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Abstract. This study aims to determine the complete and precise differ-
ential properties of SM4, which have remained unknown for over twenty
years after the cipher was initially released. A Boolean Satisfiability
Problem (SAT) based automatic search approach is employed to achieve
the objective. To improve the limited efficiency of the search focused on
differential probabilities, we want to investigate the feasibility of integrat-
ing human expertise into an automatic approach to enhance the search
speed. This study presents the construction of four new SAT models
that describe the human-identified specific properties of short differen-
tial characteristics. All of these models are integrated into the fundamen-
tal model, and the SAT solver is implemented to assess the acceleration
capabilities of the new models. The experimental results indicate that in-
cluding three new models effectively decreases the overall execution time
of the SAT solver. Using the novel models, we obtain the first precise
minimal values for the number of active S-boxes of SM4 under single-key
(complete rounds) and related-key (1-round to 19-round) settings. The
first precise upper bound for differential probabilities of SM4 (1-round
to 20-round) is also determined. In addition, we present the first publicly
revealed optimal 19-round differential characteristic of SM4.

Keywords: Differential characteristic · Automatic search · SM4.

1 Introduction

SMS4, also called the Chinese National Encryption Algorithm or GB/T 32907-
2016, is a symmetric block cipher standard China devised for secure data en-
cryption. China’s State Cryptography Administration declassified it in 2006 ([7]
gives an English translation), and it became the first Chinese commercial block
cipher standard in 2012 with the new name SM4. It is employed in various sec-
tors, such as finance, government, and telecommunications. In 2016, SM4 was
adopted as a national standard in China and has been incorporated into numer-
ous international standards, including ISO/IEC 18033-3:2010 for block ciphers.
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Given its importance in commercial and governmental communications, SM4
has been the subject of considerable cryptanalytic effort. Like many modern
block ciphers, SM4 is designed to resist differential cryptanalysis, one of the
most potent cryptanalytic methods developed by Biham and Shamir [2,3,4].
Researchers have explored various differential characteristics to find potential
vulnerabilities. Su et al. [15] investigated the structure of SM4 and proposed
several necessary conditions for short differential characteristics of the cipher.
With these conditions, they found a family of 19-round differential characteristics
of SM4, which included one characteristic with the largest probability of 2−124.

With the introduction of the automatic method [13,12,18], the search for
differential characteristics became much more accessible; many researchers at-
tempted to use the automatic method to evaluate the differential property of
SM4. Zhang et al. [21] exploited the Mixed Integer Linear Programming (MILP)
method to determine the minimum number of active S-boxes for SM4 in the
single-key and the related-key settings. They proved with the MILP optimiser
that no differential characteristic with a probability larger than 2−128 exists for
23 rounds of SM4 in the single-key setting and 19 rounds in the related-key
setting. Later, Li et al. [8] proposed a new method to describe the Differen-
tial Distribution Table (DDT) of large S-boxes with the MILP model. Their
method was applied to SM4 for a more accurate lower bound than in [21]. Be-
sides, they found seven new 19-round differential characteristics of SM4 with
probability 2−124 apart from the one in [15]. Liu et al. [9] created an automatic
model based on the Simple Theorem Prover (STP) to find optimal differential
and linear characteristics for S-box-based ciphers. With the new model, they
found a 19-round differential characteristic of SM4 with probability 2−123. How-
ever, they cannot determine whether 2−123 is the upper bound of probabilities
for 19-round differential characteristics of SM4. Furthermore, they withheld the
specific information on the 19-round characteristic with a probability of 2−123.

Nearly twenty years after the cipher was published, the exact lower bound of
differential active S-boxes and the exact upper bound on differential probability
for SM4 have not yet been fully determined. In this paper, we aim to fill this
vacancy.

Contributions of the paper. As the Boolean Satisfiability Problem (SAT)
was not used in the previous automatic search concerning SM4, we plan to
implement the SAT method to conduct the search and ascertain precise bounds
for SM4. We develop the fundamental SAT model to identify the differential
characteristics of SM4 with the lowest number of active S-boxes and the highest
differential probability. The fundamental SAT model efficiently obtains accurate
lower bounds for the number of active S-boxes in both single-key and related-key
settings.

Given the relatively poor performance of the search orientated to differen-
tial probabilities, we are curious whether it is possible to incorporate human
insight into automatic search to accelerate the search. Before the introduction
of automatic methods, cryptographers were still able to use their intuition and
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experience-based heuristics to accomplish the task of looking for differential char-
acteristics. Unique capabilities that humans possess are frequently challenging
for algorithms to replicate entirely. Taking this as an inspiration, we endeav-
our to transform the four necessary conditions proposed by Su et al. [15] into
Boolean formulas and develop four novel SAT models. These models are incor-
porated into the fundamental SAT model, and the SAT solver is employed to
evaluate the acceleration capabilities of the new models. The empirical find-
ings demonstrate that the inclusion of three novel models does reduce the total
execution time of the SAT solver. Furthermore, we observe that incorporating
human comprehension is of greater significance when pursuing long differential
characteristics.

The differential properties of SM4 are updated with the new models. Lower
bounds on the number of active S-boxes of SM4 are established in both single-
key (complete rounds) and related-key (1-round to 19-round) settings. Since our
search considers the whole DDT of the S-box, the new bounds are tight. The first
precise upper bound for differential probabilities of SM4 (1-round to 20-round)
is also derived. In addition, we determine that the upper bound of probabilities
for 19-round differential characteristics is 2−123 and present the first publicly
revealed optimal 19-round differential characteristic of SM4.

The paper’s organisation is as follows. In Section 2, we will outline the pre-
liminaries that will be utilised throughout the study and provide a description
of SM4. In Section 3, the fundamental SAT model for the search for differential
characteristics is developed. In Section 4, we develop new SAT models specific
to four conditions of SM4’s short differential characteristics to integrate human
insights into automatic search. The updated findings achieved using the new
models are presented in Section 5. Finally, Section 6 serves as the conclusion of
the work.

2 Preliminaries

This section commences with an overview of the fundamental concept of dif-
ferential cryptanalysis. Subsequently, the objective cipher of the paper, SM4, is
introduced. We then recall four conditions for SM4’s short differential charac-
teristics.

2.1 Differential Cryptanalysis

Differential cryptanalysis is a cryptanalytic technique primarily used for block
and stream ciphers. It focuses on the impact of input difference ∆in on the
resulting output difference ∆out in cryptographic algorithms. Biham and Shamir
[2,3,4] developed this method during the late 1980s and early 1990s. The pair of
differences (∆in,∆out) is referred to as a differential. The differential probability
of the differential over an n-bit primitive EK is calculated to be

PrEK
(∆in,∆out) =

{x ∈ Fn
2 | EK(x)⊕ EK(x⊕∆in) = ∆out}

2n
.
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The weight ω of the differential, a concept closely related to the probability of
the differential, is equal to

ωEK
(∆in,∆out) = − log2[PrEK

(∆in,∆out)].

The process of assessing the probability of a differential to identify a valid dif-
ferential for a cryptographic algorithm with multiple iterations is recognised as
particularly complex. The differential is commonly localised by constructing dif-
ferential characteristics, which facilitate the tracking of internal differences after
each round. Denote (∆in = ∆0,∆1, . . . ,∆R = ∆out) as an R-round differential
characteristic. Assume that the R-round encryption EK can be represented as
the composition of R round functions as EK = FKR−1

◦FKR−2
◦ · · · ◦FK0

. Based
on the assumption that the round keys K0, K1, . . ., KR−1 are uniformly random
and independent, the probability of the differential characteristic is

PrEK
(∆0,∆1, . . . ,∆R) =

R−1∏
r=0

PrFKr
(∆r,∆r+1).

S-boxes are typically the most complicated element when determining dif-
ferential characteristics for round functions. In order to simplify the study of
S-boxes, we commonly generate a Differential Distribution Table (DDT). The
DDT for an s-bit S-box consists of 2s rows and 2s columns. The value in the i-th
row and j-th column is the number of pairs that validate the differential (i, j).
The S-box is active if its differential is associated with an element in the DDT
that is strictly less than 2s and is nonzero.

2.2 Specification of SM4

SM4 [7] is a block cipher with a block size of 128 bits and a 128-bit key. It
comprises 32 rounds, and the round function’s overall framework is based on
an unbalanced Feistel network. Only one of the four 32-bit words is updated in
each round. In the r-th round (0 ⩽ r ⩽ 31), the 128-bit input state is parti-
tioned into four 32-bit words, denoted as Xr∥Xr+1∥Xr+2∥Xr+3, and the 32-bit
round key is denoted as RKr. The r-th round’s output can be represented as
Xr+1∥Xr+2∥Xr+3∥Xr+4, where Xr+4 = Xr ⊕ T (Xr+1 ⊕Xr+2 ⊕Xr+3 ⊕ RKr).
The transformation T consists of a nonlinear substitution S and a linear diffu-
sion function L, represented as T = L ◦ S. An illustration of the round function
can be found in Figure 1.

Nonlinear substitution S The nonlinear transformation S applies the iden-
tical 8× 8 S-box S to each byte of the 32-bit input.

Linear diffusion L The linear function L for the 32-bit input X is defined as

L(X) = X ⊕ (X ≪ 2)⊕ (X ≪ 10)⊕ (X ≪ 18)⊕ (X ≪ 24).

The key schedule of SM4 is almost the same as the round function, and we
omit the details. For further information, see [7].



Exploring the Optimal Differential Characteristics of SM4 (Full Version) 5

2.3 Necessary Conditions for Differential Characteristics of SM4

Finding differential characteristics in a cipher is vital to conducting differen-
tial cryptanalysis. However, finding effective differential characteristics can be
challenging and requires a deep understanding of the cipher’s structure and be-
haviour. Su et al. [15] proposed four necessary conditions for short differential
characteristics of SM4. In the following, we use ∆Yr and ∆Zr to denote the
input and output differences of the nonlinear substitution S in the r-th round.
0ℓ denotes an ℓ-bit string, with each bit being zero.

Theorem 1 (Su et al. [15]). The following equation holds for any 5-round
differential characteristic from the r-th to the (r + 4)-th round.

∆Xr+1 ⊕∆Xr+2 ⊕∆Xr+3 ⊕∆Xr+5 ⊕∆Xr+6 ⊕∆Xr+7 = ∆Yr ⊕∆Yr+4.

Theorem 2 (Su et al. [15]). In a 5-round differential characteristic spanning
from the r-th round to the (r + 4)-th round, if ∆Yr ̸= ∆Yr+4, there must be a
minimum of five active S-boxes in the characteristic.

Theorem 3 (Su et al. [15]). For any 6-round differential characteristic from
the r-th to the (r+5)-th round, the equation ∆Xr+4⊕∆Xr+8 = ∆Yr+4⊕∆Yr+5

is valid if ∆Yr = ∆Yr+1 = 032.

Corollary 1 (Su et al. [15]). For any 6-round differential characteristic from
the r-th to the (r + 5)-th round, the equation ∆Xr+1 ⊕∆Xr+5 = ∆Yr ⊕∆Yr+1

is valid if ∆Yr+4 = ∆Yr+5 = 032.

With the four conditions, Su et al. found a family of 19-round differential
characteristics of SM4. The probability of the best 19-round differential charac-
teristic they found achieves 2−124.

3 Automatic Search of Differential Characteristics

After reviewing prior research [15,21,8,9] on the search for differential charac-
teristics of SM4, we discover that the precise lower bound of differential active
S-boxes and the exact upper bound on differential probability for the cipher have
yet to be thoroughly determined. Given that the Boolean Satisfiability Problem
(SAT) was not employed in the previous search, we intend to employ the SAT
method to conduct the search and determine precise bounds for SM4.

3.1 Boolean Satisfiability Problem

The Boolean Satisfiability Problem (SAT) is one of the central problems in
theoretical computer science, especially in algorithm design, complexity theory,
and artificial intelligence. It involves determining whether an assignment of truth
values (true or false) to variables exists in a Boolean formula such that the
formula evaluates to true. The formula is typically expressed in Conjunctive
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Normal Form (CNF), in which the formula is a conjunction (AND, ∧) of multiple
clauses, and each clause is a disjunction (OR, ∨) of literals (a variable or its
negation ·̄).

SAT was the first problem to be proven NP-complete [6]. Identifying solu-
tions for a given Boolean formula can be exceedingly challenging and potentially
require a time commitment that increases exponentially with the input size.
Highly efficient SAT solvers can handle problems involving hundreds to millions
of variables and clauses. In this study, we employ the SAT solver Kissat [1] in
light of its performance in international SAT competitions.

Converting the differential propagation through various components into
Boolean formulas in CNF can accomplish the search for differential character-
istics in SM4. Figure 1 depicts the necessary Boolean variables and models for
the SAT problems of SM4, in which ∆Xr, . . ., ∆Xr+4, ∆Yr, and ∆Zr are 32-bit
vectors and δr, pr, and qr are 4-bit vectors.

≪ 2

≪ 10

≪ 18

≪ 24

∆Zr

S

δr
pr∥qr

∆Yr

∆Xr ∆Xr+1 ∆Xr+2 ∆Xr+3

∆Xr+1 ∆Xr+2 ∆Xr+3 ∆Xr+4

Boolean variables in the SAT problem

SAT models for linear components

SAT models for nonlinear components

Fig. 1. Variables and models of SAT problems for SM4.

3.2 SAT Models for Linear Components of SM4

The linear components of SM4 consist of branching operations, 3-input XOR
operations, and the function L. Note that the branching operation is essentially
a copy operation. We can reuse the Boolean variables rather than introduce new
variables and generate additional SAT models. Also, as seen in Figure 1, the
function L is equivalent to a 6-input XOR operation. To characterise differential
propagation over linear components of SM4, we only need the SAT model for
multiple-input XOR operations. As the solver Kissat does not support Boolean
formulas with XOR operations, we employ the SAT model in [17]. In order to
prevent redundancy, we exclusively offer the SAT model for the 3-input XOR
operation. The model for the 6-input XOR operation can be generated compa-
rably. Below, we designate the i-th bit of an n-bit vector ∆X as ∆X[i], where
0 ⩽ i < n.

Model 1 (3-Input XOR, [17]) The input and output differences for the n-
bit XOR operation Yr = Xr+1 ⊕Xr+2 ⊕Xr+3 are denoted as ∆Xr+1, ∆Xr+2,
∆Xr+3, and ∆Yr, respectively. The differential propagation is valid if and only if
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∆Xr+1, ∆Xr+2, ∆Xr+3, and ∆Yr validate the following equations for all 4-bit
vectors (α[0], α[1], α[2], α[3]) with α[0]⊕ α[1]⊕ α[2]⊕ α[3] = 1.

(∆Xr+1[i]⊕ α[0]) ∨ · · · ∨ (∆Xr+3[i]⊕ α[2]) ∨ (∆Yr[i]⊕ α[3]) = 1, 0 ⩽ i < n.

Remark 1. The expressions in Model 1 are clauses in CNF, as ∆X∗[i] ⊕ α[j] is
equal to ∆X∗[i] when α[j] = 0 and to ∆X∗[i] otherwise.

3.3 SAT Models for the S-box of SM4

The S-box S is the sole nonlinear component in SM4. The SAT models for S
orientated to differential active S-boxes and differential probabilities are con-
structed using the method outlined in [16]. Sixteen Boolean variables ∆X =
(∆X[0],∆X[1], . . . ,∆X[7]) and ∆Y = (∆Y [0],∆Y [1], . . . ,∆Y [7]) should be in-
troduced in both models to represent S’s input and output differences.

SAT model of S oriented to active S-boxes. In order to develop the SAT model fo-
cused on active S-boxes, it is necessary to include an additional Boolean variable
represented as δ to indicate the activation status of the S-box. More precisely,
within the prerequest that (∆X,∆Y ) is a possible differential, the value of δ is
1 for active S-boxes and 0 for inactive S-boxes. Next, we may construct the set,

S1 =

∆X∥∆Y ∥δ

∣∣∣∣∣∣∣
∆X,∆Y ∈ F8

2, δ ∈ F2,PrS(∆X,∆Y ) > 0

δ =

{
1, if PrS(∆X,∆Y ) < 1

0, if PrS(∆X,∆Y ) = 1

 ,

which includes all possible values for ∆X∥∆Y ∥δ. To ensure that ∆X∥∆Y ∥δ only
accepts values from the set S1, we generate a clause

7∨
i=0

(∆X[i]⊕ ξ[i]) ∨
7∨

i=0

(∆Y [i]⊕ ξ[i+ 8]) ∨ (δ ⊕ ξ[16]) = 1

for each 17-bit vector ξ /∈ S1. The collection of these clauses can function as a
fundamental SAT model for the S-box. Given that the set F17

2 \S1 contains 98686
vectors, directly employing the primary SAT model will decrease the speed of
the search process. We employ the ESPRESSO4 algorithm [5] to simplify the
SAT model to reduce its size. The final SAT model orientated to active S-boxes
consists of 8286 clauses. The collection of 8286 clauses is labelled as C1. Every
element ξ′ in C1 may be represented as a 17-bit string, where each bit ξ′[i] takes
values from the set {0, 1, ∗}. When these strings are interpreted as clauses, we
specify that ∆X[i] ⊕ ξ′[i] ≡ 1 if ξ′[i] = ∗. In other words, when ξ′[i] = ∗, there
is no restriction on the value of ∆X[i]; hence, the term ∆X[i] ⊕ ξ′[i] can be
deleted from the clause expression. Given these symbols, the SAT model focused
on active S-boxes can be formally represented in the following.
4 The source code for the algorithm is publicly accessible at https://github.com/
classabbyamp/espresso-logic.

https://github.com/classabbyamp/espresso-logic
https://github.com/classabbyamp/espresso-logic
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Model 2 (Activation Status of S) The S-box differential (∆X,∆Y ) is valid,
and δ accurately represents S’s activation state, if and only if ∆X, ∆Y , and δ
verify the following equations for all 17-bit strings ξ′ in C1.

7∨
i=0

(∆X[i]⊕ ξ′[i]) ∨
7∨

i=0

(∆Y [i]⊕ ξ′[i+ 8]) ∨ (δ ⊕ ξ′[16]) = 1.

SAT model of S oriented to probabilities. The probability of possible differentials
for the S-box S can take three values: 2−7, 2−6, or 1. For each S-box, we introduce
two Boolean variables p and q to represent the differential probability of possible
propagations. Assume that the weight of the possible propagation is p+6q. The
18-bit vector ∆X∥∆Y ∥p∥q is restricted to values from the set

S2 =

∆X∥∆Y ∥p∥q

∣∣∣∣∣∣∣∣∣
∆X,∆Y ∈ F8

2, p, q ∈ F2, ,PrS(∆X,∆Y ) > 0

p∥q =


1∥1, if PrS(∆X,∆Y ) = 2−7

0∥1, if PrS(∆X,∆Y ) = 2−6

0∥0, if PrS(∆X,∆Y ) = 1

 .

Each vector in F18
2 \S2 may be interpreted as a clause, and all of these clauses

together form the basic SAT model. We meticulously obtain 8599 clauses by
simplifying the 229758 clauses generated by vectors in F18

2 \S2 using ESPRESSO.
The set of the 8599 clauses is denoted as C2. The SAT model of the S-box
orientated to differential probabilities is derived as follows.

Model 3 (Probability of S) The differential (∆X,∆Y ) of the S-box is valid,
and p + 6q equals the weight of the differential, if and only if ∆X, ∆Y , p, and
q validate the following equations for all 18-bit strings ζ in C2.

7∨
i=0

(∆X[i]⊕ ζ[i]) ∨
7∨

i=0

(∆Y [i]⊕ ζ[i+ 8]) ∨ (p⊕ ζ[16]) ∨ (q ⊕ ζ[17]) = 1.

3.4 SAT Model for the Objective Function

We aim to identify differential characteristics that exhibit fewer active S-boxes or

high probabilities. The cardinality inequality
τ−1∑
i=0

xi ⩽ ϖ may be used to abstract

the objective function, where xi (0 ⩽ i < τ) represent Boolean variables that
reflect the activation status of the S-boxes or convey their differential probability.
ϖ denotes a predetermined upper limit for the number of active S-boxes or the
weight of the differential characteristics.

The sequential encoding method [14] can be employed to transform the car-
dinality inequality into clauses. Nevertheless, the sequential encoding method’s
direct integration will result in a sluggish searching phase, as the block size
and the size of the S-box for SM4 are relatively large. Consequently, we exploit
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the novel model proposed by Wang et al. [19], which integrates the sequential
encoding method and Matsui’s bounding conditions [10].

Knowledge of the lower and upper bounds of all partial sums
τ ′∑
i=0

xi (0 ⩽ τ ′ <

τ) is necessary for the model described in [19]. We initially implement Algorithm
1 in [19] to determine the lower bound lτ ′ and upper bound uτ ′ for each partial

sum
τ ′∑
i=0

xi. The following model can eliminate solutions that violate at least one

constraint between
τ−1∑
i=0

xi ⩽ ϖ and lτ ′ ⩽
τ ′∑
i=0

xi ⩽ uτ ′ (0 ⩽ τ ′ < τ).

Model 4 (Objective Function, [19]) The main objective function
τ−1∑
i=0

xi ⩽
ϖ requires the declaration of auxiliary Boolean variables αi,j (0 ⩽ i ⩽ τ − 2,

0 ⩽ j ⩽ ϖ − 1). The simultaneous validity of all constraints
τ−1∑
i=0

xi ⩽ ϖ and

lτ ′ ⩽
τ ′∑
i=0

xi ⩽ uτ ′ (0 ⩽ τ ′ < τ) is ensured by the subsequent clauses.

if l0 = 0 and u0 = 1 then x0 ∨ α0,0 = 1

if l0 = u0 = 0 then x0 = 1

if l0 = 1 and u0 = 1 then x0 = 1

if uτ ′ = 0 then xτ ′ = 1

if uτ ′ > 0

if lτ ′ = 0 then xτ ′ ∨ ατ ′,0 = 1

if lτ ′−1 < uτ ′−1 then ατ ′−1,0 ∨ ατ ′,0 = 1

if lτ ′−1 = j then

xτ ′ ∨ ατ ′,j = 1

if lτ ′−1 < j and uτ ′−1 ⩾ j then

xτ ′ ∨ ατ ′−1,j−1 ∨ ατ ′,j = 1

if lτ ′−1 ⩽ j and uτ ′−1 ⩾ j + 1 then

ατ ′−1,j ∨ ατ ′,j = 1


j ⩾ max(lτ ′ , 1)

and j ⩽ uτ ′ − 1

if uτ ′−1 = uτ ′ and lτ ′−1 < uτ ′ then xτ ′ ∨ ατ ′−1,uτ′−1 = 1

if lτ ′−1 = uτ ′ then xτ ′ = 1



τ ′ ⩾ 1 and

τ ′ ⩽ τ − 2.

if uτ−1 = 0 then xτ−1 = 0

if uτ−1 > 0

if uτ−2 = uτ−1 and lτ−2 < uτ−1 then xτ−1 ∨ ατ−2,uτ−1−1 = 1

if lτ−2 = uτ−1 then xτ−1 = 1
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Combining all of the models in Sections 3.2 - 3.4, we can assemble SAT
problems to search for differential characteristics with the fewest active S-boxes
or the highest differential probability.

4 Automatic Search Enhanced by Human Insights

SM4’s lower bounds for the number of active S-boxes in the single-key and
related-key settings can be rapidly determined. However, the search of the SAT
solver is somewhat delayed when we strive for the best differential characteristics
with the highest probability. Recall that cryptographers could still utilise their
intuition and experience-based heuristics when there were no automatic methods
to complete the differential characteristic searching mission. The unique capa-
bilities that humans possess are often tricky for algorithms to replicate in their
totality. Therefore, we query the feasibility of integrating human insights into
automatic search to enhance search performance by leveraging the collaborative
synergy between human intuition and machine efficiency.

To provide a preliminary response to this question, we first convert the four
conditions in Section 2.3 into SAT models. After incorporating these SAT models
into the original SAT problems, we employ the SAT solver to determine whether
the search for the optimal differential characteristics is accelerated.

4.1 SAT Models of Four Conditions in [15]

For the new models in this part, we keep the Boolean variables shown in Figure 1
and do not add any new ones. Theorem 1’s condition is essentially a multiple-
input XOR operation, making constructing its SAT model simple.

Model 5 (Theorem 1) For any 5-round differential characteristics from the
r-th to the (r + 4)-th round, the conditions in Theorem 1 hold if and only if
∆Xr+1, ∆Xr+2, ∆Xr+3, ∆Xr+5, ∆Xr+6, ∆Xr+7, ∆Yr, and ∆Yr+4 verify the

following equations for all 8-bit vectors (α[0], α[1], . . . , α[7]) with
7⊕

i=0

α[i] = 1.

(∆Xr+1[i]⊕ α[0]) ∨ (∆Xr+2[i]⊕ α[1]) ∨ · · · ∨ (∆Yr+4[i]⊕ α[7]) = 1, 0 ⩽ i < n.

Based on the variables shown in Figure 1, the condition in Theorem 2 can

be restated as follows: if ∆Yr ⊕ ∆Yr+4 ̸= 032, then
r+4∑
i=r

3∑
j=0

qi[j] ⩾ 5. The for-

mula
r+4∑
i=r

3∑
j=0

qi[j] ⩾ 5 is equivalent to limiting the region of the 20-bit vector

qr∥qr+1∥ · · · ∥qr+4 to those with a Hamming weight of at least 5. We construct
the set

S3 =

{
η ∈ F20

2

∣∣∣∣∣
19∑
i=0

η[i] ⩾ 5

}
.
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to exclude 20-bit vectors with Hamming weights less than 5. Similarly to the
development of the SAT model for the S-box discussed in Section 3.3, the clauses
generated by using vectors in the set F20

2 \S3 allow us to remove all vectors with
a Hamming weight below 5. Following the simplification with ESPRESSO, we
have a total of 4845 clauses. The collection of these clauses is symbolised as C3.
In order to construct the SAT model for Theorem 2, it is sufficient to exclude
all impossible values of the 84-bit vector ∆Yr∥∆Yr+4∥qr∥ · · · ∥qr+4, namely

32-bit string︷ ︸︸ ︷
∗ · · · ∗ 0

k-th bit
∗ · · · ∗ ∥

32-bit string︷ ︸︸ ︷
∗ · · · ∗ 1

k-th bit
∗ · · · ∗ ∥

20-bit string︷ ︸︸ ︷
qr∥ · · · ∥qr+4

r+4∑
i=r

3∑
j=0

qi[j]<5

and

32-bit string︷ ︸︸ ︷
∗ · · · ∗ 1

k-th bit
∗ · · · ∗ ∥

32-bit string︷ ︸︸ ︷
∗ · · · ∗ 0

k-th bit
∗ · · · ∗ ∥

20-bit string︷ ︸︸ ︷
qr∥ · · · ∥qr+4

r+4∑
i=r

3∑
j=0

qi[j]<5

for all 0 ⩽ k < 32.

Accordingly, we formulate the subsequent model.

Model 6 (Theorem 2) The conditions in Theorem 2 are established for any
5-round differential characteristics from the r-th to the (r + 4)-th round if and
only if ∆Yr, ∆Yr+4, qr, . . ., and qr+4 validate the following equations for all
20-bit strings η ∈ C3.

∆Yr[k] ∨∆Yr+4[k] ∨ (qr[0]⊕ η[0]) ∨ · · · ∨ (qr+4[3]⊕ η[19]) = 1,

∆Yr[k] ∨∆Yr+4[k] ∨ (qr[0]⊕ η[0]) ∨ · · · ∨ (qr+4[3]⊕ η[19]) = 1, 0 ⩽ k < 32.

The development of SAT models of Theorem 3 and Corollary 1 is nearly iden-
tical, and we will use Theorem 3 as an illustrative case. With the Boolean vari-
ables depicted in Figure 1, the condition in Theorem 3 is reformulated as follows:
if qr = qr+1 = 04, then ∆Xr+4⊕∆Xr+8⊕∆Yr+4⊕∆Yr+5 = 0. Therefore, every
impossible value of the 136-bit vector ∆Xr+4∥∆Xr+8∥∆Yr+4∥∆Yr+5∥qr∥qr+1

adheres to the form

32-bit string︷ ︸︸ ︷
∗· · ·∆Xr+4[k]· · ·∗ ∥

32-bit string︷ ︸︸ ︷
∗· · ·∆Xr+8[k]· · ·∗ ∥

32-bit string︷ ︸︸ ︷
∗· · ·∆Yr+4[k]· · ·∗ ∥

32-bit string︷ ︸︸ ︷
∗· · ·∆Yr+5[k]· · ·∗

∆Xr+4[k]⊕∆Xr+8[k]⊕∆Yr+4[k]⊕∆Yr+5[k]=1

∥08,

where 0 ⩽ k < 32. Denote the set {α ∈ F4
2 | α[0] ⊕ α[1] ⊕ α[2] ⊕ α[3] = 1} as

C4. Conditions in Theorem 3 and Corollary 1 can be incorporated into the SAT
problem of SM4 via the subsequent two models.

Model 7 (Theorem 3) For any 6-round differential characteristics from the r-
th to the (r+5)-th round, the conditions in Theorem 3 are established if and only
if ∆Xr+4, ∆Xr+8, ∆Yr+4, ∆Yr+5, qr, and qr+1 validate the following equations
for all vectors α in C4.
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(∆Xr+4[k]⊕ α[0])∨· · ·∨(∆Yr+5[k]⊕ α[3])∨
3∨

i=0

(qr[i]∨qr+1[i]) = 1, 0 ⩽ k < 32.

Model 8 (Corollary 1) For any 6-round differential characteristics from the
r-th to the (r + 5)-th round, the conditions in Corollary 1 are established if
and only if ∆Xr+1, ∆Xr+5, ∆Yr, ∆Yr+1, qr+4, and qr+5 validate the following
equations for all vectors α in C4.

(∆Xr+1[k]⊕ α[0])∨· · ·∨(∆Yr+1[k]⊕ α[3])∨
3∨

i=0

(qr+4[i]∨qr+5[i])=1, 0⩽k<32.

The four SAT models for the conditions suggested by Su et al. [15] have
been formulated. Upon cursory computation, it is determined that Models 5 - 8
contain 4096, 310080, 256, and 256 clauses, respectively.

4.2 Acceleration Performance of New Models

We individually include Models 5 - 8 in the SAT problem and use the SAT solver
to determine the differential characteristics of SM4 with the highest probabilities,
for a range of one to twenty rounds. All the tests are implemented on a desktop
with Apple M2 Ultra Processor, and the SAT solver utilises one thread. See
Figure 2 for a comparison of the SAT solver’s runtime.
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Fig. 2. Comparing runtime under different models.

Figure 2 illustrates that the solution time for the original SAT problem,
without any additional models, is 2656030.3 seconds. However, by combining
Model 5, Model 7, and Model 8, the overall runtime has been decreased to
different extents. The most effective model is Model 5. In comparison to the
overall runtime of the original SAT problem, the total runtime was decreased by
more than 64 hours.
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Model 6 exhibits the most poor performance. Within the given time con-
straint, the SAT problem incorporating Model 6 can only be resolved for up
to 18 rounds. Furthermore, compared to other models’ performance, the search
phase for the initial eighteen rounds is significantly time-consuming. We hypoth-
esise that the reason is the excessive number of clauses in Model 6. It should be
noted that the original SAT problem for the search of 5-round differential char-
acteristics includes around 200000 clauses. Consequently, the size of Model 6
exceeds the size of the original SAT problem. Incorporating these clauses will re-
sult in a considerably more complex SAT problem, thereby delaying the solver’s
solve phase. This finding serves as a reminder that when integrating human in-
sights into automatic search, it is important to govern the size of the additional
model within an appropriate range.

Another noteworthy finding is that the acceleration impact caused by intro-
ducing new models becomes increasingly substantial after 18 rounds. It suggests
that the inclusion of human understanding is more significant in pursuing long
differential characteristics, which are the necessary distinguishers in differential
attacks.

5 Precise Bounds on Differential Properties of SM4

In this section, we provide the precise bounds on differential properties of SM4.

5.1 Lower Bounds on Active S-boxes in the Single-Key Setting

Since the search for the minimum active S-boxes based on the original SAT
problem is very quick, we do not introduce any additional models. The runtime
to get the full lower bound from 1 round to 32 rounds takes 27652.6 seconds.
For comparison, as stated by Zhang et al. [21], obtaining the minimum number
of active S-boxes for 23-round SM4 already took 36470 seconds.

Table 1 contains the full lower bound on the number of active S-boxes of
SM4 in the single-key setting. Note that the newly acquired lower bounds differ
from those given by Zhang et al. [21] beginning with the fifteenth round. Given
that the MILP model in [21] assumes the S-box to be an ideal S-box and does
not consider the actual DDT, the generated bounds may exhibit inaccuracies.
Our SAT model can precisely describe the differential propagations of the S-box
in accordance with the DDT. Thus, the newly derived bounds are precise.

5.2 Lower Bounds on Active S-boxes in the Related-Key Setting

We attempt to determine the minimum number of active S-boxes of SM4 in the
related-key setting, which ranges from one round to nineteen rounds. A nonzero
master key difference is enforced. The results are presented in Table 2.

Since the SAT model describes the full DDT, the search is more intricate
than the one in [21]. As a result, our search is more time-consuming in certain
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Table 1. Lower bounds on the number of active S-boxes in the single-key setting.

Round
Lower bounds on active S-boxes Runtime (s)

Zhang et al. [11] Wu et al. [20] Zhang et al. [21] Li et al. [8] Section 5.1 Zhang et al. [21] Section 5.1

1 - 0 0 0 0 0 0.1

2 - 0 0 0 0 0 0.1

3 - 0 0 0 0 0 0.1

4 - 1 1 1 1 0 0.4

5 - 2 2 2 2 0 0.5

6 - 2 2 2 2 0 0.3

7 5 5 5 5 5 3 6.4

8 6 6 6 6 6 6 9.1

9 7 7 7 7 7 16 16.9

10 8 8 8 8 8 23 32.7

11 9 8 9 9 9 24 63.1

12 10 10 10 10 10 22 48.3

13 11 10 10 10 10 69 9.0

14 11 10 10 10 10 75 2.5

15 12 12 13 12 12 410 34.3

16 13 13 14 15 15 395 1092.2

17 14 15 15 - 16 696 1575.2

18 15 15 16 - 16 1381 101.5

19 16 16 18 - 18 8156 1582.3

20 16 18 18 - 20 12771 7462.8

21 17 18 19 - 20 18038 247.2

22 18 - 20 - 20 24691 22.8

23 19 - 22 - 23 36470 7248.6

24 20 - 23 - 24 82857 3251.3

25 21 - 23 - 25 102451 562.6

26 22 - 24 - 26 117849 1677.4

27 - - - - 27 - 1077.1

28 - - - - 28 - 307.5

29 - - - - 29 - 408.6

30 - - - - 30 - 379.2

31 - - - - 31 - 277.4

32 - - - - 32 - 155.4

intermediate rounds than the search in [21]. Even so, our bounds maintain equiv-
alent number of rounds to those in [21]. Furthermore, the bounds we have newly
proposed are precise.

Comparing the lower bounds on active S-boxes in the related-key setting
to those in the single-key setting reveals that SM4 exhibits better resistance
against related-key differential attacks. Considering the complexity of SM4’s
key schedule, which is nearly identical to the encryption function, this outcome
is not unexpected.
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Table 2. Lower bounds on the number of active S-boxes in the related-key setting.

L
ow

er
bo

un
ds

Round 1 2 3 4 5 6 7 8 9 10

Zhang et al. [21] 0 0 0 1 2 4 6 8 9 10

Section 5.2 0 0 0 1 2 4 6 8 10 13

Round 11 12 13 14 15 16 17 18 19

Zhang et al. [21] 11 13 14 14 16 18 19 20 22

Section 5.2 16 17 18 20 22 24 25 27 28

R
un

ti
m

e
(s

)

Round 1 2 3 4 5 6 7 8 9 10

Zhang et al. [21] 0 0 0 0 0 1 10 89 237 317

Section 5.2 0.1 0.2 0.3 0.9 1.2 4.5 18.6 155.8 1304.7 13636.3

Round 11 12 13 14 15 16 17 18 19 Total

Zhang et al. [21] 757 1345 5883 27420 44492 60017 1.5 days 12 days <30 days >40 days

Section 5.2 65808.4 16374.1 10687.7 69346.6 156580 129159 0.5 days 1.2 days 0.4 days 7.5 days

5.3 Upper Bounds on Probabilities in the Single-Key Setting

The upper bounds on differential probabilities of SM4 from 1 round to 20 rounds
have been determined and are given in Table 3. To the best of our knowledge,
we are the first to provide the whole probability bound for a maximum of 20
rounds. Evidently, the longest differential characteristic that can be employed to
initiate differential attacks is 19 rounds. Liu et al. [9] reported the discovery of
a 19-round differential characteristic with a probability of 2−123. However, they
cannot ensure that 2−123 is the maximum probability a 19-round differential
characteristic can attain. We have obtained conclusive data that answer this
question definitively.

Table 3. Upper bounds on probabilities in the single-key setting.

Round 1 2 3 4 5 6 7 8 9 10

Li et al. [8] 1 1 1 2−6 2−12 2−12 2−30 2−38 2−46 2−52

Section 5.3 1 1 1 2−6 2−12 2−12 2−30 2−38 2−46 2−52

Round 11 12 13 14 15 16 17 18 19 20

Li et al. [8] 2−60 2−67 2−68 2−68 2−82 ⩾ 2−105 - - ⩾ 2−124 -

Section 5.3 2−60 2−67 2−68 2−68 2−82 2−101 2−110 2−111 2−123 2−130

More critically, the detail of the 19-round differential characteristic was not
disclosed by Liu et al. [9]. In Table 4, we present the 19-round differential char-
acteristic that we identified with a probability of 2−123. Notably, this is the
first optimal 19-round differential characteristic of SM4 that has been publicly
disclosed.
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Table 4. 19-round differential characteristic of SM4 with probability 2−123.

Round r ∆Xr ∆Xr+1 ∆Xr+2 ∆Xr+3 Probability

0 0x4703d247 0x263b8b26 0x479ad247 0x61835961 -

1 0x263b8b26 0x479ad247 0x61835961 0x263b8b26 2−6

2 0x479ad247 0x61835961 0x263b8b26 0x4703d247 2−6

3 0x61835961 0x263b8b26 0x4703d247 0x61375961 2−6

4 0x263b8b26 0x4703d247 0x61375961 0x26168b26 2−6

5 0x4703d247 0x61375961 0x26168b26 0x4703d247 2−6

6 0x61375961 0x26168b26 0x4703d247 0x61ae5961 2−7

7 0x26168b26 0x4703d247 0x61ae5961 0x26a28b26 2−7

8 0x4703d247 0x61ae5961 0x26a28b26 0x472ed247 2−7

9 0x61ae5961 0x26a28b26 0x472ed247 0x61ae5961 2−7

10 0x26a28b26 0x472ed247 0x61ae5961 0x263b8b26 2−7

11 0x472ed247 0x61ae5961 0x263b8b26 0x479ad247 2−7

12 0x61ae5961 0x263b8b26 0x479ad247 0x61835961 2−7

13 0x263b8b26 0x479ad247 0x61835961 0x263b8b26 2−7

14 0x479ad247 0x61835961 0x263b8b26 0x4703d247 2−6

15 0x61835961 0x263b8b26 0x4703d247 0x61375961 2−6

16 0x263b8b26 0x4703d247 0x61375961 0x26168b26 2−6

17 0x4703d247 0x61375961 0x26168b26 0x4703d247 2−6

18 0x61375961 0x26168b26 0x4703d247 0x61ae5961 2−7

19 0x26168b26 0x4703d247 0x61ae5961 0x479ad247 2−6

Probability of the differential characteristic 2−123

6 Conclusion

Given that the precise lower bounds on differential active S-boxes and the pre-
cise upper bounds on differential probability for SM4 have not yet been fully
established, we intend to employ the automatic search method based on SAT
problems to fill the vacancy. Firstly, we develop fundamental SAT models to
search for differential characteristics with the minimum number of active S-
boxes and the maximum probability. Due to the relatively sluggish search for
differential characteristics with the highest probability, we endeavour to incorpo-
rate human insights into automatic search to improve search performance. Four
novel models integrating human understandings have been developed to charac-
terise the specific features of short differential characteristics. By incorporating
these novel models into the initial SAT problem, the computational efficiency of
the SAT solver has been increased to varying degrees. Leveraging the automatic
approach, we derive the first accurate minimum values for the number of active
S-boxes of SM4 under single-key (complete rounds) and related-key (1-round to
19-round) settings. The first exact upper bound for differential probabilities of
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SM4 (1-round to 20-round) is also established. Furthermore, we provide the first
publically disclosed optimal 19-round differential characteristic of SM4.
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