
GraSS: Graph-based Similarity Search on Encrypted Query

Duhyeong Kim†, Yujin Nam‡, Wen Wang†, Huijing Gong†, Ishwar Bhati†, Rosario Cammarota†,
Tajana S. Rosing‡, Mariano Tepper† and Theodore L. Willke†

†Intel Labs
‡University of California San Diego

Abstract—Similarity search, i.e., retrieving vectors in a
database that are similar to a query, is the backbone of
many applications. Especially, graph-based methods show
state-of-the-art performance. For sensitive applications, it is
critical to ensure the privacy of the query and the dataset.
In this work, we introduce GraSS, a secure protocol between
client (query owner) and server (dataset owner) for graph-
based similarity search based on fully homomorphic encryp-
tion (FHE). Both the client-input privacy against the server
and the server-input privacy against the client are achievable
based on underlying security assumptions on FHE.

We first propose an FHE-friendly graph structure with a
novel index encoding method that makes our protocol highly
scalable in terms of data size, reducing the computational
complexity of neighborhood retrieval process from O(n2) to
Õ(n) for the total number of nodes n. We also propose sev-
eral core FHE algorithms to perform graph operations under
the new graph structure. Finally, we introduce GraSS, an
end-to-end solution of secure graph-based similarity search
based on FHE. To the best of our knowledge, it is the first
FHE-based solution for secure graph-based database search.

We implemented GraSS with an open-source FHE library
and estimated the performance on a million-scale dataset.
GraSS identifies (approximate) top-16 in about 83 hours
achieving search accuracy of 0.918, making it over 28×
faster than the previous best-known FHE-based solution.

1. Introduction

Similarity search is a foundational technique for a wide
range of applications including image generation [1], nat-
ural language processing [2], and recommendation sys-
tems [3]. In Retrieval-Augmented Generation (RAG) [4]–
[6], similarity search extends the outstanding capabilities
of Generative AI models to obtain factually accurate, up-
to-date, and verifiable results. A client issues a query
vector to the database to retrieve items whose vectors are
similar to the query. When searching through millions to
billions of vectors, exact search becomes impractical and
approximate methods are used in virtually all practical de-
ployments. Among those, graph methods dominate due to
their improved performance [7]. However, in applications
involving sensitive user data (e.g., medical records, ge-
nomics, or targeted advertising), standard similarity search
can create significant privacy risks, exposing sensitive
information in the query and database data.

To address the privacy concerns, our work proposes a
robust solution for a secure similarity search protocol
based on fully homomorphic encryption (FHE) [8]–[15]
that allows end-to-end computation over encrypted data
without decryption in the intermediate stages. In general,
FHE offers non-interactive secure inference service be-
tween a client and a server, which works as follows: 1. The
client sends an encrypted query to the server, 2. the server
performs an FHE algorithm corresponding to the inference
service, 3. the server sends back the encrypted inference
result to the client, and 4. the client obtains the cleartext
inference result through decryption. We follow exactly the
same protocol for graph-based similarity search where the
query owner is the client and the graph owner is the server.

Target Privacy. In client-server model, there are two types
of input privacy: The server who holds the graph data
should learn nothing about the query, and the client, the
query owner, should learn nothing about the graph besides
the similarity search result. Client-input privacy against
the server directly comes from indistinguishability under
chosen plaintext attack (IND-CPA) security [16] of FHE.
Server-input privacy against the client, while not directly
guaranteed by IND-CPA, can be achieved by well-known
circuit-privacy techniques such as noise flooding [17], [18]
or ciphertext sanitization [19]–[22].

1.1. Our Work

In this work, we propose GraSS, a secure protocol for
graph-based similarity search based on FHE, which is
highly scalable in terms of the dataset size. To the best
of our knowledge, this work is the first to explore the use
of FHE in privacy-preserving database search based on
graph.

FHE-friendly Graph Data Structure. At a high level,
the main bottleneck of designing an efficient FHE algo-
rithm for graph-based methods is iterative neighborhood
information retrieval. For a single-round retrieval pro-
cess, we can simply use conventional private information
retrieval (PIR) [23], [24] to mask each column of the
database DB ∈ Rn×d with the one-hot-encoding vector
ex ∈ {0, 1}n of an index x ∈ [0, n), which retrieves
the i-th row of DB in encrypted form. However, graph-
based methods require to perform the retrieval process
iteratively, which means a part of the retrieved (neighbor
index) information should be transformed into the one-
hot-encoding vector form for the next retrieval process.

The most naive way is to encode the index of all neigh-
borhoods of every node into the one-hot-encoding vector
form. However, the node index part of the graph database
would be an n×mn matrix, where m is the maximal graph
degree, which results in O(n2) computational complexity
for neighborhood retrieval process. Such complexity is
infeasible for a million-scale dataset.

In this paper, we first define an FHE-friendly structure
of graph data which enables neighborhood information
retrieval with Õ(n) complexity (Section 3.1). We also
introduce several core FHE algorithms according to the
new graph data structure, whose usage is not restricted to
similarity search but also applicable to any other graph-
based applications (Section 3.2). Finally, we apply the
core FHE building blocks to design and implement the
end-to-end secure solution GraSS for graph-based simi-
larity search (Section 4).

Design Rationale on FHE Algorithms. Most of prior
work [25]–[27] on FHE-based similarity search focused
on homomorphic computation of global top-k over the
entire database and utilized bit-wise FHE [13], [14], which
support homomorphic logical gate operations and look-
up table operations as basic functionalities, since the
majority of the global top-k computation is comparison
operation which is less efficient to compute with word-
wise FHE [9]–[11], [15]. However, in general, bit-wise
FHE is not as efficient as word-wise FHE for highly-
parallelizable computations. Hence, using bit-wise FHE
alone would not be an optimal design solution for super
large-scale data. Refer to Section 2.2 for more details on
bit/word-wise FHE.

For GraSS, we leverage the strengths of both worlds: We
use word-wise FHE for highly-parallelizable polynomial
operations and bit-wise FHE for poorly-parallelizable log-
ical (comparison) operations, which can be homomorphi-
cally transformed to each other by scheme-switching [28],
[29]. Note that graph-based similarity search requires
fewer comparison operations (e.g., top-k) and more poly-
nomial operations (e.g., distance computation, neighbor-
hood retrieval) compared to non-graph-based similarity
search algorithms. Hence, our design rationale fits per-
fectly with graph-based similarity search.

Performance. We implemented our end-to-end FHE solu-
tion GraSS for graph-based similarity search with CKKS
(word-wise FHE) [15] and FHEW (bit-wise FHE) [13],
[30] based on OpenFHE [31], which is an open-source
FHE library that supports scheme-switching between
CKKS and FHEW. Compared to the prior state-of-the-
art based on FHE, we achieve over 4.13× and 28.72×
speedups for 100k and 1 million-scale datasets, respec-
tively.

1.2. Related Work

Various privacy-preserving techniques have been explored
in the context of similarity search. Note that in some work,
similarity search is addressed as nearest neighbor search,
or as part of k-Nearest Neighbors (kNN) classifiers. Since
our focus is on search algorithms rather than classifiers,

we include works on kNN classifiers but omit discussions
on subsequent steps, such as majority voting mechanisms.

FHE-based Similarity Search. There are several works
on FHE-based solution for similarity search following
the client-server model [25]–[27], [32]. The most recent
work [27] proposed a novel top-k sorting network with
only O(n log k) comparison operations for k ≪

√
n.

Their implementation based on bit-wise FHE takes about
642 seconds to find exact top-5 elements among the
n = 1000 data points with single-thread CPU. However,
the implementation is limited to low-precision comparison
operation (e.g., 6-bit in [27]), and its scalability in terms of
the bit precision and the data size is non-trivial. In general,
we need larger precision to obtain top-k results with
larger datasets. For example, while the input precision of
comparison operations in [27] was 6-bit, our experiments
for 1M dataset required about 14-bit precision for each
comparison operation.

To obtain the same level of precision with ours, previous
work based on bit-wise FHE need to either 1. increase
FHE parameters accordingly or 2. encrypt a number into
multiple ciphertexts after parsing into small digits. The
former method will result in at least 214−6 = 256×
computational overhead1 from the result of [27]. The
latter method requires multi-precision computation for ev-
ery operation, which implies another huge computational
overhead. On the other hand, GraSS fully utilizes the
SIMD packing property and large plaintext space of word-
wise FHE in the protocol except in the argmin and local
top-k (for ≤ 100 inputs) steps, working more efficiently
than the previous work for million-scale data. Refer to
Section 5.4 for more details on the comparison with our
work.

MPC-based Similarity Search Multi-Party Computa-
tion (MPC) is another approach to build a secure pro-
tocol that reduces computational demands but introduces
significant communication overhead through the use of
oblivious transfer and garbled circuits. The work of [18]
utilized multiple cryptographic primitives including addi-
tive homomorphic encryption, oblivious RAM, and gar-
bled circuits. The computational cost of overall protocol is
very low: 400 seconds to run the protocol over million-to-
billion-scale data. Contrary to FHE; however, MPC-based
protocols are inherently interactive with large number
of interaction rounds, and hence the client should stay
online until the end of the protocols with large amount of
communication cost, which might not be appropriate in
some real-world use-cases.

Other Graph Applications based on FHE. There exist
a few works on FHE-based graph operation/application
(besides database search), such as Bellman-Ford algorithm
solving the shortest-path problem [34] and graph convo-
lutional network Inference [35]. These works commonly
represent the data structure of a graph as its adjacent
matrix of the size n × n. The adjacent-matrix-based op-
eration fundamentally accompanies O(n2) computational

1. We follow the methodology of [33] to estimate the computational
cost with respect to target precision.

complexity, and it is infeasible to run the algorithms over
million-scale data in encrypted state.

It is worth noting that n×n matrix-based operations have
been a common approach for FHE-based similarity search,
which similarly face scalability challenges [25], [26]. In
contrast, the graph-based method we emphasize in this
work conducts search in a graph-structured database using
a non-exhaustive approach, offering improved scalability.

2. Preliminaries

2.1. Notations

Let G = (V, E) be a regular graph (i.e., the same
degree for each node) for the set of nodes V :=
{v0,v1, ...,vn−1} ⊂ Rd and the set of edges E :=
{(vi,vsi,j)}0≤i<n,0≤j<m ⊆ V×V . We identify the index
of each node vi as i ∈ [0, n); hence the node i has
the neighborhoods with index si,j for 0 ≤ j < m.
Here, m(< n) is the number of neighborhoods of each
node (i.e., the degree of the graph). Let ℓ be the smallest
power-of-two integer that is larger than or equal to ⌈log n⌉,
the maximal bit length of each node index.

Let R := Z[X]/(XN + 1) be the ring of integer poly-
nomials modulo (XN + 1) for power-of-two N , and let
Rq := R/qR = Zq[X]/(XN + 1) for any integer q > 1.
We use the polynomial ring R of the ring dimension N for
word-wise FHE. We denote the SIMD batch size and the
plaintext modulus of word-wise FHE by b and t, respec-
tively. For bit-wise LWE, we denote the LWE dimension
and plaintext modulus by N ′ and t′, respectively. More
details about word/bit-wise FHE will be explained in the
next subsection.

2.2. Homomorphic Encryption

A number of FHE schemes [9]–[15], [36] have been sug-
gested following Gentry’s blueprint [8], and the followings
are regarded as the state-of-the-art FHE schemes with the
best performance nowadays: BGV [9], B/FV [10], [11],
CKKS [15] and FHEW/TFHE [13], [14].

2.2.1. Word-wise FHE for Batch Polynomial Arith-
metic. The word-wise FHE schemes BGV, B/FV and
CKKS commonly allow the batch encryption of multiple
word-size plaintexts into a single ciphertext and support
homomorphic addition and multiplication as basic opera-
tions.

Let Mb be the message vector space which varies per
scheme, e.g., M = Zt for a plaintext modulus t and
1 < b ≤ N for BGV and B/FV, andM = R and b = N/2
for CKKS. The first step of encryption is to encode
the message vector z ∈ Mb into an integer polynomial
m(X) := Ecd(z) ∈ R. We call m(X) the plaintext
polynomial corresponding to the message vector z. Then,
the next step is to encrypt the plaintext m(X) with a secret
key sk (with public key pk in public-key encryption
setting) into a ciphertext ct := Enc(m(X)) ∈ R2

Q for
some large modulus Q, which is set depending on the
depth of the target computation. The decryption procedure
works in reverse: Decrypt a ciphertext into an underlying

plaintext polynomial and then decode the plaintext into a
message vector in Mb. For simplicity, we will call the
whole procedure from ciphertext to message vector as the
decryption Dec.

Let pt0 = Ecd(x0, ..., xb−1), pt1 = Ecd(y0, ..., yb−1)
and cti = Enc(pti) for i = 0, 1. Then, the following
homomorphism properties commonly hold for word-wise
FHE:

Dec(ADD(ct1,ct2)) = (x0 + y0, ..., xb−1 + yb−1),

Dec(MULT(ct1,ct2)) = (x0 · y0, ..., xb−1 · yb−1),

Dec(ROTATE(ct1); k)) = (xk, ..., xb−1, x0, ..., xk−1).

ADD, MULT and ROTATE indicate homomorphic addition,
multiplication and (left-)rotation algorithms of ciphertexts,
respectively. Note that the equality in each homomor-
phic property need to be replaced by the approximate
equality in CKKS. The ciphertext-ciphertext (ct-ct) mul-
tiplication and homomorphic rotation algorithms require
key-switching keys as an additional input, which are also
known as relinearization key and rotation key. We omit
these key inputs in MULT and ROTATE notations for
convenience.

As described above, word-wise FHE schemes support
parallel addition and multiplication homomorphically in
a single instruction, multiple data (SIMD) manner. The
SIMD property makes word-wise FHE schemes quite
efficient for highly-parallelizable polynomial arithmetic
in terms of amortized computational cost. Refer to Ap-
pendix A for a note on non-polynomial operations and
additional FHE contexts including ciphertext level and
bootstrapping in word-wise FHE.

2.2.2. Bit-wise FHE for Logical Operations. Bit-wise
FHE is another approach to construct an efficient FHE
scheme that supports logical operations (e.g., gate opera-
tions, comparison, etc.) and digital lookup table (LUT) as
basic operations, contrary to word-wise FHE in the pre-
vious subsection which support polynomial arithmetics.
FHEW [13], [30] and TFHE [37] are included in bit-
wise schemes. These schemes use relatively small FHE
parameters compared to word-wise FHE: bit-wise FHE
encrypts a single message z ∈ ZtLWE

for relatively small
plaintext modulus tLWE into an LWE ciphertext of the
form (⃗a, b) ∈ ZNLWE

q × Zq. Here, the (LWE) dimension
NLWE is usually between 29 and 211 and the ciphertext
modulus is as small as q ≈ 211 in practice [38].

The main idea of bit-wise FHE is to perform bootstrapping
for every basic homomorphic operation. Hence, when
a user is given bit-wise FHE APIs, the user does not
need to care about the ciphertext noise growth in the
FHE program design. Due to such small parameter setting
and the algorithmic differences, each basic operation of
bit-wise FHE takes much lower latency than word-wise
FHE, e.g., only few milliseconds per gate bootstrapping
in FHEW/TFHE. However, usually bit-wise FHE schemes
do not support batch computation in contrast to word-wise
FHE, and hence bit-wise FHE is preferred to word-wise
FHE when the target computation is poorly parallelizable
and/or is composed of logical operations.

In this paper, we make the best use of the homomor-
phic sign evaluation algorithm SIGN recently introduced
in [33] to compare the encrypted inputs with relatively
high precision (e.g., 14-bit) in graph-based similarity
search. This algorithm utilizes an intermediate-size LWE
ciphertext with larger ciphertext/plaintext modulus (qlarge,
tlarge) compared to the original FHEW/TFHE, which
enables our work to achieve much higher-precision sign
evaluation than previous work.

2.3. Scheme-Switching Technique

The baseline strategy of our FHE algorithm design
(GraSS) is to utilize word-wise FHE for highly paralleliz-
able arthmetic operations (add, mult) and bit-wise FHE
for poorly parallelizable logical operations. Therefore, we
need a conversion technique between word-wise FHE and
bit-wise FHE for an end-to-end FHE solution, which is
called scheme-switching. The idea of scheme-switching
between different FHE schemes was first introduced in
[28], and its efficiency was significantly improved by a
follow-up study [29]. Note that OpenFHE [31], one of a
few open-source FHE libraries that are under maintenance,
supports the scheme-switching between the word-wise
FHE scheme CKKS and the bit-wise FHE scheme FHEW.

2.4. Graph-based Similarity Search

Graph-based methods are currently the best perform-
ing techniques for million-to-billion-scale similarity
search [7]. Instead of performing global top-k search over
the entire data, Graph-based similarity search performs
local top-k search iteratively, which dramatically reduces
the total number of comparison operations.

Let G = (V, E) be the regular graph for the set of
nodes V := {0, 1, ..., n − 1} and the set of edges E :=
{(i, si,j)}0≤i<n,0≤j<m ⊆ V × V , where si,0 := i (self-
node). Each node i ∈ V corresponds to a feature vector
vi ∈ Rd for some d > 0. We encode the given graph
G as Table 1, where idxi denotes an encoding of each
node i ∈ V . A fundamental graph-based similarity search
algorithm is as following:

Algorithm 1 Greedy Graph Search [7, Algorithm 1]

Require: graph G = (V, E), query q, # of output k ∈ N,
search window size w ≥ k, initial candidates S ⊂ V ,
similarity function sim

Ensure: k approximate nearest neighbors to q in G
1: Q← S, E ← ∅
2: while Q− E ̸= ∅ do
3: x← The closest node to q in Q− E w.r.t. sim
4: E ← E ∪ {x}
5: Q′ ← Q ∪N(x)
6: Q← The w closest nodes to q in Q′ w.r.t. sim
7: end while
8: return The k nearest nodes to q in Q w.r.t. sim

Here, Q is a set of nodes which is updated to get closer
to the input query q as the algorithm continues. E is a set
of explored nodes (i.e., marked as the closest node to q in
Q − E in line 3) and is important for the correctness of

the algorithm as it helps the algorithm to escape the local
minimum. Note that the self-node x is also contained in
the set of neighborhoods N(x). The similarity function
sim is usually defined as 2-norm distance sim(i, j) =
||vi − vj ||2 over Rd.

3. FHE Framework for Graph Search

In this section, we introduce a novel approach that encodes
a given graph dataset into its FHE-friendly form, as well
as a set of core FHE algorithms that are key to performing
graph operations homomorphically.

3.1. FHE-friendly Data Structure of Graph

We first encode a graph G = (V, E) with small degree
m = o(n) into a matrix/table form (See Table 1), where
idxi denotes a proper encoding of the node i ∈ V .

How to define the index encoding idxsi,j ? A common
operation required for graph-based methods is to retrieve
the neighborhood information {(vsxi,j

, idxsxi,j
)}0≤j<m

of the current node xi ∈ [0, n) (of i-th iteration), which is
equivalent to xi-th row extraction of the graph table, and
one of the neighborhoods sxi,j is usually selected as the
next node xi+1 = sxi,j . For the row extraction, we gener-
ally need the one-hot encoding vector exi ∈ {0, 1}n of the
node xi and then mask every column of the table with exi .
Then, all the rows except the xi-th row is zeroized, and
hence the summation of all rows after masking results in
the xi-th row. Namely, if we have Enc(exi) for the node
xi, then we can simply extract its neighborhood informa-
tion as Enc(vsxi,j

) and Enc(idxsxi,j
) for 0 ≤ j < m.

In graph-based methods, such neighborhood retrieval pro-
cess needs to be done iteratively. That is, we need the
encryption of the one-hot encoding vector of the next node
Enc(exi+1) for the next neighborhood retrieval process in
(i+ 1)-th iteration. Hence, the most naive way to do this
would be to set the encoding of each neighbor si,j as its
one-hot encoding vector (i.e., idxsi,j = esi,j) such that
Enc(exi+1) can be directly obtained as Enc(idxsxi,j

) =
Enc(exi+1

) for some 0 ≤ j < m.

However, this naive method is not feasible in practice
due to the substantially large computational cost O(mn2)
of the neighborhood retrieval process, for the number of
neighbor nodes m and the total number of nodes n. To
be precise, if we set idxsi,j = esi,j , then the graph table
for the neighborhood information becomes an n × mn
matrix since idxsi,j = esi,j ∈ {0, 1}n for 0 ≤ i < n and
0 ≤ j < m. Hence, masking the graph table with a one-
hot encoding vector requires mn2 scalar multiplications.
Since we target million-scale n, the quadratic computa-
tional cost is considered unacceptable.

Instead, in GraSS, we set the index encoding idxsi,j of
si,j as its binary representation instead of its one-hot
encoding, i.e.,

si,j =

⌈logn⌉−1∑
u=0

2u · idxsi,j ,u

for idxsi,j := (idxsi,j ,0, ..., idxsi,j ,⌈logn⌉−1) ∈
{0, 1}⌈logn⌉. The main advantage of exploiting binary

TABLE 1: Node Vectors and Binary Index Table of Neighborhoods

Index Neighborhood Information

0 (vs0,0 , idxs0,0) (vs0,1 , idxs0,1) · · · (vs0,m−1 , idxs0,m−1)

1 (vs1,0 , idxs1,0) (vs1,1 , idxs1,1) · · · (vs1,m−1 , idxs1,m−1)

...
...

...
...

...

n− 1 (vsn−1,0 , idxsn−1,0) (vsn−1,1 , idxsn−1,1) · · · (vsn−1,m−1 , idxsn−1,m−1)

representation instead of one-hot encoding is that the
computational cost of masking the graph table is reduced
from O(n2) to O(n log n). The remaining task is
to convert the binary representation into the one-hot
encoding vector homomorphically. Binary-to-one-hot
conversion is explained in detail in Section 3.2.1 where
we show that the conversion also requires O(n log n)
scalar multiplications which is similar to the masking
process.

3.2. Core FHE Building Blocks

3.2.1. Binary-to-One-hot Encoding Conversion. We
first explain the FHE algorithm of the conversion from
the given binary representation idxx ∈ {0, 1}⌈logn⌉ of
the node x ∈ [0, n) into its one-hot encoding vector
ex ∈ {0, 1}n in an encrypted state. The conversion pro-
cess is highly parallelizable, and hence we use word-wise
FHE with plaintext batching property rather than bit-wise
FHE. The batch size of word-wise FHE is denoted by b
(Refer to Section 2.2.1).

The one-hot encoding vector ex can be interpreted as
(x == i?)0≤i<n, where i-th entry checks the equality
of x and i. Our core observation is that the equality
check (x == i?) for each 0 ≤ i < n can be re-
expressed with the binary representation of s and i as∏⌈logn⌉−1

j=0 (idxx,j == idxi,j?). Hence, the one-hot en-

Algorithm 2 Homomorphic Binary to One-Hot Conver-
sion (BintoOneHot)

Require: ctj = Enc(idxx,j , idxx,j , ..., idxx,j) and
ptj,u := Ecd(bj,u) for 0 ≤ j < ⌈log n⌉ and
0 ≤ u < ⌈n/b⌉.

Ensure: {ctout,u}0≤u<⌈n/b⌉ (Encryption of es)
1: for u← 0 to ⌈n/b⌉ do
2: for j ← 0 to ⌈log n⌉ − 1 do
3: ctj,u ← MULT(ctj , 2 · ptj,u − 1)
4: ctj,u ← ADD(ctj,u, 1− ptj,u)
5: end for
6: for r ← ⌈log⌈log n⌉⌉ − 1 to 0 do
7: for j ← 0 to 2r − 1 do
8: if j + 2r < ⌈log n⌉ then
9: ctj,u ← MULT(ctj,u,ctj+2r,u)

10: end if
11: end for
12: end for
13: ctout,u ← ct0,u

14: end for
15: return ctout,u

coding vector of the node s can be expressed as follows:

(x == i?)0≤i<n

=

⌈logn⌉−1∏
j=0

(idxx,j == idxi,j?)0≤i<n

=

⌈logn⌉−1∏
j=0

(idxx,j · (2idxi,j − 1) + (1− idxi,j))0≤i<n

, where
∏⌈logn⌉−1

j=0 is the Hadamard (entry-wise) product
of the vectors of length n. Note that bj := (idxi,j)0≤i<n

is pre-computable vector for all 0 ≤ j < ⌈log n⌉.2

Now assume that each entry of the binary representa-
tion idxx ∈ {0, 1}⌈logn⌉ of the node x is encrypted
separately, i.e., ctj := Enc(idxx,j , idxx,j , ..., idxx,j) for
0 ≤ j < ⌈log n⌉, and each vector bj is parsed into ⌈n/b⌉
vectors bj,u of length b and then encoded as plaintext
polynomials {ptj,u}0≤u<⌈n/b⌉. Then, the FHE algorithm
for the conversion from binary representation to one-hot
encoding is described as Algorithm 2.

Complexity Analysis. We use binary tree to multi-
ply (idxx,j · (2idxi,j − 1)0≤i<n + (1− idxi,j)0≤i<n) for
0 ≤ j < ⌈log n⌉. Hence, BintoOneHot requires
n⌈logn⌉

b ct-pt mults and n⌈logn⌉
b ct-ct mults, and consumes

⌈log⌈log n⌉⌉+ 1 levels.

3.2.2. Batch Homomorphic Blind Rotation. After
masking each column of Table 1 with the encrypted one-
hot encoding vector Enc(exi

) at i-th iteration, we obtain
the binary index vectors {idxsxi,j

}0≤j<m where each
entry idxsxi,j

,u for 0 ≤ u < ⌈log n⌉ is encrypted at [xi]b-
th slot as Enc(0, ..., 0, idxsxi,j

,u, 0, ..., 0) for [xi]b := xi

(mod b). Since the slot position [xi]b is private, we are
not able to directly compare idxsxi,j

encrypted at [xi]b-
th slot with another binary index idxsx

i′ ,j
′ encrypted at

[xi′]b-th slot which is obtained in i′-th iteration for i′ ̸= i.

A very well-known solution is to broadcast the value
to every slot through log b homomorphic rotations
and additions, i.e., Enc(0, ..., 0, idxsx,j ,u, 0, ..., 0) 7→
Enc(idxsx,j ,u, idxsx,j ,u, ..., idxsx,j ,u), so that the slot po-
sition of idxsx,j ,u is not private anymore. However, since
we want to broadcast idxsx,j ,u to every slot for all
0 ≤ u < ⌈log n⌉ and 0 ≤ j < m, then the total number
of rotations log b · ⌈log n⌉ ·m (> 10, 000 in practice) to
broadcast all the binary index vectors {idxsx,j

}1≤j≤m is
too large.

2. For example, when n = 8, we pre-compute: b0 =
(0, 1, 0, 1, 0, 1, 0, 1), b1 = (0, 0, 1, 1, 0, 0, 1, 1) and b2 =
(0, 0, 0, 0, 1, 1, 1, 1).

Algorithm 3 Batch Homomorphic Blind Rotation (BlindRotate)

Require: cti := Enc(0, ..., 0, zi, 0, ..., 0) (zi at y-th slot) for 0 ≤ i < ⌈log n⌉, ctidxy,u
:= Enc(idxy,u, ..., idxy,u) for

0 ≤ u < log ℓ.
Ensure: ctout = Enc(z) for z := (z0, ..., zℓ−1, z0, ..., zℓ−1, ..., z0, ..., zℓ−1) where zi := 0 for ⌈log n⌉ ≤ i < ℓ.

1: for u← log ℓ− 1 to 0 do
2: for i← 0 to 2u − 1 do
3: if i+ 2u < ⌈log n⌉ then
4: cti+2u ← ROTATE(cti+2u ;−2u)
5: cti ← ADD(cti,cti+2u)
6: end if
7: end for
8: end for
9: ctpack ← ct0

10: for u← log ℓ to log b− 1 do
11: cttemp ← ROTATE(ctpack; 2

u)
12: ctpack ← ADD(ctpack,cttemp)
13: end for
14: ctbc ← ctpack

15: for u← 0 to log ℓ− 1 do
16: cttemp1 ← ROTATE(ctbc; 2

u)
17: cttemp1 ← MULT(cttemp1,ctidxy,u

)
18: cttemp2 ← SUB(1,ctidxy,u

)
19: ctbc ← MULT(ctbc,cttemp2)
20: ctbc ← ADD(ctbc,cttemp1)
21: end for
22: return ctout ← ctbc

We propose a new FHE algorithm called homomorphic
blind rotation, which performs the homomorphic rotation
when the rotation index is encrypted. Instead of broad-
casting idxsx,j ,u at [x]b-th slot to every slot, we left-rotate
for [x]b slots to put idxsx,j ,u at the 0-th (first) slot. The
main advantage of homomorphic blind rotation is that we
can pack multiple encryptions of idxsx,j ,u’s into a single
ciphertext and perform the blind rotation simultaneously.
As a result, the number of homomorphic rotations does not
include the product of three different terms (log b, ⌈log n⌉,
and m) contrary to the naive broadcasting solution.

Assume that we are given the ciphertexts cti :=
Enc(0, ..., 0, zi, 0, ..., 0) for 0 ≤ i < ⌈log n⌉ where
zi is positioned at y-th slot for some private integer
y ∈ [0, b− 1], and the information of y is given as entry-
wise encryption of the binary representation idxy of y,
i.e., ctidxy,u

:= Enc(idxy,u, ..., idxy,u) for 0 ≤ u <
⌈log n⌉. Denoting by roty(·) the right-rotation of a vector
for y slots, each ciphertext cti can be re-expressed as
Enc(roty(zi, 0, 0, ..., 0)).

We pack cti’s into ctpack :=
Enc(roty(z0, ..., zℓ−1, 0, ..., 0)) as the first step where
zi := 0 for ⌈log n⌉ ≤ i < ℓ, with (⌈log n⌉ − 1) rotations
and additions. The next step is to broadcast the vector
(z0, z1, ..., zℓ−1) to the other slots. We can obtain
ctbc := Enc(roty(z0, ..., zℓ−1, ..., z0, ..., zℓ−1)) from
ctpack through (log b − log ℓ) rotations and additions.
Then, ctbc = Enc(rot[y]ℓ(z0, ..., zℓ−1, ..., z0, ..., zℓ−1))
for [y]ℓ := y (mod ℓ), since the vector
(z0, ..., zℓ−1, ..., z0, ..., zℓ−1) is a repetition of
(z0, ..., zℓ−1). Hence, we only need ctidxy,u for
u < log ℓ.

Now we repeat the following process for 0 ≤ u < log ℓ to

left-rotate ctbc for [y]ℓ slots: If idxy,u = 1 then left-rotate
for 2u slots, and otherwise do nothing. Denote by z :=
(z0, ..., zℓ−1, ..., z0, ..., zℓ−1), the process can be expressed
as

1) Initialize s = [y]ℓ.
2) Repeat the following steps for 0 ≤ u < log ℓ:

• rots−2u·idxy,u
(z)← (1−idxy,u)·rots(z)+

idxy,u · rots−2u(z).
• s← s− 2u · idxy,u.

Since [y]ℓ =
∑log ℓ−1

u=0 2u · idxy,u, homomorphic compu-
tation of this process results in Enc(rot0(z)) = Enc(z).

Complexity Analysis. BlindRotate requires ⌈log n⌉+
log b rotations and 2 log ℓ ct-ct mults, and consumes log ℓ
levels.

3.2.3. Homomorphic Set Intersection with Binary In-
dices. Set intersection is one of the common opera-
tions used in many of graph-based methods. In similarity
search (Algorithm 1), we need the index set intersection
operation in two places: 1. To check if each node in Q
has already been explored in previous iterations (line 3),
and 2. To check if each node in Q has a duplicate in the
neighborhood set N(x) (line 5).

We provide an FHE algorithm of set intersection given
the ciphertexts of binary indices of each element. The
algorithm takes the encryption of binary indices of each
set as input, and then output the encryption of the vector
which indicates if each node of one set is contained in the
other set or not.

Algorithm 4 Homomorphic Set Intersection (SetInt)

Require: ctA = Enc(idxa0
, ..., idxa0

, ..., idxa|A|−1
,

..., idxa|A|−1
),ctB = Enc(idxb0 , ..., idxb|B|−1

,
..., idxb0 , ..., idxb|B|−1

).
Ensure: ctout = Enc((b0 ∈ A?), ..., (b|B|−1 ∈ A?), ...)

1: ctsub ← SUB(ctA,ctB)
2: ctsq ← MULT(ctsub,ctsub)
3: ctout ← SUB(1,ctsq)
4: for r ← log ℓ− 1 to 0 do
5: cttemp ← ROTATE(ctout; 2

r)
6: ctout ← MULT(ctout,cttemp)
7: end for
8: for r ← log |A| − 1 to 0 do
9: cttemp ← ROTATE(ctout; 2

r+log |B|+log ℓ)
10: ctout ← ADD(ctout,cttemp)
11: end for
12: return ctout

Let A := {ai}0≤i<|A| and B := {bj}0≤j<|B| be the
set of nodes and denote the corresponding binary index
vectors of each set by {idxa0

, idxa1
, ..., idxa|A|−1

} and
{idxb0 , idxb1 , ..., idxb|B|−1

}, respectively. For 0 ≤ i <
|A| and 0 ≤ j < |B|, one can check if ai equals to bj
with the following formula:

ℓ−1∏
s=0

(
1− (idxai,s − idxbj ,s)

2
)
=

{
1 if ai = bj
0 otherwise

.

By taking sum for all possible j’s, we can obtain the
formula that checks if bj ∈ A as follows:

|A|−1∑
i=0

ℓ−1∏
s=0

(
1− (idxai,s − idxbj ,s)

2
)
=

{
1 if bj ∈ A

0 otherwise
.

Note that the left-hand side of the above equation is
highly parallelizable, and hence we can leverage the SIMD
packing property of word-wise FHE. Assume that |A|,
|B|, and ⌈log n⌉ are power-of-two (hence ⌈log n⌉ = ℓ)
and b = |A| · |B| · ℓ for simplicity, where b is the batch
size of word-wise FHE. Binary index vectors of A and B
are packed in different sequences:

Enc(idxa0
, ..., idxa0

, idxa1
, ..., idxa1

, ...,

idxa|A|−1
, ..., idxa|A|−1

),

Enc(idxb0 , ..., idxb|B|−1
, idxb0 , ..., idxb|B|−1

, ...,

idxb0 , ..., idxb|B|−1
).

When we partition b slots into |B| sub-blocks of |A| · ℓ
slots, then we can easily see that the j-th block cor-
responds to the check process of the node bj . To be
precise, let j-th block the set of slots with indices
in

⊔
0≤i<|A| [i|B|ℓ+ jℓ, i|B|ℓ+ (j + 1)ℓ− 1]. Then, the

subtraction of ctB from ctA results in (idxai,s−idxbj ,s)
for all 0 ≤ i < |A| and 0 ≤ s < ℓ in the j-th
block. Hence, we can compute

(
1− (idxai,s − idxbj ,s)

2
)

for all i and s in parallel, and the last product-and-sum
step

∑|A|−1
i=0

∏ℓ−1
s=0 can be done through homomorphic

addition, multiplication, and rotation. Full description is
given as Algorithm 4. Refer to Appendix A for the note
on general (non-power-of-two) cases.

Algorithm 5 Homomorphic Bitonic Sort
(BitonicSort)

Require: ctA = Enc(a0, a1, . . . , ar−1, ...)
Ensure: ctout = Enc(Sort(a0, a1, . . . ar−1), ...)

1: for k = 2 to r by multiplying by 2 do
2: for j = k/2 to 1 by dividing by 2 do
3: ctdiff ← SUB(ctA,ROTATE(ctA; j))
4: LWEdiff ← WtoBSchemeSwitch(ctdiff)
5: for i = 0 to w − 1 do
6: ij ← i⊕ j
7: if ij > i then
8: if (i&k) == 0 then
9: LWEsign[i]← SIGN(LWEdiff [i])

10: LWEsign[ij]← NEGATE(LWEsign[i])
11: else
12: LWEsign[ij]← SIGN(LWEdiff [i])
13: LWEsign[i]← NEGATE(LWEsign[ij])
14: end if
15: end if
16: end for
17: ctS ← BtoWSchemeSwitch(LWEsign)
18: ctA ← Update ctA based on ctS
19: end for
20: end for
21: return ctA

Complexity Analysis. SetInt requires |A||B|ℓ
b · log 2ℓ

ct-ct mults and |A|∥B|ℓ
b · log |A|ℓ rotations, and consumes

log ℓ levels.

3.2.4. Homomorphic Bitonic Sorting. In some graph-
based methods, we need a number of comparisons and/or
sorting to select the next node for the next iteration. For
example, in line 6 of Algorithm 1, we need to evaluate top-
w of input values. Since FHE computation must always be
data-oblivious, we employ a data-oblivious algorithm for
sorting called bitonic sorting network [27], [39]. Bitonic
sorting repeatedly generates bitonic sequences and merges
them to form a sorted array. Each step involves compari-
son of multiple input pairs and conditionally swaps them
based on the comparison results.

Comparison operations in word-wise FHE schemes should
be either approximated or represented by a high-degree
polynomial over the real number field (CKKS) or finite
field (BGV, B/FV), consuming significant multiplicative
depth (See Section 2.2.1). On the other hand, bit-wise FHE
allows efficient evaluation of comparison operations but
suffers from high latency when handling large number of
operations in parallel. To enjoy the best of both worlds, we
leverage both word-wise and bit-wise FHE with scheme-
switching, utilizing bit-wise FHE for efficient sign evalu-
ations (equivalent to comparison) and word-wise FHE for
batched value swaps.

For the sake of simplicity, we assume that the number of
inputs r is a power of two. In each stage, we begin by
evaluating the difference between pairs of values, which
can be done in parallel with word-wise FHE. These dif-
ferences are then converted into bit-wise FHE to compute
the sign function yielding binary values. The binary re-
sults are converted back into word-wise FHE, where they

serve as masks for value-swapping (See Algorithm 5).
To obtain top-w instead of full sorting, we can eliminate
several stages of the network that do not influence the
top-w results, which reduces the number of homomorphic
operations including scheme switching.

We similarly utilize scheme-switching to evaluate
Min/ArgMin through a tournament-based comparison
method within log r iterations. In the i-th iteration, the
differences between 2log r−i−1 pairs are computed us-
ing word-wise FHE. Scheme-switching from word-wise
FHE to bit-wise FHE (WtoBSchemeSwitch) is then
performed to evaluate the sign function in bit-wise FHE.
Afterwards, we switch back from bit-wise FHE to word-
wise FHE (BtoWSchemeSwitch) to reorder the values,
continuing this process until the minimum or maximum
result is obtained.

4. Instantiation to Similarity Search

In this section, we describe GraSS: An end-to-end FHE
solution for secure graph-based similarity search, exploit-
ing the core building blocks introduced in Section 3.
Before querying, a client generates its own secret key sk
and the set of public keys pk (including key-switching,
bootstrapping and scheme-switching keys). Note that pk
is broadcasted to the server and can be re-used for differ-
ent queries from the same client.

The baseline protocol between client and server is as
follow:

1) Client→Server: Client encrypts a query as
ctquery := Enc(query) and sends it to the
server.

2) Server→Client: Server performs similarity search
with ctquery and send back the result cttopk to
the client. Client decrypts cttopk and obtain the
cleartext result.

4.1. Client/Server Input Privacy

Our protocol ensures the client that their query infor-
mation is not revealed to the server, which comes from
the IND-CPA security of FHE. Note that all the state-
of-the-art FHE schemes [9]–[11], [13]–[15] are IND-CPA
secure. On the other hand, the server-input (i.e., graph
data) privacy against the client is not guaranteed by IND-
CPA since the client could potentially exploit partial infor-
mation from the server input during the decryption process
beyond the similarity search result. Thankfully, we can
hide the circuit information from the ciphertexts by sta-
tistical noise flooding [17], [18] or ciphertext sanitization
through bootstrapping [19]–[22] (i.e., circuit privacy of
FHE). Therefore, if the server sends back the result cttopk

after applying such circuit-privacy techniques, then the
client cannot learn any partial information on the server’s
input (graph data) except the decryption result.

4.2. Setup Phase

In the setup phase, a client encrypts the query data into
ciphertexts and a server encodes the graph data (Table 1)

into plaintexts. These encrption and encoding are done
with respect to word-wise FHE, since the similarity search
algorithm starts with the distance computation which con-
sists of highly-parallelizable polynomial arithmetic.

Query Data Encryption (Client): A client first generates
its own secret key sk ∈ R and its corresponding set
of public key-switching keys ksk. Note that ksk is
broadcasted to the server before querying and is reusable
for multiple queries.

For a query v = (v0, v1, . . . , vd−1) ∈ Rd, a client
encrypts each entry vi separately as ctquery,u :=
Encsk(vu, vu, ..., vu) for 0 ≤ u < d and sends
them to the server. To reduce the communication
cost, the client can alternatively send ctquery :=
Encsk(v0, v1, ..., vd−1, 0, 0, ..., 0), and then let the server
unpack ctquery into ctquery,u’s.

Graph Data Encoding (Server): A server column-wise
encodes the graph data (Table 1) into plaintexts. To be
precise, denoting by vsi,j = (vsi,j ,0, vsi,j ,1, ..., vsi,j ,d−1)
and idxsi,j := (idxsi,j ,0, idxsi,j ,1, ..., idxsi,j ,⌈logn⌉−1),
each column of Table 1 is either (vsi,j)0≤i<n for some
0 ≤ j < d (i.e., the collection of j-th vector entry of i-
th neighbor) or (idxsi,j)0≤i<n for some 0 ≤ j < ⌈log n⌉
(i.e., the collection of j-th binary index entry of i-th neigh-
bor). In general, the number of nodes n is substantially
larger than the SIMD batch size b of word-size FHE.
Hence, each column is parsed into ⌈n/b⌉ vectors of the
length b, and then each length-b vector is encoded into a
plaintext.

Data Structure of Q and E: For the set of candidate
nodes Q := {q0, q1, ..., qw−1}, we update two ciphertexts
separately:

ctQ,idx = Enc(idxq0 , ..., idxqw−1 , ...),

ctQ,dist = Enc(dist2(v,vq0), ..., dist2(v,vqw−1
), ...),

one as a ciphertext of binary indices and the other one as a
ciphertext of distances from the query.3 Both binary index
and distance information of the nodes in Q are required
for argmin and top-w computation in Algorithm 1, while
binary index is more widely used in processes including
set intersection and binary-to-one-hot conversion. In the
first (0-th) iteration, ctQ,idx is prepared (from the server
side) as a trivial ciphertext (i.e., plaintext) for pre-selected
Q.

For the set of explored nodes E, we only keep a ciphertext
of binary indices of the nodes in E, since we only need
the information of E to check if each node qi in Q has
already been explored or not (i.e., qi ∈ E?). Note that the
binary index vectors of the input sets for SetInt need to
be encrypted in a different sequence (See Algorithm 4).
Hence, we update the ciphertext ctE as

ctE = Enc(idxx0
, ..., idxx0

, idxx1
, ..., idxx1

,

..., idxxi
, ..., idxxi

, ...)

at i-th iteration of the graph search, where each binary
index idxxi

is repeated for w times.

3. We assume that the SIMD batch size b is larger than w · ⌈logn⌉.
If b < w · ⌈logn⌉, then idxq0 , idxq1 , ..., idxqw−1 are encrypted in
multiple ciphertexts.

TABLE 2: Distance and Binary Index Table of Neighborhoods

Index Neighborhood Information

0 (dist2(v,vs0,0), idxs0,0) (dist2(v,vs0,1), idxs0,1) · · · (dist2(v,vs0,m−1), idxs0,m−1)

1 (dist2(v,vs1,0), idxs1,0) (dist2(v,vs1,1), idxs1,1) · · · (dist2(v,vs1,m−1), idxs1,m−1)

...
...

...
...

...

n− 1 (dist2(v,vsn−1,0), idxsn−1,0) (dist2(v,vsn−1,0), idxsn−1,1) · · · (dist2(v,vsn−1,m−1), idxsn−1,m−1)

4.3. Distance Table Computation

Before entering the iterative graph search, we pre-compute
the squared distance between the (encrypted) query v :=
(v0, v1..., vd−1) ∈ Rd and the feature vectors vsi,j of each
(unencrypted) neighbor node si,j for 0 ≤ i < n and 0 ≤
j < m:

dist2(v,vsi,j) =

d−1∑
u=0

(vu − vsi,j ,u)
2. (1)

This naive distance computation requires
⌈
n
b

⌉
·m · d ct-

ct mults to square (vu − vsi,j ,u) for all i, j and u. Note
that the denominator b comes from the SIMD packing
property of word-wise FHE that allows parallel distance
computation for b nodes.

In this work, instead of Equation 1, we utilize another
way to compute the distance as below:

dist2(v,vsi,j) =

d−1∑
u=0

v2u −
d−1∑
u=0

2vsi,j ,u · vu +

d−1∑
u=0

v2si,j ,u, (2)

In fact, Equation 2 requires more scalar multiplications
and hence is less efficient than Equation 1 in cleartext
computation. However, in terms of FHE computation,
ct-ct mult is only required for

∑d−1
u=0 v

2
u part since the

graph data (vsi,j ,u) is not encrypted. The computation of∑d−1
u=0 2vuvsi,j ,u ·vu is done by ct-pt mult, which is much

cheaper than ct-ct mult. As a result, Equation 2 requires
only d ct-ct mults (to square vu) and

⌈
n
b

⌉
· m · d ct-pt

mults (to multiply vu and 2vsi,j ,u).

Compared to Equation 1, the number of ct-ct mults to
compute Equation 2 is significantly reduced by the factor⌈
n
b

⌉
·m. There exists an overhead as

⌈
n
b

⌉
·m·d ct-pt mults,

but this additional cost is much cheaper than
⌈
n
b

⌉
·m·d ct-

ct mults in the computation of Equation 1. Hence, utilizing
Equation 2 is much more efficient to compute the distance
between encrypted query and unencrypted nodes in the
graph.

After applying Algorithm 6 (in Appendix 6), we obtain an
encrypted distance table that stores the squared distance
between the query v and all the neighbor nodes vsi,j for
0 ≤ i < n and 0 ≤ j < m in the graph. Table 2 shows
the concatenation of the (encrypted) distance table and the
(cleartext) binary index table.

Refer to Appendix A for the note on distance pre-
computation v.s. on-the-fly computation in terms of com-
putational cost.

4.4. Detailed Steps Per Iteration

As demonstrated in Algorithm 1 and Figure 1, an iteration
of GraSS consists of 5 steps. First, given a set of candidate
nodes Q, we find the node x that is unexplored and closest
to the query. Next, we update the explored nodes set E to
include x. In step 3, we retrieve the neighbor nodes N(x).
After that, we evaluate Q∪N(x) and remove the possible
duplicates. Finally, we evaluate Top-w among the nodes
in Q. Refer to Algorithm 6-10 in Appendix E for more
details of each step.

4.4.1. Step 1: Find Closest Unexplored Node in Q.
Given a set of candidate nodes Q = {q0, q1, ..., qw−1} ⊂
[0, n), we need to find the closest node x ∈ Q which has
the smallest distance among all the unexplored nodes in
Q.

We first need to check the explored status of each node
in Q by applying the homomorphic set intersection al-
gorithm SetInt described in Section 3.2.3. Following
Algorithm 4, we set A as E, the set of binary index
vectors of the explored nodes, and B as Q, the set of
binary index vectors of the candidate nodes. The algorithm
with input ctE and ctQ,idx returns a ciphertext of the
explored status of each candidate node in Q:

ctQ−E :=

Enc((q0 ∈ E?), (q1 ∈ E?), . . . , (qw−1 ∈ E?), ...).

Next we use ctQ−E to mask4 the distance of the can-
didate nodes in Q (given as ctQ,dist) to make sure
that explored nodes are automatically ignored during
the following argmin computation. Then, we can run
the argmin algorithm on the masked candidates dis-
tance and combine the argmin result with ctQ,idx to
obtain the binary index of the closest node x of the
form Enc(0, . . . ,0, idxx,0, . . . ,0). Since the position of
idxx is unknown, we broadcast idxx to entire slots as
Enc(idxx, idxx, . . . , idxx) so that idxx is finally posi-
tioned at the known slots. For argmin computation, we
utilize scheme-switching to enjoy the low latency of bit-
wise FHE for comparison operations (See Section 3.2.4).

4.4.2. Step 2: Update Explored Nodes E. Af-
ter Step 1, we append x to the set of explored
nodes E. Let xi be the closest node x in i-th it-
eration. Then, we can update ctE from the previ-
ous iteration by simply mask-and-adding the result of

4. Here, the masking procedure is not to zero-ize but to max-ize with
some value MAX> 0, since we need to compute arg“min” result. In the
implementation, we set sufficiently large MAX value for the max-ize
process.

Figure 1: Flow of GraSS per Iteration

Q1Q0 Q2 Q3

Step 1 Find closest unexplored node in Q

Step 2 Update E

N(Q1)0 N(Q1)1

Step 4 Set union

Step 3 Retrieve neighbors of x

Q
Q1

E E0 E1

E E0 E1 Q1 Q1

Q1Q0 Q2 N(Q1)0 N(Q1)1Q

Step 5 Top-w

x

Q1Q0 Q2 Q3Q
N(Q1)0 N(Q1)1N(x)Q1Q0 N(Q1)0 N(Q1)1Q Q ∪ N(Qx)

graph

Top-w

: encrypted

 : candidate nodesQ
 : explored nodesE

N(x)x

Step 1 Enc(idxxi
, idxxi

, . . . , idxxi
), which results in

Enc(idxx0
, ..., idxx0

, ..., idxxi
, ..., idxxi

, 0, 0, ...).

4.4.3. Step 3: Neighborhood Information Retrieval.
This step intends to retrieve the neighbor nodes’ in-
formation (for both nodes distance and nodes in-
dices) of the located closest node x. Step 1 in Sec-
tion 4.4.1 gives encryption of the broadcasted idxx as
Enc(idxx, idxx, . . . , idxx).

In order to apply the node index as a mask, we first
convert the binary index idxx into its one-hot encoding
vector ex = (0, ..., 0, 1, 0, ..., 0) ∈ {0, 1}n (See Sec-
tion 3.1). This conversion can be achieved through two
sub-steps: 1. Unpack Enc(idxx, idxx, . . . , idxx) into
Enc(idxx,u, idxx,u, ..., idxx,u) for 0 ≤ u < ⌈log n⌉
where idxx := (idxx,0, ..., idxx,⌈logn⌉−1), and then 2.
apply BintoOneHot (Algorithm 2) to obtain Enc(ex).

Next, we can use Enc(ex) to mask each column
of Table 2 and extract the neighbor nodes’
information of x. The masking process with
Enc(ex) outputs Enc(0, ..., 0, idxsx,j ,i, 0, ..., 0) and
Enc(0, ..., 0, dist2(v,vsx,j

), 0, ..., 0) for 0 ≤ i < ⌈log n⌉
and 0 ≤ j < m, where the slot position
y := [x]b of each idxsx,j ,i and dist2(v,vsx,j

) is
private. Fortunately we have already obtained the
encryption of y as Enc(idxx,u, idxx,u, ..., idxx,u)
for 0 ≤ u < ⌈log b⌉ as input of BintoOneHot to
obtain Enc(ex). Hence, by applying BlindRotate
with input cti := Enc(0, ..., 0, idxsx,j ,i, 0, ..., 0) and
ctidxx,u

:= Enc(idxx,u, idxx,u, ..., idxx,u), we get
Enc(idxsx,j

, idxsx,j
, ..., idxsx,j

) for each j. Finally, we
can pack the those ciphertexts into

ctN,idx = Enc(idxsx,0
, idxsx,1

, ..., idxsx,m−1
,0, ...,0).

Note that the retrieval of neighborhoods’ distance infor-
mation can be implemented in almost the same manner.
The distance information of neighborhoods are obtained
as a ciphertext

ctN,dist =

Enc(dist2(v,vsx,0), ..., dist2(v,vsx,m−1), 0, ..., 0)

4.4.4. Step 4: Set Union of Q and N(x). In this step, we
want to compute the set union of the candidates nodes Q
and the neighbor nodes N(x) = {sx,0, sx,1, ..., sx,m−1}.
Note that the direct concatenation of the two sets of nodes
can lead to duplicate nodes in the union set. Therefore
we need a mechanism to eliminate the impact of potential
duplicate nodes, i.e., when N(x) contains one or more
nodes that already exist in Q. In our protocol, we leverage
the homomorphic set intersection algorithm SetInt (see
Algorithm 4) by setting A as Q5 and B as N(x). Similar
to Step 1, SetInt with input ctQ,idx and ctN,idx

returns a ciphertext of the duplication status of each node
in N(x):

ctN−Q :=

Enc((sx,0 ∈ Q?), (sx,1 ∈ Q?), . . . , (sx,m−1 ∈ Q?), ...)

Next we use ctN−Q to mask ctN,dist to make sure
that duplicated nodes are automatically ignored during
the following top-w computation. Finally, we concate-
nate ctQ,dist and the masked ctN,dist (resp. ctQ,idx

and ctN,idx) through simple homomorphic rotation and
addition, which will be used as input of the last step,
homomorphic top-w operation.

4.4.5. Step 5: Local Top-w. We need to extract w nodes
in Q ∪N(x) based on the ascending order of the nodes’
distance. The top-w function takes ctQ∪N(x),dist and
ctQ∪N(x),idx as inputs, which contain the distance and
binary indices of the nodes in Q ∪ N(x). In the end,
the function outputs the distance and binary indices of w
nodes from Q∪N(x) whose distance are the smallest. We
achieve this using a top-w-truncated version of homomor-
phic bitonic sorting BitonicSort (Algorithm 5) with
ctQ∪N(x),dist as an input, which outputs the ciphertext
of top-k distance values and their corresponding binary
indices of Q∪N(x). Top-w-truncated bitonic sorting skips
loops in line 2 of Algorithm 5 that do not influence
the top-w results. We also removes SIGN operations in
line 9 and 12 that are unnecessary for top-w. Note that
ctQ∪N(x),idx can be homomorphically sorted in exactly
the same manner by re-using ctS in line 5 of Algorithm 5
that comes from BitonicSort(ctQ∪N(x),dist).

5. ctQ,idx is repacked to follow the format of ctA in Algorithm 4.

TABLE 3: Parameters and Latency for End-to-end Graph-Based Similarity Search

Operation Deep10K Deep100K Deep1M

Graph Properties

Max Number of Iterations 24 31 34

Search Accuracy (Recall) 0.986 0.962 0.918

Pre-Computation Phase Latency (s)

Step 0: Distance Table Computation 132.221 512.104 3798.05

i-th Iteration Latency (s)

Step 1: Find Closest Unexplored Node in Q 146.407

Step 2: Update Explored Nodes E 0.884

Step 3: Neighbor Nodes Retrieval
BintoOneHot + Masking 30.757 152.907 1759.202

BlindRotate + Bootstrap6 542.231 557.263 611.615

Step 4: Set Union of Q and N(x) 18.360

Step 5: Local Top-w 5780

Total 6518.639 6655.821 8316.468

Post-Iteration Phase Latency (s)

Compute Feature Vectors of Top-k 322.245 785.22 12040.895

End-to-end Protocol Runtime (hrs)

Total 43.584 57.674 82.944

4.5. Post-Iteration Step

Let cttopk,idx = Enc(idxtop0 , idxtop1 , ..., idxtopw−1) be
the encrypted binary index output of the final iteration
in Algorithm 1. To extract vtop0 ,vtop1 , ...,vtopk−1

ho-
momorphically for k ≤ w, we first extract the indices
of k nodes among the w candidate nodes based on the
ascending order of the nodes’ distance. Next, we unpack
cttopk,idx into cti,j := Enc(idxtopi,j , ..., idxtopi,j) for
0 ≤ i < k and 0 ≤ j < ⌈log n⌉. Then, we perform
BintoOneHot with input {cti,j}0≤j<⌈logn⌉ to obtain
Enc(etopi) for 0 ≤ i < k. Finally, we use Enc(etopi) to
mask the first d columns of Table 1, which outputs the
ciphertexts corresponding to vstopi ,0

= vtopi . After pack-
ing the ciphertexts into Enc(vtopi

) for each i, the server
sends them and cttopk,idx back to the client. To ensure the
server-input privacy against the client, the server scheme-
switches each Enc(vtopi

) into bit-wise FHE ciphertexts
and sends them back to the client after the ciphertext
sanitization process.

5. Evaluation and Performance

5.1. Implementation and Experimental Setup

Environment Our implementation is written in C++ using
the OpenFHE library [40] and is evaluated on machines
with Intel(R) Xeon(R) Platinum 8360Y CPU @ 2.40GHz
using the Ubuntu 22.04.4 operating system. We bench-
mark our implementation using 16 threads.7

7. Our implementation has not been optimized to support multi-
threading yet; we did not put any multi-thread options outside of the
OpenFHE library. An optimization to fully utilize the given threads
remains as a future work.

Datasets We evaluated our method for various size of
subsets of the widely-used Deep dataset, which contains
1 billion vectors in total derived from the final layer
of convolutional neural networks [41]. Specifically, we
use the first 10k, 100k, and 1 million vectors to form
Deep10K, Deep100K, and Deep1M datasets, respectively.

All datasets consist of 96-dimensional vectors (d = 96)
and were pre-trained as a regular graph with degree
m = 64. The graph properties in Table 3 are measured
by testing 10k queries in cleartext on each dataset. We set
the search window size w = 16 and report the accuracy,
bandwidth, and latency results for approximate top-16
search.

FHE Parameters. We select CKKS and FHEW as
bit/word-wise FHE schemes to utilize the scheme-
switching technique implemented in OpenFHE [31], [40].
For CKKS, we set the ring dimension N = 216, the
scaling factor 252 ≤ ∆ ≤ 259, and the multiplicative depth
32 (logQ ≤ 1948), which results in ≥ 80-bit security. For
FHEW, we used the STD128 parameter set of OpenFHE
which satisfies 128-bit security and support high-precision
(up to 21-bit) sign evaluation [33]: NLWE = 1305,
tLWE = 4, q = 212, qlarge = 222 and tlarge = 214 (See
Section 2.2.2). Refer to Appendix D for the discussion on
the concrete security of CKKS parameters.

5.2. Bandwidth

Once a client and a server set up a communication chan-
nel, the client first needs to broadcast a set of public
keys (key-switching, bootstrapping and scheme-switching
keys) to the server. These keys are sent only once at the

pre-query phase, and can later be reused across multiple
queries.

During the protocol, both client and server send cipher-
texts to each other just once since the protocol is non-
interactive. Hence, the total communication cost per query
is the size of ctquery and cttopk, both of which are
less than 1GB and even compressible to ∼ 10MB (See
Section 4.2).

5.3. Accuracy and Latency

In Table 3, we first benchmark the cleartext graph-based
similarity search algorithm to get the average number
of iteration and search accuracy for each dataset. We
observed the perfect match between the search results
from the cleartext algorithm and our FHE-based protocol.
Therefore, our implementation achieves the same accuracy
with the cleartext version.

Further, we benchmark the latency of each step of GraSS
described in Section 4. In the end, we show the total
runtime for the end-to-end graph-based similarity search.
We can see from Table 3 that per iteration, the latency for
most steps is independent to n except Step 2. Although
the latency of pre-computation and post-iteration phases
is Õ(n), their one-time latency are amortized among the
whole protocol run. For example, Step 5 independent to n
takes the majority of whole process even for 1M dataset
(> 60%), so total latency does not increase dramatically
from 10K to 1M. Hence, our graph-based similarity search
protocol is highly scalable and supports datasets of million
scale while maintaining a good performance.

The sanitization process for server-input privacy is not
included as a part of our implementation; however, it can
be applied as a black box to the result ciphertext cttopk

only with a small computational overhead compared to
the whole procedure of graph-based similarity search. For
example, bit-wise FHE can achieves the circuit privacy
within a second [21]. Hence, the server can scheme-
switch the result ciphertexts with CKKS form into FHEW
ciphertexts and send them back to the client after saniti-
zation, which guarantees the server-input privacy against
the client as well.

5.4. Comparison with Prior Art

Table 4 includes asymptotically estimated numbers based
on the result in [27] and speedups of our work. The
previous work [27] presents results for performing FHE-
based kNN on ≤ 1000 inputs with 6-bit precision for
the comparison operation in sorting network. In contrast,
our work targets searches on million-scale database, which
requires much higher precision (14-bit) than the previous
work. To demonstrate the scalability of our approach, we
projected the results from [27] to match our data size. For
a fair comparison, we assumed that their implementation
also uses 14-bit precision. Such estimation is evaluated
following the methodology of [33]: 256× overhead to
increase bit precision of comparison from 6-bit to 14-bit.

The results show that GraSS outperforms [33] for large-
scale datasets: We achieve 4.13× and 28.72× speedups

TABLE 4: Comparison of End-to-end Latency Re-
sults (hrs) for Top-16 Similarity Search with Prior Art
Based on FHE

Dataset Size
Latency (hrs)

Speedup
[27]8 GraSS

10K 23.948 43.584 -

100K 238.35 57.674 4.13×
1M 2382.3 82.944 28.72×

for Deep100K and Deep1M datasets, respectively. Com-
pared to [27], our protocol demonstrates great scalability,
since the kNN algorithm [27] evaluates global top-w using
a bitonic sorting network, which scales linearly with the
dataset size n. In contrast, our graph-based algorithm
utilizes an iterative method that restricts the number of
inputs to the sorting network to a maximum of m + w.
Our algorithm also includes some Õ(n) operations such as
distance table and part of neighborhood retrieval, but those
are highly parallelizable with SIMD property of CKKS,
and hence Õ(n) operations are not dominant in the end-
to-end runtime.

On the other hand, we observe that GraSS performs
slower on the 10K dataset. This is due to the expensive
scheme switching in our top-k process, which is not
included in the previous work. However, such approach
takes advantage of both bit/word-wise FHEs, supporting
high-precision and making our protocol scalable, as seen
in the result for 1M dataset.

GraSS, which relies solely on FHE, exhibits relatively
higher CPU computation latency compared to MPC-based
solutions. However, a key advantage of our FHE-only
solution is that it allows the client to transfer the query
and completely disconnect until receiving the result. In
contrast, MPC-based solutions require continuous data
exchange throughout the process, necessitating that the
client remains online. This ongoing communication de-
mand in MPC often includes larger communication over-
head between the client and server compared to FHE-
based methods. For instance, our solution demonstrates
about a 155× reduction in communication requirements
compared to clustering of [18] for 1M dataset (12.81
MB vs. 1.99 GB). This characteristic makes our approach
particularly suitable for scenarios with limited commu-
nication bandwidth or when clients cannot maintain an
active online connection. Furthermore, with ongoing ad-
vancements in FHE acceleration using GPU and hardware,
our framework’s computation latency has the potential
to be significantly reduced while maintaining minimal
communication overhead.

6. Conclusion

In this work, we introduced the first FHE-based solu-
tion for secure graph-based database search, GraSS. We

7. It includes both CKKS bootstrapping (for distance
values) and scheme-switching-based bootstrapping (via
EvalCompareSchemeSwitch with 1/2 for binary values).

8. Note that this column shows asymptotically estimated numbers, not
exact numbers reported in the paper.

proposed an FHE-friendly graph structure with a novel
index encoding which makes our protocol highly scalable
in terms of n, by reducing the computational complexity
of neighborhood retrieval process from O(n2) to Õ(n),
for a regular graph with small degree m = o(n). We
also proposed core FHE algorithms to perform graph
operations under the new graph structure and introduce
the end-to-end secure protocol of graph-based similarity
search.

We showed that FHE-based similarity search is even
feasible for million-scale database through the proof-
of-concept implementation, demonstrating 28× speedup
compared to a state-of-the-art [27]. With the active re-
search on FHE acceleration through GPU and HW (e.g.,
1, 000× v.s. CPU for CKKS bootstrapping [42]), we leave
the implementation of the proposed algorithms on accel-
erators to enable the near real-time latency as a future
work.

References

[1] A. Blattmann, R. Rombach, K. Oktay, J. Müller, and B. Ommer,
“Retrieval-augmented diffusion models,” Advances in Neural In-
formation Processing Systems, vol. 35, pp. 15 309–15 324, 2022.

[2] S. Borgeaud, A. Mensch, J. Hoffmann, T. Cai, E. Rutherford,
K. Millican, G. B. Van Den Driessche, J.-B. Lespiau, B. Damoc,
A. Clark et al., “Improving language models by retrieving from
trillions of tokens,” in International conference on machine learn-
ing. PMLR, 2022, pp. 2206–2240.

[3] D. Lian, H. Wang, Z. Liu, J. Lian, E. Chen, and X. Xie, “Lightrec:
A memory and search-efficient recommender system,” in Proceed-
ings of The Web Conference 2020, 2020, pp. 695–705.

[4] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
H. Küttler, M. Lewis, W.-t. Yih, T. Rocktäschel, S. Riedel,
and D. Kiela, “Retrieval-Augmented Generation for Knowledge-
Intensive NLP Tasks,” in Advances in Neural Information Pro-
cessing Systems, vol. 33, 2020, pp. 9459–9474.

[5] Z. Jiang, F. F. Xu, L. Gao, Z. Sun, Q. Liu, J. Dwivedi-Yu,
Y. Yang, J. Callan, and G. Neubig, “Active Retrieval Augmented
Generation,” 2023, arXiv:2305.06983 [cs].

[6] D. Cai, Y. Wang, L. Liu, and S. Shi, “Recent Advances in Retrieval-
Augmented Text Generation,” in International ACM SIGIR Con-
ference on Research and Development in Information Retrieval,
2022, pp. 3417–3419.

[7] C. Aguerrebere, I. Bhati, M. Hildebrand, M. Tepper, and T. Willke,
“Similarity search in the blink of an eye with compressed indices,”
arXiv preprint arXiv:2304.04759, 2023.

[8] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
Proceedings of the forty-first annual ACM symposium on Theory
of computing, 2009, pp. 169–178.

[9] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully
homomorphic encryption without bootstrapping,” in Proc. of ITCS.
ACM, 2012, pp. 309–325.

[10] Z. Brakerski, “Fully homomorphic encryption without modulus
switching from classical GapSVP,” in Advances in Cryptology–
CRYPTO 2012. Springer, 2012, pp. 868–886.

[11] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption.” IACR Cryptology ePrint Archive, vol. 2012, p. 144,
2012.

[12] C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption
from learning with errors: Conceptually-simpler, asymptotically-
faster, attribute-based,” in Advances in Cryptology–CRYPTO 2013.
Springer, 2013, pp. 75–92.

[13] L. Ducas and D. Micciancio, “Fhew: bootstrapping homomorphic
encryption in less than a second,” in Annual international confer-
ence on the theory and applications of cryptographic techniques.
Springer, 2015, pp. 617–640.

[14] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “Faster
fully homomorphic encryption: Bootstrapping in less than 0.1 sec-
onds,” in Advances in Cryptology–ASIACRYPT 2016: 22nd Inter-
national Conference on the Theory and Application of Cryptology
and Information Security. Springer, 2016, pp. 3–33.

[15] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic
encryption for arithmetic of approximate numbers,” in Advances
in Cryptology–ASIACRYPT 2017: 23rd International Conference
on the Theory and Application of Cryptology and Information
Security. Springer, 2017, pp. 409–437.

[16] S. Goldwasser and S. Micali, “Probabilistic encryption & how
to play mental poker keeping secret all partial information,” in
Providing sound foundations for cryptography: on the work of Shafi
Goldwasser and Silvio Micali, 2019, pp. 173–201.

[17] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan,
“{GAZELLE}: A low latency framework for secure neural
network inference,” in 27th USENIX security symposium (USENIX
security 18), 2018, pp. 1651–1669.

[18] H. Chen, I. Chillotti, Y. Dong, O. Poburinnaya, I. P. Razenshteyn,
and M. S. Riazi, “SANNS: Scaling up secure approximate k-
nearest neighbors search,” in USENIX Security 2020: 29th USENIX
Security Symposium, S. Capkun and F. Roesner, Eds. USENIX
Association, Aug. 12–14, 2020, pp. 2111–2128.

[19] L. Ducas and D. Stehlé, “Sanitization of fhe ciphertexts,” in
Advances in Cryptology–EUROCRYPT 2016: 35th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part I
35. Springer, 2016, pp. 294–310.

[20] F. Bourse and M. Izabachène, “Plug-and-play sanitization for tfhe,”
Cryptology ePrint Archive, 2022.

[21] K. Kluczniak, “Circuit privacy for fhew/tfhe-style fully homomor-
phic encryption in practice,” Cryptology ePrint Archive, 2022.

[22] F. Bourse, R. Del Pino, M. Minelli, and H. Wee, “Fhe circuit
privacy almost for free,” in Annual International Cryptology Con-
ference. Springer, 2016, pp. 62–89.

[23] C. A. Melchor, J. Barrier, L. Fousse, and M.-O. Killijian, “Xpir:
Private information retrieval for everyone,” Proceedings on Privacy
Enhancing Technologies, pp. 155–174, 2016.

[24] J. P. Stern, “A new and efficient all-or-nothing disclosure of secrets
protocol,” in International conference on the theory and application
of cryptology and information security. Springer, 1998, pp. 357–
371.

[25] M. Zuber and R. Sirdey, “Efficient homomorphic evaluation of k-
NN classifiers,” Proceedings on Privacy Enhancing Technologies,
vol. 2021, no. 2, pp. 111–129, Apr. 2021.

[26] Y. Ameur, R. Aziz, V. Audigier, and S. Bouzefrane, “Secure
and non-interactive k-nn classifier using symmetric fully homomor-
phic encryption,” in Privacy in Statistical Databases, J. Domingo-
Ferrer and M. Laurent, Eds. Cham: Springer International Pub-
lishing, 2022, pp. 142–154.

[27] K. Cong, R. Geelen, J. Kang, and J. Park, “Revisiting oblivious
top-k selection with applications to secure k-nn classification,”
Cryptology ePrint Archive, Paper 2023/852, 2023, to appear at
SAC 2024.

[28] C. Boura, N. Gama, M. Georgieva, and D. Jetchev, “Chimera: Com-
bining ring-lwe-based fully homomorphic encryption schemes,”
Journal of Mathematical Cryptology, vol. 14, no. 1, pp. 316–338,
2020.

[29] W.-j. Lu, Z. Huang, C. Hong, Y. Ma, and H. Qu, “Pegasus: bridg-
ing polynomial and non-polynomial evaluations in homomorphic
encryption,” in 2021 IEEE Symposium on Security and Privacy
(SP). IEEE, 2021, pp. 1057–1073.

[30] Y. Lee, D. Micciancio, A. Kim, R. Choi, M. Deryabin, J. Eom,
and D. Yoo, “Efficient fhew bootstrapping with small evaluation
keys, and applications to threshold homomorphic encryption,” in
Annual International Conference on the Theory and Applications
of Cryptographic Techniques. Springer, 2023, pp. 227–256.

[31] A. A. Badawi, A. Alexandru, J. Bates, F. Bergamaschi, D. B.
Cousins, S. Erabelli, N. Genise, S. Halevi, H. Hunt, A. Kim,
Y. Lee, Z. Liu, D. Micciancio, C. Pascoe, Y. Polyakov, I. Quah,
S. R.V., K. Rohloff, J. Saylor, D. Suponitsky, M. Triplett,
V. Vaikuntanathan, and V. Zucca, “OpenFHE: Open-source fully
homomorphic encryption library,” Cryptology ePrint Archive,
Paper 2022/915, 2022, https://eprint.iacr.org/2022/915. [Online].
Available: https://eprint.iacr.org/2022/915

[32] H. Shaul, D. Feldman, and D. Rus, “Secure k-ish nearest neighbors
classifier,” Proceedings on Privacy Enhancing Technologies, vol.
2020, no. 3, pp. 42–61, Jul. 2020.

[33] Z. Liu, D. Micciancio, and Y. Polyakov, “Large-precision homo-
morphic sign evaluation using fhew/tfhe bootstrapping,” in Inter-
national Conference on the Theory and Application of Cryptology
and Information Security. Springer, 2022, pp. 130–160.

[34] M. Dockendorf, R. Dantu, and J. Long, “Graph algorithms over
homomorphic encryption for data cooperatives.” in SECRYPT,
2022, pp. 205–214.

[35] R. Ran, N. Xu, T. Liu, W. Wang, G. Quan, and W. Wen, “Penguin:
parallel-packed homomorphic encryption for fast graph convolu-
tional network inference,” Advances in Neural Information Pro-
cessing Systems, vol. 36, 2024.

[36] M. v. Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully
homomorphic encryption over the integers,” in Advances in
Cryptology–EUROCRYPT 2010. Springer, 2010, pp. 24–43.

[37] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “Tfhe:
fast fully homomorphic encryption over the torus,” Journal of
Cryptology, vol. 33, no. 1, pp. 34–91, 2020.

[38] D. Micciancio and Y. Polyakov, “Bootstrapping in fhew-like cryp-
tosystems,” in Proceedings of the 9th on Workshop on Encrypted
Computing & Applied Homomorphic Cryptography, 2021, pp. 17–
28.

[39] S. Hong, S. Kim, J. Choi, Y. Lee, and J. H. Cheon, “Efficient sort-
ing of homomorphic encrypted data with k-way sorting network,”
IEEE Transactions on Information Forensics and Security, vol. 16,
pp. 4389–4404, 2021.

[40] “OpenFHE Open-Source FHE Library,” https://github.com/
openfheorg/openfhe-development.

[41] A. Babenko and V. Lempitsky, “Efficient indexing of billion-
scale datasets of deep descriptors,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016,
pp. 2055–2063.

[42] J. Kim, W. Choi, and J. H. Ahn, “Cheddar: A swift fully ho-
momorphic encryption library for cuda gpus,” arXiv preprint
arXiv:2407.13055, 2024.

[43] I. Iliashenko and V. Zucca, “Faster homomorphic comparison
operations for bgv and bfv,” Proceedings on Privacy Enhancing
Technologies, vol. 2021, no. 3, pp. 246–264, 2021.

[44] J. H. Cheon, D. Kim, D. Kim, H. H. Lee, and K. Lee, “Numerical
method for comparison on homomorphically encrypted numbers,”
in International conference on the theory and application of cryp-
tology and information security. Springer, 2019, pp. 415–445.

[45] J. H. Cheon, D. Kim, and D. Kim, “Efficient homomorphic
comparison methods with optimal complexity,” in Advances in
Cryptology–ASIACRYPT 2020: 26th International Conference on
the Theory and Application of Cryptology and Information Secu-
rity, Daejeon, South Korea, December 7–11, 2020, Proceedings,
Part II 26. Springer, 2020, pp. 221–256.

[46] X. Jiang, M. Kim, K. E. Lauter, and Y. Song, “Secure outsourced
matrix computation and application to neural networks,” in ACM
CCS 2018: 25th Conference on Computer and Communications
Security, D. Lie, M. Mannan, M. Backes, and X. Wang, Eds.
Toronto, ON, Canada: ACM Press, Oct. 15–19, 2018, pp. 1209–
1222.

[47] J. Kim, J. Seo, and Y. Song, “Simpler and faster bfv bootstrapping
for arbitrary plaintext modulus from ckks,” Cryptology ePrint
Archive, 2024, to Appear at CCS 2024.

[48] Y. Bae, J. H. Cheon, J. Kim, J. H. Park, and D. Stehlé, “Hermes:
efficient ring packing using mlwe ciphertexts and application to
transciphering,” in Annual International Cryptology Conference.
Springer, 2023, pp. 37–69.

[49] S. Fan, Z. Wang, W. Xu, R. Hou, D. Meng, and M. Zhang,
“Tensorfhe: Achieving practical computation on encrypted data
using gpgpu,” in 2023 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). IEEE, 2023, pp.
922–934.

[50] W. Jung, S. Kim, J. H. Ahn, J. H. Cheon, and Y. Lee, “Over
100x faster bootstrapping in fully homomorphic encryption through
memory-centric optimization with gpus,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, pp. 114–148,
2021.

[51] R. Agrawal, L. de Castro, G. Yang, C. Juvekar, R. Yazicigil,
A. Chandrakasan, V. Vaikuntanathan, and A. Joshi, “Fab: An
fpga-based accelerator for bootstrappable fully homomorphic en-
cryption,” in 2023 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). IEEE, 2023, pp.
882–895.

[52] Y. Yang, H. Zhang, S. Fan, H. Lu, M. Zhang, and X. Li, “Po-
seidon: Practical homomorphic encryption accelerator,” in 2023
IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 2023, pp. 870–881.

[53] J. Kim, S. Kim, J. Choi, J. Park, D. Kim, and J. H. Ahn, “Sharp:
A short-word hierarchical accelerator for robust and practical fully
homomorphic encryption,” in Proceedings of the 50th Annual
International Symposium on Computer Architecture, 2023, pp. 1–
15.

[54] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 770–778.

[55] T. Morshed, M. M. A. Aziz, and N. Mohammed, “Cpu and
gpu accelerated fully homomorphic encryption,” in 2020 IEEE
International Symposium on Hardware Oriented Security and Trust
(HOST), 2020, pp. 142–153.

[56] K. Nam, H. Oh, H. Moon, and Y. Paek, “Accelerating n-bit
operations over tfhe on commodity cpu-fpga,” in 2022 IEEE/ACM
International Conference On Computer Aided Design (ICCAD),
2022, pp. 1–9.

[57] A. Putra, Prasetiyo, Y. Chen, J. Kim, and J.-Y. Kim, “Strix: An end-
to-end streaming architecture with two-level ciphertext batching for
fully homomorphic encryption with programmable bootstrapping,”
in Proceedings of the 56th Annual IEEE/ACM International Sym-
posium on Microarchitecture, 2023, pp. 1319–1331.

https://eprint.iacr.org/2022/915
https://eprint.iacr.org/2022/915
https://github.com/openfheorg/openfhe-development
https://github.com/openfheorg/openfhe-development

[58] L. Jiang, Q. Lou, and N. Joshi, “Matcha: A fast and energy-
efficient accelerator for fully homomorphic encryption over the
torus,” in Proceedings of the 59th ACM/IEEE Design Automation
Conference, 2022, pp. 235–240.

[59] R. Agrawal, A. Chandrakasan, and A. Joshi, “Heap: A fully
homomorphic encryption accelerator with parallelized bootstrap-
ping,” in 2024 ACM/IEEE 51st Annual International Symposium
on Computer Architecture (ISCA), 2024, pp. 756–769.

[60] K. Han and D. Ki, “Better bootstrapping for approximate ho-
momorphic encryption,” in Cryptographers’ Track at the RSA
Conference. Springer, 2020, pp. 364–390.

[61] M. R. Albrecht, R. Player, and S. Scott, “On the concrete hardness
of learning with errors,” Journal of Mathematical Cryptology,
vol. 9, no. 3, pp. 169–203, 2015.

[62] J.-P. Bossuat, J. Troncoso-Pastoriza, and J.-P. Hubaux, “Boot-
strapping for approximate homomorphic encryption with negli-
gible failure-probability by using sparse-secret encapsulation,” in
International Conference on Applied Cryptography and Network
Security. Springer, 2022, pp. 521–541.

[63] J.-W. Lee, E. Lee, Y. Lee, Y.-S. Kim, and J.-S. No, “High-precision
bootstrapping of rns-ckks homomorphic encryption using optimal
minimax polynomial approximation and inverse sine function,” in
Advances in Cryptology–EUROCRYPT 2021: 40th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques, Zagreb, Croatia, October 17–21, 2021, Proceedings,
Part I 40. Springer, 2021, pp. 618–647.

[64] Y. Bae, J. H. Cheon, W. Cho, J. Kim, and T. Kim, “Meta-bts:
Bootstrapping precision beyond the limit,” in Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications
Security, 2022, pp. 223–234.

Appendix

1. Compliance with the Open Science Policy

Data Availability. All datasets used in this research
are generated from the publicly available git repos-
itory (https://github.com/IntelLabs/VectorSearchDatasets)
following the methodology in [41].

Code Availability and Reproducibility. The source code
for all experiments and analyses presented in this paper
will be shared to Artifact Evaluation Committee (AEC)
after the paper is accepted. This includes scripts for data
loading/encoding/encryption and custom FHE algorithms
developed for GraSS. The repository is organized to in-
clude detailed instructions for reproduction of our results,
including versioning information and dependencies. This
ensures that others can replicate our experiments under
similar conditions.

Preprint Submission. We plan to publish a preprint of
this work to ePrint Archive (https://eprint.iacr.org/) after
the submission to Euro S&P 2025, which allows for early
access and feedback.

Non-polynomial Operations. There have been active re-
searches on how to efficiently perform non-polynomial
operations such as comparison and min/max in word-
wise FHE. For BGV (and B/FV), one can construct a
bivariate polynomial over the finite field that outputs the
comparison result of two inputs, and then homomorphic
evaluate the polynomial [43]. For CKKS, a novel method-
ology to approximate the sign function (equivalent to

comparison) by a composite polynomial to minimize the
computational complexity has been proposed in [44], [45].
Those work achieve a comparable performance with bit-
wise FHE in terms of amortized running time. However,
they commonly requires quite large multiplicative depth
and are much less efficient than bit-wise FHE in sparse-
packing case (i.e., packing less than b messages in a
ciphertext).

Ciphertext noise, level and bootstrapping. In lattice-
based FHE schemes, each ciphertext internally contains
a noise that grows up for every homomorphic operation.
Once the noise level reaches a certain upper bound, then
no more homomorphic operation is able to be done (i.e.,
decryption fails). One way to mitigate the noise growth
is to perform the modulus-switching algorithm [9] that
reduce the exponential noise growth to a linear scale, but
each modulus-switching procedure consumes a ciphertext
level (from a max level L > 0) so it cannot be a ultimate
solution for the noise control. Thankfully, this bottleneck
can be resolved by an algorithm called bootstrapping.
Bootstrapping is technically a homomorphic evaluation of
the decryption circuit so that it refreshes the old ciphertext
noise by a new noise whose size is determined by the
decryption circuit. Due to the noise-refreshing property,
bootstrapping enables to compute arbitrary size and depth
of circuit homomorphically without decryption failure. To
support bootstrapping, we usually set N ≥ 216 and the
maximal ciphertext modulus logQ ≥ 1600.

When ⌈log n⌉ is not power-of-two, then we pad ℓ −
⌈log n⌉ number of zeros to each of the binary index
vectors idxai and idxbj to make their length power-
of-two ℓ. When |A| (resp. |B|) is not power-of-two,
we first need to assume that n < 2⌈logn⌉ − 1. Then,
we pad 2⌈log |A|⌉ − |A| (resp. 2⌈log |B|⌉ − |B|) number
of (1, 1, ..., 1) ∈ {0, 1}⌈log2 n⌉ (resp. (1, 1, ..., 1, 0) ∈
{0, 1}⌈log2 n⌉) to the set to make |A| (resp. |B|) power-of-
two.9 If b < |A| · |B| · 2⌈log ℓ⌉, then we partition the set A
into |A| · |B| ·2⌈log ℓ⌉/b subsets where each subset contains
b/(|B| · 2⌈log ℓ⌉) nodes, and we run Algorithm 4 for each
subset of A and B. Note that the word-wise FHE batch
size b is generally larger than |B|·2⌈log ℓ⌉ in practice. Note
that Algorithm 4 is described for power-of-two |A|, |B|
and ℓ satisfying |A| · |B| · ℓ ≤ b for simplicity.

In cleartext computation, evaluating the distance between
the query and the neighbor nodes in N(x) for each iter-
ation is the most natural way. In FHE computation, how-
ever, the distance pre-computation method works more
efficiently than the on-the-fly computation due to the
computational cost of the neighborhood retrieval process
(Step 3 in Section 4.4.3).

The size of Table 2 (with distance and index) after the
distance pre-computation is n × m(1 + ⌈log n⌉), while
Table 1 (with feature vector and index) is of the size
n×m(d+ ⌈log n⌉). Hence, the masking process with the
one-hot encoding vector in neighborhood retrieval requires
⌈nb ⌉·m(1+⌈log n⌉) (resp. ⌈nb ⌉·m(d+⌈log n⌉)) ct-pt mults

9. Here, the vectors (1, 1, ..., 1), (1, 1, ..., 1, 0) are the binary repre-
sentation of the indices 2⌈log2 n⌉ − 1, 2⌈log2 n⌉ − 2 > n− 1. We pad
A and B with those “garbage” indices to make sure that the padding
does not impact the set intersection result of the original A and B.

https://github.com/IntelLabs/VectorSearchDatasets
https://eprint.iacr.org/

in the pre-computation (resp. on-the-fly computation) case
for each iteration. In practice, ⌈log n⌉ ≤ 30 is much
smaller than the vector dimension d (e.g., 96), so the
number of ct-pt mults required for the masking process
is at least twice lower in the pre-computation case than
the on-the-fly computation case.

Moreover, the computational cost of distance pre-
computation itself is dominated by

⌈
n
b

⌉
·m ·d ct-pt mults,

which is even smaller than ⌈nb ⌉·m(d+⌈log n⌉). Therefore,
the pre-computation of the distance table brings significant
improvement in the efficiency compared to the naive on-
the-fly distance computation.

Additionally, we modified Algorithm 5 to obtain binary
indices by reusing intermediate results from the sorting
process. Specifically, we generate an encryption of a per-
mutation matrix P ∈ {0, 1}|Q|×|Q| during the distance
sorting and add a homomorphic matrix multiplication be-
tween P and the binary indices. Initially, we set the matrix
P as a row-wise packed identity matrix. Then, in line 18 of
Algorithm 5, we reuse ctS to conditionally swap columns
of P . By the end of the loops, P becomes an encryption
of a transposed permutation matrix. Finally, we transpose
the matrix P and evaluate matrix multiplication between
PT
0:w−1,0:|Q|−2 and ctB = Enc(idxx)) for x ∈ Q. Here,

ctB is treated as a row-wise packed |Q| × l matrix. For
the matrix transpose and multiplication, we refer to [46].

2. Algorithmic Optimizations

Exact FHE instead of CKKS. We may think of using
the exact FHE schemes BGV and B/FV instead of the
approximate FHE scheme CKKS to get rid of the preci-
sion issue during index-related operations (e.g., neighbor-
hood information retrieval). Currently, there is no open-
source FHE library supporting scheme-switching between
BGV/BFV and FHEW/TFHE. Another issue is that the
level consumption during BGV/BFV bootstrapping highly
depends on the plaintext modulus, while similarity search
usually requires quite high precision to deal with large-
scale data. Very recently, there has been proposed a new
BFV bootstrapping technique [47] that exploits CKKS
bootstrapping as a sub-routine and the level consumption
does not depend on the plaintext modulus. Hence, it would
be an interesting future work to implement 1. the new
BFV bootstrapping of [47], 2. BFV-FHEW/TFHE scheme-
switching, and 3. graph-based simlarity search algorithm
on the top of them.

More Efficient Scheme-Switching. Recently, there has
been proposed a novel ring-packing method called HER-
MES [48] which offers very efficient and dynamic trans-
formations between different ciphertext formats. For ex-
ample, [48] shows that packing 215 LWE ciphertexts (e.g.,
FHEW/TFHE ciphertext) into a single RLWE ciphertext
(e.g., CKKS ciphertext) with 10.2 seconds, which gives
at most 41x higher throughput than the previous state-
of-the-art [29], while the latency is comparable. For the
parameters we implemented in this work, the target ci-
phertexts of scheme-switching only contains < 28 inputs,
and hence we are not able to enjoy 41x improvement on
scheme-switching performance in our case, . However, we

can apply this technique to our FHE solution for the case
that m and w are sufficiently large.

3. FHE Implementation on GPU and HW accel-
erators

Recently, there have been massive improvements on the
computational performance of FHE, including both word-
wise and bit-wise FHE. For example, word-wise FHE
schemes have been implemented on various platforms
like GPU [42], [49], [50], FPGA [51], [52] and ASIC
accelerators [53].

The state-of-the-art results show that bootstrapping in
word-wise FHE, which is the most expensive operation,
takes only 50ms and 0.39ms on GPU [42] and ASIC [53]
respectively. These results are at least 1, 000× faster com-
pare to CPU implementations. Furthermore, this result
brings down the CNN inference (ResNet-20 [54]) latency
to 1.50s [42] and 99.0ms [53], which is practical for real-
work use cases.

Bit-wise FHE schemes show great performance with
GPU [55], FPGA [56] and ASIC [57], [58] accelera-
tions. A state-of-the-art result with ASIC [57] accelerates
programmable bootstrapping by about 290×. FPGA im-
plementation [59], on the other hand, introduced scheme
switching between word-wise and bit-wise FHE schemes
to mitigate the latency of word-wise FHE bootstrapping.
The work performs bootstrapping in 31 ms, which is also
over 1, 000× faster compare than CPU. Furthermore, they
demonstrated ResNet-20 [54] inference in 0.267s. An in-
teresting direction for future work is to incorporate a state-
of-the-art FHE accelerator into our proposed FHE-based
similarity search algorithm. Assuming that at least 1, 000×
acceleration can be achieved, combined with the high
scalability of our graph-based similarity search algorithm,
it would be feasible to perform similarity searches on a
1M dataset within a few minutes, making our protocol
practical for real-world applications.

4. Note on Security Level and Bootstrapping

The bit security of word-wise FHE (CKKS) is determined
by the maximal ciphertext modulus Q once the other
FHE parameters including N , noise distribution, secret-
key distribution, and decomposition degree dnum [60]
are fixed, and Q is decided by the maximal multiplicative
depth L and the scaling factor ∆, as Q ≈ ∆L. Smaller
Q implies higher bit security. Our experiments on deep-
96 datasets require 14 remaining-level-after-bootstrapping
and 14-bit precision for bootstrapping output. As a result,
we set L = 18 + 14 = 3210, ∆ ≥ 252, which result in
less than 128-bit security. To be precise, for multiplicative
depth 32, OpenFHE automatically set 11 primes for the
special modulus P , and hence logPQ ≃ 2600. The bit
security is determined by concrete security level against
uSVP and hybrid dual attacks under the cost model MAT-
ZOV through lattice-estimator [61].

There are two main strategies to achieve 128-bit secu-
rity: 1. Simply increase the ring dimension N from 216

10. The current OpenFHE implementation consumes 18 levels during
CKKS bootstrapping under LevelBudget = {2, 2}.

to 217, or 2. Apply recent new optimization techniques
on CKKS bootstrapping that have not been applied to
the public OpenFHE library [40] yet. The first strategy
directly results in 128-bit security but accompanies 2 ∼ 4x
computational overhead on CKKS operations and requires
larger key size. In terms of the second strategy, there
have been proposed some novel techniques [60], [62] to
achieve higher remaining level after bootstrapping, and
these techniques enables to set smaller depth parameter L
which implies higher bit security from smaller Q ≈ ∆L.
Furthermore, there exist another line of work on optimiz-
ing CKKS bootstrapping in terms of output precision [62],
[63]. In our experiments, to obtain 14-bit bootstrapping
precision, we had to set large ∆ ≥ 252 and apply it-
erative bootstrapping [64]. Applying those optimizations
would allow us to set smaller ∆ and/or avoid iterative
bootstrapping, which result in higher security level and
faster performance.

5. FHE Algorithms for GraSS

In this section, we describe the algorithms for each of the
steps in Section 4:

• Algorithm 6 for Step 0: Distance table computa-
tion

• Algorithm 7 for Step 1: Find Closest Unexplored
Node in Q

• Algorithm 8 for Step 2: Update Explored Nodes
E

• Algorithm 9 for Step 3: Neighborhood Information
Retrieval

• Algorithm 10 for Step 4: Set Union of Q and N(x)

Note that Step 5 (Local Top-w) uses Algorithm 5 intro-
duced in Section 3.2.

Algorithm 6 Distance Table Computation

Require: ctquery,u = Enc(vu, vu, ..., vu) for 0 ≤ u < d, pti,j,u = Ecd(vsbi,j ,u, vsbi+1,j ,u, ..., vsb(i+1)−1,j ,u) for
0 ≤ i <

⌈
n
b

⌉
, 0 ≤ j < m, and 0 ≤ u < d.

Ensure: ctout,i,j = Enc(dist2(v,vsbi,j), ..., dist2(v,vsb(i+1)−1,j
)) for 0 ≤ i <

⌈
n
b

⌉
and 0 ≤ j < m.

1: for u = 0 to d− 1 do
2: ctu ← MULT(ctquery,u,ctquery,u)
3: if u > 0 then
4: ct0 ← ADD(ct0,ctu)
5: end if
6: end for
7: for i = 0 to n/b− 1 do
8: for j = 0 to m do
9: ctout,i,j ← ct0

10: for u = 0 to d− 1 do
11: cttemp ← MULT(ctquery,u, 2pti,j,u)
12: ctout,i,j ← SUB(ctout,i,j ,cttemp)
13: ctout,i,j ← ADD(ctout,i,j ,pt2

i,j,u)
14: end for
15: end for
16: end for
17: return ctout,i,j for 0 ≤ i < n/b and 0 ≤ j < m

Algorithm 7 Find Closest Unexplored Node in Q at i-th Iteration

Require: ctE = Enc(idxx0
, ..., idxx0

, ..., idxxi−1
, ..., idxxi−1

, 0, ..., 0) where xj denotes the explored node in j-th
iteration, ctQ,idx = Enc(idxq0 , idxq1 , · · · , idxqw−1

), ctQ,dist = Enc(distq0 , distq1 , · · · , distqw−1
).

Ensure: ctout = Enc(idxx, idxx, . . . , idxx).
1: ctQ,explored ← Broadcast(ctQ,idx)
2: ctQ,explored ← SetInt(ctE ,ctQ,idx)
3: ctQ,dist∗ ← DISTMASK(ctQ,dist,ctQ,explored)
4: ctargmin ← ArgMin(ctQ,dist∗)
5: ctx,idx ← IDXMASK(ctQ,idx,ctargmin)
6: ctout = Broadcast(ctx,idx)

Algorithm 8 Update Explored Nodes E at i-th Iteration

Require: ctE = Enc(idxx0 , ..., idxx0 , ..., idxxi−1 , ..., idxxi−1 , 0, ..., 0) where xj denotes the explored node in j-th
iteration, ctx,idx = Enc(idxxi , idxxi , · · · , idxxi), ptmask = Ecd(1, ..., 1, 0, ..., 0) where first w · ℓ slots are 1.

Ensure: ctE = Enc(idxx0 , ..., idxx0 , ..., idxxi , ..., idxxi , 0, ..., 0).
1: ctx,idx = MULT(ctx,idx,ptmask)
2: ctx,idx = ROTATE(ctx,idx;−i · w · ℓ; rotk)
3: ctE = ctE + ctx,idx

Algorithm 9 Neighbor Nodes Binary Index Retrieval

Require: ctx = Enc(idxx, idxx, · · · , idxx), pti,j,u = Ecd(idxsbi,j ,u, idxsbi+1,j ,u, ..., idxsb(i+1)−1,j ,u) for 0 ≤ i <
⌈n/b⌉, 0 ≤ j < m and 0 ≤ u < ⌈log n⌉

Ensure: ctout = Enc(idxsx,0
, idxsx,1

, ..., idxsx,m−1
,0, ...,0)

1: {ctidxx,u
}0≤u<⌈logn⌉ ← Unpack(ctx)

2: {ctonehot,i}0≤i<⌈n/b⌉ ← BintoOneHot({ctidxx,u
}0≤u<⌈logn⌉)

3: for j ← 0 to m− 1 do
4: for u← 0 to ⌈log n⌉ − 1 do
5: ctj,u ← MULT(ctonehot,0,pt0,j,u)
6: for i← 1 to ⌈n/b⌉ − 1 do
7: ctj,u ← ADD(ctj,u,MULT(ctonehot,i,pti,j,u))
8: end for
9: end for

10: ctidx,j ← BlindRotate({ctj,u}0≤u<⌈logn⌉, {ctidxx,u
}0≤u<log ℓ)

11: end for
12: ctout ← Pack({ctidx,j}0≤j<m)

Algorithm 10 Set Union of Q and N(x)’s Distance at i-th Iteration

Require: ctQ,idx = Enc(idxq0 , idxq1 , · · · , idxqw−1
), ctN,idx = Enc(idxsx,0

, idxsx,1
, · · · , idxsx,m−1

), ctQ,dist =
Enc(distq0 , distq1 , · · · , distqw−1

), ctN,dist = Enc(distsx,0
, distsx,1

, · · · , distsx,m−1
).

Ensure: ctout = Enc(distQ∪N(x))
1: ctQ,idx ← Broadcast(ctQ,idx)
2: ctN,idx ← Broadcast(ctN,idx)
3: ctN,duplicate ← SetInt(ctQ,idx,ctN,idx)
4: ctN,dist∗ ← DISTMASK(ctN,dist,ctN,duplicate)
5: ctN,dist∗ ← ROTATE(ctN,dist∗ ;−w; rotk)
6: ctout ← ADD(ctQ,dist, ctN,dist∗)

	Introduction
	Our Work
	Related Work

	Preliminaries
	Notations
	Homomorphic Encryption
	Word-wise FHE for Batch Polynomial Arithmetic
	Bit-wise FHE for Logical Operations

	Scheme-Switching Technique
	Graph-based Similarity Search

	FHE Framework for Graph Search
	FHE-friendly Data Structure of Graph
	Core FHE Building Blocks
	Binary-to-One-hot Encoding Conversion
	Batch Homomorphic Blind Rotation
	Homomorphic Set Intersection with Binary Indices
	Homomorphic Bitonic Sorting

	Instantiation to Similarity Search
	Client/Server Input Privacy
	Setup Phase
	Distance Table Computation
	Detailed Steps Per Iteration
	Step 1: Find Closest Unexplored Node in Q
	Step 2: Update Explored Nodes E
	Step 3: Neighborhood Information Retrieval
	Step 4: Set Union of Q and N(x)
	Step 5: Local Top-w

	Post-Iteration Step

	Evaluation and Performance
	Implementation and Experimental Setup
	Bandwidth
	Accuracy and Latency
	Comparison with Prior Art

	Conclusion
	References
	Appendix
	Compliance with the Open Science Policy
	Algorithmic Optimizations
	FHE Implementation on GPU and HW accelerators
	Note on Security Level and Bootstrapping
	FHE Algorithms for GraSS

