keyed function (which we will define explicitly in the next step). Let
P̃ ← O(PK,m,x), where O is the obfuscation from the previous step. Set parameters of the
obfuscation so that B ≪ q/4 (recall B is the correctness bound from the previous step). The
encryption works as follows: on input an instance x and message m, output P̃ corresponding
to PK,m,x(w) where K is uniformly random. Decryption then computes P̃ (w), and outputs 0
if |P̃ (w)| ≤ B, and 1 if |P̃ (w) − ⌊q/2⌋| ≤ B. It is easy to see that the above construction is
correct via the following argument:

• By construction, if R(x,w) = 1, then PK,m,x(w) = m · ⌊q/2⌋.
• By approximate correctness of the obfuscation, we have |P̃ (w)− PK,m,x(w)| ≤ B.

• If m = 0, then B ≥ |P̃ (w) − PK,m,x(w)| = |P̃ (w) − 0| = |P̃ (w)|. Hence, decryption
succeeds.

• Similarly, if m = 1, then B ≥ |P̃ (w) − PK,m,x(w)| = |P̃ (w) − ⌊q/2⌋|. Hence, decryption
succeeds.

• Therefore, the decryption algorithm is correct.

In fact, this argument can be easily formalized as a polynomial-sized EF proof.

Step 3: Security of the new scheme. It now suffices to show security of the scheme. Recall
that the security guarantee of the σ-PRF obfuscation of [MPV24] guarantee is as follows: if
the family of functions {fk}k∈K satisfies that given k ← K and independent Gaussian samples
ex ← Dσ (shorthand denoting that the standard deviation σ), we have

{fk(x) + ex}x∈X ≈c U , (1)

then the obfuscation O(fk) for k ← K is pseudorandom. In the case where x /∈ L, we have
that the program PK,m,x(w) = fK(w). If we choose fK from a family of functions such that (1)
holds, then we can argue that the witness encryption corresponding to x /∈ L is pseudorandom
and hence semantically secure. We instantiate fK via the BLMR PRF [BLMR13] to obtain
the desired guarantee17.

17Although any PRF would satisfy (1), the work of [MPV24] requires the program to be represented as a “matrix
program”. However, it is known that that such a matrix PRFs do not exist [CHVW19]. Hence, we have to rely on
matrix programs that satisfy (1), which [MPV24] calls ‘σ-PRF’. We gloss over this detail in this technical overview
for readability.

16

2.4.2 SNARGs for Quadratic Residuousity and (QR) and Nth-Residuousity (DCR)

Theorem 1.1 also implies new constructions of SNARGs for specific NP languages, where the sound-
ness of the SNARG holds under the LWE assumption alone. The reason for this is that Theorem 1.1
can be applied to any NP language, and thus, assuming LWE, we build SNARGs for any NP language
L supporting a witness encryption scheme that has EF proofs of decryption correctness. This opens
the possibility of obtaining SNARGs for specific languages based on LWE alone, by making use of
unconditional, statistically secure witness encryption schemes.

To see that this yields new SNARGs, we first consider a particular implementation of the
Goldwasser-Micali encryption scheme [GM82], which can be viewed as a witness encryption scheme
for the quadratic non-residuosity language:

• The encryption key has the form (N, y) where N = pq is a product of two primes and y is a
quadratic non-residue modulo N with Jacobi symbol 1.

• The decryption key consists of the factorization (p, q) of N .

• To encrypt a message bit b, output r2 · yb modulo N .

• To decrypt a ciphertext c, compute c
p−1
2 modulo p (and check whether the result is 1).

This encryption scheme nearly has an EF proof of decryption correctness, as basic algebra implies
that:

∀p, q,N, r : if pq = N and p, q > 1, and y
p−1
2 ≡ −1 mod p,

then (r2yb mod N)
p−1
2 ≡ rp−1 · (−1)b mod p.

This proves correctness of decryption modulo an invocation of Fermat’s little Theorem. Unfortu-
nately, this theorem is not known to have polynomial length EF proofs.

In order to get around this issue, we consider a witness encryption scheme with respect to a par-
ticular Arthur-Merlin (AM) verifier for the QNR language: in addition to verifying the factorization
N = pq, the AM verifier has access to random g1, . . . , gn ∈ Z×N , and checks that gp−1i ≡ 1 (mod p)
(as long as gcd(gi, N) = 1) for every i.

Then, we consider the modified witness encryption scheme that samples the encryption random-
ness r as a random product of powers of the gi. This yields a EF proof of decryption correctness,
because Fermat’s little Theorem was explicitly verified to hold on the gi, and this implies (in EF)
that it also holds for r. Finally, security of this scheme is unaffected because with overwhelming
probability over g1, . . . , gn, the string r sampled in this way is uniform over Z×N .

Plugging this witness encryption scheme into Theorem 1.1 yields a new SNARG for the QNR
promise language18 as well as (after suitable manipulation) the QR promise language; similarly, by
considering an appropriate variant of the Paillier encryption scheme, one can obtain a SNARG for
the decisional composite non-residuosity problem.

In particular, we emphasize that these languages were not known to have SNARGs based on
[JKLV24]; the reason for this is that proofs of non-membership implicitly seem to require proving
the uniqueness of the prime factorization of N , which we do not know how to argue in EF . On the
other hand, the decryption correctness of this scheme follows from simple properties of algebra and,
in particular, needs only consider an arbitrary single factorization of N .

18The SNARG is still defined with respect to the standard NP verifier for QNR.

17

2.4.3 Transparent Non-Adaptive SNARG and Adaptive SNARG via iO

EF-proof for the Sahai-Waters SNARG. Recall that the work of Sahai and Waters [SW14]
constructed a SNARG for NP via iO. Our first observation is the following: assuming that iO has
a polynomial-size EF proof of correctness, one can show that the Sahai-Waters scheme also has a
polynomial-sized EF proof of completeness. We describe this proof in Section 7.4. Additionally,
the work of Mathialagan, Peters and Vaikuntanathan [MPV24] showed that the Sahai-Waters con-
struction is adaptively sound in the designated-verifier setting. This scheme also has an EF proof
of completeness, as we show in Section 7.5. Therefore, assuming LWE as well as an iO scheme with
a proof of correctness, we can construct:

• non-adaptively sound SNARG for NP with transparent setup via Theorem 1.1.

• adaptively sound SNARG for NP with public verifiability via Theorem 1.9.

Therefore, it remains to argue that there exist iO constructions with EF proofs of correctness.

Boosting any iO to have an EF proof. We handle this question completely generically: given
any subexponentially secure iO (along with subexponentially secure LWE), we construct an iO
scheme with an EF proof of correctness. Formally, we say that an iO scheme has a polynomial-sized
EF proof of correctness if there is a polynomial-sized EF proof of the fact that:

for all circuits C and randomness r, if Γ = iO(C; r), then for all x, C(x) = Γ(x).

In fact, we prove a stronger statement that the resulting iO has a uniform EF proof (also known
as PV proof), but we skip over this detail in this overview.

We now describe the transformation. Let iO be subexponentially secure obfuscation scheme.

Step 1: Obtaining an inefficient iO with perfect correctness. We first use iO to construct
the following inefficient algorithm which we call slowXiO which works as follows: On input a
circuit C : {0, 1}n → {0, 1} and randomness r,

1. Compute Γ = iO(C; r).

2. Iterate over x ∈ {0, 1}n, and check if Γ(x) = C(x).
3. If Γ(x) ̸= C(x) for any x, abort and output C.
4. Else, output Γ.

Intuitively, slowXiO algorithm is verifying the correctness of the output of iO, and outputting
the “trivial” obfuscation (i.e. C itself) if it is incorrect. It is easy to see that this scheme is in
fact perfectly correct since either Γ(x) = C(x) for all x, or the output is C itself. And in fact,
this correctness property is easy to formalize in propositional logic (see Lemma 7.7).

Now, we need to argue that slowXiO is a secure obfuscation scheme. In fact, for functionally
equivalent circuits C1 and C2

slowXiO(C1; r) ≈s iO(C1; r) ≈c iO(C2; r) ≈s slowXiO(C2; r)

where the first and third indistinguishabilities follow from the statistical correctness of iO,
and the second indistinguishability follows the security of iO. Therefore, slowXiO is in fact a
secure scheme.

18

Step 2: XiO bootstrapping. The above construction of slowXiO, while secure and correct, is
exponentially inefficient. In particular, the runtime of the algorithm is 2n · poly(|C|, λ), and
the depth of the algorithm is poly(|C|, λ) (since the check that Γ(x) = C(x) can be conducted
in parallel).

To now construct an efficient iO scheme, we follow the iO bootstrapping literature [AJ15,
BV15, LPST16a, LPST16b, Vai24]. Since slowXiO is in fact an XiO scheme (following the
terminology of [LPST16a]), we can use ideas from the bootstrapping literature to construct
an efficient iO scheme. By showing that the chain of transformations preserve EF proofs of
correctness, we obtain our main result.

The main building block in the transformation is the succinct functional encryption scheme of
cite [GKP+13], which uses fully homomorphic encryption (FHE), attribute-based encryption
(ABE) and garbled circuits. Since FHE and ABE can be instantiated via LWE [BV11, GSW13,
BGG+14], we use the fact that many properties in linear algebra can be proven in EF to show
that these instantiations have EF proofs of correctness. For garbled circuits, we follow the
construction of Yao, with a modification for perfect correctness as suggested in [LP09], to
show that it has polynomial-sized EF proof of correctness. We show that these instantiations
have EF proofs of correctness in Appendices B and C.

2.4.4 Transparent adaptive SNARG for UP

The work of [MPV24] constructed a designated-verifier SNARG for UP from evasive LWE and LWE.
Moreover, they showed that their SNARG is adaptively sound. If we additionally show that their
construction has a polynomial-sized EF proof of completeness, then we can apply our transformation
from Theorem 1.9 to obtain a publicly verifiable SNARG for UP from evasive LWE and LWE. As
discussed in Section 2.4.1, the work of [MPV24] relies primarily on lattice-based techniques, so we
can argue similarly that their construction has a polynomial-sized EF proof of completeness.

Obtaining transparent crs. Recall that the transformation from designated-verifier to publicly
verifiable adaptive SNARGs does not generically guarantee that the crs is transparent (unlike in the
non-adaptive setting). However, if we can show that the crs of the designated-verifier is subexponen-
tially indistinguishable from uniformly random, then we can construct an adaptively sound SNARG
with transparent crs. Although the crs in the construction of [MPV24] is an obfuscated program, it is
a result of a σ-PRF obfuscation, which guarantees that the obfuscation is pseudorandom. Therefore,
this allows us to achieve our desired result.

2.4.5 Universal Micali SNARG

Recall that Micali’s SNARG [Mic94] took Killian’s interactive argument system [Kil92] and compiled
it with the Fiat-Shamir heuristic [FS87]. Micali’s SNARG works as follows:

• The crs algorithm outputs a hash key hk.

• The prover does the following:

– Compute a PCP proof π ← PCP.P(x,w).

19

– Compute the Merkle hash root rt =M.Hash(hk, π). Here, we use M.Hash as shorthand
Merkle tree-based hash where Hash(hk, ·) is used at each internal node.

– Apply the hash function on the root rt to obtain r ← Hash(hk, rt).

– Parse r as randomness, and compute the output of the PCP query function Q ←
PCP.Q(r). Note that this is the Fiat-Shamir step.

– Compute π|Q (the locations of π corresponding to queries of Q) as well as the Merkle
openings ρQ = {ρq}q∈Q of rt to π|Q.

– Output (rt, π|Q, ρQ).

• The verifier computes PCP.V(x,Q, πQ) and if ρQ are valid openings to π|Q.

It is known that this scheme is secure if Hash were instantiated via a random oracle. However,
we do not have any constructions of Hash from well-studied assumptions that are provably secure.

Proof of completeness. It turns out that the above scheme is complete regardless of what hash
function Hash is used to instantiate the SNARG. To see this, note that it is sufficient to show that
the verifier accepts if the prover computes π honestly following the PCP, and computes the Merkle
root and openings honestly, then the verifier accepts. As a result, only need the following two facts:

• the PCP has a proof of completeness, i.e. a proof of the fact that:

for all x,w such that R(x,w) = 1, and π = PCP.P(x,w), for all randomness r
and queries Q← PCP.Q(r), we have that PCP.V(x,Q, πQ) = 1.

• the opening correctness of Merkle trees, i.e., a proof of the fact that:

for all hash keys hk, if rt←M.Hash(hk, (x1, . . . , xN)), and ρ =M.Open(hk, (x1, . . . , xN), i)
is a Merkle opening to the ith bit b = xi, thenM.Ver(hk, rt, i, b, ρ) = 1.

The work of Pich [Pic15] showed that Dinur’s PCP construction [Din07] in fact has an EF proof of
completeness. In Section 9.3, we further show that the opening completeness of Merkle trees, with
respect to any underlying hash function, can be formalized and proven in Cook’s theory PV . The
approach involves first formalize the binary-tree construction of Merkle hash function as a function
symbol in PV using recursive definition of function symbols. We then inductively prove the opening
completeness property of the Merkle hash. Since PV supports the polynomial-time induction rule,
this inductive proof can be fully formalized within PV . Therefore, the completeness of Micali’s
SNARG can be easily proven as a polynomial-size proof in EF , regardless of what hash function is
used.

Corollary: Universali Micali SNARG. If there exists any hash function with respect to which
Micali’s SNARG is secure, since the scheme also has an EF proof of completeness, our universal
SNARG is sound.

20

3 Preliminaries

Notations. We will let λ denote the security parameter throughout the paper. We use PPT
to denote probabilistic polynomial-time, and denote the set of all positive integers up to n as
[n] := {1, . . . , n}. For any x ∈ {0, 1}n and any subset J ⊂ [n] we denote by xJ = (xj)j∈J . For
any finite set S, x ← S denotes a uniformly random element x from the set S. Similarly, for any
distribution D, x← D denotes an element x drawn from the distribution D.

3.1 LWE Assumption

Given n,m, q ∈ N and σ, δ > 0, the subexponential LWE assumption LWEδ
n,m,q,σ [Reg05] asserts

that
(A, sA+ e) ≈c (A,b),

with security parameter µ = 2n
δ , where s← U(Zn

q),A← U(Zn×m
q), e← Dm

Z,σ, and b← Zm
q . Here,

DZ,σ denotes the discrete Gaussian over Z with parameter σ; that is, the distribution which assigns
mass proportional to exp(−πx2/σ2) to each x ∈ Z.

Following [VWW22], we rely on the above assumption holding for some δ > 0, for parameters
such that q/σ ≤ 2n

δ .

Statistical tools. The following lemma is a simple consequence of Banaczyzck’s tail bound (see,
e.g., [SD17, Corollary 1.3.11]).

Lemma 3.1. For any σ > 0 and n ∈ N,

Pr
x←DZ,σ

[|x| ≥ σ
√
n] ≤ 2−n .

The following simple noise flooding lemma is integral to our uses of subexponential LWE.

Lemma 3.2 ([CVW18, Lemma 3.2]). For all y ∈ Z and σ ∈ R, the statistical distance between DZ,σ
and DZ,σ + y is at most y/σ.

LWE-based PRFs. The following lemma adapts the PRF from [BLMR13, Theorem 5.1] to the
setting of subexponential LWE.

Lemma 3.3. Let n, n′, q, h ∈ N and µ, f, k, σ, σ′ ∈ R be functions of λ satisfying

• µ = 2(n
′)δ

• ⌈(2 log q) · n′⌉ ≤ n ≤ poly(n′),

• σ′ ≥ k · (n2σ)h+1,

• 2−n
δ ≤ 1/k(n) ≤ negl(2h · n · f(n)) .

Let
a← Zn

q , {ex ← DZ,σ′}x∈{0,1}h .

21

Then, assuming LWEδ
n′,poly[n′],q,σ,

{Si,b ← Dn×n
Z,σ }i∈[h]

b∈{0,1}
,

{(
h∏

i=1

Si,xi

)
· a+ ex

}
x∈{0,1}h

≈c {Si,b ← Dn×n
Z,σ }i∈[h]

b∈{0,1}
, {U}x∈{0,1}h .

where all poly[µ]-time distinguishers have advantage at most negl(f(n)). In particular, one can take
q = 2n

δ (to rely on subexponential LWE with q/σ ≤ 2n
δ), h = nc for some c < δ/20, k = 2h

3λ, and
f(n) = 2−h

2λ.

3.2 Fully Homomorphic Encryption

In this section, we define the type of fully homomorphic encryption used in this paper. We make use
of a leveled, gate-by-gate FHE satisfying a malicious correctness property: for any pair of ciphertexts
ct0, ct1 that decrypt to bits x0, x1, it should be the case that Decsk(Evalek(f, ct0, ct1)) = f(x0, x1).
Moreover, our definition explicitly describes the evaluation key as a sequence of d (small) keys, since
this structure is relevant to our SNARG construction.

Syntax. A leveled, gate-by-gate fully homomorphic encryption scheme consists of a fixed key/ciphertext
size ℓ = ℓ(λ) = poly(λ) and the following polynomial time algorithms:

FHE.Setup(1n, 1d)→ (pk, ek1, . . . , ekd, sk0, . . . , skd). This is a probabilistic algorithm that takes as
input a security parameter 1n and a circuit depth 1d. It outputs a public key pk ∈ {0, 1}ℓ,
a sequence of d evaluation keys ek1, . . . , ekd ∈ {0, 1}ℓ, and a sequence of d + 1 secret keys
sk0, . . . , skd ∈ {0, 1}ℓ.

FHE.Encpk(b)→ c. This is a probabilistic algorithm that takes as input a public key pk and a bit
b ∈ {0, 1}. It outputs a ciphertext c ∈ {0, 1}ℓ.

FHE.Decsk(c)→ b. This is a deterministic algorithm that takes as input a secret key sk and a
ciphertext c ∈ {0, 1}ℓ. It outputs a bit b ∈ {0, 1}.

FHE.GateEvalek(f, c1, c2)→ c∗. This is a deterministic algorithm that takes as input an evaluation
key ek, the truth table of a two input bit function f : {0, 1}×{0, 1} → {0, 1} and two ciphertexts
c1, c2 ∈ {0, 1}ℓ. It outputs a ciphertext c∗ ∈ {0, 1}ℓ.
By iterating the FHE.GateEvalpk algorithm many times, one can generically build a circuit
evaluation algorithm:

FHE.Evalek1,...,ekd(f, c1, . . . , cn)→ c∗. This is a deterministic algorithm that takes as input a public
key pk, a circuit representing a function f : {0, 1}n → {0, 1} and n ciphertexts c1, . . . , cn ∈
{0, 1}ℓ. It outputs a ciphertext c∗ ∈ {0, 1}ℓ.

Definition 3.4 (FHE). A leveled, gate-by-gate fully homomorphic encryption scheme

FHE = (FHE.Setup,FHE.Enc,FHE.Dec,FHE.GateEval)

is required to satisfy the following properties:

22

Encryption Correctness. For any choice of (pk, sk0) in the support of FHE.Setup(1n, 1d), any
b ∈ {0, 1} and any c← FHE.Encpk(b) we have FHE.Decsk0(c) = b.

Honest Evaluation Correctness. For any choice of (pk, ek1, . . . , ekd, sk0, . . . , skd)← FHE.Setup(1n, 1d),
any honestly generated ciphertexts c1, . . . , cn ∈ {0, 1}ℓ such that ci = FHE.Encpk(bi), and any
layered circuit f : {0, 1}n → {0, 1} of depth d, if we set c = FHE.Evalek1,...,ekd(f, c1, . . . , cn)
then FHE.Decskd(c) = f(b1, . . . , bn).

Malicious Gate Correctness. For any choice of (pk, ek1, . . . , ekd, sk0, . . . , skd)← FHE.Setup(1n),
any index 0 ≤ i ≤ d − 1, any f : {0, 1}2 → {0, 1}, and any ciphertexts c1, c2 ∈ {0, 1}ℓ, if
Decski(c1) = b1 and Decski(c2) = b2, then Decski+1

(FHE.GateEval(f, eki+1, c1, c2)) = f(b1, b2).

Security. The encryption scheme is semantically secure in the presence of (pk, ek1, . . . , ekd).

Theorem 3.5 ([BV11]). Assuming the hardness of Learning with Errors [Reg05], there exists a
leveled, gate-by-gate homomorphic encryption scheme.

Specifically, the properties we require in Definition 3.4 all follow from the (leveled) bootstrapping
construction of [Gen09], provided that the “base” somewhat homomorphic encryption scheme sat-
isfies perfect correctness. Moreover, the public keys and ciphertexts in this LWE-based scheme will
be pseudorandom under the LWE assumption.

Remark 3.6. Given a FHE scheme, one can extend the definition of the encryption algorithm
FHE.Enc to take as input a longer message m ∈ {0, 1}n, as opposed to a single bit. FHE.Encpk(m)
will simply run ci = FHE.Encpk(mi) for every i ∈ [n], and set c = (c1, . . . , cn) ∈ {0, 1}n·ℓ. Similarly,
we extend FHE.Eval to take as input a function f : {0, 1}n → {0, 1}u with multi-bit output.

3.3 Succinct Non-Interactive Arguments

We define succinct non-interactive argument systems (SNARG) [Mic94, GW11, BCCT13] for the
computation of a non-deterministic polynomial-time Turing machine M. Our definition allows for
a long common reference string, maintaining verifier efficiency by requiring that the crs = (crsP , crsV)
be separated into prover and verifier components (where the verifier component is required to be
short).

A SNARG system for M consists of polynomial-time algorithms (Gen,P,V) with the following
syntax:

• The randomized setup algorithm Gen takes as input a security parameter λ ∈ N and an input
length n, both in unary, and outputs a pair of common reference strings crs = (crsP , crsV).

• The prover algorithm P takes as input the prover reference string crsP , an input x ∈ {0, 1}n
and its associated witness w ∈ {0, 1}m, and outputs a proof π.

• The verifier algorithm V takes as input the verifier reference string crsV , an input x ∈ {0, 1}n
and a proof π. It outputs a bit indicating if it accepts or rejects.

Definition 3.7. A triple of algorithms (Gen,P,V) is a SNARG system for a Turing machine M if
the following hold:

23

Completeness. For every λ, n ∈ N and every x ∈ {0, 1}n and w ∈ {0, 1}m such that M(x,w) =
1,

Pr

[
V(crsV , x, π) = 1 :

(crsP , crsV)← Gen(1λ, 1n),
π ← P(crsP , x, w)

]
= 1.

Efficiency. The length of crsV is poly(λ, log n, logm). The length of a proof π is also poly(λ, log n, logm).
The runtime of V is poly(|crsV |, |π|) + poly(λ, log n, logm) · n.

Non-adaptive Soundness. For every x ∈ {0, 1}n where x /∈ LM and every poly-size adversary
Adv, there is a negligible function µ such that

Pr

[
V(crsV , x, π∗) = 1 :

(crsP , crsV)← Gen(1λ, 1n),
π∗ ← Adv(crsP , crsV , x)

]
≤ µ(λ).

Adaptive Soundness. For every poly-size adversary Adv, there is a negligible function µ such
that

Pr

[
x∗ /∈ LM ∧ V(crsV , x∗, π∗) = 1 :

(crsP , crsV)← Gen(1λ, 1n),
(x∗, π∗)← Adv(crsP , crsV)

]
≤ µ(λ).

An additional efficiency parameter of interest is the length of crsP ; we do not impose any explicit
requirements on it, but seek to minimize the length of crsP when possible.

Remark 3.8 (Transparent Setup). The SNARGs constructed in this paper can be made to satisfy an
additional property called transparent setup: the non-adaptive soundness notion above holds even
if Adv is given the random coins used by Gen(·). All of our SNARGs can be made to satisfy this prop-
erty because in all of our constructions, the algorithm Gen(1λ, 1n) generates a polynomial number of
ciphertexts for an LWE-based encryption scheme along with a hash key hk, and outputs these strings
(for the prover) along with a tree hash of the ciphertexts (for the verifier). Since the encryption
scheme we use has pseudorandom ciphertexts and the hash family may be chosen to have uniformly
random keys, we may modify the Gen(·) algorithm to simply output a long, uniformly random string
along with a tree hash of this string (this modification preserves non-adaptive soundness). This
modified Gen algorithm has no private randomness and thus these SNARGs have transparent setup.

3.4 Batch Arguments (BARGs)

The following preliminaries on BARGs are due to [BBK+23].
A batch argument system BARG for an NP language L enables proving that k NP statements

are true with communication cost that is polylogarithmic in k. There are many BARG variants
which are known to be existentially equivalent under mild computational assumptions (see, e.g.,
[CJJ22, KVZ21, KLVW23]). In this work, for simplicity in our constructions, we make use of an
argument system for what we call “batch index Turing machine SAT” (BatchTMSAT), defined below.

Definition 3.9. The language BatchIndexTMSAT consists of instances of the form x = (M, z, k, T),
where:

• M is the description of a Turing machine.

• z is an input string (to M)

24

• k is a batch size, and

• T is a running time.

An instance x = (M, z, k, T) is in BatchIndexTMSAT if for all i ≤ i ≤ k, there exists a string wi

such that M(z, i, wi) accepts within T steps.

We sometimes use the notation R(x, i, wi) to denote the relation with instance (x, i) and corre-
sponding witness wi.

Syntax. A (publicly verifiable and non-interactive) batch argument system BARG for BatchIndexTMSAT
consists of the following polynomial time algorithms:

Gen(1λ, 1n, 1m, k)→ crs. This is a probabilistic polynomial-time algorithm that takes as input a
security parameter 1λ, input length 1n, witness length 1m, and a parameter k. It outputs a
common reference string crs.

P(crs,M, z, 1T , w1, . . . , wk)→ π. This deterministic polynomial-time algorithm takes as input crs,
Turing machine M , input z, runtime 1T , and k witnesses w1, . . . , wk. It outputs a proof π.

V(crs, x, π)→ 0/1. This deterministic polynomial-time algorithm takes as input a crs, instance x =
(M, z, k, T), and a proof π. It outputs a bit (1 to accept, 0 to reject).

Definition 3.10 (BARG). A batch argument system BARG = (Gen,P,V) for BatchIndexTMSAT is
required to satisfy the following properties:

Completeness. For any n ∈ N, any k(n), n(n),m(λ), T (λ) ≤ 2n, any instance x = (M, z, k, T) ∈
BatchIndexTMSAT with |M |+ |z| = n, and any corresponding witnesses w1, . . . , wk ∈ {0, 1}m,

Pr

[
V(crs, x, π) = 1 :

(crs, td)← Gen(1n, 1n, 1m, i∗),
π ← P(crs,M, z, 1T , w1, . . . , wk)

]
= 1.

Adaptive Soundness. For any poly-size adversary A and any polynomials k(λ), n(λ),m(λ), T (λ)
there exists a negligible function negl(·) such that for every n ∈ N,

Pr

 V(crs, x, π) = 1
∧ (M, z, k, T) ̸∈ BatchIndexTMSAT

:
crs← Gen(1λ, 1n, 1m, k)

(M, z, π) = A(crs)
w∗ ← Extract (td, π)

 ≤ negl(n).

Efficiency. In the completeness experiment above, |crs|+|π| ≤ m·poly(n, log(knT)). The running
time of the verifier is at most poly(|crs|+ |π|) + poly(n) · |x|.

Throughout this paper, when we refer to a BARG we implicitly mean a BARG for BatchIndexTMSAT.

Theorem 3.11 ([CJJ22, WW22, HJKS22, KLVW23]). There exists an BARG for BatchIndexTMSAT
assuming LWE or DLIN or (subexponential DDH and QR).19

19The work [CGJ+23] also constructs a BARGs based on subexponential DDH, but not with efficiency parameters
matching our definition.

25

3.5 Propositional Logic Systems

This section of the preliminaries is due to [JJ22].

3.5.1 Extended Frege

We use extended Frege systems (denote as EF) for propositional logic. Such a system is described
by a set of variables, a set of connectives, and a set of inference rules. Variables are the most basic
elements, usually represented by letters such as x, y, z. Connectives are used to connect variables.
We only use two connectives → and ¬ for “imply” and “negation”, respectively. Other connectives
such as ∧,∨,⊕ for “and”, “or”, “xor”, can be defined using → and ¬. We use ↔ to denote “if and
only if”, and formally, a↔ b is the abbreviation of (a→ b)∧ (b→ a). We use F to represent “false”,
and define “true” T as ¬F.

Formulas are defined inductively: F (“false”) is a formula; any variable is a formula; if u, v are
formulas, then u → v, ¬u are formulas. A formula can be treated as a labeled tree, where leaves
are labeled with variables, and internal nodes are labeled with connectives. A subformula of A
is defined as a subtree of A. We define the following complexity measures of formulas. For each
formula A, we define the size of A as the number of nodes in the tree.

A substitution σ is a map from the set of variables to the set of formulas. If A is a formula,
then the result of applying σ to A is denoted as Aσ, which is a formula obtained by replacing each
occurrence of the variables in A by its image under σ. For example, let A = p→ (q → p) and let a
substitution σ be p 7→ a ∧ b, q 7→ a ∨ b, then Aσ = (a ∧ b)→ ((a ∨ b)→ (a ∧ b)).

A Frege system is specified by a set of inference rules. Each inference rule is defined as A1, A2, . . . , Ak ⊢
A0, where A0, A1, . . . , Ak are formulas. Intuitively, it means that “if A1, A2, . . . , Ak are valid, then
A0 is also valid”. If k = 0, then we say such an inference rule is an axiom.

In this work, we use the following set of axioms and modus ponens as inference rules for propo-
sitional logic.

• Axiom 1: p→ (q → p)

• Axiom 2: (p→ (q → r))→ ((p→ q)→ (p→ r))

• Axiom 3: ¬¬p→ p

• Modus Ponens: p, p→ q ⊢ q

We use the notation “p1, p2, . . . , pn ⊢ q to denote that q” is the logical consequence of p1, . . . , pn.
We refer to p1, p2, . . . , pn as the premise and refer to q as the conclusion. We say q is a logical
consequence of p1, . . . , pn if there exists a derivation, which is a series of formulas θ1, θ2, . . . , θℓ with
θℓ = q, and for each i ∈ [ℓ], θi is either

• A premise pj with j ∈ [k], or

• A0σ, where A1, A2, . . . , Ak ⊢ A0 is an inference rule, σ is a substitution, and {A1σ,A2σ, . . . ,
Akσ} are a subset of the formulas {θ1, θ2, . . . , θi−1}.

A proof is a derivation with no premise.
The extended Frege system denoted as EF is a logic system that additionally has the following

extension axioms. Namely, for a derivation (θ1, θ2, . . . , θℓ) in EF , for each i ∈ [ℓ], θi needs to satisfy
the aforementioned constraint or θi is of the form t ↔ A, where A is a formula, and t is a new
variable that has not occurred in θ1, θ2, . . . , θi−1, and also does not occur in A.

26

Size of EF Proofs. We define the size of a derivation (θ1, θ2, . . . , θℓ) as the summation of the
sizes of the formulas θ1, θ2, . . . , θℓ.

Remark 3.12. First note that since the axioms and Modus Ponens are of constant size, each line
in the proof (i.e., each formula θi) depends on only a constant number of previous lines. Second,
we can assume without loss of generality that each line of the proof is of constant size by using the
extension axiom.

Definition 3.13. For every circuit C we define Prop[C] to be the set of formulas that represent
each gate in C. Namely, denoting by G the set of all gates in C, Prop[C] ≜ {φg}g∈G, where
φg = o↔ g(l, r), where l and r are the input wires to g and o is the output wire o.

Definition 3.14. For any two Boolean circuits C and D, we define

C → D

as a shorthand for
Prop[C] ∪ Prop[D] ⊢ wc → wd,

where wc, wd are the output wires of C,D, respectively.

Definition 3.15. We say that a circuit E extends a circuit C if the circuit E contains C as a
subcircuit, and the input wires of E are identical to those of C. In other words, E extends C if E
can be constructing by adding to C additional (non-input) wires and gates,

Polynomial-length EF proofs for arithmetic. The work of [Bus86] shows that basic arithmetic
operations such as +,−, ·, /, ⌊·⌋,≤ can be introduced in Cook’s theory PV [Coo75] as function
symbols, and their basic laws such as commutative law, associative law, distributive law, etc. can
be proven in PV . From Cook’s propositional translation [Coo75], there exist polynomial-size EF
proofs for them.

3.5.2 Cook’s Theory PV

This section of the preliminaries is due to [JJ22].
Cook introduced a theory PV [Coo75] to capture the intuition of feasibly constructive proofs

(i.e. polynomial-time reasoning). PV is an equational theory, i.e, each statement in PV asserts
that two terms are equal. Moreover, it allows the introduction of new function symbols by recursive
definition (i.e. Cobham’s definition of polynomial-time functions [Cob65]). Hence, any polynomial-
time function is definable in PV [Coo75]. Moreover, common used arithmetical operations such as
addition, multiplication, and modulus functions can also be defined in PV . Their related properties
such as commutative law, associative law etc. can be proven in PV [Bus86].

Formally, Cook’s theory PV [Coo75] is defined as follows. PV works on the natural numbers that
are represented in the dyadic notation, where any natural number x is uniquely represented as a finite
string of integers in {1, 2}∗. Specifically, we represent x as the string xnxn−1xn−2 . . . x1 ∈ {1, 2}n,
if
∑n

i=1 xi2
i = x, and use an empty string to represent 0. It’s easy to see that such presentation

is unique for any natural number. The function si(x) = 2x + i, i = 1, 2 appends i to the string x.
Hence, we also denote si(x) as x||i.

27

We introduce the following terminologies. Terms are defined inductively as follows: any variable
is a term; any function symbol of arity 0 is a term; if t1, t2, . . . , tk are terms, and f is a function
symbol, then f(t1, t2, . . . , tk) is a term. Equations are of the form t = u, where both t and u
are terms. A derivation for the statement E1, E2, . . . , En ⊢PV E in PV is a series of equations
D1, D2, . . . , Dℓ such that Dℓ = E and for any i ∈ [ℓ], the equation Di is either a premise Ej(j ∈ [n]),
or a defining equation for some function symbol that we will introduce later, or follows from some
inference rule that we will introduce later. A proof in PV is a derivation with no premise (n = 0).

Introducing Function Symbols. A new function symbol f can be introduced in PV in the
following two ways. The first way is to define

f(x1, x2, . . . xk) = t,

where t is a term with variables x1, x2, . . . , xk.
The second way is to recursively define the function on the dyadic notion (i.e. Cobham’s

characterization of polynomial-time functions [Cob65]). Specifically, for existing function symbols
g, h1, h2, k1, k2 in PV , define the following equations as defining equations

f(0,y) = g(y), f(x||i,y) = hi(x,y, f(x,y)), i = 1, 2, (2)

where y = (y1, . . . , yk) is a series of k variables. Then how f is computed for any x,y is fully
specified. PV further requires that the f can be computed in polynomial time. To ensure this,
Cook requires that “|hi(x,y, z)| ≤ |z|+ |ki(x,y)|” is provable in PV , where | · | is the length of the
dyadic presentation. To achieve this, Cook introduced the LESS function, and it is defined with
other initial functions as follows. si, i = 1, 2 has no defining functions. 0 is also function symbol
with arity 0, and has no defining function.

• TR: TR(0) = 0,TR(x||i) = x, i = 1, 2. It cuts off the least significant digit in the dyadic
notion.

• ⋆: ⋆(x, 0) = x, ⋆(x, y||i) = si(x, y), i = 1, 2. It concatenates the string x and y.

• ⃝⋆ : ⃝⋆ (x, 0) = x,⃝⋆ (x, y||i) = ⋆(x,⃝⋆ (x, y)), i = 1, 2. It concatenates |y| copies of x.

• LESS : LESS(x, 0) = x, LESS(x, y||i) = TR(LESS(x, y)), i = 1, 2. It cuts off the |y| right most
digits of x in the dyadic notion. Then we can use LESS(x, y) = 0 to express |x| ≤ |y|.

To complete the definition of function f , PV requires two proofs π1, π2 in PV for LESS(hi(x,y, z), z⋆
ki(x,y)) = 0, i = 1, 2. Then a function symbol f is defined as the tuple (g, h1, h2, k1, k2, π1, π2).

The inference rules are in the following. Here, t, u, v are any terms, x is any variable, and
y = (y1, y2, . . . , yk) is any tuple of k ≥ 0 variables. f is any function symbol (we will define later).

• R1: t = u ⊢ u = t.

• R2: t = u, u = v ⊢ t = u

• R3: t1 = u1, t2 = u2, . . . , tk = tk ⊢ f(t1, t2, . . . , tk) = f(u1, u2, . . . , uk).

• R4: t = u ⊢ t(v/x) = u(v/x). Here, the notation “t(v/x)” means replacing each occurrence of
the variable x with the term v. “u(v/x)” is defined in the same way.

• R5: E1, E2, . . . , E6 ⊢ f1(x,y) = f2(x,y), where E1, E2, . . . , E6 are the defining equations 2
for f1, f2, with the same function symbols g, h1, h2.

28

Propositional Translation. In the same work [Coo75], Cook showed that any proofs in PV
can be translated to polynomial size propositional logic proofs. The original theorem statement
uses extended resolutions logic. Later [CR79] showed that extended resolution and extended Frege
system are essentially equivalent in terms of proof size. For simplicity, we use extended Frege system
in this work, and state Cook’s result in extended Frege system.

Before we formally state the theorem, we first describe how to transform a theorem statement
in PV to proposition logic. The idea is to use variables in EF to present each digit in the dyadic
notation. Specifically, let m be an integer. For each term t in PV , let P0[t], P1[t], . . . , Pm[t] and
Q0[t], Q1[t], . . . , Qm[t] be a set of variables in EF . For each i ∈ [m], use Qi[t] to indicate whether t
has i-th digit, and use Pi[t] to indicate the i-th digit of t, i.e.

Qi[x] =

{
T, if t ≥ 2i+1 − 1

F, otherwise
Pi[x] =

{
T, if the i-th dyadic digit of t is 2

F, otherwise

For the easy of representation, in this work we use the following notation Varm[t] to denote the
variables {Pi[t], Qi[t]}mi=1 corresponds to t. For each term t, one can associate it with a proposition
formula propm[t], asserting Varm[t] is computed correctly from the variables Varm[p1], . . . ,Varm[pk],
where p1, p2, . . . , pk are all variables appear in t. For any variable x, propm[x] is the formula asserting
Varm[x] is well-formed, i.e. ¬Qi[x] implies ¬Qi+1[x] for i ∈ [m− 1]. The definition of propm[t] can
be inductively defined for any term t. For more details, see [Coo75].

For any integer n, if the computation of all terms in the proof only needs m dyadic digits, then
m is called a bounding value. For any equation t = u, where t and u are both terms. Jt = uKnm is
defined as the propositional formula asserting that if the variables in t are all less than n digit, then
the value of t and u are equal. For its formal definition, see [Coo75].

Next, we present the theorem statement for Cook’s propositional translation.

Theorem 3.16 (Corollary of ER Simulation Theorem in [Coo75]). For any two terms t and u, and
any n and any polynomial bounding value m = m(n), if ⊢PV t = u, then Jt = uKnm has polynomial
size logic proofs in extended Frege logic.

The idea of Theorem 3.16 is to do an induction on the length of the proofs in PV , and translate
each step of the proof in PV to a polynomial size proof in the extended Frege.

3.6 Local Assignment Generators

In this section we define the notion of a local assignment generator as defined in [PR17]. We also
define an adaptive version as defined in [BHK17].

Definition 3.17 (Local Assignment Generator). Let C : {0, 1}n → {0, 1}m denote a Boolean
circuit of size s where n = n(λ),m = m(λ) and s = s(λ). For ℓ = ℓ(λ), we say that C has an
ℓ-local assignment generator if there is a polynomial time (non-uniform and randomized) algorithm
LocalGen = LocalGenλ with the following properties.

• Syntax: The input to LocalGen is the description of a subset of wires T ⊆ [s] of size at most
ℓ and its output is an assignment (σi)i∈T ∈ {0, 1}T to the corresponding wires of C.

29

• Local Consistency: for any λ ∈ N and any gate gi = (i, j, k, f) of C connecting input wires
j, k to an output wire i,

Pr
[
σi ̸= f(σj , σk) : (σi, σj , σk)← LocalGen({i, j, k})

]
= negl(λ).

where the probability is over the randomness of LocalGen.

• Computational Non-Signaling: for any λ ∈ N and any sets T0, T1 ⊆ [s] of size at most ℓ,
the following distributions are computationally indistinguishable:(

(σi)i∈T0∩T1 : (σi)i∈T0 ← LocalGen(T0)
)
≈
(
(σi)i∈T0∩T1 : (σi)i∈T1 ← LocalGen(T1)

)
Definition 3.18 (Adaptive Local Assignment Generator). Let C : {0, 1}n×{0, 1}m → {0, 1} denote
a Boolean circuit of size s where n = n(λ),m = m(λ) and s = s(λ). We think of the first n input
bits to C as specifying an instance and the last m input bits as specifying a witness. For ℓ = ℓ(λ), we
say that C has an adaptive ℓ-local assignment generator if there is a polynomial time (non-uniform
and randomized) algorithm LocalGen∗ = LocalGen∗λ with the following properties.

• Syntax: The input to LocalGen∗ is the description of a subset of wires T ⊆ [s] of size at
most ℓ and its output is an instance x ∈ {0, 1}n and an assignment (σi)i∈T ∈ {0, 1}T to the
corresponding wires of C.

• Local Consistency: For any λ ∈ N and any input wire i ∈ [n] (corresponding to the i’th
wire of the instance) it holds that

Pr[σi ̸= xi : (x, σi)← LocalGen∗({i})] = negl(λ)

and for any gate gi = (i, j, k, f) of C connecting input wires j, k to an output wire i,

Pr
[
σi ̸= f(σj , σk) : (x, (σi, σj , σk))← LocalGen∗({i, j, k})

]
= negl(λ),

where both probabilities are over the randomness of LocalGen∗.

• Computational Non-Signaling: for any λ ∈ N and any sets T0, T1 ⊆ [s] of size at most ℓ,
the following distributions are computationally indistinguishable:(
x, (σi)i∈T0∩T1) : (x, (σi)i∈T0)← LocalGen∗(T0)

)
≈
(
(x, (σi)i∈T0∩T1) : (x, (σi)i∈T1)← LocalGen∗(T1)

)
In our soundness proofs (both in the non-adaptive and adaptive settings) rely on the following

lemma, which was proven in [KRR14] in the non-adaptive setting and in [BHK17] in the adaptive
setting (stated below).

Lemma 3.19. [KRR14, BHK17] There exists a parameter ℓ(s) = polylog(s) and a function ECC
computable in polynomial time that takes an input an circuit C : {0, 1}n → {0, 1} of size s and depth
d, and outputs an extension ECC(C) of C of size s · polylog(s) and depth d · polylog(s) such that
for any adaptive ℓ-local assignment generator LocalGen∗ (Definition 3.18) for the circuit ECC(C),
denoting by out its output wire,

Pr[LocalGen∗(out) = (x, b) ∧ b ̸= C(x)] = negl(λ).

30

3.7 Relevant Theorems based on [JKLV24]

In this work, we use several theorems based on the work [JKLV24]. Subsequently, [JKLV24] updated
their paper to include formulations of Theorems 3.20 and 3.22 (for readability) because they follow
immediately from the proofs of similar theorems in [JKLV24]. However, the particular formulations
of the theorems that follow were introduced in this work.

To give context for the first theorem (Theorem 3.20) we use, we start by noting that if we
construct a SNARG using the hash-and-BARG paradigm [CJJ22, KVZ21] the soundness guarantee we
obtain is that one can convert any (efficient) cheating prover P∗ into an (efficient) local assignment
generator LocalGen on the underlying verification circuit, and if the prover is adaptive (i.e., chooses
the instance based on the crs) then LocalGen is also adaptive.

The work of [JKLV24] extended this, and implicitly showed (for an appropriate “Encrypt-Hash-
and-BARG” construction) how one can use any (efficient) cheating prover P∗ to construct an (effi-
cient) “universal” local assignment generator LocalGen for any extension of the verification circuit
up to certain size and depth bounds. Namely, [JKLV24] showed that if the SNARG is constructed
using the encrypt-hash-and-BARG paradigm, then for any parameters T, d,D (that are chosen in
the SNARG scheme) one can convert any (efficient) cheating prover P∗ into an (efficient) universal
local assignment generator LocalGen that takes as input a circuit E that extends the verification
circuit, where E is of size T , depth d, and can be uniformly generated with advice of size D, and
has the guarantee that LocalGen(E, ·) is a local assignment generator. Though the focus of the
work of [JKLV24] was on the non-adaptive setting (since their applications were inherently limited
to the non-adaptive setting), this result holds (with identical proofs) in both the non-adaptive and
adaptive settings.

In what follows, we consider circuits whose size depends both on the instance size n and the
security parameter λ. The reason for this is that in our work, the size of the extended circuit below
may depend on the security parameter (in addition to the instance size).

Theorem 3.20 ([JKLV24] Theorem 5.7). Assume the existence of a leveled, gate-by-gate FHE
scheme (Definition 3.4) and a BARG scheme (Definition 3.10). Fix any NP language L ⊆ {0, 1}∗.
Then for any parameters T = T (λ, n), d = d(λ, n), D = D(λ, n), and ℓ = ℓ(λ, n), such that T
is larger than d,D, ℓ and is at least as large as the NP verification circuit, there exists a SNARG
scheme (Gen,P,V) with the following properties:

• The crs is of size (ℓ+ d+D) · poly(log T, λ).

• The proof is of size ℓ · poly(log T, λ).

• The prover runtime is poly(T, λ).

• The verifier runtime is Õ(n) + poly(D, ℓ, log T, λ).

• It satisfies the following non-adaptive soundness guarantee:

For every x ∈ {0, 1}n and every poly-size P∗ that generates an accepting SNARG proof for the
statement “x ∈ L” with non-negligible probability, there exists a poly-size algorithm LocalGen =
LocalGenλ that satisfies the following two conditions:

1. For every depth d and size T extension E of the circuit Cx, that can be generated by a
T -time uniform Turing machine with advice (aux, x), where aux is any advice of size D,

31

LocalGen(E, ·) is an ℓ-local assignment generator for E such that

Pr[LocalGen(E, {out}) = 0] = negl(λ),

where out denotes the output of Cx.

2. For every E as above and every set of wires S in E of size ≤ ℓ, consider the sub-circuit
ES extending Cx, and in addition, it only contains the wires needed to compute the wires
in S. Then

LocalGen(E,S) ≈ LocalGen(ES , S) (3)

• It satisfies the following adaptive soundness guarantees:20 For every poly-size P∗ that given
crs generates an instance x and an accepting SNARG proof for the statement “x ∈ L” with non-
negligible probability, there exists a poly-size algorithm LocalGen∗ = LocalGen∗λ that satisfies
the following two conditions:

1. For every depth d and size T extension E of the circuit Cx, that can be generated by a
T -time uniform Turing machine with advice (aux, x), where aux is any advice of size D,
LocalGen∗(E, ·) is an adaptive ℓ-local assignment generator for E, such that

(x, b)← LocalGen∗(E, {out})

satisfies:

(a) Pr[b = 0] = negl(λ).
(b) the distribution of x is computationally indistinguishable from the distribution of x

generated by (x, π)← P ∗(crs) conditioned on V(crs, x, π) = 1, where crs← Gen(1λ).

2. For every depth d and size T extension E of the circuit Cx, that can be generated by
a T -time uniform Turing machine with advice (aux, x), where aux is any advice of size
D, and for every set of wires S in E of size ≤ ℓ, consider the sub-circuit ES extending
Cx, and in addition, it only contains Cx and the wires needed to compute the wires in S.
Then

LocalGen∗(E,S) ≈ LocalGen∗(ES , S) (4)

Moreover, if we assume the existence of a (non-leveled) FHE then we can omit the depth restriction
from the extended circuit and from the efficiency guarantees.

Remark 3.21. From now on we refer to an (adaptive/non-adaptive) ℓ-local assignment generator
that satisfies the universality properties (Items 1 and 2) from Theorem 3.20 as an (adaptive/non-
adaptive) (T, d,D)-universal ℓ-local assignment generator.

We emphasize that Theorem 3.20 does not argue that the SNARG scheme has the desired sound-
ness guarantee, rather that it has only “local soundness” in the form of a local assignment genera-
tor. [JKLV24] uses Theorem 3.20 to argue soundness via the following theorem, which constructs
extensions for which “local soundness” implies soundness. We use this theorem in addition to The-
orem 3.20.

20[JKLV24] did not define or consider adaptive local assignment generators, but the statement and proof of [JKLV24]
extend immediately to the adaptive setting below. Crucially, note that we do not require or check that the adaptively
chosen input x is not in L.

32

Theorem 3.22 ([JKLV24] Theorem 6.3). There exists a polynomial poly such that the following
holds. Fix parameters T = T (n, λ), d = d(n, λ), D = D(n, λ), and L = L(n, λ), all of size
≤ 2λ. Fix any circuit family {Cx,λ}x∈{0,1}∗,λ∈N such that each Cx,λ is of size T = T (|x|, λ) and
depth d = d(|x|, λ), and can be generated by a (T + L)-time uniform Turing machine with advice
aux = auxx,λ. Then if Cx,λ is unsatisfiable and has an EF proof for the statement “for all w,
Cx,λ(w) = 0” of length L(|x|, λ), and this EF proof can be generated by a (T + L)-time uniform
Turing machine with advice auxEF = auxEF ,x,λ of length D, then there exists a circuit Ex,λ that
extends Cx,λ, such that Ex,λ is of size T ′ ≤ poly(T + L), depth D′ ≤ (d + L) · poly(λ), can be
generated by a T ′-time Turing machine with advice (aux, auxEF), such that for ℓ = polylog(T ′, L′)
and for every (T ′, d′, D′)-universal ℓ-local assignment generator LocalGen there exists a negligible
function negl such that the following holds:

Pr[LocalGen(Ex,λ, out) = 1] = negl(λ).

Finally, we will also use is an adaptive version of Theorem 3.22 whose proof is identical to that
of Theorem 3.22.

Theorem 3.23. There exists a polynomial poly such that the following holds. Fix parameters
T = T (n, λ), d = d(n, λ), D = D(n, λ), and L = L(n, λ), all of size ≤ 2λ. Fix any circuit family
{Cn,λ}n∈N, where Cn,λ : {0, 1}n × {0, 1}m → {0, 1}, where m = m(n, λ), such that each Cn,λ is of
size T = T (n, λ) and depth d = d(n, λ), and can be generated by a (T + L)-time uniform Turing
machine with advice aux. Then if for every n, λ ∈ N there is an EF proof for the statement: “for
all x of length n, for all w of length m, Cn(x,w) = 0” of length L(|x|, λ), and this EF proof
can be generated by a (T + L)-time uniform Turing machine with advice auxEF of length D, then
there exists a circuit En,λ that extends Cn,λ, such that En,λ is of size T ′ ≤ poly(T + L), depth
D′ ≤ (d+L) ·poly(λ), can be generated by a T ′-time Turing machine with advice (aux, auxEF), such
that for ℓ = polylog(T ′, L′) and for every (T ′, d′, D′)-universal adaptive ℓ-local assignment generator
LocalGen there exists a negligible function negl such that the following holds:

Pr[(x, b)← LocalGen(En,λ, out) s.t. b = 1] = negl(λ).

4 Universal SNARG Construction

4.1 Main Theorem Statement

Theorem 4.1. Assume the existence of a leveled, gate-by-gate FHE scheme (Definition 3.4) and a
BARG scheme (Definition 3.10). Fix any NP language L ⊆ {0, 1}∗ with a corresponding NP relation
RL. For any parameters T = T (n, λ), L = L(n, λ), and ℓ = ℓ(n, λ), such that , T, L, ℓ ≤ 2λ, T ≥ ℓ
and T is larger than the size of NP verification circuit, and L is larger than the depth of the NP
verification circuit. We construct a SNARG for L with the following properties:

• The crs is of length (L+ ℓ) · poly(λ).

• The proof length is ℓ · poly(λ).

• The prover runtime is poly(T + L, λ)

33

• The verifier runtime is Õ(n) + poly(L+ ℓ, λ)21.

• Non-adaptive soundness assuming there exists a 2-message (publicly or privately verifiable)
argument system (P,V) for L, such that:

– V consists of two PPT algorithms (V1,V2), where V1 is given an (inefficiently computable)
advice aux about the input x, and generates a message (pk, vk)← V1(aux, 1λ) of length L.

– P is a time T algorithm that can be implemented by a uniform size T and depth L
circuit. It takes as input a pair (x,w) ∈ RL and pk (generated according to (pk, vk) ←
V1(aux, 1λ)), and generates a message π = P(pk, x, w) of length ℓ.

– V2 is a time T algorithm that can be implemented by a uniform size T and depth L circuit.
It takes as input a pair (vk, x, π) and outputs a verdict bit b.

– For every n, λ ∈ N such that n ≤ 2λ, every x ∈ {0, 1}n and every (pk, vk)← V1(aux, 1λ)
there is an EF proof of length L for the statement: “For every w, if Cx(w) = 1 then
V2(vk, x,P(pk, x, w)) = 1.”

Moreover, if we assume an unleveled gate-by-gate FHE scheme then we can remove the depth
bound on P and V2, remove the assumption that L is larger than the depth of the verification
circuit, and replace the restriction that the EF proof must be of length L with the restriction
that it can be generated by a T -time uniform Turing machine with an advice string of size L.

Remark 4.2. We emphasize that in Theorem 4.1 if we assume an unleveled FHE scheme then we
can take L to be of size poly(λ), and thus obtain a fully succinct SNARG with non-adaptive soundness
as long as exists a 2-message argument system (P,V) for L where the size of (pk, vk) ← V(1λ) is
at most poly(λ), the runtime of the prover and verifier is bounded by T , and the completeness of
this 2-message argument can be proven via an EF proof of size T that can be generated by a T -time
uniform Turing machine with advice of size poly(λ).

4.2 Proof of Main Theorem

The proof makes use of the following lemma, which loosely speaking states that for any two circuit
families {Cx,λ}x∈{0,1}∗,λ∈N, and {Dx,λ}x∈{0,1}∗,λ∈N, where each Dx,λ takes as input the wires of Cx,λ,
if there is a polynomial size EF proof of the statement Cx,λ → Dx,λ (see Definition 3.14), then there
is an extension (see Definition 3.15) of the concatenation of the the circuits Cx,λ, Dx,λ such that for
any local assignment generator for the extended circuit that extracts the output wires of both Cx,λ

and Dx,λ, if the extracted output wire of Cx,λ is 1 then the extracted output wire of Dx,λ must also
be 1 with overwhelming probability.

Lemma 4.3. There exists a constant A ∈ N and a polynomial p such that the following holds. Let
{Cx,λ}x∈{0,1}∗,λ∈N and {Dx,λ}x∈{0,1}∗,λ∈N be circuit families such that each Dx,λ takes the wires of
Cx,λ as input, and let T (n, λ), d = d(n, λ) and L = L(n, λ) be polynomials of size ≤ 2λ, that satisfy
the following two conditions:

1. The circuit that concatenates Cx,λ and Dx,λ is of size T = T (|x|, λ) and depth d = d(|x|, λ)
and can be generated by a (T + L)-time uniform Turing machine with advice aux = auxx,λ.

21We note that the verifier runtime can be generically improved to poly(n+λ+ ℓ) using a RAM delegation scheme
as constructed in the works of [CJJ22, KVZ21, KLVW23]. See for example Remark 2.7 in [WW24a] for more details.

34

2. There exists an EF proof of Cx,λ → Dx,λ (as defined in Definition 3.14) of length L = L(|x|, λ)
that can be generated by a (T+L)-time uniform Turing machine with advice auxEF = auxEF ,x,λ.

Then there exists a circuit family {Ex,λ}x∈{0,1}∗,λ∈N such that the following holds:

1. There exists a polynomial p = p(·) such that each Ex,λ is of size p(T+L) and depth (d+L)·p(λ)
and can be generated by a p(T + L)-time uniform Turing machine with advice (aux, auxEF).

2. Ex,λ extends the circuit that concatenates Cx,λ and Dx,λ.

3. For every (log(T + L))A-local assignment generator LocalGen for Ex,λ, we have

Pr[c∗ = 1 ∧ d∗ = 0] = negl(λ),

where the randomness is over (c∗, d∗) ← LocalGen({wc, wd}), and wc is the output wire of
Cx,λ, wd is the output wire of Dx,λ.

We defer the proof of Lemma 4.3 to the end of this section. We next show how to use Theo-
rem 3.20, along with Lemmas 3.19 and 4.3, to prove Theorem 4.1.

Proof of Theorem 4.1. Fix any NP language L ⊆ {0, 1}∗ with a corresponding NP relation
RL. For every x ∈ {0, 1}n let Cx be the circuit that takes as input w and outputs 1 if and only if
(x,w) ∈ RL. Fix parameters T = T (n, λ), L = L(n, λ) and ℓ = ℓ(n, λ) such that T, L, ℓ ≤ 2λ.

Our SNARG construction is exactly the one from Theorem 3.20 with parameters (T ∗, d∗, D∗, ℓ∗)
where

T ∗ = poly(T + L), d∗ = L · poly(λ), D∗ = L · poly(λ) and ℓ∗ = ℓ+ polylog(T, L) (5)

and we define these parameters precisely below. To argue non-adaptive soundness fix any x /∈ L
and any poly-size (cheating) prover P∗ that attempts to generate an accepting SNARG proof. We
will argue that it will succeed with negligible probability. Theorem 3.20 implies that there exists a
PPT algorithm LocalGen that satisfies the conditions written in the theorem statement. We next
build an extension circuit Ex,λ of size T ∗ and depth d∗ that can be described by a Turing machine
of size D∗, and show how to use LocalGen (with locality ℓ∗) applied to Ex,λ to argue that P∗ will
be rejected with overwhelming probability.

Extension Circuit Ex,λ. Suppose L has a 2-message privately verifiable argument system (P,V)
that satisfies the properties from the theorem statement. We denote by V = (V1,V2). We sample a
random string r uniformly at random and compute (pk, vk) = V1(aux, x, 1λ; r). Then we construct
an extension circuit Ex,λ = Ex,pk,vk, as follows:

1. Let DPx,pk be the circuit that takes as input w and computes P(pk, x, w). Denote its output
by π.

DPx,pk is a circuit of size T and depth L. By the uniformity of P, it can be generated by a
poly(T)-time uniform Turing machine with advice (pk, x).

35

2. Let ECC(DVx,vk) be the circuit obtained by applying ECC (from Lemma 3.19) to the circuit
DVx,vk, where DVx,vk is the circuit that takes as input π and computes V2(vk, x, π). Denote the
output of ECC(DVx,vk) by b.

ECC(DVx,vk) is a circuit of size T ·polylog(T) and depth L ·polylog(T). By the uniformity of V
and ECC it can be generated by a poly(T)-time uniform Turing machine with advice (vk, x).

3. Epk,vk,x is the circuit obtained by applying Lemma 4.3 to {Cx} and {ECC(DVx,vk)(vk, DPx,pk(pk, ·))},
where DVx,vk(vk, D

P
x,pk(pk, ·)) is the composition of DVx,vk, D

P
x,pk.

The reason we can apply Lemma 4.3 is that we have an EF proof of length L for the statement

Cx(·)→ DVx,vk(vk, D
P
x,pk(pk, ·)),

which is also an EF proof for the statement

Cx(·)→ ECC(DVx,vk)(vk, D
P
x,pk(pk, ·)),

since ECC merely adds some gates to the circuit.

Note that ECC(DVx,vk)(vk, D
P
x,pk(pk, ·)) is a circuit of size T ·polylog(T) and depth L·polylog(T)

and C has size at most T and depth at most L (by assumption). Moreover, both Cx and
ECC(DVx,vk)(vk, D

P
x,pk(pk, ·)) can be generated by a uniform T ·polylog(T)-time Turing machine

with advice (x, pk, vk).

Therefore, by Lemma 4.3, Epk,vk,x is a circuit of size p(T+L)·poly(λ), depth L·poly(λ), and can
be generated by a uniform p(T+L)·poly(λ)-time Turing machine with advice (auxEF , pk, vk, x).

As mentioned above, we set the parameters T ∗, d∗ and D∗ so that this extended circuit Epk,vk,x can
be computed by size T ∗ and depth d∗ circuit that can be generated by a T ∗-time uniform Turing
machine with advice (aux, x) where |aux| = D∗. Let ℓ∗ = ℓ+(log T ∗)A where A is the constant from
Lemma 4.3. Note that these parameters satisfy Equation (5).

To prove the soundness, we will proceed in proving three claims, which together constitute a
proof of soundness:

1. If we extract π from LocalGen, then the probability that π is accepted is negligible.

2. If we extract π and b from LocalGen, then the probability that π is rejected and b = 1 with is
negligible.

Note that Items 1 and 2 imply that if we extract b from LocalGen, then with overwhelming
probability b = 0.

3. If we extract b and the output bit of Cx, denoted by out, from LocalGen then the probability
that b = 0 and out = 1 is negligible.

Note that this, together with Items 1 and 2, implies that If we extract out from LocalGen,
then out = 1 with negligible probability, thus proving soundness.

36

Proof π is Rejecting. Denote the wires in Epk,vk,x corresponding to the ℓ output wires of
DPx (pk, ·) by Π. Then by the soundness of the underlying argument system (P,V) it holds that

Pr[V2(vk, x, π∗) = 1] = negl(λ) (6)

where the probability is over r ← {0, 1}λ and over

π∗ ← LocalGen(DPx (pk, ·),Π),

where (pk, vk) = Genaux(1
λ; r).

By Theorem 3.20 (see Equation (3)), Equation (6) also holds when

π∗ ← LocalGen(Ex,pk,vk(·),Π).

and when
π∗ ← LocalGen(DVx (vk, ·),Π).

Verdict Bit b is Zero. Next, let wverdict denote the wire corresponding to the output ECC(DVvk,x)
on input π∗, and let

(π∗, b∗)← LocalGen
(
ECC(DVvk,x)),Π ∪ {wverdict}

)
.

By Lemma 3.19, together with the fact that π∗ is rejected with overwhelming probability, implies
that

Pr[b∗ = 1] = negl(λ). (7)

By Theorem 3.20 (see Equation (3)), Equation (7) also holds when

b∗ ← LocalGen (Ex,pk,vk(·), {wverdict}) .

Output of Cx is Zero. We next argue that this implies that

Pr[out∗ = 1] = negl(λ)

as desired, where
out∗ ← LocalGen (Ex,pk,vk(·), ·), {wout})

and where wout is the wire corresponding to the output wire of Cx. To this end we use DEFx . From
Lemma 4.3, we have

Pr[out∗ = 1 ∧ b∗ = 0] = negl(λ), (8)

where
(out∗, b∗)← LocalGen(Ex,pk,vk(·), {wout, wverdict}).

By Equation (7) (and the two lines following this equation) and by the non-signaling property,
Pr[b∗ = 1] = negl(λ), which together with Equation (8) implies that indeed Pr[out∗ = 1] = negl(λ),
as desired.

37

Proof of Lemma 4.3. We construct the extension circuit C ′x,λ and then invoke Theorem 3.22
from [JKLV24] to prove the lemma. To this end, denote the output wire of Dx,λ by outd, and the
output wire of Cx,λ by outc. Let C ′x,λ be the circuit that computes Cx,λ and Dx,λ and appends to
the output wires outc and outd the sub-circuit ¬outd ∧ outc (which consists of only two gates). Set
the output wire of C ′x,λ to be the wire computing ¬outd ∧ outc.

We use the EF proof of Cx,λ → Dx,λ to construct an EF proof for the fact that C ′x,λ is unsat-
isfiable, as follows: The first L lines is an EF proof for outc → outd, which is identical to the EF
proof for Cx,λ → Dx,λ. The rest of the proof consists of constant number of lines that derive that
¬outd∧outc = F from outc → outd. Note that this EF proof can be generated by a (T +L+λ)-time
uniform Turing machine with advice auxEF = auxEF ,x,λ.

Next we apply Theorem 3.22 to conclude that there exists a fixed polynomial poly, independent
of Cx,λ and Dx,λ, such that {C ′x,λ}x∈{0,1}∗,λ∈N has an extension {Ex,λ}x∈{0,1}∗,λ∈N, such that Ex,λ

has size ≤ poly(T +L) for a fixed poly , depth ≤ (d+L) ·poly(λ), can be generated by a poly(T +L)-
time uniform Turing machine with advice (auxx, auxx,EF), and for every ℓ-local assignment generator
LocalGen (where ℓ = polylog(T + L)).

Pr[LocalGen(E′x, out) = 1] = negl(λ).

We prove that {Ex,λ}x∈{0,1}∗,λ∈N achieves the required property in the claim. Denote out′ as the
output of C ′x,λ, and denote wout′ as the wire representing out′. Since we set the locality of LocalGen
to be (log(T + L))A with a large enough constant A, we can set it to be larger than ℓ and thus

Pr[out′ = 1] = negl(λ),

where
out′ ← LocalGen({wout′})

Applying the non-signaling property of LocalGen, we have that out′ = 0 holds with overwhelming
probability, if we further extract outc, outd, out

′. Moreover, the local satisfiability guarantees that
out′ = ¬outd ∧ outc, except with negligible probability. Hence, we have

Pr[outd = 0 ∧ outc = 1] = negl(λ),

where (outd, outc)← LocalGen({wd, wout}).
This finishes the proof of the lemma.

5 Constructions of Adaptively Sound SNARGs

5.1 Adaptively Sound SNARGs from Designated-Verifier SNARGs

We show how to convert any adaptively sound designated-verifier SNARG (dv-SNARG) into an
adaptively sound SNARG (which is publicly verifiable), as long as the dv-SNARG has a polynomial-
size Extended Frege (EF) proof of completeness. We emphasize that we do not require the reference
string of the underlying dv-SNARG to be reusable for multiple executions.

Theorem 5.1. Let L be an NP language with a corresponding NP relation RL. Assume the exis-
tence of a leveled, gate-by-gate FHE scheme (Definition 3.4) and a BARG scheme (Definition 3.10).

38

Assume that for any parameters T = T (λ, n), L = L(λ, n), and ℓ = ℓ(λ, n), such that T, L, ℓ ≤ 2λ,
T is larger than the runtime of the Turing machine computing RL, and L larger than the depth
of the circuit computing RL, there exists an adaptively sound dv-SNARG for L, denoted by (P,V),
with the following syntax and parameters:

• V consists of two algorithms V1,V2, where V1 takes as input the security parameter, and
generates a prover key and a verification key (pk, vk)← V1(1λ) of length L.

• P is a time T algorithm that can be implemented by a uniform circuit of size T and depth L.
It takes the input (pk, x, w) where (x,w) ∈ RL, and output a proof π = P(pk, x, w) of length ℓ.

• V2 is a time T algorithm that can be implemented by a uniform circuit of size T and depth L.
It takes the input (vk, x, π) and outputs a verdict bit b.

• For every n, λ ∈ N such that n ≤ 2λ, there exists an EF proof of length L for the completeness
of (P,V), which is following statement: “For every r ∈ {0, 1}λ every x ∈ {0, 1}n and every w,
and for (pk, vk) = V1(1λ; r), if RL(x,w) = 1 then V2(vk, x,P(pk, x, w)) = 1.”

Then there exists an adaptively sound SNARG for L with the following properties.

• The crs is of length (L+ ℓ) · poly(log T, λ).

• The proof is of length ℓ · poly(log(T + L), λ).

• The prover runtime is poly(T + L, λ).

• The verifier runtime is Õ(n) + poly(L+ ℓ, log T, λ).

• The crs is transparent, if pk is pseudorandom against distinguishers of size T ′ ≤ 2|x|, where
T ′ is the minimum circuit size needed to decide the language L.

Moreover, if we assume an unleveled gate-by-gate FHE scheme then we can avoid the restriction
on the depth of the circuits P and V2 and replace the restriction that the EF proof must be of length
L with the restriction that it can be generated by a T -time uniform Turing machine with an advice
string of size L.

Before constructing the SNARG in Theorem 5.1, similar to Lemma 4.3, we need the following
theorem for adaptive soundness. We defer the proof of this lemma to the end of this section.

Lemma 5.2. There exists a constant A ∈ N and a polynomial p such that the following holds.
Let {Cn,λ}n,λ∈N and {Dn,λ}n,λ∈N be circuit families such that each Dn,λ takes the wires of Cn,λ as
input, and let T (n, λ), d = d(n, λ) and L = L(n, λ) be polynomials that satisfy the following two
conditions:

1. The circuit that concatenates Cn,λ and Dn,λ is of size T = T (n, λ) and depth d = d(n, λ) and
can be generated by a (T + L)-time uniform Turing machine with advice aux = auxn,λ.

2. There exists an EF proof of Cn,λ → Dn,λ (as defined in Definition 3.14) of length L = L(n, λ)
that can be generated by a (T+L)-time uniform Turing machine with advice auxEF = auxEF ,n,λ.

Then there exists a circuit family {En,λ}n,λ∈N such that the following holds.

39

• Each En,λ is of size p(T +L) and depth (d+L) ·p(λ) and can be generated by a p(T +L)-time
uniform Turing machine with advice (aux, auxEF),

• En,λ extends the circuit that concatenates Cn,λ and Dn,λ,

• For every adaptive (log(T + L))A-local assignment generator LocalGen for En,λ, we have

Pr[c∗ = 1 ∧ d∗ = 0] = negl(λ),

where the randomness is over (x, (c∗, d∗))← LocalGen({wc, wd}), and wc is the output wire of
Cn,λ, wd is the output wire of Dn,λ.

Construction. We construct the (publicly-verifiable) SNARG scheme (GenSNARG,PSNARG,VSNARG)
from the following ingredients.

• An adaptively-sound dv-SNARG scheme (P,V) for L.

• An Encrypt-Hash-and-BARG scheme EHB = (GenEHB,PEHB,VEHB) from Theorem 3.20.

Our construction of the (publicly-verifiable) SNARG for L will make use of the following circuits.

• Cpk: Takes as input (x,w, πP) and computes Cx(w) ∧ πP = P(pk, x, w).
Suppose Cpk is a circuit of size ≤ T and depth ≤ L. By the uniformity of P and RL, it can
be generated by a poly(T)-time uniform Turing machine with advice pk.

• Dvk: Takes as input (x, πP) and outputs a verdict bit b = ECC(Vvk)(x, πP), where ECC(Vvk)
is the encoding of the circuit Vvk from Lemma 3.19 and Vvk is the verification circuit of (P,V)
which on input (x, πP) outputs V2(vk, x, πP).
Dvk is a circuit of size T · polylog(T) and depth L · polylog(T). By the uniformity of V and
ECC it can be generated by a poly(T)-time uniform Turing machine with advice vk.

• E = Epk,vk: This circuit is obtained by applying Lemma 5.2 to Cpk and Dvk. We will show
that the EF proof of completeness implies an EF proof for Cpk → Dvk. Hence, the premise
of Lemma 5.2 is satisfied.

We next formally define our (publicly-verifiable) SNARG construction for L. Our construction
only uses the circuit Cpk and the size of E. The content of E is only used in the proof of adaptive
soundness.

• Key Generation. The key generation algorithm GenSNARG(1
λ)

– Generate the prover key (pk, vk)← V1(1λ) for the dv-SNARG.
– Generate crs for the SNARG scheme from Theorem 3.20 with parameters (T ∗, d∗, D∗, ℓ∗),

where

T ∗ = poly(T), d∗ = L · poly(λ), D∗ = L · poly(λ) and ℓ∗ = polylog(T + L). (9)

These parameters are chosen so that the extended circuit E defined above is of depth d∗,
size T ∗, and can be generated by a T ∗-time uniform Turing machine with advice of size
D∗. We denote this SNARG scheme by EHB (for encrypt-hash-and-BARG), and denote
its crs by crsEHB ← GenEHB(1

λ).

40

– Output crs = (pk, crsEHB).

• Prover PSNARG(crs, x, w). The prover algorithm does the following:

– Compute a dv-SNARG proof πP ← P(pk, x, w).
– Let Lpk be the following language.

Lpk = {(x, πP) | there exists w such that Cpk(x,w, πP) = 1}.

Use the EHB SNARG to prove that (x, πP) ∈ Lpk, using w as the witness. Namely, let

πEHB ← PEHB(crsEHB, (x, πP), w).

– Output the proof π = (πP , πEHB).

• Verifier V(crs, x, π). The verifier does the following:

– Parse crs = (pk, crsEHB) and π = (πP , πEHB).
– Verify the EHB proof πEHB using the instance (x, πP). If the EHB verification accepts,

then accept (output 1). Otherwise, reject the proof (output 0). Namely, output

VEHB(crsEHB, (x, πP), πEHB).

The completeness of the above construction follows directly from the completeness of the dv-SNARG
(P,V) and from the completeness of the EHB scheme.

5.2 Proof of Adaptive Soundness

We prove adaptive soundness by contradiction. For any cheating prover P∗SNARG, suppose P∗SNARG

can break the adaptive soundness with a non-negligble probability ϵ = ϵ(λ). Before we present the
formal proof, we first provide a sketch of our ideas to reach a contradiction.

1. Denote by x∗, π∗P the instance and dv-SNARG chosen by P∗SNARG on input crs. By the soundness
of the underlying dv-SNARG if x∗ /∈ L then V2(vk, x∗, π∗P) = 0 with overwhelming probability.
The fact that P∗SNARG breaks the adaptive soundness with non-negligible probability ϵ, implies
that

Pr[P∗SNARG is accepted ∧ V2(vk, x∗, π∗P) = 0] ≥ ϵ(λ)− negl(λ)

2. By Theorem 3.20, we can build an adaptive local assignment generator LocalGen from P∗SNARG.
Since LocalGen computationally preserves the distribution of the instance, this implies that
Pr[V2(vk, x∗, π∗P) = 0] ≥ ϵ− negl for (x∗, π∗P) which are outputted by LocalGen.

3. Use Lemma 3.19 to argue that if we run LocalGen on the extended circuit E, and extract the
output wire value d∗ of Dvk, then d∗ = 0 with probability ϵ− negl.

4. Invoke Lemma 5.2 to argue that if we extract the output wire of Cpk as out∗ and the output
wire of Dvk as d∗, then with overwhelming probability, out∗ → d∗ holds. The premise of
Lemma 5.2 is satisfied because the polynomial-size EF for the completeness of (P,V) is also
a EF proof for Cpk → Dvk.

41

Thus we derive a contradiction by concluding that out∗ = 0 with probability at least ϵ− negl.
This follows from the fact that since d∗ = 0 with probability ϵ − negl, and out∗ → d∗ with
overwhelming probability.

We proceed with the formal proof. We first argue that

Pr[x∗ /∈ L ∧ V2(vk, x∗, π∗P) = 1] = negl(λ) (10)

where the probability is over crs = (pk, crsEHB)← GenSNARG(1
λ) and over (x∗, π∗ = (π∗P , π

∗
EHB))←

P∗SNARG(crs). This follows from the adaptive soundness of dv-SNARG. Combining Equation (10)
with the fact that the cheating prover succeeds in cheating with probability ϵ(λ), i.e.,

Pr[x∗ /∈ L ∧ VSNARG(crs, x∗, π∗) = 1] ≥ ϵ(λ),

we conclude that

Pr[VSNARG(crs, x∗, π∗) = 1 ∧ V2(vk, x∗, π∗P) = 0] ≥ ϵ(λ)− negl(λ). (11)

Next, we invoke Theorem 3.20, which states that there exists a universal adaptive local assign-
ment generator LocalGen with the following property. The distribution of (x∗, π∗P) extracted from
LocalGen is computationally indistinguishable from (x∗, π∗P) outputted by the adversary conditioned
on the event that VEHB(crsEHB, (x∗, π∗P), π∗EHB) = 1. Hence, we have

Pr[V2(vk, x∗, π∗P) = 0] ≥ ϵ(λ)− negl(λ),

where (x∗, π∗P)← LocalGen(∅), where ∅ denotes the empty set.
Denote the output wire of Dvk by wd, then we can argue that

Pr[d∗ = 0] ≥ ϵ(λ)− negl(λ), (12)

where ((x∗, π∗P), d
∗) ← LocalGen(Dvk, {wd}). This follows from Lemma 3.19 and the fact that

V2(vk, x∗, π∗P) = 0 with probability ϵ(λ) − negl(λ). By the non-signaling condition of LocalGen,
Equation (12) also holds where ((x∗, π∗P), d

∗)← LocalGen(E, {wd}).
Since we have a length L EF proof of the completeness of the dv-SNARG, which states that(

(pk, vk) = V1(1λ; r) ∧ Cx(w) = 1
)
→ V2 (vk, x,P(pk, x, w)) = 1,

we also have an EF proof for the following statement of length O(L) (which we assume is smaller
than d∗ and D∗): for any (pk, vk) = V1(1λ; r),

Cpk(x,w, π
∗
P)→ Dvk(x, π

∗
P).

Hence, the premise of Lemma 5.2 is satisfied. Therefore, denoting the output wires of Cpk, Dvk by
wout and wd respectively,

Pr[out∗ = 1 ∧ d∗ = 0] = negl(λ) (13)

where ((x∗, π∗P), (out
∗, d∗)) ← LocalGen(E, {wout, wd}). Combining Equations (12) and (13) we

conclude that Pr[out∗ = 0] ≥ ϵ(λ) − negl(λ), implying a contradiction to the fact that Pr[out∗ =
0] = negl(λ).

42

Proof of Lemma 5.2. The proof of the lemma follows from the same idea as the proof of
Lemma 4.3. Namely, we will construct a circuit C ′n,λ = ¬Dn,λ∧Cn,λ for every n, λ, and then invoke
Theorem 3.23 to prove the lemma.

Formally, C ′n,λ is constructed by taking the output wire outD of Dn,λ and the output wire outC of
Cn,λ, and build 2 new gates to compute ¬outD∧outC . Then C ′n,λ can be implemented by a uniform
circuit of size T + 2 and depth d+ 2 that can be generated by a (T + λ)-time Turing machine with
advise auxn,λ.

We prove that {C ′n,λ}n,λ∈N has polynomial-size EF proofs of unsatisfiability, by using the EF
proofs of Cn,λ → Dn,λ. The proof of unsatisfiability consists of a length L EF proof of ¬outD → outC
and an additional constant size EF proof of ¬outD ∧ outC = F derived from ¬outD → outC . The
total length of the EF proof of unsatisfiability is bounded by L + λ, and it can be generated by a
(T + L+ λ) Turing machine with advise (aux, auxEF).

From Theorem 3.23, there exists exists an extension circuit En,λ of Cn,λ of size T ′ ≤ poly(T, L),
depth D′ ≤ poly(d, L) that can be generated by T ′-time uniform Turing machine with advise
(aux, auxEF), such that for any ℓ = polylog(T ′, L′), and for any (T ′, d′, D′)-universal adaptive local
assignment generator LocalGen, we have that

Pr[(x, outC′)← LocalGen(En,λ, outC′) : outC′ = 1] = negl(λ). (14)

Now, if we further extract the wires outC , outD, and outC′ , then from the local consistency of
LocalGen, we have

Pr[outC′ ̸= ¬outD ∧ outC] = negl(λ), (15)

where (x, outC′ , outD, outC)← LocalGen(En,λ, {outC′ , outD, outC}).
Combining Equation (14) and Equation (15) and the non-signaling property of LocalGen, we

derive that

Pr[(x, outC , outD)← LocalGen(En,λ, {outC , outD}) : outC = 1 ∧ ¬outD = 0] = negl(λ).

This finishes the proof.

Lemma 5.3 (Transparent CRS). If the pk in the underlying adaptively sound dv-SNARG for L is
pseudorandom even against distinguishers of size T ′, there is an adaptively sound SNARG for L with
an transparent common reference string.

Proof. Recall that in the construction of Theorem 5.1, the crs is sampled as follows:

• Generate a prover key (pk, vk) ← V1(1λ) from the dv-SNARG. The verification key vk is
discarded.

• The rest of the crs comprises crsEHB, which can be sampled transparently.

Consider the crs that is instead sampled in the following way:

• Generate pk← {0, 1}r, where r is the length of the prover key output by V1(1λ).

• The rest of the crs is sampled transparently as before.

The prover algorithm P and verifier algorithm V remain the same.

43

Completeness. The completeness follows directly from the completeness of the underlying EHB
scheme.

Adaptive soundness. Suppose otherwise, and there exists a cheating prover P∗SNARG:

Pr

[
x∗ /∈ L ∧ VSNARG(crs, x∗, π∗) = 1 :

crs← GenSNARG(1
λ),

(x∗, π∗)← P∗SNARG(crs)

]
≥ ε(λ).

We use P∗SNARG to construct a distinguisher A that distinguishes between pk sampled and pk ←
V1(1λ) from pk← {0, 1}r as follows:

• Obtain pk from the challenger (sampled either from (pk, sk)← V1(1λ) or pk← {0, 1}r).

• Sample the rest of the common reference string crsEHB independently, and set crs = (pk, crsEHB).

• Send crs to P∗SNARG and obtain (x∗, π∗).

• If x∗ /∈ L (this can be checked by a circuit of size T ′) and VSNARG(crs, x∗, π∗) = 1, output 1.
Else, output 0.

If pk were sampled from (pk, vk) ← V1(1λ), then by the soundness of the scheme in Theorem 5.1,
P∗SNARG produces a cheating proof (x∗, π∗) for x∗ /∈ L with negligible probability.

Pr
(pk,sk)←V1(1λ)

[A(pk) = 1] = negl(λ).

Otherwise, if pk← {0, 1}r, then P∗SNARG produces proofs with probability ε(λ). Hence,

Pr
pk←{0,1}r

[A(pk) = 1] = ε(λ).

Therefore, A distinguishes the two distributions with probability ε(λ) − negl(λ), which is in non-
negligible if ε(·) is non-negligible, contradicting Theorem 5.1. Therefore, we have ϵ(λ) is negligible
and the modified scheme is sound.

6 Application I: Non-Adaptive SNARGs from Witness Encryption

In this section, we first state our main result in Theorem 6.4 that one can construct a non-adaptive
SNARG for a language L given a witness encryption scheme for L with a EF proof of completeness.
We then show the following two implications:

Theorem 6.1. Assuming subexponential LWE and evasive LWE, there exists a non-adaptive SNARG
for all L ∈ NP with relation circuit of size T with the following parameters:

• The crs is of length poly(n, T, λ) with transparent set-up.

• The proof is of size poly(λ, log T).

• The prover runtime is poly(n, T, λ).

• The verifier runtime is poly(n, λ, log T).

44

We show this theorem in Section 6.3.

Theorem 6.2. Assuming LWE, there exists non-adaptive SNARGs for the QR language, the QR
language, and the DCR language (see Definitions 6.19 and 6.20).

We show this theorem in Section 6.4.

6.1 Witness Encryption

In this section, we recall the definition of witness encryption, introduced by [GGSW13].

Syntax. A witness encryption scheme for an NP language L is a tuple of algorithms (WE.Enc,WE.Dec)
satisfying

WE.Enc(1λ, x, b)→ c. This is a probabilistic algorithm that takes as input a security parameter λ,
and instance x and a bit b. It outputs a ciphertext c ∈ {0, 1}ℓ.

WE.Dec(c, w). This is a deterministic algorithm that takes as input a ciphertext c and a witness w,
and outputs a bit m or ⊥.

Definition 6.3. A tuple of algorithms (WE.Enc,WE.Dec) is a witness encryption scheme for an
NP language L if the following hold:

Completeness. For any w such that RL(x,w) = 1, for b ∈ {0, 1}, we have that

Pr[WE.Dec(WE.Enc(1λ, x, b), w)) = b] = 1.

Semantic security. For every x /∈ L and every poly-size adversary A, there exists a negligible
function µ such that∣∣∣Pr[A(WE.Enc(1λ, x, 0)) = 1]− Pr[A(WE.Enc(1λ, x, 1)) = 1]

∣∣∣ ≤ µ(λ).

6.2 Main theorem statement (WE)

In this section, we state a theorem that immediately follows from Theorem 4.1 about constructing
SNARGs from witness encryption schemes.

Theorem 6.4. Assume the existence of a leveled, gate-by-gate FHE scheme (Definition 3.4) and a
BARG scheme (Definition 3.10). Fix any NP language L ⊆ {0, 1}∗ with a corresponding NP relation
RL. For any parameters T = T (n, λ), L = L(n, λ), and ℓ = ℓ(n, λ), such that , T, L, ℓ ≤ 2λ, T ≥ ℓ
and T is larger than the size of NP verification circuit, and L is larger than the depth of the NP
verification circuit. We construct a SNARG for L with the following properties:

• The crs is of length (L+ ℓ) · poly(λ).

• The proof length is ℓ · poly(λ).

• The prover runtime is poly(T + L, λ)

45

• The verifier runtime is Õ(n) + poly(L+ ℓ, λ)22.

• Non-adaptive soundness assuming there exists a witness encryption scheme (Enc,Dec) with
messages of length λ, ciphertexts of length at most L, encryption and decryption algorithms
of depth at most L, and EF proofs of decryption correctness:

– For every n, λ ∈ N such that n ≤ 2λ, every x ∈ {0, 1}n, every encryption randomness r,
and every message m, there is an EF proof of length L for the statement: “For every w,
if Cx(w) = 1 then Dec(w,Enc(x,m; r)) = m.”

Moreover, if we assume an unleveled gate-by-gate FHE scheme then we can remove the depth
bounds on encryption and decryption, and replace the restriction that the EF proof must be
of length L with the restriction that it can be generated by a T -time uniform Turing machine
with an advice string of size L.

Theorem 6.4 holds because given such a witness encryption scheme for a language L, one can
construct a 2-message laconic argument system for L satisfying the hypotheses of Theorem 4.1 in
the usual way:

• Verifier message: sample a uniformly random message m← {0, 1}λ and send Enc(x,m).

• Prover message: given ct, compute m′ = Dec(w, ct) and return m′.

Crucially, (EF -)correctness of the witness encryption scheme corresponds exactly to (EF -)completeness
of the laconic argument system.

Given Theorem 6.4, we next construct two publicly verifiable SNARG schemes via explicit witness
encryption schemes.

6.3 SNARG for NP from Evasive LWE

In this section, we build a witness encryption scheme from evasive LWE by expanding on the
techniques from [GGH15, CVW18, VWW22, MPV24].

6.3.1 PV Proofs for Properties of Linear Algebra

In showing the completeness of our construction, we rely on the fact that many basic properties of
linear algebra have PV proofs. To see this, our starting point is the work of [SC04] defines theory
LA (linear algebra), and shows that the theorems that can be proven in LA can be translated into
PV proofs. The theory comprises three types of objects: indices (natural numbers), field elements
for a fixed field, and matrices with entries from that field. Then, they formalize standard field and
matrix axioms for their theory (see their work for a formal treatment, and we give an informal
overview for readability). They then show the following basic properties about matrices (if the
matrix dimensions match up) over fields in LA, including:

• 0 ·A = 0 and A · 0 = 0.

• A+B = B+A

22As before, we note that the verifier runtime can be generically improved to poly(n+λ+ℓ) using a RAM delegation
scheme.

46

• A+ (B+C) = (A+B) +C

• AI = A and IA = A

• A(BC) = (AB)C

• A(B+C) = AB+AC and (B+C)A = BA+CA.

Along with usual rules of PV , a proof in LA can also use the following two additional rules which
informally are as follows:

• Matrix equality: If matrices A and B have the same dimensions, and A[v, w] = B[v, w] for
all v, w, then A = B.

• Induction rule: For any formula α, if α(i)→ α(i+ 1), then α(0)→ α(n).23

For the purpose of this section, we extend theory LA to also include the following function symbols:

• Kronecker product ⊗: Binary function symbol which takes two matrices A and B of size
m× n and p× q respectively, the output is a mp× nq matrix as follows:

(A⊗B)[p(r − 1) + v, q(s− 1) + w] = A[r, s] ·B[v, w].

• Diagonal concatenation diag: Binary function symbol which takes two matrices A and B
of size m× n and p× q respectively, the output is a

diag(A,B) =

(
A 0m×q

0p×n B

)
Then, it is easy to derive the following properties of the Kronecker product and diag in LA since
they only require basic associative and distributive properties of matrices.

• A⊗ (B+C) = A⊗B+A⊗C (see below for a proof of this property)

• (B+C)⊗A = B⊗A+C⊗A

• (A⊗B)⊗C = A⊗ (B⊗C)

• A⊗ 0 = 0 and 0⊗A = 0

• (A⊗B) · (C⊗D) = (AC)⊗ (BD)

• diag(A,B) · diag(C,D) = diag(AC,BD).

We provide a proof of the first property as an explicit example.
23As long as n is polynomially bounded, the proof is polynomially bounded.

47

Proof. Note that

A⊗ (B+C)[p(r − 1) + v, q(s− 1) + w] = A[r, s] · (B+C)[v, w]

= A[r, s] ·B[v, w] +A[r, s] ·C[v, w]

= (A⊗B)[p(r − 1) + v, q(s− 1) + w]

+ (A⊗C)[p(r − 1) + v, q(s− 1) + w]

where we used the distributive property of matrix multiplication. We can then conclude by matrix
equality that A⊗ (B+C) = A⊗B+A⊗C.

In particular, since all of the above properties can be proven in LA, all of the above properties
can be proven using PV proofs. We use these properties extensively in the rest of this section,
sometimes coupled with induction, e.g. to prove that

∏n
i=1 diag(Ai,Bi) = diag(

∏
iAi,

∏
iBi).

6.3.2 Evasive LWE

In this section, we recall the evasive LWE assumption introduced in [Wee22], following the for-
malization by [VWW22]. Then, we recall some related tools from the works of [GGH15, CVW18,
VWW22, MPV24].

Evasive LWE. Let σ, σ′ ∈ R>0, and let Samp be a PPT algorithm that on input 1λ outputs

S ∈ Zn′×n
q ,P ∈ Zn×t

q , aux ∈ {0, 1}∗ .

We define the following advantage functions:

AdvpreA0
(λ) := Pr[A0(SB+E,SP+E′, aux) = 1]− Pr[A0(C,C′, aux) = 1],

AdvpostA1
(λ) := Pr[A1(SB+E,D, aux) = 1]− Pr[A1(C,D, aux) = 1]

where

(S,P, aux)← Samp(1λ)

B← Zn×m
q ,E← Dn′×m

Z,σ ,E′ ← Dn′×t
Z,σ′ ,

C← Zn′×m
q ,C′ ← Zn′×t

q ,

D← B−1(P, σ) .

We say that the evasive LWE assumption eLWE(Samp, σ, σ′) holds if there exists some polynomial
Q(·) such that for every PPT A1 there exists another PPT A0 such that

AdvpreA0
(λ) ≥ AdvpostA1

(λ)/Q(λ)− negl(λ)

and time(A0) ≤ time(A1) ·Q(λ). In this work, we will assume evasive LWE with σ = σ′.

Notation. For the rest of this section, we use n to denote the LWE parameter, and we instead
use ℓ or h to denote the instance/witness length (this should be clear from context). Additionally,
we will be assuming 2n

δ hardness of LWE for δ > 0.

48

6.3.3 Matrix Branching Programs

We will work with matrix branching programs (MBPs) that compute functions fk : {0, 1}ℓ → Zq

for some prime q. In this paper we only consider read-once MBPs specified by a collection of
matrices

(
Mi,b : i ∈ [ℓ], b ∈ {0, 1}

)
and two vectors u,v (all over some ring R, which, for us, will

always be Zq for a prime q) such that for all x ∈ {0, 1}ℓ,

f(x) = uT

(
ℓ∏

i=1

Mi,xi

)
v ,

We use the short-hand Mx to denote the subset product
∏ℓ

i=1Mi,xi .

6.3.4 Matrix Branching Program Encoding of CNF

Recall that a CNF formula Φ is a conjunction clauses, where each clause is a disjunction. Looking
forward, our witness encryption construction will rely on the following branching program for CNFs
(also used in [CVW18, VWW22]).

Construction 6.5 (Branching program for CNFs). Given a CNF formula Φ = ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕc

with c clauses and h variables x1, . . . , xh, we define CNFEncode to do the following:

• Choose some q ≥ 2c.

• Set u = (1 1 . . . 1)T ∈ Zc×1
q .

• Initialize Mi,b = Ic. Iterate over ϕ1, . . . , ϕc and do the following:

– For each xi that appears in ϕj, set the jth entry of the diagonal of Mi,1 to 0.
– For each ¬xi that appears in ϕj, set the jth entry of the diagonal of Mi,0 to 0.

CNFEncode outputs the program {u, {Mi,b}i∈[h],b∈{0,1}}.

Lemma 6.6. Suppose Φ is a CNF formula on c clauses and h variables, and suppose If Φ(x) = 1,
where x is a bit vector corresponding to a variable assignment, then the program Γϕ output by
CNFEncode (in Construction 6.5) satisfies that

Φ(x) = 1 ⇐⇒ uTMx = 0

and ∥uTMx∥∞ ≤ 1. Moreover, there is a PV proof of the following claim:

For all CNF Formula Φ, and variable assignment x ∈ {0, 1}h,
{u, {Mi,b}i∈[h],b∈{0,1}} ← CNFEncode(Φ),

if Φ(x) = 1 then uTMx = 0.

Proof (sketch). For a clause ϕ, let 1ϕ,x be the indicator denoting if variable assignment x satisfies
ϕ. Let Φ = ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕc. We claim that: Mx = diag(1− 1ϕ1,x, . . . , 1− 1ϕc,x).

To see this, note that since Mi,xi are all diagonal matrices, we can rewrite

Mx[i, i] =

h∏
j=1

Mj,xj [i, i]

49

Note that this property of diagonal matrices can be proven using basic properties of matrix multi-
plication and polynomial-time induction on the number of matrices, and hence has a PV proof.

Therefore, note Mx[i, i] is equal to 1 unless Mj,xj [i, i] for some j is 0. By construction, this must
mean that if xj = 0, then ¬xj ∈ ϕi and hence x satisfies ϕi. Otherwise, if xj = 1, then xj ∈ ϕi and
x once against satisfies ϕi. Therefore, Mx[i, i] = 1− 1ϕi,x as desired.

Therefore, if Φ(x) = 1, then x satisfies all ϕi and Mx = 0c×c, and hence uTMx = 0. Otherwise,
x doesn’t satisfy some ϕi, and hence uTMx ̸= 0. Moreover, it is clear that every entry of uTMx

is either 0 or 1, and hence the norm bound follows. Since we used basic properties of matrix
multiplication in the above proof, it indeed has a PV proof.

6.3.5 Trapdoor and Pre-image Sampling

Given a matrix A ∈ Zn×m
q for m ≥ 2n log q, a vector y ∈ Zn

q , and σ > 0, we use A−1(y, σ) to
denote the distribution of a vector d sampled from Dm

Z,σ conditioned on Ad = y (mod q). (Vectors
satisfying the condition exist except with probability negl(µ).) We extend this notation to matrices
Y ∈ Zn×k

q in the natural way (i.e., columnwise). We sometimes suppress σ when it is clear from
context. The following convenient lemma statements are adapted from [CVW18].

Lemma 6.7 ([CVW18, Lemma 3.10], originally [Ajt96, AP11, MP12]). Assume LWEδ
n,m,q,σ. There

is a PPT algorithm TrapSam(1n, 1m, q) that, on input the modulus q ≥ 2 and dimensions n,m such
that m ≥ 2n log q, outputs a matrix A such that A ≈s U(Zn×m

q) with security parameter µ, along
with a trapdoor τ (referenced in the next lemma).

Lemma 6.8 ([CVW18, Lemma 3.11]). There is a PPT algorithm that, on input y ← Zn
q and

(A, τ)← TrapSam(1n, 1m, q, σ) for some σ ≥ 2
√
n log q, outputs a sample from A−1(y, σ). We will

abuse notation and denote this algorithm by A−1(y, σ).

6.3.6 GGH Encodings

We now recall the GGH encoding [GGH15] construction, as presented in [CVW18]. We make a
minor modification to instead sample both trapdoor inverses and errors from truncated Gaussian
distributions (our modifications are marked in blue).

Construction 6.9. Given as input matrices {Mi,b ∈ Zni−1×ni
q }i∈[h],b∈{0,1}, ggh.encode does the

following:

• Set σ = 2
√
n log q and mi := 4ni log q.

• Sample Ei,b ← D
ni−1×mi

Z,σ . If any ∥Ei,b∥∞ ≥ σ
√
n, set to 0ni−1×mi .

• Sample Ai ∈ Zni×mi
q using Lemma 6.7.

• Sample the following using Lemma 6.8:

{D1,b := M1,bA1 +E1,b}b∈{0,1},
{Di,b := A−1i−1 (Mi,bAi +Ei,b, σ)}2≤i≤h−1,b∈{0,1},
{Dh,b := A−1h−1(Mh,b +Eh,b, σ)}b∈{0,1} .

50

If any ∥Di,b∥∞ ≥ σ
√
n, output ⊥. Additionally, if Ai−1Di,b ̸= Mi,bAi +Ei,b for any 2 ≤ i ≤

h− 1, b ∈ {0, 1} or Ah−1Dh,b ̸= Mh,b +Eh,b for b ∈ {0, 1}, output ⊥.24

• Output {Di,b}i∈[h],b∈{0,1}.

We extend the construction to MBPs (as defined in Section 6.3.3) P = ({Mi,b}i∈[h],b∈{0,1},u,v)
via

ggh.encode(P) := ggh.encode({M′i,b}i,b) ,

where M′1,b := uM1,b, M′h,b := Mh,bv, and for 2 ≤ i ≤ h− 1, M′i,b := Mi,b.

We then prove the following lemma (also proved in [CVW18]), and argue that it has a PV proof
of completeness.

Lemma 6.10. Except with probability 2−n·poly(n) over {Di,b}i∈[h],b∈{0,1} ← ggh.encode({Mi,b}i,b, σ),
letting B := max{σ

√
n,maxi≤h−1,b ∥Mi,b∥∞} we have that for all x ∈ {0, 1}h,

∥Dx −Mx∥∞ ≤ h ·

(
h−1∏
i=1

mi

)
·Bh−1 ,

where recall that we use the shorthand Mx to denote the subset product
∏h

i=1Mi,xi. In fact, if
ggh.encode does not output ⊥, then the output matrices {Di,b} satisfy the above inequality with
probability 1. There is a PV proof of the fact that:

for all randomness r, if ggh.encode({Mi,b}i∈[h],b∈{0,1}; r) does not output ⊥, then
{Di,b}i∈[h],b∈{0,1} ← ggh.encode({Mi,b}i∈[h],b∈{0,1}; r) satisfies:

∥Dx −Mx∥∞ ≤ h ·

(
h−1∏
i=1

mi

)
·Bh−1 .

We outline the proof in Appendix A.

6.3.7 σ-PRF Obfuscation

Mathialagan et al. [MPV24] define a notion of σ-PRFs (see Section 4 of [MPV24]), and construct
an average-case obfuscation notion for such PRFs.

We first recall the definition of a pseudorandom function (PRF). Below, O(·) denotes a truly
random function.

Definition 6.11. A family of deterministic functions F := {fk : Xλ → Yλ} is called pseudorandom
if for all PPT adversaries A,∣∣∣∣Prk,A

[Afk(·)(1λ) = 1]− Pr
k,A

[AO(·)(1λ) = 1]

∣∣∣∣ ≤ negl(λ) .

24Note that this additional check should always pass by the correctness of trapdoor sampling, and should not
change the functionality of the algorithm. Checking these equalities enables us to assert these equalities without
needing an PV proof for trapdoor sampling.

51

Mathialagan et al. [MPV24] define a relaxation of the notion of a pseudorandom function with
outputs in Zq. Informally, it is pseudorandom against adversaries who are only permitted to observe
the output values after independent Gaussian noise has been added to each value.

Definition 6.12. Let q = q(λ) ∈ N and σ = σ(λ) > 0. A family of deterministic functions
F := {fk : Xλ → Zq(λ)} is called σ-pseudorandom if for all PPT adversaries A,∣∣∣∣ Pr

k,A,O′
[AO′(·)(1λ) = 1]− Pr

k,A
[AO(·)(1λ) = 1]

∣∣∣∣ ≤ negl(λ) ,

where the function O′ is chosen by sampling discrete Gaussian errors {ex ← DZ,σ}x∈Xλ
, and on

input x ∈ Xλ, O′ outputs O′(x) = fk(x) + ex.

Given a PPT function aux, we say that F is additionally pseudorandom in the presence of aux
(resp. σ-pseudorandom in the presence of aux) if the inequality in Definition 6.11 (resp. Defini-
tion 6.12) holds even when the adversary is additionally given aux(k) as input.

We will call a σ-PRF computable by a poly(λ)-sized MBP a σ-matrix PRF.
Now, we recall the σ-PRF obfuscation algorithm and guarantee of Mathialagan et al. [MPV24],

restricted to the read-once setting. Looking forward, we only need the version of their result for
read-once σ-matrix PRFs. We slightly modify the algorithm in blue so that we can argue an PV
proof of completeness.

In the description below, we use the notation:

diag(M,S) :=

(
M

S

)
.

Construction 6.13 (Obfuscation for read-once σ-matrix PRFs.). Given a read-once σ-matrix PRF

{{Mi,b}i∈[h],b∈{0,1},u,v}

with auxiliary information aux, algorithm O does the following:

1. Sample Si,b ← Dn×n
Z,σ , where σ = 2

√
n. If any ∥Si,b∥∞ ≥ σ

√
n, set Si,b = 0n×n.

2. Set Ŝi,b := diag(Mi,b,Si,b) ∈ Z(n+w)×(n+w)
q .

3. Set u′ = (uT | 1n)T ∈ Z(n+w)×1
q and v′ = (vT | 0n)T ∈ Z(n+w)×1

q .

4. Set P = ({Ŝi,b}i,b,u′,v′).

5. Compute {Di,b}i∈[h],b∈{0,1} ← ggh.encode(P).

Then, given an input x ∈ {0, 1}h, O.Eval({Di,b}i∈[h],b∈{0,1},x) computes and outputs Dx =
∏h

i=1Di,xi .

Theorem 6.14 ([MPV24, Theorem 4.9]). Let σ ≥
√
2n and B ≥ σ

√
n, and suppose F := {fk}k∈Kλ

is a MBP on inputs of length h with all entries in u and {Mi,b}i∈[h],b∈{0,1} bounded by B. Let
P ← O(fk) be the output of Construction 6.13 on input fk, and let m := 4(n+ w) log q.

52

Completeness: For all k ∈ Kλ, x ∈ {0, 1}h,

|fk(x)−O.Eval(P,x)| ≤ h(mB)h−1 ,

Moreover, there is a PV proof of the following statement:

for all randomness r, x ∈ {0, 1}h, and fk ∈ F , if O(fk; r) does not output ⊥, then the output
P ← O(fk; r) satisfies:

|fk(x)−O.Eval(P)| ≤ h(mB)h−1 .

σ-PRF Indistinguishability: Letting σ′ = 2h
3λ · (n2σ)h+2, and assuming subexponential LWE

and evasive LWE25, if F is a σ′-matrix PRF such that poly(2n
δ
)-time adversaries achieve

distinguishing advantage at most negl(2h
2λ), then there exists a transparent distribution D

(independent of k) such that for k ← Kλ,

O(fk), aux(k) ≈c D, aux(k) ,

such that poly(2nδ
)-time adversaries achieve distinguishing advantage at most negl(2h2λ).26 In

particular, D is the distribution:

U(Z1×m
q), {Dm×m

Z,σ }i∈[h],b∈{0,1}, {Dm×1
Z,σ }.

Proof (sketch). We refer the reader to [MPV24] for the proof of indistinguishability. We note that
our modifications to both Construction 6.9 and Construction 6.13 only affect the distribution of the
output by 2−n · poly(n) (by Lemma 3.1).

Now, we argue that there is a polynomial-sized extended Frege proof of completeness. First, we
note that:

u′T Ŝxv
′ = (uT |1n) · diag(Mx,Sx) · (vT |0n)T = uTMxv = fk(x).

Here, we used basic associative properties of matrix multiplication, which have PV proofs.
By construction, ∥Si,b∥∞ ≤ σ

√
n. Hence, ∥Ŝi,b∥∞ ≤ B, and by the completeness of ggh.encode

(Lemma 6.10), we have that for all x, P = {Di,b}i∈[h],b∈{0,1} satisfies:

∥D(k)
x − u′T Ŝxv

′∥∞ ≤ h(mB)h−1.

The above follows from Lemma 6.10 via a PV proof.
Combining the two equations (and corresponding PV proofs), we have

|fk(x)−O.Eval(P)| ≤ h(mB)h−1 ,

as desired.
25We assume evasive LWE for specific distributions used in the sampling procedure in Construction 6.9. See

[MPV24] for explicit details on these distributions.
26There exist heuristic counterexamples to evasive LWE [VWW22]. See the discussion in [MPV24] for a discussion

on why their regime avoids this for “natural” choices of aux. Looking forward, our choice of aux will be public coin.

53

6.3.8 Witness Encryption from Evasive LWE with PV Proof

In this section, we construct a witness encryption scheme with a PV proof of completeness from
evasive LWE. Since witness encryption gives a 2-message argument system with a short prover
message, we can then use Theorem 4.1 to construct a SNARG for 3SAT.

Construction of witness encryption. In this section, we assume subexponential LWE with
security parameter µ = 2n

δ .

Construction 6.15. Given a 3SAT formula Φ on h variables and c ≤ h3 clauses (if it has more
clauses, delete duplicate clauses), and create a read-once branching program {u, {Mi,b}i∈[h],b∈{0,1}} ←
CNFEncode(Φ) following Construction 6.5.

• Enc(1λ,Φ,m) :

– Choose n such that nδ/10 ≥ h3λ. Set q = 2n
δ and σ =

√
2n.

– Sample Si,b ← Dn×n
Z,σ , and v← Zcn

q ,

u′ =
(
uT ⊗ (1 0 . . . 0)|m ·

⌊q
2

⌋)
∈ Zcn+1

q

Ŝi,b = diag (Mi,b ⊗ Si,b, 1) ∈ Z(cn+1)×(cn+1)
q

v′ = (vT |1)T ∈ Zcn+1
q .

– Apply the obfuscation in Construction 6.13 to obtain P ← O({Ŝi,b}i∈[h],b,u′,v′).
– If O outputs ⊥, output (⊥,m). Else, output P .

• Dec(ct,w ∈ {0, 1}h) : If ct is of the form (⊥,m), output m. Else, if it is a program P =
{Di,b}i∈[h],b∈{0,1},

– If Φ(w) = 0, output ⊥.

– Else, if |O.Eval(P) (mod q)| ≤ q/4, output 0. Else, output 1.

Proof of Theorem 6.1. We now prove that Construction 6.15 has a PV proof of completeness
(Lemma 6.16) and is semantically secure (Lemma 6.17). Then, combined with Theorem 6.4, we
achieve the main theorem.

Lemma 6.16. Construction 6.15 is a perfectly complete witness encryption scheme with a polynomial-
sized Extended Frege proof of completeness, i.e.

for all r, if RL(x,w) = 1 then Dec(Enc(1λ,Φ,m; r),w) = m.

Proof (sketch). First, if Enc(1λ,Φ,m; r) = (⊥,m), then Dec(Enc(1λ,Φ,m; r),w) = m, as desired.
Suppose Enc(1λ,Φ,m; r) ̸= (⊥,m), then O(·) did not output ⊥. By Theorem 6.14, we have

|u′T Ŝwv
′ −O.Eval(P,w)| ≤ h(4(n+ c) log q ·B)h−1.

By Lemma 6.6, if Φ(w) = 1, then, uTMw = 0 and this fact has a polynomial-sized extended Frege
proof. Therefore,

54

u′T Ŝwv
′ = u′T

(
h∏

i=1

diag(Mi,wi ⊗ Si,wi , 1)

)
v′

= u′T · diag

(
h∏

i=1

(Mi,wi ⊗ Si,wi) , 1

)
· v′

= u′T · diag(Mw ⊗ Sw, 1) · v′

=
(
uT ⊗ (1 0 . . . 0)|m ·

⌊q
2

⌋)
· diag(Mw ⊗ Sw, 1) · (vT |1)T

= (uT ⊗ (1 0 . . . 0)) · (Mw ⊗ Sw) · v +m ·
⌊q
2

⌋
= (uMw ⊗ (1 0 . . . 0) · Sw) · v +m ·

⌊q
2

⌋
= (0⊗ (1 0 . . . 0) · Sw) · v +m ·

⌊q
2

⌋
= m ·

⌊q
2

⌋
.

Here, we relied on the distributive and associative laws of matrix multiplication and the mixed
tensor property, all of which have a polynomial sized Extended Frege proof.

By our choice of parameters, we have that q/8 ≥ h(4(n+ c) log q · B)h−1. Then, if m = 0, then
O.Eval(P,w) ≤ q/8, and Dec(P,w) = 0. If m = 1, then⌊q

2

⌋
− q/8 ≤ O.Eval(P) ≤

⌊q
2

⌋
+ q/8

and hence Dec(P,w) = 1. Hence, there is a PV proof of completeness of the scheme.

Lemma 6.17. Construction 6.15 is a semantically secure witness encryption scheme assuming
subexponential LWE and evasive LWE.

Proof. Fix an unsatisfiable CNF formula Φ on c clauses and h variables. Denote by

fsk,m(w) =
(
uT ⊗ (1 0 . . . 0)|m ·

⌊q
2

⌋)
Ŝw(v

T |1)T

where sk = {{Si,b}i,b,v} is sampled as in the encryption algorithm in Construction 6.15.

Claim 6.18. The family F = {fsk,m} is a σ′-PRF family with auxiliary information auxsk,m = m

if Φ is unsatisfiable where σ′ = 23h
3λ · (n2σ)h+2.

Proof. It suffices to show that for {ew ← DZ,σ′}w∈{0,1}h :{(
uT ⊗ (1 0 . . . 0)|m ·

⌊q
2

⌋)
Ŝw(v

T |1)T + ew

}
w∈{0,1}h

,m ≈c {U(Zq)}w∈{0,1}h ,m

Choose σ′′ = 2h
3λ · (n2σ)h+1 (as in Lemma 3.3). Now, we make the following indistinguishabil-

ity arguments (where each indistinguishability holds against poly(2n
δ
) adversaries with probability

55

negl(2−h
2λ)).{(

uT ⊗ (1 0 . . . 0)|m ·
⌊q
2

⌋)
Ŝw(v

T |1)T + ew

}
w∈{0,1}h

(16)

=
{(

uTMw ⊗ (1 0 . . . 0)
)
(Icn ⊗ Sw) · v +m ·

⌊q
2

⌋
+ ew

}
w∈{0,1}h

(17)

≈s

{(
uTMw ⊗ (1 0 . . . 0)

) [
(Icn ⊗ Sw) · v + e′w

]
+m ·

⌊q
2

⌋
+ ew

}
w∈{0,1}h

, e′w ← Dcn
Z,σ′′ (18)

≈c

{(
uTMw ⊗ (1 0 . . . 0)

)
Uw +m ·

⌊q
2

⌋
+ ew

}
w∈{0,1}h

, Uw ← Zcn
q (19)

=
{
U ′w +m ·

⌊q
2

⌋
+ ew

}
w∈{0,1}h

, U ′w ← Zq (20)

=
{
U ′′w
}
w∈{0,1}h , U ′′w ← Zq (21)

We prove each step as follows:

• (16) = (17) by linear algebra.

• (17) ≈s (18) by the following noise-flooding argument. Here, we use the fact that

|(uMw ⊗ (1 0 . . . 0))e′w| ≤ cn · σ′′
√
n

for all w ∈ {0, 1}h with 1−2h ·negl(2−n) probability by Lemma 3.1. Then, we use Lemma 3.2
to argue that the statistical distance is at most 2h · (cn · σ′′

√
n)/σ′ ≤ 2−h

2λ.

• (18) ≈c (19) by applying Lemma 3.3 to obtain that:

{(Icn ⊗ Sw) · v + e′w}w∈{0,1}h ≈c {U(Zq)}w∈{0,1}h .

• (19) = (20) since for all w, uTMw ̸= 0.

• (20) = (21) by a one-time pad argument.

Therefore, we indeed have the desired σ′-PRF indistinguishability, since we do not use auxsk,m = m
in (21).

Recall that WE.Enc Construction 6.15 in fact outputs O(fsk,m) as an encryption of m, where sk.
Therefore, combining Claim 6.18 with the obfuscation guarantee from Theorem 6.14, we have that
the following distributions are indistinguishable:

• H0 : Sample randomness r, and bit m ∈ {0, 1}. Compute ct← WE.Enc(Φ,m; r). Output the
pair (ct,m).

• H1 : Sample ct← D and m ∈ {0, 1}. Output the pair (ct,m).

Consider an adversary A breaks the semantic security of the witness encryption scheme, i.e.

Pr
m,r

[A[WE.Enc(1λ,Φ,m; r)] = m] =
1

2
+ ρ(λ)

for some non-negligible function ρ. We construct A′ to distinguish H0 and H1 as follows:

56

• Given (ct,m), feed ct to A.

• If A outputs m, output 0. Else, output 1.

Clearly, if A′ was interacting with H0, then

Pr[A′(1λ, (ct,m))] = Pr[A(WE.Enc(1λ,m)) = m] =
1

2
+ ρ(λ).

If A′ was interacting with H1, then ct is indepedent of m, so Pr[A′(1λ, (ct,m))] = 1/2. Therefore,
A′ distinguishes H0 and H1 with non-negligible probability, leading to a contradiction.

Putting together Lemma 6.16 and Lemma 6.17, we have Theorem 6.1.

6.4 SNARGs for QR and DCR from LWE.

Finally, we consider unconditional, statistically secure witness encryption schemes for specific NP
languages. By observing that some such schemes have PV (indeed, PV) proofs of correctness,
we obtain SNARGs for these restricted languages assuming only LWE. We remark (as discussed
in Section 2.4.2) that we depart from standard definitions here by considering witness encryption
schemes for randomized, AM verifiers, in order to obtain PV proofs of correctness.

Specifically, we consider particular (randomized) witness relations for quadratic (non-)residuosity
(QR and QR) and N th non-residuosity (DCR). These are witness relations corresponding to the
Goldwasser-Micali and Paillier public-key encryption schemes, respectively.

Definition 6.19 (QR and with specific witness relations). Define the promise language QRYES,QRNO ⊂
{(N, y ∈ Z×N)} as follows:

• Promise: N = pq ≤ 2n is a product of two distinct primes that are 3 (mod 4) and the Jacobi
symbol (y

N) = 1.27

• Yes instances: y is a perfect square modulo N .

• No instances: y is not a perfect square modulo N .

We define an NP witness relation RQR for this promise language as follows:

• Witness: (p, q).

• Verification: p, q are primes, p · q = N , and y
p−1
2 ≡ 1 (mod p).

Finally, we define an additional AM verifier ṼQR for RQR as follows:

• Witness: (p, q).

• Random coins: g1, . . . , gn ← {0, 1}2n, interpreted to represent (nearly uniform) elements of
Z×N .

• Verification: p, q are primes, p · q = N , gcd(gi, N) ̸= 1 or gp−1i ≡ 1 (mod p) for all i, and
y

p−1
2 ≡ 1 (mod p).

27The latter Jacobi symbol restriction can be removed; we include the restriction for simplicity.

57

This AM verifier decides the same relation RQR as the above NP verifier.
Next, we define a witness relation RQR for the complement of this promise language as follows:

• Witness: (p, q).

• Verification: p, q are primes, p · q = N , and y
p−1
2 ≡ −1 (mod p).

As before, we define an additional AM verifier ṼQR for RQR:

• Witness: (p, q).

• Random coins: g1, . . . , gn ← {0, 1}2n, interpreted to represent (nearly uniform) elements of
Z×N .

• Verification: p, q are primes, p · q = N , either gcd(gi, N) ̸= 1 or gp−1i ≡ 1 (mod p) for all i,
and y

p−1
2 ≡ −1 (mod p).

Definition 6.20 (DCR with specific witness relation). Define the promise language DCRYES,DCRNO ⊂
{(N, y ∈ Z×

N2)} as follows:

• Promise: N = pq is a product of two distinct odd primes.

• Yes instances: y is an N th power modulo N2.

• No instances: y is not an N th power modulo N2.

We define a witness relation RDCR for the complement of this promise language as follows:

• Witness: (p, q).

• Verification: p, q are primes, p · q = N , and y(p−1)(q−1) ̸≡ 1 (mod N2).

Finally, we define an additional AM verifier ṼDCR for RDCR as follows:

• Witness: (p, q).

• Random coins: g1, . . . , gn ← {0, 1}2n, interpreted to represent (nearly uniform) elements of
Z×
N2.

• Verification: p, q are primes, p · q = N , either gcd(gi, N) ̸= 1 or g
N(p−1)(q−1)
i ≡ 1 (mod N2)

for all i, and y(p−1)(q−1) ̸≡ 1 (mod N2).

We now give witness encryption schemes for ṼR̄QR
, ṼRQR

, and ṼR̄DCR
that have PV proofs of

decryption correctness. We define a witness encryption scheme for an AM verifier (as opposed a NP
verifier) to allow the encryption algorithm access to the AM verifier’s random coins.

Lemma 6.21. The AM verifiers ṼR̄QR
, ṼRQR

, and ṼR̄DCR
admit statistically secure witness encryption

schemes with PV proofs of decryption correctness.

Proof. We first define the witness encryption scheme (Goldwasser-Micali encryption) for ṼR̄QR
:

58

• Enc(N, y, g1, g2, . . . , gn,m): if some gi /∈ Z×N , output (⊥,m). Otherwise, for message m ∈
{0, 1}, sample r ≡

∏n
i=1 g

si
i (mod N) for uniformly random exponents s1, . . . , sn and output

r2 · ym.

• Dec(p, q, c): if c = (⊥,m) output m. Otherwise, output m = 0 if and only if c
p−1
2 ≡ 1

(mod p).

Proof of Correctness: The correctness property we would like to prove is described as follows:

∀N, y, g1, g2, . . . , gn, p, q,m, s : if ṼQR(N, y, g1, g2, . . . , gn, p, q) = 1

then Dec(p, q,Enc(N, y, g1, . . . , gn,m; s)) = m.

Whenever y is not a square modulo N (and the promise holds), it is the case that y
p−1
2 ≡ −1

mod p. Therefore, for every r ∈ Z×N , if y
p−1
2 ̸≡ 1 (mod p) (guaranteed by the assumption that

(N, y, p, q) ∈ R̄QR), we have

(r2ym)
p−1
2 ≡ rp−1 · (y

p−1
2)m ≡ rp−1 · (−1)m (mod p).

As this only makes use of basic properties of arithmetic modulo p, this fact can be proved in PV
(and therefore EF). In addition, we are promised that

r ≡
n∏

i=1

gsii (mod N),

and, by assumption on the validity of the witness, we know that gp−1i ≡ 1 (mod p) for every i.
Therefore, since p | N , we conclude that

rp−1 ≡
n∏

i=1

(gsii)p−1 ≡
n∏

i=1

(gp−1i)si ≡ 1 (mod p).

Thus, we can prove in PV that Dec(p,Enc(N, y, g1, g2, . . . , gn,m; s)) = m for all valid witnesses
(p, q).

Proof of Security. Security holds provided that the sampled group element r is uniform on the
set Z×N . By [Pom02], we know that with all but negligible probability over the choice of g1, . . . , gn,
the set {g1, . . . , gn} generates Z×N ; under this condition, we conclude that r is indeed uniformly
random from Z×N and we are done.

Extension to RQR. Next, we observe that the same result holds for ṼRQR
: since we are promised

that p, q ≡ 3 (mod 4), we will make use of the fact that multiplication of y by −1 preserves
the promise and switches QRYES and QRNO. We can therefore define the encryption scheme
Enc′(N, y, g1, . . . , gn,m; s) = Enc(N,−y, g1, . . . , gn,m; s) and obtain a similar PV proof of decryp-
tion correctness, additionally making use of the fact that (−1)

p−1
2 ≡ 1 (mod p).

59

Witness Encryption for ṼRDCR
. Finally, for ṼRDCR

, we will use a modification of the Paillier
encryption scheme:

• Enc(N, y, g1, . . . , gn,m): if some gi /∈ Z×N , output (⊥,m). Otherwise, for message m ∈ {0, 1},
sample r ≡

∏n
i=1 g

si
i (mod N2) and output rN · (1 +N)m.

• Dec(p, q, c): if c = (⊥,m), output m. Otherwise, output m = 0 if and only if c(p−1)(q−1) ≡ 1
(mod N)2.

Similarly to the case of QR, correctness of decryption (in the case that y(p−1)(q−1) ̸≡ 1 (mod N2))
follows from the fact that

c(p−1)(q−1) ≡ rN(p−1)(q−1)(1 +N)m(p−1)(q−1) ≡ rN(p−1)(q−1)(1 + (m(p− 1)(q − 1))N) (mod N2).

As before, we can conclude in PV that rN(p−1)(q−1) ≡ 1 (mod N2) from our hypothesis on (p, q,
g1, . . . , gn). Finally, m · (p − 1)(q − 1) is in the open interval (1, N), and therefore c(p−1)(q−1)

(mod N2) is equal to 1 if and only if m · (p− 1)(q − 1) = 0, which is true if and only if m = 0.
Security holds, again as before, because with overwhelming probability over g1, . . . , gn, {g1, . . . , gn}

generates Z×
N2 [Pom02], and therefore the sampled string r will be uniformly random over Z×

N2 .

Finally, we briefly remark that Theorem 6.4 can be quickly modified to handle our “AM witness
encryption schemes:” simply include the AM random coins as part of the (unencrypted) crs for the
SNARG. The resulting SNARG is defined for the NP witness relations RQR, RQR, RDCR because the
NP and AM verifiers define the same set of true/false statements.

7 Application II: Transparent and Adaptive SNARGs from iO and
LWE

In this section, we show how to construct a transparent non-adaptive SNARG for NP as well as a
adaptive SNARG for NP from subexponential iO and subexponential LWE.

Theorem 7.1. Assuming the existence of subexponentially secure iO and LWE, there exists a trans-
parent, non-adaptively sound SNARG for all of NP.

Theorem 7.2. Assuming the existence of subexponentially secure iO and LWE, there exists an
adaptively sound SNARG for all of NP.

We remark that the above theorems do not explicitly assume the existence of an iO scheme that
has a PV proof of correctness. Instead, we show how to generically upgrade an subexponentially
secure iO scheme into one that has a PV proof of correctness.

Theorem 7.3. Assuming subexponentially-secure iO and subexponential LWE, there exists an iO
scheme with a PV proof of correctness.

Organization of this section. We begin with definitions of indistinguishability obfuscation and
functional encryption, which are the main tools used in this section. Next, we construct an inef-
ficient iO scheme (called XiO [LPST16a]) with a PV proof of correctness using any iO scheme in
Section 7.3.1. Then, we use the bootstrapping techniques of [AJ15, BV15, LPST16b, LPST16a] as
formalized by [Vai24] to compile this construction into an efficient iO scheme. We show that our
variant of this transformation preserves PV proofs of correctness.

60

7.1 Indistinguishability Obfuscation for Circuits

Syntax. An indistinguishability obfuscator iO = (iO.Obf, iO.Eval) for a family of circuits C =
{Cλ}λ is a pair of algorithms:

iO.Obf(1λ, C)→ Π. This is a probabilistic algorithm that takes as input a circuit C and outputs a
program Π.

iO.Eval(Π, x)→ y This is a deterministic algorithm that takes as input an obfuscated program Π,
and input x and outputs y.

Definition 7.4 (Indistinguishability obfuscation (iO), [BGI+01]). A tuple of PPT algorithms (iO.Obf, iO.Eval)
is an indistinguishability obfuscator iO for a circuit class C = {Cλ}λ if it satisfies the following con-
ditions:

• Statistical Correctness: For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x,
we have that

Pr[Π← iO.Obf(1λ, C) : iO.Eval(Π, x) = C(x)] = 1− negl(λ).

We say that iO satisfies sub-exponential statistical correctness if the correctness error is O(2−λ
α
)

for some universal constant α > 0.

• Polynomial Security: For all pairs of circuits C0, C1 ∈ Cλ such that C0(x) = C1(x) for all
x, we have that for all PPT adversaries A,∣∣∣Pr[A(iO.Obf(1λ, C0) = 1]− Pr[A(iO.Obf(1λ, C1) = 1]

∣∣∣ = negl(λ) .

We say that the iO is sub-exponentially secure if, for some α > 0, all 2λα-time adversaries
have distinguishing advantage at most 2−λα for some α > 0.

7.2 Single-Key Functional Encryption

Syntax. A functional encryption scheme FE for a class of functions F = {Fn}n∈N represented as
boolean circuits with an n-bit input and m-bit output, is a tuple of four algorithms (FE.Setup,FE.KeyGen,
FE.Enc,FE.Dec) such that:

FE.Setup(1λ)→ (mpk,msk). Takes as input a security parameter 1λ and outputs a master public
key mpk and a master secret key msk.

FE.KeyGen(msk, f)→ fskf . Takes as input the master secret key msk and a function f ∈ F and
outputs a key fskf .

FE.Enc(mpk, x)→ c. Takes as input the master public key mpk and an input x ∈ {0, 1}∗ and outputs
a ciphertext c.

FE.Dec(fskf , c)→ y. Takes as input a key fskf and a ciphertext c and outputs a value y.

Definition 7.5 (Functional encryption). A tuple of PPT algorithms (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec)
is a functional encryption scheme if it satisfies:

61

Perfect Correctness. For any polynomial n(·), and for sufficiently large security parameters λ,
for n = n(λ), for all f ∈ Fn, and all x ∈ {0, 1}n :

Pr

 FE.Dec(fskf , c) = f(x) :
(mpk,msk)← FE.Setup(1λ)
fskf ← FE.KeyGen(msk, f)

c← FE.Enc(mpk, x)

 = 1.

and one of the two following security properties.

Single-key selective IND-security. For every adversary A, there exists a negligible function µ
such that for every λ ∈ N, for every f ∈ Fλ, and every pair of inputs x0, x1, we have

|D0(A)−D1(A)]| ≤ µ(λ)

where Db is the following probability:

Db(A) = Pr

 A(pk, fskf , xb) = 1 :
(mpk,msk)← FE.Setup(1λ)
fskf ← FE.KeyGen(msk, f)

cb ← FE.Enc(mpk, xb)

Full simulation security. For all PPT adversaries A = (A1,A2), there exists a simulator Sim

such that the outcomes of Experiment 1 and Experiment 2 are indistinguishable.

Experiment 1 EXPRealFE,A(1
λ)

(mpk,msk)← FE.Setup(1λ).
(f, stA)← A1(mpk)
fskf ← FE.KeyGen(fmsk, f)
x, st′A ← A2(stA, fskf)

ct← FE.Enc(fmpk, x)

Output (st′A, ct).

Experiment 2 EXPRealFE,A(1
λ)

(mpk,msk)← FE.Setup(1λ).
(f, stA)← A1(mpk)
fskf ← FE.KeyGen(fmsk, f)
x, st′A ← A2(stA, fskf)

ct← Sim(mpk, fskf , f, f(x), 1
|x|)

Output (st′A, ct).

In this work, we make use of the following succinct functional encryption scheme [GKP+13].

Theorem 7.6 ([GKP+13]). Assuming subexponential LWE, for any depth parameter d = d(λ),
there is a single-key functional encryption scheme sFE for general functions computable by circuits
of depth d with output length m = 1 and the following efficiency parameters: assuming the circuit
class has size bounded by s and depth bounded by d,

• Runtime of sFE.Setup, sFE.KeyGen, sFE.Dec: poly(λ, s, d, n).

• Runtime of sFE.Enc: poly(λ, d, n).

• Size of ciphertexts: poly(λ, d, n).

The scheme satisfies full simulation security.

62

7.3 Upgrading iO to have a PV proof of correctness

7.3.1 Slow XiO with PV proof of correctness

Given an indistinguishability obfuscation scheme iO, we first show how to give it a PV proof of
correctness, at the cost of an inefficient obfuscation procedure (that still produces a small obfuscated
circuit).

Algorithm 3 Algorithm slowXiO which has PV proof of correctness for circuits.

slowXiO.Obf(1λ, 1TT (C), C; r): Security parameter 1λ, truth-table size 1TT (C) and circuit C.

• Compute C̃ ← iO.Obf(1ρ, C; r). Here, we pick parameter ρ here so that 2ρ
α

>
poly(λ, TT (C)). Note that we can pick ρ = poly(λ, |C|).

• For all inputs x, check if iO.Eval(C̃, x) = C(x) (note that this can be done in parallel, so the
resulting slowXiO circuit has low depth poly(λ, |C|)).

• If any test fails, output (⊥, C). Else, output C̃.

slowXiO.Eval(Γ, x):

• If Γ is of the form (⊥, C), compute and output C(x).

• Else, output iO.Eval(Γ, x).

Lemma 7.7. Suppose that iO is a statistically correct obfuscation scheme. Then, slowXiO (Algo-
rithm 3) is an iO scheme with the following efficiency:

• Running time of slowXiO: poly(λ, |C|, TT (C)).

• Randomness complexity of slowXiO: poly(λ, |C|).

• Depth of slowXiO: poly(λ, |C|) (by the obfuscation efficiency of the underlying iO).

• Output size: poly(λ, |C|).
Moreover, slowXiO has sub-exponential security provided that iO is sub-exponentially secure and
sub-exponentially statistically correct.

Finally, slowXiO has a PV proof of the fact that:

for all randomness r, all circuits C, if Γ = slowXiO(1λ, 1TT (C), C; r),
then for all x, slowXiO.Eval(Γ, x) = C(x).

Proof. We show that Algorithm 3 is secure and correct.

Security. First, we show that the resulting scheme is (sub-exponentially) secure if the underlying
iO scheme is (sub-exponentially) secure and (sub-exponentially) statistically correct. Note that
since iO is statistically correct, the output distribution of slowXiO is statistically close to the output
distribution of iO. Therefore, by the correctness and security properties of iO, we have that for all
circuits with C1 ≡ C2:

slowXiO(C1) ≈s iO(C1) ≈c iO(C2) ≈s slowXiO(C2)

as desired. Moreover, slowXiO(C1) and slowXiO(C2) are sub-exponentially computationally indis-
tinguishable provided that iO is both sub-exponentially secure and sub-exponentially correct.

63

PV Proof of Correctness. We give a sketch of the PV correctness proof below.

• For any security parameter λ, circuit C, and randomness r, let C̃ = iO(1λ, C; r) and let
Γ = slowXiO(1λ, C; r).

• Let b ∈ {0, 1} denote the bit indicating whether Γ = (⊥, C).

• Then, by the definition of slowXiO, we know that:

∀C, x, r, λ : C̃(x) ̸= C(x)→ b = 1.

The contrapositive of this is that

∀C, x, r, λ : b = 0→ C̃(x) = C(x).

• We also know (by the definition of slowXiO) that if b = 0, Γ = C̃.

• Therefore, we have that

∀C, x, r, λ : Γ(x) = b · C(x) + (1− b) · C̃(x) = b · C(x) + (1− b) · C(x) = C(x),

as desired.

7.3.2 Slow XiO to Fast XiO with CRS

Our next transformation converts the Slow-XiO scheme from Lemma 7.7 into an obfuscation scheme
with the following properties:

• The scheme is defined in the common reference string model. Specifically, there is a slow setup
algorithm Gen(1λ, 1T , 1s) producing (crsO, crsEval) to be used for obfuscation and evaluation,
respectively, of circuits with size at most s and truth table size at most T .

• The running time of the obfuscation procedure (and the length of crsO) is poly(λ, |C|).

• The length of crsEval and the running time of Eval is poly(λ, T).

• iO security holds for C0, C1 chosen adaptively by the adversary as a function of the crs.

To do this, we rely on techniques from [GKP+13, AJ15, BV15, LPST16a, LPST16b], as formalized
by [Vai24]. We include a full exposition and security proof here for completeness.

The transformation requires one new building block: a succinct functional encryption scheme.
In Appendix C, we show that the scheme from Theorem 7.6 can be instantiated with a PV proof
of correctness, i.e.

for all randomness, for all circuits f and inputs x, if (mpk,msk)← sFE.Setup(1λ),
fskf ← sFE.KeyGen(msk, f), c← sFE.Enc(mpk, x), then y ← FE.Dec(fskf , c) satisfies y = f(x).

64

Algorithm 4 (sFE is the succinct functional encryption scheme as guaranteed by Theorem 7.6)

fastXiO.Gen(1λ, 1T , 1s):

1. Construct the low-depth circuit O representing slowXiO(1λ, 1T , ·; ·) from Lemma 7.7.

2. Suppose the total input length of O (circuit plus randomness) is ℓ = poly(λ, |C|, log T) bits,
and the depth of O is d = poly(λ, |C|, log T). Moreover, suppose the output of slowXiO(C)
has length m = poly(λ, |C|).

3. We use the notation Oi to denote the circuit that outputs the ith bit of the output of O.

4. For each i ∈ [m], sample master public and secret keys (mpki,mski) ←
sFE.Gen(1λ, 1d, 1ℓ, 1T).

5. Compute corresponding function keys fski ← sFE.KeyGen(mski, Oi).

6. Output crsO = {mpki}i in[m], crsEval = {fski}i∈[m]).

fastXiO.Obf(crsO = {mpki}i∈[m], C):

1. Sample randomness r ← {0, 1}ℓ for slowXiO.

2. For each i ∈ [m], compute Γi ← sFE.Enc(mpki, (C, r)).

3. Output Γ = {Γi}i∈[m].

fastXiO.Eval(crsEval = {fski}i∈[m],Γ = {Γi}i∈[m], x)

1. For each i ∈M , compute ci ← sFE.Dec(fski,Γi).

2. Compute C̃ = (c1, c2, . . . cm).

3. Output slowXiO.Eval(C̃, x).

Lemma 7.8. Algorithm 4 is an indistinguishability obfuscation scheme in the CRS model assuming
that slowXiO is a indistinguishability obfuscation scheme with parameters as in Lemma 7.7 and sFE
is a single-key succinct functional encryption scheme as in Theorem 7.6.

Moreover, assuming the sFE has a proof of correctness and that slowXiO has a proof of correctness
(as in Lemma 7.7), then fastXiO has a PV proof of the following correctness property:

for all randomness r1, r2, then for all circuits C, if (crsO, crsEval)← fastXiO.Gen(1λ, 1TT (C), 1|C|; r1)
and Γ← fastXiO.Obf(crsO, C; r2), then for all inputs x, fastXiO.Eval(crsEval,Γ, x) = C(x).

Proof. We first note that |crsO| and the running time of fastXiO.Obf are indeed poly(λ, |C|) by the
underlying efficiency properties of slowXiO and sFE. In particular, the running time of sFE.Enc is
poly(λ, d, ℓ) = poly(λ, |C|).

To prove security, we observe that by the simulation-security of sFE, there exists a simula-
tor Sim({mpki}, {fskOi}, O, C̃, 1poly(λ,|C|)) such that for all efficient adversaries A and (C, r) =
A(mpk, {fskOi}), we have:

{sFE.Enc(mpki, (C, r))}i ≈c Sim({mpki}, {fskOi}, O, slowXiO(C; r), 1poly(λ,|C|)).

Thus, an adaptive adversary breaking the security of fastXiO implies the existence of an adversary
violating the security of slowXiO.

65

PV Proof. We now sketch the PV proof of correctness for the above proof.

• For any security parameter λ, and randomness r1, let

crs := ({mpki, fski})← fastXiO.Gen(1λ; r1).

• For any randomness r2, let Γ := {Γi}i∈[m] ← fastXiO.Obf(crs, C; r2).

• By definition of fastXiO.Gen, we have (mpki,mski)← sFE.Gen(1λ), and fski ← sFE.KeyGen(mski, Ui)
using randomness r1.

• By definition of fastXiO.Obf, we have Γi = sFE.Enc(mpki, (C, r2)).

• By correctness of sFE, we have that for y ← sFE.Dec(fski, sFE.Enc(mpki, (C, r2)) satisfies
y = Oi(C, r2) = slowXiO.Obf(C; r2)i.

• Define C̃ = slowXiO.Obf(C; r2).

• By substitution, y = {sFE.Dec(fski,Γi)}i satisfies y = C̃.

• By substitution, slowXiO.Eval(C̃, x) = slowXiO.Eval(slowXiO(C; r2), x).

• By correctness of slowXiO, we have slowXiO(C̃, x) = C(x).

• By combining the equalities, we have that for all x, r1, r2, fastXiO.Eval(crsEval,Γ, x) = C(x).

This completes the proof.

From this point onward, to obtain iO for circuits with a PV proof of correctness, we analyze a
sequence of four transformations from the literature [LPST16a, ABSV15, LPST16b] converting any
fastXiO into a full-fledged obfuscation scheme, additionally assuming a succinct function encryption
scheme sFE and a puncturable pseudorandom function family. In the following sections, we sketch
the transformations and observe that under suitable instantiations of the building blocks in these
transformations (specifically the sFE and Yao’s garbling scheme), the transformations maintain PV
proofs of correctness.

7.3.3 Single-Key Compact FE for Bounded-Depth Circuits

First, we construct a single-key FE scheme satisfying IND-security for circuits with bounded depth d,
such that FE encryption runs in time that does now grow with m, the output length of the functions
supported by the FE. This transformation is due to [LPST16a] and makes use of a succinct functional
encryption scheme sFE along with a puncturable PRF family F = {Fk}. We will make use of an
sFE that has a PV proof of correctness (see Appendix C.3).

Theorem 7.9 ([LPST16a]). Assuming the security of fastXiO and the full simulation security of sFE,
the scheme dFE in Algorithm 5 is a selectively IND-secure compact FE with |mpk| and encryption
time bounded by poly(λ, d, n, logm).

What remains is to observe the following:

Claim 7.10. If sFE and fastXiO have PV proofs of correctness, then so does dFE.

66

Algorithm 5 Single-Key Bounded-Depth Compact FE

dFE.Setup(1λ, 1n, 1m, 1s, 1d):

1. Call sFE.Setup(1λ, 1n+logm, 1s+Õ(m), 1d)→ (mpk,msk).

2. Call fastXiO.Gen(1λ, 1logm, 1S)→ (crsO, crsEval), where S = poly(λ, d) denotes the size of the
circuit family G defined below.

3. Output ((mpk, crsO), (msk, crsEval)).

dFE.KeyGen(msk, crsEval, C) :

1. Call sFE.KeyGen(msk, C ′) for C ′(x, i) = C(x)i.

2. Output skC′ , crsEval.

dFE.Enc(mpk, crsO, x):

1. Sample a puncturable PRF key k.

2. Define the circuit G[mpk, k, x] to have input i ∈ [m] and compute sFE.Enc(mpk, (x, i);Fk(i)).

3. Output fastXiO.Obf(crsO, G[mpk, k, x]).

dFE.Dec(skC′ , crsEval, ct):

1. Compute cti = fastXiO.Eval(crsEval, ct, i) for all 1 ≤ i ≤ m.

2. Compute yi = sFE.Dec(skC′ , cti) for all 1 ≤ i ≤ m.

3. Output y.

This is true by the following (sketched) straightline proof of correctness:

• dFE.Dec(skC′ , crsEval, ct) = (sFE.Dec(skC′ , ct1), . . . , sFE.Dec(skC′ , ctm)).

• For every i, cti = fastXiO.Eval(crsEval(fastXiO.Obf(crsO, G[mpk, k, x]), i) = G[mpk, k, x](i) by
the correctness of fastXiO.

• For every i, sFE.Dec(skC′ , G[mpk, k, x](i)) = C ′(x, i) = C(x)i by substitution and the correct-
ness of sFE.

• Thus, y = C(x), as claimed.

7.3.4 Single-Key Compact FE for all circuits

Next, we remove the depth restriction from dFE. This transformation is due to [ABSV15] and makes
use of a pseudorandom function family28 as well as Yao’s garbling scheme. We will make use of an
instantiation of the following building blocks:

• Garbled circuits, instantiated with a PV proof of correctness (see Appendix C.1). For this
garbling scheme, define the algorithm RE(C, x; r ∈ {0, 1}2·s·λ) to output the garbled circuit C̃
along with the garbled input keys corresponding to x.

28In [ABSV15], the goal was to start with FE for NC1, but here, we are starting with a stronger dFE and can
therefore avoid dealing with PRFs in NC1. In addition, [ABSV15] also wishes to preserve multi-key security, while
we only care about single-key security for long-output circuits.

67

• A pseudorandom function family F = {Fk}.

• A secret-key encryption scheme with keys, messages, and pseudorandom ciphertexts (even in
the multi-message setting) of length poly(λ) (which can be instantiated from PRFs as well).
The encryption scheme is then defined on longer messages via block-by-block encryption, so
that decryption is computable by a circuit of depth poly(λ).

Algorithm 6 Single-Key Compact FE

FE.Setup(1λ, 1n, 1m, 1s) calls dFE.Setup(1λ, 1n+2λ+1, 1s
′=s·poly(λ), 1m)→ (mpk,msk).

FE.KeyGen(msk, C) :

1. Sample a ciphertext ctSKE ← {0, 1}s·poly(λ) with corresponding plaintext length s′ (of a
dummy message).

2. Derive key skC′ = dFE.KeyGen(msk, C ′) for the circuit

C ′[ctSKE](x, kPRF, kSKE, β) =

{
Dec(kSKE, ctSKE) if β = 1

RE(C, x;FkPRF(1), FkPRF(2), . . . , FkPRF(s
′)) otherwise

FE.Enc(mpk, x) samples kPRF and calls dFE.Enc(mpk, (x, kPRF, 0
λ, 0)).

FE.Dec(skC′ , ct):

1. Compute ŷ = dFE.Dec(skC′ , ct).

2. Compute and output y to be the garbling scheme decoding of ŷ.

Theorem 7.11 ([ABSV15], slightly modified). Assuming the single-key security of dFE, SKE, F ,
and the garbling scheme, the scheme FE in Algorithm 6 is a selectively IND-secure single-key compact
FE with |mpk| and encryption time bounded by poly(λ, n, logm).

The main difference from [ABSV15] is that since dFE supports arbitrary depth d circuits (with
an associated encryption cost), it suffices that the circuit C ′ above has depth poly(λ, n, logm).

What remains is to observe the following:

Claim 7.12. If dFE and the garbling scheme have PV proofs of correctness, then so does FE.

This is true by the following (sketched) straightline proof of correctness:

• FE.Dec(skC′ , ct) = Eval(dFE.Dec(skC′ , ct)).

• By the correctness of dFE, we have that dFE.Dec(skC′ , ct) = C ′[ctSKE](x, kPRF, 0
λ, 0) = RE(C, x; ρ)

for ρ = (FkPRF(0), . . . , FkPRF(s
′)).

• By the correctness of the garbling scheme, we have that Eval(RE(C, x; ρ)) = C(x) for all ρ.

• Therefore, FE.Dec(skC′ , ct) = C(x), as claimed.

68

7.3.5 Output-Compressing Randomized Encodings for Turing Machines

Next, following [LPST16b] Section 6 (Definitions 20, 22, 23), we convert FE into what is called an
“output-compressing randomized encoding scheme for Turing machines” (with common reference
string). The transformation makes use of a pseudorandom generator G with output length m.

Algorithm 7 Output-Compressing RE for TMs

RE.Setup(1λ, 1L, 1n, 1m, 1T):

1. Call FE.Setup(1λ, 1L+log T+n+λ+1, 1T , 1poly(λ,T))→ (mpk,msk). Note that we have used T as
an upper bound for the output length m for simplicity.

2. Sample a uniformly random seed s← {0, 1}λ and compute c = G(s).

3. Let U denote a universal circuit implementing the map (M,T, x) 7→M(x, 1T). In particular,
we let U denote a canonical circuit associated with a universal Turing machine with a PV
proof of correctness (e.g. via the Cook-Levin reduction in [Pic15]).

4. Let C denote the circuit that on input (M,T, x, s′, b) outputs c⊕G(s′) if b = 1 and U(M,T, x)
if b = 0.

5. Compute skC = FE.KeyGen(msk, C).

6. Output (crsEnc = mpk, crsEval = skC).

RE.Enc(crsEnc = mpk,M, x, T) : calls and outputs FE.Enc(mpk, (M,x, 0λ, 0)).
RE.Eval(crsEval = skC , Π̂x) calls and outputs FE.Dec(skC , Π̂x).

Theorem 7.13 ([LPST16b] Theorem 12). Assuming the single-key security of FE and the security
of G, the scheme in Algorithm 7 is a simulation secure output-compressing randomized encoding in
the crs model such that RE.Enc(crsEnc = mpk,M, x, T) : runs in time poly(|M |, |x|, λ, logm, log T).

What remains is to observe that:

Claim 7.14. If FE has a PV proof of correctness, then RE has a PV proof of the following correctness
property:

for all λ, L, n,m, T, r1, r2, if (crsEnc, crsEval) = RE.Gen(1λ, 1L, 1n, 1m, 1T ; r1), for all M such that
|M | ≤ L, if Π̂x = RE.Enc(crsEnc,M, x, T ; r2) and y = RE.Eval(crsEval,Πx), we have that

y = M(x, 1T).

This claim holds by the following (sketched) proof of correctness:

• By the correctness of FE, we have that y = C(M,T, x, 0λ, 0).

• By the definition of C, we have y = U(M,T, x).

• By the correctness of the circuit U , we have that y = M(x, 1T).

69

Algorithm 8 iO based on Output-Compressing RE [LPST16b]

iO.Obf(1λ, C):

1. Let n denote the input length to C.

2. Set the security parameter κ = λ · poly(n) so that the RE and PRG are both 2−n · negl(λ)-
secure.

3. Set L = |C|+ (n+ 1)(κ+ 1).

4. Set T = poly(|C|, n, λ) such that for all Turing machines M of size at most L, all crsEnc
using security parameter κ, all output lengths m ≤ 2λ, and all running times T ′ ≤ 2λ, we
have that the running time of RE.Enc(crsEnc,M, T ′,⊥) (empty input) is at most T/2.

5. Sample n common reference string pairs (crs
(i)
Enc, crs

(i)
Eval)← RE.Setup(1λ, 1L, 10, 1T , 1T)

6. Sample a PRG seed rϵ. For all r, define G(r) = (r0, r1, s0, s1).

7. Define the collection of machines MC,z,crsi+1,...,crsn,r for z ∈ {0, 1}≤n, i = |z| and r ∈ {0, 1}κ
as follows:

• MC,z,r only runs on an empty input.
• On empty input, first compute (r0, r1, s0, s1) = G(r).
• If i = n, output C(z). Otherwise:

• Compute and output RE.Enc(crs
(i+1)
Enc ,MC,z||0,crsi+2,...,crsn,r0 ; s0) as well as

RE.Enc(MC,z||1,crsi+2,...,crsn,r1 ; s1).

8. Output M
C,ϵ,crs

(1)
Enc,...,crs

(n)
Enc ,rϵ

, crs
(1)
Eval, . . . , crs

(n)
Eval.

iO.Eval(C̃, x):

1. Let C̃ = MC,ϵ, crs
(1)
Eval, . . . , crs

(n)
Eval

2. For i from 1 to n:

• Define MC,x1,...,xi to be the xith half of the output of RE.Eval(crs(i−1)Eval ,MC,x1,...,xi−1).

3. Compute and output MC,x(1
T).

70

7.3.6 iO from Output-Compressing RE

Finally, following [LPST16b], we construct iO from the output-compressing RE in the previous
section, assuming that the RE is sub-exponentially secure and additionally making use of a sub-
exponentially secure length-quadrupling PRG.

Theorem 7.15 ([LPST16b] Theorem 12). If RE is sub-exponentially simulation secure (in the crs
model) and G is a sub-exponentially secure PRG, then the iO scheme in Algorithm 8 is secure.

Finally, it remains to demonstrate that:

Claim 7.16. If RE has a PV proof of correctness (as in Claim 7.14), then so does iO.

To see this, we prove the correctness of iO by proving the following main claim:

Claim 7.17. Let C̃ = iO.Obf(1λ, C). For all z, let G(rz) = (rz||0, rz||1, sz||0, sz||1). Then, for every
i, the program MC,x1,...,xi defined in the evaluation procedure iO.Eval(C̃, x) is equal to the program
MC,x1,...,xi,crsi+1,...,crsn,rx1,...,xi

defined in iO.Obf(1λ, C).

This claim is proved by induction on i. The claim holds for i = 0 by the definition of iO.Obf and
iO.Eval. For the inductive step, we observe that:

• MC,x1,...,xi+1 =
(
REEval(crs

(i)
Eval,MC,x1,...,xi)

)
[xi].

• By the inductive hypothesis on MC,x1,...,xi , this is equal to(
REEval(crs

(i)
Eval,MC,x1,...,xi,crs

(i+1)
Enc ,...,crs

(n)
Enc ,rx1,...,xi

)
)
[xi].

• By the correctness of RE, the definition of rx1,...,xi+1 , and the definition of M
C,x1,...,xi,crs

(i+1)
Enc ,...,crs

(n)
Enc ,rx1,...,xi

,
this is equal to MC,x1,...,xi+1,crs.

By induction, we conclude that MC,x = MC,x,rx . Finally, by the definition of MC,x,rx , we know that
the output of MC,x,rx is equal to C(x), so we conclude that iO.Eval(C̃, x) = C(x) as claimed.

Provided that the correctness of RE is proved in PV , this proof can also be formalized in PV
because the only invocation of induction is with respect to the length i ≤ n corresponding to the
bit-string z.

7.4 Non-adaptive Transparent SNARGs for NP from iO and LWE

In this section, we recall the SNARG for NP construction of Sahai and Waters [SW14] in Algo-
rithm 9, and show that it does indeed have a proof of correctness if the underlying iO has a proof
of correctness.

Claim 7.18. Algorithm 9 is a SNARG scheme with a PV proof of completeness.

Proof sketch. We outline the proof of completeness below.

1. For any security parameter λ, k ← PRF.Gen(1λ) and randomness rP , rV , let P̃ ← iO(Pk; rP)
and Ṽ ← iO(Vk; rV)

71

Algorithm 9 SNARG construction of [SW14, MPV24]

SNARG.Gen(1λ, R) :

• Compute k ← PRF.Gen(1λ), where PRF is a puncturable PRF family.

• Compute obfuscations of the following programs:

– Pk: On input instance x, witness w, if R(x,w) = 1, output π = PRF.Eval(k, x). Else,
output ⊥.

– Vk: It takes as input instance x and proof π: if f(π) = f(PRF.Eval(k, x)), then output
1. Else, output 0.

• Output crs = (P̃ = iO(Pk), Ṽ = iO(Vk)).

SNARG.Prove(crs = (P̃ , Ṽ), x, w): Compute and output π ← P̃ (x,w).
SNARG.Ver(crs = (P̃ , Ṽ), x, π): Accept if 1← Ṽ (x, π), and reject otherwise.

2. By correctness of iO, Pk(x,w)→ π → P̃ (x,w) = π.

3. By definition of Pk(x,w), R(x,w) = 1→ Pk(x,w) = PRF.Eval(k, x).

4. Combining (2) and (3), we have R(x,w) = 1→ P̃ (x,w) = PRF.Eval(k, x).

5. By correctness of iO, Vk(x, π) = b→ Ṽ (x, π) = b.

6. By definition, for all x, Vk(x,PRF.Eval(k, x)) = 1.

7. By (5), we have that for all x, Ṽ (x,PRF.Eval(k, x)) = 1.

8. Combining (4) and (7), we have R(x,w) = 1→ Ṽ (x, P̃ (x,w)) = 1, as desired.

7.5 Adaptive SNARGs for NP from iO and LWE

In this section, we show that the adaptively sound dv-SNARG from [MPV24] does have a proof of
completeness. Recall this construction is identical to the construction of Algorithm 9, except that
only the prover algorithm Pk is published.

Claim 7.19. Algorithm 10 has a PV proof of completeness.

Proof. This proof follows very closely to the proof of the previous claim.

1. For any security parameter λ, k ← PRF.Gen(1λ) and randomness r, let P̃ ← iO(Pk; r).

2. By correctness of iO, Pk(x,w)→ π → P̃ (x,w) = π.

3. By definition of Pk(x,w), R(x,w) = 1→ Pk(x,w) = PRF.Eval(k, x).

4. Combining (2) and (3), we have R(x,w) = 1→ P̃ (x,w) = PRF.Eval(k, x).

5. By definition, for all x, dv-SNARG.Ver(k, x,PRF.Eval(k, x)) = 1.

6. Combining (4) and (5), we have R(x,w) = 1→ dv-SNARG.Ver(x, P̃ (x,w)) = 1, as desired.

72

Algorithm 10 dv-SNARG construction of [SW14]

dv-SNARG.Gen(1λ, R) :

• Compute k ← PRF.Gen(1λ), where PRF is a puncturable PRF family.

• Compute an obfuscation of the following program:

– Pk: On input instance x, witness w, if R(x,w) = 1, output π = PRF.Eval(k, x). Else,
output ⊥.

• Output crs = (P̃ = iO(Pk)), and verifier key vk = k.

dv-SNARG.Prove(crs = P̃ , x, w): Compute and output π ← P̃ (x,w).
dv-SNARG.Ver(vk, x, π): Accept if π = PRF.Eval(k, x). Else, reject.

8 Application III: Adaptive Transparent SNARGs for UP from Eva-
sive LWE

In this section, we prove the following theorem via Theorem 5.1.

Theorem 8.1. Assuming subexponential LWE and evasive LWE, there exists an adaptively sound
SNARG for L ∈ UP with a relation circuit of size T with the following parameters:

• The crs is of length poly(n, T, λ) with transparent set-up.

• The proof is of size poly(λ, log T).

• The prover runtime is poly(T + L, λ).

• The verifier runtime is poly(n, λ, log T).

To obtain Theorem 8.1, we first recap the adaptively sound designated-verifier SNARG for UP
from Mathialagan, Peters and Vaikuntanathan [MPV24].

Theorem 8.2 ([MPV24, Corollary 6.2]). Assuming subexponential LWE and evasive LWE, there
exists an adaptively sound dv-SNARG for UP with a relation circuit of size T with the following
parameters:

• The crs has length poly(n, T, λ).

• The proof is of size λ+ ω(log(T, λ)).

• The prover runtime is poly(T, λ).

• The verifier runtime is poly(n, λ, log T).

As is, their construction does not have an EF proof of completeness. We minor modifications
to achieve perfect completeness and argue that it has an EF proof of completness, and argue that
the modified scheme is still sound. Additionally, we argue that the common reference string of their
scheme is indistinguishable from random, even against circuits of size 2|x|.

Theorem 8.3. Assuming LWE and evasive LWE, there exists an adaptively sound dv-SNARG for
UP with a polynomial-sized EF proof of completeness.

73

• The crs has length poly(n, T, λ). Moreover, it is 2−n indistinguishable from a transparent dis-
tribution.

• The proof is of size λ+ ω(log(T, λ)).

• The prover runtime is poly(T, λ).

• The verifier runtime is poly(n, λ, log T).

• The EF proof of completeness has size poly(n, λ, T).

Therefore, combining the above result with Theorem 5.1, we obtain Theorem 8.1.

Organization. We first recap some additional tools from [MPV24] involving read-c MBPs (rather
than read-once, as was sufficient for the witness encryption construction) in Appendix A.2. We defer
the construction and proof of Theorem 8.3 to Appendix A.3. We then prove that for instances of
size h and relation circuit size T , the new scheme:

• is complete with a polynomial-sized EF proof of size poly(h, T, λ) (Claim A.6).

• is adaptively sound with proof size λ+ω(log(h+T +λ)) and crs size poly(h, T, λ) (Claim A.7).

• has a common reference string which is 2−h indistinguishable from a string sampled from a
transparent distribution (Claim A.10).

The above claims prove Theorem 8.3. Combining this with Theorem 5.1, we obtain Theorem 8.1.

9 Application IV: Universal Micali SNARGs

In this section, as an application of our main theorem, we show a universal SNARG construction for
NP with non-adaptive soundness, assuming the (non-explicit) existence of a hash function that se-
curely instantiates Micali’s SNARG. To state our result, we need to define probabilistically checkable
proofs with an additional property, which requires that the completeness PV proofs.

Definition 9.1 (PCP with PV proofs of completeness). Let L ⊆ {0, 1}∗ be an NP language with
the relation RL. We say a probabilistically checkable proof (P,Q,V) for L has a PV proof of
completeness, if there exists a polynomial p = p(n) such that, for every n ∈ N, there exists an
uniformly computable polynomial-sized EF proof of length p(n) for the following statement:

(RL(x,w) = 1 ∧ π = P(x,w) ∧ Q = Q(1n, r))→ V(Proj(π,Q), r) = 1),

where Proj(π,Q) is a circuit that takes a string π and a subset of indices Q as input, and it outputs
the projection of π onto the coordinates specified by the subset Q, i.e. π|Q.

Intuitively, the formula in Definition 9.1 states that, for any x,w such that RL(x,w) = 1, let
π = P(x,w), then for any r and Q = Q(1n, r), V(π|Q, r) = 1.

We are ready to state our main theorem in this section.

Theorem 9.2. For any NP language L ⊆ {0, 1}∗ with a relation RL that can be computed by a
circuit of size T = T (n), there exists a SNARG construction for L, with the following parameters.

74

• The crs is of length poly(λ).

• The proof length is poly(log n, λ).

• The prove runtime is poly(T, λ).

• The verifier runtime is Õ(n) + poly(log n, λ).

It is non-adaptively sound assuming LWE, FHE, and the existence of a (non-explicit) instantiation
of the hash function such that Micali’s [Mic94] SNARG for L is non-adaptively sound, where the
underlying PCP of Micali’s SNARG is instantiated with a PCP with PV proof of completeness.

We stress that PCP with PV proof of completeness is a property satisfied by most of the PCP
constructions. For example, [Pic15] proved that Dinur’s PCP [Din07] has polynomial-size EF proofs
of completeness (and soundness).

The proof of the theorem relies on the following lemma.

Lemma 9.3 (Informal). There exists a PV proof for the opening completeness property of Merkle
hash.

We remark that Lemma 9.3 works for any hash function underlying the Merkle tree. We will
formalize the above theorem in PV and provide a formal proof in Section 9.3.

To prove Theorem 9.2, we first prove the following lemma about Micali’s SNARG. Then Theo-
rem 9.2 follows from the combination of the following lemma and Theorem 4.1.

Lemma 9.4 (PV Proof of Completeness for Micali’s SNARG). For any NP language L ⊆ {0, 1}∗,
and Micali’s SNARGs (Gen,P,V) instantiated by any hash function, and any PCP with a PV proof
of completeness, there exists a PV for the following statement:

(crs = Gen(1λ; r) ∧ π = P(crs, x, w))→ V(crs, x, π) = 1.

Proof Sketch. We only provide a proof sketch here. Recall that, Micali’s SNARG construction is
as follows. The CRS generation algorithm outputs a hash key for Merkle hash as the CRS. The
honest prover algorithm generates a probabilistically checkable proof (PCP) π, and Merkle hashes
the PCP and obtains a Merkle root rt. It applies the hash function again to rt, and parses the hash
output as PCP queries Q. Then it answers the PCP queries π|Q and the local opening {ρq}q∈Q for
the locations in Q. The SNARG proof consists of (rt, π|Q, {ρq}q∈Q). Given the SNARG proof, the
verifier first verifies the PCP answers, and then it verifies the opening of the Merkle hash.

The PV proof of completeness consists of the PV proof of the PCP, and the PV proof of local
opening completeness of the Merkle hash. From Lemma 9.3, there exists a PV proof of the local
opening completeness of Merkle hash.

Concatenating the two PV proofs, we obtain an PV proof of completeness for Micali’s SNARG.
This finishes the proof of the lemma.

9.1 Probabilistically Checkable Proofs

A probabilistically checkable proof for an NP language L is a tuple of algorithms (P,Q,V), with
the following properties.

75

Syntax. (P,Q,V) have the following syntax.

• P(x,w): This algorithm takes as input an instance x and an witness w, and it outputs a proof
π of length L(|x|), where L = L(n) is a polynomial.

• Q(1n, r): This algorithm takes as input the input length n, and a uniformly random string r,
and output a subset of indices Q ⊆ [L(n)].

• V(π′, r): The verification algorithm takes as input a string π′ of length |Q|, and the random
coin r to verify the proof. It either accepts the proof (outputs 1), or rejects the proof (outputs
0).

Moreover, we require them to satisfy the following properties.

• Completeness. For any (x,w) ∈ RL, where RL is the NP-relation of L, we have

Pr
r
[V(π|Q, r) = 1 : π ← P(x,w), Q← Q(1|x|, r)] = 1.

• ϵ-Soundness. For any x /∈ L,

Pr
r
[∃π∗ ∈ {0, 1}L(|x|) s.t. V(π∗|Q, r) = 1 : Q← Q(1|x|, r)] ≤ ϵ.

9.2 Merkle Tree Hash

In this section we recall the definition of a hash family with local opening [Mer88]. This section is
[BBK+23].

Syntax. A hash family (HT) with succinct local opening consists of the following algorithms:

Gen(1λ)→ hk. This is a PPT algorithm that takes as input the security parameter λ in unary and
outputs a hash key hk.

Hash(hk, x)→ rt. This is a deterministic poly-time algorithm that takes as input a hash key hk and
an input x ∈ {0, 1}N for N ≤ 2λ, and outputs a hash value rt.

Open(hk, x, j)→ ρ. This is a deterministic poly-time algorithm that takes as input a hash key hk,
an input x ∈ {0, 1}N for N ≤ 2λ, and an index j ∈ [N], and outputs an opening ρ.

Verify(hk, rt, j, b, ρ)→ 0/1. This is a deterministic poly-time algorithm that takes as input a hash
key hk, a hash value rt, an index j ∈ [N], a bit b ∈ {0, 1} and an opening ρ. It outputs 1
(accept) or 0 (reject).

Definition 9.5. (Properties of HT) A HT family (Gen,Hash,Open,Verify) is required to satisfy the
following properties.

Opening completeness. For any λ ∈ N, any N ≤ 2λ, any x ∈ {0, 1}N , and any index j ∈ [N],

Pr

 Verify(hk, rt, j, xj , ρ) = 1 :
hk← Gen(1λ),
rt = Hash(hk, x),
ρ = Open(hk, x, j)

 = 1.

76

Succinctness. In the completeness experiment above, we have that |hk|+ |rt|+ |ρ| = poly(λ).

Collision resistance w.r.t. opening. For any poly-size adversary A there exists a negligible
function negl(·) such that for every λ ∈ N,

Pr

[
Verify(hk, rt, j, 0, ρ0) = 1
∧ Verify(hk, rt, j, 1, ρ1) = 1

:
hk← Gen(1n),

(rt, j, ρ0, ρ1)← A(hk)

]
= negl(n).

Remark 9.6. We say that a hash family with local opening is T -secure, for T = T (n), if the collision
resistance w.r.t. opening property holds against any poly(T)-size adversary (as opposed to poly(n)-
size) and the probability that the adversary finds a collision is negl(T) (as opposed to negl(n). We
refer to this property as T -collision-resistance w.r.t. opening.

Remark 9.7. One can naturally extend the definition of a hash family with local opening to allow the
Open algorithm to take as input (hk, x, J) where J ⊆ [N] consists of a set of indices, as opposed to
a single index. Open(hk, x, J) will simply run Open(hk, x, j) for every j ∈ J . Verify can be extended
in a similar way to take as input (hk, rt, J, bJ , ρJ), and accept if and only if Verify(hk, rt, j, bj , ρj) = 1
for every j ∈ J .

Theorem 9.8 ([Mer88]). Assuming the existence of a collision resistant hash family there exists a
hash family with local opening (according to Definition 9.5).

9.3 PV Proof of Completeness for Merkle Hash

In this section, we will prove that the opening completeness of any Merkle hash can be proven in
PV , for a Merkle hash tree instantiated from any underlying hash function.

Indeed, one can formalize the proof of completeness in Cook’s theory PV and then use Cook’s
propositional translation to obtain a polynomial-size proof in EF .

We first formalize the opening completeness of Merkle hash in Extended Frege system. To do
this, we need to express the statement

“for any hk and x1, . . . , xN , rt = Hash(hk, x1, . . . , xN), ρ = Open(hk, (x1, . . . , xN), j), then
Verify(hk, rt, j, xj , ρ) = 1.”

in PV . To achieve this, we first need to formalize the notation xj as a function of x1, . . . , xN and
j. Namely, we define the following functions Proj(x, j) = xj , where x = (x1, . . . , xN).

Without loss of generality, in the rest of this section, we assume that N is a power of 2. Namely,
N = 2d for an integer d. Then we construct Proj circuit, as well as the circuits Hash,Open,Verify
recursively.

Definition 9.9 (Merkle Hash). Let H = {(Genλ,Hλ)}λ∈N be any hash function family with the
following syntax.

• Genλ(r) : This is a key generation circuit that takes R = R(λ) bits of random coins, and
outputs a hash key hk.

• Hλ : The hash function takes as input a hash key hk and a string of 2λ bits, and it outputs a
hash value of λ bits.

77

We recursively construct the following circuits of the Merkle tree hash family HT = (Gen,Hash,Open,Verify)
29:

• Proj(x, j): For any b ∈ {0, 1} and x0, x1 ∈ {0, 1}, we construct

Proj(x0||x1, b) = xb.

For any x0,x1 ∈ {0, 1}2
d−1 and j ∈ {0, 1}d−1 where d > 1, and b ∈ {0, 1}, we construct

Proj(x0||x1, b||j) = Proj(xb, j).

• Gen(1λ; r): The key generation algorithm takes R(λ) random bits as input and runs hk ←
Genλ(r). It outputs hk.

• Hash(hk,x): For any x0, x1 ∈ {0, 1}, we construct

Hash(hk, (x0, x1)) = H(hk, (x0, x1)).

For any x0,x1 ∈ {0, 1}2
d−1 where d > 1, we construct

Hash(hk,x0||x1) = H(hk,Hash(hk,x0)||Hash(hk,x1)).

• Open(hk,x, j): For j ∈ {0, 1}, x0, x1 ∈ {0, 1}, we construct

Open(hk,x0||x1, j) = (x0, x1).

For any x0,x1 ∈ {0, 1}2
d−1 where d > 1, j ∈ {0, 1}d−1, and b ∈ {0, 1}, we construct

Open(hk,x0||x1, b||j) = (Hash(hk,x0),Hash(hk,x1),Open(hk,xb, j)).

• Verify(hk, rt, j, v, ρ): j ∈ {0, 1}d, v ∈ {0, 1} where d ≥ 1, and ρ be a tuple of length 2d, where
each entry is a binary string of length λ.

For d = 1, we construct Verify(hk, rt, j, b, ρ) as the following circuit. It parses ρ = (x0, x1) and
checks whether

rt = H(hk, (x0, x1)) ∧ v = xj .

For d ≥ 2, we recursively construct Verify(hk, rt, j, b, ρ) as the following circuit. We first parse
ρ = (h0, h1, ρ

′) and construct

Verify(hk, rt, b||j, v, ρ) = Verify(hk, hb, j, v, ρ
′) ∧ rt = H(hk, h0||h1).

Then we formalize the opening completeness of the Merkle hash as the following theorem state-
ment.

29Indeed, Gen = {Genλ}λ∈N,Hash = {Hashd,λ}d,λ∈N,Open = {Opend,λ}d,λ∈N,Verify = {Verifyd,λ}d,λ∈N are families
of circuits. For the simplicity of representation, we suppress the index when it is clear from the context.

78

Theorem 9.10 (PV -Proofs of Opening Completeness). There exists a polynomial L = L(N,λ)
such that, for any integer λ ∈ N, and N = 2d, there exists an Extended Frege proof of length
L(N,λ) for the following statement:

(rt = Hash(hk,x) ∧ ρ = Open(hk,x, j))→ Verify(hk, rt, j,Proj(x, j), ρ) = 1,

where x = (x1, . . . , xN), and the circuits Gen,Hash,Open,Verify are constructed in Definition 9.9.

Proof. We prove the theorem by constructing the PV proofs for the statement. The construction
is recursive on the variable d. Namely, for any fixed λ ∈ N, we first prove the theorem directly in
PV for d = 1, and denote the PV proof as π1. For d ≥ 2, we recursively build an PV proof πd
from πd−1.

Base Case: d = 1. If d = 1, then N = 2d = 2. From the construction in Definition 9.9, we
have that, for any x0, x1 ∈ {0, 1}, j ∈ {0, 1}, v ∈ {0, 1}, the circuits used in Merkle hash can be
represented as follows.

• Hash(hk, (x0, x1)) = H(hk, (x0, x1)),

• Open(hk, (x0, x1), j) = (x0, x1).

• Verify(hk, rt, j, v, ρ = (x′0, x
′
1) ∈ {0, 1}2) = H(hk, (x′0, x

′
1)) ∧ v = x′j .

• Proj((x0, x1), j) = xj .

Now the statement we want to prove becomes

(rt = H(hk, (x0, x1)) ∧ ρ = (x0, x1))→ Verify(hk, rt, j,Proj((x0, x1), j), ρ) = 1. (22)

We prove it in PV by considering two cases j = 0 and j = 1.

• If j = 0, we only need to further prove in PV that

(rt = H(hk, (x0, x1)) ∧ ρ = (x0, x1))→ Verify(hk, rt, 0, x0, ρ) = 1.

This is because we only need a constant size PV proof to show that Proj((x0, x1), 0) = x0,
from the construction of Proj. The above formula can be proven by an PV -proof of size poly(λ)
using the circuit construction of Verify.

• If j = 1, we need to further prove in PV the following formula:

(rt = H(hk, (x0, x1)) ∧ ρ = (x1, x0))→ Verify(hk, rt, 1, x1, ρ) = 1.

This formula has a poly(λ)-size PV proof due to the same reason as the case of j = 0.

Combining the above two cases, we obtain a PV proof for Equation (22).

79

Induction Step: d ≥ 2. In this case, we represent x = x0||x1, where x0,x1 are the vectors of
2d−1 variables. We also represent j = b||j, where b is a variable, and j is a vector of (d−1) variables.
Then the formula we want to prove is(

rt = Hash(hk,x0||x1) ∧ ρ = Open(hk,x0||x1, b||j)
)
→ Verify(hk, rt, b||j,Proj(x0||x1, b||j), ρ) = 1.

(23)
From the recursive construction of Hash(hk,x0||x1), we have a PV proof of

Hash(hk,x0||x1) = H(hk,Hash(hk,x0),Hash(hk,x1)).

Similarly, we have PV proofs of the following formulas.

Open(hk,x0||x1, b||j) = (Hash(hk,x0),H(hk,x1),Open(hk,xb, j)), b = 0, 1,

Proj(x0||x1, b||j) = Proj(xb, j), b = 0, 1,

and also,

Verify(hk, rt, b||j, v, ρ = (h0, h1, ρ
′)) = Verify(hk, hb, j, v, ρ

′) ∧ rt = H(hk, h0||h1), b = 0, 1 (24)

Leveraging the above PV proofs, to prove Equation (23), it suffices to prove the following formula,
for any fixed value b ∈ {0, 1} “hardwired” in the formula,

(rt = H(hk,Hash(hk,x0),Hash(hk,x1)) ∧ ρ = (Hash(hk,x0),Hash(hk,x1),Open(hk,xb, j)))

→ Verify(hk, rt, b||j,Proj(xb, j), ρ) = 1. (25)

Levering Equation (24), we can use a PV proof to prove that the above formula is equivalent to

(rt = H(hk,Hash(hk,x0),Hash(hk,x1)) ∧ ρ = (Hash(hk,x0),Hash(hk,x1),Open(hk,xb, j)))

→ Verify(hk,Hash(hk,xb), j,Proj(xb, j),Open(hk,xb, j)) = 1. (26)

Let πd be the PV proof of the Equation (23) for d-level Merkle hash tree. Then Equation (26) can
be prove by two copies of πd−1, one for b = 0, and the other for b = 1. Hence, we obtain an PV
proof πd for Equation (23).

Therefore, by the polynomial-time induction rule in PV to complete the proof.

10 Acknowledgements

We would like to thank Vinod Vaikuntanathan and Jiatu Li for helpful discussions.
Yael Tauman Kalai is supported by DARPA under Agreement No. HR00112020023. Any opin-

ions, findings and conclusions or recommendations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the views of the United States Government or DARPA. Surya
Mathialagan is supported in part by NSF CNS-2154149, a Simons Investigator Award, and Jane
Street.

80

References

[ABSV15] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From se-
lective to adaptive security in functional encryption. In Rosario Gennaro and Matthew
J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 657–677.
Springer, Berlin, Heidelberg, August 2015. 66, 67, 68

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from com-
pact functional encryption. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part I, volume 9215 of LNCS, pages 308–326. Springer, Berlin, Hei-
delberg, August 2015. 1, 19, 60, 64

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In
28th ACM STOC, pages 99–108. ACM Press, May 1996. 50

[AP11] Joël Alwen and Chris Peikert. Generating shorter bases for hard random lattices.
Theory of Computing Systems, 48:535–553, 2011. 50

[ARYY23] Shweta Agrawal, Mélissa Rossi, Anshu Yadav, and Shota Yamada. Constant input
attribute based (and predicate) encryption from evasive and tensor LWE. In Helena
Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part IV, volume 14084 of
LNCS, pages 532–564. Springer, Cham, August 2023. 4

[Bar86] David A. Mix Barrington. Bounded-width polynomial-size branching programs recog-
nize exactly those languages in NC1. In 18th ACM STOC, pages 1–5. ACM Press, May
1986. 90

[BBK+23] Zvika Brakerski, Maya Farber Brodsky, Yael Tauman Kalai, Alex Lombardi, and Omer
Paneth. SNARGs for monotone policy batch NP. In Helena Handschuh and Anna
Lysyanskaya, editors, CRYPTO 2023, Part II, volume 14082 of LNCS, pages 252–283.
Springer, Cham, August 2023. 2, 9, 24, 76

[BCC+17] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad
Rubinstein, and Eran Tromer. The hunting of the snark. Journal of Cryptology,
30(4):989–1066, 2017. 1

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive compo-
sition and bootstrapping for SNARKS and proof-carrying data. In Dan Boneh, Tim
Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC, pages 111–120. ACM
Press, June 2013. 23

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth.
Succinct non-interactive arguments via linear interactive proofs. In Amit Sahai, editor,
TCC 2013, volume 7785 of LNCS, pages 315–333. Springer, Berlin, Heidelberg, March
2013. 1

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs.
In Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of
LNCS, pages 31–60. Springer, Berlin, Heidelberg, October / November 2016. 1, 6

81

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-
homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In
Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of
LNCS, pages 533–556. Springer, Berlin, Heidelberg, May 2014. 19

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian,
editor, CRYPTO 2001, volume 2139 of LNCS, pages 1–18. Springer, Berlin, Heidelberg,
August 2001. 61

[BHK17] Zvika Brakerski, Justin Holmgren, and Yael Tauman Kalai. Non-interactive delega-
tion and batch NP verification from standard computational assumptions. In Hamed
Hatami, Pierre McKenzie, and Valerie King, editors, 49th ACM STOC, pages 474–482.
ACM Press, June 2017. 2, 29, 30

[BKK+18] Saikrishna Badrinarayanan, Yael Tauman Kalai, Dakshita Khurana, Amit Sahai, and
Daniel Wichs. Succinct delegation for low-space non-deterministic computation. In
Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, 50th ACM STOC,
pages 709–721. ACM Press, June 2018. 2

[BLMR13] Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan. Key
homomorphic PRFs and their applications. In Ran Canetti and Juan A. Garay, edi-
tors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 410–428. Springer, Berlin,
Heidelberg, August 2013. 16, 21

[BR94] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In Dou-
glas R. Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages 232–249. Springer,
Berlin, Heidelberg, August 1994. 1

[Bus86] Samuel Buss. Bounded Arithmetic. Bibliopolis, Naples, Italy, 1986. 3, 16, 27, 96

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) LWE. In Rafail Ostrovsky, editor, 52nd FOCS, pages 97–106. IEEE
Computer Society Press, October 2011. 2, 19, 23, 107

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from func-
tional encryption. In Venkatesan Guruswami, editor, 56th FOCS, pages 171–190. IEEE
Computer Society Press, October 2015. 1, 19, 60, 64

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D.
Rothblum, and Daniel Wichs. Fiat-Shamir: from practice to theory. In Moses Charikar
and Edith Cohen, editors, 51st ACM STOC, pages 1082–1090. ACM Press, June 2019.
2

[CGJ+23] Arka Rai Choudhuri, Sanjam Garg, Abhishek Jain, Zhengzhong Jin, and Jiaheng
Zhang. Correlation intractability and SNARGs from sub-exponential DDH. In Helena
Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part IV, volume 14084 of
LNCS, pages 635–668. Springer, Cham, August 2023. 2, 8, 25

82

[CHVW19] Yilei Chen, Minki Hhan, Vinod Vaikuntanathan, and Hoeteck Wee. Matrix PRFs:
Constructions, attacks, and applications to obfuscation. In Dennis Hofheinz and Alon
Rosen, editors, TCC 2019, Part I, volume 11891 of LNCS, pages 55–80. Springer,
Cham, December 2019. 16

[CJJ21] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. Non-interactive batch ar-
guments for NP from standard assumptions. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part IV, volume 12828 of LNCS, pages 394–423, Virtual Event, August
2021. Springer, Cham. 2

[CJJ22] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. SNARGs for P from LWE.
In 62nd FOCS, pages 68–79. IEEE Computer Society Press, February 2022. 2, 8, 24,
25, 31, 34

[Cob65] Alan Cobham. The intrinsic computational difficulty of functions. In Yehoshua Bar-
Hillel, editor, Logic, Methodology and Philosophy of Science: Proceedings of the 1964
International Congress (Studies in Logic and the Foundations of Mathematics), pages
24–30. North-Holland Publishing, 1965. 27, 28

[Coo75] Stephen A. Cook. Feasibly constructive proofs and the propositional calculus (pre-
liminary version). In Proceedings of the Seventh Annual ACM Symposium on Theory
of Computing, STOC ’75, page 83–97, New York, NY, USA, 1975. Association for
Computing Machinery. 3, 15, 16, 27, 29

[CR79] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof
systems. Journal of Symbolic Logic, 44(1):36–50, 1979. 29

[CVW18] Yilei Chen, Vinod Vaikuntanathan, and Hoeteck Wee. GGH15 beyond permutation
branching programs: Proofs, attacks, and candidates. In Hovav Shacham and Alexan-
dra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages 577–607.
Springer, Cham, August 2018. 3, 4, 15, 21, 46, 48, 49, 50, 51, 88, 90

[DCL08] Giovanni Di Crescenzo and Helger Lipmaa. Succinct np proofs from an extractability
assumption. In Logic and Theory of Algorithms: 4th Conference on Computability in
Europe, CiE 2008, Athens, Greece, June 15-20, 2008 Proceedings 4, pages 175–185.
Springer, 2008. 1

[DFS24] Thomas Debris-Alazard, Pouria Fallahpour, and Damien Stehlé. Quantum oblivious
LWE sampling and insecurity of standard model lattice-based SNARKs. In Bojan
Mohar, Igor Shinkar, and Ryan O’Donnell, editors, 56th ACM STOC, pages 423–434.
ACM Press, June 2024. 6

[DGKV22] Lalita Devadas, Rishab Goyal, Yael Kalai, and Vinod Vaikuntanathan. Rate-1 non-
interactive arguments for batch-NP and applications. In 63rd FOCS, pages 1057–1068.
IEEE Computer Society Press, October / November 2022. 2

[Din07] Irit Dinur. The pcp theorem by gap amplification. J. ACM, 54(3):12–es, jun 2007. 5,
20, 75

83

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of
LNCS, pages 186–194. Springer, Berlin, Heidelberg, August 1987. 19

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzen-
macher, editor, 41st ACM STOC, pages 169–178. ACM Press, May / June 2009. 2,
23

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps
from lattices. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II,
volume 9015 of LNCS, pages 498–527. Springer, Berlin, Heidelberg, March 2015. 46,
48, 50

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and
its applications. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th
ACM STOC, pages 467–476. ACM Press, June 2013. 4, 45

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. Reusable garbled circuits and succinct functional encryption. In
Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC, pages
555–564. ACM Press, June 2013. 19, 62, 64, 99, 103, 106, 107, 108

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental
poker keeping secret all partial information. In 14th ACM STOC, pages 365–377. ACM
Press, May 1982. 17

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based en-
cryption for fine-grained access control of encrypted data. In Ari Juels, Rebecca N.
Wright, and Sabrina De Capitani di Vimercati, editors, ACM CCS 2006, pages 89–98.
ACM Press, October / November 2006. Available as Cryptology ePrint Archive Report
2006/309. 103

[GR07] Shafi Goldwasser and Guy N. Rothblum. On best-possible obfuscation. In Salil P.
Vadhan, editor, TCC 2007, volume 4392 of LNCS, pages 194–213. Springer, Berlin,
Heidelberg, February 2007. 4

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In
Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 321–340.
Springer, Berlin, Heidelberg, December 2010. 1

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin
and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS,
pages 305–326. Springer, Berlin, Heidelberg, May 2016. 1

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learn-
ing with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Ran
Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS,
pages 75–92. Springer, Berlin, Heidelberg, August 2013. 19, 96, 107

84

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from
all falsifiable assumptions. In Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM
STOC, pages 99–108. ACM Press, June 2011. 1, 23

[HJKS22] James Hulett, Ruta Jawale, Dakshita Khurana, and Akshayaram Srinivasan. SNARGs
for P from sub-exponential DDH and QR. In Orr Dunkelman and Stefan Dziembowski,
editors, EUROCRYPT 2022, Part II, volume 13276 of LNCS, pages 520–549. Springer,
Cham, May / June 2022. 25

[HLL23] Yao-Ching Hsieh, Huijia Lin, and Ji Luo. Attribute-based encryption for circuits of
unbounded depth from lattices. In IEEE FOCS, 2023. 4

[HW15] Pavel Hubacek and Daniel Wichs. On the communication complexity of secure function
evaluation with long output. In Tim Roughgarden, editor, ITCS 2015, pages 163–172.
ACM, January 2015. 8

[JJ22] Abhishek Jain and Zhengzhong Jin. Indistinguishability obfuscation via mathematical
proofs of equivalence. In 63rd FOCS, pages 1023–1034. IEEE Computer Society Press,
October / November 2022. 2, 3, 7, 14, 26, 27

[JKKZ21] Ruta Jawale, Yael Tauman Kalai, Dakshita Khurana, and Rachel Yun Zhang. SNARGs
for bounded depth computations and PPAD hardness from sub-exponential LWE. In
Samir Khuller and Virginia Vassilevska Williams, editors, 53rd ACM STOC, pages
708–721. ACM Press, June 2021. 2

[JKLV24] Zhengzhong Jin, Yael Kalai, Alex Lombardi, and Vinod Vaikuntanathan. SNARGs un-
der LWE via propositional proofs. In Bojan Mohar, Igor Shinkar, and Ryan O’Donnell,
editors, 56th ACM STOC, pages 1750–1757. ACM Press, June 2024. , 2, 5, 7, 8, 9, 10,
13, 14, 17, 31, 32, 33, 38

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-
founded assumptions. In Samir Khuller and Virginia Vassilevska Williams, editors,
53rd ACM STOC, pages 60–73. ACM Press, June 2021. 1

[JLS22] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from LPN
over Fp, DLIN, and PRGs in NC0. In Orr Dunkelman and Stefan Dziembowski, editors,
EUROCRYPT 2022, Part I, volume 13275 of LNCS, pages 670–699. Springer, Cham,
May / June 2022. 1

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended ab-
stract). In 24th ACM STOC, pages 723–732. ACM Press, May 1992. 19

[KLV23] Yael Tauman Kalai, Alex Lombardi, and Vinod Vaikuntanathan. SNARGs and PPAD
hardness from the decisional Diffie-Hellman assumption. In Carmit Hazay and Martijn
Stam, editors, EUROCRYPT 2023, Part II, volume 14005 of LNCS, pages 470–498.
Springer, Cham, April 2023. 2

[KLVW23] Yael Kalai, Alex Lombardi, Vinod Vaikuntanathan, and Daniel Wichs. Boosting batch
arguments and RAM delegation. In Barna Saha and Rocco A. Servedio, editors, 55th
ACM STOC, pages 1545–1552. ACM Press, June 2023. 2, 8, 24, 25, 34

85

[KP16] Yael Tauman Kalai and Omer Paneth. Delegating RAM computations. In Martin
Hirt and Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages
91–118. Springer, Berlin, Heidelberg, October / November 2016. 2

[KPY19] Yael Tauman Kalai, Omer Paneth, and Lisa Yang. How to delegate computations
publicly. In Moses Charikar and Edith Cohen, editors, 51st ACM STOC, pages 1115–
1124. ACM Press, June 2019. 2

[KR09] Yael Tauman Kalai and Ran Raz. Probabilistically checkable arguments. In Shai
Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 143–159. Springer, Berlin,
Heidelberg, August 2009. 2

[KRR14] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. How to delegate computations:
the power of no-signaling proofs. In David B. Shmoys, editor, 46th ACM STOC, pages
485–494. ACM Press, May / June 2014. 2, 9, 30

[KVZ21] Yael Tauman Kalai, Vinod Vaikuntanathan, and Rachel Yun Zhang. Somewhere sta-
tistical soundness, post-quantum security, and SNARGs. In Kobbi Nissim and Brent
Waters, editors, TCC 2021, Part I, volume 13042 of LNCS, pages 330–368. Springer,
Cham, November 2021. 2, 8, 24, 31, 34

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party
computation. Journal of Cryptology, 22(2):161–188, April 2009. 19, 100, 101, 102, 103

[LPST16a] Huijia Lin, Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability ob-
fuscation with non-trivial efficiency. In Chen-Mou Cheng, Kai-Min Chung, Giuseppe
Persiano, and Bo-Yin Yang, editors, PKC 2016, Part II, volume 9615 of LNCS, pages
447–462. Springer, Berlin, Heidelberg, March 2016. 19, 60, 64, 66

[LPST16b] Huijia Lin, Rafael Pass, Karn Seth, and Sidharth Telang. Output-compressing ran-
domized encodings and applications. In Eyal Kushilevitz and Tal Malkin, editors,
TCC 2016-A, Part I, volume 9562 of LNCS, pages 96–124. Springer, Berlin, Heidel-
berg, January 2016. 19, 60, 64, 66, 69, 70, 71

[Mer88] Ralph C. Merkle. A digital signature based on a conventional encryption function. In
Carl Pomerance, editor, CRYPTO’87, volume 293 of LNCS, pages 369–378. Springer,
Berlin, Heidelberg, August 1988. 8, 76, 77

[Mic94] Silvio Micali. CS proofs (extended abstracts). In 35th FOCS, pages 436–453. IEEE
Computer Society Press, November 1994. 1, 6, 19, 23, 75

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012,
volume 7237 of LNCS, pages 700–718. Springer, Berlin, Heidelberg, April 2012. 50

[MPV24] Surya Mathialagan, Spencer Peters, and Vinod Vaikuntanathan. Adaptively sound
zero-knowledge SNARKs for UP. In Leonid Reyzin and Douglas Stebila, editors,
CRYPTO 2024, Part X, volume 14929 of LNCS, pages 38–71. Springer, Cham, August
2024. , 4, 5, 6, 15, 16, 18, 19, 46, 48, 51, 52, 53, 72, 73, 74, 88, 90, 91, 92, 93, 94, 95

86

[Nao03] Moni Naor. On cryptographic assumptions and challenges (invited talk). In Dan
Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 96–109. Springer, Berlin,
Heidelberg, August 2003. 1

[OPWW15] Tatsuaki Okamoto, Krzysztof Pietrzak, Brent Waters, and Daniel Wichs. New realiza-
tions of somewhere statistically binding hashing and positional accumulators. In Tetsu
Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015, Part I, volume 9452 of LNCS,
pages 121–145. Springer, Berlin, Heidelberg, November / December 2015. 8

[Par71] Rohit Parikh. Existence and feasibility in arithmetic. The Journal of Symbolic Logic,
36(3):494–508, 1971. 3

[Pic15] Ján Pich. Logical strength of complexity theory and a formalization of the PCP theorem
in bounded arithmetic. Logical Methods in Computer Science, Volume 11, Issue 2, June
2015. 5, 20, 69, 75

[Pom02] Carl Pomerance. The expected number of random elements to generate a finite abelian
group. Periodica Mathematica Hungarica, 43(1):191–198, 2002. 59, 60

[PP22] Omer Paneth and Rafael Pass. Incrementally verifiable computation via rate-1 batch
arguments. In 63rd FOCS, pages 1045–1056. IEEE Computer Society Press, Octo-
ber / November 2022. 2

[PR17] Omer Paneth and Guy N. Rothblum. On zero-testable homomorphic encryption and
publicly verifiable non-interactive arguments. In Yael Kalai and Leonid Reyzin, editors,
TCC 2017, Part II, volume 10678 of LNCS, pages 283–315. Springer, Cham, November
2017. 29

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC, pages 84–93. ACM
Press, May 2005. 21, 23

[Ros19] Sheldon Ross. First Course in Probability, A. Pearson Higher Ed, 2019. 95

[SC04] Michael Soltys and Stephen Cook. The proof complexity of linear algebra. Annals
of Pure and Applied Logic, 130(1):277–323, 2004. Papers presented at the 2002 IEEE
Symposium on Logic in Computer Science (LICS). 16, 46, 89, 96

[SD17] Noah Stephens-Davidowitz. On the Gaussian Measure Over Lattices. PhD thesis, New
York University, USA, 2017. 21

[SW05] Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In Ronald Cramer,
editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 457–473. Springer, Berlin,
Heidelberg, May 2005. 103

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In David B. Shmoys, editor, 46th ACM STOC, pages 475–484.
ACM Press, May / June 2014. 1, 5, 6, 18, 71, 72, 73

87

[Tsa22] Rotem Tsabary. Candidate witness encryption from lattice techniques. In Yevgeniy
Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part I, volume 13507 of LNCS,
pages 535–559. Springer, Cham, August 2022. 4, 15

[Vai24] Vinod Vaikuntanathan. Personal communication, 2024. 19, 60, 64

[VWW22] Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. Witness encryption and null-
IO from evasive LWE. In Shweta Agrawal and Dongdai Lin, editors, ASIACRYPT 2022,
Part I, volume 13791 of LNCS, pages 195–221. Springer, Cham, December 2022. 3, 4,
15, 21, 46, 48, 49, 53, 88

[Wee22] Hoeteck Wee. Optimal broadcast encryption and CP-ABE from evasive lattice as-
sumptions. In Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022,
Part II, volume 13276 of LNCS, pages 217–241. Springer, Cham, May / June 2022. 4,
48

[WW22] Brent Waters and David J. Wu. Batch arguments for NP and more from standard
bilinear group assumptions. In Yevgeniy Dodis and Thomas Shrimpton, editors,
CRYPTO 2022, Part II, volume 13508 of LNCS, pages 433–463. Springer, Cham, Au-
gust 2022. 2, 8, 25

[WW24a] Brent Waters and David J. Wu. Adaptively-sound succinct arguments for NP from
indistinguishability obfuscation. In Bojan Mohar, Igor Shinkar, and Ryan O’Donnell,
editors, 56th ACM STOC, pages 387–398. ACM Press, June 2024. 1, 5, 6, 34

[WW24b] Brent Waters and David J. Wu. A pure indistinguishability obfuscation approach to
adaptively-sound SNARGs for NP. Cryptology ePrint Archive, Report 2024/933, 2024.
1, 5, 6

[WZ24] Brent Waters and Mark Zhandry. Adaptive security in SNARGs via iO and lossy
functions. In Leonid Reyzin and Douglas Stebila, editors, CRYPTO 2024, Part X,
volume 14929 of LNCS, pages 72–104. Springer, Cham, August 2024. 1, 5, 6

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd
FOCS, pages 160–164. IEEE Computer Society Press, November 1982. 100, 107

[Zha16] Mark Zhandry. How to avoid obfuscation using witness PRFs. In Eyal Kushilevitz
and Tal Malkin, editors, TCC 2016-A, Part II, volume 9563 of LNCS, pages 421–448.
Springer, Berlin, Heidelberg, January 2016. 6

A Deferred proofs and constructions from Section 6.3.2

A.1 Proof of Lemma 6.10

Proof. We sketch the polynomial-sized PV proof of correctness (following the proofs from [CVW18,
VWW22, MPV24]).

88

If Construction 6.9 does not output ⊥, then the following equations must be satisfied:

D1,b = M1,bA1 +E1,b,

Ai−1Di,b = Mi,bAi +Ei,b for 2 ≤ i ≤ h− 1

Ah−1Dh,b = Mh,b +Eh,b

For each x ∈ {0, 1}h, one can inductively prove for d ≤ h− 1, we have

Dx[1:d] = Mx[1:d]Ad +
d∑

j=1

Mx[1:j−1] ·Ej,xj ·Dx[j+1:d]

where we use the short-hand Sx[i,j] to denote
∏j

k=i Sk,xk
. The base case when d = 1 is clearly true

by definition. Assuming the statement holds for d ≤ k ≤ h− 2, for d = k + 1, we have:

Dx[1:d] = Dx[1:d−1] ·Dd,xd

=

Mx[1:d−1]Ad−1 +
d−1∑
j=1

Mx[1:j−1] ·Ej,xj ·Dx[j+1:d−1]

 ·Dd,xd

= Mx[1:d−1]Ad−1Dd,xd
+

(
d−1∑
i=1

Mx[1:j−1] ·Ej,xj ·Dx[j+1:d−1]

)
·Dd,xd

= Mx[1:d−1](Md,xd
Ad +Ed,xd

) +

d−1∑
i=1

Mx[1:j−1] ·Ej,xj ·Dx[j+1:d].

= Mx[1:d]Ad +
d∑

i=1

Mx[1:j−1] ·Ej,xj ·Dx[j+1:d].

Here, we used basic associative and distributive properties of matrix multiplication, which we can
be proven in PV [SC04]. Moreover, since this is a polynomial-time induction rule (inducts on the
length of x), it can be proven by a polynomial-time PV proof.

Then, for d = h (we deal with this case separately due to the asymmetry in the definition), we
have that

Dx = Dx[1:h−1] ·Dh,xh

= Mx[1:h−1](Mh,xh
+Eh,xh

) +
h−1∑
i=1

Mx[1:j−1] ·Ej,xj ·Dx[j+1:h].

= Mx +

h∑
i=1

Mx[1:j−1] ·Ej,xj ·Dx[j+1:h].

89

Therefore, to bound ∥Dx −Mx∥∞, it suffices to compute this norm bound via:∥∥∥∥∥∥
h∑

j=1

(
j−1∏
i=1

Mi,xi

)
·Ej,xj ·

 h∏
i=j+1

Di,xi

∥∥∥∥∥∥
∞

≤ h ·max
j∈[h]

(
j−1∏
i=1

Mi,xi

)
·Ej,xj ·

 h∏
i=j+1

Di,xi

≤ h ·

(
h−1∏
i=1

mi

)
·Bh .

where we used the fact that ggh.encode ensures that ∥Ei,b∥∞ ≤ σ
√
n ≤ B, ∥Di,b∥∞ ≤ σ

√
n ≤ B,

and ∥Mi,b∥∞ ≤ B. The first inequality is trivial, and the second repeatedly uses the simple fact
that if ∥A ∈ Zx×d

q ∥∞ ≤ a and ∥B ∈ Zd×y
q ∥∞ ≤ b, then ∥AB∥∞ ≤ dab, along with Lemma 3.1, for

all i ∈ [h] and b ∈ {0, 1}, ∥Di,b∥∞ ≤ σ
√
n.

A.2 Read-c σ-PRFs

In Section 6.3.2, we defined read-once σ-PRFs. Looing forward, for the construction of the designated-
verifier SNARG in Appendix A.3, we additionally need to define read-c σ-PRFs. We then recall the
technique of [MPV24] (also used in prior works such as [CVW18]) to transform any read-c σ-
PRF into a functionality preserving read-once σ-PRF, which we can then obfuscate with using the
average-case obfuscator in Construction 6.13.

Read c-branching programs. We additionally consider MBPs on inputs of length ℓ specified
by a collection of matrices

(
Mi,b : i ∈ [h := c · ℓ], b ∈ {0, 1}

)
and two vectors u,v (all over some

ring R, which, for us, will always be Zq for a prime q) such that for all x ∈ {0, 1}ℓ,

f(x) = uT

(
h∏

i=1

Mi,xji

)
v ,

where ji := (i− 1) mod ℓ+ 1. More explicitly,

f(x) = uT
(
(M1,x1 · . . . ·Mℓ,xℓ

) · (Mℓ+1,x1 · . . . ·M2ℓ,xℓ
) · . . . · (M(c−1)ℓ+1,x1

· . . . ·Mcℓ,xℓ
)
)
v .

Such MBPs are called read-c MBPs. When c = 1, we say the MBP is read-once. The following
classical result shows that any function computable by logarithmic-depth Boolean circuits can be
represented by a matrix branching program.

Theorem A.1 (Barrington’s Theorem [Bar86]). If f : {0, 1}ℓ → {0, 1} can be computed by a circuit
of depth d, then it can be computed by a matrix branching program

{Mi,b : i ∈ [h := c · ℓ], b ∈ {0, 1}},u,v

where h = O(4d), and all matrices Mi,b ∈ {0, 1}5×5 are permutations.

90

Transforming Read-c σ-PRFs into Read-Once σ-PRFs Notice that for general read-c σ-
matrix PRFs (recall that σ-PRFs were defined in Definition 6.12), it is not the case that all noisy
products {uMxv+ ex}x∈{0,1}h are pseudorandom— the σ-PRF guarantee only requires that noisy
products corresponding to inputs x′ ∈ {0, 1}ℓ (i.e., with x = x′ | x′ | · · · | x′) need be pseudoran-
dom. However, our proof techniques will require all products to be pseudorandom. The following
construction is a generic transformation that modifies a read-c σ-matrix PRF so that all its products
are pseudorandom, without losing functionality. We highlight our modifications in blue.

Construction A.2. On input a read-c MBP f := ({Mi,b}i∈[h],b∈{0,1},u,v) on inputs of length ℓ
(where h = c · ℓ):

• Define Ci,b = diag(y1, . . . , y2ℓ, 1, . . . , 1︸ ︷︷ ︸
ℓ times

) ∈ Z3ℓ×3ℓ
q , where h = c · ℓ, and for 1 ≤ j ≤ ℓ and

b ∈ {0, 1},

y2j−b =

{
0 i mod ℓ = j and b′ = b

1 otherwise.

• Sample matrices Si,b ← Dn×n
Z,2
√
n
, and a vector a← Zn

q . If ∥Si,b∥∞ ≥ σ
√
n for any Si,b, replace

with 0.

• Output g := ({Mi,b}i∈[h],b∈{0,1},u,v), where

– M′i,b = diag(Mi,b,Ci,b ⊗ Si,b),

– u′ :=

 u
(1, 1, . . . , 1︸ ︷︷ ︸

2ℓ times

| −1,−1, . . . ,−1︸ ︷︷ ︸
ℓ times

)T ⊗ e1

 where e1 = (1, 0, . . . , 0)T ∈ Zn
q .

– v′ :=

(
v

13ℓ ⊗ a

)
where 13ℓ = (1, . . . , 1)T ∈ Z3ℓ

q .

Lemma A.3 ([MPV24, Lemma 4.5]). Let g, {Si,b}i∈[h],b∈{0,1} be as in Construction A.2 on input
f . Then for all x ∈ {0, 1}ℓ,

g(x | x | · · · | x) = f(x) ,

where f(x) = uTMx|x|...|xv and x | x | · · · | x is the c-fold concatenation of x with itself. Moreover,
there is a polynomial-sized PV proof of the fact that:

for any read-c MBPs f , all outputs g from Construction A.2 on any randomness r satisfies that:
for all x ∈ {0, 1}ℓ, g(x | x | · · · | x) = f(x).

Let σ′ ≥ 2h
3λ · (n2σ)h+1. Assuming subexponential LWE with 2n

δ hardness,

• {ex ← DZ,σ′}x∈{0,1}ℓ ,

• {ey ← DZ,σ′}y∈{0,1}h, and

• y′ ∈ {0, 1}h range over all y′ not of the form x | x | · · · | x,

91

we have that

{g(y) + ey}y∈{0,1}h , {Si,b}i∈[h],b∈{0,1} ≈c {f(x) + ex}x∈{0,1}ℓ , {U(Zq)}y′ , {Si,b}i∈[h],b∈{0,1}

that is, all poly(2nδ
)-time adversaries have distinguishing advantage at most 2−nδ .

Proof (sketch). We only outline the PV proof here, and we refer the reader to [MPV24] for a proof
of the full theorem.

Note that for all y ∈ {0, 1}h, j ∈ [ℓ] and b ∈ {0, 1} it is easy to prove that since Ci,b are all
diagonal matrices,

Cy[2j − b, 2j − b] =
h∏

i=1

Ci,yi [2j − b, 2j − b]

via matrix multiplication and polynomial-time induction in h (and hence polynomial-sized PV).
We note that when y = x|x| . . . |x︸ ︷︷ ︸

c times

for x ∈ {0, 1}ℓ, then for j ∈ [ℓ] and b ∈ {0, 1}

Cy[2j − b, 2j − b] =

{
1 if xj = b

0 if xj ̸= b.

For k ≥ 2ℓ+1, we have that Cy[k, k] =
∏h

i=1Ci,yi [k, k] = 1 since all Ci,yi [k, k] = 1 by construction.
Therefore, we have that

(1, 1, . . . , 1︸ ︷︷ ︸
2ℓ times

| −1,−1, . . . ,−1︸ ︷︷ ︸
ℓ times

)Cy13ℓ =
2ℓ∑
k=1

Cy[k, k]−
3ℓ∑

k=2ℓ+1

Cy[k, k] = ℓ− ℓ = 0.

Here, we have used basic properties of matrix multiplication, and hence there is an PV proof of the
above fact. Therefore,

g(y) = u′TM′yv
′

= uTMyv + ((12ℓ| − 1ℓ)Cy13ℓ)⊗
(
eT1 Sya

)
= uTMyv + 0⊗

(
eT1 Sya

)
= uTMyv = f(x)

as desired. Here, we used basic properties of matrix multiplication and the mixed tensor property,
and hence this can be shown in polynomial-sized PV .

A.3 Modified Designated-Verifier SNARG for UP based on [MPV24]

Now recall the construction of [MPV24], and we present our modifications in blue. Our modifications
allow us to achieve a polynomial-sized PV proof of completeness for our scheme. We note that
[MPV24] formalized this construction in terms of a witness PRF, and then transformed the witness
PRF into a dv-SNARG. We present the dv-SNARG directly.

92

Construction A.4 (dv-SNARG for UP). Fix a relation RL for a UP relation. By a classical
reduction to Circuit-SAT, we may assume without loss of generality that R(x,w) is represented by
a circuit of depth O(log ℓ) for inputs x ∈ {0, 1}ℓ. Then, use Barrington’s theorem (Theorem A.1)
to construct a read-c MBP

Γ =
(
{Mi,b ∈ {0, 1}v×v}i∈[h],b∈{0,1},u,v ∈ {0, 1}v,

)
,

such that Γ(x,w) := uM(x,w)|(x,w)|...|(x,w)v = 0 ⇐⇒ R(x,w) = 1. (From here on, we treat the
branching program as the relation circuit instead.) Set h := c · ℓ (length of the branching program).
Set n such that h+ λ ≤ nδ/20. Set q = 2n

δ , and p = 2κ, for some κ = λ+ ω(log(h+ T + λ)).

Gen(1λ,RL): • For i ∈ [h], it samples Si,b ← Dn×n
Z,σ , and for i ≤ ℓ, it samples Ti,b ← Dn×n

Z,σ ,
where σ =

√
2n. If ∥Si,b∥∞ ≥ σ

√
n for any Si,b, replace with 0. Similarly, if any ∥Ti,b∥∞,

replace with 0.

• Sample a,b← Zn
q .

• Set matrices

Qi,b =

(
Mi,b ⊗ Si,b

Ti,b,

)
1 ≤ i ≤ ℓ,(

Mi,b ⊗ Si,b

I

)
ℓ < i ≤ h,

L =
(
(uT ⊗ eT1) | e1

)
,

R =

(
v ⊗ a
b

)
,

where e1 denotes the vector (1, 0, . . . , 0)T ∈ Zn
q . and sets F := (L, {Qi,b}i∈[h],b∈{0,1},R).

• Apply the read-c to read-once transformation in Construction A.2 to obtain a new MBP
F ′ = (L,′ {Q′i,b}i∈[h],b∈{0,1},R′)

• Set pk = O(F ′), where O is the obfuscation algorithm from Theorem 6.14.

• Set the verifier key vk = {{Ti,b}i∈[ℓ,b∈{0,1},b}.
• If O outputs ⊥, instead set (pk, vk) = (⊥,⊥).

P(pk,x,w): If R(x,w) = 0, output ⊥. Else, compute

π := ⌊O.Eval(pk,x,w| . . . |x,w︸ ︷︷ ︸
c times

)⌉p ∈ Zp

Output π. Here, ⌊a⌉p takes a ∈ Zq and identifies a with a number {0, 1, . . . , q−1}, and outputs
⌊(p/q) · a⌋.

V(crs,x, π): If vk = ⊥, always output 1. Else,

• Compute π′ = ⌊eT1 Tx · b⌉p ∈ Zp.

• Accept if |π − π′ (mod p)| ≤ 1. (In [MPV24], proof was only accepted if π = π′.)

93

Remark A.5. At a high level, the main modification that we make (other than truncating Gaus-
sians) is that the verifier accepts even if the prover message is “off by 1” from the verifier’s computed
message. Although this is statistically unlikely assuming subexponential LWE, it is unclear how to
prove this using standard properties of linear algebra. However, we can show using an PV proof
that the prover message is at most “off by 1”. We then show that if one can break the soundness of
the new scheme, one can also break the soundness of the scheme in [MPV24].

Claim A.6. Construction A.4 is a perfectly complete designated-verifier SNARG for UP with a PV
proof of completeness, i.e. a PV proof of the following statements:

for all randomness r, instances x and witnesses w, for (pk, vk)← Gen(1λ,R),
if Γ(x,w) = 030 then V(vk,x,P(pk,x,w)) = 1.

Proof (sketch). If pk = ⊥, then by construction, vk = ⊥ as well. In this case, V(vk,x, π) accepts all
inputs, and hence the completeness condition is trivially satisfied. Since these claims follow from
simple implications, this can be shown in PV .

Otherwise, it must be the case that O does not output ⊥, in which case the completeness
condition in Theorem 6.14 guarantees that

|F ′((x,w)| . . . |(x,w)︸ ︷︷ ︸
c times

)−O.Eval(P, (x,w)| . . . |(x,w)︸ ︷︷ ︸
c times

)| ≤ h(mB)h−1 .

where we denote by F ′(y) = L′Q′yR
′. Moreover, this inequality has a PV of completeness. Addi-

tionally, by Lemma A.3, we have that

F ′((x,w)| . . . |(x,w)︸ ︷︷ ︸
c times

) = F((x,w)| . . . |(x,w)︸ ︷︷ ︸
c times

),

and this fact has a polynomial-sized PV proof.
Moreover, via basic linear algebra and the mixed tensor property, one can prove with a polynomial

sized PV proof that that if Γ(x,w) = uTM(x,w)|...|(x,w)v = 0, then

F((x,w)| . . . |(x,w)) = LQ(x,w)|...|(x,w)R

= eT1 ·Tx · b.

By construction in Construction 6.9, Construction A.2 and Construction A.4, the matrix entries
are bounded by σ

√
n (since we sample Si,b and Ti,b from truncated Gaussians). Also, the size m of

the matrices is 7n+ 3nℓ ≤ n2 for large n.
Therefore, combining the above equations, we have that

|eT1 ·Tx · b−O.Eval(P, (x,w)| . . . |(x,w)︸ ︷︷ ︸
c times

)| ≤ h(mσ
√
n)h−1 ≤ h · (2n3)h ≤ q

2p

since we chose h+ λ ≤ nδ/20 and p = 2κ, where κ = λ+ ω(log(λ, h)). Therefore, we have that∣∣∣∣∣∣⌊eT1 ·Tx · b⌉p − ⌊O.Eval(P, (x,w)| . . . |(x,w)︸ ︷︷ ︸
c times

)⌉p

∣∣∣∣∣∣ = |π′ − π| ≤ 1

30Recall that Γ(x,w) = 0 if and only if R(x,w) = 1.

94

by definition of the rounding function. Hence, the verifier in fact accepts a correctly computed
proof, as desired.

By concatenating all of the proofs of the above steps, we obtain a polynomial-sized PV proof
for this fact.

To prove soundness of the scheme, we reduce the soundness to that of the original construction
of [MPV24].

Claim A.7. Construction 6.5 is an adaptively sound31 designated-verifier SNARG for L ∈ UP
assuming LWE and evasive LWE.

Proof. We reduce the adaptive soundness of Construction A.4 to the soundness of the construction
in [MPV24].

Sampling from truncated Gaussians and applying the the modified obfuscation scheme only
change the distribution of (pk, vk) by a TV distance of 2−n · poly(n, h).

Now, we argue that if there exists an adaptive adversary P∗ that breaks the adaptive soundness
of Construction A.4 relative to verifier V, then there exists a P∗ that breaks the adaptive soundness
of [MPV24] scheme relative to V ′, which only accepts if π = π′ rather than if |π − π′| ≤ 1. If P∗
sends the instance-proof pair (x, π), choose π∗ ← {π − 1, π, π + 1}, and send (x∗, π∗) to V ′. Since
π was accepted, it is the case that |π − π′| ≤ 1. Therefore, π∗ is equal to π′ with probability 1/3.
Hence, there exists an adaptive adversary that also breaks the scheme in [MPV24] with only a 1/3
factor loss in advantage. Therefore, the modified scheme is sound assuming the scheme in [MPV24]
(which is true under subexponential LWE and evasive LWE).

Definition A.8. We say that a distribution D is ϵ-transparent if there exists a polynomial-time
deterministic sampler Samp and a polynomial time (possibly randomized) simulator S such that the
following distributions are ϵ-statistically indistinguishable:

• H0: Given r ← {0, 1}ℓ, output (Samp(r), r).

• H1: Given x← D, output (x,S(x)).

i.e. it is possible to efficiently simulate the randomness used to sample from D up to a statistical
distance of ϵ.

Lemma A.9. Let σ = O(nc) for some constant c > 0 (i.e. polynomial variance). Then, DZ,σ is a
2O(n)-transparent distribution.

This follows directly from inverse sampling since the variance in poly(n) (see for example [Ros19]).

Claim A.10. The common reference string pk generated by Construction A.4 is 2−ℓ indistinguish-
able from a transparent distribution D.

Proof (sketch). Recall that pk in Construction A.4 is generated via Construction 6.13. As shown
in [MPV24, Lemma 5.4], we can view F ′ as a σ′-PRF, for σ′ = 2h

3λ · (n2σ)h+2, one can apply
the σ-PRF indistinguishability guarantee of Theorem 6.14 to obtain that pk is 2nδ -indistinguishable
from some transparent distribution D. In particular, since nδ ≥ ℓ, we have that the the construction
is in fact 2ℓ-indistinguishable from a transparent distribution D.

31It is in fact reusably sound, but we do not need this additional property for our transformation in Theorem 5.1.

95

B PV Proof for Leveled GSW Fully Homomorphic Encryption

In this section, we recall and prove that the GSW [GSW13] encryption scheme (with minor modi-
fications) has an PV proof of correctness.

Algorithm 11 The leveled Gentry-Sahai-Waters [GSW13] encryption scheme for circuits of depth
at most D. All modifications to help achieve the proof of correctness are in blue.

Let w := ⌈log q⌉ − 1 and g := (1, 2, 4, . . . , 2w)T .
Let G := (In+1 ⊗ g) ∈ Z(n+1)×(n+1)w

q .
Let G− denotes the bit-decomposition inverse mapping; i.e., G−(A) = B if w has {0, 1} entries,
and GB = A.

• Key generation: GSW.Gen(1λ, 1D), and choose q ≥ 22D(n + 1)2Dw2Dσ, and outputs
sT ← Zn

q . Sample randomness A ← Zn×(n+1)w
q and e ← D(n+1)w

Z,σ . If ||e||∞ ≥ σ
√

(n+ 1)w,
set e = 0. Now, set sk = s and

pk =

(
A

−sTA+ eT

)
.

• Encryption: GSW.Encpk(m;R) takes as input m and randomness R← {0, 1}(n+1)w×(n+1)w

and outputs pk ·R+mG.

• Decryption: On input C ∈ Z(n+1)×(n+1)w
q , GSW.Decs proceeds as follows:

– Let w← Zn+1
q such that w = (0, 0, . . . , 0, ⌊q/2⌋)T .

– Compute µ = (sT |1)C ·G−(w).
– If |µ| ≤ ⌊q/2⌋, output 0. Else, output 1.

• Homomorphic computation: On input a NAND circuit C of depth at most L) and values
for its input gates, GSW.Eval evaluates the circuit gate by gate. Given a gate with inputs
C1 and C2, the output of the gate is defined as G−C1 ·G−(C2).

Lemma B.1. Algorithm 11 is a correct leveled fully homomorphic scheme with a PV proof of
correctness, i.e. a proof of the fact that

for all (sk, pk)← GSW.Gen(1λ, 1d), for all m1, . . . ,mℓ ∈ {0, 1}, and C : {0, 1}ℓ → {0, 1} of depth at
most D, for all cti ← GSW.Encpk(mi), if ctout ← GSW.Eval(pk, C, (ct1, . . . , ctℓ)), then

b← GSW.Dec(sk, ctout) satisfies b = C(m1, . . . ,mℓ).

Proof sketch. We simply argue that the proof strategy from [GSW13] can be formalized in PV. The
only difference in our algorithm is that we sample from a truncated Gaussian. Here is the main fact
we use:

if A ∈ Zn×m and B ∈ Zm×p, |AB|∞ ≤ m|A|∞ · |B|∞.

This can be proven easily using basic arithmetic and matrix properties as shown in [Bus86, SC04],
and hence can be easily shown to have a PV proof.

96

We proceed by induction on the depth d of the C input to GSW.Eval to show the following claim:∣∣vT · GSW(pk, C, (ct1, . . . , ctℓ))− b · vTG
∣∣
∞ ≤ 2d · (n+ 1)d+2wd+2 · σ.

where cti is a fresh encryption of the message mi, and b = C(m1, . . . ,mℓ).

Base case. First consider d = 0 (i.e., no homomorphic operations are performed the ciphertext).
Set v = (sT |1)T . Then, given C← GSW.Encpk(m;R)

vTC = vT

((
A

−sTA+ eT

)
·R+mG

)
= (sT | 1)

(
A

−sTA+ eT

)
·R+mvTG

= eTR+mvTG.

Hence,

|vTC−mvTG|∞ ≤ |eTR|∞
≤ (n+ 1)w · |e|∞ (Since R is 0/1)

≤ (n+ 1)w
√
(n+ 1)w · σ (Construction of e)

≤ (n+ 1)2w2σ (Loose upper bound)

where we use the fact that R is a matrix with 0/1 entries with dimension (n + 1)w × (n + 1)w.
Hence, the induction hypothesis holds.

Inductive Step. Suppose the claim holds for depth d. Then consider a circuit C of depth d+ 1.
Suppose the one has performed homomorphic evaluations up to the final output gate to obtain
ciphertexts C1 and C2. Suppose that the correctly evaluated values of these gates (without FHE)
are m0 and m1. By the inductive hypothesis,∣∣vTC1 −m1v

TG
∣∣
∞ ≤ 2d · (n+ 1)d+2wd+2 · σ∣∣vTC2 −m2v

TG
∣∣
∞ ≤ 2d · (n+ 1)d+2wd+2 · σ.

Now, we prove the following claim.

Claim B.2. Let v = (sT | 1)T . Suppose that two ciphertexts C1 and C2 corresponding to encryp-
tions of messages m1 and m2 satisfy the following inequalities:∣∣vTC1 −m1v

TG
∣∣
∞ ≤ δ1∣∣vTC2 −m2v

TG
∣∣
∞ ≤ δ2

Then,

|vT · GSW.Eval(pk,NAND, (C1,C2))−NAND(m1,m2) · vTG|∞ ≤ δ2 + (n+ 1)w · δ1

97

Proof. Recall

vT · GSW.Eval(pk,NAND, (C1,C2))

= vT (G−C1 ·G−(C2))

= vTG− vTC1 ·G−(C2) (Distributive law)

= vTG− (m1v
TG+ e1) ·G−(C2) (Substituting vTC1)

= vTG−m1v
TG ·G−(C2) + e1 ·G−(C2) (Distributive law)

= vTG−m1v
TC2 + e1 ·G−(C2) (Using G ·G−(C) = C)

= vTG−m1(m2v
TG+ e2) + e1 ·G−(C2) (Substituting vTC2)

= vTG−m1m2v
TG+ (m1e2 + e1 ·G−(C2)) (Distributive law)

= (1−m1m2)v
TG+ (m1e2 + e1 ·G−(C2)) (Scalar multiplication)

= NAND(m1,m2) · vTG+ (m1e2 + e1 ·G−(C2)) (Definition of NAND)

Therefore, rearranging, we have that:∣∣vT · GSW.Eval(pk,NAND, (C1,C2))−NAND(m1,m2) · vTG
∣∣
∞

≤
∣∣m1e2 + e1 ·G−(C2)

∣∣
∞

≤ |e2|∞ + (n+ 1)w · |e1|∞
≤ δ2 + (n+ 1)w · δ1.

Therefore, we have that:∣∣vT · GSW(pk, C, (ct1, . . . , ctℓ))−m · vTG
∣∣
∞

=
∣∣vT · GSW(pk,NAND, (C1,C2))−m · vTG

∣∣
∞

≤
∣∣vTC2 −m2v

TG
∣∣
∞ + (n+ 1) · w

∣∣vTC1 −m1v
TG
∣∣
∞

≤ 2(̇n+ 1) · w · 2d · (n+ 1)d+2wd+2 · σ
≤ 2d+1 · (n+ 1)d+3wd+3σ

as desired.
Now, consider the decryption algorithm. Let C ← GSW.Eval(pk, C, (ct1, . . . , ctℓ)) where circuit

C has depth at most D. By the inductive hypothesis, there exists some vector u with |u|∞ ≤
2D · (n+ 1)D+2wD+2σ such that vTC = mvTG+ u.

vTCG−(w) = (mvTG+ u)G−(w) (Substitution)

= mvTGG−(w) + uG−(w) (Distributive law)

= mvTw + uG−(w) (Using G ·G−(w) = w)
= m⌊q/2⌋+ uG−(w). (Using

∑
i viwi = ⌊q/2⌋)

98

Note that ∣∣vTCG−(w)−m⌊q/2⌋
∣∣ ≤ |uG−(w)|∞
≤ |u|∞ · (n+ 1)

≤ 2D · (n+ 1)D+3wD+2σ ≤ q/8

by our choice of q. Therefore, GSW.Decs(C) = m, completing the proof.

C PV Proof for Succinct Functional Encryption

In this section, we show that the succinct functional encryption construction of [GKP+13] can be
instantiated with a PV proof of correctness. We instantiate the three main ingredients in the
construction with PV proofs of correctness:

• Fully homomorphic encryption (Appendix B)

• Garbled circuits (Appendix C.1)

• Two-outcome attribute-based encryption (Appendix C.2)

With these ingredients, the proof of correctness of the succinct functional encryption follows straight-
forwardly (Appendix C.3).

C.1 PV Proof for Garbled circuits

Definition C.1 (Garbled circuits). A garbling scheme for a family of circuits C = {Cn}n∈N with Cn
is a set of boolean circuits taking as input n bits, is a tuple of algorithm GC = (GC.Garble,GC.Enc,GC.Eval)
such that

• GC.Garble(1λ, C): Takes as input security parameter λ and a circuit C ∈ Cn, and outputs the
garbled circuit Γ and a secret key sk.

• GC.Enc(sk, x): Takes as input the secret key sk and input x ∈ {0, 1}∗ and outputs an encoding
c.

• GC.Eval(Γ, c): Takes as input a garbled circuit Γ, an encoding c, and outputs a value y.

We require that:

Correctness. For any λ, n ∈ N, there is a negligible function µ such that

Pr

 C(x) = y :
(Γ, sk)← GC.Garble(1λ, C),

c← GC.Enc(sk, x),
y ← GC.Eval(Γ, c)

 ≥ 1− negl(λ).

We say that the algorithm has perfect correctness if the above probability is exactly 1.

Efficiency. We require the following efficiency guarantees from the algorithm:

• GC.Garble and GC.Eval algorithm runs in time poly(λ, |C|, |x|).

99

• GC.Enc runs in time poly(λ, |x|), independent of |C|.

Input and circuit privacy. A garbled circuit algorithm GC is input and circuit private if there
exists a simulator Sim such that for every PPT adversary A = (A1,A2), and for sufficiently
large security parameters λ,∣∣∣∣∣∣Pr

 A2(Γ, c, st) = 1 :
(x,Γ, st)← A1(1

λ),
(Γ, sk)← GC.Garble(1λ, C),

c← GC.Enc(sk, x)

− Pr

[
A2(Γ̃, c̃, st) = 1 :

(x,Γ, st)← A1(1
λ),

(Γ̃, c̃)← Sim(1λ, C(x), 1|C|, 1|x|)

]∣∣∣∣ ≤ negl(λ)

We say that the construction is subexponentially secure if the above absolute value is instead
bounded by 2−λ

ϵ for some 0 < ϵ < 1.

C.1.1 Construction and PV proof

In this section, we show that Yao’s construction [Yao82] for Garbled Circuits (as in Definition C.1),
following the exposition from [LP09] has a PV proof of correctness (with some minor modifications).
In fact, [LP09] detail a proof of correctness, and argue how to achieve perfect correctness. First, we
recap the main tool for the construction.

Definition C.2 (Secret-key encryption with elusive range, [LP09]). Consider a secret-key encryp-
tion scheme SKE = (SKE.Gen, SKE.Enc,SKE.Dec), and let Rangen(sk) = {Encsk(x)}x∈{0,1}n.

• (Elusive range) We say SKE has an elusive range if for every PPT adversary A, we have that

Pr
sk←SKE.Gen(1λ)

[A(1λ) ∈ Rangen(sk)] = negl(λ).

• (Efficiently verifiable range) We say SKE has an efficiently verifiable range if there exists an
algorithm M such that M(sk, ct) = 1 ⇐⇒ ct ∈ Rangen(sk).

Without loss of generality, we can define Decsk(ct) = ⊥ if ct /∈ Rangen(sk) (by using M in the
decryption algorithm).

Construction C.3 (SKE with efficiently verifiable range, from [LP09]). Let F = {fk}k be a family
of PRF families where fk : {0, 1}n → {0, 1}n+λ for k ∈ {0, 1}n. Then,

• SKE.Gen(1λ, 1n): Sample k ← PRF.Gen(1λ). Output sk = k.

• SKE.Enc(sk, x): Sample r ← {0, 1}λ. Output ct = (r, fk(r) ⊕ x||0λ), where x||0n is the con-
catenation of the message x with n zeros.

• SKE.VerRange(sk, ct): Parse ct = (r, s). Compute x′ = fsk(r) ⊕ s. If x′ is of the form x||0λ,
accept. Else, if it does not end in n zeros, reject.

• SKE.Dec(sk, ct): Parse ct = (r, s), compute x′ = fsk(r)⊕ s. If x′ is of the form x||0λ, output
x. Else, output ⊥.

100

The work of Lindell and Pinkas [LP09] shows that the above construction in fact satisfies Defi-
nition C.2.

Lemma C.4 ([LP09]). Construction C.3 has an efficiently verifiable, elusive range as in Defini-
tion C.2.

Now, we show that the construction additionally has a PV proof of correctness.

Lemma C.5. The SKE scheme in Construction C.3 has PV proof of correctness, i.e. there is a
proof of the fact that:

for all sk← SKE.Gen(1λ, 1n), for all x ∈ {0, 1}n and randomness r, we have that
SKE.Decsk(SKE.Encsk(x; r)) = x.

Proof (sketch). We outline the PV proof.

1. For a, b ∈ {0, 1}m, a⊕ (a⊕ b) = b.

2. fsk(r)⊕ (SKE.Encsk(x; r)) = fsk(r)⊕ (fsk(r)⊕ x||0λ).

3. fsk(r)⊕ (fsk(r)⊕ x||0λ) = x||0λ by (1).

4. fsk(r)⊕ (SKE.Encsk(x; r)) = x||0λ.

5. SKE.Dec(sk, (SKE.Encsk(x; r)) = SKE.Dec(sk, (r, fsk(r)⊕ x||0λ)).

6. fsk(r)⊕(fsk⊕x||0λ) = x||0λ → SKE.Dec(sk, (r, fsk(r)⊕x||0λ)) = x (by definition of SKE.Dec).

7. SKE.Dec(sk, (SKE.Encsk(x; r)) = x.

Now, we recap Yao’s construction in Algorithm 12 following the exposition of [LP09]. We modify
the algorithm (following a remark under Claim 6 of [LP09]) so that it has an PV proof of correctness,
and all changes are highlighted.

Lemma C.6. The construction in Algorithm 12 is a secure garbled circuit construction with a PV
proof of correctness:

for all circuits C and inputs x, if (sk,Γ)← GC.Garble(1λ, C) and c← GC.Enc(sk, x),
then y ← GC.Eval(Γ, c) satisfies y = C(x).

Proof sketch. The security of the construction follows from the analysis of [LP09]. The only differ-
ence in the algorithm is the check in blue, but as discussed in [LP09], this happens with negligible
probability.

101

Algorithm 12 Yao’s garbled circuit, following the exposition of [LP09]. The SKE encryption
scheme is one satisfying the properties in Definition C.2.

GC.Garble(1λ, C) :

• For every wire w in the circuit, assign two keys: sk0w and sk1w.

• For gate g in the circuit with (orderd) input wires wL and wR, and output wire wout:

– If g is not an output gate, for b1, b2 ∈ {0, 1}, compute

ctb1,b2 ← Enc
sk

b1
w1

(Enc
sk

b2
w2

(skg(b1,b2)w3
)).

– If g is an output gate, compute

ctb1,b2 ← Enc
sk

b1
w1

(Enc
sk

b2
w2

(g(b1, b2))).

– For any (β1, β2) ̸= (b1, b2), if Dec
sk

β2
w2

(Dec
sk

β1
w1

(ctb1,b2)) ̸= ⊥, then abort and output
(Γ := C, sk := ⊥).

– Let Lg be the list of four ciphertexts as computed above, randomly permuted.

• Set Γ to be the list {Lg}g∈C .

• Set sk ordered list {sk0w, sk1w}w∈I(C), where I(C) is the set of all input wires of C.

• Output (Γ, sk).

GC.Enc(sk, x) :

• If sk = ⊥, output (⊥, x).
• Else, parse sk := {sk0i , sk1i }i∈I(C). Output the list {skxi

i }i∈I(C), where xi is the input to wire
i ∈ I(C).

GC.Eval(Γ, ct) :

• If ct = (⊥, x), then output Γ(x) and abort (in this case, Γ would have been the circuit itself).

• Parse sk = {ski}i. Assign the value ski to input wire i.

• Parse Γ = {Lg}g∈C .

• Else, we evaluate the circuit as follows. Starting from the bottom layer of the circuit, for
each gate g:

– Suppose the (ordered) input wires wL and wR, with corresponding assigned values skwL

and skwR
.

– For each ct ∈ Lg, compute
DecskwR

(DecskwL
(ct))

until a decryption which is not ⊥ is found. Let s be the decrypted value.
– Assign s as skwout

for the output wire wout of g.

• Output the value assigned to the output gate.

102

PV proof of correctness (sketch). This proof follows very closely to that of [LP09]. We sketch
the proof in words. We induct on the depth of the circuit to argue that the key assigned to every
intermediate wire (not the output wire) w is skαw, where α is the correct assignment of w on an honest
computation of the garbling. This is clearly true in the base layer, by definition of GC.Eval. At level
i, suppose a gate g has input wires wL and wR with skαwL

and skβwL
, where α and β correspond to

the correct value of the wire. Then, by the line in blue, the only ciphertext that can be decrypted
with these keys is ctα,β . Therefore, by construction, the output wire of g is assigned sk

g(α,β)
w , i.e.

the “correct” output wire. If g is the output gate, then similarly, the only ciphertext that decrypts
is the “correct” one, which will give g(α, β), i.e. the true output value.

Since we are inducting on the height of the circuit, this can be done in PV .

C.2 PV Proof for Two-Outcome Attribute-Based Encryption

First, we recall the definitions of attributed-based encryption [SW05, GPSW06] and two-outcome
attribute-based encryption [GKP+13].

Syntax. An attribute-based encryption scheme is a tuple of algorithms (Setup,Enc,KeyGen,Dec)
that works as follows.

• Setup(1λ, 1k, 1d): The setup algorithm takes as input the security parameter λ, the length
of the attribute k, and the depth of the policy circuit d, and outputs a public key pk and a
master secret key msk.

• Enc(pk, x,m): The encryption algorithm takes as input the public key, an attribute x ∈ {0, 1}k,
and a message m ∈ {0, 1}, and output a ciphertext ctx associated with the policy x.

• KeyGen(msk, f): The key generation algorithm takes as input the master secret key msk, and
a policy function f represented as a circuit of input length n and depth d, and outputs a secret
key skf .

• Dec(skf , ctx): The decryption algorithm takes as input a secret key skf and a ciphertext ctx,
and outputs a decrypted message m′ ∈ {0, 1}.

We require the following correctness and security.

Correctness. For any message m ∈ {0, 1}, any attribute x ∈ {0, 1}k, and any policy f with
f(x) = 1, we have that

Pr[(pk,msk)← Setup(1λ, 1k, 1d), ctx ← Enc(pk, x,m), skf ← KeyGen(msk, f) : Dec(ctx, skf) = m] = 1.

Security. The (adaptive) security requires that, for any adversary that non-uniform PPT adversary
A, we have

Pr

(pk,msk)← Setup(1λ, 1k, 1d)
(f, st1)← A(pk)

skf ← KeyGen(msk, f)
(m0,m1, x, st2)← A(st1, skf)

b← {0, 1}, ctx ← Enc(pk, x,mb)
b′ ← A(st2, ctx)

: b′ = b ∧ f(x) = 1

 ≤ 1/2 + negl(λ).

103

Construction. The construction requires the lattice trapdoor and preimage sampling algorithms
as an ingredient.

• Setup(1λ, 1k, 1d): The parameter setup algorithm does the following.

– Choose n = n(λ), m = m(λ), and q = q(λ), where m ≥ 2n · log q.
– Sample (A, τ)← TrapSam(1n, 1m, q), and sample D← Zn×m

q ,B1, . . . ,Bk ← Zn×m
q .

– Output pk = (A,D,B1, . . . ,Bk) and msk = (pk, τ).

• Enc(pk, x,m): The encryption algorithm parses pk = (A,D,B1, . . . ,Bk), x = (x1, . . . , xk),
and does the following.

– It samples s← Z1×n
q , e, e′, e1, . . . , ek ← Dm×1

Z,σ , and compute the ciphertext

ctx =
(
s ·A+ e, s · (B1 + x1G) + e1, . . . , s · (Bk + xkG) + ek, s ·D+ e′ +m · q/2

)
.

• KeyGen(msk, f): The key generation algorithm parses msk = (pk, τ) and does the following.

– View B1, . . . ,Bk as GSW ciphertexts, view A as the public key, and do almost the same
as GSW homomorphically evaluation of f over them, except that for each multiplication
gate, we further multiply −1 to the ciphertext.

Bf ← Eval(A, f,B1, . . . ,Bk).

– Use trapdoor τ to sample a matrix Rf such that[
A G+Bf

]
·Rf = D.

Note that the sampling algorithm may fail to output a small normed Rf . In that case,
we discard the sample and pick an arbitrary Rf with a small norm satisfying the above
equation, using the trapdoor τ .

– Output secret key for f as skf = Rf .

• Dec(skf , ctx): The decryption algorithm parses ctx = (a ∈ Z1×m
q ,b1 ∈ Z1×m

q , . . . ,bk ∈
Z1×m
q ,d ∈ Z1×m

q), skf = Rf , and computes the following.

– For any wire w in the circuit, we keep track a matrix Bw and a vector bw ∈ Zm
q . For the

input wires, their corresponding matrices are B1, . . . ,Bk and the corresponding vectors
are b1, . . .bk.

– For any gate with output wire w in the circuit f , let the matrices corresponding to the
input wires w1, w2 be B1,B2 and vectors be b1,b2, respectively. Depending on whether
the gate is an addition gate or multiplication gate, we do the following.
If the gate is an addition gate, then we let Bw = B1 +B2, and let bw = b1 + b2.
Otherwise, if the gate is a multiplication gate, we let

Bw = −B1 ·G−1[B2], bw = w1 · b2 − b1 ·G−1[B2].

104

– Let bout be the vector assigned to the output wire by the above procedure. Then we
compute

d− bout ·Rf ,

and round it to either 0 or q/2. Namely, we output m′ ∈ {0, 1} indicating whether the
above value is within q/4 distance to q/2.

Lemma C.7 (PV proof of correctness for ABE). The correctness of the above construction can be
formalized in Cook’s theory PV. Formally, the following formula

(pk,msk) = Setup(1λ, 1k, 1d; rSetup)
∧ctx = Enc(pk, x,m; rEnc)

∧skf = KeyGen(msk, f ; rKeyGen)
∧f(x) = 1

→ Dec(ctx, skf) = m.

can be proven in PV , where Setup,Enc,KeyGen,Dec are naturally regarded as function symbols in
PV by their definition, and rSetup, rEnc, rKeyGen are variables representing the random coins used by
the corresponding algorithms.

Proof Sketch. We only give a sketch of the proof here. We will use the variables in PV as defined
in the above formula in PV .

• Prove inductively on every gate of f to show that, for every wire w in the circuit, we have

bw = s ·
[
A Bw + w ·G

]
+ ew,

where ew is a noise vector with a small bounded norm. In particular, for the output wire wout,
since f(x) = 1 and Bout = Bf , we have

bout = s ·
[
A Bf +G

]
+ eout.

PV allows a polynomial induction rule so that we can formalize this induction in PV .

• In the decryption algorithm, when we compute d− bout ·Rf , we have

d− bout ·Rf = (s ·D+ e′ +m · q/2)− s ·
[
A Bf +G

]
·Rf + eout ·Rf

= (s ·D+ e′ +m · q/2)− s ·D+ eout ·Rf

= m · q/2 + e′ + eout ·Rf

The first equality follows from the fact that d = s ·D+ e′ +m · q/2 is part of the definition
of the function symbol Dec, and bout =

[
A Bf +G

]
is part of the definition of Enc. So the

first equality can be formalized in PV .

The second equality follows from the fact that
[
A G+Bf

]
·Rf = D can be derived from

the definitional formulas of KeyGen. This is true because when the sampling algorithm fails,
we arbitrarily pick a small Rf satisfying this equation.

The third equality follows from the fact that the basic theorems about linear algebra can be
formalized in PV .

105

• Prove that since e′, eout, and Rf have small norms, the outcome of the decryption is correct.

This step only uses the basic properties of matrices and inequalities. Hence it can be formalized
in PV .

Concatenate the PV proof for each of the above steps, we obtain a PV proof of correctness for
the above construction.

Now, we construct a “Two-outcome” ABE scheme [GKP+13]. First, we recall the syntax.

Syntax. An two-outcome attribute-based encryption scheme is a tuple of algorithms (Setup,Enc,
KeyGen,Dec) that works as follows.

• ABE2.Setup(1
λ, 1k, 1d): The setup algorithm takes as input the security parameter λ, the

length of the attribute k, and the depth of the policy circuit d, and outputs a public key pk
and a master secret key msk.

• ABE2.Enc(pk, x,M0,M1): The encryption algorithm takes as input the public key, an attribute
x ∈ {0, 1}k, and two messages M0 and M1, and outputs a ciphertext c.

• ABE2.KeyGen(msk, f): The key generation algorithm takes as input the master secret key msk,
and a policy function f represented as a circuit of input length n and depth d, and outputs a
secret key skf .

• ABE2.Dec(skf , ctx): The decryption algorithm takes as input a secret key skf and a ciphertext
ctx, and outputs a decrypted messageM∗.

We require the following properties:

Correctness. For any message m ∈ {0, 1}, any attribute x ∈ {0, 1}k, and any policy f ,

Pr

 Dec(ctx, skf) = Mf(x) = 1 :
(pk,msk)← Setup(1λ, 1k, 1d),
ctx ← Enc(pk, x, (M0,M1)),

skf ← KeyGen(msk, f)

 = 1.

The work of [GKP+13] construct ABE2 from an ABE scheme, as follows:

• ABE2.Setup(1
λ, 1k, 1d) :

– Sample (pk0, fmsk0)← ABE.Setup(1λ, 1k, 1d) and (pk1, fmsk1)← ABE.Setup(1λ, 1k, 1d).

– Set fmsk := (fmsk0, fmsk1) and pk = (pk0, pk1).

• ABE2.Enc(pk, x,M0,M1) :

– Let ctb ← ABE.Enc(pkb, x,Mb).

– Output (ct0, ct1).

• ABE2.KeyGen(msk, f) :

– fsk0 ← ABE.KeyGen(fmsk0, f).

106

– Let f be the negation of f.

– fsk1 ← ABE.KeyGen(fmsk1, f).

– Output skf = (fsk0, fsk1).

• ABE2.Dec(skf , ct, f, x) :

– Parse skf = (fsk0, fsk1) and ct = (ct0, ct1).

– If f(x) = 0, compute M0 ← ABE.Dec(fsk0, ct0) and output M0.

– If f(x) = 1, compute M1 ← ABE.Dec(fsk1, ct1) and if M1 ̸= ⊥, output M1.

We now sketch the proof of correctness assuming that ABE has a PV proof of completeness.

• If f(x) = 0, by correctness of ABE, ABE.Dec(fsk0,ABE.Enc(pk0, x,M0)) = M0.

• Similarly, if f(x) = 1, then f(x) = 0. Then, ABE.Dec(fsk0,ABE.Enc(pk0, x,M1)) = M1.

• By definition,

ABE2.Dec(skf ,ABE2.Enc(pk, x,M0,M1)) = ABE.Dec(fskf(x), (fsk,ABE.Enc(pkf(x), x,Mf(x)))

= Mf(x).

This completes the proof.

C.3 Putting it all together

Ingredients. Suppose that there exist:

• Leveled FHE with a proof of correctness, i.e. proof of the fact that:

for all (sk, pk, ek)← FHE.Gen(1λ; r), for all x, randomness r′ and circuits C, we have that
FHE.Decsk(FHE.Evalek(FHE.Encpk(x; r

′), C)) = C(x).

In Appendix B, we show that this can be instantiated from LWE following the works of
[BV11, GSW13].

• Garbled circuits with proof of correctness, i.e. proof of the fact that:

for all circuits C and inputs x, if (sk,Γ)← GC.Garble(1λ, C) and c← GC.Enc(sk, x),
then y ← GC.Eval(Γ, c) satisfies y = C(x).

In Appendix C.1.1, we showed that Yao’s construction [Yao82] has this property with some
minor modifications.

• Two-outcome ABE for small-depth circuits. In Appendix C.2, we showed that the construction
of [GKP+13] from LWE has this property.

Lemma C.8. If instantiated with the above ingredients with proofs of correctness, the construction
of sFE (as in Theorem 7.6) has a proof of correctness, i.e.

107

for all randomness, for all functions f and input x, if (mpk,msk)← sFE.Setup(1λ),
fskf ← sFE.KeyGen(msk, f), c← sFE.Enc(mpk, x), then y ← FE.Dec(fskf , c) satisfies y = f(x).

Proof sketch. Upon inspection of the construction of [GKP+13, Claim 3.8], it is clear that the PV
proof of correctness follows directly from the PV proof of garbled circuits, two-outcome ABE and
FHE.

108

	Introduction
	Result I: Non-Adaptive Unviersal SNARG for NP
	Result II: Adaptively Sound SNARGs
	Organization

	Our Techniques
	Prior work
	Our Non-adaptive SNARG and Analysis
	Adaptive Soundness
	Overview of Applications
	SNARGs for NP from Evasive LWE
	SNARGs for Quadratic Residuousity and (QR) and Nth-Residuousity (DCR)
	Transparent Non-Adaptive SNARG and Adaptive SNARG via iO
	Transparent adaptive SNARG for UP
	Universal Micali SNARG

	Preliminaries
	LWE Assumption
	Fully Homomorphic Encryption
	Succinct Non-Interactive Arguments
	Batch Arguments (BARGs)
	Propositional Logic Systems
	Extended Frege
	Cook's Theory PV

	Local Assignment Generators
	Relevant Theorems based on STOC:JKLV24

	Universal SNARG Construction
	Main Theorem Statement
	Proof of Main Theorem

	Constructions of Adaptively Sound SNARGs
	Adaptively Sound SNARGs from Designated-Verifier SNARGs
	Proof of Adaptive Soundness

	Application I: Non-Adaptive SNARGs from Witness Encryption
	Witness Encryption
	Main theorem statement (WE)
	SNARG for NP from Evasive LWE
	PV Proofs for Properties of Linear Algebra
	Evasive LWE
	Matrix Branching Programs
	Matrix Branching Program Encoding of CNF
	Trapdoor and Pre-image Sampling
	GGH Encodings
	sigma-PRF Obfuscation
	Witness Encryption from Evasive LWE with PV Proof

	SNARGs for QR and DCR from LWE.

	Application II: Transparent and Adaptive SNARGs from iO and LWE
	Indistinguishability Obfuscation for Circuits
	Single-Key Functional Encryption
	Upgrading iO to have a PV proof of correctness
	Slow XiO with PV proof of correctness
	Slow XiO to Fast XiO with CRS
	Single-Key Compact FE for Bounded-Depth Circuits
	Single-Key Compact FE for all circuits
	Output-Compressing Randomized Encodings for Turing Machines
	iO from Output-Compressing RE

	Non-adaptive Transparent SNARGs for NP from iO and LWE
	Adaptive SNARGs for NP from iO and LWE

	Application III: Adaptive Transparent SNARGs for UP from Evasive LWE
	Application IV: Universal Micali SNARGs
	Probabilistically Checkable Proofs
	Merkle Tree Hash
	PV Proof of Completeness for Merkle Hash

	Acknowledgements
	Deferred proofs and constructions from sec:evasive-lwe
	Proof of lem:ggh-correctness
	Read-c sigma-PRFs
	Modified Designated-Verifier SNARG for UP based on C:MatPetVai24

	PV Proof for Leveled GSW Fully Homomorphic Encryption
	PV Proof for Succinct Functional Encryption
	PV Proof for Garbled circuits
	Construction and PV proof

	PV Proof for Two-Outcome Attribute-Based Encryption
	Putting it all together

