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Abstract. A proof of solvency (or proof of reserves) is a zero-knowledge proof conducted by centralized
cryptocurrency exchange to offer evidence that the exchange owns enough cryptocurrency to settle each
of its users’ balances. The proof seeks to reveal nothing about the finances of the exchange or its users,
only the fact that it is solvent. The literature has already started to explore how to make proof size
and verifier time independent of the number of (i) users on the exchange, and (ii) addresses used by the
exchange. We argue there are a few areas of improvement. First, we propose and implement a full end-
to-end argument that is fast for the exchange to prove (minutes), small in size (KBs), and fast to verify
(seconds). Second, we deal with the natural conflict between Bitcoin and Ethereum’s cryptographic
setting (secp256k1) and more ideal settings for succinctness (e.g., pairing-based cryptography) with a
novel mapping approach. Finally, we discuss how to adapt the protocol to the concrete parameters of
bls12-381 (which is relevant because the bit-decomposition of all user balances will exceed the largest
root of unity of the curve for even moderately-sized exchanges).
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1 Introduction

When the Bitcoin exchange Mt. Gox was declared bankrupt in 2014, a curious fact was reported in the
New York Times—the missing 744K BTC “had gone unnoticed for years.” Academics showed that proofs of
solvency can be done by exchanges in strict zero-knowledge [9], and generated a stream of research papers
that continues to improve efficiency [4,12,17,13,25,8] and examine the correctness of deployed proofs [5]. We
believe we should continue refining these proofs toward practical implementation as they provide meaningful
barriers (or friction) to fraud and incompetence by exchanges.

A proof of solvency (or proof of reserves) is a zero-knowledge proof conducted by centralized cryptocur-
rency exchange (or more generally, any custodian of cryptocurrencies) to offer evidence that the exchange
owns enough cryptocurrency to settle each of its user’s balances. The zero-knowledge component protects the
exchange’s proprietary information such as: number of users, balances of individual users, total balance of all
users, which cryptocurrency addresses belong to the exchange, and total amount of cryptocurrency owned
by the exchange. The proof itself is broken into sub-components: (πkeys) a proof of knowledge of private
signing keys associated with public cryptocurrency addresses (hidden in a freely-composable anonymity set
of addresses not belonging to the exchange); (πassets) a summation of these assets into the total assets; (πuser)
an individualized proof given to each user asserting their balance as used in the overall proof; (πliabilities) a
summation of these individual liabilities into the total liabilities; and (πsolvency) a demonstration that the
subtraction of total liabilities from the total assets is at least 0.

Our contributions can be summarized as:

– Xiezhi:1 A novel and mostly succinct (constant size and verifier time) proof of solvency protocol that
covers every step of the “proof,2” where each sub-component of the proof works with each other sub-
component.

1 Folklore creature revered in ancient Chinese culture for its ability to distinguish truth from deceit.
2 We abuse terminology and generally do not distinguish between ‘proofs’ and ‘arguments,’ using the term ‘proofs’

for both. Proofs provide soundness against unbounded malicious provers, while arguments provide zero knowledge
against unbounded malicious verifiers. Xiezhi is a hybrid.



– A novel technique for mapping knowledge of private keys of common blockchains, such as Bitcoin and
Ethereum, from their group (secp256k1) into a pairing-friendly group (bls12-381) used for succinct
arguments.

– Practical adjustments to the protocol to account for concrete parameters, such as the maximum root of
unity in bls12-381.

– Proof of concept implementation of Xiezhi with performance experimentation.

Xiezhi has certain limitations: it relies on a universal (shareable with other zk-SNARK systems) trusted
setup, secure with one honest participant in a decentralized computation of it [22]; it assumes the public key
(as opposed to only its hash) associated with every address in an anonymity set of keys is known (achievable
by spending performing at least one transaction); it is limited to funds controlled by a single public key.
That said, it works for any token controlled by public keys with known balances on any such chain or layer
2. Proofs of solvency, generally, also have common limitations shared by Xiezhi: users need to check their
balances in the proof, proofs complicate the cover-up of hacks and exit scams but do not prevent them,
asset input to the proof can belong to colluders, and TEEs can help share proving ability without the keys
themselves (but Xiezhi’s πkeys can be adapted for complete knowledge [19]).

2 Preliminaries

Terminology. A balance sheet consists of liabilities (value owed to others) and assets (value owned). When
the total asset value is the same or more than the total liabilities, the firm is called solvent. The amount
by which the assets exceed the liabilities is called capital or equity (depending on context). Some literature
prefers the term ‘proof of reserves’ to ‘proof of solvency.’

Related Work. Table 1 reviews research on proofs of solvency, noting that the vast majority of work on
proofs of solvency have not attempted an end-to-end proof, focusing instead on just the liabilities or just
the assets. Why? We hypothesize that the biggest impediment is that Bitcoin and Ethereum assets are
controlled by secp256k1 private keys. Outside of Bulletproofs (based on inner-product arguments that
do not require bilinear pairings and thus, can be implemented in secp256k1), most other approaches to
succinctness require a specific cryptographic setting that is not secp256k1 (i.e., RSA for accumulators,
pairing-based cryptography for zk-SNARKs, and lattices for zk-STARKs). If one only considers liabilities,
then this problem does not have to be dealt with.

Circuit-based solutions are feasible but expensive for the prover—the authors of IZPR report about 500K
constraints needed per key and proving times in the order of days for an anonymity set of 6000 keys [8]. By
contrast, Xiezhi is a few minutes of work for the prover for 6000 keys. As this part is not succinct (it is based
on Σ-protocols), the trade-off is that the verifier has to do a few minutes of work as well. In both cases,
IZPR and Xiezhi, this step does not need to be repeated often, only when the exchange wants to introduce
new keys holding its assets. It is also important to recognize IZPR can let the exchange add keys it has not
used yet to πkeys, further reducing how often this proof needs to be redone. This is a desirable property we
are not able to easily achieve in Xiezhi (in short, it is due to our use of selector polynomials instead of lookup
arguments but future work could explore blending the best properties of Xiezhi and IZPR).

3 Cryptographic Building Blocks

We refer the reader to Appendix A for the following cryptographic primitives: discrete logarithm assump-
tion (Section A.1), Pedersen commitments (Section A.2), zero-knowledge proof and its related properties

3 V. Buterin, “Having a safe CEX: proof of solvency and beyond,” vitalik.ca, 2022
4 https://summa.gitbook.io/summa
5 https://www.proven.tools/
6 https://minaprotocol.com/
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Σ-Protocols The first proofs of solvency are based on Σ-
Protocols which work on standard elliptic curves
like secp256k1 but are not succinct (linear proof
space, linear verifier time, heavy constants).

Provisions [9]

Inner-product ar-
guments

Protocols like bulletproofs work on standard el-
liptic curves like secp256k1 and can reduce some
sub-routines (e.g., range arguments) to constant
space and logarithmic verifier time.

Bulletproofs [4]

Liabilities only As it is the asset-side of solvency that ties the pro-
tocol to standard elliptic curves like secp256k1,
proving only the liability side can be done in any
cryptographic setting.

ZeroLedge [12],
DAPOL+ [17],
SSVT-based [13],
Notus [25],
SafeCex3

Publish assets A trivial proof of assets is one that is not zero-
knowledge. An exchange could reveal all its ad-
dresses and prove ownership by signing a proof-
specific message from each address.

Summa4

Circuit-level A general zk-snark can implement any arithmetic
circuit, including secp256k1 operations, which of-
fers a proof of constant size and constant verifier
time.

IZPR [8],
Proven.tools5

Custom
blockchain

If new blockchains are deployed, they could use
digital signatures over pairing-friendly curves.

Mina6

Mapping between
groups

If secp256k1 values can be mapped to a pairing-
friendly group, Poly-IOP arguments can poten-
tially reduce the rest of the proof to constant size
and constant verifier time.

COPZ [6], Xiezhi

Table 1: How to deal with the fact that Bitcoin and Ethereum use secp256k1 digital signatures when trying
to make a succinct proof of solvency.

(Section A.3), Σ-protocols (conjunction and disjunction) (Section A.4,A.5), polynomial commitment scheme
(Section A.6), roots of unity (Section A.7), and polynomial interactive oracle proof (Poly-IOP) model (Sec-
tion A.8).

Notation. Our protocols work on a finite field of prime order between a prover P and verifier V. Let gs and
hs denote two independent generators in the secp256k1 group Gs; and we use gb and hb for bls12-381.
We denote by e([x]1, [x]2) a non-degenerate bilinear pairing, with input groups specified [x]i := gxi ∈ Gi for
i = 1, 2 (when omitted, values are assumed to be in the first group). For vectors, we use an overhead bar to
denote a vector and brackets to denote the elements in this vector, e.g., v = ⟨v1, v2, . . .⟩. Let C(x) denote
a Pedersen commitment to a value x with a hiding factor. Particularly, we use Csecp and Cbls to denote a
commitment in secp256k1 and bls12-381, respectively. To help distinguish polynomials and constants, we
denote by Cf a polynomial commitment to f in bls12-381. We use ω to denote roots of unity.

3.1 Range Proof Variant

A zero-knowledge range proof (ZKRP) enables P to convince V a value x is in a specified range, e.g., [0, 2k),
without revealing x. ZKRPs have three typical approaches: square decomposition, n-ary decomposition, and
hash chains [7]. We use the succinct decomposition method from Boneh et al. [3](Section A.9) however we
adapt it to prove multiple values are in the specified range (Section B.3). We will introduce and motivate
our variant in Section 5.1.

Lemma 1. The range proof from Boneh et al. [3] is complete and has knowledge soundness in the algebraic
group model.
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Proof. See Section A.9.

3.2 KZG Evaluation Variants

A polynomial commitment scheme (PCS) enables a succinct demonstration that a commitment C to poly-
nomial f evaluated at point a is b. We use the KZG PCS [18] in its zero-knowledge form, which requires
(i) randomized commitments and (ii) committing to additional random points, so checks of polynomial re-
lationships at random points do not leak information about the polynomial. We denote KZG with such a
zero-knowledge extension as KZGzk. Specifically, we claim two algorithms, πζ ← KZGzk.Prove(f1, f2, . . . ; ζ)
to open multiple polynomials f1, f2, . . . at the point ζ, and {1/0} ← KZGzk.Verify(Cf1 , Cf2 , . . . ;πζ ; ζ) to verify
the proof at ζ. In Section A.10, we specify KZGzk.

We also show it is possible to ‘stop early’ in KZGcm and end up with a Pedersen commitment to f(a),
instead of revealing f(a) in plaintext. We call this ‘open to a commitment’ variant with two algorithms like we
did in KZGzk, Cbls(f(ζ))← KZGcm.Prove(f ; f(ζ); ζ) to open the committed evaluation of f(ζ) in bls12-381,
and {1/0} ← KZGcm.Verify(Cf ;Cbls(f(ζ)); ζ) to verify the committed value is correct. In Section B.1, we
specify KZGcm and prove it is complete, sound, and HVZK.

4 Proof of Assets (PoA)

We are now ready to explain Xiezhi. We will begin on the asset side, taking the example of ETH. The PoA is
broken into two steps: πkeys and πassets. In short, for πkeys, the exchange publishes a public vector of Ethereum
public keys, consisting of its own public keys hidden amongst a larger anonymity set of keys belonging to
others. Next, it will output a hiding commitment to a binary ‘selector’ vector (in bls12-381) and prove it
records a 0 if the exchange is not claiming to know the secret key (in secp256k1) of the public key in the
same position in the vector, and a 1 if the exchange can prove knowledge of the secret key. For πassets, the
exchange publishes a public vector of ETH balances matched to the vector of public keys. It outputs a hiding
commitment to the sum of its assets, as the first element of a vector, and proves it is the sum of the subset
of balances in the balance vector marked by the selector vector.

4.1 The πkeys proof

Before presenting our πkeys proof, we quickly discuss a few approaches that helped us develop it. A highly
relevant Σ-protocol from the literature, COPZ, proves that two commitments in two different groups (e.g.,
secp256k1 and bls12-381) commit to the same value [6]. The paper cites proof of assets as a use-case but
does not work out a protocol. COPZ allows an exchange to ‘map’ private keys from secp256k1 to bls12-381.
Two places this mapping could occur would be at the very start or the very end of the assets proof. At the
end, it might look like this: an existing proof of assets protocol (e.g., Provisions [9]) could be run to create
a commitment to the total assets in secp256k1, then COPZ can be used to prove the same commitment in
bls12-381, and finally this can be ‘glued’ to a succinct proof of liabilities in bls12-381. However, this does
not leverage the fact that bls12-381 might help make the assets proof succinct.

Alternatively, the exchange can map all their keys at the start. There is a roadblock: the exchange can
only map keys they know the secret key for and the exchange cannot reveal which keys they know and
which they do not. Assume there is a protocol that would allow the exchange to output a sparse vector of
bls12-381 private key values (sorted by index of known ETH public keys) containing the key value when
they know it, and recording a 0 if they do not. We designed such a protocol only to realize that the key
values in bls12-381 are actually never used, we only use the fact that knowledge of them is proven (which is
covered by the ability to produce the value in bls12-381) and the fact that unclaimed keys are zeroed-out.

This leads to our key observation: we do not need to map values from secp256k1 to bls12-381, we
just have to map the success or failure of a ZKP in secp256k1 to bls12-381. This can be accomplished by
composing (conjunction and disjunction of) Σ-protocols. The prover (exchange) will choose a set of Ethereum
public keys as its anonymity set of size κ (containing its actual keys) {pk1, pk2, . . . , pkκ} and publish them
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1. P publishes an anonymity set of public keys: ⟨pk1, pk2, pk3, . . . , pkn⟩.
2. P constructs a selector vector: s = ⟨s1, s2, s3, . . . , sn⟩ where si = 0 unless P can prove knowledge of ski

given pki = gskis , then si = 1.
3. P interpolates a polynomial fsel(X) from s and commits to fsel.
4. For each i, P computes Cbls(si)← KZGcm.Prove(fsel; si;ω

i), and V aborts if KZGcm.Verify(Cfsel ;Cbls(si);ω
i)

returns 0;
5. For each Cbls(si), P and V run Protocol 6 to prove ZKPoK{(ski, si) : [pki = gskis ∧ Cbls(si) = Cbls(1)] ∨

Cbls(si) = Cbls(0)}.

Protocol 1: The πkeys proof demonstrates that fsel(X) encodes a binary selector vector of the public keys for
which the exchange can prove knowledge of the corresponding secret key.

in an ordered (indexed) way. It will also create a binary ‘selector’ array Akeys with a 1 in the same index
of every key it is claiming to know and a 0 in the index of the keys it does not know (or does not want to
claim for whatever reason). This vector is interpolated into the evaluation points of a polynomial fkeys(X)
and committed to Cbls(fkeys(X)) using the KZG polynomial commitment scheme [18]. For each index i, the
prover shows the evaluation of fkeys(Xi) but instead of providing the evaluation value (Akeys,i) in plaintext,
it provides a Pedersen commitment to it Cbls(Akeys,i) (a mild modification of the KZG showing protocol
detailed in Section B.1). It then shows the value is correct with the following Σ-protocol (for details see
Protocol 6 in Section B.2):

ZKPoK{(ski, Akeys,i) : Cbls(Akeys,i) = Cbls(0) ∨ [Cbls(Akeys,i) = Cbls(1) ∧ pki = gskis ]}

In plain English, the prover either: (1) puts a 0 in the selector vector; or (2a) puts a 1 in the selection
vector and (2b) knows the private key of the given public key. (1) and (2a) are a PoK of a representation for
Pedersen commitments in bls12-381 while (2b) is a Schnorr PoK of a discrete logarithm in secp256k1—
both well studied Σ-protocols [10,21]. The fact that (1) and (2a) are in bls12-381 while (2b) is in secp256k1
is not problematic because the disjunction (∨) and conjunction (∧) operations for composing Σ-protocols
are based only on how challenge values are constructed and both groups (secp256k1 and bls12-381) can
encode a large t-bit challenge (e.g., t = 254) into their exponent groups.

As this protocol is repeated for each key, it is not succinct and will be linear in proof size and verifier
time. However, once the selector array is proven correct, the exchange can re-use it every time it does a proof
of solvency until it updates its keys. The full details are provided in Protocol 1.

4.2 The πassets argument

The πkeys protocol proves that Cfsel is a commitment to a selector polynomial fsel(X) (in bls12-381) which
marks the public keys owned by the exchange. At a given time (block number), the balances of every public
key included in the anonymity set will be encoded in polynomial fbal(X). The product of fsel(X) · fbal(X)
will preserve the balance values owned by the exchange and zero-out the balance values not claimed by the
exchange. The final step is produce a summation over the values in fsel(X) · fbal(X). The exchange will put
fsel(X) · fbal(X) in accumulator form fassets(X) and prove its correctness. In this form, the total assets will
sit at the head (first index) of fassets(X), which is fassets(ω0). The full details are provided in Protocol 2.

5 Proof of Liabilities

5.1 The πliabilities argument

The exchange will commit to every user balance and produce a commitment of the total amount across
all balances. Since the exchange is free to make-up additional users and include them, we want to make
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1. V processes the balance of the anonymous set.
(a) V queries the balance of each public key in the set P chose, denoted by b = ⟨bal1, bal2, . . . , baln⟩.
(b) V interpolates a polynomial fbal(X) from b.

2. V commits to fbal and sends fbal, Cfbal to P.
3. P takes as input the selector vector of keys shown ownership of, fsel(X), from πkeys.
4. P constructs an accumulative polynomial fassets(X) such that

(a) fassets(X)− fassets(Xω) = fbal(X) · fsel(X), X ̸= ωn−1

(b) fassets(ω
n−1) = fbal(ω

n−1) · fsel(ωn−1)
5. P commits to fassets, fbal, fsel and sends the commitments to V.
6. V replies with a random evaluation point ζ ∈ F \H.
7. P computes πζ ← KZGzk.Prove(fassets, fbal, fsel; ζ),

πζω ← KZGzk.Prove(fassets; ζω),
and Cbls(fassets(ω

0))← KZGcm.Prove(fassets; fassets(ω
0);ω0).

8. V outputs acc if and only if
(a) KZGzk.Verify(Cfassets , Cfbal , Cfsel ;πζ ; ζ), KZGzk.Verify(Cfassets ;πζω; ζω), and

KZGcm.Verify(Cfassets ;Cbls(fassets(ω
0));ω0) return 1.

(b) The opening evaluations satisfy the conditions (a) and (b) in step 4.

Protocol 2: The πassets proof demonstrates that the balances associated with each key in the anonymity set
are included, the subset not owned by the exchange (per selector vector from πkeys) are zero-ed out, and
remaining balances are totalled correctly in fassets(ω0).

sure this does not help an insolvent exchange in any way. To do this, we force all balances to be zero or
positive numbers. For a finite field, this means small integers that have no chance of exceeding the group
order (modular reduction) when added together. In practice, we can limit ourselves to an even smaller range
that is sufficient to capture what a balance in ETH (or fractions of ETH) might look like. These balances
are expressed in binary and we use range proof from Section A.9.

However, when we turn to implement this in practice, we encounter a roadblock. If µ balances are placed
as k-bit numbers side-by-side in a vector, we need a vector of size µ · k. If we want to optimize polynomial
interpolation, we encode our array at x-coordinates that correspond to the roots of unity of the exponent
group (see Section A.7) and for bls12-381, we can only efficiently encode data vectors of length up to
232 = 4, 294, 967, 296.7 Consider an exchange with µ = 1, 000, 000 accounts, only 12 bits are left to capture
account balances, say, as between 0.01 and 40.96 ETH ($30 to $150K USD at time of writing). Exchanges
could have more than 1 million accounts, the largest could be more than $150K USD, and an exchange could
have a long tale of accounts with balances less than $30 such that rounding them all up to $30 creates a
solvency issue. Clearly k = 232 is not large enough for directly encoding liabilities (as binary numbers) into
a single polynomial.

To deal with this issue, there are three main alternatives. (1) The exchange can encode points at arbitrary
x-coordinates and use general (Laplacian) interpolation, (2) the exchange can break down what it is proving
into chunks but this will require one succinct proof per chunk, or (3) the range proof could be adapted for
decomposition into something larger than bits (e.g., bytes or 32-bit words). The latter may be feasible with
lookup arguments, but we do not pursue modifying the range proof [3] in this work. Instead we opt for (2).
Specifically we will produce a polynomial argument for the first bit of every account, for the second bit of
every account, etc. This means πliabilities will be linear in proof size and verifier work but it is linear in the
bit-precision of each account (k) and is in fact constant (succinct) in terms of the number of users on the
exchange. For example, we will later show if accounts are captured with a precision of 32-bits, the proof size
will be under 10KB and verifier time will be under 8ms independent of the number of users on the exchange
(see Figure 3).

7 The exponent group in bls12-381 has 2-adicity of 32.
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1. P runs Protocol 7 with {bal1, bal2, . . . , balµ} to compute {p1, p2, . . . , pk} and {v1, v2, . . . , vk}
2. P builds an additive accumulator ν for p1 where νk = balk = p1(ω

k−1) and νi = νi+1 + bali, i ∈ [1, µ].
Remark: ν1 will contain the total liability value.

3. P interpolates fliab from ν and publishes the commitments to fliab and {p1, p2, . . . , pk}.
4. V replies with a random evaluation point ζ ∈ F \H.
5. P shows w1, w2 such that

w1 :=[fliab(X)− fliab(Xω)− p1(X)] · (X − ωµ−1)

w2 :=[fliab(X)− p1(X)] · Xµ − 1

X − ωµ−1

are vanishing on H by computing πζ ← KZGzk.Prove(fliab, p1, p2, . . . , pk; ζ), πζω ← KZGzk.Prove(fliab; ζω),
and Cbls(fliab(ω

0))← KZGcm.Prove(fliab; fliab(ω
0);ω0).

6. V outputs acc if and only if
(a) KZGzk.Verify(fliab, p1, p2, . . . , pk;πζ ; ζ), KZGzk.Verify(fliab;πζω; ζω), and

KZGcm.Verify(Cfliab ;Cbls(fliab(ω
0));ω0) return 1.

(b) {w1, w2} and {v1, v2, . . . , vk} are vanishing on H.

Protocol 3: The πliabilities proof demonstrates that each liability is either zero or a positive number, and that
the balances are totalled correctly in fliab(ω0).

1. P interpolates the identifier polynomial fuid(X) such that fuid(Xi) = uidi for i from 1 to µ.
2. P publishes the commitments to fuid(X) and p1 (from πliabilities above).
3. For check from user i, P tells the user he is at index i and opens fuid(ω

i−1) and p1(ω
i−1).

4. V outputs acc if and only if
(a) His user identifier is the evaluation of fuid at the given point ωi−1.
(b) His balance is the evaluation of p1 at the given point ωi−1.

Protocol 4: The πusers proof demonstrates that to each user who checks that their balance is recorded correctly
under a unique identifier for them (to mitigate clash attacks).

The protocol creates k polynomials—the kth polynomial pk for the last bit of each of the µ accounts, the
last second polynomial for the last second bit of every account, etc. It conducts a range proof ‘vertically’
(across {p1(ωi), p2(ωi), . . . , pk(ωi)} for bali) for each account (for all i). It then converts the bits into integers
‘vertically’ (pj(ωi) − 2pj+1(ω

i) ∈ {0, 1}, j ∈ [1, k), so that p1(ωi) = bali) for each account, creating a
polynomial fliab of each user’s balance. Last it sums up all elements ‘horizontally’ (

∑µ−1
i=1 fliab(ω

i)) in fliab
to produce the total liabilities (Protocol 7 in Section B.3). The bit decomposition is argued with the range
proof and the summation of balances is argued with a sum-check. The full protocol is given in Protocol 3.

5.2 The πusers argument

The πusers argument is conducted between the exchange and the user, so the user can check that their
balance is correctly encoded into the polynomials used in πliabilities. If two users have the same balance, a
malicious exchange might include only one of the balances and open up the same balance for each user.
Unless the users compared their proofs, they would not catch the exchange (cf. [5]). This attack appears in
other cryptographic protocols where users need to check things, the main one being cryptographic voting
schemes. It has been studied under general definitions as a ‘clash attack’ [20]. The solution is to label each
balance with a unique user identifier [9]. Labeling can be done with an additional polynomial of labels under
the assumption that a user ID and a balance need to be at the same index. A user ID can be the hash of
the user’s account name or email address. The full protocol is given in Protocol 4.
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1. P computes equity eq as the total assets minus the total liabilities.
2. P publishes commitment to polynomial feq(X) where feq(ω

0) = eq.
3. P generates a range proof for eq in feq(X) to demonstrate it is a non-negative integer.
4. P opens feq(ω

0) through KZGcm and publishes Cbls(fassets(ω
0)), Cbls(fliab(ω

0)) from πassets and πliabilities.
5. V outputs acc if and only if

(a) Cbls(fassets(ω
0)) = Cbls(fliab(ω

0)) ·Cbls(feq(ω
0)).

(b) The range proof for eq is valid.

Protocol 5: The πsolvency proof demonstrates that the total assets exceed the total liabilities by a non-negative
integer (called the equity).

5.3 The πsolvency argument

The final step of the proof is prove the total assets exceed the total liabilities. At the end of πassets, the total
assets are contained in the polynomial evaluation point fassets(ω0); while at the end of πliabilities, the total
liabilities are contained in fliab(ω0). Assuming assets exceed liabilities by some amount, this amount can be
added to the liability-side to provide a difference of exactly zero. The full argument is given in Protocol 5.

6 Security Analysis

We adapt the security definition of a zero-knowledge proof of solvency from Provisions [9] in Section C.1.
We refer to Section C.3 for the proofs of Xiezhi’s sub-components: πkeys, πassets, πliabilities, πassets, πusers, and
πsolvency. Here we offer the security proof for the the main theorem:

Theorem 1. Xiezhi (Xiezhi ← ⟨πkeys, πliabilies, πassets, πusers⟩) is a privacy-preserving proof of solvency with
respect to Definition 12.

Proof. To prove this theorem, we rely on the corollaries in Section C.3. There are no new insights, it is
simply a matter of mapping what is proven in the corollaries onto what is required in the definition of a
privacy-preserving proof of solvency.

1. Correctness. If πsolvency is complete (Corollary 6), then Xiezhi is correct according to Definition 12.
2. k-Soundness. IfA and L are not a valid pair and the protocol accepts with probability greater than neg(k),

then πsolvency is not sound (contradicting Corollary 6), where soundness is bounded by k = min[d/n, 2−t]
where d/n = 2−233 (Schwartz-Zippel lemma for polynomial commitments in bls12-381) and t = 2−254

(challenge length for NIZKPs under Fiat-Shamir for a common challenge in secp256k1 and bls12-381).
If L[uid] ̸= ℓ (i.e., the exchange provides the user with the wrong balance) and the protocol accepts with
probability greater than neg(k), then πsolvency is not sound (contradicting Corollary 6).

3. Ownership. Recall that ownership means that if the protocol accepts, there exists an extractor that can
produce x for all y ∈ A. We show such an extractor in the proof of Theorem 5.

4. Privacy. Roughly, this means a (statically) corrupted user cannot distinguish between an interaction
using the real pair A and L and any other (equally sized) valid pair Â and L̂ such that L̂[uid] = L[uid]
(i.e., the simulated pair records the same balance for all corrupted users as the real valid pair). This
follows from πusers and πsolvency being zero-knowledge (Corollary 5 and 6), where the former covers the case
that the universally verifiable proof reveals private information, and the latter covers the supplementary
user check proof.

Therefore Xiezhi is a privacy-preserving proof of solvency.
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7 Performance Evaluation

7.1 Theoretical Performance

In this section, we analyze the performance of Xiezhi, and compare the performance of our work with other
prior schemes. Our analysis ignores the relatively trivial cost like Fast Fourier Transform (FFT) and focuses
on the heavy work such as multi-scalar multiplication (MSM) and group operations. Our analysis also ignores
the differences in the implementations and assumes each protocol is executed in a single thread.

Proof of Assets We use κ to denote the size of the anonymity set and we assume κ is the power of two for
simplicity. The performance analysis of πkeys and πusers are performed as follows:

– πkeys: When opening an evaluation of a KZG commitment for each public key, one MSM for the witness
and one MSM for the blinding polynomial are involved. The number of scalar multiplications of the Σ-
protocol is constant. Thus, the overhead proving time of πkeys is O(κ2). In terms of the verifier’s work, for
each key, V performs scalar multiplications for constant times and manipulates the batched KZG scheme
to validate related polynomial constraints, which means O(1) verifying time and proof size. Therefore,
the overhead verifying time and proof size of πkeys is O(κ).

– πassets: P constructs the accumulator and commits to a constant number of polynomials. Since P opens
one point of each polynomial, the proving time is O(κ) and the proof size is O(1). While it takes constant
time for V to verify the proof of the PCS, V needs to interpolate the balances and commit to the balance
polynomial, which means one MSM is involved. Therefore, the overhead verifier’s work of πassets is O(κ).

Proof of Liability We use µ to denote the number of users and k to denote the allowed size of the range
proof. When P computes the accumulative polynomial to prove the total liablity is correct, it can be done in
linear time. Different from πkeys, P only opens each polynomial at one random evaluation point. Thus, the
proving time is O(µ).

The verifier’s work is broken into πusers and πliabilities:

– πusers: Each user verifies his balance is the evaluation of the polynomial p1 and his user identifier is the
evaluation of the polynomial fuid. The user checks two KZG proofs, so the proof size and the verifying
time for customers are both O(1).

– πliabilities: Auditor verifies the constraints among polynomials {pi} are correct and the committed total
liabilities is the evaluation of fliab(ω0). The first step can be done in O(k) as the number of polynomials
is related to the range proof rather than the number of users. The second step involves opening one KZG
commitment through KZGcm, which means the verifying time and the proof size for auditors are both
O(k).

Comparison In Table 2, we compare this work with other prior PoA schemes. Both IZPR and this work
utilize bootstrapping, but the bootstrapping of IZPR will be introduced in their following paper. We only
analyze the performance of the bootstrapping for this work. In Table 3, we compare this work with prior
PoL schemes.

7.2 Implementation and Benchmark Methodology

To evaluate the performance of Xiezhi, we implemented our protocols in Rust based on the popular library,
arkworks8. Our implementation is publicly accessible on GitHub9. We chose the pairing-friendly elliptic curve
bls12-381 for the KZG commitment which has 128-bit security.

Our experiments were conducted on a personal computer with i9-13900KF and 32GB of memory. The
experimental data including balances and secp256k1 key pairs are randomly generated locally for simplicity.
8 https://github.com/arkworks-rs
9 https://github.com/Shvier/proof-of-solvency
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πkeys

Scheme Proving time Verifying time Proof size
Xiezhi (Ours) O(κ2) O(κ) O(κ)

πassets

Scheme Proving time Verifying time Proof size
πinput πproof

Provisions[9] O(κ) N/A O(κ) O(κ)

Bulletproofs[4] O(κ) N/A O(κ) O(log κ)

IZPR[8] O(t log t) O(κ) O(1) O(1)

Xiezhi (Ours) O(κ) O(κ) O(1) O(1)

Table 2: Comparison of this work with prior PoA schemes. πinput is the verifier processes the public inputs
before validating the proof; πproof is the verifier verifies the proof sent by the prover. Notation: κ is the number
of keys that the exchange wants to prove. For IZPR[8], t is the throughput of the blockchain (number of
addresses which have changed since the last proof).

Scheme Proving time Verifying time Proof size
πusers πliabilities πusers πliabilities

Provisions[9] O(µ) O(1) O(µ) O(1) O(µ)

DAPOL+[17] O(µ logµ) O(logµ) O(1) O(logµ) O(1)

SPPPOL[13] O(logλ µ) O(logλ µ) O(1) O(logλ µ) O(1)

Notus[25] O(µ logµ) O(1) O(1) O(1) O(1)

Xiezhi (Ours) O(k · µ) O(1) O(k) O(1) O(k)

Table 3: Comparison of this work with prior PoL schemes. Notation: µ is the number of users, k is the
number of bits of the range proof. For SPPPOL [13], λ is the arity of the Verkle Tree it uses.

Since there is no range-proof for PoA, we tested the PoA with balances randomly distributed in [1, 264)
to simulate the real distribution of assets, and for PoL, we tested the program with balances randomly
distributed in [1, 28), [1, 216), [1, 232), and [1, 264). We simulated 28, 29 . . . , 214 and 210, 211, . . . , 220 users
for PoA and PoL respectively. Simulating different numbers of users for PoA and PoL is because πkeys was
time-consuming for a larger number of users. For each protocol, we ran the test ten times with the same
experimental data. Our figures are interpolated from the average performance of ten times discarding the
maximum and minimum of the samples.

7.3 Experimental Evaluation

Figure 1, 2, and 3 reflect the performance of Xiezhi in single thread with i9-13900KF. The Subfigure (a) of
Figure 1 suggests it takes around 600 seconds to generate the proofs for 16,384 keys with i9-13900KF for
πkeys, and the proof size is 13,893KB. It seems impractical for the exchange to achieve such performance if it
wants the maximum anonymous set. However, recall the exchange only needs to perform πkeys once. Also, the
proving time can be reduced significantly if manipulating more efficient KZG opening schemes. See Section 8
for more detailed optimizations.

Figure 2 shows the proving time and the verifying time are linear in the number of the keys. In our
experiments, it takes 433.66 milliseconds to generate the proof and 37.57 milliseconds to verify the proof
for 16,384 keys. This suggests the proving time is less than 2 hours if the anonymous set is all addresses
on Ethereum without any other optimizations. Since the proof size of a KZG commitment is unrelated to
the degree of the polynomial (the number of keys), the proof size of πassets is constant (2KB) based on our
implementation.

Figure 3 illustrates the performance of our PoL with different numbers of users and allowed ranges for
balance. Our experiments show the proving time grows linearly by the number of users while the verifying
time and the proof size are constant. From the test result of Binance’s PoL, it needs 1.5 days to generate
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Fig. 1: Performance of πkeys
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Fig. 2: Performance of πassets

the proof for 100 million accounts with 100 servers 10, but our PoL requires less than 10 minutes with the
same number of servers. This indicates our protocol is practical to handle real-world applications.

8 Open Research Challenges

The efficiency and succinctness of Xiezhi might be further improved. Recall the heaviest work of πkeys is
proving each committed point is correct, and the opening scheme we demonstrated from Plonk requires t · d
scalar multiplications for prover, where t is the number of the opening points and d is the degree bound
of the polynomial. The work in BDFG20 [2] can reduce this complexity to 2n scalar multiplications, which
means the dominating complexity will become O(n) rather than O(n2). The aggregation slightly increases
the verifier’s work but the extra cost is trivial because of the succinctness of the KZG commitment scheme.
These optimizations can be applied to both our PoA and PoL. Moreover, the proof length for multiple points
of the KZG commitment will also be decreased to O(1) if BDFG20 is integrated, but the total proof length is
still O(n) because of the proof of the Σ-protocol. Other advances in other Poly-IOP systems require future
research: lookup arguments, multivariate polynomials (and corresponding commitment schemes), and folding
techniques.

If blockchains like Ethereum add low-gas cost support for bls12-381, a topic of discussion (EIP-253711),
verifying proofs of solvency could move on-chain. If an exchange fails to provide a smart contract with a
proof of solvency in a timely fashion, the smart contract could be called to trigger penalties or other actions.

10 https://github.com/binance/zkmerkle-proof-of-solvency/?tab=readme-ov-file
11 https://eips.ethereum.org/EIPS/eip-2537
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Fig. 3: Performance of πliabilities
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A Cryptographic Building Blocks

This appendix describes cryptographic building blocks we use that are from the literature and not our own
contribution.

A.1 Discrete Logarithm Assumption

The discrete logarithm problem describes, given a triplet (G, p, g), where G is a cyclic group of order p
generated by g ∈ G, and an element y ∈ G, for a given adversary A, A needs to compute an x such that
y = gx. The discrete logarithm assumption holds for G if it is infeasible for A to find such x in polynomial
time.

A.2 Pedersen Commitment

The Pedersen commitment scheme [23] enables P to commit to a value x without revealing it. Pedersen
commitment provides perfect hiding and computational binding based on the discrete logarithm assumption.
Additionally, Pedersen commitments are additively homomorphic: given two commitments C1 and C2, the
summation of their secrets x1 and x2 is the secret of C1 ·C2.

A.3 Zero-Knowledge Proofs

Informally, a zero-knowledge proof is a cryptographic protocol allowing P to convince V that the claiming
statement is true without revealing additional information, except the fact that the statement’s truth. A
zero-knowledge proof must satisfy the following properties:

1. Completeness: If the statement is true, V will be convinced.
2. Soundness: If the statement is false, the probability that V is convinced is negligible.
3. Zero-knowledge: If the statement is true, V learns nothing except the fact that the statement is true.

Definition 1 (Special Soundness). For a Σ-protocol, if the witness w can be extracted from any two
accepting conversations on the same input x with the same message but a different challenge, we call this
special soundness of Σ-protocol. Particularly, special soundness implies soundness.

Definition 2 (Knowledge Soundness in the Algebraic Group Model). For any algebraic adversary
A in an interactive protocol between P and V for a relation R, there exists a p.p.t extractor E given access
to A’s messages during the protocol, and A can win the following game with negligible probability:

1. A chooses input x and outputs the message like P.
2. E, given access to A’s outputs from the previous step, outputs the witness w.
3. A wins if

(a) V outputs acc at the end of the protocol, and
(b) (x,w) /∈ R.

Definition 3 (Honest Verifier Zero Knowledge). Honest verifier zero knowledge, or HVZK, is for a
Σ-protocol, if there exists a p.p.t simulator S such that the transcript produced by S has the same distribution
as the transcript of a conversation between the honest P and V on the same input.

Definition 4 (Special Honest Verifier Zero Knowledge). Special honest verifier zero knowledge, or
special HVZK, is for a Σ-protocol, if there exists a p.p.t simulator such that additionally given the challenge
c to S, the transcript produced by S has the same distribution as the transcript of a conversation between the
honest P and V on the same input, even if for the case that the witness for the statement does not exist.
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A.4 Σ-Protocol

The Σ−protocol is a three-move interactive proof system. We define the Σ−protocol similarly to [10].

Definition 5 (Σ-protocol). Let R be a binary relation between the statement x and the witness w. Given
common input x to P and V, and private input (x,w) such that (x,w) ∈ R to P, they run the following
protocol:

1. P computes a message m from (x,w) and sends m.
2. V sends a random challenge c.
3. P replies with z.

At the end of the protocol V has the data (x,m, c, z). He decides to output acc or rej; such that

– Completeness: If P follows the protocol to generate the message (m, c, z), V always accepts.
– Special soundness: If there exists a p.p.t extractor E, given any input x and any two accepting

(m, c, z), (m, c′, z′) where c ̸= c′, E can compute w where (x,w) ∈ R.
– HVZK: If there exists a p.p.t simulator S, such that the transcript produced by S is indistinguishable

from the messages between P and V.

A commonly well-known way to convert a Σ−protocol into non-interactive is using the Fiat-Shamir transform
[14]. But we still use the standard interactive Σ−protocol to demonstrate our work for comprehension.

A.5 Disjunction of Σ-Protocols (OR Proof)

The disjunction of Σ-protocols (OR proof) allows P to prove the claimed x is x1 or x2 through a Σ-protocol.
More precisely, given two inputs x1, x2, P proves he knows a w such that (x1, w) ∈ R1 or (x2, w) ∈ R2, but
V cannot learn which one P knows. We use the same definition as [10].

Definition 6 (OR Proof). Let s equal 0 or 1. The OR proof is a Σ−protocol that P and V are given two
public inputs x1, x2, and P is given w as private input. They run the following protocol:

1. P computes the message ms using (xs, w) as input.
P randomly generates c1−s as the challenge for x1−s and runs the simulator S(x1−s, c1−s) to produce
(m1−s, z1−s).

2. P sends ms and m1−s.
3. V sends a master challenge c.
4. P computes cs = c⊕ c1−s and zs on inputs (xs, cs,ms, w).
P sends (cs, c1−s, zs, z1−s).

At the end of the protocol V verifies c = cs ⊕ c1−s and both (ms, cs, zs, xs) and (m1−s, c1−s, z1−s, x1−s) are
valid to output acc or rej; such that

– Completeness: The case of c1−s is always accepted by V as the definition of a simulator; on the other
side, the case of cs has no difference from the standard Σ−protocol.

– Special soundness: Let P execute the protocol twice. Two accepting transcripts

(xs, x1−s, c, cs, c1−s, zs, z1−s), (xs, x1−s, c
′, c′s, c

′
1−s, z

′
s, z

′
1−s), c ̸= c′

are given. It is clear that for some s = 0 or 1, the witness w such that (xs, w) ∈ R can be extracted
through an extractor E by the special soundness of Σ-protocol.

– Special HVZK: Given a master challenge c, let S choose cs or c1−s randomly and the other will be
determined. Then let the simulator run twice: S(xs, cs),S(x1−s, c1−s), to output (ms, zs,m1−s, z1−s).
The outputs of S have the same distribution as those of P.

We use x = x1 ∨ x2 to denote the value x is x1 or x2 in the context of Σ-protocol.
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A.6 Polynomial Commitment Scheme

A polynomial commitment scheme (PCS) allows P to commit to a polynomial to convince V that claimed
evaluations are of the committed polynomial. Particularly, our protocol requires the scheme to use an extra
random polynomial to achieve unconditionally binding, i.e., the KZG commitment in Pedersen form. We
define the following scheme based on [18,16,2].

Definition 7 (Polynomial Commitment Scheme). A polynomial commitment scheme consists of three
moves: gen, com, and open such that

1. gen(d) is an algorithm that given a random number τ ∈ F and a positive integer d, outputs a structured
reference string srs such that

srs =
〈
g1, g

τ
1 , . . . , g

τd

1 , h1, h
τ
1 , . . . , h

τd

1 , g2, g
τ
2

〉
2. com(f , srs) outputs a commitment C = g

f(τ)
1 h

f̂(τ)
1 to f , where f̂ is a random polynomial of degree d,

and f is a polynomial of degree d or less.
3. open is a protocol that P is given input f, and P and V are both given

– srs
– C - the commitment to f
– a - an evaluation point of f
– b - the evaluation of f(a)
– b̂ - the evaluation of f̂(a)

They run the protocol as follows:
(a) P computes the witness w for (a, b, b̂) such that

w = g
ψ(τ)
1 h

ψ̂(τ)
1

where ψ(x) = f(X)−f(a)
X−a , and ψ̂(x) = f̂(X)−f̂(a)

X−a
(b) V outputs acc if and only if

e(C/(gb1hb̂1), [1]2) = e(w, [τ − a]2)

– Completeness: It is clear that w exists if and only if f(a) = b and f̂(a) = b̂, which means V always
accepts the proof if P follows the protocol.

– Knowledge soundness in the algebraic group model: For any algebraic adversary A in an inter-
active protocol of PCS, there exists a p.p.t extractor E given access to A’s messages during the protocol,
and A can win the following game with negligible probability:
1. Given the inputs that P can access, A outputs C.
2. E outputs f ∈ F<d[X] from A’s output.
3. A generates w and b′ at a random evaluation point a.
4. A wins if

• V accepts the proof at the end of the protocol.
• b′ ̸= b.

A.7 Roots of Unity

We use the approach of encoding data vectors into polynomials, committing to them using a polynomial
commitment scheme (PCS), and forming zero-knowledge arguments—a model called a polynomial-based
interactive oracle proof (Poly-IOP). The zk-SNARK system Plonk popularized Poly-IOPs and has many
extensions and optimizations. A one-dimensional vector of data is encoded into a univariate polynomial
using 1 of 3 methods (all 3 are used at different steps of Plonk): (1) into the coefficients of the polynomial,
(2) as roots of the polynomial, and (3) as the y-coordinates (datai = f(xi)) of points on the polynomial.

16



Fig. 4: Small number (Z31) example of encoding a vector of integers ⟨3, 1, 1, 3, 7⟩ into (a) the first 5 points of
a polynomial, and (b) into 5th roots of unity (ω = 3).

Plonk mostly relies on (3) and an interpolation algorithm is used to find the corresponding coefficients of the
polynomial, which is needed for the PCS. General interpolation algorithms are O(n2) work for n evaluation
points but this can be reduced to O(n log n) with an optimization.

The optimization enables interpolation via the fast Fourier transform (FFT). It concerns how to choose
the x-coordinates, which will serve as the index for accessing the data: evaluating f(X) at xi will reveal
datai. First note, x-coordinates are from the exponent group (Zq) and the choices exceed what is feasible
to use (2255 values in bls12-381). Any subset can be used and interpolated. The optimization is to choose
them with a mathematical structure. Specifically, instead an additive sequence (e.g., 0, 1, 2, 3, . . .), we use
a multiplicative sequence 1, ω, ω · ω, ω · ω · ω, . . . or equivalently: ω0, ω1, ω2, . . . , ωκ−1. Further, the sequence
is closed under multiplication which means that the next index after ωκ−1 wraps back to the first index:
ωk−1 · ω = ωκ = ω0 = 1 (this property is also useful in proving relationships between data in the vector and
its neighbouring values).

For terminology, we say ω is a generator with multiplicative order κ in Zq. This implies ωκ = 1. Rear-
ranging, ω = κ

√
1. Thus we can equivalently describe ω as a κ-th root of 1. Finally, as 1 is the unity element

in Zq, ω is commonly called a κ-th root of unity.
For practical purposes, κ represents the length of the longest vector of data we can use in our protocol.

Where does κ come from? Different elements of Zq will have different multiplicative orders but every order
must be a divisor of q − 1. Thus κ is the largest divisor of the exact value of q used in an elliptic curve
standard. The value of q in bls12-381 has κ = 232 (for terminology, this called a 2-adicity of 32).

A.8 Polynomial Protocol

Gabizon et al. [16] introduced the definition of a universal polynomial protocol. Here we describe a variant
of it based on the KZG commitment scheme for our work.

17



Definition 8 (Polynomial Protocol). Fix positive integer d, t, l. Let i ∈ [1, l]. Let R ⊆ F × F × · · · × F
be a polynomial relation for one or more polynomials. Given a set of polynomials f1, f2, . . . , ft ∈ F<d[X] as
P’s private input, and a set of polynomial relations R1,R2, . . . ,Rl as public input, a polynomial protocol is
a three-move protocol that P wants to convince V each Ri holds for the certain set Fi ⊆ {f1, f2, . . . , ft}. P
and V runs the protocol as follows.

1. P commits to f1, f2, . . . , ft, and publishes all commitments, Cf1 , Cf2 , . . . , Cft .
2. V sends a random evaluation point as the challenge.
3. P responds with the corresponding evaluation and the commitment to the witness at the evaluation point

for each polynomial.

At the end of the protocol, V outputs acc or rej by checking

1. Each evaluation of f1, f2, . . . , ft at the random point is valid through the KZG checking
2. Each relation Ri holds for the prescribed polynomials Fi. More precisely, V verifies the evaluations of

the polynomials in Fi satisfy the equation defined by Ri, i.e., the zero test of polynomials.

A polynomial protocol has the following properties:

– Completeness: V always outputs acc if P follows the protocol correctly to compute the proof πi for the
relation Ri, and Ri holds for the prescribed polynomials Fi, denoted by (Fi, πi) ∈ Ri.

– Knowledge soundness in the algebraic group model: For any algebraic adversary A in a polynomial
protocol, there exists a p.p.t extractor E given access to A’s messages during the protocol, and A can win
the following game with negligible probability:
1. Given the inputs that P can access, A outputs Cf1 , Cf2 , . . . , Cft .
2. E outputs f1, f2, . . . , ft ∈ F<d[X] from A’s output and {Fi} from these polynomials.
3. A outputs the evaluation at the random evaluation point for each polynomial and the corresponding

proofs {πi}.
4. A wins if

• V accepts the proof at the end of the protocol.
• (Fi, πi) /∈ Ri or any evaluation is not correct.

A.9 Range Proof for Single Value

P wants to convince V that a number x is in the range [0, 2k) without revealing x. They run the protocol as
follows:

1. Given input x, P decomposes x to a vector of binary digits z = ⟨z1, z2, . . . , zk⟩, so that x =
∑k−1
i=0 2i · zi

2. P constructs a vector x = ⟨x1, x2, . . . , xk⟩ such that

x1 = x

xk = zk

xi = 2xi+1 + zi, i ∈ [1, k − 1]

3. P interpolates a polynomial f from x over a finite field H of order n with elements ω0, ω1, ω2, . . . , ωn−1

4. P proves the following polynomials are vanishing on H

w1 := [f(X)− x] · X
n − 1

X − ω0

w2 := f(X) · [f(X)− 1] · Xn − 1

X − ωn−1

w3 := [f(X)− 2 · f(Xω)] · [f(X)− 2 · f(Xω)− 1] · (X − ωn−1)

(a) P sends the commitment to f(X)
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(b) V sends a random challenge γ
(c) P sends the commitment to q(X) = w/(Xn − 1), such that

w = w1 + γ · w2 + γ2 · w3

(d) V sends a random evaluation point ζ ∈ F
(e) P replies with f(ζ), f(ζω), q(ζ)
(f) V outputs acc if and only if

i. w(ζ) = q(ζ) · (ζn − 1)
ii. f(ζ), f(ζω), q(ζ) are the correct evaluations through the verifying process of KZG

Proof. Completeness is clear by following the protocol.
For knowledge soundness, to make the equation w(ζ) = q(ζ) · (ζn−1) hold, q(X) must exist. That means

w(X) is vanishing on H, i.e., w1, w2, and w3 are vanishing over H. Thus, if f(X) does not satisfy any of the
equations w1, w2, and w3, V will detect the proof is invalid. By the binding property of KZG commitment,
we know that the evaluations f(ζ), f(ζω), and q(ζ) are correct with overwhelmingly high probability if the
KZG verifying is passed.

A.10 KZG Opening with Zero-Knowledge Extension (KZGzk)

Although a KZG commitment does not reveal the information of the polynomial directly due to the hiding
property, the opening point leaks the evaluation of that polynomial. Assume a malicious verifier sends a
different challenge point in each round, which allows him to recover the polynomial after d+ 1 rounds (d is
the degree of the polynomial). The previous works [3,24] mentioned this issue but did not clarify the solution.
Here we introduce the solution formally. First, we claim two algorithms to help us explain the solution.

Claim. πζ ← KZGzk.Prove(f1, f2, . . . ; ζ). This is an algorithm for P that takes as input polynomials f1, f2, . . .
and an evaluation point ζ to output a proof πζ to prove the opening evaluations are correct.

Claim. {1/0} ← KZGzk.Verify(Cf1 , Cf2 , . . . ;πζ ; ζ). This is an algorithm for V that takes as input the commit-
ments to f1, f2, . . . , πζ from KZGzk.Prove, and the evaluation point ζ to verify πζ . If πζ is valid, it returns
1, else it returns 0.

Now we define KZGzk.

Definition 9 (KZGzk). KZGzk is a variant of KZG commitment scheme such that P is given input f ∈
F<d[X], P wants to open f at n random points, where n ≤ d+ 1. They run the protocol as follows:

1. P generates n random numbers x1, x2, . . . , xn ∈ F \ H (H is the domain of f) and another n random
numbers y1, y2, . . . , yn ∈ F.

2. P incrementally interpolates f at n more points x1, x2, . . . , xn such that

f(x1) = y1, f(x2) = y2, . . . , f(xn) = yn

3. P publishes the commitment to f , Cf .
4. V sends n random evaluation points ζ1, ζ2, . . . , ζn ∈ F \H.
5. For each ζi, i ∈ [1, n], P computes πζi ← KZGzk.Prove(f ; ζi) to open f at ζi.
6. V outputs acc if and only if KZGzk.Verify(f ;πζi ; ζ) returns 1 for each πζi , i ∈ [1, n].

Theorem 2. KZGzk is complete, sound, and HVZK.

Proof. Completeness is clear because the new polynomial has the same evaluations as the old one over the
domain.

For soundness, note the difference between the variant and the original is we reduce the field of the
challenge evaluation point from F to F \H. The soundness error increases but is still negligible.
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To verify zero knowledge, we construct a simulator S. Let S construct a vanishing polynomial f∗ over
the same domain and randomly generate {x∗1, x∗2, . . . , x∗n}, {y∗1 , y∗2 , . . . , y∗n} like P, and then incrementally
interpolate f∗ such that

f∗(x∗1) = y∗1 , f
∗(x∗2) = y∗2 , . . . , f

∗(x∗n) = y∗n

We can observe when V interacts with S to execute the protocol, V always accepts the proof from S because
f∗ has the same roots as f . Given {x∗1, x∗2, . . . , x∗n}, {y∗1 , y∗2 , . . . , y∗n} are chosen uniformly at random each
time, that is exactly the same as P incrementally interpolates f . Thus V cannot distinguish between the
transcript from S and the transcript from P.

It is worth mentioning to efficiently prove several polynomials are vanishing at several points, there are some
batched KZG opening schemes [16,2,15]. Our protocol uses the batched opening scheme from [16] with the
zero-knowledge extension to demonstrate how to prove the above range proof efficiently (See Section A.11).

A.11 Range Proof for Single Value with KZGzk

Assume P is given x and P computes f(X) using the above range proof (A.9). P wants to prove f(X)
satisfies the second and the third condition, i.e., w2 and w3 are vanishing over H. P and V run the protocol
as follows:

1. P generates two random numbers ω′, ω′′ ∈ F \H and another two random numbers α, β ∈ F
2. P interpolates f at two more points ω′, ω′′ such that

f(ω′) = α, f(ω′′) = β

3. P computes w2 and w3 following the above range proof and sends the commitment to f , Cf
4. V sends a random challenge γ ∈ F
5. P sends the commitment to qw := w/(Xn − 1) where

w := w2 + γ · w3

6. V sends a random evaluation point ζ ∈ F \H
7. P sends the evaluations f(ζ), f(ζω), qw(ζ)
8. P sends the commitments to q1(X), q2(X), where

q1(X) :=
f(X)− f(ζ)

X − ζ
+ γ · qw(X)− qw(ζ)

X − ζ

q2(X) :=
f(X)− f(ζω)

X − ζω
9. V chooses random r ∈ F

10. V outputs acc if and only if
(a) w1(ζ) + γ · w2(ζ) = qw(ζ) · (ζn − 1)
(b) e(F + ζ · Cq1 + rζω · Cq2 , [1]2) = e(Cq1 + r · Cq2 , [x]2), where

F :=Cf − [f(ζ)]1 + γ · (Cqw − [qw(ζ)]1) + r · (Cf − [f(ζω)]1)

Theorem 3. The above range proof with KZGzk is complete, sound, and HVZK.

Proof. Completeness follows the protocol. Soundness and zero knowledge can be verified by Plonk (Section
3.1 of [16]) and Theorem 2.

B Protocols

This appendix describes cryptographic protocols that we contribute to the literature, either as novel protocols
or as adaptations of existing protocols for our purposes. For space considerations, we are unable to include
them in the main body of the paper but describe how they are used in the main body.
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B.1 Open KZG with Committed Value (KZGcm)

KZGzk allows P to prove a polynomial is vanishing over a specified domain. However, in some cases, P needs
to prove the claimed evaluation is correct. For example, we construct a polynomial where the evaluation at
ω0 is the total assets we want to prove. Instead of revealing the evaluation directly, we publish the committed
value. Now we introduce this opening scheme based on the KZG commitment in Pedersen form.

Definition 10 (KZGcm). KZGcm is a KZG opening scheme that P is given input f ∈ F<d[X]. P and V run
the protocol as follows:

1. P generates a random polynomial f̂ with the same degree as f and computes the commitment to f ,
Cf = g

f(τ)
1 h

f̂(τ)
1 .

2. V sends a random evaluation point a as challenge.
3. P computes the witness w for a such that

w = g
ψ(τ)
1 h

ψ̂(τ)
1

where ψ(x) = f(X)−f(a)
X−a , ψ̂(x) = f̂(X)−f̂(a)

X−a .

4. P sends w and C(b) such that C(b) = g
f(a)
1 h

f̂(a)
1 .

5. V outputs acc if and only if
e(C/C(b), [1]2) = e(w, [τ − a]2)

Theorem 4. KZGcm is complete, sound, and HVZK.

Proof. Completeness follows the original KZG commitment scheme.
For soundness, KZGcm does not violate the soundness of the original KZG commitment scheme. Recall

the computational binding property of Pedersen commitment, which means it is infeasible for P to compute
a b∗ such that f(a) ̸= b∗,C(b) = C(b∗) based on discrete logarithm assumption.

To prove HVZK, let the simulator S compute

Cf∗
$← G1, a

∗ $← F,C(b∗)
$← G1, w

∗ = Cf∗/(C(b∗) · [τ − a∗]1)

It is clear that the simulated conversation (Cf∗ , a∗,C(b∗), w∗) is always accepted by V. We can observe
that Cf∗ , a∗,C(b∗) are independent, uniformly distributed over their own field, and w∗ is determined by
Cf∗/(C(b∗) · [τ − a∗]1). Thus, the simulated conversation has the same distribution as the output of P.

We claim two algorithms representing the step 4 and 5 in the above opening scheme, respectively.

Claim. C(b)← KZGcm.Prove(f ; b; a). This is an algorithm for P that takes as input a polynomial f and an
evaluation point a to output the committed evaluation of b = f(a).

Claim. {1/0} ← KZGcm.Verify(Cf ;C(b); a). This is an algorithm for V that takes as input the commitment
to f , the committed evaluation f(a), and the point a to verify the committed value. If C(b) is the correct
evaluation at a, it returns 1, else it returns 0.

B.2 The Protocol ZKPoK in πkeys

Protocol 6 presents how to map the success or failure in secp256k1 to bls12-381.

B.3 Range Proof for Multiple Values

Protocol 7 presents how to prove multiple values satisfy the range proof based on binary decomposition.
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P and V are both given {Cbls(Akeys,i)}. P has the access to {ski}, {Akeys,i} and the hiding factor of Cbls(Akeys,i),
ri.

1. Case 1: Akeys,i = 1 (P claims knowledge of ski)
(a) P selects e1

$← {0, 1}t; z3, β
$← Zb;α

$← Zs

(b) P publishes t1 = gαs
(c) P publishes t2 = hβ

b

(d) P publishes t3 = g−e1
b hz3−rie1

b

(e) V publishes t-bit challenge e
$← {0, 1}t (or P via Fiat-Shamir)

(f) P computes e0 = e⊕ e1 and publishes e0 and e1
(g) P publishes z1 = e0ski + α
(h) P publishes z2 = e0ri + β
(i) P publishes z3

2. Case 2: Akeys,i = 0 (P does not claim knowledge of ski)
(a) P selects e0

$← {0, 1}t; z1
$← Zs; z2, α

$← Zb

(b) P publishes t1 = gz1s /pke0i
(c) P publishes t2 = ge0b hz2−rie0

b

(d) P publishes t3 = hα
b

(e) V publishes t-bit challenge e
$← {0, 1}t (or P via Fiat-Shamir)

(f) P computes e1 = e⊕ e0 and publishes e0 and e1
(g) P publishes z1
(h) P publishes z2
(i) P publishes z3 = e1ri + α

3. V outputs acc if and only if
(a) e = e0 ⊕ e1
(b) gz1s = pke0i t1
(c) ge0b hz2

b = Cbls(Akeys,i)
e0t2

(d) hz3
b = Cbls(Akeys,i)

e1t3

Protocol 6: The ZKPoK proof demonstrates that P can prove knowledge of a secret key with the correct
committed selector.

C Security Proofs for Xiezhi’s Components

C.1 Definitions

Definitions 11 and 12 are taken largely verbatim from the Provisions paper at CCS 2015 [9]. Let A (exchange-
controlled addresses) and A′ (anonymity set of addresses) denote mappings (y = gx) 7→ bal(y) where A ⊆ A′,
y is the public key corresponding to a Bitcoin address with private key x and bal(y) is the amount of currency,
or assets, observably spendable by this key on the blockchain. Let L denote a mapping uid 7→ ℓ where ℓ is the
amount of currency, or liabilities, owed by the exchange to each user identified by the unique identity uid.
A balance is a positive integer in [0,MaxETH] for a known upper-bound MaxETH. The size of A′ is known,
the size of A is generally unknown (beyond being less than or equal to A′), and the size of L is generally
unknown (see Definition 12(4) below).

Definition 11 (Valid Pair). We say that A and L are a valid pair with respect to a positive integer MaxETH
iff ∀uid ∈ L,

–
∑
y∈AA[y]−

∑
uid∈L L[uid] ≥ 0

– 0 ≤ L[uid] ≤ MaxETH

Consider an interactive protocol ProveSolvency run between an exchange E and user U such that
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1. P takes as input some values to be proved, {x1, x2, . . . , xµ}
2. P computes the binary decomposition (from most significant bit to least significant bit) of each balance,
{z(xi)

j }i∈[µ],j∈[k], such that z
(xi)
j ∈ {0, 1} and xi =

∑0
j=k 2

j · z(xi)
j .

3. P puts the bits into accumulator form where χ
(xi)
k = z

(xi)
k and χ

(xi)
i = 2χ

(xi)
i+1 +z

(xi)
i . (Remark: visualized as

a matrix, each row is a balance where the k-th column is the least significant bit and, moving right-to-left,
each bit is folded in until it accumulates to xj in the first column.)

χ
(x1)
1 χ

(x1)
2 χ

(x1)
3 . . . χ

(x1)
k

χ
(x2)
1 χ

(x2)
2 χ

(x2)
3 . . . χ

(x2)
k

χ
(x3)
1 χ

(x3)
2 χ

(x3)
3 . . . χ

(x3)
k

...
...

...
. . .

...

χ
(xµ)
1 χ

(xµ)
2 χ

(xµ)
3 . . . χ

(xµ)

k


4. Due to the concrete parameters of bls12-381, P will work column-by-column (proof size and veri-

fier time will be linear in k which is the bit-precision of each account). Let column j be vector pj =

{χ(x1)
j , χ

(x2)
j , . . . , χ

(xµ)
j }. The following constraints apply (for i ∈ [µ], j ∈ [k]): p1[i] = xi; pj [i]− 2 · pj+1[i] ∈

{0, 1}; and pk[i] ∈ {0, 1}. p1 contains {x1, x2, . . . , xµ}.
5. P interpolates polynomials for pj → pj(X) and publishes commitments to each.
6. P shows the following polynomials are vanishing for all x ∈ H where H = {ω0, ω1, . . . , ωk−1}

v1 :=[p1(X)− 2p2(X)] · [1− (p1(X)− 2p2(X))]

v2 :=[p2(X)− 2p3(X)] · [1− (p2(X)− 2p3(X))]

...
vk−1 :=[pk−1(X)− 2pk(X)] · [1− (pk−1(X)− 2pk(X))]

vk :=pk(X) · [1− pk(X)]

{v1, v2, . . . , vk} prove each liability is greater than or equal to 0 (range proof). To complete the proof, P
and V run KZGzk to open (p1, p2, . . . , pk) at a random evaluation point.

7. V outputs acc if and only if
(a) each evaluation is valid
(b) {v1, v2, . . . , vk} are vanishing on H

Protocol 7: The range proof for multiple values demonstrates that each value is either zero or a positive
number less than a specified value.

– outputProveSolvencyE (1k,MaxETH,A,L,A′) = ∅
– outputProveSolvencyU (1k,MaxETH,A′, uid, ℓ) ∈ {ACCEPT,REJECT}

For brevity, we refer to these as outE and outU respectively. Next we define, with reference to the valid
pair definition, a privacy-preserving proof of solvency.

Definition 12 (Privacy-Preserving Proof of Solvency). A privacy-preserving proof of solvency is a
probabilistic polynomial-time interactive protocol ProveSolvency, with inputs/outputs as above, such that the
following properties hold:

1. Correctness. If A and L are a valid pair and L[uid] = ℓ, then Pr[outU = ACCEPT] = 1.
2. k-Soundness. If A and L are instead not a valid pair, or if L[uid] ̸= ℓ, then Pr[outU = REJECT] ≥

1− negl(k).
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3. Ownership. For all valid pairs A and L, if Pr[outU = ACCEPT] = 1, then the exchange must have
‘known’ the private keys associated with the public keys in A; i.e., there exists an extractor that, given
A, L, and rewindable black-box access to exchange E, can produce x for all y ∈ A.

4. Privacy. A potentially dishonest user U ′ interacting with an honest exchange E cannot learn anything
about a valid pair A and L beyond its validity and L[uid] (and possibly |A| and |L|); i.e., even a cheating
user cannot distinguish between an interaction using the real pair A and L and any other (equally sized)
valid pair Â and L̂ such that L̂[uid] = L[uid].

C.2 Theorems

Theorem 5. A Σ-protocol for relation ZKPoK{(ski, si) : [pki = gski ∧ Cbls(si) = Cbls(1)] ∨ Cbls(si) =
Cbls(0)} exists which is complete, has special soundness and is special HVZK.

Proof. To demonstrate completeness, consult Protocol 6.
To demonstrate special soundness, let two accepting conversations between P and V

(t1, t2, t3, e, e0, e1, z1, z2, z3), (t1, t2, t3, e
′, e′0, e

′
1, z

′
1, z

′
2, z

′
3) with e ̸= e′

be given. It is obvious for some s = 0 or 1 and es ̸= e′s, we can compute ski, si from the above conversations.
Thus, the Σ-protocol for the relation ZKPoK has special soundness.

To demonstrate special HVZK, given e and randomly choose e0, e1 such that e = e1⊕e2, let the simulator
compute

z1
$← Zs, z2

$← Zb, z3
$← Zb, t1 = gz1s /pk

e0
i , t2 = ge0b h

z2
b /p

e0
i , t3 = hz3b /p

e1
i

and output (t1, t2, t3, e, e0, e1, z1, z2, z3). Clearly, the transcript is accepted by V. Note that e, e0, and e1 are
random t-bit strings, which means they have the same distribution as the conversation between P and V.
z1, z2, and z3 are uniformly distributed over their corresponding fields; moreover, given (e1, e2, z1, z2, z3),
(t1, t2, t3) are uniquely determined by the above equations. Therefore, the simulated transcript is not distin-
guishable from the real one to V.

Corollary 1. A Σ-protocol for relation ZKPoK{(ski, si) : [pki = gski ∧ Csi = Cbls(1)] ∨ Csi = Cbls(0)}
exists which is a non-interactive zero knowledge proof (NIZKP).

Proof. Given the relation can proven with a “standard” Σ-protocol (Theorem 5), we can use the well-known
Fiat-Shamir heuristic to compile it to a NIZKP in the random oracle model. We do not repeat the proof for
this (see [10,21]) but stress that strong Fiat-Shamir [1] needs to be used here and in the Poly-IOP components
of Xiezhi, or practical attacks could be leveraged against the system (cf. [11]).

Theorem 6. A polynomial protocol with the zero-knowledge extension KZGzk is complete, has knowledge
soundness in the algebraic group model, and is HVZK.

Proof. Completeness is clear: for an honest P, the evaluations of polynomials are correct and the relations
also hold. Thus, V will always accept the proofs.

We argue the knowledge soundness from two aspects: the evaluations and the relations. The binding
property of KZG commitment tells us the probability that any invalid evaluation passes the verifying is
negligible, which means A can win the first condition of the attack game with extremely low probability.
By the Schwartz-Zippel lemma, the equation defined by a relation R has overwhelmingly low probability to
hold if the evaluation at a random point does not satisfy the equation. Therefore, the knowledge soundness
is proved.

Since V only knows the commitments to the polynomials and the witnesses and the opening evaluations,
the commitments leak no information of the polynomials and the witnesses because of the hiding property of
KZG commitment. By Theorem 2, the opening scheme is HVZK. Thus, the polynomial protocol with KZGzk
is HVZK.
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C.3 Corollaries

Corollary 2. πkeys is complete, sound, and HVZK.

Proof. Recall that the πkeys argument contains the relation proven to be complete, sound, and HVZK in
Theorem 5. It remains to be shown the rest of the protocol (Protocol 1) is secure.

Completeness follows from Protocol 1. The remainder of the protocol involves P demonstrating that the
selector polynomial encodes a 1 at index ωi if and only if the corresponding i-th run of the Σ-protocol used
s = 1, and contains a 0 otherwise.

For πkeys to be sound, it requires (i) the polynomial commitment scheme (PCS) to be binding and (ii)
the PCS to have a sound point-evaluation argument. These two properties are both demonstrated for KZG
in the original paper [18]. Specifically these two properties rely on four assumptions:

– KZG.A1: The trusted setup outputs a structured reference string srs with the value of τ unknown to
P.

– KZG.A2: The value of τ cannot be extracted from srs which assumes P is computationally bounded
and relies on (for us in bls12-381) the t-strong Diffie-Hellman (t-SDH) assumption.

– KZG.A3: If an adversary interpolates a polynomial through the point (ωi, y) such that y = f(ωi)
but claims y′ = f(ωi) for some y′ ̸= y then the probability that τ − y′ evenly divides y = f(τ) is
overwhelmingly low. This property can be demonstrated using the Schwartz-Zippel lemma by showing
the number of τ values satisfying this property is bounded from above by d/q where d is the degree of the
polynomial and q is the size of the exponent group. For bls12-381 with 255-bit exponents and 2-adicity
of 32, this is close to 232−255 = 2−233 which is negligible.

Finally, in our protocol P does not reveal the evaluation of the polynomial at a point, P instead reveals
a commitment to the evaluation through KZGcm. In the original KZG opening scheme, P opens the com-
mitment to the polynomial first and then opens the evaluation at the challenge point. Our modification just
moves the computation work for the committed evaluation from V to P. By Theorem 4, KZGcm is HVZK.
Therefore, πkeys has zero knowledge.

For future claims, we encapsulate all assumptions about KZG as a polynomial oracle.

Corollary 3. πassets is complete, has knowledge soundness in the algebraic group model, and is HVZK.

Proof. Clearly, πassets is a polynomial protocol for two polynomial relations (i) fassets(X) − fassets(Xω) =
fbal(X) · fsel(X), X ̸= ωn−1 and (ii) fassets(ωn−1) = fbal(ω

n−1) · fsel(ωn−1). The first relation proves the
starting values are the same, and the second proves each successive value in the accumulative vector adds
its adjacent value with the corresponding value. To check the relations, πassets leverages KZGzk to open
fassets, fbal, fsel at a random evaluation point ζ and fassets at ζω. Additionally, to complete the PoA proof,
πassets publishes the evaluation of fassets(ω0) through KZGcm. We already analyzed the security of KZGcm in
Theorem 4. Thus, πassets is complete, knowledge sound, and HVZK by Theorem 6.

Corollary 4. πliabilities is complete, has knowledge soundness in the algebraic group model, and is HVZK.

Proof. Completeness follows from Protocol 3.
Given a polynomial oracle, P commits to a set of integers in binary form and builds a vector to accumulate

the bits into the integer representation (call this the range accumulator). Knowledge soundness of this aspect
follows from the knowledge soundness of the range proof by Lemma 1 which uses the polynomial oracle to
demonstrate three constraints: that the range accumulator starts with a 0 or 1; that the binary relationship
between adjacent bits in the range accumulator are 0 or 1; and that the header of the range accumulator
matches a standalone commitment to the integer (we do not use this, we just use the header values directly
from p1(X)). To complete soundness, V must check that no more than k bits are used for an integer in [0, k).
Outside of the range proof, P builds a vector (fliab(X)) to accumulate the sum of each header value (p1(X))
from the set of range accumulators for each user account. This is the same protocol as in πassets.
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For HVZK, it remains to consider what evaluation points are leaked by πliabilities. To check the constraints
({w1, w2} and {v1, v2, . . . , vk}), P and V run KZGzk to open fliab, p1, p2, . . . , pk at a random evaluation point
ζ and fliab at ζω. Again, we already analyzed the security of KZGzk in Theorem 2. Thus, πliabilities is HVZK.

Corollary 5. πusers is complete, has knowledge soundness in the algebraic group model, and is HVZK.

Proof. Completeness follows from Protocol 4.
Knowledge soundness follows directly from the polynomial oracle which, for πusers, opens two points at

the same index on two polynomials—one demonstrates the user’s balance and one demonstrates the user’s
identification. The sufficiency of this to bind the balance to the user ID is already proven in Provisions which
uses the same mechanism (for a different commitment scheme). The KZG assumptions already addressed in
Corollary 2 cover the rest.

To verify HVZK, recall the properties of KZG commitments—seeing a polynomial commitment and an
opening at a specific evaluation point reveals no further information about any other point on the polynomial.
KZG does not reveal the degree of the polynomial, which would provide the number of users of the exchange,
but an upperbound exists in the size of srs from the trusted setup (and if it can be assumed the prover will
act efficiently, the largest root of unity). For each user, a p.p.t simulator can be constructed such that the
evaluation at the user’s index is equal to the user’s balance/identification while other evaluations are random
numbers. As a user (the verifier), he cannot distinguish between the simulated transcript and the real one
due to the hiding property of KZG commitment.

Corollary 6. πsolvency is complete, sound, and HVZK.

Proof. Completeness follows from Protocol 5. The soundness of the argument is that fassets(ω0) is sound
under Corollary 3, fliab(ω0) is sound under Corollary 4, and feq(ω

0) is zero or positive by the soundness of
the range proof (as addressed in Corollary 4). The overall constraint demonstrates that the total assets equal
or exceed the total liabilities. HVZK similarly follows from the same previous corollaries (3, 4, and range
proof).
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