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Abstract

Group signature (GS) is a well-known cryptographic primitive providing anonymity and
traceability. Several implication results have been given by mainly focusing on the several
security levels of anonymity, e.g., fully anonymous GS implies public key encryption (PKE)
and selfless anonymous GS can be constructed from one-way functions and non-interactive zero
knowledge poofs, and so on. In this paper, we explore an winning condition of full traceability:
an adversary is required to produce a valid group signature whose opening result is an uncor-
rupted user. We demonstrate a generic construction of GS secure in the Bellare-Micciancio-
Warinschi (BMW) model except the above condition from PKE only. We emphasize that the
proposed construction is quite artificial and meaningless in practice because the verification al-
gorithm always outputs 1 regardless of the input. This result suggests us the winning condition
is essential in full traceability, i.e., an uncorrupted user must exist. We also explore a public
verifiability of GS-based PKE scheme and introduce a new formal security definition of pub-
lic verifiability by following BUFF (Beyond UnForgeability Features) security. Our definition
guarantees that the decryption result of a valid cyphertext is in the message space specified by
the public key. We show that the GS-based PKE scheme is publicly verifiable if the underlying
GS scheme is fully traceable.

1 Introduction

1.1 Group Signatures and Security Models

Group signatures (GS) [13] is an extension of digital signatures. Briefly, a user generates a signature
on a message and the verifier checks the validity of the signature without identifying the user.
A special authority called the opener can identify the signer. Two security notions are mainly
considered, full anonymity and full traceability [5]. Informally, the anonymity guarantees that
nobody, except the opener, can distinguish whether two signatures are generated by the same user
or not (i.e., it implies unlinkability of signers). If the anonymity holds even when an adversary
obtains all signing keys including the challenge users’ ones, then it is called full anonymity. On the
contrary, if an adversary is not allowed to obtain the signing keys of challenge users, then it is called
selfless anonymity. The traceability guarantees that if a signature is valid, then the corresponding
signer is always identified by the opener. After the seminal work by Bellare-Micciancio-Warinschi
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(BMW) [5], that gave formal definitions of full anonymity and full traceability in a static group
setting (i.e., all users’ signing keys are generated in the setup phase, and no new user can join the
group after the setup phase), many extensions in terms of security and functionalities have been
provided. To name a few, GS in a dynamic group setting [7, 25] (including authorities separation
between the opener and the issuer), considering the opening soundness [37], revocable GSs [9,22,26,
27,27,29,30], and fully dynamic GS [10] where users can join or leave the group after the setup phase.
Currently, the security model of fully dynamic GS given by Bootle et al. [10] is the most enhanced
one in terms of security and dynamicity. The fully dynamic model is recognized as a standard
security definition in the GS area, and is instantiated by several complexity assumptions [8,11,28].
The basic difference between the static group model and the dynamic group model is how to
generate a signing key. In the static group model (the BMW model), the group manager generates
a signing key and issues it to a user. In the dynamic group model, the issuer and a user run an
interactive key issuing protocol. One important fact is that the group manager knows all signing
keys in the static group model whereas the issuer knows a part of signing key only in the dynamic
group setting. Thus, in addition to a signing key that is known by the issuer, a user uses own secret
key for generating a group signature. This setting allows us to define a security notion from an
another perspective, i.e., non-frameability. Non-frameability guarantees that the rest of the group
as well as the issuer (and the opener) are fully corrupt, they cannot falsely attribute a signature to
an honest user who did not produce it.

1.2 Implication Results among GS and Other Cryptographic Primitives

In the BMW paper [5], a generic construction of GS secure in the BMWmodel was given from public
key encryption (PKE), signatures, and non-interactive zero knowledge (NIZK) proofs. A generic
construction of GS secure in the Bellare-Shi-Zhang (BSZ) model from the same building blocks was
proposed [7] and it was shown that the generic construction provides the opening soundness [37].
As the opposite direction, Abdalla and Warinschi [1] showed that fully anonymous GS implies
PKE. Intuitively, a public key consists of (gpk, gsigk1, gsigk2) where gpk is a group public key and
(gsigk1, gsigk2) are two signing keys. A ciphertext of a plaintext m ∈ {0, 1} is a group signature
generated by gsigkm+1. The opening key ok is set as a decryption key since it determines which
signing key was used for generating a group signature. The anonymity hides information of which
signing key was used for generating the signature. Moreover, due to full anonymity, the anonymity
holds even if signing keys (gsigk1, gsigk2) are publicly opened. This construction methodology,
revealing signing keys as a public key, was employed to show other implications. Emura et al. [19]
showed that GS secure in the BSZ model (with the opening soundness) implies public key encryption
with non-interactive opening (PKENO) [15] and Sakai et al. [35] showed that GS with message-
dependent opening (GS-MDO) implies identity-based encryption (IBE). Sakai et al. [36] utilized
Nakanishi et al.’s revocable GS scheme [29] to construct a PKE scheme allowing a message space
restriction. Here, revocation in GS allows us to revoke signing keys. Intuitively revoking a signing
key in GS means that restricting a message space in the GS-based PKE context since (gsigk1, gsigk2)
specifies the message space {0, 1}.

The implication result given by Abdalla and Warinschi [1] demonstrates that PKE is an essential
building block for constructing fully anonymous GS.1 In other words, GS can be constructed from
weaker primitives if full anonymity is not required. Camenisch and Groth [12] showed that selfless
anonymous GS can be constructed from one-way functions (OWF) and NIZK. Katsumata and
Yamada [24] showed that NIZK is not necessary to construct selfless anonymous GS.2 Ohtake et

1Bellare and Fuchsbauer [4] showed that GS can be constructed from policy-based signatures and PKE.
2They gave a generic construction of selfless anonymous GS from indexed attribute-based signatures (ABS).

2



al. [31] showed that if unlinkability (which is implied by full anonymity) is not required, then GS
can be constructed from identity-based signatures (which can be constructed from the standard
signatures [6], and thus from OWF [34]). To sum up, whether the anonymity holds or not when
signing keys are exposed is the essential condition to separate the anonymity.

From now on, we focus on the BMW model in this paper with the following three reasons. First,
it contains all essential security and functionalities of GS, full anonymity and full traceability, and
is one of the most widely accepted definition as mentioned in [24]. Second, the dynamic aspects of
the group signature scheme are actually not required to construct public key encryption primitives
from GS [1,19,35]. For example, the GS-based PKENO construction [19] employed the BSZ model
which considers a dynamic group setting, the key generation algorithm of PKENO internally runs
the interactive join protocol by himself. Third, non-freamability is also not required to construct
public key encryption primitives from GS [1,19,35] since all signing keys including user secret keys
need to be set as a public key and thus there is no way to employ non-freamability. Of course, we do
not deny any possibility to construct a cryptographic primitive including an interactive procedure
from GS and then it may require the dynamic group setting as an essential condition.

1.3 Full Traceability, Revisited

So far, the above mentioned implication results focused on the (several security levels of) anonymity,
and did not focus on the traceability. One exception is the GS-based PKENO construction [19]: If
an untraceable but a valid signature is contained in a prove query,3 then the prove oracle cannot
respond the query since it is not publicly detectable. The traceability is employed to exclude the
case. However, the result does not answer what the essential condition of the traceability is.

Informally, three winning conditions are considered in the definition of full traceability in the
BMW model [5]. Let n be the number of users. gpk and ok are given to an adversary A. Moreover,
A is allowed to issue corrupt queries i ∈ [n] that obtains gsigki where [n] = {1, 2, . . . , n}. A is also
allowed to issue signing queries (i,M) where i ∈ [n]. Finally A outputs a pair of a group signature
and a message (Σ∗,M∗). Let i be the opening result of (Σ∗,M∗). It is required that (Σ∗,M∗) is
accepted by the verification algorithm. A wins if one of the following three conditions holds.

1. i = ⊥.

2. i ̸= ⊥ ∧ i ̸∈ [n].

3. i ∈ [n], i is not corrupted by A, and (i,M∗) is not sent as a signing query.

Due to the definition, full traceability ensures that a valid group signature is always opened correctly.
More clearly, since an adversary colludes with some users, it ensures that no colluding set of users
can produce group signatures that cannot be opened, or group signatures that cannot be traced
back to some user of the coalition. We remark that, as a well-known folklore, a GS scheme without
the opening functionality (i.e., without traceability) can be constructed by sharing a signing key of
a signature scheme among all users. That is, for a verification and signing key pair of a signature
scheme (verk, sigk) ← Sig.KeyGen(1λ), set gpk = verk, and gsigki = (sigk, i) for i ∈ [n]. Then,

Though it can be instantiated from the standard LWE and SIS assumptions, precisely, it is not clear whether indexed
ABS is weaker than PKE or not, to the best of our knowledge.

3In the syntax of PKENO, the Prove algorithm, that takes a secret key and a ciphertext, outputs a proof π. The
verification algorithm, that takes a ciphertext, a plaintext (which may be ⊥), and a proof, outputs 1 if the decryption
result of the ciphertext is the plaintext. In their GS-based PKENO construction, ok is set as π when a ciphertext is
valid but the decryption result is ⊥. Because the reduction algorithm does not know ok, the traceability is employed
to exclude the case, and is not required to respond a decryption query.
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full anonymity holds since σ ← Sig.Sign(sigk,M) does not contain information of i (here, M is
an arbitrary signed message). However, this folklore does not answer what the essential condition
of full traceability is. We explore this research question by analyzing the winning conditions,
separately.

1.4 Our Contribution

In this paper, we focus on the last winning condition of full traceability: an adversary is required
to produce a valid group signature whose opening result is an uncorrupted user. We demonstrate
a generic construction of GS secure in the BMW model except the last winning condition of full
traceability from PKE only. Especially, the construction provides full anonymity without NIZK
whereas previous NIZK-free constructions (except the above folklore) considered a weaker notion
of anonymity, selfless anonymity [24] or linkability/pseudonymity [31]. We emphasize that the pro-
posed construction is quite artificial and meaningless in practice because the verification algorithm
always outputs 1 regardless of the input and the opening algorithm outputs a user index i′ ∈ [n]
if the opening result of a group signature i is either i = ⊥ or i ̸∈ [n]. In other words, GS is
meaningless in practice if we do not consider the last winning condition of full traceability. The
main observation here is the first and second winning conditions can be considered in the opening
algorithm regardless of the behavior of the adversary whereas the last condition depends on the
behavior of the adversary, i.e., who will be corrupted by the adversary. This result suggests us the
last winning condition is essential in full traceability.

As the second result of this paper, we revisited public verifiability of PKE. As a folklore, a
GS-based PKE scheme provides public verifiability since a ciphertext is a group signature. Though
Ohtake et al. [31] mentioned that “It remarks that the PKE scheme, which is constructed with
the above method, has public verifiability. Namely, anyone can verify validity of a ciphertext by
using gpk.”, they did not give a formal treatment of the public verifiability. Intuitively, due to
the traceability of the underlying GS, the public verifiability here seems to guarantee that a valid
ciphertext is always decryptable. That is, when the GS scheme is instantiated by n = 2 and
(gpk, gsigk1, gsigk2) is set as a public key of the PKE scheme, then it is expected that the decryption
result of a valid ciphertext is not ⊥ and is in a message space {0, 1}. Here, the last winning
condition does not appear because all signing keys are revealed (i.e., under full corruption). Due to
our first result, the public verifiability can be realized via the artificial construction: the verification
algorithm outputs always 1 regardless of the input, and if the decryption result is either ⊥ or is not
in {0, 1}, then the decryption algorithm outputs 0 or 1. To explore what public verifiability can be
realized when the underlying GS scheme provides full traceability, we introduce a formal security
definition of public verifiability by following BUFF (Beyond UnForgeability Features) security [3,
14, 17]. Informally, BUFF security guarantees that no adversary can output a forged verification
key that indicates a signature is valid under two distinct verification keys. Briefly, our definition
of public verifiability guarantees that no adversary can output a forged public key that defines
a distinct message space from the original one. We show that publicly verifiable PKE can be
constructed from fully traceable GS.

2 Preliminaries: PKE

Let PKE = (PKE.KeyGen,PKE.Enc,PKE.Dec) be a PKE scheme.

Definition 1 (Syntax of PKE).
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PKE.KeyGen: The key generation algorithm takes as a security parameter λ as input, and outputs
a public key and decryption key pair (pk, dk). pk contains a plaintext space which we denote
MessageSpace(pk).

PKE.Enc: The encryption algorithm takes pk and a plaintext m ∈ MessageSpace(pk), and outputs
a ciphertext C.

PKE.Dec: The decryption algorithm takes dk and C as input, and outputs m or ⊥.

Correctness: We say that a PKE scheme is correct if for all λ ∈ N, all (pk, dk)← PKE.KeyGen(1λ),
allm ∈ MessageSpace(pk), PKE.Dec(dk,PKE.Enc(pk,m)) = m holds with overwhelming probability.

The IND-CCA security is defined as follows.

Definition 2 (IND-CCA). Let C be the challenger and A be an adversary. We define the security
model via the security game between C and A. At the beginning of the game, C runs (pk, dk) ←
PKE.KeyGen(1λ), and gives pk to A. A is allowed to issue decryption queries.

Decryption Query: A sends a ciphertext C. C returns the result of PKE.Dec(dk, C).

A declares two equal-length plaintexts m∗
0,m

∗
1 ∈ MessageSpace(pk). C flips b

$←− {0, 1}, computes
the challenge ciphertext C∗ ← PKE.Enc(pk,m∗

b), and sends C∗ to A.
A is further allowed to issue decryption queries.

Decryption Query: A sends a ciphertext C ̸= C∗. C returns the result of PKE.Dec(dk, C).

Finally, A outputs b′ ∈ {0, 1}. We say that a PKE scheme is IND-CCA secure if |Pr[b =
b′]− 1/2| is negligible in λ for any PPT adversaries A.

3 GS and the BMW Model

In this section, we introduce the BMW model [5]. Let GS = (Setup,GSign,GVerify,Open) be a GS
scheme defined as follows.

Definition 3 (Syntax of GS).

Setup: The setup algorithm takes a security parameter λ and the number of group users n, and
outputs a group public key gpk, an opening key ok, and signing keys {gsigki}i∈[n].

GSign: The signing algorithm takes gsigki and a message M , and outputs a group signature Σ.

GVerify: The verification algorithm takes gpk, Σ, and M as input, and outputs 0 or 1.

Open: The opening algorithm takes ok, Σ, and M , and outputs an index i or a failure symbol ⊥.

Correctness: For all λ, n ∈ N, all (gpk, ok, {gsigki}i∈[n]) ← Setup(1λ, 1n), all i ∈ [n], and all
M ∈ {0, 1}∗, GVerify(gpk,GSign(gsigki,M),M) = 1 and Open(ok,GSign(gsigki,M),M) = i hold
with overwhelming probability.

Next, we define full anonymity. It guarantees that an adversary A, who does not possess ok,
cannot distinguish which signing key is used for generating a group signature, even A has all signing
keys.
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Definition 4 (Full Anonymity). Let C be the challenger and A be an adversary. We define the
security model via the security game between C and A. At the beginning of the game, C runs
(gpk, ok, {gsigki}i∈[n]) ← Setup(1λ, 1n) and gives (gpk, {gsigki}i∈[n]) to A. A is allowed to issue
opening queries.

Opening Query: A sends (Σ,M). C returns the result of Open(ok,Σ,M).

A declares (i∗0, i
∗
1,M

∗) where i∗0, i
∗
1 ∈ [n]. C flips b

$←− {0, 1}, computes Σ∗ ← GSign(gsigki∗b ,M
∗),

and gives Σ∗ to A. A is further allowed to issue opening queries.

Opening Query: A sends (Σ,M) ̸= (Σ∗,M∗). C returns the result of Open(ok,Σ,M).

Finally, A outputs b′ ∈ {0, 1}. We say that the GS scheme is fully anonymous if the advantage

Advfull-anonGS,A (λ, n) = |Pr[b = b′]− 1/2|

is negligible in λ for any PPT adversaries A.
The above definition is also called full CCA anonymity since A is allowed to issue opening queries.
We can consider a weaker version called full CPA anonymity where an adversary is not allowed to
issue an opening query.

Next, we define full traceability. It guarantees that an adversary A cannot produce a valid
group signature whose opening result is either ⊥ or an uncorrupted user. In the original definition,
the second winning condition below (i.e., the opening result is i ̸∈ [n]) is implicitly contained in
other conditions. However, it seems ambiguous which condition contains the second condition. For
example, we can define that the Open algorithm outputs ⊥ if the opening result is i ̸∈ [n], or we
can also regard that a user i ̸∈ [n] is not corrupted since A is allowed to issue a corrupt query for
i ∈ [n]. In order to avoid any confusion, we separately define the condition below. We also remark
that we can define full traceability by following strong unforgeability. Nevertheless, we follow the
original BMW model where (i,M∗) is not sent as a signing query.

Definition 5 (Full Traceability). Let C be the challenger and A be an adversary. We define
the security model via the security game between C and A. At the beginning of the game, C runs
(gpk, ok, {gsigki}i∈[n])← Setup(1λ, 1n) and gives (gpk, ok) to A. C initialize CorrU = ∅. A is allowed
to issue corruption and signing queries.

Corrupt User Query: A sends i ∈ [n]. Then C updates CorrU = CorrU ∪ {i} and returns gsigki
to A.

Signing Query: A sends i ∈ [n] and M . Then, C runs Σ ← GSign(gsigki,M) and returns Σ to
A.

Finally, A outputs (Σ∗,M∗). C outputs 0 if GVerify(gpk,Σ∗,M∗) = 0. Otherwise, C runs
i← Open(ok,Σ∗,M∗). C outputs 1 if one of the followings hold.

1. i = ⊥.

2. i ̸= ⊥ ∧ i ̸∈ [n].

3. i ∈ [n], i ̸∈ CorrU, and (i,M∗) is not sent as a signing query.

We say that the GS scheme is fully traceable if the advantage

Advfull-traceGS,A (λ, n) = Pr[C → 1]|

is negligible in λ for any PPT adversaries A.
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4 Essential Condition of Full Traceability

In this section, we show that the last winning condition of full traceability is essential. To show
this, we construct a GS scheme secure in the BMW model except the last winning condition of full
traceability from PKE only.

We construct a GS scheme from PKE = (PKE.KeyGen,PKE.Enc,PKE.Dec) as follows. As men-
tioned in the introduction, the construction is quite artificial and meaningless in practice because
the GVerify algorithm always outputs 1 regardless of the input. In other words, GS is meaningless
in practice if we do not consider the last winning condition of full traceability. This result suggests
us the last winning condition is essential in full traceability.

Setup(1λ, 1n): Run (pk, dk)← PKE.KeyGen(1λ) and choose i′
$←− [n]. Output gpk = pk, ok = (dk, i′),

and gsigki = i for i ∈ [n].

GSign(gsigki,M): Parse gsigki = i. Compute C ← PKE.Enc(pk, i) and output Σ = C.

GVerify(gpk,Σ,M): Output 1.

Open(ok,Σ,M): Parse ok = (dk, i′) and Σ = C. Run i ← PKE.Dec(dk, C). If i ∈ [n], output i.
Otherwise, if i = ⊥ or i ̸∈ [n], then output i′.

Theorem 1. The proposed construction is correct if the underlying PKE scheme is correct.

Proof. Since the GVerify algorithm always outputs 1, GVerify(gpk,GSign(gsigki,M),M) = 1 holds
for all i ∈ [n] and M ∈ {0, 1}∗. We need to show that Open(ok,GSign(gsigki,M),M) = i holds
for all i ∈ [n] and M ∈ {0, 1}∗. Now, an honestly generated group signature is represented as
Σ = C where C ← PKE.Enc(pk, i). Since the underlying PKE scheme is assumed to be correct,
for i′ ← PKE.Dec(dk, C), i′ = i holds with overwhelming probability. Thus, the Open algorithm
correctly outputs i with overwhelming probability. This concludes the proof.

Theorem 2. The proposed construction is fully CPA anonymous if the underlying PKE scheme is
IND-CPA secure.4

Proof. Let C be the challenger of the IND-CPA security and A be an adversary of full anonymity.
We construct an algorithm B that breaks the IND-CPA security as follows. At the beginning of
the game, C runs (pk, dk) ← PKE.KeyGen(1λ) and gives pk to B. B sets gpk = pk, and sends
(gpk, {i}i∈[n]) to A. A declares (i∗0, i

∗
1,M

∗) where i∗0, i
∗
1 ∈ [n]. B sets (m∗

0,m
∗
1) = (i∗0, i

∗
1) and sends

(m∗
0,m

∗
1) to C. C returns the challenge ciphertext C∗ ← PKE.Enc(pk,m∗

b) where b ∈ {0, 1}. B sets
Σ∗ = C∗ and gives Σ∗ to A. Finally, A outputs b′ ∈ {0, 1}. B outputs the same b′ and breaks full
anonymity at least the advantage of A.

Theorem 3. The proposed construction is fully traceable without the last condition.

4Remark that the construction is not fully CCA anonymous even if the underlying PKE scheme is IND-CCA
secure. Briefly, an adversary is allowed to issue an opening query (Σ∗,M) where Σ∗ = C∗ is the challenge ciphertext
of the PKE scheme and M ̸= M∗. Since the GVerify algorithm always outputs 1, the reduction algorithm needs to
respond the query but the reduction algorithm does not send C∗ as a decryption query.
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Proof. Since the Open algorithm never outputs ⊥ or i ̸∈ [n], the advantage Advfull-traceGS,A (λ, n)
= 0.

Remark 1. The proof of Theorem 3 relies on the fact that no group signature exists in the
construction for which the opening result is ⊥. To exclude the case, we can add the condition “there
exists a group signature for which the opening result is ⊥”. However, this is not sufficient to bypass
the artificial construction. For example, GVerify(gpk,Σ,M) outputs 0 only when (Σ,M) = (⊥,⊥),
and Open(ok,Σ,M) outputs ⊥ only when (Σ,M) = (⊥,⊥). Since A is required to produce a valid
group signature in the definition of full traceability, A cannot output (Σ∗,M∗) = (⊥,⊥) and thus
Advfull-traceGS,A (λ, n) = 0 holds.

5 Publicly Verifiable PKE, Revisited

In this section, we explore the public verifiability of PKE constructed by GS via the Abdalla-
Warinschi methodology [1] where signing keys of GS are set as a public key of PKE.

5.1 GS-based PKE

Frist, we construct a (1-bit) PKE scheme5 from GS = (Setup,GSign,GVerify,Open) as follows.

PKE.KeyGen(1λ): Run (gpk, ok, gsigk1, gsigk2)← Setup(1λ, 12) and output pk = (gpk, gsigk1, gsigk2)
and dk = ok.

PKE.Enc(pk,m): Parse pk = (gpk, gsigk1, gsigk2). For m ∈ MessageSpace(pk) = {0, 1}, choose
M ∈ {0, 1}∗ and run Σ← GSign(gsigkm+1,M). Output C = (Σ,M).

PKE.Dec(dk, C): Parse dk = ok and C = (Σ,M). Run i← Open(ok,Σ,M). If i = ⊥, then output
⊥. Otherwise, output m = i− 1.

The following theorems are straightforward, but we explicitly give them to clarify that full
traceability is not necessary to provide the correctness and the IND-CCA security.

Theorem 4. The PKE scheme is correct if the underlying GS scheme is correct.

Proof. For an honestly generated group signature Σ← GSign(gsigkm+1,M) and i← Open(ok,Σ,M),
i = m+ 1 holds due to the correctness of GS.

Theorem 5. The PKE scheme is IND-CCA secure if the underlying GS scheme is fully CCA
anonymous.

Proof. Let C be the challenger of full CCA anonymity and A be an adversary of the IND-CCA
security. We construct an algorithm B that breaks full CCA anonymity as follows. At the beginning
of the game, C runs (gpk, ok, gsigk1, gsigk2) ← Setup(1λ, 12) and sends (gpk, gsigk1, gsigk2) to B. B
sets pk = (gpk, gsigk1, gsigk2) and sends pk to A. For a decryption query C = (Σ,M) issued by A, B
forwards (Σ,M) to C as an opening query. If C returns ⊥, then B returns ⊥ to A. Otherwise, when
C returns i ∈ {1, 2}, then B returns i− 1 to A. A declares (m∗

0,m
∗
1). Without loss of generality, we

5To amplify the message space, we can use M (a signed message) as a tag/label where for a key pair of a one-time
signature scheme (verk, sigk), compute Σi ← GSign(gsigkmi+1, verk) for encrypting the i-th bit of the plaintext mi,
and a ciphertext is (σOTS, {Σi}). This message space amplification technique was introduced in [19].
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set (m∗
0,m

∗
1) = (0, 1). B randomly chooses M∗ ∈ {0, 1}∗ and sends (1, 2,M∗) to C as the challenge

query. C returns Σ∗ ← GSign(gpk, gsigkb+1,M
∗) to B where b ∈ {0, 1}. B sets C∗ = (Σ∗,M∗) and

sends C∗ to A. For a decryption query C = (Σ,M) issued by A, B responds the query as in the
previous phase. We note that B can forward any query since C ̸= C∗, (Σ,M) ̸= (Σ∗,M∗) holds.
Finally, A outputs b′ ∈ {0, 1}. B outputs the same b′ and breaks full anonymity at least the same
advantage of A.

The following theorem also holds (we omit the proof because it can be obtained by the proof
of Theorem 5).

Theorem 6. The PKE scheme is IND-CPA secure if the underlying GS scheme is fully CPA
anonymous.

5.2 Definition of Public Verifiability

Since C = (Σ,M) in the GS-based PKE scheme given in Section 5.1, the validity of C can be
publicly checked via GVerify(gpk,Σ,M). Here, the Open algorithm is internally run in the PKE.Dec
algorithm. Thus, intuitively the verifiability guarantees that if GVerify(gpk,Σ,M) = 1 for C =
(Σ,M), then m ∈ MessageSpace(pk) holds for m ← PKE.Dec(dk, C). However, to reduce full
traceability, the reduction algorithm issues corruption queries 1 and 2, to obtain (gsigk1, gsigk2).
Under the full corruption, the last condition of full traeability does not happen. That is, to construct
an IND-CPA secure GS-based PKE scheme, it is sufficient that the underlying GS scheme provides
the correctness, full CPA anonymity, and full traceability without the last condition that is exactly
artificially constructed in Section 4. Since such a GS scheme can be constructed from PKE only
and is meaningless in practice, the above intuition does not capture what we can achieve when a
publicly verifiable PKE scheme is constructed from GS secure in the BMW model. Thus, in this
section, we explore what the verifiability guarantees in the GS-based PKE scheme.

First, we define the verification algorithm of PKE, PKE.Verify, as follows. We introduce a
verification key vk here.

Definition 6 (Syntax of Verifiable PKE).

PKE.KeyGen: The key generation algorithm takes as a security parameter λ as input, and outputs a
public key, a verification key, and a decryption key (pk, vk, dk). pk contains a plaintext space
which we denote MessageSpace(pk).

PKE.Enc: The encryption algorithm takes pk and a plaintext m ∈ MessageSpace(pk), and outputs
a ciphertext C.

PKE.Dec: The decryption algorithm takes dk and C as input, and outputs m or ⊥.

PKE.Verify: The verification algorithm takes vk and C as input, and output 0 or 1.

We implicitly assume that dk contains vk, and the PKE.Dec algorithm internally runs the PKE.Verify
algorithm, and outputs ⊥ if PKE.Verify(vk, C) = 0.

Correctness: For all λ ∈ N, all (pk, vk, dk) ← PKE.KeyGen(1λ), and all m ∈ MessageSpace(pk),
PKE.Dec(dk,PKE.Enc(pk,m)) = m and PKE.Verify(vk, C) = 1 hold with overwhelming probability.
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Definition 7 (IND-CCA Security). Let C be the challenger and A be an adversary. We define
the security model via the security game between C and A. At the beginning of the game, C runs
(pk, vk, dk)← PKE.KeyGen(1λ) and gives (pk, vk) to A. A is allowed to issue decryption queries.

Decryption Query: A sends C. C returns the result of PKE.Dec(dk, C).

A declares two equal-length plaintexts m∗
0,m

∗
1 ∈ MessageSpace(pk). C chooses b

$←− {0, 1}, computes
C∗ ← PKE.Enc(pk,m∗

b), gives C∗ to A. A is further allowed to issue decryption queries.

Decryption Query: A sends C ̸= C∗. C returns the result of PKE.Dec(dk, C).

Finally, A outputs b′ ∈ {0, 1}. We say that the PKE scheme is IND-CCA secure if the advantage

AdvIND-CCA
PKE,A (λ) = |Pr[b = b′]− 1/2|

is negligible in λ for any PPT adversaries A.

Next, we define public verifiability. Basically, it guarantees that the decryption result of a valid
ciphertext is in MessageSpace(pk). However, as mentioned above, a straightforward definition does
not capture what we can achieve when a publicly verifiable PKE scheme is constructed from GS
secure in the BMW model. To capture this, we introduce a BUFF-like security model. We require
that an adversary of the public verifiability, who is given (pk, vk, dk), outputs a ciphertext C∗ and
a public key pk∗ such that C∗ is valid under vk, the decryption result is in MessageSpace(pk∗), and
MessageSpace(pk) ∩MessageSpace(pk∗) = ∅. Our definition guarantees that the decryption result
of a valid ciphertext under vk is in MessageSpace(pk). Moreover, producing such a pk∗ violates the
last winning condition of full traceability since pk∗ contains a signing key of an uncorrupted user
in the GS context. This, we can reduce the public verifiability to full traceability of the underlying
GS scheme, and it seems that our definition adequately captures what security can be achieved
when a publicly verifiable PKE scheme is constructed from GS secure in the BMW model.

Definition 8 (Public Verifiability). Let C be the challenger and A be an adversary. We de-
fine the security model via the security game between C and A. At the beginning of the game,
C runs (pk, vk, dk) ← PKE.KeyGen(1λ) and gives (pk, vk, dk) to A. A outputs (C∗, pk∗). Let
m∗ ← PKE.Dec(dk, C∗). We say that A wins if PKE.Verify(vk, C∗) = 1, m∗ ∈ MessageSpace(pk∗),
and MessageSpace(pk) ∩ MessageSpace(pk∗) = ∅ hold. We say that the PKE scheme is publicly
verifiable if the advantage

Advpub-verPKE,A (λ) = Pr[A wins]

is negligible in λ for any PPT adversaries A.

Remark 2. Nieto et al. [21] defined strictly non-trivial public verification (we give their definition
in Section 6 for the sake of clarity). They introduced a verification algorithm and it is required
that the verification algorithm outputs 0 for all ciphertexts if and only if the decryption result of
the ciphertexts are ⊥ (Condition 1). Moreover, it is also required that there exists a ciphertext for
which the decryption result is ⊥ (Condition 2). Especially, it seems that Condition 2 is introduced
to exclude a trivial construction where the verification algorithm never outputs ⊥. However, still
we can consider an artificial construction. See Section 6 for details.
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5.3 Publicly Verifiable GS-based PKE

We explicitly construct a publicly verifiable PKE scheme from GS secure in the BMW model as
follows. Here, we set n > 2 that allows an adversary to produce a valid group signature whose
opening result is an uncorrupted user.

PKE.KeyGen(1λ): Run (gpk, ok, {gsigki}i∈[n]) ← Setup(1λ, 1n) for n > 2. Pick gsigk, gsigk′
$←−

{gsigki}i∈[n] and set (gsigk1, gsigk2) = (gsigk, gsigk′). Output pk = (gsigk1, gsigk2), vk = gpk,
and dk = (vk, ok).

PKE.Enc(pk,m): Parse pk = (gsigk1, gsigk2). For m ∈ MessageSpace(pk) = {0, 1}, choose M ∈
{0, 1}∗ and run Σ← GSign(gsigkm+1,M). Output C = (Σ,M).

PKE.Dec(dk, C): Parse dk = (vk, ok) and C = (Σ,M). Output ⊥ if PKE.Verify(vk, C) = 0. Other-
wise, run i← Open(ok,Σ,M). If i = ⊥, then output ⊥. Otherwise, output m = i− 1.

PKE.Verify(vk, C): Parse vk = gpk and C = (Σ,M). Output the result of GVerify(gpk,Σ,M).

Theorem 7. The PKE scheme is correct if the underlying GS scheme is correct.

Proof. The same as the proof of Theorem 4.

Theorem 8. The PKE scheme is IND-CCA secure if the underlying GS scheme is fully CCA
anonymous.

Basically, the proof is the same as the proof of Theorem 5. However, we give the proof to confirm
the impact for introducing vk and the PKE.Verify algorithm.

Proof. Let C be the challenger of full CCA anonymity and A be an adversary of the IND-CCA
security. We construct an algorithm B that breaks full CCA anonymity as follows. At the beginning
of the game, C runs (gpk, ok, {gsigki}i∈[n]) ← Setup(1λ, 1n) and sends (gpk, {gsigki}i∈[n]) to B. B
picks gsigk, gsigk′

$←− {gsigki}i∈[n], sets (gsigk1, gsigk2) = (gsigk, gsigk′), and sends (pk, vk) to A. For
a decryption query C = (Σ,M) issued by A, B returns ⊥ if PKE.Verify(vk, C) = 0. Otherwise, B
forwards (Σ,M) to C as an opening query. If C returns ⊥, then B returns ⊥ to A. Otherwise, when
C returns i ∈ {1, 2}, then B returns i− 1 to A. A declares (m∗

0,m
∗
1). Without loss of generality, we

set (m∗
0,m

∗
1) = (0, 1). B randomly chooses M∗ ∈ {0, 1}∗ and sends (1, 2,M∗) to C as the challenge

query. C returns Σ∗ ← GSign(gpk, gsigkb+1,M
∗) to B where b ∈ {0, 1}. B sets C∗ = (Σ∗,M∗) and

sends C∗ to A. For a decryption query C = (Σ,M) issued by A, B responds the query as in the
previous phase. We remark that B can forward any query since C ≠ C∗, (Σ,M) ̸= (Σ∗,M∗) holds.
Finally, A outputs b′ ∈ {0, 1}. B outputs the same b′ and breaks full anonymity at least the same
advantage of A.

Theorem 9. The PKE scheme is publicly verifiable if the underlying GS scheme is fully traceable.

Proof. Let C be the challenger of full traceability and A be an adversary of the public verifiability.
We construct an algorithm B that breaks full traceability as follows. At the beginning of the game,
C runs (gpk, ok, {gsigki}i∈[n])← Setup(1λ, 1n) and sends (gpk, ok) to B. B randomly chooses distinct

i, j
$←− [n] and sends i and j as corrupt queries. C returns two signing keys and B sets them as
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gsigk1 and gsigk2. B sets pk = (gsigk1, gsigk2) and vk = gpk, and sends (pk, vk, ok) to A. Here,
MessageSpace(pk) = {0, 1}.
A outputs (C∗, pk∗) where PKE.Verify(vk, C∗) = 1 (i.e., GVerify(gpk,Σ∗,M∗) = 1 where C∗ =

(Σ∗,M∗)). Due to the winning condition of A, for m∗ ← PKE.Dec(dk, C∗), m∗ ∈ MessageSpace(pk∗)
and MessageSpace(pk)∩MessageSpace(pk∗) = ∅ hold. Let pk∗ = gsigk (though pk∗ may contain two
or more signing keys, one key is sufficient to reduce full traceability). Since gsigk is not a response
of a corrupt query, the user whose signing key gsigk can be regarded as an uncorrupted user. B
outputs (Σ∗,M∗) and breaks full traceability.

Implication Results. The generic construction of GS secure in the BMW model [5] provides full
anonymity if the underlying PKE scheme is IND-CCA secure and the non-interactive proof system
is simulation sound, and provides full traceability if the underlying signature scheme is EUF-CMA
secure and the non-interactive proof system is sound. By combining the generic construction and
our result, we can construct a publicly verifiable PKE scheme from these cryptographic primitives.
In terms of complexity assumptions, we can instantiate a public verifiable PKE scheme from GSs
constructed from DL-based assumptions (pairings [16, 23] or DDH (w/o pairing) [11]), lattices
(LWE/SIS [28]), isogenies (CSIDH [8]), and codes (McEliece [20]). Though a hash-based group
signature scheme has been proposed in [18], it does not provide full anonymity (it provides selfless
anonymity) and thus we cannot employ it as a building block.

6 Discussion

Nieto et al. [21] defined strictly non-trivial public verification for general encryption that contains
PKE, identity-based encryption, and tag-based encryption. Because we focus on PKE in this pa-
per, we remove IDSp and TagSp (in their notions) below. They introduced a parameter generation
algorithm PG that takes a security parameter λ and outputs public parameters par, and the key
generation algorithm PKE.KeyGen takes par as input. We follow the notion below. We also remark
that the syntax of their verification algorithm is differ from ours where the Ver algorithm outputs
either ⊥ if the ciphertext fails the validation or a (transformed) ciphertext. The decryption algo-
rithm Dec′ takes the transformed ciphertext (and the decryption key), and outputs a plaintext or ⊥.
The actual decryption algorithm (Dec in the following definition) is represented as the composition
of the verification algorithm and the decryption algorithm, i.e., Dec = Dec′ ◦ Ver.

Definition 9 (Strictly Non-Trivial Public Verification [21]). Let par← PG(1λ). Ver is said to be
strictly non-trivial if, for all (pk, dk)← PKE.KeyGen(par),

Condition 1. Ver(par, pk, C) = 0 ⇐⇒ Dec(par, pk, dk, C) = ⊥ for all C.

Condition 2. There exists a ciphertext C for which Dec(par, pk, dk, C) = ⊥.

They mentioned that “Condition 1 requires that successful public verification is both necessary
and sufficient for the decryption algorithm not to fail.”. Moreover, they mentioned that “Condition
2 formally excludes IND-CCA-secure schemes where Dec never outputs ⊥ (e.g. [2, 32, 33] where
modified (challenge) ciphertexts decrypt to random messages) to capture the intuition that in order
to determine whether C carries some meaningful message one must have at least partial knowledge
of the private key (which contradicts the goals of strictly non-trivial public verification).”. However,
still we can consider an artificial construction. For any IND-CCA secure PKE scheme where there
is a ciphertext for which the decryption result is ⊥, the key generation algorithm chooses an invalid
ciphertext, say Cinvalid, and contains it to the public key. For a ciphertext C, the verification
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algorithm Ver outputs 0 only when Cinvalid is input, and outputs C otherwise. If the decryption
algorithm Dec′ takes 0, then it outputs ⊥. Otherwise, now Dec′ takes C (and the decryption
key) as input. If the decryption algorithm of the underlying PKE scheme returns ⊥, then Dec′

outputs a random non-⊥ plaintext (it can be pre-defined when Dec′ is a deterministic algorithm).
Otherwise, if the decryption algorithm of the underlying PKE scheme does not return ⊥, then
Dec′ outputs the decryption result. This artificial construction does not affect the correctness since
honestly generated ciphertext is correctly decrypted due to the correctness of the underlying PKE
scheme. Moreover, it provides strictly non-trivial public verification. Here, what we argue in this
paper is that the definition of strictly non-trivial public verification by itself can be bypassed by
an artificial construction, and we do not claim that the above artificial construction does not affect
the IND-CCA security. As a final remark, Nieto et al. mentioned that “all IND-CCA-secure PKE
schemes trivially achieve public verifiability with respect to Ver(par, pk, C) := C and Dec′ := Dec.
We are often interested in the case where something non-trivial is occurring in Ver, i.e. where the
consistency check is essential for successful decryption.”.6 We totally agree with the concept and
follow it to give our definition for public verifiability in this paper.

7 Conclusion

In this paper, we explore the winning conditions of full traceability. We show that the condition,
where an adversary is required to produce a valid group signature whose opening result is an
uncorrupted user, is essential. We also explore the public verifiability of a GS-based PKE scheme.
Although we have shown implication results of publicly verifiable PKE from GS, the construction is
not efficient. Basically, the construction involves NIZK as its building block. It would be interesting
to construct an efficient publicly verifiable PKE scheme without NIZK, or to construct a generic
transformation adding the public verifiability to non-verifiable PKE. We leave them as future works
of this paper. Considering other implication results among GSs and other primitives besides public
verifiability is also an interesting future work.
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[27] Benôıt Libert, Thomas Peters, and Moti Yung. Scalable group signatures with revocation.
In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of
LNCS, pages 609–627. Springer, Berlin, Heidelberg, April 2012.

[28] San Ling, Khoa Nguyen, Huaxiong Wang, and Yanhong Xu. Lattice-based group signatures:
Achieving full dynamicity with ease. In Dieter Gollmann, Atsuko Miyaji, and Hiroaki Kikuchi,

15



editors, ACNS 17International Conference on Applied Cryptography and Network Security,
volume 10355 of LNCS, pages 293–312. Springer, Cham, July 2017.

[29] Toru Nakanishi, Hiroki Fujii, Yuta Hira, and Nobuo Funabiki. Revocable group signature
schemes with constant costs for signing and verifying. In Stanislaw Jarecki and Gene Tsudik,
editors, PKC 2009, volume 5443 of LNCS, pages 463–480. Springer, Berlin, Heidelberg, March
2009.

[30] Toru Nakanishi and Nobuo Funabiki. Verifier-local revocation group signature schemes with
backward unlinkability from bilinear maps. In Bimal K. Roy, editor, ASIACRYPT 2005,
volume 3788 of LNCS, pages 533–548. Springer, Berlin, Heidelberg, December 2005.

[31] Go Ohtake, Arisa Fujii, Goichiro Hanaoka, and Kazuto Ogawa. On the theoretical gap between
group signatures with and without unlinkability. In Bart Preneel, editor, AFRICACRYPT 09,
volume 5580 of LNCS, pages 149–166. Springer, Berlin, Heidelberg, June 2009.

[32] Duong Hieu Phan and David Pointcheval. Chosen-ciphertext security without redundancy.
In Chi-Sung Laih, editor, ASIACRYPT 2003, volume 2894 of LNCS, pages 1–18. Springer,
Berlin, Heidelberg, November / December 2003.

[33] Duong Hieu Phan and David Pointcheval. OAEP 3-round: A generic and secure asymmetric
encryption padding. In Pil Joong Lee, editor, ASIACRYPT 2004, volume 3329 of LNCS, pages
63–77. Springer, Berlin, Heidelberg, December 2004.

[34] John Rompel. One-way functions are necessary and sufficient for secure signatures. In 22nd
ACM STOC, pages 387–394. ACM Press, May 1990.

[35] Yusuke Sakai, Keita Emura, Goichiro Hanaoka, Yutaka Kawai, Takahiro Matsuda, and Kazu-
masa Omote. Group signatures with message-dependent opening. In Michel Abdalla and
Tanja Lange, editors, PAIRING 2012, volume 7708 of LNCS, pages 270–294. Springer, Berlin,
Heidelberg, May 2013.

[36] Yusuke Sakai, Keita Emura, Goichiro Hanaoka, Yutaka Kawai, and Kazumasa Omote. Methods
for restricting message space in public-key encryption. IEICE Fundamentals of Electronics,
Communications and Computer Sciences, 96-A(6):1156–1168, 2013.

[37] Yusuke Sakai, Jacob C. N. Schuldt, Keita Emura, Goichiro Hanaoka, and Kazuo Ohta. On
the security of dynamic group signatures: Preventing signature hijacking. In Marc Fischlin,
Johannes Buchmann, and Mark Manulis, editors, PKC 2012, volume 7293 of LNCS, pages
715–732. Springer, Berlin, Heidelberg, May 2012.

16


	Introduction
	Group Signatures and Security Models
	Implication Results among GS and Other Cryptographic Primitives
	Full Traceability, Revisited
	Our Contribution

	Preliminaries: PKE
	GS and the BMW Model
	Essential Condition of Full Traceability
	Publicly Verifiable PKE, Revisited
	GS-based PKE
	Definition of Public Verifiability
	Publicly Verifiable GS-based PKE

	Discussion
	Conclusion

