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Abstract. The transition to Post-Quantum (PQ) cryptography is in-
creasingly mandated by national agencies and organizations, often in-
volving a phase where classical and PQ primitives are combined into
hybrid solutions. In this context, existing protocols must be adapted to
ensure quantum resistance while maintaining their security goals. These
adaptations can significantly impact performance, particularly on em-
bedded devices.
In this article, we focus on standardized protocols which support appli-
cation management on eSIMs across different modes. This is a complex
use-case, involving constrained devices with stringent security require-
ments. We present PQ adaptations, including both hybrid and fully PQ
versions, for all modes. Using ProVerif, we provide automated proofs
that verify the security of these PQ variants. Additionally, we analyze
the performance impact of implementing PQ protocols on devices, mea-
suring runtime and bandwidth consumption. Our findings highlight the
resource overhead associated with achieving post-quantum security for
eSIM management.

Keywords: Post-Quantum Cryptography · Secure Channel · Protocol
Design · Formal Proof · Embedded Device

1 Introduction

With quantum computing advances, the security of widely used cryptographic
systems is increasingly threatened, making it essential to plan for migration
to quantum-resistant solutions. With the recent publication of definitive Post-
Quantum Cryptography (PQC) standards by NIST, the groundwork is set for
such transitions. For some sectors, this transition is more pressing. Industries
that rely on long-lived equipment, such as automotive systems, smart meters,
and critical infrastructure sensors, often deploy devices that remain operational
for many years and rely on connectivity based on an embedded Subscriber Iden-
tity Module (eSIM), a digital version of a SIM card embedded directly within
the device hardware. Ensuring these devices are secure against quantum-based
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attacks is a priority, especially as the cost of upgrading hardware in the field can
be significant.

Given this context, the migration of embedded elements and their associated
remote management protocols is critical. In this work, we focus on protocols that
enable remote management of eSIMs (and, more generally, embedded secure ele-
ments), as defined by standards from Global System for Mobile communications
Association (GSMA) and GlobalPlatform (GP). Specifically, we investigate a
protocol supporting a “scripting” mode, where communications are pregener-
ated and executed as a sequence, which is useful for deploying commands in
environments without a continuous connection. The structure of this protocol
presents complexities for post-quantum migration, as seen in other cases such as
the Signal protocol [10,32,9,19,4,5,38]. Notably, a Key Encapsulation Mechanism
(KEM) does not always seamlessly replace ECDH, requiring adaptations.

This challenge is further amplified by the resource constraints typical of se-
cure embedded elements, including limited memory and processing power, mak-
ing this an instructive case study in post-quantum migration difficulties. Al-
though the considered protocols originate from a specific use case, they may
have potential applications beyond this domain.

In this paper, we first present the background and original versions of the
target protocols in Sect. 2. We then propose PQ and hybrid adaptations of
these protocols in Sect. 3, designed to retain their original security properties.
In Sect. 4, we apply formal verification tools, mainly ProVerif, to validate that
these properties are achieved, including in the original, classical cryptography-
based protocols. Finally, Sect. 5 examines the performance impact of migrating
to PQ cryptographic mechanisms.

2 Protocols for eSIM

2.1 Context

The eSIM is a technological evolution of the traditional SIM card. Unlike phys-
ical SIM cards, eSIMs are programmable secure chips soldered directly onto the
device’s motherboard3. A further evolution is the Integrated SIM (iSIM), which
is incorporated into the device’s processor. Both technologies enable the man-
agement of mobile subscriptions and various services without requiring physical
intervention.

The GSMA defines the interactions between the various stakeholders in-
volved, including Mobile Network Operators (MNOs), Original Equipment Man-
ufacturers (OEMs), and eSIM providers, across different use-cases. For instance,
in the process of downloading a SIM profile (when a user acquires a new sub-
scription), the GSMA specifies how the new profile is transferred from the MNO
to the eSIM, via the mobile device [28,29].
3 Strictly speaking, the term eSIM refers to the service, while eUICC (Embedded

Universal Integrated Circuit Card) denotes the physical device that operates the
mobile functionality. However, these terms are frequently used interchangeably.
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Since eSIMs function as secure elements, they can also host other services.
For instance, a banking mobile application could benefit from a counterpart on
the eSIM for secure operations. In these scenarios, the involved parties differ:
indeed, the service provider, as owner of the application, enters in the process.
A distinct set of documents governs these cases: the Secured Applications for
Mobile specifications [30] outlines how applications can be installed on eSIMs
and managed. A secure link between the eSIM and the entity responsible for
installation is established using the Secure Channel Protocol '11' (SCP11). This
protocol is specified by GP, the organization in charge of standards for digital
services that rely on secure elements [26]. This document specifies a secure chan-
nel protocol based on Elliptic Curve Cryptography (ECC). We explore it in more
detail in the next section.

2.2 Protocol of GP SCP11

SCP11 is a secure channel protocol widely used in various secure element-based
products, including but not limited to eSIMs. It employs ECC for mutual au-
thentication and secure channel initiation, and AES for secure messaging. It
defines three variants (referred to as modes), each tailored to a specific use case.
The protocol involves two parties: the Card (e.g., an eSIM) and the Off-Card
Entity (OCE, such as a terminal or sever). Table 1 summarizes the security prop-
erties claimed in [26], which include authentication of one party to the other,
confidentiality and integrity of exchanges, Perfect Forward Secrecy (PFS) and
Session Replay (these properties are discussed in greater depth in Sect. 4). The
different modes are detailed hereafter.

Table 1. Properties of the different SCP11 modes

Property Mode A Mode B Mode C

Authentication OCE to Card ✓ ✓

Authentication Card to OCE ✓ ✓ ✓

Message Integrity ✓ ✓ ✓

Data Confidentiality ✓ ✓ ✓

Perfect Forward Secrecy ✓ ✓

Session Replay ✓

SCP11 Mode A. Mode A establishes mutual authentication between the Card
and the OCE; it is illustrated by Fig. 1. Each party holds an ECC key pair—
(EC.skOCE,EC.pkOCE) for the OCE and (EC.skC,EC.pkC) for the Card—along
with associated certificates, CertOCE and CertC, signed by an authority CA. These
keys enable a key agreement based on ECDH.
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The process begins with the OCE retrieving the Card’s certificate through
a GET_DATA command, then verifying it with the CA’s public key EC.pkCA.
The OCE then sends its own certificate via a Perform Security Operation (PSO)
command, which the Card verifies. Next, the OCE generates an ephemeral key
pair (EC.epkOCE,EC.eskOCE) and sends the public component to the Card. The
Card, in turn, creates its own ephemeral key pair (EC.epkC,EC.eskC) and per-
forms two elliptic curve key agreements (EC.KeyAgr, standard ECDH as specified
in [11, §4.3]): one using the certified keys and another with the ephemeral keys,
ensuring PFS.

The shared secrets, Sss and See, are fed into a key derivation function (KDeriv)
to generate a receipt key SKReceipt and session keys for secure channel SKSession

4.
The KDeriv function uses SHA-256, in compliance with [11]. The message Receipt
is a CMAC [21] computed over EC.epkOCE and EC.epkC, and sent to the OCE
along with the Card’s ephemeral key, allowing the OCE to compute and verify
the MAC value.

If verified, the OCE and the Card continue with the Secure Channel Protocol
'03' (SCP03) [25], using SKSession, which includes one encryption/decryption key
and two MAC keys, one for each direction. All messages are encrypted and
MAC-ed.

It can be noted that the Card cannot authenticate the OCE until it receives
an SCP03 command with a valid MAC, as prior messages could come from an
attacker without access to EC.skOCE. Additionally, the session cannot be replayed.

SCP11 Mode B. The Mode B provides authentication of the Card to the OCE
only; it is illustrated by Fig. 2. This mode is useful when the OCE lacks certified
keys, but can achieve a limited level of authentication through alternative means.
For instance, if the OCE is a card terminal, a user-entered PIN verified by
the Card [26, Appendix A] offers a weak, indirect form of OCE authentication.
However, these considerations are out of the scope of [26], and are not discussed
further here.

Mode B is similar to Mode A, with two distinctions:

– The OCE does not send a certificate or use static keys; an INTERNAL_AUTH
command replaces the MUTUAL_AUTH one.

– The two key agreements involve the OCE’s ephemeral key and both the
static and ephemeral keys of the Card.

The rest of the protocol remains the same, ensuring PFS due to the use of
ephemeral keys, and anti-replay.

SCP11 Mode C. Mode C is a variant designed for offline scripting, enabling
the OCE to prepare a sequence of commands in advance and send them to a
third-party entity, which will then execute the script on the Card, as shown in
4 In the SCP11 document [26, Table 6.18], SKReceipt is the receipt key and SKSession

encompasses the keys called S-ENC, S-MAC, S-RMAC and S-DEK.
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OCE Card

CertC, EC.skC, EC.pkCACertOCE, EC.skOCE, EC.pkCA

GET_DATA()

CertC

EC.pkC ← Cert.Verify(CertC,EC.pkCA)

PSO(CertOCE)

EC.pkOCE ← Cert.Verify(CertOCE,EC.pkCA)

PSO Response

(EC.eskOCE,EC.epkOCE)← EC.KeyGen()

MUTUAL_AUTH(EC.epkOCE)

(EC.eskC,EC.epkC)← EC.KeyGen()

Sss← EC.KeyAgr(EC.skC,EC.pkOCE)

See← EC.KeyAgr(EC.eskC,EC.epkOCE)

(SKReceipt, SKSession)← KDeriv(Sss|See)
Receipt← MAC(SKReceipt,EC.epkOCE|EC.epkC)

EC.epkC,Receipt

Sss← EC.KeyAgr(EC.skOCE,EC.pkC)

See← EC.KeyAgr(EC.eskOCE,EC.epkC)

(SKReceipt, SKSession)← KDeriv(Sss|See)
Verify Receipt

SCP03 protected exchanges

Fig. 1. SCP11 Mode A
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OCE Card

CertC, EC.skC, EC.pkCAEC.pkCA

GET_DATA()

CertC

EC.pkC ← Cert.Verify(CertC,EC.pkCA)

(EC.eskOCE,EC.epkOCE)← EC.KeyGen()

INTERNAL_AUTH(EC.epkOCE)

(EC.eskC,EC.epkC)← EC.KeyGen()

Ses← EC.KeyAgr(EC.skC,EC.epkOCE)

See← EC.KeyAgr(EC.eskC,EC.epkOCE)

(SKReceipt, SKSession)← KDeriv(Ses|See)
Receipt← MAC(SKReceipt,EC.epkOCE)

EC.epkC,Receipt

Ses← EC.KeyAgr(EC.eskOCE,EC.pkC)

See← EC.KeyAgr(EC.eskOCE,EC.epkC)

SKSession ← KDeriv(Ses|See)
Verify Receipt

SCP03 protected exchanges

Fig. 2. SCP11 Mode B
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Fig. 3. Typically, this mode assumes the Card is an eSIM in a mobile device,
which plays the script. For instance, the script might be distributed as part of a
rich environment application (e.g., an Android or iOS application) and executed
during the application installation. Importantly, no secrets are handled by the
mobile application, enabling the safe installation of services on the eSIM to
secure functions such as those of a banking application. This mode also allows
for remote administration of secure elements in general, without requiring a
continuous, direct connection, which may be impractical in certain scenarios.

Mode C resembles Mode A with the following modifications:

– The OCE retrieves the eSIM’s public key from a database.
– Only the eSIM’s static keys are used, as the offline nature of this mode

precludes the use of ephemeral data on eSIM side.

Mutual authentication, key derivation and command wrapping are performed
by the OCE in advance. The Receipt is based on EC.epkOCE and EC.pkC.

Mode C provides mutual authentication between the OCE and the eSIM
but lacks PFS for the eSIM’s secrets. Furthermore, as the session relies only on
static data from the eSIM, it can be replayed, unlike in Modes A and B. This
is acknowledged by [26], and as a consequence some sensitive commands—like
inserting new keys—are disallowed in Mode C.

2.3 Migration towards Quantum-Resistant Versions

The protocols currently in use rely extensively on ECC, which lacks resistance
to quantum attacks. This vulnerability requires migration to quantum-resistant
alternatives, particularly for two reasons. First, any data exchanged today may
be decrypted in the future, creating a significant risk if long-term sensitive data
are transmitted. Second, eSIMs are often embedded in devices intended for ex-
tended deployment in the field (like vehicles or smart-meters), making it essential
to equip them as soon as possible with quantum-resistant protocols to ensure
their long-term security.

In the following section, we address the migration of these existing proto-
cols. As we will discuss, this process involves certain complexities and requires
dedicated adaptation efforts.

3 Quantum-Resistant Versions

3.1 Quantum-Resistant Protocol for Mode C

We begin with an analysis of Mode C, the variant used for scripting. In this mode,
as previously described, the off-card entity OCE prepares a script in advance for
the eSIM. The protocol achieves mutual authentication, ensuring that only the
intended eSIM, with the appropriate ECDH key, can read the script, while the
eSIM is assured that the script originates from an authorized OCE. Our goal is
to preserve these properties against a quantum-capable adversary.
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OCE

CertOCE, EC.skOCE, EC.pkC

Prepare
(EC.eskOCE,EC.epkOCE)← EC.KeyGen()

Sss← EC.KeyAgr(EC.skOCE,EC.pkC)

Ses← EC.KeyAgr(EC.eskOCE,EC.pkC)

(SKReceipt, SKSession)← KDeriv(Sss|Ses)
Receipt← MAC(SKReceipt,EC.epkOCE|EC.pkC)
Wrap following payloads into SCP03 using SKSession

Distribute Commands to mobile app.

Mobile eSIM

CertC, EC.skC, EC.pkCA

PSO(CertOCE)

EC.pkOCE ← Cert.Verify(CertOCE,EC.pkCA)

PSO Response

MUTUAL AUTH(EC.epkOCE)

Sss← EC.KeyAgr(EC.skC,EC.pkOCE)

Ses← EC.KeyAgr(EC.skC,EC.epkOCE)

(SKReceipt,SKSession)← KDeriv(Sss|Ses)
Receipt← MAC(SKReceipt,EC.epkOCE|EC.pkC)

Receipt

Verify Receipt

Continue communication
SCP03 protected exchanges

Fig. 3. SCP11 Mode C
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A first set of standardized post-quantum algorithms is available, covering
both signature [41,43] and Key Encapsulation Mechanism (KEM) [42]. Since
the original protocol relies on ECDH, a natural approach is to use a KEM to
construct a quantum-resistant version. Assuming the OCE has the eSIM’s long-
term KEM public key (similar to the original protocol using the eSIM’s ECDH
key), it can prepare a script for the eSIM. However, using only KEM keys does
not allow the OCE to prove that it authored the script, as an interaction would
be required for the eSIM to produce a ciphertext for the OCE. This limitation
is well-documented in similar adaptations, such as PQ versions of Signal (see
references in Sect. 1): while KEMs work for key establishment, they cannot
replace ECDH in protocols requiring asynchronous authentication.

To address this, the OCE needs a signature key to enable the eSIM to verify
the script’s origin. Replacing the eSIM’s long-term KEM key with a signature
key is not feasible here, as it would again require interaction with the eSIM,
allowing it to sign an ephemeral KEM key.

Thus, we construct a protocol with a signature key on the OCE side, and
a KEM key on the eSIM side. To the best of our knowledge, this is the first
approach of its kind to leverage such a combination. The protocol is illustrated
by Fig. 4. The OCE is now equipped with a signature key SIG.skOCE and the
corresponding certificate CertOCE. As in the classic case, the OCE already knows
the eSIM’s public key, which is now a KEM key KEM.pkC. The OCE begins by
performing an encapsulation on this key to produce a shared secret Ss and its
ciphertext c.Ss, which are used to derive the secure channel and receipt keys.
The ciphertext is signed, to authenticate the origin of the script. The script is
sent to the mobile device and played on the eSIM. The eSIM verifies the OCE’s
certificate, checks the signature, and decapsulates the ciphertext to obtain the
shared secret and derive the session keys. The remainder of the process aligns
with the classic protocol.

Regarding PFS, the situation is the same as in the classical case: it is not
ensured on the eSIM’s side (recovering KEM.skC allows to decrypt past com-
munications), but it is on the OCE’s one (the shared secret Ss is ephemeral).
Similarly, replay is possible.

3.2 Quantum-Resistant Protocols for Other Modes

For completeness and coherence, we explore how PQ versions of Modes A and
B can be constructed using the same credentials as Mode C: a signature key for
the OCE and a KEM key for the eSIM. While these protocols could certainly
rely exclusively on either signature keys or KEM keys, using the same functions
as mode C would streamline the process. This approach removes the need for
additional credentials and avoids introducing extra functionalities on the eSIM.

For Mode A, we want to maintain the original mutual authentication and
PFS properties. This can be achieved following the process illustrated by Fig. 5.
Compared to the classic protocol, we need one more command, that we call
MUTUAL_AUTHENTICATE2. This is again due to the usage of a KEM in
place of an ECDH key agreement.
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OCE

CertOCE, SIG.skOCE, KEM.pkC

Prepare
(Ss, c.Ss)← KEM.Encaps(KEM.pkC)

sigOCE ← SIG.Sign(SIG.skOCE, c.Ss)

(SKReceipt, SKSession)← KDeriv(Ss|c.Ss)
Receipt← MAC(SKReceipt, c.Ss|KEM.pkC)

Wrap following payloads into SCP03 using SKSession

Distribute Commands to mobile app.

Mobile eSIM

KEM.skC, SIG.pkCA

PSO(CertOCE)

SIG.pkOCE ← Cert.Verify(CertOCE,SIG.pkCA)

PSO Response

MUTUAL AUTH(c.Ss, sigOCE)

ok/nok ← SIG.Verify(SIG.pkOCE, sigOCE)

Ss← KEM.Decaps(KEM.skC, c.Ss)

(SKReceipt, SKSession)← KDeriv(Ss|c.Ss)
Receipt← MAC(SKReceipt, c.Ss|KEM.pkC)

Receipt

Verify Receipt

Continue communication

SCP03 protected exchanges

Fig. 4. PQ version for Mode C
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The beginning of the protocol is the same: the Card and the OCE ex-
change their certificates, verify them using SIG.pkCA and extract the public keys
SIG.pkOCE and KEM.pkC. Of course, the certificates are signed with a PQ sig-
nature algorithm. The first MUTUAL_AUTHENTICATE command is used to
make the eSIM generate a KEM ephemeral key and send the public part to the
OCE. The OCE can then use this ephemeral key and the static one to gener-
ate two shared secrets Se and Ss, and their respective ciphertexts c.Se and c.Ss.
The OCE signs these ciphertexts, together with the eSIM’s ephemeral key. The
resulting signature and the ciphertexts are sent to the eSIM via the new com-
mand. The eSIM can then verify the signature, decapsulate both ciphertexts and
derive secret material from the concatenation of shared secrets and ciphertexts
(as advised by [22]). The rest of the protocol is unchanged: the eSIM computes
an authentication value Receipt, and both parties use the session keys SKSession

for further exchanges through SCP03.
Note that the ephemeral key could be generated by the OCE, this is equiv-

alent for the PFS (assuming both parties correctly manage ephemeral values),
and both options need two commands for the mutual authentication.

The PQ version of Mode B is similar to the one of Mode A, with the difference
that the OCE does not send any certificate, nor perform any signature. It is
illustrated by Fig. 6.

3.3 Hybrid Versions

Hybrid versions of protocols can be constructed by combining classical algo-
rithms with PQ ones to address the limited maturity of PQ algorithms. This
approach is recommended by several European cybersecurity agencies [1,12] and
will be accommodated by NIST [40].

Several options are available for constructing hybrid protocols. ETSI provides
two key agreement constructions in its technical specification [22]:

– Concatenate hybrid key agreement, where both cryptographic methods are
combined in single messages by concatenating their respective data.

– Cascade hybrid key agreement, where the first key agreement is executed
before the second.

With the first option, each command conveys more data, while the second one
augments the number of commands. We opted for the first option—the second
one can easily be derived.

Figure 7 illustrates the hybrid protocol for Mode A. In this set-up, the OCE
and the eSIM use hybrid certificates, denoted CertHOCE and CertHC . Multiple for-
mats for hybrid certificates exist (see [27] for an overview), but all include both
classical and PQ keys and are signed by the classical and PQ keys of the CA, de-
noted pkHCA. The Cert.Verify function returns both classical and PQ public keys:
for the OCE, EC.pkOCE and SIG.pkOCE; for the eSIM, EC.pkC and KEM.pkC.

The hybrid protocols incorporate both classical and PQ computations within
the same number of commands as the PQ-only version. Shared secrets are derived
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OCE Card

CertC, KEM.skC, SIG.pkCACertOCE, SIG.skOCE, SIG.pkCA

GET DATA()

CertC

KEM.pkC ← Cert.Verify(CertC, SIG.pkCA)

PSO(CertOCE)

SIG.pkOCE ← Cert.Verify(CertOCE,SIG.pkCA)

PSO Response

MUTUAL AUTH()

(KEM.eskC,KEM.epkC)← KEM.KeyGen()

KEM.epkC

(Ss, c.Ss)← KEM.Encaps(KEM.pkC)

(Se, c.Se)← KEM.Encaps(KEM.epkC)

sigOCE ← SIG.Sign(SIG.skOCE,KEM.epkC|c.Ss|c.Se)

MUTUAL AUTH2(c.Ss, c.Se, sigOCE)

ok/nok ← SIG.Verify(SIG.pkOCE, sigOCE)

Ss← KEM.Decaps(KEM.skC, c.Ss)

Se← KEM.Decaps(KEM.eskC, c.Se)

(SKReceipt, SKSession)← KDeriv(Ss|Se|c.Ss|c.Se)
Receipt← MAC(SKReceipt, c.Ss|KEM.epkC)

Receipt

(SKReceipt, SKSession)← KDeriv(Ss|Se|c.Ss|c.Se)
Verify Receipt

SCP03 protected exchanges

Fig. 5. PQ version for Mode A
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OCE Card

CertC, KEM.skCSIG.pkCA

GET DATA()

CertC

KEM.pkC ← Cert.Verify(CertC, SIG.pkCA)

INTERNAL AUTH()

(KEM.eskC,KEM.epkC)← KEM.KeyGen()

KEM.epkC

(Ss, c.Ss)← KEM.Encaps(KEM.pkC)

(Se, c.Se)← KEM.Encaps(KEM.epkC)

INTERNAL AUTH2(c.Ss, c.Se)

Ss← KEM.Decaps(KEM.skC, c.Ss)

Se← KEM.Decaps(KEM.eskC, c.Se)

(SKReceipt,SKSession)← KDeriv(Ss|Se|c.Ss|c.Se))
Receipt← MAC(SKReceipt, c.Ss)

Receipt

(SKReceipt, SKSession)← KDeriv(Ss|Se|c.Ss|c.Se)
Verify Receipt

SCP03 protected exchanges

Fig. 6. PQ version for Mode B
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from both classical and PQ key agreements and are carefully combined using the
KDeriv function, in line with [22] recommendations.

Hybrid versions of Modes B and C are based on these same principles and
are detailed in Annex A.

4 Formal Proofs

The security properties of the different modes of SCP11 are listed in Sect. 2.2
and summarized in Table 1. However, no formal security proof exists in the
literature confirming that these properties are achieved. We therefore propose
a formal verification of the different modes of SCP11, and then consider the
quantum-resistant and hybrid variants.

4.1 Symbolic Formal Verification of SCP11 Protocols

Our proofs are conducted in the formal model, also known as the Dolev–Yao
attacker model [20] or symbolic model. In this setting, the protocol participants
communicate over a public channel and employ perfect cryptographic primitives,
where, for instance, decryption is only possible with the corresponding key. An
active attacker in this model has full control over the public channel, enabling her
to read, drop, modify, replay messages, and inject new messages. Additionally,
the attacker may selectively compromise participants (e.g., through long term
key leaks), or gain access to oracles that break cryptographic assumptions (e.g.,
retrieving a private key from a public key). In this setting, we can model a
protocol and determine wether certain (mathematical) properties hold despite
such an adversary. For SCP11, we designate the OCE, the Card and the attacker
as O, C and A, respectively.

Authentication. Formalizing cryptographic properties into precise mathematical
formulations can be challenging, as illustrated by the various definitions of au-
thentication [39]. Interested readers can find a near-mathematical formalization
of these properties in [46, pp.82–83]. We aim to prove the two strongest forms of
agreement for classical SCP11: the non-injective agreement [39, §2.3] and injec-
tive agreement [39, §2.4]. The authentication of C to O may represent an injective
agreement upon Receipt. The authentication of O to C, which is unattainable in
Mode B, may represent an injective agreement on the SCP commands in Mode
A, but a non-injective agreement in Mode C, since O may replay a previous
session.

Message Integrity. Message integrity is required during SCP03 exchanges. For
any command a sent by O and any command b received by C, integrity is achieved
if a and b are identical. However, this condition may not hold for the Mode B,
where any A may impersonate an O. Message integrity is verified across all
modes if, for any command a whose authenticated encryption e is sent by O and
for any command b decrypted after the reception of e by C, the commands a and
b are the same.
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OCE Card

CertHOCE, EC.skOCE, SIG.skOCE CertHC , EC.skC, KEM.skC

pkHCA pkHCA

GET DATA()

CertHC

(EC.pkC,KEM.pkC)← Cert.Verify(CertHC , pk
H
CA)

PSO(CertHOCE)

(EC.pkOCE, SIG.pkOCE)← Cert.Verify(CertHOCE, pk
H
CA)

PSO Response

(EC.eskOCE,EC.epkOCE)← EC.KeyGen()

MUTUAL AUTH(EC.epkOCE)

(EC.eskC,EC.epkC)← EC.KeyGen()

Sss← EC.KeyAgr(EC.skC,EC.pkOCE)

See← EC.KeyAgr(EC.eskC,EC.epkOCE)

(KEM.eskC,KEM.epkC)← KEM.KeyGen()

EC.epkC,KEM.epkC

Sss← EC.KeyAgr(EC.skOCE,EC.pkC)

See← EC.KeyAgr(EC.eskOCE,EC.epkC)

(Ss, c.Ss)← KEM.Encaps(KEM.pkC)

(Se, c.Se)← KEM.Encaps(KEM.epkC)

sigOCE ← SIG.Sign(SIG.pkOCE,KEM.epkC|c.Ss|c.Se)

MUTUAL AUTH2(c.Ss, c.Se, sigOCE)

ok/nok ← SIG.Verify(SIG.pkOCE, sigOCE)

Ss← KEM.Decaps(KEM.skC, c.Ss)

Se← KEM.Decaps(KEM.eskC, c.Se)

(SKReceipt, SKSession)← KDeriv(Sss|See|EC.pkC|EC.epkC|Ss|Se|c.Ss|c.Se)
Receipt← MAC(SKReceipt,EC.epkOCE|EC.epkC|KEM.epkC|c.Ss)

Receipt

(SKReceipt, SKSession)← KDeriv(Sss|See|EC.pkC|EC.epkC|Ss|Se|c.Ss|c.Se)
Verify Receipt

SCP03 protected exchanges

Fig. 7. Hybrid version for Mode A
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Data Confidentiality and PFS. Like message integrity, data confidentiality ap-
plies only to SCP03 exchanges. A command is confidential if A cannot access
it at any point. Proving PFS adds a temporal condition: we assume A obtains
the long-term secret key of C or O after the protocol’s completion. A protocol is
perfect forward secure [31,18] if A cannot compute the symmetric keys, such as
SKSession, exchanged before impersonating C or O.

Session Replay. The session replay is addressed by the (non-)injection agreement
discussed above. To validate the negation of this property, session uniqueness,
we need to confirm that if two tuples of keys (SKReceipt, SKSession) established by
C and O are identical at two different time periods, those periods must be the
same.

To be automatically proved, all these (mathematical) properties need to be
encoded in the formalism of software programs designed for the formal verifica-
tion of cryptographic protocols.

4.2 Security Protocol Analysis Tools

The two leading tools for formally proving protocols in the symbolic model
are ProVerif [6] and Tamarin [45]. A comprehensive comparison of these tools,
along with others, can be found in [2, §II.A-C]. Two newer software options
may also be considered: Verifpal [37] and PQ-Squirrel [17]. Verifpal is designed
as a user-friendly tool with a limited, though sufficient for our case, number
of cryptographic primitives and properties, while PQ-Squirrel is in between a
symbolic and a computational tool. All these tools generally involve two stages:
the first models the protocol, and the second assesses the security properties,
expressed as (mathematical) queries.

In this work, we chose to use ProVerif (version 2.05) as our primary tool,
supplemented with Verifpal (version 2.72) for its simplicity. Notably, Verifpal
models can be exported to ProVerif models, a feature we anticipated but could
not use. In the remainder of this section, we will describe how we model the clas-
sical SCP11 modes outlined in Sect. 2.2. Despite their differences, both ProVerif
and Verifpal share a crucial concept in the query stage: the notion of phase.
This concept is essential for proving PFS in our context, as detailed in [36, §2.5]
and [8, §4.1.6]. The complete execution of the protocol is considered phase 0,
followed by phase 1, which necessarily occurs after the completion of phase 0,
during which the long term keys are leaked. The proof of PFS is done for phase 1.

The Verifpal Prover. This section provides a brief overview of our Verifpal
model; for detailed information, refer to the documentation [36, §2-3].

Model. A Verifpal model starts by characterizing the attacker, active in our case
to match the Dolev–Yao attacker described in Sect. 4.1. The two actors then
perform a sequence of actions using predefined cryptographic primitives, orga-
nized within blocks defining a specific principal, interleaved with the messages
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exchanged between the principals. Principals with the same name share a global
state, meaning that elements within a block are accessible to all subsequent
blocks of that principal. The CA is replaced by public key exchanges which are
guarded, i.e., public exchanges the attacker cannot modify.

Queries. At the end, we formulate queries to assess the protocol’s security goals.
In our context, these queries focus on authentication, more precisely the non-
injective agreement on certain messages exchanged between the two principals,
as well as confidentiality of data and freshness of some keys to evaluate session
replay. Message integrity is checked using an ASSERT directly in the model step.

Currently, we cannot export our Verifpal models to ProVerif, since the ex-
port feature does not support freshness queries and the different phases of the
protocol. We therefore build our ProVerif models from scratch.

The ProVerif Prover. In this section, we discuss our modeling choices in the
ProVerif language. For comprehensive details, refer to the ProVerif manual [8].

Model. Unlike Verifpal, ProVerif requires explicit definitions of the cryptographic
primitives used in the protocol. These definitions resemble an API description,
accompanied by the mathematical equations each primitive verifies [8, §4.2]. For
instance, a message authentication code (MAC) is illustrated in Listing 1. To
compute a MAC, the function Mac takes a key k and a message m to produce
the MAC c of m. To verify if c is the MAC of m under the key k, the function
MacVerify takes the key k, the message m and the alleged MAC c and outputs
true if c = Mac(k,m) (i.e., MacVerify(k,m,Mac(k,m)) = 1) and false otherwise
(i.e., MacVerify(k,m, c ̸= Mac(k,m)) = 0).

Listing 1. ProVerif model of the MAC computation and verification

type mackey . type macs . fun mac(mackey , b i t s t r i n g ) : macs .
fun macver i fy (mackey , b i t s t r i n g , macs ) : bool
reduc fora l l k : mackey , m: b i t s t r i n g ;

macver i fy (k , m, mac(k , m) ) = true
otherwise fora l l k : mackey , m: b i t s t r i n g , c : macs ;

macver i fy (k , m, c ) = f a l s e .

The primitives are embedded within two process macros representing the
Card and the OCE. Unlike Verifpal’s export to ProVerif, which relies on state
sharing similar to Tamarin, we define a single process macro for each actor.
The two actors communicate over an open channel, vulnerable to a Dolev–Yao
attacker (see Sect. 4.1). Each process macro is initialized in the main process with
the public and private keys required for the chosen mode, with public keys also
broadcasted over the public channel, making them accessible to the attacker.
Additionally, the certificate authority is modeled as a separate macro process
that signs trusted public keys stored in an immutable table.
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Queries. To formalize queries in the ProVerif model, we first create events,
although not all queries require events. An example lies in Listing 2, where we
define a command and query wether the attacker obtains this command.

Listing 2. ProVerif model of a confidentiality query

free commands : b i t s t r i n g [ private ] .
query attacker ( commands ) .

An event denotes a significant sequence of actions. For instance, the authen-
tication of the Card to the OCE via injective agreement on the receipt message is
briefly formalized in Listing 3. The issuance and sending of the receipt message
by the Card to the OCE is the goal of sendReceipt, which takes as arguments
the receipt message and the two actors, first the sender and second the receiver.
To prove the authentication query, we must define another event to confirm that
the MAC verification is correctly performed: this is the goal of acceptReceipt,
which takes as arguments the receipt message and the two actors, first the re-
ceiver and second the issuer. Once events are defined and placed correctly in the
model, we use the injective correspondence with the inj-event keyword.

Listing 3. ProVerif model of the two process macros

. . .
event sendRece ipt (macs , host , host ) .
event acceptRece ipt (macs , host , host ) .
. . .
query r e c e i p t : macs , hostOCE : host , hostCard : host ,

i : time , j : time ;
event ( acceptRece ipt ( r e c e i p t , hostOCE , hostCard ) ) @i ==>
inj−event ( sendRece ipt ( r e c e i p t , hostCard , hostOCE ) ) @j &&
j < i .

. . .
let pOCE(pkS : signCApub , SKOCEECKA: eckapr iv ) =

. . .
in ( c , (ePKSDECKA: eckapub , r e c e i p t : macs ) ) ;
. . .
let ( rkey : mackey , senc : symkey , smac : mackey ) =

kdf ( ( ShSss , ShSee ) ) in
i f macver i fy ( rkey , (ePKOCEECKA, ePKSDECKA) , r e c e i p t ) then (

event acceptRece ipt ( r e c e i p t , OCE, Card ) ;
. . .

) .
let pCard (pkS : signCApub , SKSDECKA: eckapr iv ) =

. . .
let ( rkey : mackey , senc : symkey , smac : mackey ) =

kdf ( ( ShSss , ShSee ) ) in
let r e c e i p t = mac( rkey , (ePKOCEECKA, ePKSDECKA)) in
event sendRece ipt ( r e c e i p t , Card , OCE) ;
out ( c , (ePKSDECKA, r e c e i p t ) ) ;
. . .
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Regarding the integrity query in Listing 4, events relate to the (encrypted)
commands sent over the SCP03 channel. The query states that if an actor sends
a command a through an encrypted message e with an authentication tag m,
and another actor receives a command b from the decryption of message e with
tag m, then a and b are the same.

Listing 4. ProVerif model of an integrity query

event sendCom( b i t s t r i n g , b i t s t r i n g , macs ) .
event readCom( b i t s t r i n g , b i t s t r i n g , macs ) .
query a : b i t s t r i n g , b : b i t s t r i n g , e : b i t s t r i n g , m: macs ;

event ( sendCom(a , e , m) ) && event ( readCom(b , e , m) ) ==>
a = b .

Finally, Listing 5 formalizes the session replay query. After the Card derives
the key, the event SCP03SK is triggered. This property states that if the three
keys established by the Card with the (believed) OCE are identical for different
time periods i and j, then i and j must match, i.e., i = j.

Listing 5. ProVerif model of a replay query

event SCP03SK(mackey , symkey , mackey , host , host ) .
query rkey : mackey , senc : symkey , smac : mackey ,

i : time , j : time ;
event (SCP03SK( rkey , senc , smac , Card , OCE) ) @i &&
event (SCP03SK( rkey , senc , smac , Card , OCE) ) @j ==> i = j .

4.3 Verification of the Models

We model all three modes in both tools. In our ProVerif models, we include
a sanity check to verify that at least one trace allows the Card to receive the
commands sent by the OCE. Without this check, a query may be considered
as verified only because the event(s) of the query are not reached; for instance,
if the first event is not reached, both true and false can be assumed for the
second event, see Listing 3. We summarize the results of our proofs for the
different modes in both tools in Table 2, which can be compared to Table 1.
All properties are verified with both tools, with semantic differences discussed
in Sect. 4.2. In addition, we present the runtime for each tool when verifying
the different models: ProVerif performs significantly faster than Verifpal on a
personal computer.

4.4 Hybrid and Post-Quantum Protocols

With the ProVerif models established for the classical modes of SCP11, we now
aim to prove that the quantum-resistant versions introduced in Sect. 3 achieve
the same properties as their classical counterparts in the symbolic model.
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Table 2. Verification of the different SCP11 modes.

Property
Verifpal ProVerif

Mode A Mode B Mode C Mode A Mode B Mode C

Authent. OCE to Card ✓ ✓ ✓ ✓

Authent. Card to OCE ✓ ✓ ✓ ✓ ✓ ✓

Message Integrity ✓ ✓ ✓ ✓ ✓ ✓

Data Confidentiality ✓ ✓ ✓ ✓ ✓ ✓

Perfect Forward Secrecy ✓ ✓ ✓ ✓

Session Replay ✓ ✓

Time (rounded) 11 h 2.5 h 50 m 3 s 3 s 2 s

Previous Works on Symbolic Proofs for Post-Quantum Protocols. Un-
like computational tools [3,7], symbolic tools typically do not require adaption
to take into account quantum adversaries. Consequently, we can utilize ProVerif
directly, given an appropriate model for the new primitives introduced in the
post-quantum variants. Several studies have already explored automated proofs
in the symbolic model for post-quantum versions of various protocols, as sum-
marized in Table 3.

Table 3. Post-quantum protocols with security proofs in the formal model with an
automated tool.

(Sub)Protocol Article ProVerif Tamarin Verifpal PQ-Squirrel

OPC UA [44] ✓ ✓

PQ-Wireguard [33] ✓

PQ IKEv2 [24] ✓

KEMTLS [13] ✓

PQ IKEv1 [17] ✓

PQ IKEv2 [17] ✓

PQ X3DH [17] ✓

PQ Signal [4] ✓

PQXDH [5] ✓

iMessage PQ3 [38] ✓

PQ SCP11 This work ✓
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Modeling PQ SCP11. The main distinction from classical protocols is the
introduction of a KEM algorithm. Following the approach in [5], the generic
KEM encapsulation is modeled as the generation of a secret value m, which is
asymmetrically encrypted with the recipient’s public key, and m serves as the
shared secret. The ML-KEM standard [42] uses a shared secret which can be
modeled as (the hash of) the random m concatenated with the public key, as
illustrated in Listing 6. This approach differs from a generic KEM.

Listing 6. ProVerif model of a simplified version of ML-KEM

type kempriv . type kempub . fun kempk( kempriv ) : kempub .
fun h( b i t s t r i n g , kempub ) : b i t s t r i n g .
fun pkeenc (kempub , b i t s t r i n g ) : b i t s t r i n g .
fun pkedec ( kempriv , b i t s t r i n g ) : b i t s t r i n g
reduc fora l l sk : kempriv , m: b i t s t r i n g ;

pkedec ( sk , pkeenc (kempk( sk ) , m) ) = m.
letfun kemenc (pk : kempub) = new m: b i t s t r i n g ;

let k = h(m, pk ) in ( pkeenc (pk , m) , k ) .
letfun kemdec ( sk : kempriv , c t : b i t s t r i n g ) =

let m = pkedec ( sk , c t ) in h(m, kempk( sk ) ) .

To avoid potential public key confusion attacks [5, §4.1.1], we incorporate an
identifier into the signature provided by the certificate authority, facilitating do-
main separation between the public keys. We model the PQ signature algorithm
as the standard signature model [35, §2.2].

Quantum-only versions. The events and queries from the classical models can
be directly reused in the models for the PQ SCP11 versions. Our models for
the PQ modes validate the expected proofs outlined for the classical versions,
as summarized in Table 1. Notably, the PQ versions of Modes A and C allow
to reach the authentication of the OCE to the Card sooner than in the classical
version through the use of signatures. More precisely, the sequence involving
the issuance of a signature by the OCE followed by its verification by the Card
guarantees aliveness of the OCE [39, §2.1] in the Mode C. This same sequence
guarantees to the Card agreement [39, §2.4] with the OCE on the signature.
However, in Mode A, the omission of the ephemeral key in the signed the message
reduces the authentication to aliveness, akin to Mode C. This reduction may be
acceptable if the PQ protocol aims to align with the security properties achieved
in the classical protocol.

During the modeling stage of the PQ protocols, we model firstly a simple
rough key derivation step, by only considering the concatenation of the shared
secret without taking into account the ciphertexts. This is in contrast with what
is described for example in [22, §8]. While assessing the properties related to
SCP11, we found that our initial (incorrect) model did not significantly diverge
from expectations, except for the replay property in Mode B. In this case, since
the OCE is not authenticated, an attacker could send the same shared secret, for
two runs of the protocol. Interestingly, using ML-KEM [42] defeats this attack
since the public key used for the encapsulation is embedded into the shared
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secret construction, but this cannot be considered as a perennial solution. By
aligning our model on the protocol described in Fig. 6, the attack is defeated for
a generic KEM.

Hybrid versions. Hybrid protocols are of first importance today to prepare the
migration between pure-classical and pure-post-quantum protocols. In addition
to ensuring that an SCP11 mode provides the requisite security when its prim-
itives are secure, hybrid protocols must also remain secure if either of the com-
bined primitives—classical or else PQ—is compromised. To model this, we intro-
duce oracles for the attacker via ProVerif process macros, allowing her to submit
public keys and obtain the associated secret keys, but only for either PQ or
classical primitives, as shown in Listing 7.

Listing 7. ProVerif model of the oracle which breaks the public key of a KEM

free at t : channel . (∗ A channel f o r the a t t a c k e r ∗)
fun recoverKEMpriv (kempub ) : kempriv
reduc fora l l sk : kempriv ;

recoverKEMpriv (kempk( sk ) ) = sk [ private ] .
let kem_attacks ( ) =

in ( att , pk : kempub ) ; out ( att , recoverKEMpriv (pk ) ) .

We can verify that the hybrid protocols ensure the same security properties
as the classical protocols when PQ primitives are broken, and conversely the
same security as PQ protocols when the classical primitives are compromised.
Note that, since the signatures issued by the certificate authority are also hybrid,
we model it as a single unbroken signature algorithm rather than a combination
of two signature algorithms—one compromised and one secure.

5 Instantiation and Performance Analysis

When implementing cryptographic protocols in embedded devices, a lot of con-
straints come into play. First, the amount of available resources (RAM, CPU
frequency) is usually very low. Implementing post-quantum algorithms can be
challenging. This is even more the case as implementations on embedded devices
have to be resistant against physical attacks. The cost of securing an implemen-
tation against side-channel and fault attacks can drastically increase the required
amount of RAM, as well as the execution time. On top of that, protocols are
designed for two parties to communicate with each other. The amount of data
exchanged by the parties would directly impact the overall performance of the
protocols.

In this section, we study these metrics for an implementation on a typical
embedded device (32-bit Cortex-M3 CPU at 100 MHz) with a hardware accel-
erator for ECC. The chip supports a baud-rate of 600 Mbit/s. We discuss the
impact of the choice of the PQ algorithm on the execution time of a complete
protocol execution.

https://orcid.org/0000-0002-8799-8568
https://orcid.org/0000-0001-8717-3462
https://orcid.org/0009-0008-2715-3169


Post-Quantum Secure Channel Protocols for eSIMs 23

5.1 Implementation

For our experiments, we naturally chose to implement algorithms that were
standardized by NIST, namely ML-KEM [42] for key encapsulation, and ML-
DSA [41], SLH-DSA [43] and FN-DSA for signature. As the FN-DSA specifi-
cations are not yet available, we implemented the latest version submitted to
the NIST competition, that is the Round 3 version of Falcon [23]. In the rest
of the paper, we will use the name FN-DSA. The ML-KEM primitives were
implemented with side-channel countermeasures such as [15,16].

To align the security levels with the post-quantum algorithms, we imple-
mented the ECC component with three distinct security levels: 128, 192, and
256 bits, corresponding to NIST categories 1, 3, and 5, respectively. We used
the P-256, P-384 and P-521 Elliptic Curve domain parameters as specified in
SP800-186 [14]. Since we simulated the OCE using a desktop computer, the
timing results for the OCE are not relevant. However, the OCE typically has
significantly greater processing power than the chip, making its timing negligi-
ble in this context.

5.2 Performance Analysis

In Table 4, we present the communication and processing time of the chip,
when classic SCP11 using ECC is used. Note that we measure only the secure
channel establishment part, before any SCP03 exchanges. As the communication
time may depend on the negotiated baud-rate and transmission protocol, it is
clearly separated from the processing time of the chip. This communication time
includes both the sending and receiving of data by the chip.

In Tables 5, 6 and 7, we give the same figures for the hybrid version using the
three standardized post-quantum signatures, respectively ML-DSA, SLH-DSA
and FN-DSA. For SLH-DSA, we chose the small variants, as our context only
requires verification. This variant provides the shortest signatures and the fastest
verification times, though it does come with a much slower signing process. As the
signatures are generated by the OCE and can even be done completely offline in
Mode C, this option is optimal for our protocols. Additionally, the tables include
the ratio with respect to the classic version to see the overhead of hybridation.

The first observation from Table 6 is that even with the small variant of
SLH-DSA, the overall performances are very slow, with processing time reaching
up to 5 seconds whenever a verification is required. Also the larger signatures
significantly impact the communication time, with a factor as high as 155 for
Mode C at security level 256. Because SLH-DSA is a hash-based signature, it
could be used on its own, without ECDSA according to [12,1]. However, removing
the ECDSA verification would not lead to substantial improvement; the timings
would remain on the same order of magnitude.

For ML-DSA in Table 5, it is worth noticing that while the impact on the
processing time is non-negligible, it is not more than a factor of 8 at worst.
However, the communication time is more than 40 times slower. Despite this,
the total time remains less than one second for security level 128.
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The results for FN-DSA in Table 7 are much better due to the relatively
small signature size and the efficient verification process. At security level 128,
all modes run in less than 500 ms. In a context where the constrained device
only performs verifications, it is advantageous to choose a signature algorithm
with a short signature and fast verification, such as FN-DSA.

Table 4. Chip-based measurements of classic (ECC) SCP11 protocols execution.

Protocol Sec. level Communication Processing Total

(ms) (ms) (ms)

128 8 67 75

Mode A 192 12 130 142

256 16 225 241

128 6 48 54

Mode B 192 8 93 101

256 11 158 169

128 4 49 53

Mode C 192 6 97 103

256 8 169 177

6 Conclusion

Through our exploration of the SCP11 protocol’s different modes, we identify
challenges in the transition from classical to post-quantum cryptography. Beyond
proving that the original SCP11 protocol achieves its claimed security proper-
ties, we also designed new PQ-only and hybrid protocols that uphold the same
security guarantees as the classical modes. Our formal proofs validate that these
PQ and hybrid designs meet the rigorous requirements for secure deployment in
embedded environments.

By leveraging a range of standardized PQ cryptographic primitives, we mea-
sure the impact of these post-quantum adaptations when integrated into em-
bedded systems, and show that an algorithm with short signatures and fast
verification like FN-DSA is most suited.

To further optimize PQ protocol performance, chip manufacturers may incor-
porate specialized accelerators, increase clock speeds, or expand memory, which
would notably benefit embedded use cases. Improving communication perfor-
mance presents greater challenges, requiring coordination among stakeholders
like mobile and chip manufacturers. As this process will take time, performance
gains in communication may be slower to realize.
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Table 5. Chip-based measurements of hybrid SCP11 protocols execution, with ratio
relative to classic versions, using ML-DSA signature.

Protocol Sec. level Communication Processing Total

(ms) (ratio) (ms) (ratio) (ms) (ratio)

128 267 (×35) 516 (×7.7) 783 (×11)

Mode A 192 380 (×33) 796 (×6.1) 1176 (×8.3)

256 515 (×32) 1184 (×5.3) 1698 (×7.1)

128 117 (×23) 290 (×6.0) 406 (×7.6)

Mode B 192 165 (×21) 427 (×4.6) 591 (×5.9)

256 228 (×22) 629 (×4.0) 857 (×5.1)

128 167 (×43) 348 (×7.1) 516 (×9.8)

Mode C 192 239 (×42) 559 (×5.8) 797 (×7.8)

256 321 (×40) 837 (×5.0) 1157 (×6.5)

Table 6. Chip-based measurements of hybrid SCP11 protocols execution, with ratio
relative to classic versions, using SLH-DSA signature (small).

Protocol Sec. level Communication Processing Total

(ms) (ratio) (ms) (ratio) (ms) (ratio)

128 544 (×71) 2291 (×34) 2835 (×38)

Mode A 192 1079 (×93) 3398 (×26) 4477 (×32)

256 1932 (×122) 5002 (×22) 6934 (×29)

128 226 (×44) 290 (×6.0) 516 (×9.7)

Mode B 192 424 (×55) 427 (×4.6) 851 (×8.4)

256 733 (×69) 629 (×4.0) 1362 (×8.1)

128 335 (×87) 2123 (×43) 2458 (×47)

Mode C 192 679 (×118) 3160 (×33) 3839 (×37)

256 1234 (×155) 4655 (×27) 5889 (×33)
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Table 7. Chip-based measurements of hybrid SCP11 protocols execution, with ratio
relative to classic versions, using FN-DSA (Round 3 Falcon) signature. Note that FN-
DSA does not specify a parameter set for security level 192.

Protocol Sec. level Communication Processing Total

(ms) (ratio) (ms) (ratio) (ms) (ratio)

Mode A 128 136 (×18) 341 (×5.1) 477 (×6.4)

256 265 (×17) 750 (×3.3) 1014 (×4.2)

Mode B 128 82 (×16) 290 (×6.0) 371 (×7.0)

256 162 (×15) 629 (×4.0) 791 (×4.7)

Mode C 128 72 (×19) 173 (×3.5) 244 (×4.6)

256 137 (×17) 403 (×2.4) 540 (×3.0)

Our future research will broaden the focus to additional protocols in the em-
bedded ecosystem, providing formal proofs for their PQ adaptations. We also
plan to collaborate with GlobalPlatform working groups to support PQ proto-
col standardization and ensure smooth PQ migration across diverse embedded
applications.
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OCE Card

CertHC , EC.skC, KEM.skC, pk
H
CApkHCA

GET DATA()

CertHC

(EC.pkC,KEM.pkC)← Cert.Verify(CertHC , pk
H
CA)

(EC.eskOCE,EC.epkOCE)← EC.KeyGen()

INTERNAL AUTH(EC.epkOCE)

(EC.eskC,EC.epkC)← EC.KeyGen()

Sss← EC.KeyAgr(EC.skC,EC.epkOCE)

See← EC.KeyAgr(EC.eskC,EC.epkOCE)

(KEM.eskC,KEM.epkC)← KEM.KeyGen()

EC.epkC,KEM.epkC

Sss← EC.KeyAgr(EC.eskOCE,EC.pkC)

See← EC.KeyAgr(EC.eskOCE,EC.epkC)

(Ss, c.Ss)← KEM.Encaps(KEM.pkC)

(Se, c.Se)← KEM.Encaps(KEM.epkC)

INTERNAL AUTH2(c.Ss, c.Se)

Ss← KEM.Decaps(KEM.skC, c.Ss)

Se← KEM.Decaps(KEM.eskC, c.Se)

(SKReceipt, SKSession)← KDeriv(Sss|See|EC.pkC|EC.epkC|Ss|Se|c.Ss|c.Se)
Receipt← MAC(SKReceipt,EC.epkOCE|EC.epkC|KEM.epkC|c.Ss)

Receipt

(SKReceipt, SKSession)← KDeriv(Sss|See|EC.pkC|EC.epkC|Ss|Se|c.Ss|c.Se)
Verify Receipt

SCP03 protected exchanges

Fig. 8. Hybrid version for Mode B
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OCE

CertHOCE, EC.skOCE, SIG.skOCE, EC.pkC, KEM.pkC

Prepare
(EC.eskOCE,EC.epkOCE)← EC.KeyGen()

Sss← EC.KeyAgr(EC.skOCE,EC.pkC)

Ses← EC.KeyAgr(EC.eskOCE,EC.pkC)

(Ss, c.Ss)← KEM.Encaps(KEM.pkC)

sigOCE ← SIG.Sign(SIG.skOCE, c.Ss)

(SKReceipt, SKSession)← KDeriv(Sss|Ses|EC.pkC|Ss|c.Ss)
Receipt← MAC(SKReceipt,EC.epkOCE|EC.pkC|KEM.pkC|c.Ss)
Wrap following payloads into SCP03 using SKSession

Distribute Commands to mobile app.

Mobile eSIM

KEM.skC, EC.skC, pk
H
CA

PSO(CertHOCE)

(EC.pkOCE,SIG.skOCE)← Cert.Verify(CertHOCE, pk
H
CA)

PSO Response

MUTUAL AUTH(EC.epkOCE, c.Ss, sigOCE)

Sss← EC.KeyAgr(EC.skC,EC.pkOCE)

Ses← EC.KeyAgr(EC.skC,EC.epkOCE)

ok/nok ← SIG.Verify(SIG.pkOCE, sigOCE)

Ss← KEM.Decaps(KEM.skC, c.Ss)

(SKReceipt,SKSession)← KDeriv(Sss|Ses|EC.pkC|Ss|c.Ss)
Receipt← MAC(SKReceipt,EC.epkOCE|EC.pkC|KEM.pkC|c.Ss)

Receipt

Verify Receipt

Continue communication

SCP03 protected exchanges

Fig. 9. Hybrid version for Mode C
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