
Anonymous Credentials from ECDSA

Matteo Frigo*

Google
abhi shelat†

Google

December 21, 2024

Abstract

Anonymous digital credentials allow a user to prove possession of an
attribute that has been asserted by an identity issuer without revealing any
extra information about themselves. For example, a user who has received
a digital passport credential can prove their “age is > 18” without reveal-
ing any other attributes such as their name or date of birth.

Despite inherent value for privacy-preserving authentication, anony-
mous credential schemes have been difficult to deploy at scale. Part of the
difficulty arises because schemes in the literature, such as BBS+ [CDL16],
use new cryptographic assumptions that require system-wide changes to
existing issuer infrastructure. In addition, issuers often require digital iden-
tity credentials to be device-bound by incorporating the device’s secure el-
ement into the presentation flow. As a result, schemes like BBS+ require
updates to the hardware secure elements and OS on every user’s device.

In this paper, we propose a new anonymous credential scheme for the
popular and legacy-deployed Elliptic Curve Digital Signature Algorithm
(ECDSA) signature scheme. By adding efficient ZK arguments for state-
ments about SHA256 and document parsing for ISO-standardized identity
formats, our anonymous credential scheme is that first one that can be de-
ployed without changing any issuer processes, without requiring changes
to mobile devices, and without requiring non-standard cryptographic as-
sumptions.

Producing ZK proofs about ECDSA signatures has been a bottleneck
for other ZK proof systems because standardized curves such as P256 use
finite fields which do not support efficient number theoretic transforms.
We overcome this bottleneck by designing a ZK proof system around sum-
check and the Ligero argument system, by designing efficient methods for
Reed-Solomon encoding over the required fields, and by designing special-
ized circuits for ECDSA.

Our proofs for ECDSA can be generated in 60ms. When incorporated
into a fully standardized identity protocol such as the ISO MDOC stan-
dard, we can generate a zero-knowledge proof for the MDOC presentation
flow in 1.2 seconds on mobile devices depending on the credential size.
These advantages make our scheme a promising candidate for privacy-
preserving digital identity applications.

*matteof@google.com
†shelat@google.com

1

mailto:matteof@google.com
mailto:shelat@google.com

Contents

1 Introduction 3
1.1 Anonymous Credentials from ECDSA 5

2 Zero-Knowledge Argument System 7
2.1 Verify Interactive Protocol (IP) . 8
2.2 Ligero Zero-Knowledge System 11
2.3 ZK Protocol . 12
2.4 Applying the Fiat-Shamir Transform 13

3 Optimization 14
3.1 Reed-Solomon encoding over prime fields 14
3.2 Reed-Solomon encoding over binary fields 15
3.3 Reduction of the Ligero proof size 21
3.4 Input consistency for circuits over different Fields 22

4 Circuit design 24
4.1 ECDSA Signature Verification . 24
4.2 SHA-256 . 25
4.3 CBOR parsing . 27

5 Evaluation 33
5.1 Algebraic primitives . 33
5.2 SHA256 hash verification . 35

5.2.1 Comparison with Ligero 36
5.2.2 Comparison with Binius 38
5.2.3 Comparison with other ZK systems 39

5.3 ECDSA signature verification . 39

6 Applications 40
6.1 A simple anonymous credential 40
6.2 Anonymous Credentials for MDOC 41

A Interpolation via convolution 47

B The MDOC standard 48

2

1 Introduction

David Chaum [Cha85] introduced the idea of an anonymous credential system, or
pseudo-nym system as a method to provide individuals full control over the dis-
semination of personal information. Such a system consists of users, issuers,
and relying parties. Issuers can issue a set of digital credentials to a user; users
can prove to a relying party that they possess credentials satisfying a certain
property without revealing anything more than the fact that they own creden-
tials that satisfy the property. Colluding relying parties are unable to link a
specific user to a pair of interactions they participate in. Even a colluding is-
suer and relying party should not be able to link a specific user to a session.

After Chaum introduced this notion, early constructions of such schemes
based on specific signature schemes were presented, but they all involved re-
strictions on usage. Lysyanskaya, Rivest, Sahai and Wolf [LRSW99] devised
a scheme based on one-way functions and generic zero-knowledge protocols.
They also proposed a specific construction based on a non-standard discrete-
logarithm assumption that also had restrictions on credential issuance and use
to achieve the unlinkability property. Brands [Bra99] introduces a selective dis-
closure system based on certificates.

Camenisch and Lysyanskaya [CL01] introduced an RSA-based credential
system that satisfied all of the multi-use and unlinkability properties desir-
able in a credential system, but their scheme still required several hundred
exponentiation operations for a basic presentation and relied on a novel cryp-
tographic assumption. They observed that one key problem for an anony-
mous credential scheme is to design a signature scheme for which there is
also an efficient proof of knowledge of a signature. Later, Camenisch, Drijvers,
and Lehmann presented the BBS+ credential scheme [CDL16] as an efficient
method to prove knowledge of a signature and thus construct an anonymous
credential system. Such a scheme has been proposed for standardization, how-
ever, it still relies on a new cryptographic assumption that requires pairing-
friendly elliptic curves.

Kosba et al. [KZM+15] propose the use of general purpose zkSNARKS
to build anonymous credentials based on standardized signature schemes. In
one of their schemes, a credential consists of a 1KB message that is signed
using RSA-PSS with a 2048-bit key and SHA-256 as the hash function. A
user can prove one inequality between a value in the message and an exter-
nal one (i.e., the basic age-over-X application). Their prover runs in 54–108s
depending on parameters. Later, Delignat-Lavaud, Fournet, Kohlweiss, and
Parno [DLFKP16] constructed a zkSNARK system for proving possession of
an X509 certificate for RSA signatures, which requires parsing the ASN.1 for-
mat in the ZK circuit. Their system took 31s to produce just the RSA signature
proof, and took between 61-160s for the entire anonymous credential presen-
tation. In addition to the impractical time to present a credential, both of these
proof systems also require a costly trusted parameter setup, and they also require
using pairing-friendly curves like the BBS+ scheme.

Along a similar line, Rosenberg, White, Garmin and Miers [RWGM23] build

3

anonymous credentials using general ZK techniques applied to non-standardized
signature and hash schemes. Their system gains an advantage by relying on
a blockchain to establish common knowledge: an issuer must augment a pub-
lic data structure every time they issue a credential to a user. The user refers
to this public datastructure when they present a credential. As a result, their
system reduces the credential presentation problem to a ZK proof of set mem-
bership. In addition, they use a non-standard hash function (Poseidon) to
make substantially more efficient ZK proofs concerning set membership. Al-
together, the addition of the blockhain and the use of Poseidon allows their
proof system to run between 460–542ms. In an alternative formulation us-
ing (non-standard) Schnorr signatures over a (non-standard) pairing-friendly
curve, their proof system runs in 130ms. Their prover requires up to 800mb of
memory to produce a proof, and as before, a trusted parameter that is several
100s of megabytes and trusted by all issuers and relying parties in the system,
and finally, a computational hardness assumption about bilinear pairings that
has not been standardized.

Impediments While there have been attempts to deploy credential systems
for digital identity applications, such efforts encounter three major roadblocks.

The first problem is pedantic yet significant. Organizations that issue cre-
dentials have embraced and deployed standardized digital signature hardware
and software that has been blessed by organizations such as NIST. Specifically,
for state or nation-level issuers, many issuers have deployed hardware secu-
rity modules that only supports RSA or ECDSA signatures. Through infor-
mal interview, it appears that such organizations are unwilling or incapable
of making the investments necessary to update their infrastructure to support
more recent CL or BBS+ credential systems, or even pairing-friendly curves for
that matter. Even the current anonymous credential schemes that are based on
standardized cryptography are unsuitable: as discussed above, they all require
minutes to produce proofs, they require large trusted setup parameters, and
they also require accepting new cryptographic assumptions about curves with
bilinear pairings.

A second problem is that credentials are often issued by multiple organi-
zations (e.g., each state issues a driver’s license), and relying parties need a
system that is inter-operable among all issuers. The task of producing a single
common trusted parameter via a ceremony involving all issuers seems highly
impractical and unlikely. To date, all of the solutions based on standardized
cryptograpgy in the literature require trusted parameters, and are thus chal-
lenging to deploy.

The final, and most critical impediment is the potential for scaled abuse of
anonymous credentials. If credentials can be copied from one malicious user
to another, then the system that verifies credentials may not be able to pro-
vide any guaranteed soundness. Unlike traditional credentials which can be
identified and revoked when they are discovered to have been copied or forged,
an anonymous credential does not leak any information other than the shared

4

attributes during a presentation protocol. As a result, it is more difficult or
impossible to revoke such credentials just by observing the presentation flows.
Note that this problem arises even in the setting of certificate systems that only
offer selective disclosure properties without full anonymity.

To address this copied credential problem, issuers of digital identity creden-
tials often require users to hold their credential in some form of trusted hard-
ware. Modern mobile devices often contain a secure element which is a special
hardware module that is purported to be tamper-resistant, side-channel resis-
tant, and thus secure against most key extraction attacks. The identity proto-
cols in the ISO MDOC standard, for example, specify an issuance and a pre-
sentation flow that validate the presence of the secure element on the receiving
device, and the participation of the secure element during every presentation
flow. Unfortunately, these secure elements are difficult to change in the field,
and they currently only support legacy standardized signature schemes such
as RSA and ECDSA. In particular, they do not support performing operations
on pairing-friendly curves, lattices, or even well-deployed signature schemes
such as EDDSA.

1.1 Anonymous Credentials from ECDSA

To address all of the shortcomings noted above, namely (a) efficiency, (b) re-
quirement to use standardized signature schemes and hash functions, and (c)
no need for common knowledge or trusted setups, we present a performant
anonymous credential that builds on ECDSA signatures.

Specifically, following the approach from prior works, we first construct
an efficient proof of knowledge of an ECDSA signature and then develop the
other tools necessary for an issuer to issue a set of credentials or attributes to a
user. We then combine these into a protocol that allows a user to demonstrate
posession of an arbitrary subset of those credentials to a relying party.

In contrast to prior work, our proposed proof of knowledge of an ECDSA
signature runs in almost the same time as a BBS+ proof, and it only relies on the
security of a collision-resistant hash function such as the standardized SHA256
function. The key to our approach is to combine two recent ZK proof tech-
niques: an optimized verifiable computation protocol that is based on sum-
check, and the Ligero ZK proof system that is based on the IOP (or more
precisely, IPCP) model. The use of sumcheck in recent ZK constructions has
shown promise: it avoids having to compute an expensive Number Theoretic
Transform (NTT) on the full witness for a given circuit. Instead, it is possi-
ble to run a sumcheck-based verification protocol in roughly linear time in the
size of the theorem-verifying circuit. Moreover, verifiable computation proto-
cols that are based on sumcheck are information-theoretically secure as they
require no computational assumptions. Similarly, the Ligero proof system in
the IPCP model requires the instantiation of a secure proof oracle, which can
also be achieved using Merkle trees that only rely on cryptographic hash func-
tions. In practice, we instantiate our protocols in a non-interactive manner, and

5

thus rely on the random oracle model for the soundness and zero-knowledge
properties.

Key Results One key bottleneck to proving knowledge of an ECDSA sig-
nature relates to the elliptic curves that have been standardized, and specifi-
cally to the properties of their respective finite fields. Standardized curves for
ECDSA such as P256 are designed without regard to the NTT in that they do
not have the required roots of unity needed for efficient NTT algorithms. As a
result, prior work essentially emulates the arithmetic of the P256 field in another
finite field that is optimized for ZK proofs. Even using very clever arithmetic
tricks, this overhead amounts to 40–100x increase in arithmetic operations.

We overcome this bottleneck in a few ways. First, we design a specific NTT
in a quadratic field extension of primes such as P256 which allows us to per-
form NTTs at roughly 4x the cost of doing so in an NTT-friendly prime of the
same size1. Note that this extra cost makes it even more important to minimize
the size of the witness.

We also develop a novel Reed-Solomon encoding approach which allows
exploitation of the subfield structure of the field, yielding a constant-factor im-
provement in proof size over the standard NTT-based methods. Specifically,
most projects define the Reed-Solomon code as a polynomial interpolation over
the roots of unity. In contrast, we define the code as an interpolation over an
arithmetic sequence of evaluation points in the base field. We present a method
to perform the interpolation over these points using a linear convolution. Thus,
when our witness values are over a small subfield or base field, even though
the NTT itself may be carried out over a larger extension field, the resulting
codeword remains in the subfield, yielding a smaller proof.

In some cases, we need to include zero-knowledge arguments about the
pre-image of certain boolean-heavy functions such as SHA256. Inspired by the
work of Diamond and Posen [DP23, DP24], we recognize the inherent speedup
possible with using the extension field GF(2k) to perform the sumcheck. In this
case, the standard NTT algorithms no longer apply, and we instead use the
family of additive FFTs [LCH14]. Specifically, we develop a new bidirectional
truncated additive FFT to solve the problem of polynomial interpolation over
cosets. As our benchmarks show, this operation provides almost an order of
magnitude speedup in these basic algebraic operations.

The next component of our result arises from the specific circuits we have
developed for verifying ECDSA signatures, verifying the pre-image of SHA-
256, and for parsing nested document formats such as CBOR and JSON that
are often specified in current identity credential standards such as ISO MDOC.

Our final contribution is a method to achieve the best performance when
a credential verification task involves both ECDSA signatures and SHA-256
hashes. All prior ZK proof systems verify a single arithmetic circuit that is de-
fined over one finite field F. However, as our benchmarks show, it is almost
an order of magnitude faster to verify properties about SHA-256 preimages

1We believe this insight can be used by other proof systems as well.

6

using a binary field instead of a prime field. A natural approach is to verify
parts of a statement under a convenient circuit over Fp, while verifying other
constraints under a more convenient field GF(2k). A problem arises when a
common witness value must be used in both parts if this circuit. A malicious
prover may include inconsistent versions of this witness value in the two cir-
cuits. To address this problem, we introduce a new witness consistency protocol
in which two witnesses that are committed in two different ZK proofs over
different fields can be proven to be consistent with high probability. Our basic
approach here is to include the evaluation of a random MAC on the witness
value—a computation that is small and thus easy to simulate over any field
in both F and GF(2k). We measure the overhead this consistency check and
show that after the SHA-256 pre-image verification exceeds a few blocks, our
consistency method begins to be more efficient.

Special notes about this application Some recent ZK NARK systems pro-
duce very small proofs on the order of hundreds of bytes. These systems,
however, require a trusted parameter setup ceremony. As noted above, in an
anonymous credential system that involved many issuers, relying parties, and
users, we consider such a setup ceremony as too difficult to organize, and thus
focus on ZK solutions that do not require any trusted setup.

Additionally, while the system we develop is succinct in proof size, many
recent ZK systems are also succinct in verifier-time. In the anonymous creden-
tial application, however, it is more important to conserve prover time, because
the prover is often the user’s mobile device. Therefore, the goal of our system
is instead to reduce prover time and energy use.

2 Zero-Knowledge Argument System

We construct a zero-knowledge argument (ZKARG) system by composing the
Ligero proof system with a public-coin verifiable computation (VC) protocol
that is based on the sumcheck protocol. A VC protocol allows a prover to
convince a verifier that C(x) = 0 in time and space that is smaller than |C|.
Remarkably, such protocols have been implicit in the literature since the intro-
duction of sumcheck [LFKN92].

Our approach to constructing a ZK argument follows the same pattern of
Hyrax [WTas+18], which itself is an instantiation of the idea from Ben-Or et
al. [BOGG+88]. Specifically, on input a circuit C, public input x, and witness w,
the prover first sends a commitment com to w and commitment parameters.
The prover and verifier then interactively produce a committed transcript T for
a VC protocol on input (C, x); specifically, when the VC protocol instructs the
prover to send its ith message mi to the verifier, it instead sends a commitment
t′i to that message; the verifier always responds to the prover’s ith commit-
ment with a random challenge as per the usual public-coin VC protocol and
defers performing all of the prescribed verification steps. Finally, the prover

7

and verifier engage in a zero-knowledge proof for the theorem “(t′1, . . . , t′ℓ) is
a commitment to transcript t and t is an accepting VC transcript for (C, x).”
In particular, the ZK proof for this theorem implicitly ensures that all of the
verifier’s VC steps hold with respect to the original transcript t.

The resulting composition enjoys efficiencies. Because VC produces a suc-
cinct proof with respect to C, the Ligero proof in our composed system is smaller
than a standalone Ligero proof for C(x) = 0. As we show below, this signifi-
cantly improves the performance of the overall system because the most costly
component of Ligero, the NTT, is applied to a small transcript for C(x) = 0 in-
stead of a full tableau for the computation of C(x). Note that the VC protocol is
not a zero-knowledge protocol, but Ligero is, and in this case, the composition
yields a protocol that satisfies the zero-knowledge property.

In the rest of this section, we explain each component in more detail, and
provide formal descriptions of the complete protocol and its performance.

2.1 Verify Interactive Protocol (IP)

We describe a verifiable computation protocol that is derived from a long line
of work on VC that is based on the sumcheck protocol [GKR08, CMT12, Tha13,
WJB+17, WTas+18].

Sumcheck The sumcheck interactive protocol [LFKN92] allows a Prover to
efficiently convince a Verifier that a claimed value equals the sum of a poly-
nomial evaluated at every point on the boolean hypercube. Here we quote a
performance theorem taken from Thaler [Tha22] characterizing sumcheck.

Theorem 2.1 ([Tha22, Proposition 4.1]). Let g be a v-variate polynomial of degree
at most d in each variable, defined over a finite field F. For any specified H ∈ F, let
LH be the language of polynomials g (given as an oracle) such that

H = ∑
b1∈{0,1}

∑
b2∈{0,1}

... ∑
bv∈{0,1}

g(b1, ..., bv) . (1)

The sum-check protocol is an interactive proof system for LH with completeness error
δc = 0 and soundness error δs ≤ vd/|F|.

Moreover, if deg(g) = O(1), then the protocol requires v rounds of commu-
nication, the total communication cost is O(v) field elements, the verifier time is
O(v) + T(g), and the prover’s time is O(M(g)) where T represents the cost of 1
evaluation of g and M represents the cost of evaluating g on the hypercube.

As a notational convenience, we often use capital letters to represent a vec-
tor of variables over {0, 1}. For example, letting B = (b1, ..., bv), we write:

H = ∑
B∈{0,1}v

g(B)

or even H = ∑B g(B) as shorthand for Equation (1).

8

Applying sumcheck for circuit verification Thaler [Tha22] provides a com-
prehensive overview of the history and application of this protocol to the task
of verifiable computing. In particular, as first shown in [GKR08], sumcheck
can be applied to the task of verifying that C(x) = 0 where C a layered circuit
starting with layer 0 as the output layer, and d as the input layer.

We present an optimized variation of this style of protocol that builds on
observations by Cormode et al. [CMT12], Thaler [Tha13], and other follow-
ups [WJB+17, WTas+18]. Our improvements consist of a simplification of the
wiring predicate, a different approach to the layer-to-layer reduction, and dif-
ferent methods to compute the evaluation of the sparse wiring predicate.

In our formulation, layer j of the circuit computes an array Vj[0, . . . , wj − 1]
of output wires given an array Vj+1[0, . . . , wj+1 − 1] of input wires, which are
the outputs of layer (j + 1). Instead of the separate addition and multiplication
gates of [GKR08], we have only one kind of “gate” which computes the generic
quadratic form

Vj[i] = ∑
ℓ,r

Qj[i, ℓ, r] ·Vj+1[ℓ] ·Vj+1[r] ,

and specialize sumcheck for this circuit structure. We call Q the quad and
Qj[i, ℓ, r] the quad term.

By convention, the input wire Vj[0] = 1 for all layers, and thus the quad
representation handles the classic add and multiplication gates in a uniform
manner. For example, this quad form approach reduces the depth of the stan-
dard elliptic curve addition formula from 5 to 3. Also by convention, an input
satisfies the circuit if all outputs V0[i] of the output layer are 0.

The arrays defined above naturally specify multi-variate—and specifically
multi-linear—polynomials. We use tilde-notation to denote the unique multi-
linear extension for an array. For example, Ṽj(i) represents the unique multi-
linear extension that interpolates the array Vj[i].

Let ωj = ⌈log2(wj)⌉. At the beginning of the protocol, the verifier picks a
random point r0 ∈ Fω0 . Because all outputs are expected to be 0, the verifier
expects Ṽ0(r0) = 0. Our process begins with two claims (c0,0, c0,1) = (0, 0)
on the values Ṽ0(r0). In this first step, both claims are on values on the same
evaluation point, but in later rounds, these claims will be on different points.

VerifyP,V(C, x) for theorem C(x) = 0:Protocol 2.2. VerifyP,V(C, x) for theorem C(x) = 0

The depth-d circuit C is defined over field F. Prover and Verifier hold
input (C, x). Let (Q0, . . . , Qd−1) be the quad form for each layer of C, and
define wj to be the number of wires in layer j and ωj = ⌈log2(wj)⌉. Let
Vj[i] represent the value of the ith output wire in layer j. Verifier rejects if
any check fails.

1. Verifier samples r ← Fω0 and sets r0,b ← r, c0,b ← 0 for b ∈ {0, 1}.

2. For j = 0, 1, . . . , d− 1: // Prover is asserting claims cj,b = Ṽj(rj,b), b ∈ {0, 1}.

9

(a) Verifier sends αj ← F and sets Y = αj · cj,0 + (1− αj)cj,1.

(b) Define the 2ωj-variate polynomial

gj(L, R) =
[
αj · Q̃j(rj,0, L, R) + (1− αj)Q̃j(rj,1, L, R)

]
· Ṽj+1(L) · Ṽj+1(R)

in L = L0, . . . , Lωj−1 and R = R0, . . . , Rωj−1.

(c) Prover and Verifier apply sumcheck to the claim:

Y = ∑
L,R∈{0,1}ωj

gj(L, R)

The sumcheck protocol produces two random points ℓ and r, a

value y, and a claim that y ?
= gj(ℓ, r).

(d) Prover sends claims cj+1,0 = Ṽj+1(ℓ) and cj+1,1 = Ṽj+1(r).

(e) Verifier checks:

y ?
=

[
α · Q̃j(rj,0, ℓ, r) + (1− α)Q̃j(rj,1, ℓ, r)

]
· cj+1,0 · cj+1,1

and continues with points (rj+1,0, rj+1,1) = (ℓ, r) and claims
cj+1,b.

3. Verifier verifies the claims cd,b
?
= Ṽd(rd,b) by direct evaluation of

Ṽd(rd,b).

Theorem 2.3. Let C be a depth-d layered circuit over F whose jth layer has width wj,
let ωj = ⌈log(wj)⌉ and let Z = 2 ∑d

j ωj.
VerifyP,V(C, x) is a Z-round interactive protocol for the theorem C(x) = 0 that

has completeness error 0, soundness error O(Z/|F|) and total communication Θ(Z)
field elements.

Moreover, the verifier computation consists of sampling Θ(Z) elements from F,
performing Θ(Z) operations in F, and performing one dot product between the input
x and a vector with tensor form derived from the randomly sampled challenges.

The Prover computation consists of O(|C|) field operations.

Remarks Achieving the stated runtime requires careful, but well-known op-
timizations of sumcheck for the Prover and Verifier, as well as an efficient
method to compute the evaluation of the wiring predicate Q̃ at each layer.

For convenience, the notation sz(C, x) represents this protocol’s transcript
length on instance (C, x).

It is clear that step 2e can be moved outside of the loop. Moreover, all of
the checks that the verifier makes in Sumcheck in step 2(c) can also be moved

10

outside of the loop. In this formulation, the Verifier can be split into the inter-
active part that includes step 1, 2(a), and the random sampling steps in 2(c),
and a second part that performs all of the checks in steps 2(c),2e, and (3). For
convenience, we use the notation checkV(C, x) for the second part.

SIMD optimization It is well known that sumcheck can be used to exploit
regularity in the wiring predicates. For example, when C validates multiple
instances or copies of the same smaller circuit, it is possible to achieve verifier
succinctness in time [CMT12, Tha13, WJB+17]. These extensions can be added
to our formulation above by including a copy variable, but are omitted because
our system does not require verifier succinctness.

2.2 Ligero Zero-Knowledge System

Ligero [AHIV22] is a zero-knowledge interactive PCP (ZKIPCP) that represents
an optimized instantiation of the “MPC-in-the-head” technique. The proof size
is roughly the square-root in the size of the circuit, and the proof system only
assumes the existence of a cryptographic hash function. Note that an IPCP is a
special case of the an IOP in which the prover sends a proof oracle only in the
first round and in the subsequent rounds it simply responds to the verifier’s
challenge a message instead of an oracle2.

Whereas earlier we considered a circuit C with input x. From this point
in the paper, we further split the input into a pair (x, w) where x represents
the public input that is known to both Prover and Verifier, and w is the private
witness that is known only to the Prover.

Our ZK protocol uses Ligero to wrap the checkV verifier from the previous
section, i.e, it can be interpreted as composition of an efficient verifiable com-
putation protocol with a generic zero-knowledge protocol.

For convenience, we identify some components of the Ligero protocol. The
LigeroCommit(x, w) method allows a Prover to produce a short commitment
com to inputs (x, w). Next, prover and verifier respectively run LigeroProver
on inputs (C, x, w, com) and LigeroVerify on inputs (C, x, com), and finally, the
verifier method outputs accept or reject.

Ames et al. [AHIV22] characterize the performance of Ligero as follows.

Theorem 2.4 ([AHIV22, Cor 5.3]). Fix parameters n, m, l, k, t, e such that e <
(n− k)/2 and n > 2k + e. Let C : Fn → F be an arithmetic circuit of size s, where
|F| ≥ l + n, m · l > nl + s and k > l + t. Then the protocol Ligero(C, F) is a
non-interactive proof with:

• Adaptive knowledge error ϵFSK(C, T, λ) = T · ϵ(C)+ 3(T2 + 1)/2λ against
T-query provers;

• Adaptive knowledge error Ω(T · ϵFSK) against T−O(q(C) log(|C|))-query
quantum provers;

2The treatment of subsequent Prover communication as messages instead of oracles consisting
of a single point enables a simpler and more efficient compilation from IOP to protocol.

11

• Statistical zero knowledge z′(C, λ) = 4|C|/2λ/4

• Efficiency: V makes t queries of symbols of size F4m+5σ. The number of field
operations is poly(|C|, n). The number of field elements communicated by P to
V is σ · n + σ (k + l − 1) + σ (2k− 1).

where

ϵ(C) = ϵK(C) = max
(
(n + 2)
|F|σ , (1− e/n)t

)
|C| = n + (k + ℓ− 1) + (2 · k− 1)

2.3 ZK Protocol

We now describe our new ZK protocol.

ZK protocol (P, V) for circuit C(x, w) = 0:Protocol 2.5. ZK protocol (P, V) for circuit C(x, w) = 0

The circuit C is defined over field F. Prover holds input (C, (x, w)) and
Verifier holds input (C, x).

1. P, V compute the size ℓ← sz(C) of the Verify transcript.

2. P computes the augmented witness w′ ← (w, pad) where pad← Fℓ.

3. P computes com← LigeroCommit(w′) and sends com to V.

4. P, V begin running VerifyP,V(C, (x, w)) with these changes:

• Whenever VerifyP instructs the prover to send the ith message
mi ∈ F to V, P sends t′i ← mi + padi.

• When VerifyV instructs the verifier to send the ith random chal-
lenge ri, V returns ri.

At the end, P, V hold an encrypted sumcheck transcript T′ = ((t′i, ri))i
for instance (C, (x, w)).

5. Define the circuit C′(x, w′, T′) to first decrypt the transcript T = ((ti =
t′i + padi, ci))i∈[0,ℓ], and then run checkV(C, (x, w), T).

6. P, V run the protocol methods LigeroProve(C′, (x, w′), T′, com) and
LigeroVerify(C′, x, T′, com) respectively; V outputs the result.

Remarks

• The prover in line 2 only commits to |(x, w)| + ℓ elements. This size
is often substantially smaller than |C|, which is what the Ligero prover
must commit to if it is applied to C directly. This is an important per-
formance advantage because the Ligero commitment involves the NTT

12

over F, which is the only non-linear time component in the proof system.
This improvement is especially important when F does not natively have
suitable roots, as is the case for the ECDSA circuit.

• The LigeroProver is applied to the C′ circuit which decrypts the tran-
script (via the one-time pad, i.e., using one field operation per element
of T′), and then runs the checkV circuit. This check circuit performs a
small number of field operations and then computes one dot product
with (x, w). Moreover, this dot product occurs between the hidden wit-
ness and a publicly computable challenge vector derived from the ran-
dom challenges sent by the verifier. (This public vector also has a tensor-
form that is induced by the Verify protocol.) Altogether, the Ligero proof
system is used to verify a small statement with respect to the original
circuit C.

Theorem 2.6. If C is a depth-d and width-w circuit over F, and if Ligero is a zero-
knowledge protocol with adaptive knowledge soundness error ϵFSK(|C|, T, λ) and sta-
tistical zero-knowledge z′(C, λ), then protocol 2.5 is an honest-verifier zero-knowlege
protocol with completeness and knowledge soundness error O(η(|C|, |F|)+ d · log(w)/|F|)
and zero-knowledge z′(C, λ).

Proof. (Sketch) Extraction error follows from the union bound over the failure
of the Ligero extractor and the information-theoretic soundness gap of the ver-
ify protocol from Theorem 2.3. The zero-knowledge property follows directly
from Ligero simulator run on the augmented circuit C′.

2.4 Applying the Fiat-Shamir Transform

To construct a non-interactive protocol from our basic protocol, we apply the
Fiat-Shamir transform, and argue soundness by applying the Round-by-round
Soundness lemma presented by Canetti et al [CCH+18].

Theorem 2.7 ([CCH+18]). Suppose that Π = (P, V) is a 2r-message public-coin
interactive proof for a language L with perfect completeness, poly log(n) total bits of
prover-to-verifier communication, and round-by-round soundness with a correspond-
ing state function State. Let Xn denote the set of partial transcripts (including the
input and all messages sent) and let Yn denote the set of verifier messages when Π is
executed on an input of length n. If a hash family H = {Hn : Xn → Yn} is RState-
correlation intractable and evaluable in time Õ(n), then there exists (Gen, P̃, Ṽ) that
constitute an adaptively sound publicly verifiable argument for L.

Canetti et al [CCH+18] provide an argument for why sumcheck is round-
by-round sound with O(d/|F|). Ligero is also a round-by-round sound with
parameter O(η(C′)/|F|). Our composition is also round-by-round sound with
similar parameters.

13

3 Optimization

3.1 Reed-Solomon encoding over prime fields

The Ligero polynomial commitment specifically requires Reed-Solomon codes,
as opposed to generic error-correcting codes. Ligero interprets the message (an
array of field elements) as the evaluations of a low-degree polynomial at certain
points, and it depends on the fact that the codeword consists of the evaluations
of the same polynomial at certain other points. The choice of the points does
not matter for soundness, but it does affect performance. In this section we
describe the choices that we made for prime fields Fq, and we discuss binary
fields in Section 3.2.

A natural set of evaluation points would be ωi, for a root of unity ω, so that
FFT-based methods can be used for interpolation. However, this choice leads
to complicated interactions between the factorization of (q− 1), the length of
the codeword, and the efficiency of the interpolation. In particular, FP256 where
P256 is the NIST prime P256 = 2256 − 2224 + 2192 + 296 − 1 has no usable roots
of unity.

To avoid this complexity, we make the following choices. A message con-
sists of the evaluations of a polynomial p(x) of degree at most d at points
x ∈ {Fq(i) : i ≤ 0 ≤ d}, where Fq(i) = i mod q is the natural injection
of integer i into the field Fq. Similarly, a codeword of length m consists of the
m evaluations {p(Fq(i)) : 0 ≤ i < m}. These definitions are well-formed
for fields of sufficiently large characteristic, and the only remaining problem is
how to compute the polynomial interpolation.

As in [CMT12, Section 2.1], our general strategy is to reduce polynomial
interpolation to convolution, and then apply the most convenient convolution
algorithm. Specifically, we use the following identity, which holds over the
integers: For integer k > d,

p(k) = (−1)d · (k− d)
(

k
d

)
· ∑

0≤i≤d

(
1

k− i

)
· (−1)i

(
d
i

)
p(i) . (2)

See Appendix A for a proof of Equation (2)3. Except for scaling by constants,
Equation (2) is indeed a (linear) convolution: Multiply the input p(i) element-
wise by the constants (−1)i(d

i), convolve with the kernel (k− i)−1, and divide
elementwise by the constants (−1)d · (k− d)(k

d) yielding p(k). Equation (2) also
holds (mod q) when k < q.

Convolution over arbitrary fields can be computed in O(n log n log log n)
field operations by the Nussbaumer [Nus80] algorithm. (See also [Knu97, Ex-
ercise 4.6.4-59].) If the field is FFT-friendly, i.e., the order of its multiplica-
tive group factors into small primes, then the convolution can be computed in
O(n log n) field operations via some form of FFT.

3Alternatively, Equation (2) gives the explicit form of a special case of the matrix factorization
V−1

0 V1 = D0CD1, where Vi are Vandermonde, C is Cauchy, and Di are diagonal [Gow92, Theo-
rem 1]

14

In our case, the ECDSA signature is standardized over a small set of elliptic
curves such as P256, P384, P521. Each curve is defined over a specific base finite
field Fq for prime q which is not FFT friendly. However, every odd prime q is
of the form q = r · 2ℓ − 1, and the quadratic extension Fq2 contains roots of
unity of order 2ℓ, because the order of the multiplicative group is q2 − 1 =
(q + 1)(q− 1) and 2ℓ divides (q + 1) = r · 2ℓ. While this fact is not useful in the
trivial case ℓ = 0, in the specific case of the ECDSA primes one can pick ℓ large
enough that the FFT over the extension field is viable. Zhang et al. [ZXZS19]
make the same observation in the case q is a Mersenne prime q = 2ℓ − 1.

Thus, at least for the ECDSA primes, we compute the convolution in the
base field via two FFTs in the quadratic extension, assuming precomputation of
the transform of the convolution kernel. Although special-purpose algorithms
exist for this case, roughly equivalent to the complex FFT algorithm of real
inputs, or perhaps finite-field analogues of the discrete Hartley transform, we
naively perform the convolution fully within the extension field, incurring a
factor of two overhead over more specialized algorithms.

3.2 Reed-Solomon encoding over binary fields

Overview In fields of characteristic 2, we have 1 + 1 = 0 and the choice of
interpolation points in Section 3.1 does not apply. Instead, as in [LCH14, DP24],
we make a different choice described in the following.

GF(2k) forms a vector space of dimension k over GF(2). Fix once and for all
a basis βi of this vector space, where 0 ≤ i < k. (See Section 3.3 for a concrete
choice of basis.) Writing ji for the i-th bit of the binary representation of j, that
is, j = ∑0≤i<k ji2i and ij ∈ {0, 1}, we inject integer j into a field element F (j)
by interpreting the bits of j as coordinates in terms of the basis:

F (j) = ∑
0≤i<k

jiβi . (3)

Then, as in Section 3.1, we postulate that the message to be encoded consists
of the evaluations of a polynomial p(x) of degree at most d at the d + 1 points
x ∈ {F (i) : 0 ≤ i ≤ d}. Similarly, a codeword of length m consists of the
m evaluations {p(F (i)) : 0 ≤ i < m}.

The particular choice of the injectionF (j), as opposed for example toF (j) =
ω j for some appropriate root of unity ω, is motivated by the existence of the
additive FFT, which solves the interpolation problem in O(m log d) operations.

We use the additive FFT first presented by Lin, Chung, and Han [LCH14],
which builds upon previous algorithms with higher asymptotic complexity.
Lin et al. define a novel polynomial basis for polynomials as an alternative to
the usual monomial basis xi, and give an algorithm for evaluating a degree-
(d− 1) polynomial at all d points in a subspace, for d = 2ℓ, and for polynomials
expressed in the novel basis. The algorithm can be executed backwards to
reconstruct the coefficients in the novel basis given the evaluation points. See
[LANHC16, LCK+18] for alternative presentations of the same idea.

15

While the algorithm in [LCH14] is recursive, Diamond and Posen [DP24,
Algorithm 2] reformulate the algorithm as a triply-nested loop, resembling
common implementations of the Cooley-Tukey FFT.4 In addition, Diamond
and Posen extend the algorithm to obtain 2ℓ+R evaluations of a polynomial of
degree less than 2ℓ, whereas [LCH14] evaluates 2ℓ points at an arbitrary coset
of a subspace.

For our purposes, we prefer to avoid restrictions such as d and m being
powers of two, even though the additive FFT algorithms only work for 2ℓ sizes.
For the evaluation of a polynomial of arbitrary degree d, we use the triply-
nested loop formulation of Diamond and Posen with R = 0, augmented with
the original coset parameter from [LCH14]. We pad the array of coefficients
with zeros to reach size 2ℓ, and evaluate sufficiently many cosets to obtain the
desired m evaluations, possibly discarding unneeded points.

The reconstruction of the polynomial coefficients in the novel basis given
d + 1 evaluations is more challenging when d + 1 is not a power of two. We
cannot simply pad the evaluations with 2ℓ − (d + 1) zeroes and apply the in-
verse additive FFT, since this process would produce a polynomial of degree
2ℓ − 1 and not d. To solve this problem, we adapt the inverse truncated FFT
of van der Hoeven [vdH04] to work with the additive FFT algorithm. The
truncated FFT computes a subset of the outputs of the FFT, and van der Ho-
even [vdH04] presents an elegant algorithm for inverting the process. While
the truncated FFT literature is mostly concerned with saving field operations
or avoiding storing implicit zeroes, we prefer to look at the algorithm as a bidi-
rectional FFT, as follows. Consider a linear transformation[

Y0
Y1

]
= A

[
X0
X1

]
,

where Xi and Yi are column vectors of ni elements. For the concrete case where
A is the Fourier matrix, or its additive variant, the forward FFT computes Y
given X, and the inverse FFT computes X given Y. We call an algorithm that
computes Y1 and X0 given Y0 and X1 a bidirectional FFT. Thus, a bidirectional
FFT algorithm computes either the forward or inverse transform, as well as
many combinations thereof.

Details of the additive FFT Following notation introduced by Diamond and
Posen [DP24], let Ui be the span of the prefix {βk : 0 ≤ k < i} of the basis. De-
fine the subspace vanishing polynomial Wi(x) = ∏u∈Ui

(x− u) and its normalized
variant Ŵi(x) = Wi(x)/Wi(βi).

Polynomials Wi are linearized: Wi(x + y) = Wi(x) + Wi(y). See [vzGG96,
Lemma 2.3], where this fact is stated without proof. See Mateer’s thesis [Mat08,
Theorem 15] for a proof. Linearization is crucial for the efficiency of the ad-
ditive FFT, and it also allows for the efficient computation of Wi(x): If x =
∑k xkβk in terms of the basis, then Wi(x) = ∑k xkWi(βk).

4The Cooley-Tukey FFT requires a bit-reversal of either the input or the output, but the Dia-
mond and Posen algorithm does not, so the two algorithms are not quite the same.

16

Moreover, we have Wi+1(x) = Wi(x)Wi(x + βi) because Ui+1 = Ui ∪ (βi +
Ui), and thus Wi+1(x) = Wi(x)(Wi(x) + Wi(βi)) holds by linearity. Together
with the base case W0(x) = x, these two properties allow for efficient com-
putation of Wi(β j) and Ŵi(β j) for all necessary i and j. We precompute and
store Ŵi(β j) in an array Ŵ[i][j].

The additive FFT [LCH14] evaluates a polynomial p(x) = ∑0≤k<2i ckXk(x)
for all x is an coset Ui + α, given the coefficients ck of the polynomial’s expansion
in terms of the novel polynomial basis Xk(x). Running the algorithm backwards
(the inverse FFT) computes the coefficients from the evaluations. Lin et al.
[LCH14, Equation 6] give an explicit formula for the basis Xk(x), but the precise
form of Xk(x) does not really matter for interpolation as long as Xk(x) is a
polynomial of degree k. That is, one can start from the evaluations over Ui,
compute the coefficients, and evaluate the polynomial over a coset Ui + α to
obtain new evaluations, and nowhere does one have to know the exact form of
the basis.5

Algorithm 1 shows pseudo-code for our implementation of the additive
FFT, largely lifted from [DP24, Algorithm 2], and of its inverse. We show pro-
cedure TWIDDLE, which computes the “twiddle factors,” as presented in the lit-
erature, but in the actual implementation we compute all twiddle factors at the
same time via the recurrence TWIDDLE(i, u + 2k) = Ŵ[i][k] + TWIDDLE(i, u),
which yields an algorithm for doubling the size of an array of twiddle factors
in linear time.

Details of the bidirectional FFT Ignoring bit-reversal permutations, the com-
putation graph of the additive FFT is the same as the one of the ordinary
Cooley-Tukey FFT. (See Figure 1.) Given n input coefficients C[.] in the novel
polynomial basis, a loop of elementary butterfly operations decomposes the in-
put even Ce[.] and off Co[.] arrays, to which the transform is applied recursively
yielding the evaluation array E[.].

In the bidirectional FFT setup, the inputs consist of evaluations E[i] for a
prefix 0 ≤ i < k of E, and coefficients C[i] for a suffix k ≤ i < n of C. The
goal is to compute the remaining coefficients and evaluations. To this end, we
adapt the discussion from [vdH05, Section 6] to the case of additive FFT.

Consider the elementary forward butterfly operation described in procedure
BUTTERFLY-FWD in Algorithm 1. Let (a, b) = (B[w], B[w + s]) before applying
the butterfly operation, and (c, d) = (B[w], B[w + s]) after applying the opera-
tion. Then the butterfly computes[

c
d

]
=

[
1 t
1 t + 1

] [
a
b

]
. (4)

5The situation is somewhat analogous to Newton finite-difference methods of interpolation,
where one starts with the evaluations and computes a bunch of additions and subtractions, ob-
taining evaluations at additional points. In one sense, some intermediate values can be interpreted
as the expansion of the polynomial in terms of the Newton basis, but in another sense, one can
view the method as an algorithm for interpolation without any mention of the Newton basis.

17

Algorithm 1 Additive FFT [DP24, Algorithm 2]
procedure FFT(ℓ, α, B[])

▷ Require: Array B of size 2ℓ containing the coefficients of the expansion
p(x) = ∑0≤k<2ℓ B[k]Xk(x) in terms of the novel polynomial basis Xk(x). ◁

▷ Ensure: B[k]← p(F (k + α)), where F (.) is defined in Equation (3). ◁
for all i : 0 ≤ i < ℓ in descending order of i do

s← 2i

for all u : 0 ≤ 2s · u < 2ℓ do
t← TWIDDLE(i, 2s · u + α)
for all v : 0 ≤ v < s do

BUTTERFLY-FWD(B, 2s · u + v, s, t)

procedure IFFT(ℓ, α, B[])
▷ Inverse of procedure FFT. ◁
for all i : 0 ≤ i < ℓ in ascending order of i do

s← 2i

for all u : 0 ≤ 2s · u < 2ℓ do
t← TWIDDLE(i, 2s · u + α)
for all v : 0 ≤ v < s do

BUTTERFLY-BWD(B, 2s · u + v, s, t)

procedure TWIDDLE(i, u)
Let uk denote the k-th bit of u, i.e., u = ∑k uk2k.
return ∑k uk · Ŵ[i][k]

procedure BUTTERFLY-FWD(B[], w, s, t))
B[w]← B[w] + t · B[w + s]
B[w + s]← B[w + s] + B[w]

procedure BUTTERFLY-BWD(B[], w, s, t))
B[w + s]← B[w + s]− B[w]
B[w]← B[w]− t · B[w + s]

procedure BUTTERFLY-DIAG(B[], w, s, t))
(B[w], B[w + s])← (B[w]− t · B[w + s], B[w] + B[w + s])

18

N/2

aFFT

N/2

aFFT

E[0]

E[1]

E[2]

E[3]

E[4]

E[5]

E[6]

E[7]

Ce[0]
C[0]

Ce[1]
C[1]

Ce[2]
C[2]

Ce[3]
C[3]

Co[0]
C[4]

Co[1]
C[5]

Co[2]
C[6]

Co[3]
C[7]

Figure 1: Flow graph of the ordinary additive FFT, which is the same as the
one for the Cooley-Tukey FFT if one ignores bit-reversal permutations. The
“butterflies” with two inputs and two outputs denote that the output is some
2× 2 linear transformation of the input. Lin and others [LCH14] draw a sligthly
different diagram factoring the linear transformation into triangular matrices,
but for our purposes this level of detail is not important.

Similarly the backward butterfly operation in procedure BUTTERFLY-BWD com-
putes the inverse transformation[

a
b

]
=

[
t + 1 −t
−1 1

] [
c
d

]
. (5)

The key insight [vdH05, Equation (7)] of the bidirectional FFT algorithm is
the diagonal butterfly (procedure BUTTERFLY-DIAG), which proceeds forward
on b and backwards on c: [

a
d

]
=

[
−t 1
1 1

] [
b
c

]
. (6)

The symmetric case of computing (b, c) from (a, d) is also possible, and
viable for the ordinary Cooley-Tukey FFT [vdH05, Equation (8)]. However,
the corresponding equation for the additive FFT[

b
c

]
= (1 + t)−1 ·

[
−1 1
1 t

] [
a
d

]
(7)

requires (1 + t) to be invertible, which is not guaranteed in our case. This is
the reason why we chose the convention that a prefix of the evaluations are

19

Algorithm 2 Bidirectional FFT, adapted from [vdH05, Section 6]
procedure BIDIRECTIONAL-FFT(i, α, k, B[])

▷ Require: Array B of length n = 2i, whose first k elements are evaluations of
a polynomial and the rest are coefficients of the same polynomial in the novel
polynomial basis. ◁

▷ Ensure: Overwrite B with an array whose first k elements are coefficients
and the rest are evaluations. ◁

if i > 0 then
i← i− 1
s← 2i

t← TWIDDLE(i, α)
if k < s then

for all v : k ≤ v < s do
BUTTERFLY-FWD(B, v, s, t)

BIDIRECTIONAL-FFT(i, α, k, B)
for all v : 0 ≤ v < k do

BUTTERFLY-DIAG(B, v, s, t)
FFT(i, α + s, B[s :])

else
IFFT(i, α, B)
for all v : k− s ≤ v < s do

BUTTERFLY-DIAG(B, v, s, t)
BIDIRECTIONAL-FFT(i, α + s, k− s, B[s :])
for all v : 0 ≤ v < k− s do

BUTTERFLY-BWD(B, v, s, t)

known, as opposed to a prefix of the coefficients. With this choice, we only
need (6) but not (7).

Consider again Figure 1, and assume that k ≥ n/2. Thus, the entire output
of the top N/2-FFT block is known, the entire Ce[.] can be obtained from the
inverse FFT of the known prefix of E[.]. Given Ce[.] and the known suffix C[i]
for i ≥ n − k, diagonal butterflies compute Co[i] for i ≥ k − n/2. The result
is a bidirectional FFT problem of size n/2: a suffix of length n/2− (k − n/2)
of Co and a prefix of length k − n/2 of the bottom half of E. This bidirec-
tional subproblem is solved recursively, thus computing the missing elements
of E and Co. Given the entire Ce and Co, the missing C’s are computed via
backward butterflies.

Symmetric considerations apply to the case k < n/2. See Algorithm 2 for
complete pseudo-code of the bidirectional FFT algorithm.

Even though the FFT algorithm reduces a problem of size n to two subprob-
lems of size n/2, the bidirectional FFT algorithm produces one bidirectional
problem of size n/2 and another problem of size n/2 which is either a fully
forward or a fully backward FFT. Thus, assuming an optimized implementa-
tion of the latter transform, the overhead of the recursion is minimal: O(log n)

20

recursive calls and O(log n) computations of twiddle factors. In practice, the
performance of the bidirectional FFT is essentially the same as that of the fully
forward or fully backward FFT.6

Details of Reed-Solomon encoding Our original interpolation problem takes
d + 1 evaluations of a degree-d polynomial p(F (i)) for 0 ≤ i ≤ d as input, and
must compute p(F (i)) for 0 ≤ i < m, where d and m are arbitrary (i.e., not
necessarily powers of 2). Let ℓ be minimal such that d < 2ℓ. Run the bidi-
rectional FFT algorithm with n = 2ℓ and k = d + 1, assuming that the first k
coefficients are unknown and the remaining are zero. The bidirectional FFT
produces the first missing (n− k) evaluations, as well as the full array of k co-
efficients. Then the forward FFT can be run on as many cosets as needed to
produce m evaluations.

3.3 Reduction of the Ligero proof size

Soundness requires using large fields such as GF(2128). We implement GF(2128)
as GF(2)[x]/(Q(x)) where Q(x) = x128 + x7 + x2 + x + 1. With this choice
of Q(x), x is a generator of the multiplicative group of the field.

Almost all messages in our system consist of witness bits in {0, 1} that are
packed into arrays of size less than 214. Recalling Reed-Solomon encoding from
Section 3.2, if the message is an array of elements in some subfield of GF(2128),
and if the evaluation points are also elements in the same subfield, then the
entire codeword consists of subfield elements and it can be represented com-
pactly. In order to ensure that all evaluation points are in the subfield, it suffices
to choose βi as a basis of the subfield rather than the entire field.

Consequently, we choose GF(216) as the subfield of GF(2128), with g =

x(2
128−1)/(216−1) as the generator of GF(216), and βi = gi for 0 ≤ i < 16 as the

basis of the subfield. This allows us to encode elements in our commitment
scheme with 16-bits instead of 128. Whenever we have a choice, we inject
witness bits and small integers into the subfield via Equation (3).

Because we do not represent subfields explicitly in the field representa-
tion, we have the problem of determining whether a general field element u ∈
GF(2)[x]/(Q(x)) belongs to the subfield, and if so, to determine u’s represen-
tation u = ∑0≤i<16 uiβi in terms of the basis βi.

We solve this problem via standard Gaussian elimination. We view ele-
ments of GF(2128) as row vectors of 128 elements of GF(2) with respect to the
monomial basis xj, a convention that allows two row vectors to be added via a
single 128-bit xor instruction. We then form a matrix B whose i-th row consists
of the row vector βi. With these conventions, we need to solve the rectangu-
lar system xB = u for x, which we do via preliminary LU factorization that
reduces B to row-echelon form, followed by standard solution of triangular
systems. The solution costs O(n) row operations for n = 16, which is efficient

6With some care, the recursion can be removed entirely, but we found the recursion-free algo-
rithm needlessly confusing.

21

since row operations take a single wide xor instruction. In our system, the time
spent on projections onto the subfield is negligible.

In our current implementation, the subfield optimization only reduces proof
size, specifically during I/O time to serialize and deserialize field elements. We
perform all arithmetic operations in the full field. Diamond and Posen [DP24]
argue for a tower representation of the field which makes subfields explicit,
and which can exploit subfield arithmetic when possible. We leave a compari-
son of the two strategies for future work.

3.4 Input consistency for circuits over different Fields

The round-by-round soundness property requires that the sumcheck and ver-
ify protocols use a field of size at least 2128. Ligero commitments require a
subfield of size at least O(

√
|(x, w)|), where (x, w) is the size of the input to the

circuit C. Thus, it is usually most efficient to run sumcheck over a field exten-
sion of a sufficiently large base field. However, the ECDSA circuit imposes a
different constraint: namely that efficiently verifying elliptic curve operations
over curve P256 requires the circuit to be defined over a specific 256-bit field.

Consider the theorem statement (e, pk) which verifies that there exists a
message m and signature values (r, s) such that e = SHA256(m), and (r, s) is a
signature on e under public key pk. A single circuit that verifies this statement
over Fp256 incurs the overhead of verifying the sha256 hash of m over a larger
prime field than is necessary for soundness. Similarly, a circuit that verifies the
full statement over F2128 incurs the overhead of simulating the arithmetic for
the elliptic curve, which incurs ≈ 100x overhead compared to the native field.

A natural approach for higher efficiency is to perform the ECDSA verifica-
tion of instance (e, pk) in the optimal Fp256 field, and perform the SHA verifi-
cation of the instance (e, m) over the optimal binary field. The concern is that a
cheating prover may use 2 inconsistent values of e in the 2 different circuits in
two different fields. In this section, we describe a technique to ensure consis-
tency of inputs when the verification of the theorem occurs using two or more
proof fields, or more generally, two or more proof systems.

Our solution to ensure input consistency is to augment each circuit in the
two fields with a message authentication code (MAC) verification for the com-
mon input e. We use the information-theoretic MACa,b(x) = ax + b where the
arithmetic is performed over F2128 . Note that in the ECDSA circuit, this re-
quires simulating the arithmetic of F2128 over the prime field Fp256. For small
inputs, this computation incurs little overhead. At a high level, each circuit is
augmented to take as a public input me = MACk(e), and as a private input,
the key k = (a, b), and each circuit internally computes the MAC on e and
compares it with the public input.

A secondary issue relates to how the key k is chosen. Allowing the veri-
fier to select k may break the zero-knowledge property; allowing the prover
to select k breaks the soundness, since the prover can intentionally select the a
key that allows two different values of e to have the same MAC value. In our

22

scheme, this key is jointly sampled by the Prover and Verifier. Specifically, the
Prover first commits to its share kp = (ap, bp) as well as the secret input e. The
verifier next randomly samples kv and sends it to the Prover in the clear. The
Prover then computes the key k = kp + kv, and then uses k to compute the mac
on the shared input e, and then sends the MAC value me to the verifier. The
verifier uses me as a public input to both circuit Ch and circuit Csig. Both of
these circuits include a check to verify that me = MAC(e).

Two-fields ZK protocol (P2, V2):Protocol 3.1. Two-fields ZK protocol (P2, V2)

Let circuit C1(x1, w1, w) be defined over field F1 and C2(x2, w2, w) defined
over F2, and let w ∈ {0, 1}c be the common input to both that is embedded
into the respective Fi in the natural way, and x1, w1 ∈ F∗1 and x2, w2 ∈ F∗2 .
Both parties hold (x1, x2), and the prover additionally holds (w1, w2, w).

• Define circuits Ĉi((xi, m, kv), (wi, w, kp)) where kp, kv ∈ {0, 1}256 as
follows:

— Assert Ci(xi, wi, w) = 0

— Assert MACk(w) = m where k = kp ⊕ kv with all computation
performed in GF(2128).

• P, V run Protocol 2.5 on circuit Ĉ1, Ĉ2 in parallel, except with the
following change to step 3:

3. P samples kp ← GF(2128)2 and then computes

comi ← LigeroCommit((wi, w, kp, padi), Fi)

and sends to V.

(a) V samples kv ← GF(2128)2 and sends to P.
(b) P computes m← MACkv⊕kp(w) and sends to V.

Theorem 3.2. If C1 and C2 are depth-d and width-w circuits over fields F1 and F2,
and if MACk is an information-theoretic message authentication code with statisti-
cal security λs, if Protocol 2.5 is a zero-knowledge protocol with adaptive knowledge
soundness error η(|C1|, |C2|), then protocol 3.1 is a zero-knowlege protocol with com-
pleteness and knowledge soundness error O(η(|C1|, |C2|) + λs).

Proof. (Sketch) The modified protocol is essentially a parallel composition of
Protocol 2.5. To construct a knowledge-soundness extractor algorithm for this
composed protocol, run the extractor for C1 and for C2 sequentially. If either
fails, then the composed protocol extractor fails. Suppose the first extractor
outputs (x1, w1, w, pad1) and the second outputs (x2, w2, w′, pad2). If w ̸= w1,
then the composed extractor fails. Otherwise, output (x1, x2, w1, w2) and halt.

By a standard union bound argument over the failure probability of the in-
dividual extractors, as well as the statistical soundness parameter of the MAC,

23

the combined extractor succeeds with all but negigible probability. Further-
more, the running time of the composed extractor is essentially the sum of the
running times for the individual extractors, and thus polynomial-time in the
running time of a malicious prover oracle.

To argue zero-knowledge, the simulator randomly samples m and runs the
piece-wise simulators for C1, C2.

4 Circuit design

4.1 ECDSA Signature Verification

This section describes the construction of an arithmetic circuit that verifies the
existence of an ECDSA signature under public key (pkx, pky) for the hashed
message e = H(m). Following the Sec-1 [Cer09] specification, which is identi-
cal to the ANSI X9.62.2005 standard, an ECDSA signature verification proceeds
as follows:

Algorithm 3 ECDSA-Verify(Q, H(m), r, s) [Cer09]
1: Derive integer e from H(m).
2: Verify that r, s ∈ [1, q− 1].
3: Compute u1 = es−1 mod q and u2 = rs−1 mod q.
4: Compute R = (rx, ry) = G · u1 + Q · u2 and verify R ̸= id.
5: Verify that r = (rx mod q).

Several of these steps occur over the integers or in the field Fq, whereas our
checks must be performed in the field Fp. Towards this goal, the verification
circuit defined in Alg 4 succeeds on an input x only if an easily computable
tuple t(x) induces Alg. 3 to succeed. Furthermore, the circuit is almost perfectly
complete, with only a handful of cases that do not pass our checks but do pass
the official spec—this is acceptable in all applications that we consider, even
when malicious signers are considered.

Algorithm 4 Verification Circuit V(Q, H(m), r, s, ry)

1: Derive integer e from H(m).
2: Verify that r, s ∈ [1, q− 1]
3: Verify that Q, R = (r, ry) ∈ E and R ̸= id.
4: Verify id = G · e + Q · r− R · s

The main difference in the two procedures is that the later avoids compu-
tations of inverses modulo q by performing a multi-scalar exponentiation in
the group and performing additional checks to ensure that points are on the
elliptic curve group.

24

Theorem 4.1. If V(Q, H(m), r, s, ry) succeeds where r, s ∈ [0, 2⌈log p⌉ − 1] and ry ∈
Fp, then ECDSA(Q, H(m), r, s) succeeds.

Verifying a multi-scalar multiplication The most expensive step to verify in
Alg. 4 is step 4, which verifies that G · e + Q · r − R · s is equal to the identity
element. By providing the intermediate values as witnesses, we produce a
low-depth circuit that computes the left-hand side using a simple extension of
the folklore Shamir trick. Specifically, the computation consists of a standard
double-and-add loop over the bits of the exponents. In the ith iteration, the
bits ei, ri, si are used to index a table that contains eight combinations of the
G, Q, and R elements. The current accumulator is doubled and the result of the
table lookup is added. As described, the input of the i + 1st iteration would
depend on the output of the ith iteration, resulting in a deep circuit. Instead,
we provide as witnesses the outputs of each iteration, and compare the output
of the basic double-and-add block to the input for the next block. To reduce the
depth, the 7 non-zero table values are given as witnesses and verified by the
circuit. A full accounting for the resulting circuit size for ECDSA verification is
given in Table 1.

DEPTH QUADS TERMS INPUTS

Multi-exponentiation 7 19,534 37,550 1,038
Range check + rest 12 5,475 10,569 1,038

Total 12 23,453 47,598 1,038

Table 1: Circuit size and depth for ECDSA verification. The circuit compiler
exploits shared terms and thus the total is slightly less than the sum.

4.2 SHA-256

The SHA-256 hash function consists of several iterations of a compression func-
tion which is comprised of the Ch, Maj, Σ0, and Σ1 functions and finally addi-
tion modulo 232. A large n-bit message m is first broken into 64-byte blocks; the
basic block function is applied to the ith block to produce a compressed 32-byte
output, which is then combined with the i + 1st block. The final message block
must be at most 55 bytes, as it is padded with zeros and then augmented by an
8-byte encoding of n.

To verify a message of at most 64 ∗ k− 9 bytes, our circuit must evaluate k
SHA-256 basic block functions. A basic block takes as input eight 32-bit state
values, designated by letters A–H, 64 bytes of the message, and produces a

25

new state value. The block uses the Ch, Maj, Σ0, and Σ1 functions:

Ch(E, F, G) = (E ∧ F)⊕ (E ∧ ¬G)

Maj(A, B, C) = (A ∧ B)⊕ (A ∧ C)⊕ (B ∧ C)
Σ0(A) = (A ≫ 2)⊕ (A ≫ 13)⊕ (A ≫ 22)
Σ1(E) = (E ≫ 6)⊕ (E ≫ 11)⊕ (E ≫ 25)

The state values B, C, D, F, G, H are assigned the values of A, B, C, E, F respec-
tively. The values A, E are updated as

A = Wi ⊞ Ki ⊞ H ⊞ Ch(E, F, G)⊞ Σ1(E)⊞ Maj(A, B, C)⊞ Σ0(A)

E = Wi ⊞ Ki ⊞ H ⊞ Ch(E, F, G)⊞ Σ1(E)⊞ Maj(A, B, C)⊞ D

where ⊞ represents addition modulo 232.

Verifying Modular Addition Verification of addition modulo 232 can be per-
formed by some form of Boolean adder circuit, either ripple-carry or parallel-
prefix. In fact, verification of the addition A ⊞ B = C can be performed by
a constant-depth circuit if all of A, B. and C are provided as inputs, by us-
ing the fact that the i-th carry bit can be inferred from the equation C[i] =
A[i]⊕ B[i]⊕ carry[i], and thus one only needs to verify that the carry has been
propagated correctly, as opposed to actually propagating the carry.

At least in certain fields, however, performing the addition using the native
field arithmetic yields a smaller circuit. We use two variants of this method in
our circuits. Both variants exploit the fact that we compute sums modulo 232

of a small number t of terms T[i], where concretely t ≤ 7.
If the characteristic of the field is greater than 232 · t, then the addition of

t terms in the field does not overflow. Let s = ∑0≤i<t T[i] in the field arithmetic,
and let r be the claimed value of the sum modulo 232, interpreted as a field
element. Let z = s− r in the field. Then z = 0 (mod 232) iff ∏0≤i<t(z− 232i) =
0, where the latter check occurs by means of a tree of multiplications in the
field.

The previous verification method does not work on fields of small charac-
teristic, such as GF(2128). In this case, we apply the previous method to the
multiplicative group of the field instead of the additive group. Let g be a gen-
erator of the multiplicative group, and assume that order(g) > 232t. Then
gs = ∏0≤i<t gT[i] assumes one of t possible values gr+232i for 0 ≤ i < t, which
can be compared against via a tree of multiplications in the field, as before.7

Table 2 reports the sizes of instantiations of our SHA256 circuits in different
fields and using different packing parameters. To reduce the number of inputs,
and thus the siez of the commitment, we can pack several witnesses that are
bits into a single witness, and then apply a simple circuit to extract the individ-
ual bits from the witness.

7In the special case where the field has a (multiplicative) root of unity of order 232, we can
choose g to be such root, and obtain modulo-232 arithmetic “for free”. This special case does not
apply to the fields used by our circuits.

26

PACKING DEPTH QUADS TERMS INPUTS

FP256 - 7 37,974 167,348 6,657
2 9 65,690 215,504 3,585
3 10 76,287 239,919 2,625
4 11 85,732 273,556 2,049

F2128 - 13 53,435 87,642 6,657
2 14 65,727 150,991 3,585
3 15 73,818 166,494 2,625
4 16 79,607 177,959 2,049

Table 2: Circuit size and depth for 1 SHA-256 block over 2 different fields. The
packing column indicates how many bits are packed into a witness (and then
extracted in the circuit).

4.3 CBOR parsing

MDOC credentials are encoded in the Concise Binary Object Representation
(CBOR) [BH20] format. For the purposes of this paper8, a CBOR datum is
either an integer (signed or unsigned), a boolean, an array of bytes, an array of
CBOR datums, or a map from datum to datum.

CBOR is intended to minimize both the size of the encoded document and
the size of the parser. To this end, the first byte of the encoding of a datum
consists of a three-bit tag, denoting the various types (integer, array, map, etc.),
and a five-bit count. Small integers are encoded inline in the count. For larger
integers, the count encodes the size of the integer, which is then stored in sub-
sequent bytes of the document. If the tag indicates that the datum is an array
or a map, the count similarly encodes the number of elements in the array or
the number of pairs in the map, with the actual contents stored in subsequent
bytes in the document.

Let in[i] be the i-th byte of input, where in[i] is itself an array of eight input
wires each carrying a bit. In the context of our proof system, “parsing CBOR”
does not mean converting in[] into an abstract syntax tree. Instead, the parsing
circuit is expected to assert the truth of statements such as the following:

The top-level document is a map. The top-level map contains a
pair whose key is the string valueDigests and whose value is an-
other map. The valueDigests map contains a pair whose key is the
string org.iso.18013.5.1 and whose value is another map. The
org.iso.18013.5.1 map contains a pair whose key is the unsigned
number 4 and whose value is a byte array of length 32, which a
SHA256 hash of . . .

To design circuits to make such assertions, our strategy is to provide as
witnesses to the circuit the positions in the input of the relevant datums. While

8CBOR supports a few more cases such as floating-point numbers, which we ignore.

27

leaf comparisons such as “the key at position i is the string valueDigests”
are relatively straightforward, structural assertions “the pair at position i is an
entry of the map that starts at position j“ require the circuit to reconstruct the
tree structure of the document. In the remainder of this section, we focus on
techniques for computing such reconstruction.

In the “combinational” arithmetic circuit model, the whole input is given
to a fixed-size circuit, and thus the size of documents are limited to N bytes
for some constant N known at circuit-generation time. Similarly, because the
model does not contain a stack to support arbitrarily nested arrays and maps,
we restrict the parser to L nesting levels, for some constant L.

Toy CBOR To illustrate the main problems and solutions in CBOR parsing,
we focus our discussion on parsing a context-free CBOR-like toy language de-
fined below.

A toy-CBOR document consists of a sequence of bytes in[i] that are grouped
into tokens. The token starting at position i is defined as follows.

Case 0x00 ≤ in[i] < 0x10. The token is Int(in[i]), that is, a four-bit integer.
The next token starts at position i + 1.

Case in[i] = 0x10. The token is Int(in[i+ 1]), that is, the eight-bit integer stored
at in[i + 1]. The next token starts at position i + 2.

Case 0x20 ≤ in[i] < 0x30. The token is Array(in[i]). The next token starts at
position i + 1.

Case in[i] = 0x30. The token is Array(in[i + 1]). The next token starts at posi-
tion i + 2.

Otherwise: Error.

In addition to the lexical structure of tokens, toy CBOR has a context-free
syntactic structure which we informally define by giving a recursive-descent
parser for it. Specifically, the parser reads the first token from the stream, con-
suming it. If the token is Int(k), the parser returns the integer k. Otherwise
the token is Array(k), in which case the parser calls itself recursively k times,
returning an array of length k containing the results of the recursive calls.

Full CBOR has both a richer token structure, including variable-length in-
tegers and strings, and a richer syntactic structure, including both arrays and
maps, but the main difficulties already arise in our Toy version.

Lexer The first step is to identify token boundaries. Given input in of length N,
Algorithm 5 produces an array header such that header[i] is true if and only if a
token starts a position i. Thus, assertions of the form “an array starts at posi-
tion i” must assert header[i] first.

We omit procedure DECODE in Algorithm 5 because it is complex but not
insightful. One should think of it as combinational logic which, for each input

28

Algorithm 5 Sequential algorithm for tokenization.
1: procedure TOKENIZE(N, in[])
2: ▷ Procedure DECODE (not shown) produces an array length where length[i]

is the length in bytes of the token that starts at position in[i]. ◁
3: (token, length)← DECODE(N, in)
4: ▷ Now set header[i]← true if and only if a token actually starts a position i.

◁
5: header[0]← true
6: slen[0]← length[0]
7: for i = 1 to N − 1 do
8: header[i]← ((slen[i− 1]− 1) = 0)
9: if header[i] then

10: slen[i]← length[i]
11: else
12: slen[i]← (slen[i− 1]− 1)
13: return (token, header)

position i, decodes the bits of in[i] into a set of signals that indicate whether the
token is an integer or an array and computes a field value length[i] that repre-
sents the length of the token so that the next token starts at position i+ length[i].
For toy CBOR, length[i] ∈ {1, 2} can be computed solely from in[i], whereas the
real CBOR requires peeking at in[i + 1] and possibly subsequent input bytes.
Being actually a circuit and not a procedure, DECODE speculatively computes
length[i] for all positions i, irrespective of whether or not a token actually starts
at position i. In the actual implementation, DECODE must also cope with in-
valid tokens and output a validity status, and we must assert that header[i]
implies that the token at position i is valid.

Reducing the depth of lexing Given that an upper bound to N is known at
circuit-generation time, one could unroll the loop in Algorithm 5 and generate
a circuit. However, such a circuit would be of depth O(N), which is ineffi-
cient for a sumcheck-based prover. We now use well-known parallel-prefix
techniques to reduce the depth of the circuit.

If header[i] were always false in line 9 of Algorithm 5 (which is not the case),
then the update equation for slen would be slen[i] = slen[i− 1] + A[i] for A[i] =
−1, which is an instance of a prefix sum or scan. Because slen[i] = ∑j≤i A[j], each
slen[i] can be computed in depth O(log n) simply by building an independent
tree of adders for each i. Various algorithms, collectively called parallel-prefix,
allow computation in depth O(log n) of slen[i] for all i while maximizing reuse
of common subexpressions. See Blelloch [Ble90] and references therein for de-
tails.

The full update equation

slen[i] = if header[i] then length[i] else slen[i− 1] + A[i] , (8)

29

again for A[i] = −1, has the form of a segmented scan. Logarithmic-depth cir-
cuits exist that can compute slen[.] given header[.], length[.], and A[.] = −1 as
inputs. See [Ble90, Section 1.5] for a general technique to transform segmented
scans into unsegmented scans.

The segmented scan technique would solve our circuit-depth problem, ex-
cept that segmented scans require the segment marker header[.] to be provided
as input to the circuit, whereas in our case, header[i] is computed as a func-
tion of slen[i− 1] in line 8. To work around this problem, we provide booleans
header[i] as witnesses, one per byte input position, and use Algorithm 6 as our
starting point instead of Algorithm 5.

Algorithm 6 Algorithm for tokenization with witnesses
1: procedure TOKENIZEW(N, in[], header[])
2: (token, length)← DECODE(N, in)
3: slen[0]← length[0]
4: for i = 1 to N − 1 do
5: if header[i] then
6: slen[i]← length[i]
7: else
8: slen[i]← (slen[i− 1]− 1)
9: assert(header[0])

10: for i = 1 to N − 1 do
11: assert(header[i] ⇐⇒ (slen[i− 1]− 1) = 0)
12: return (token, header)

It is not immediately obvious that Algorithm 6 and Algorithm 5 are equiv-
alent, because Algorithm 6 computes slen[.] from an untrusted witness header[.]
and then it asserts that header[.] is correctly computed from slen[.], whereas Al-
gorithm 5 interleaves the computation of slen[.] and header[.]. The correctness
of Algorithm 6 can be proven by induction on the loop variable i, in essence
mimicking the control flow of Algorithm 5. If the assertion in line 9 holds, then
slen[0] and header[0] are both correct. If the state variables are correct for (i− 1)
and the assertion in line 11 holds, then header[i] is correct, and thus slen[i] is
correct as well because the update of slen[i] is the same for both algorithms.

Of the many concrete parallel-prefix algorithms, we use the Sklansky [Skl60]
form (see Algorithm 7), which has O(n log n) gates and depth lg n. The Brent-
Kung form [BK82], among others, requires only O(n) gates, but it has twice
the depth as the Sklansky algorithm. In the layered circuits required by sum-
check, values need to be propagated across each layer, and thus a lower depth
is preferable even at the cost of extra gates.

Reconstruction of tree structure A toy-CBOR document ultimately repre-
sents a tree. One can view each token in the document as a tree node: A token
Int(k) represents a leaf, and a token Array(k) represents an inner node with k
children. On this tree, we define the tree address of a node as follows. The root

30

Algorithm 7 Sklansky [Skl60] parallel prefix algorithm
procedure SCAN-ADD(i0, i1, B[])

▷ In-place, set Bout[i0] = Bin[i0] and Bout[i] = Bin[i] + Bout[i− 1] for i0 <
i < i1. ◁

if i1 − i0 > 1 then
im ← i0 + ⌊(i1 − i0)/2⌋
SCAN-ADD(i0, im, B)
SCAN-ADD(im, i1, B)
for all i : im ≤ i < i1 do

B[i]← B[i] + B[im − 1]

Algorithm 8 Sequential algorithm for updating tree addresses.
procedure UPDATE-COUNTERS(i, counters[][], token[], header[])

▷ Given the tree address counters[i] and the output (token, header) of the tok-
enizer, compute counters[i + 1]. ◁

counters[i + 1]← counters[i]
if header[i] then

Let l[i] ∈ {l ∈ Nat : counters[i][l] ̸= 0∧ ∀m > l : counters[i][m] = 0}
counters[i + 1][l[i]]← counters[i][l[i]]− 1
if token[i] = Array(k) then

counters[i + 1][l[i] + 1]← k

has depth l = 0, and its tree address is the array [1]. The tree address of a
node at depth (l + 1) is [p[0], p[1], . . . , (p[l]− 1), j], where p is the tree address
of the parent, and j is child number. We use peculiar conventions that facilitate
computation of tree addresses in a circuit. First, note the use of (p[l]− 1) in the
tree address of the child, as opposed to the perhaps more natural p[l]. Second,
we number children in decreasing order left to right. The right-most child (the
one parsed last) has j = 1, and the child number of a left sibling is one plus the
child number of its right sibling. With these conventions, the last element in
the tree address is always nonzero.

While the tree address is a variable-length array, in a circuit we represent
it as an array of wires of fixed size L, where L is the maximum nesting depth
supported by the circuit, implicitly padded with zeroes. Thus, in the actual
circuit, all tree addresses are stored in an array counters[i][l] of wires, indexed
by position and nesting depth.

Assuming we have the tree address of every position i that starts a to-
ken (i.e., where header[i] is true), we can make assertions such as “this node
at depth (l + 1) is a child of that node at depth l”, by comparing prefixes of
the tree addresses up to l. Therefore, having the tree address available allows
us to generate circuits that check assertions about the syntactic structure of the
document.

The only remaining problem is now to design a circuit that computes the

31

MSG (B) DEPTH QUADS TERMS INPUTS

FP256

247 28 115,602 226,557 2,227
503 30 253,340 545,409 4,531

1079 34 616,331 1,559,052 9,715
1591 34 895,257 2,702,352 14,323
2231 36 1,343,877 4,588,287 20,083
2551 36 1,526,867 5,651,883 22,963

Table 3: Circuit size and depth for CBOR parsing messages of varying size over
a prime field. The message sizes correspond to messages that can be hashed
with SHA256 using an integral number of blocks.

tree address. While we defined tree addresses for tokens, or equivalently, for
positions i such that header[i] holds, in a circuit it is more convenient to compute
counters[i] for every i. If header[i] is false, we define counters[i] = counters[i− 1],
which is well-defined as long as header[0] is true.

We proceed as per the case of the tokenizer by first giving a sequential algo-
rithm for computing tree addresses, and then converting it into a circuit. Our
starting point is Algorithm 8, which computes counters[i + 1] given counters[i]
and the output of the tokenizer. If header[i] is false, the procedure sets counters[i]←
counters[i − 1], as we postulated. Otherwise, let l (explicitly called l[i] in the
code) be the highest depth such that counters[i][l] ̸= 0, which is the depth of
the tree node by definition of tree address. Thus, counters[i + 1][l] gets the tree
address counters[i][l] of its left sibling minus one, as per our conventions on the
numbering of children. If the token at position i starts an array of length k, we
extend the tree address by one depth counters[i + 1][l + 1] ← k, where, again
by convention, k is the child number of the leftmost child in the array (the first
array element).

As in the case of the tokenizer, one could in principle unroll the circuit
for all i, obtaining a deep circuit that computes all counters[i] starting with
counters[0] = [1, 0, 0, . . .]. To reduce the depth, we provide l[i] as witness to
break the dependencies, at which point the computation of counters[i][l] is re-
duced to L segmented scan operations, one per depth l, plus assertions that the
witnesses are correct.

Circuit sizes Table 3 presents the cost of parsing CBOR documents of vary-
ing sizes corresponding to the message size that can be hashed using n SHA256
blocks. These sizes refer to a parser for the full CBOR language, not the toy
CBOR that we use for illustration purposes. The table refers to one point in
design space, but other tradeoffs are possible. For example, in our implemen-
tation, the input to the circuit consists of nine field elements per input byte.
Eight field elements encode the input to be hashed, one element per bit, and
the ninth field element encodes the header and l[i] witnesses in a packed format.
One could trade input size for circuit size depending on application needs.

32

5 Evaluation

We implemented our ZK protocol in roughly 25,500 lines of C++ code of which
roughly 8,600 lines correspond to unit tests or benchmarks. Our implementa-
tion uses only a single thread; our reported wall-clock timings thus reflect the
overall computation performed.

In this section, we report micro-benchmarks and end-to-end benchmarks
for several applications involving anonymous credential operations. We col-
lected these performance numbers using the C++ benchmark package on both
an x86 64 machine from the Emerald Rapids family and a Pixel Pro 6 phone.
The x86 64 platform is a c4-highcpu-8 instance running in the central1-c

availability zone in Google Cloud. This machine has four Intel Xeon PLAT-
INUM 8581C CPU (cpu family 6, model 207) cores running at 2.30GHz with
16gb of RAM. The Pixel Pro 6 platform contains a Google Tensor processor
consisting of 8 cores and 12 GB of RAM. The 8 cores consists of two 2.80 GHz
Cortex-X1, two 2.25 GHz Cortex-A76 and four 1.80 GHz Cortex-A55. Our
benchmarks are executed on the 2.80 Ghz Cortex-X1 processor. We use SHA256
to implement the collision-resistant hash function, and the random oracle, re-
sulting in a 128-bit computational security parameter. For our Ligero commit-
ment, we open 128 columns, which corresponds to roughly 86 bits of statistical
security. These choices result in a proof size for our main application that fits
within the Android framework’s Intent buffers for interprocess communication.
When collecting timings on the phone, benchmarks are run on the performance
core and restricted to 1s runs to reduce measurement errors arising from ther-
mal throttling.

We store prime-field elements in Montgomery form, and we implement
field multiplication on top of the 64x64-bit scalar multiplier (that is, we don’t
use SIMD instructions). For GF(2128) we use 128-bit SIMD registers on both
arm64 and x86 64, and implement multiplication on top of the 64x64-bit carry-
less multiplier, which is implemented by x86 64 and by the arm64 AES instruc-
tion set. We currently do not use AVX256, AVX512, or GFNI.

5.1 Algebraic primitives

We begin by presenting low-level benchmarks for our algebraic primitives. The
first benchmark in Table 4 shows the performance of our NTT implementation
across different fields and processors. The Fp128 and Fp642 fields both have at
least 232 roots of unity. As noted before, FP256 does not have roots of unity, and
therefore we must use a quadratic extension to introduce them for computing
the NTT. As a result, we see roughly 4-5x penalty in performance in this field
versus the 128-bit prime fields.

Reed-Solomon Encoding Table 5 reports on Reed-Solomon encoding bench-
marks because this step is a bottleneck in the Ligero commitment. Each test in
this section measures the time to encode one array of size n into a codeword of

33

Time (in ms)
212 214 216 218 220 222

x86 64

GF(2128) 0.042 0.195 0.883 5.17 26.7 134
Fp64 0.058 0.301 1.55 7.29 31.2 131
Fp642 0.175 0.860 3.89 17.2 77.0 353
Fp128 0.154 0.746 3.61 16.1 70.8 320
Fp256 1.41 6.70 32.7 146 660 2970

Pixel 6 Pro

GF(2128) 0.095 0.480 2.29 9.98 49.6 224
Fp64 0.086 0.404 2.12 9.19 42.8 201
Fp642 0.248 1.19 5.91 28.2 130 566
Fp128 0.231 1.12 5.53 26.8 123 538
Fp256 1.84 8.82 43.9 197 882 3870

Table 4: NTT benchmarks over different fields. The x86 processor is between 1–
2x faster than the Pixel mobile device processor. In all cases, the GF(2128) field
is the most performant sound field by a factor of at least 2x. The Fp64, while
not sound, is presented to show the overhead for the quadratic field extension.

size 4n (i.e., rate 1/4). Recall from §3 that our Reed-Solomon encoding, or poly-
nomial interpolation algorithm for prime fields relies on a convolution, which
itself requires 2 NTTs and multiplication by pre-computed constants. In con-
strast, the encoding in GF(2128) field uses 1 bidirectional FFT and 4 FFTs of the
same size as the input. An interesting measurement here reports a ≈3x over-
head for encoding over the quadratic single-precision field Fp642 compared to
Fp64.

Time (in ms)
210 212 214 216 218 220

x86 64

GF(2128) 0.037 0.175 0.794 3.75 21.5 113
Fp64 0.125 0.647 3.24 15.2 65.4 278
Fp642 0.366 1.83 8.40 36.3 166 757
Fp128 0.395 1.86 8.81 38.8 170 758
FP256 3.15 14.7 71.2 316 1420 6360

Pixel 6 Pro

GF(2128) 0.085 0.408 2.10 9.81 45.5 219
Fp64 0.194 0.983 5.05 22.2 101.4 453
Fp642 0.560 2.79 13.6 63.6 289 1250
Fp128 0.582 2.94 14.3 66.7 298 1280
FP256 4.16 19.6 97.2 432 1910 8510

Table 5: Reed-Solomon encoding performance over several fields.

34

Comparison to Linear-time codes Golovnev et. al [GLS+21] and Xie, Zhang,
and Song [XZS22] propose the use of linear-time encodable error-correcting
codes to construct a polynomial commitment scheme. It is not immediately
clear how to augment either to support ZK verification of linear and quadratic
constraints (instead, both of those schemes were designed to answer the final
query in a sumcheck-based verifiable computation protocol). Moreover, such
codes have poor distance properties, and thus require many queries to the or-
acle, resulting in proof sizes that are an order of magnitude larger and thus
impractical for our application. For example, the Brakedown scheme is de-
scribed with distance 1/20 and rate 3/5, and therefore requires at least 6500
queries.

We also show that known linear-time codes are slower than Reed-Solomon
implementation for the relevant parameter regime. In Table 6, we benchmark
the Brakedown implementation of linear-time encodable codes over 128-bit
fields. Because that scheme requires at least 6500 queries to the codeword, their
benchmark begins at 214. For our parameter regimes, the coefficient for their
linear-time encoding scheme seems to be larger than our quasi-linear Reed-
Solomon encoding in GF(2128), as our implementation begins at +5x faster and
remains 3x faster at n = 220.

Time (in ms) Queries
210 212 214 216 218 220 needed

Brakedown x86 64 - - 5.00 19.7 77.7 360 6593
Pixel 6 Pro 6.09 25.3 98.6 466 6593

Table 6: Encoding time for Linear-time encodable codes over a 128-bit field.
These codes require at least 6500 queries in an IOP, and thus, we benchmark
them starting at n = 214. These codes are slightly slower than our RS Fp64 code
and substantially slower than our GF(2128) code.

5.2 SHA256 hash verification

Many ZK proof systems publish a benchmark for proving knowledge of a
SHA256 pre-image of a value e. We design a circuit parameterized by the num-
ber of block operations required to hash a message. Our SHA256n(e, m) circuit
verifies that the private message m can be hashed using at most n SHA256 block
operations (i.e., is at most n ∗ 64− 9 bytes long) and hashes to the public value
e. This circuit corresponds to the one described in §4.2 with bit-packing 2. Our
timing results for 1–32 blocks appear in Table 7. Table 8 reports commitment
parameters required by our proof for one block of SHA256.

35

OurZK Protocol, Time (ms)
n = 1 2 4 8 16 32

x86 64 Verify transcript 6.07 12.1 24.3 49.8 106 228
Total ZK Prover 10.7 19.8 35.2 67.9 140 286

Pixel Pro 6 Verify transcript 11.3 23.5 48.9 100.1 206 436
Total ZK Prover 19.2 37.0 68.9 132 257 517

Table 7: Timing benchmark for our ZK proof of knowledge of an n-block
pre-image to the SHA256 function. The circuit used is described in §4.2 over
GF(2128). The sumcheck row reports the time required to create the verify
transcript for the circuit. The Total row reports the total prover time (including
sumcheck) to produce the proof.

SHA2561 |w| Witness/row Encoded row size Total rows

Fp 4,001 681 213 11
GF(2128) 4,228 681 213 12

Table 8: Commitment size parameters for 1 block of our SHA256-preimage
proof in different fields.

5.2.1 Comparison with Ligero

A natural alternative to our system is to use Ligero to verify the same function.
As mentioned in the introduction, Ligero requires committing to an internal
tableau of witnesses and committing 3 elements for every quadratic constraint.
As a result, the size of the Ligero commitment for a given circuit C is O(|C|),
and in practice, many times larger than the corresponding verify transcript for
verifying C. In this section, we provide concrete evidence for this claim with
respect to the SHA256 circuit.

One issue is that the quad-form circuits that we generate for our protocol
are optimized to reduce the number of quads whereas Ligero performs bet-
ter with a circuit that optimizes for the total number of quadratic constraints.
Thus, in order to provide a fair comparison, we used the circom system to
generate an R1CS instance for our family of SHA256n circuits described above.
Recall that an R1CS instance consists of a witness tableau w and a list of con-
straints in the form of A · B− C = 0 where A, B, C are linear combinations of
a witness vector w. Smaller R1CS instances naturally require fewer multiplica-
tions to verify. We converted this R1CS into Ligero constraints following the
description in their paper. Namely, for each A, B, C, we introduce new Ligero
witnesses αi, βi, κi respectively that are constrained to be equal to the linear
combination of the original witness w. We then introduce a new witness value
γi = αi · βi, and then add a linear constraint that verifies γi − κi = 0. In total,
we introduce 4 new witnesses, 4 linear constraints and 1 quadratic constraint

36

for each R1CS constraint. Many R1CS constraints have an empty C term, i.e.,
C = 0; in this case, a simple optimization removes the extra witness value and
the fourth linear constraint.

Altogether, we form a Ligero commitment using all of the base R1CS wit-
nesses plus the extra witnesses needed by Ligero to check R1CS. Table 9 reports
the both of these figures. In addition, each quadratic constraint on a witness
requires adding a copy of the two terms and their product as witnesses. All
of these witnesses are partitioned into rows of size w, with the additional con-
straint that the copies of the three witnesses for a quadratic constraint need
to be on separate rows at the same index, and can only include half as many
per row. Achieving ZK also requires reserving spots in each row for a ran-
dom pad, and adding 2 additional random rows. A number of additional con-
straints govern the size of w. For each Ligero commitment, we loop over all
feasible parameters, and chose a parameter set that minimizes the size of the
commitment. These optimal choices are also presented in Table 9. Notice, as
per Table 2, directly transforming our circuit into Ligero for n = 1 requires at
least 167,348 quadratic constraints (roughly 3 times larger than the R1CS).

SHA256n(·)
n = 1 2 4

R1CS Witnesses 29,853 60,381 121,437
Constraints 29,725 60,053 120,709

Ligero

Total Witnesses 129,500 261,484 525,452
Quadratic constraints 29,725 60,053 120,709

Witness/row for w 3,149 6,426 6,426
Quadratic copies/row 1,511 3,149 3,149
Encoded Row size 215 216 216

Number of rows 104 103 201

Table 9: Size of the Ligero instance for n blocks of SHA256 as derived from an
optimal R1CS expression of SHA256. To select the row size used by Ligero, we
test various power of 2 for the row to find the one which minimizes proof size.

Finally, we benchmark our implementation of Ligero on these instances
and report timings in Table 10. Note that the most expensive component of
Ligero is the commitment stage. For soundness, Ligero must use a 128-bit field
size, which can often be implemented using a degree-2 or degree-4 field exten-
sion of a smaller field. We have not fully optimized our underlying NTT for
Ligero, and therefore, we report benchmarks using a 64-bit prime. While this
parameter setting is not as sound as our own implementation, it demonstrates
that our system is at least roughly 20x faster for n = 1, 2, or 4 block messages,
thus supporting our introductory claim. To be sure, our numbers in Table 10
roughly match those presented by Wang, Hazay, and Venkitasubramaniam in
the optimized Ligetron [WHV24, Fig 6(a)] implementation. That system shows

37

roughly 250ms, 450ms, 750ms for n = 1, 2, 4 blocks respectively; however
their benchmark uses 4 threads on a 4-core machine with a 50-bit prime, and
higher statistical security parameter, so the comparison is not exact.

Time (ms)
n = 1 2 4

x86 64 Commit 222 384 736
Total ZK Prover 273 493 939

Overhead wrt this work 26x 25x 27x

[WHV24] 250 450 750

Pixel 6 Pro Commit 294 536 1022
Total ZK Prover 380 717 1370

Overhead wrt this work 20x 19x 20x

Table 10: Ligero ZK Prover time of our implementation for verifying the pre-
image of an n-block message under SHA256. The first line reports the time to
Commit to the witness tableau. This benchmark was run using the Fp64 field,
which is not sufficient for soundness, but yet represents a bound on Ligero
performance. Ligero is essentially 20x slower on x86 64 and Pixel platforms
due to the larger commitment that is required.

The ≈ 20x performance improvement of our system over pure-Ligero can
be partly explained by inspecting the witness size. As per table 8, for a single
SHA256 block, the full witness in our proof system contains roughly 9x fewer
rows (11 vs 104) with a block size that is 4x smaller, roughly reflecting a 36x
reduction in work to produce the commitment; however, our results use a 128-
bit field and thus incur a roughly 2x overhead with respect to Fp64 used in
Table 10.

5.2.2 Comparison with Binius

Diamond and Posen [DP23, DP24] implement a commitment scheme and a
verifiable computation protocol (i.e., the protocol is not zero-knowledge) in
the Binius [bin] system. They provide a SHA256 benchmark that verifies 32
independent applications of the SHA compression function; their x86 64 im-
plementation also exploits native gfni instructions which our system does not.
On x86 64, their benchmark, when run on a single core, runs in 498ms (versus
our verify which runs in 228ms), and on Pixel, their benchmark runs in 904ms
(versus our 436ms). Although their benchmark numbers are larger than ours
for a similar problem, the performance gap closes as n increases; their system
incorporates ideas that may also apply and speedup our implementation in
future work.

38

5.2.3 Comparison with other ZK systems

The STARK system is a ZK argument system that requires no trusted setup
parameters and also produces a smaller proof than other proof systems includ-
ing Ligero. However, the cost of the smaller proof, as established by many
published benchmarks in the literature [GLS+21] show that the STARK prover
time is larger than the Ligero prover. In future work, we aim to benchmark the
same SHA256 for Stark.

We do not benchmark the proof systems which require a trusted parameter
setup because they do not satisfy our deployment requirements. Nonetheless,
results from prior work establish that these systems tend to have prover algo-
rithms which require more work. In addition to the standard NTT on the size
of the circuit, they also require multi-scalar multiplication routines over elliptic
curve groups, which are generally costly.

5.3 ECDSA signature verification

Consider the ZK instance (e, pk) and corresponding protocol that verifies that
there exist (r, s) such that ecdsaVerify(pk, e, r, s) = 1. As described in §4.1, we
construct a circuit that requires 1085 witness values to complete the verification
in low-depth. Table 11 reports the basic ZK benchmarks for this problem. This
benchmark demonstrates that contrary to folklore, a zero knowledge proof of
possession of a signature for ECDSA—which requires roughly 60ms—is not a
practical bottleneck to building a credential system, and is within a small factor
of performance for a basic BBS+ proof of possesion of a signature as we show
below.

Time (ms)
n = 1 2 3

x86 64

Ligero commitment 38.7 51.0 60.8
Generating Verify transcript 13.5 26.5 38.6

Total ZK Prover 58.8 87.0 110

Total Verifier 6.09 11.0 14.5

Pixel Pro 6

Ligero commitment 51.0 67.2 80.0
Generating Verify transcript 20.3 40.1 58.4
Total ZK Prover 80.5 120.0 152.0

Total Verifier 8.50 16.2 21.2

Table 11: Timing benchmark for verification of an ECDSA signature. The cir-
cuit used here is described in §4.1 over field Fp256. The Total Prover time con-
sists of the Ligero commitment time, the time to produce the Verify transcript,
and other small steps.

39

Comparison to the BBS+ scheme To compare our results with BBS+, which
provides the fastest zero-knowledge proof of possesion of a signature in the
literature, we benchmarked the pairing crypto package [Pai24] configured
to use the BLS12-381 curve and SHA256 with signatures that included 100 at-
tributes and presentations that revealed 3 attributes. The criterion package
produced benchmark results. On x86 64, the BBS+ proof generation step re-
quired 10.2 ms and the verify step required 8 ms; our ECDSA proof generation
method is within ≈ 6x the performance. However, the BBS microbenchmark
does not account for additional tasks needed to perform a credential show op-
eration, such as verification that the certificate has not expired.

6 Applications

In this section, we apply our anonymous credential system to applications for
digital identity.

6.1 A simple anonymous credential

To illustrate how the components from our system can be used in an anony-
mous credential system, we designed a toy document format for credentials
that is based on the machine readable zone (MRZ) format used in passports.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

firstname

lastname

dob G age over x validFrom validUntil

dpkx

dpky

issuerid Attributes

Figure 2: A simple document format for a 183-byte credential.

In Fig 2, we describe a 183-byte credential that allows for at least 60 stan-
dard attributes to be encoded, in addition to a device public key for device-
bounded checks, and time values to indicate the validity period. Notably, this
format requires only 3 SHA256 blocks to hash, and it requires no parsing to
determine the byte-location of an attribute. For this credential, we develop a
simple benchmark to prove that the credential holder is older than 18 (which
amounts to checking the value of byte 74 in the format). See Algorithm 9 for
the specific theorem being proven.

The benchmark in table 12 shows that this toy format achieves performance
that is within a small factor of the time required to verify on BBS+ credential

40

Algorithm 9 Toy Credential Verification
Require: x = (pk, a, id, tr, now) and w = (MSO, pkdx, pkdy)

1: Verify the following constraints:

e1 = SHA256(MSO[0 : 183])
a = MSO[id]

(pkdx, pkdy) = MSO[96 : 160]

tstart = MSO[48 : 56]
tend = MSO[56 : 64]

tstart < tnow < tend

true = p256.verify((r1, s1), e1, PKI I)

true = p256.verify((r2, s2), H(tr||hdr), (pkdx, pkdy))

(without incorporating the time to format the BBS+ attributes or check creden-
tial validity).

DEPTH QUADS TERMS INPUTS

Toy Circuit 12 276,465 818,533 10,123

Prover Time (ms) Proof size (kb)

x86 332 291
Pixel Pro 6 470 291

Table 12: Toy credential benchmark over Fp256.

6.2 Anonymous Credentials for MDOC

ISO standard 18013-5 [18021] specifies a digital identity format that is widely
used in mobile driver licenses and national identity formats. For example, Ari-
zona, California, Colorado, Georgia, Maryland and New Mexico issue driver
licenses in the MDOC format to certain mobile devices.

The MDOC format supports a form of selective disclosure in which the holder
of an MDOC can reveal a subset of the attributes that are asserted in the cre-
dential. This disclosure format is implemented by including salted hashes of
the attribute values in the credential format that is signed by the issuer. The
salted-hash technique has two well-known privacy flaws. If Alice uses the
same MDOC credential to assert identities to relying parties P1 and P2, it is
possible for P1 and P2 to combine their views of the presentation protocol in
order to track the user across sessions. For example, the expiration times, or

41

device key values can be used to track a user or link a user between different
relying parties. A simple counter-measure is to require the user to use differ-
ent MDOCs for each relying party—this measure comes at a cost for both the
issuer, who now must issue 1000s of mdocs to each user, and the user, who
must maintain state to ensure the unique property. A more serious flaw en-
ables the issuer of the MDOC to collaborate with the relying party in order to
identity users across sessions. This flaw has delayed the deployment of MDOC
for some applications.

ZK for MDOC A solution to the issuer-RP collusion problem for the MDOC
format is to modify the presentation protocol so that the user instead produces
a zero-knowlege proof that “their mdoc verifies with respect to the requested
attributes.” Specifically, we aim to convince the verifier of the theorem state-
ment shown in Algorithm 10 while leaking no extra information:

Algorithm 10 MDOC Verification
Require: x = (PKI I , attr, Z, tr, time) and w consists of a 2231 byte string MSO,

a length len, a hash e1, a hash h2, an index X, a signature pair (r1, s1),
a parsing witnesses c, a 32-byte nonce, a pair (pkdx, pkdy), a pair of
strings tstart, tend, a header hdr and a signature (r2, s2)

1: Verify the following relations:

e1 = SHA256(MSO[0 : len])
h2 = MSO[valueDigests][org.iso.18013.5.1][X]

h2 = SHA256(nonce, attr, Z)
(pkdx, pkdy) = MSO[deviceKeyInfo][deviceKey][−2,−3]

tstart = MSO[validityInfo][validFrom]

tend = MSO[validityInfo][validUntil]
tstart < tnow < tend

true = p256.verify((r1, s1), e1, PKI I)

true = p256.verify((r2, s2), H(tr||hdr), (pkdx, pkdy))

Importantly, the public values for this theorem are (PKI I , attr, Z, tr, time)—
these values are shared between the prover (the user with the mdoc) and the
verifier (the relying party). Here, PKI I is the public key of the identity-issuer,
Z is an attribute value to disclose, e.g, like the “age over 18” boolean, and attr
is the name of this attribute (as written in the mso), tr is the liveness transcript,
and tnow is used to verify that the mdoc has not expired. The rest of the values
in the statement are hidden, in the sense that the verifier is convinced that such
values exist, but does not learn them through the interaction.

Per Table 13, on an X86 processor, our benchmark prover runs in 1.15s and
our verifier runs in 0.52s, and on the Pixel 6 Pro, 1.17s and 0.68s respectively.
This benchmark supports an mdoc that is 2231 bytes long, and the most expen-

42

Prover (ms) Verifier (ms)

x86 64 1150 520
Pixel 6 Pro 1170 680

Table 13: Prover time for ZK MDOC presentation of the age-over-18 attribute
for an MSO of at most 2231 bytes. The circuit corresponds to Alg. 10.

sive portion of the proof concerns the SHA256 hash of the MSO. Our bench-
mark implements the two-field optimization, with the SHA256 circuit verified
in GF(2128).

Extensions This basic application can be conveniently extended to support
more privacy features. For example, it is possible to also hide the identity of the
issuer, and instead prove that the issuer is a member of a certified list of issuers.
It is possible to support the disclosure of multiple attributes instead of 1 at little
cost. Finally, it is possible to support the revocation of MDOC credentials in
zero-knowledge by using standard ZK list-membership techniques. In future
work, we intend to include benchmarks for these extensions.

Acknowledgements John Kuszmaul implemented the Reed-Solomon encod-
ing algorithm discussed in Section 3.1 while he was an intern in our group.
We thank Sergeui Alleko for code review and helpful discussions. We thank
Quan Nguyen, Cory Barker, Justin Brickell, Bogdan Brinzarea Iamandi, Gareth
Oliver, and David Zeuthen for helpful comments and discussions. We also
thank Justin Thaler, Muthu Venkitasubramaniam, Carmit Hazay, Jonathan Katz,
and Mark Moir for helpful comments and references to related work. We are
especially grateful to Shiv Venkataraman, Sunita Verma and Joshy Joseph for
sponsoring this project.

References

[18021] ISO/IEC FDIS 18013-5. Personal identification—iso-compliant
driving licence—part 5: Mobile driving licence (mdl) application,
2021.

[AHIV22] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan
Venkitasubramaniam. Ligero: Lightweight sublinear arguments
without a trusted setup. eprint/2022/1608 and CCS’17, 2022.

[BH20] Carsten Bormann and Paul E. Hoffman. Concise Binary Object
Representation (CBOR). RFC 8949, December 2020.

[bin] Binius implementation. gitlab.com/IrreducibleOSS/binius.

git.

43

gitlab.com/IrreducibleOSS/binius.git
gitlab.com/IrreducibleOSS/binius.git

[BK82] Brent and Kung. A regular layout for parallel adders. IEEE Trans-
actions on Computers, C-31(3):260–264, 1982.

[Ble90] Guy E. Blelloch. Prefix sums and their applications. Technical
Report CMU-CS-90-190, School of Computer Science, Carnegie
Mellon University, November 1990.

[BOGG+88] Michael Ben-Or, Oded Goldreich, Shafi Goldwasser, Johan
Håstad, Joe Kilian, Silvio Micali, and Phillip Rogaway. Every-
thing provable is provable in zero-knowledge. In CRYPTO’88,
1988.

[Bra99] Stefan Brands. Rethinking Public Key Infrastructure and Digital Cer-
tificates. PhD thesis, Eindhoven Institute of Technology, 1999.

[CCH+18] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N.
Rothblum, Ron D. Rothblum, and Daniel Wichs. Fiat-shamir from
simpler assumptions. In eprint/2018/1004, 2018.

[CDL16] Jan Camenisch, Manu Drijvers, and Anja Lehmann. Anonymous
attestation using the strong Diffie Hellman assumption revisited.
In Cryptology ePrint Archive, Paper 2016/663, 2016.

[Cer09] Certicom. Sec 1: Elliptic curve cryptography, v2.0. Standards
document, 2009.

[Cha85] David Chaum. Security without identification: Transaction sys-
tems to make big brother obsolete. Communications of the ACM,
10(28):1030–1044, 1985.

[CL01] Jan Camenisch and Anna Lysyanskaya. An efficient sys-
tem for non-transferable anonymous credentials with optional
anonymity revocation. In Eurocrypt’2001, 2001.

[CMT12] Graham Cormode, Michael Mitzenmacher, and Justin Thaler.
Practical verified computation with streaming interactive proofs.
In ITCS, pages 90–112, 2012.

[DLFKP16] Antoine Delignat-Lavaud, Cedric Fournet, Markulf Kohlweiss,
and Bryan Parno. Cinderella: Turning shabby x.509 certificates
into elegant anonymous credentials with the magic of verifiable
computation. In Oakland IEEE S&P 2016, 2016.

[DP23] Benjamin E. Diamond and Jim Posen. Succinct arguments
over towers of binary fields. Cryptology ePrint Archive, Paper
2023/1784, 2023.

[DP24] Benjamin E. Diamond and Jim Posen. Polylogarithmic proofs for
multilinears over binary towers. Cryptology ePrint Archive, Pa-
per 2024/504, 2024.

44

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Del-
egating computation: interactive proofs for muggles. In STOC’08,
2008.

[GLS+21] Alexander Golovnev, Jonathan Lee, Srinath Setty, Justin Thaler,
and Riad S. Wahby. Brakedown: Linear-time and field-agnostic
snarks for r1cs. In eprint 2021/1043, 2021.

[Gow92] Roderick Gow. Cauchy’s matrix, the Vandermonde matrix and
polynomial interpolation. Bulletin of the Irish Mathematical Society,
28:45–52, March 1992.

[Knu97] Donald E. Knuth. The art of computer programming, volume 2 (3rd
ed.): seminumerical algorithms. Addison-Wesley Longman Publish-
ing Co., Inc., USA, 1997.

[KZM+15] Ahmed Kosba, Zhichao Zhao, Andrew Miller, Yi Qian, T-H. Hu-
bert Chan, Charalampos Papamanthou, Rafael Pass, abhi shelat,
and Elaine Shi. C∅C∅: A framework for building composable
zero-knowledge proofs. eprint/2015/1093, 2015.

[LANHC16] Sian-Jheng Lin, Tareq Y. Al-Naffouri, Yunghsiang S. Han, and
Wei-Ho Chung. Novel polynomial basis with fast Fourier trans-
form and its application to reed–solomon erasure codes. IEEE
Transactions on Information Theory, 62(11):6284–6299, 2016.

[LCH14] Sian-Jheng Lin, Wei-Ho Chung, and Yunghsiang S. Han. Novel
polynomial basis and its application to reed-solomon erasure
codes. In 2014 IEEE 55th Annual Symposium on Foundations of Com-
puter Science, pages 316–325, 2014.

[LCK+18] Wen-Ding Li, Ming-Shing Chen, Po-Chun Kuo, Chen-Mou
Cheng, and Bo-Yin Yang. Frobenius additive fast Fourier trans-
form, 2018.

[LFKN92] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan.
Algebraic methods for interactive proof systems. J. ACM, 39:859–
868, October 1992.

[LRSW99] Anna Lysyanskaya, Ron Rivest, Amit Sahai, and Stefan Wolf.
Pseudonym systems. In Selected Areas in Cryptography, 1999.

[Mat08] Todd Mateer. Fast Fourier transform algorithms with applications.
PhD thesis, Clemson University, 2008.

[Nus80] Henri J. Nussbaumer. Fast polynomial transform algorithms for
digital convolution. IEEE Transactions on Acoustics, Speech, and Sig-
nal Processing, 28:205–215, 1980.

45

[Pai24] Pairing crypto bbs implementation. https://github.com/

mattrglobal/pairing_crypto, 2024.

[RWGM23] Michael Rosenberg, Jacob White, Christina Garman, and Ian
Miers. zk-creds: Flexible anonymous credentials from zksnarks
and existing identity infrastructure. In Oakland IEEE S&P, 2023.

[Skl60] Jack Sklansky. Conditional-sum addition logic. IRE Trans. Elec-
tron. Comput., 9:226–231, 1960.

[Tha13] Justin Thaler. Time-optimal interactive proofs for circuit evalua-
tion. In CRYPTO’13, 2013.

[Tha22] Justin Thaler. Proofs, arguments, and zero-knowledge.
Manuscript, 2022.

[vdH04] Joris van der Hoeven. The truncated fourier transform and ap-
plications. In Proceedings of the 2004 International Symposium on
Symbolic and Algebraic Computation, ISSAC ’04, page 290–296, New
York, NY, USA, 2004. Association for Computing Machinery.

[vdH05] Joris van der Hoeven. Notes on the truncated Fourier transform,
2005.

[vzGG96] Joachim von zur Gathen and Jürgen Gerhard. Arithmetic and fac-
torization of polynomial over f2 (extended abstract). In Proceed-
ings of the 1996 International Symposium on Symbolic and Algebraic
Computation, ISSAC ’96, pages 1–9, New York, NY, USA, 1996. As-
sociation for Computing Machinery.

[WHV24] Ruihan Wang, Carmit Hazay, and Muthuramakrishnan Venkita-
subramaniam. Ligetron: Lightweight scalable end-to-end zero-
knowledge proofs post-quantum zk-snarks on a browser. In Oak-
land IEEE S&P’24, 2024.

[WJB+17] Riad S Wahby, Ye Ji, Andrew J Blumberg, abhi shelat, Justin
Thaler, Michael Walfish, and Thomas Wies. Full accounting for
verifiable outsourcing. In ACM CCS’2017, 2017.

[WTas+18] Riad S. Wahby, Ioanna Tzialla, abhi shelat, Justin Thaler, and
Michael Walfish. Doubly-efficient zksnarks without trusted
setup. In eprint/2017/1132 and Oakland S&P’2018, 2018.

[XZS22] Tiancheng Xie, Yupeng Zhang, and Dawn Song. Orion: Zero
knowledge proof with linear prover time. In eprint/2022/1010,
2022.

[ZXZS19] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song.
Transparent polynomial delegation and its applications to zero
knowledge proof. Cryptology ePrint Archive, Paper 2019/1482,
2019.

46

https://github.com/mattrglobal/pairing_crypto
https://github.com/mattrglobal/pairing_crypto

A Interpolation via convolution

Let p(k) be a polynomial of degree at most d. Given the evaluations p(i) at
integer points 0 ≤ i ≤ d, we want to compute p(k) for all integers k in some
range. Our next goal is to express this polynomial interpolation as a single
convolution operation.

Lemma A.1. (Lagrange interpolation.) Let p(k) be a polynomial of degree at most d
over a field. For all k we have

p(k) = ∑
0≤i≤d

(
k
i

)(
d− k
d− i

)
p(i) . (9)

Proof. Let q(k) be the right-hand side of Equation (9). We want to prove that
p = q.

The binomial coefficient (x
r) is a polynomial in x of degree at most r. Thus

q(k) is a polynomial of degree at most d. We now prove that p(k) = q(k) for
0 ≤ k ≤ d, and therefore that the two polynomials are the same.

Assume 0 ≤ k ≤ d. If i = k, the i-th term of the sum is p(k). If i > k, we
have (k

i) = 0, and thus the i-th term of the sum is 0. If i < k, we have (d−k
d−i) = 0,

and thus i-th term of the sum is also 0. Thus q(k) = p(k) as desired.

Lemma A.2. (Lagrange interpolation via convolution.) Let p(k) be a polynomial of
degree at most d over a field. For k > d, we have

p(k) = (−1)d · (k− d)
(

k
d

)
· ∑

0≤i≤d

(
1

k− i

)
· (−1)i

(
d
i

)
p(i) . (2)

Proof. The proof is a straightforward manipulation of Equation (9) to separate
the terms that depend on k from those that depend on i and on k− i.

We use the well-known binomial negation of the upper index(
−r
s

)
= (−1)s

(
r + s− 1

s

)
to make the upper index non-negative in (d−k

d−i), as follows.(
k
i

)(
d− k
d− i

)
= (−1)d−i

(
k
i

)(
k− i− 1

d− i

)
.

47

Expanding the binomial coefficients into factorials and simplifying, we have

(−1)d−i
(

k
i

)(
k− i− 1

d− i

)
= (−1)d−i k!

i!(k− i)!
· (k− i− 1)!
(d− i)!(k− d− 1)!

=
(−1)d−i

k− i
· k!

i!(d− i)!(k− d− 1)!

=
(−1)d−i

k− i
· 1

d!
·
(

d
i

)
· (k− d) · d! ·

(
k
d

)
=

(−1)d−i

k− i
·
(

d
i

)
· (k− d) ·

(
k
d

)
= (−1)d · 1

k− i
· (−1)i

(
d
i

)
· (k− d)

(
k
d

)
,

from which Equation (2) follows.

Remark A.3. The equality

(k− d)
(

k
d

)
= k

(
k− 1

d

)
offers a way to compute (k

d) in linear time for k ranging over an interval.

B The MDOC standard

MDOCs are specified in ISO 18013-5. Here we summarize the relevant portion
that concerns a binary string which can be parsed into a hierarchical MSO[]
object of the form:

{"version": "1.0",

"digestAlgorithm": "SHA-256",

"docType": "org.iso.18013.5.1.mDL",

"valueDigests": {

"org.iso.18013.5.1":

{13: h’B628...69D2’,

11: h’6F94...5BD4’,

...

14: h’8CFE...604C’,

...

"org.iso.18013.5.1.aamva": {

15: h’1034...402A’,

...

8: h’7AC6...8485’}

},

"deviceKeyInfo": {

"deviceKey": {1: 2, -1: 1,

48

-2: h’7B8F...F321’,

-3: h’859E...772C’}

},

"validityInfo": {

"signed": 0("2023-10-11T13:18:15Z"),

"validFrom": 0("2023-10-11T13:18:15Z"),

"validUntil": 0("2023-11-10T13:18:15Z")

}

}

In our context, an mdoc credential consists of a binary serialization of this
MSO object that is signed by an IdentityIssuer (II), whose public signing key
PKI I is well-known; denote the signature (r1, s1).

Consider the string MSO[valueDigests][org.iso.18013.5.1][14] which
represents the SHA-256 hash of a tuple consisting of the strings abbreviated as
(id, nonce, attrid, attrvalue):

"digestID": 14,

"random": h’8c082af3d5d78b98bcc00bd26fae5130’,

"elementIdentifier": "age_over_18",

"elementValue": true

A user can selectively disclose the age over 18 attribute id in the mdoc cre-
dential by providing a signature of the MSO, as well as a full preimage (con-
sisting of those 4 strings) to the given[14] hash included in the MSO. This
essentially asserts that the property “age over 18” was included in the bun-
dle that the IdentityIssuer signed, while hiding the other attributes that were
signed. What prevents users from breaking soundness by copying credentials?

Notice that MSO[deviceKeyInfo][deviceKey][-2] and [-3] denote a pub-
lic signing key PKd, which corresponds to a secret key that is maintained in the
secure element of the user’s device.

When a user attempts to show an mdoc, in addition to (r1, s1) and the
preimages of the attributes, the user’s device also computes a signature (r2, s2)
on a transcript of the identity request under the PKd signing key. Assuming
that when the mdoc was issued, the IdentityIssuer verified that the SKd was
securely stored in the device, then this second signature establishes device-
bound soundness.

49

	Introduction
	Anonymous Credentials from ECDSA

	Zero-Knowledge Argument System
	Verify Interactive Protocol (IP)
	Ligero Zero-Knowledge System
	ZK Protocol
	Applying the Fiat-Shamir Transform

	Optimization
	Reed-Solomon encoding over prime fields
	Reed-Solomon encoding over binary fields
	Reduction of the Ligero proof size
	Input consistency for circuits over different Fields

	Circuit design
	ECDSA Signature Verification
	SHA-256
	CBOR parsing

	Evaluation
	Algebraic primitives
	SHA256 hash verification
	Comparison with Ligero
	Comparison with Binius
	Comparison with other ZK systems

	ECDSA signature verification

	Applications
	A simple anonymous credential
	Anonymous Credentials for MDOC

	Interpolation via convolution
	The MDOC standard

