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Abstract. The evasive LWE assumption, proposed by Wee [Eurocrypt’22 Wee] for constructing
a lattice-based optimal broadcast encryption, has shown to be a powerful assumption, adopted by
subsequent works to construct advanced primitives ranging from ABE variants to obfuscation for
null circuits. However, a closer look reveals significant differences among the precise assumption
statements involved in different works, leading to the fundamental question of how these assump-
tions compare to each other. In this work, we initiate a more systematic study on evasive LWE
assumptions:
(i) Based on the standard LWE assumption, we construct simple counterexamples against three

private-coin evasive LWE variants, used in [Crypto’22 Tsabary, Asiacrypt’22 VWW, Crypto’23
ARYY] respectively, showing that these assumptions are unlikely to hold.

(ii) Based on existing evasive LWE variants and our counterexamples, we propose and define three
classes of plausible evasive LWE assumptions, suitably capturing all existing variants for which
we are not aware of non-obfuscation-based counterexamples.

(iii) We show that under our assumption formulations, the security proofs of [Asiacrypt’22 VWW]
and [Crypto’23 ARYY] can be recovered, and we reason why the security proof of [Crypto’22
Tsabary] is also plausibly repairable using an appropriate evasive LWE assumption.

Note. Main changes compared to the proceedings version:
– We strengthen the heuristic obfuscation-based counterexample by [VWW22] against all private-

coin evasive LWE variants into a provable counterexample, assuming only indistinguishability
obfuscation for null circuits and the hardness of LWE with super-polynomial modulus-to-noise
ratio. This can be viewed as concrete evidence of the qualitative difference between public- and
private-coin evasive LWEs. See Section 7 for details.

– In the proceedings version of this work, we stated all our proposed evasive LWE assumption
families with respect to arbitrary distributions of matrix B. Unfortunately, we later noticed
that allowing for arbitrarily distributed matrices B leads to simple counterexamples. See Sec-
tion 8 for details. Thus, for the time being, we advise to use evasive LWE only with uniformly
distributed B. Understanding how the choice of the matrix B distribution affects hardness of
evasive LWE is an interesting open question. We left our definitions of the proposed evasive
LWE assumption families in Section 4 unchanged and only added a note referring to Section 8
which discusses the new counterexamples.

1 Introduction

Resolving a decade-long open problem, Wee [Wee22] constructs a lattice-based ciphertext-policy attribute-
based encryption (CP-ABE) for NC1 with parameters independent of the circuit size, implying an op-
timal broadcast encryption, under a new assumption called the evasive LWE assumption. Roughly, the
assumption states that, for any PPT Samp outputting an arbitrary matrix P and auxiliary information
aux containing all coin tosses used by Samp,

if (B, P, sTB+ eT0, sTP+ eT1, aux) ≈c (B, P, $, $, aux) (1)
then (B, P, sTB+ eT0, B−1(P), aux) ≈c (B, P, $, B−1(P), aux),

for a uniformly random matrix B ←$ Zn×m
q , a uniformly random LWE secret s ←$ Zn

q , Gaussian errors
e0, e1 of appropriate dimensions, and where B−1(P) denotes a short Gaussian preimage of P with respect
to B, i.e. it holds that B ·B−1(P) = P mod q and B−1(P) is short in Euclidean norm. Intuitively, the
assumption postulates that, to distinguish LWE samples sTB+eT0 mod q given a short preimage B−1(P)
as hint, the only thing one can do with this hint is to right-multiply it to sTB + eT0 mod q to obtain
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another LWE sample sTP+ eT1 mod q and try to distinguish the latter. We shall call this the public-coin
evasive LWE assumption, to highlight that all random coins of Samp are given to the distinguisher via
aux. Subsequently, public-coin evasive LWE was adapted by [WWW22,HLL24], to prove security of a
multi-authority (MA-)ABE scheme without a random oracle and construct a variant of inner-product
functional encryption, respectively.

Concurrently and subsequently, a number of works considered what we shall call private-coin variants
of evasive LWE, where Samp does not need to provide all its randomness to the distinguisher. These
private-coin variants of evasive LWE (sometimes applied along with other new lattice assumptions) have
shown to imply further advanced primitives including multi-input (MI-)ABE [ARYY23], CP-ABE for
unbounded depth circuits [AKY24], null-iO [VWW22], and witness encryption [Tsa22,VWW22]. Notably,
these primitives tend to be believed to be stronger than what is currently achievable by public-coin evasive
LWE.

Underlying the name of evasive LWE, however, are significant differences among the actual assump-
tion statements involved in all aforementioned works, in addition to the distinction between public and
private-coin. For example, the public-coin evasive LWE variants in [WWW22,HLL24] involve multiple in-
dependent matrices and LWE samples (Bi, s

T
iBi+eTi mod q), where the si’s can be identical or different,

and [HLL24] further requires a joint preimage where B−1i (P) = B−1j (P) for all i, j. In the private-coin
world, [VWW22] formulates an evasive LWE assumption where the matrices B,P are not explicitly stated
in the if and then joint distributions, whereas [ARYY23] includes B into both distributions, but not P.
Unfortunately, up to now, we have little understanding as to how these and other modifications affect
the strength and plausibility of the assumptions, with the only cryptanalytic insight being a heuristic
obfuscation-based counterexample by [VWW22] against some private-coin variants.

1.1 Our Contributions
We initiate a systematic study on evasive LWE assumptions, summarised by three aspects:

Falsifying Existing Private-coin Variants. We construct counterexamples against subclasses of existing
evasive LWE variants. Specifically, we give three examples to show that, each of the three private-coin
evasive LWE assumptions stated in [Tsa22,VWW22,ARYY23], respectively, are unlikely to hold. All our
counterexamples are conceptually simple, based on the standard LWE assumption and do not rely on
obfuscation. Our counterexamples are summarised in Section 2.2 and formalised in Section 5. We sketch
additional counterexamples in Section 8 and Appendix C.

Classifications and Definitions. Based on existing variants together with the essences of our counterex-
amples, we propose a classification of plausible evasive LWE assumptions. Our proposed three families
are summarised below:
1. Public-coin evasive LWE, i.e. the PPT sampler Samp does not hide any of its computation from the

distinguisher;
2. Private-coin binding evasive LWE, where (i) Samp does not input the matrix B, and (ii) the matrices

B,P are given to the distinguisher;
3. Private-coin hiding evasive LWE, where (i) Samp does not input the matrix B, (ii) B is not given to

the distinguisher, and (iii) the matrix P is provably sufficiently hidden from the distinguisher.
For each family we formulate a general definition, suitably capturing all variants in existing works that
are not subject to simple counterexamples (see Remark 3 for a discussion of obfuscation-based coun-
terexamples). We summarise the rationale in Section 2.3 and give precise definitions in Section 4. We
hope that this will serve as a first step to provide the community with a language for communicating
about evasive LWE assumptions, leaving its intuition unchanged while simultaneously expressing the
qualitative differences between the actual assumptions involved.

Implications on Existing Constructions. We show that the assumption instances in the security proofs
of [VWW22,ARYY23] fall under our proposed families of plausible evasive LWE, as such, their related
constructions remain secure under our assumptions. More concretely, in Section 6 we prove that the
evasive LWE instances in the proof of [VWW22] satisfy our condition of P being sufficiently hidden,
thus falling into the private-coin hiding family. The assumption instances of [ARYY23] fall into the
private-coin binding family directly by definition. For the proof of [Tsa22], we discuss in Section 2.4 why
we believe it may be repairable with an alternative and plausible evasive LWE assumption.
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2 Overview

In Section 2.1 we review a number of evasive LWE variants. In Section 2.2 we sketch our counterexamples
against three subclasses, which leads to our proposal of three plausible evasive LWE families summarised
in Section 2.3. For existing works that rely on assumptions affected by our counterexamples, we discuss
in Section 2.4 to which extent their security proofs may be repairable.

We adopt simplified notation in this overview: Operations are understood to be over Zq and we
suppress mod q expressions. To denote noise terms, we use curly underline ·

:
, e.g. sTB

:::
means sTB+ eT

where e is short relative to q. We use $ to refer to uniformly random values, where multiple $ signs in a
joint distribution are understood to be independent uniform samples.

2.1 Existing Evasive LWE Variants and Classifications

To aid understanding the differences among the evasive LWE variants below, we provide two partition
grids in Fig. 1 which we will cross-reference with.

Public-coin Evasive LWE. We recall again Wee’s public-coin evasive LWE assumption: For any PPT
Samp outputting an arbitrary matrix P and auxiliary information aux containing all randomness used
by Samp,

if (B, P, sTB
:::

, sTP
:::

, aux) ≈c (B, P, $, $, aux) (2)

then (B, P, sTB
:::

, B−1(P), aux) ≈c (B, P, $, B−1(P), aux)

for uniformly random B and uniformly random LWE secret s.3 Subsequently, Waters, Wee and Wu [WWW22]
define a variant consisting of polynomially many pairs of matrices (Bi,Pi)i and their respective LWE
samples sTiBi

::::
, sTiPi

:::
. More recently, Hsieh, Lin, and Luo [HLL24] define a public-coin variant consisting

also of pairs of (Bi,Pi)i, but with LWE samples of the form (sTBi
::::

, sTPi
:::

)i sharing the same secret s,
with a structured error distribution instead of a random Gaussian, and further requiring joint preimages
satisfying B−1i (P) = B−1j (P) for all i, j.

Private-coin without B,P. Vaikunthanathan, Wee and Wichs [VWW22] define the following private-coin
evasive LWE assumption: For any PPT Samp which outputs (arbitrary) LWE secret S, matrix P, and
auxiliary information aux (not necessarily containing all randomness used by Samp),

if (SB
::

, SP
::

, aux) ≈c ($, $, aux) (3)

then (SB
::

, B−1(P), aux) ≈c ($, B−1(P), aux)

for uniformly random B. This variant corresponds to the blue area in Fig. 1b. We observe that, unlike
in Eq. (2), in this variant, B is not included in the if and then distributions, and P also not necessarily.
However, since both aux,P are generated by Samp, information about P may or may not be included
in the distributions via aux, e.g., Samp could choose aux = P. Using the above, [VWW22] prove that
the well-known GGH15 encodings [GGH15] are secure, implying the existence of null-iO and witness
encryption, and recent works also use the above evasive LWE variant to construct SNARG for UP as
well as universal computational extractors [MPV24,CM24].

Private-coin without P. Agrawal, Rossi, Yadav and Yamada (ARYY) [ARYY23] defined the following
private-coin variant: For any PPT Samp outputting (arbitrary) LWE secret S, matrix P, and auxiliary
information aux (not necessarily containing all randomness used by Samp),

if (B, SB
::

, SP
::

, aux) ≈c (B, $, $, aux) (4)

then (B, SB
::

, B−1(P), aux) ≈c (B, $, B−1(P), aux)

3 [Wee22] includes an additional matrix A and LWE samples sTA
:::

in the joint distributions for further expres-
siveness, which we omit in this overview.
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Fig. 1: Partition of evasive LWE assumptions. Background colour {yellow,blue,red} =
Assumption {(4), (3), (5)}. Cross in {yellow,blue,red} = Counterexample {1, 2, 3} sketched in Sec-
tion 2.2 and formalised in Section 5. Cross in gray = heuristic counterexample. Green checkboxes are
the three proposed classes in Section 2.3.

for uniformly random B. This corresponds to the yellow area in Fig. 1b. We notice that here the matrix
B is included in the distributions, and P again may or may not be via aux. ARYY show that Eq. (4)
implies another private-coin variant, which is almost identical except that aux can be partitioned as
(aux1, aux2), with aux1 provably pseudorandom, and P is efficiently computable from aux2. The latter
is used for proving security of their MI-ABEs4, and subsequently also by [AKY24] for proving their
CP-ABE for unbounded depth circuits5.

Samp generates B−1(P). Concurrent to [VWW22], Tsabary [Tsa22] proposes a similar flavour of assump-
tion for constructing witness encryption. Putting formulation differences aside, Tsabary’s assumption can
be summarised as follows: For any PPT Samp which inputs a matrix B with its trapdoor tdB, and out-
puts LWE secret S, target matrix P, preimages B−1(P) sampled using tdB, and auxiliary information
aux (not necessarily containing all randomness of Samp),

if (SB
::

, SP
::

, aux) ≈c ($, $, aux) (5)

then (SB
::

, B−1(P), aux) ≈c ($, B−1(P), aux).

This variant covers the red area in Fig. 1b. The if and then distributions are identical to Eq. (3). The
crucial difference is, however, that Samp takes the matrix B as input and samples the preimages B−1(P)
itself, in contrast to other variants where the preimages are provided by the challenger. This formulation
necessitates Samp knowing B and tdB, and as a consequence S,P and aux can be arbitrarily correlated
with B.

Summarising from above, we obtain the following factors:

– Public-coin vs. private-coin Samp (Fig. 1a vs. Fig. 1b).
– Whether B is included in the if and then distributions (left axis of Fig. 1b).
– Whether P is included in the if and then distributions. We separately consider, informally for now, P

is fully available, partially available, or fully hidden from the distinguisher (bottom axis of Fig. 1b),
the last to be expanded later.

– Whether Samp inputs the matrix B (right axis of Fig. 1b).

The above jointly form a partition of Fig. 1, as marked by the figure labels.6

Remark 1 (On Assumption Strength). The classes of samplers Samp in evasive LWE form natural inclu-
sions corresponding to the strength of the assumptions: The largest class contains the most Samp, which
4 For their MI-ABE for P, along with a new assumption called extended tensor LWE.
5 Along with a new assumption called circular tensor LWE.
6 The partition has not taken into account whether the LWE secret S is generated by Samp. This is to be

discussed at the end of Section 2.2.
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can take the most inputs, e.g. B, and output arbitrary matrices, representing the strongest assumptions.
Underlying are various subclasses, e.g. one containing Samp which does not input B, and one containing
Samp which must output P in plain, each forming weaker assumptions. Similarly, public-coin samplers
are a subclass of private-coin ones.

In contrast, including B in the distributions or not rather makes the assumptions incomparable:
Including B leads to a stronger if condition to be satisfied, but the assumption simultaneously asserts a
stronger then statement with B.

2.2 Counterexamples
In order to invalidate an evasive LWE assumption, our goal is to construct a PPT Samp such that, with
respect to Samp, (1) the if statement holds (assuming plausible assumptions), but (2) the then statement
does not.
Counterexample 1: private-coin with B and partial/hidden P. We give a counterexample for the
case where the distinguisher of if receives the matrix B, but not P, corresponding to a subclass of Eq. (4)
with a yellow cross in Fig. 1b. The idea is simple: Given B and B−1(P), the distinguisher of then can
recover P, so that if P contains useful information for distinguishing, this can be used by then but not
if. Concretely, let Samp return the following:

P =

(
P1, P2 =

[
uT

R

])
, aux = ()

where u is a short vector such that P1u = 0, i.e. Samp samples P1 together with a trapdoor to generate
u, and R is uniformly random. To see that the the if statement holds, observe that

(B, sTB
:::

, sTP1
::::

, sTP2
::::

)
stat.
≈ (B, sTB

:::
, $, $)

LWE
≈ (B, $, $, $)

where the first statistical statement holds since R and P1 are (close to) uniformly random (and unknown),
and the second follows by LWE, as B is uniformly random. For the distinguisher of then, observe that,
when given

(B, B−1(P1,P2), sTP1
::::

, sTP2
::::

),

it can compute
P2 ← B ·B−1(P2);

[
uT

R

]
← P2; Test sTP1

::::
· u ≈? 0, (6)

where sTP1
::::

· u would likely not be short when replacing sTP1
::::

with a random vector. Note that the
example works also when P1 is given in aux.
Counterexample 2: private-coin without B and partial P. Next we turn to the case where B is
not available to the distinguisher of if but P is partially available, corresponding to a subclass of Eq. (3)
with a blue cross in Fig. 1b. Here, our Samp is almost identical to the previous counterexample, except
that now it lets aux = P1. Similar to above, for the if condition, we have

(sTB
:::

, sTP1
::::

, sTP2
::::

, P1)
stat.
≈ ($, sTP1

::::
, $, P1)

LWE
≈ ($, $, $, P1)

where the first relation is due to B,R being uniform and unknown to the distinguisher. For distinguishing
the then distribution, since B is not contained in the joint distribution any longer, the distinguisher takes
an extra step to recover it. Namely, our crucial observation is that when P1 has (at least) as many columns
as that of B and Zq is a field7 then with high probability, B is fully determined given (B−1(P1),P1),
and is efficiently recoverable by a system of linear equations from the relation B ·B−1(P1) = P1. This
follows since each entry of B−1(P1) is Gaussian-distributed so that B−1(P1) has full rank over Zq if
the variance of its entries is large enough. After recovering B, the distinguisher performs the same steps
as Eq. (6).
7 The condition of Zq being a field can be naturally extended to the ring setting, where Rq splits into subfields

of super-polynomial size, so that a random element is invertible with high probability. For simplicity we only
consider Zq in the rest.
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Remark 2 (When aux contains s). Counterexample 2 relies on that aux does not contain information about
the LWE secret s, so that (sTP1

::::
,P1) ≈ ($,P1) holds by LWE. Against settings where aux is required to

contain s (e.g. that in [VWW22]), one can modify the above slightly to yield another counterexample:

Write sT = (sT1, s
T
2), B =

(
B1

B2

)
, P1 =

(
Q11 Q12

Q21 Q22

)
. Let aux = (s,Q11,Q22). Now, (sTP1

::::
, aux) ≈ ($, aux)

still holds since sT2Q21 and sT1Q12 are uniform without information about Q21,Q12. To distinguish then,

use the relations B1 ·B−1
(
Q11

Q21

)
= Q11 and B2 ·B−1

(
Q12

Q22

)
= Q22 to recover B, the rest is the same.

Counterexample 3: Private-coin where Samp inputs B. Our last counterexample applies whenever
a private-coin Samp inputs the matrix B, spanning the whole area in red in Fig. 1b, marked with a
red cross.8 The idea is again simple: If Samp knows the matrices B,P = (p1,p2) and wishes to make
a secret available to the distinguisher of then who additionally receives a short preimage B−1(p1), then
an immediate strategy is to encrypt, specifically with the dual-Regev encryption. As is usual in the
lattice-setting, for one to distinguish LWE, an appropriate short preimage suffices. Therefore, let Samp
on input B output

P = (p1,p2), aux = ctxtu2
= (RB

:::
, Rp1

:::
+ bq/2cu2),

where P = (p1,p2) = B ·(u1,u2) are the images under random short (e.g. Gaussian or binary) preimages
(u1,u2) sampled by Samp itself, and ctxtu2

the dual-Regev encryption of u2 under the public key (B,p1).
To see that the if statement holds, observe

(B, P, sTB
:::

, sTP
:::

, ctxtu2)
c
≈ (B, P, sTB

:::
, sTP

:::
, $)

c
≈ (B, P, $, $, $)

where the first ≈c follows from security of dual-Regev encryption, the second by LWE. Finally, to
distinguish the then distributions, we can use B−1(p1) to decrypt by observing that RB

:::
·B−1(p1) ≈ Rp1

:::
,

so we can obtain u2. Next, we observe that B−1(p2)− u2 is a short preimage of 0 for the image p2, i.e.
B · (B−1(p2)−u2) ≈ 0. We highlight that in the above we can prove the hardest if condition where B,P
are in the joint distributions, and we can distinguish the weakest then distributions without B and P,
since the distinguisher does not require them. As such, the above counterexample covers the whole red
area in Fig. 1b spanning all settings with/without B,P.

On LWE secret s. We are not aware of counterexamples which specifically require Samp to know/generate
the LWE secret s. More concretely, for any attack which targets a subclass where Samp needs to
know/generate s, we realise a more general attack which works over the corresponding superclass where
Samp does not know s. To illustrate, when Samp is allowed to generate the LWE secret s, we can simplify
counterexample 1 against Eq. (4) above, by letting Samp embed s in e.g. the first row P, thus skipping
generating P1 and u. However, once such “embed-secret-in-P” mechanism is possible, the attack gen-
eralises to one where Samp does not need to know s. Indeed, all attacks that we are aware of work by
embedding some secret chosen by Samp, which can be recovered given B−1(P). As long as this can be
achieved, one can naturally pick a secret that breaks LWE by interacting with (parts of) P, without
interacting with s.

Remark 3 (Obfuscation-based Counterexample). [Wee22,VWW22] suggested heuristic obfuscation-based
counterexamples which apply to all private-coin variants discussed above. In Section 7, we show that the
adapted versions of their counterexamples can be proven based on LWE and the existence of null-iO.

Briefly summarised, the sampler Samp in the adapted counterexample outputs a tall S ∈ ZmP×n
q and a

wide P ∈ Zn×mP
q , both uniformly random. It also provides via aux an obfuscation of a circuit CSP+E′′ with

SP+E′′ hardwired, where E′′ is short error sampled by Samp itself. The circuit CSP+E′′ takes as inputs
a tall matrix M1 ∈ ZmP×m

q and a wide matrix M2 ∈ ZmP×m
q . If M1M2 is close to SP+E′′ it outputs

1, otherwise 0. In other words, CSP+E′′ checks if the low-rank matrix M1M2 sufficiently approximates
SP+E′′. In the then challenge, the adversary uses the obfuscation of CSP+E′′ to distinguish SB+E

8 Note that the counterexample also applies to Eq. (5) which considers an even larger sampler class that also
knows the trapdoor tdB.
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from uniform randomness, since CSP+E′′ outputs 1 on input (SB+E,U) with overwhelming probability.
In the if challenge, the obfuscation of CSP+E′′ provably does not help in distinguishing SB+E,SP+E′

from uniform randomness, as the hardwired SP+E′′ in CSP+E′′ is indistinguishable from a uniformly
random matrix R ∈ ZmP×mP

q . For mP � m, the circuit CR is zero everywhere. At this point, we can
rely on the null-iO security to replace the obfuscation of CR with one of a padded constant zero circuit
which is clearly useless for solving the if challenge.

2.3 Plausible Classes of Assumptions

Recall again the intuition of evasive LWE from [Wee22]: To distinguish sTB
:::

given B−1(P), the seemingly
only meaningful way to use B−1(P) is to right-multiply it to sTB

:::
, obtaining new samples sTP

:::
and dis-

tinguishing with the latter. Underlying all counterexamples above are simple alternative uses of B−1(P)
crafted according to the corresponding assumption setting, which we summarise:

Mapping between B,P. Both counterexamples 1 and 2 target the setting where in the if distribution
only one of the two matrices B and P are fully known to the distinguisher, but in the then distribution
the additional information of B−1(P) allows to recover the other hidden matrix via the relation

B ·B−1(P) = P, (7)

the latter containing sufficient information for distinguishing LWE.

Encrypt w.r.t. short vector B−1(P). For counterexample 3, B−1(P) acts as the secret key of an encryption
scheme. In fact, in this scenario, during decryption B−1(P) is still being multiplied to some LWE samples
rTB
:::

of B to obtain new samples rTP
:::

w.r.t. P. The crucial difference, however, is that such pair of LWE
samples is prepared by Samp but not the challenger, allowing its embedding of secret in the form of
rTP
:::

+ secret.
With these in mind, we propose three main families of evasive LWE assumptions where these alter-

native uses cannot apply. These families are marked with green checkboxes in Fig. 1. See Section 4 for
formal definitions.

Public-coin Evasive LWE. The first family is when Samp is public-coin, meaning that it outputs all
randomness used. This captures for example the assumptions in [Wee22,WWW22,HLL24,Wee24,CLW24].
We require that B is contained in the joint distribution, see Remark 4 for a discussion. We also re-
quire that Samp does not input B, which is supported by a heuristic counterexample sketched in
Appendix C.3.9 Note that under this family, P is always available to the distinguisher (c.f. Fig. 1a),
since it is efficiently recoverable from the randomness used by Samp.

Private-coin Binding Evasive LWE. The second family is when Samp is private-coin, and B,P are
explicitly included in the joint distributions. Assumptions of this family take the following form: For
any PPT Samp inputting the security parameter λ and outputting (S,P, aux), where aux need not
include all randomness used,

if (B, P, SB
::

, SP
::

, aux) ≈c (B, P, $, $, aux)

then (B, P, SB
::

, B−1(P), aux) ≈c (B, P, $, B−1(P), aux).

This corresponds to the bottom-left green checkbox area of Fig. 1b and captures the variant Eq. (8)
used by [ARYY23,AKY24], to be discussed in Section 2.4.

Private-coin Hiding Evasive LWE. The third and most subtle family is when Samp is private-coin
and B,P are hidden from the joint distribution. Our proposed family takes the following form: For
any PPT Samp inputting the security parameter λ and outputting (S,P, aux), where aux need not
include all randomness used, and it holds (P, aux) ≈c (P+R, aux) for a bounded-norm random R,

if (SB
::

, SP
::

, aux) ≈c ($, $, aux)

then (SB
::

, B−1(P), aux) ≈c ($, B−1(P), aux).

9 We thank a reviewer of AsiaCrypt 2024 for pointing out this counterexample to us!
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The bounded-norm R can be interpreted as noise, and P+R some approximation of P. The indis-
tinguishability between P and P + R serves as a proof of “P cannot be approximated given aux”
and resists algebraic attacks which would, e.g., recover a column of P, or a sum of a two columns,
since either allows to distinguish by cross-checking with aux. See Section 4.3 for a more thorough
discussion. This family corresponds to the top-right green checkbox area of Fig. 1b, and seeks to
capture existing assumptions taking the form of Eq. (3) while plausibly resisting attacks exploiting
the alternative use of B−1(P) via Eq. (7): Without knowing neither B nor approximation of P, it is
unclear how Eq. (7) may still be exploited.

Remark 4. Observant readers might have noticed that we have not included the top-left areas of Figs. 1a
and 1b, the families where B is hidden but P is known. While we have not found counterexamples on
these families, we believe they are of relatively low utility, based on the following informal argument:
Since P is fully known, the indistinguishability SP

::
≈c $ implies S having high entropy given the “if”

distribution, in which case an appropriate entropic LWE assumption [BD20] implies SB
::
≈c $ even when

B is known.10 We therefore expect that, instead of resorting to an assumption in this family, one can
utilise the families where B is known, yielding also a stronger then relation where B is also known.

2.4 Assumption Instances in Existing Works

[ARYY23,AKY24]: Counterexample 1 applies to the evasive LWE variant in Eq. (4), which is the one
of the two involved in [ARYY23,AKY24]. Fortunately, both works’ proofs are modular, in particular,
ARYY show that Eq. (4) implies a second evasive LWE assumption, the latter used by both works to
prove security of their constructions. The second assumption is as follows: For any PPT Samp outputting
an (arbitrary) LWE secret S, matrix P, and auxiliary information aux1, aux2 (not necessarily containing
all randomness used by Samp), where P is efficiently computable given aux2,

if (B, SB
::

, SP
::

, aux1, aux2) ≈c (B, $, $, $, aux2) (8)

then (B, SB
::

, B−1(P), aux1, aux2) ≈c (B, $, B−1(P), $, aux2)

for uniformly random B. Since P is efficiently computable from aux2, one can also phrase Eq. (8) as an
instance of our proposed private-coin binding evasive LWE, where B and P are both fully available in
the joint distribution. Thus, assuming the private-coin binding evasive LWE, the MI-ABE of [ARYY23]
and CP-ABE of [AKY24] remain secure.

[VWW22]: Counterexample 2 applies to the evasive LWE variant in Eq. (3), which first appears in [VWW22]
and is recently involved in [CM24,MPV24]. Nevertheless, we have not found attacks on the assumption
instance (i.e. the specific Samp) used by [VWW22]. Indeed, in Section 6 we show that, the assumption
instance used by [VWW22] falls under our proposed private-coin hiding evasive LWE, where B is not
given in the joint distribution and P is hidden. The main reason is that each entry of P contains Gaussian
noise that is independent of aux, and when the Gaussian parameter is sufficiently large, the noise term,
consequently also P, is statistically irrecoverable. Thus, assuming the private-coin hiding evasive LWE,
the constructions of [VWW22] remain secure.

[Tsa22]: Counterexample 3 applies to the evasive-type assumption by [Tsa22], where a private-coin Samp
inputs B and its outputs can be arbitrarily correlated with B. Nevertheless, we observe that the condition
of Samp knowing B seems to be an artifact of the definitional style used in [Tsa22]. In Tsabary’s evasive-
type assumption, Samp also outputs the pre-image B−1(P) for the then distribution, which necessitates
Samp to input B and its trapdoor. In contrast, in other evasive LWE assumptions, such B−1(P) is
generated by the challenger but not Samp. Upon closer inspection, the Samp instance in the security
proof of [Tsa22] indeed only uses B and tdB for sampling the preimages B−1(P) but nothing else. In
particular aux contains no further components correlated to B and tdB. Therefore, it seems plausible to us
that Tsabary’s construction can be proved under a variant of private-coin evasive LWE that is not subject
to counterexamples. However, verifying this claim is not straightforward, since Tsabary’s assumption and
10 The argument is informal, because SP

::
≈c $ might not necessarily imply sufficiently high entropy for entropic

LWE to apply.
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proof comes with many subtle differences. In more detail, Tsabary considers exponential-size distributions
over matrices and LWE samples, and the distinguisher accesses them via querying an oracle with an index
for the sample. In turn, evasive LWE provides polynomial-size samples directly to the distinguisher, so
the adaptation of Tsabary’s proof to evasive LWE requires syntactic changes and possibly re-structuring
the proof into more game hops. We leave verifying the security of Tsabary’s construction to future works.

3 Preliminaries

Denote by N = {1, 2, . . .} the set of natural numbers, by Z the set of integers and by R the set of real
numbers. For n ∈ N, we set [n] = {1, . . . , n}. For a ring extension R ⊇ Z, we set Rq := R/(q · R).

Denote by λ the security parameter. Write poly(λ) =
⋃

d∈N O(λd), negl(λ) =
⋂

d∈N o(λ−d). A PPT
algorithm is a probabilistic algorithm whose time complexity lies in poly(λ). For a PPT algorithm A, we
write A(·; rand) for running which on randomness rand, where rand is understood to be uniformly random
over its randomness space. Denote by U(S) the uniform distribution over a finite set S. The statistical
distance between two discrete distributions S1, S2 over a set X is ∆(S1,S2) = 1

2

∑
x∈X |S1(x)− S2(x)|.

For a vector x = (x1, . . . , xm)T ∈ Rm, its ℓ2-norm is ‖x‖ := ‖x‖2 =
√∑

i∈[m] x
2
i .

3.1 Lattices and Gaussian Distributions

Definition 1 (Lattice and Dual Lattice). A lattice is a discrete additive subgroup Λ ⊂ Rm. The
rank of a lattice Λ is defined to be the vector space dimension by the space spanned by the elements of Λ.

The dual lattice of a lattice Λ is given by

Λ∗ = {y ∈ Rm | ∀x ∈ Λ : 〈y|x〉 ∈ Z}.

Definition 2 (q-ary Lattices and Cosets). For a matrix A ∈ Zn×m
q , define its orthogonal lattice by

Λ⊥(A) := {e ∈ Zm | Ae = 0 mod q} ⊆ Zm

and the lattice spanned by its rows by

Λ(A) := {y ∈ Zm | ∃x ∈ Zn, y = xTA mod q} ⊆ Zm.

Additionally, for a syndrome u ∈ Zn
q , define the following coset of Λ⊥(A)

Λ⊥u (A) := {e ∈ Zm | Ae = u mod q} ⊆ Zm.

For U = (u1, . . . ,uk) ∈ Zn×k
q , the notation extends naturally to Λ⊥U(A) = Λ⊥u1

(A)× . . .×Λ⊥uk
(A) ⊆

Zm×k.
Note that we have q ·Λ(A) =

(
Λ⊥(A)

)∗ and Λ⊥u (A) = Λ⊥(A) + t, if there exists a t ∈ Zm s.t. At =
u mod q.

Definition 3 (Gaussian measure). For x ∈ Rm, the Gaussian measure with parameter Σ ∈ Rm×m

and center c ∈ Rm, where Σ is positive semi-definite, is ρΣ,c(x) = exp
(
−π · (x− c)TΣ−1(x− c)

)
. If

Σ = χ2I, we write ρχ,c(x). If c = 0, we simply write ρΣ(x) (resp. ρχ(x)). For a discrete set Λ ⊂ Rm,
we set ρΣ,c(Λ) :=

∑
x∈Λ ρΣ,c(x).

Definition 4 (Discrete Gaussian Distribution). For a non-empty discrete set Λ ⊂ Rm, define the
discrete Gaussian distribution over Λ with parameter Σ ∈ Rm×m and center c ∈ Rm, where Σ is
positive definite, as

DΛ,Σ,c(x) =
ρΣ,c(x)

ρΣ,c(Λ)
if x ∈ Λ,

and DΛ,χ,c(x) = 0 otherwise. If Σ = χ2I, we write DΛ,χ,c for DΛ,Σ,c. If c = 0, we simply write DΛ,Σ

(resp. DΛ,χ).
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For Λ⊥U(A) = Λ⊥u1
(A)× . . .× Λ⊥uk

(A) where each Λ⊥ui
(A) is non-empty, we write DΛ⊥

U(A),Σ,c for the
(horizontal) concatenation of the discrete Gaussian distributions over each Λ⊥ui

(A).

Definition 5 (Smoothing Parameter [MR04]). For a full-rank lattice Λ ⊂ Rm and ϵ > 0, its
smoothing parameter is

ηϵ(Λ) := inf{χ > 0 | ρ1/χ(Λ∗ \ {0}) ≤ ϵ}.

The following lemma allows to bound the smoothing parameter for orthogonal lattices of random
matrices:

Lemma 1 ([Pei07,GPV08]). Let q be prime, m ≥ 2n · log q. We have

Pr
A←Zn×m

q

[
η2−n(Λ⊥(A)) ≤ 4√

π
·
√

log(2m) + log(1 + 2n)

]
≥ 1− q−n.

Lemma 1 is an implication of results of [Pei07,GPV08]. For details, we refer the reader to Lemmas 13
and 15in Appendix A.1.

Lemma 2 ([MR04,PR06]). Let Λ ⊂ Rm be an m-dimensional full-rank lattice. For any c ∈ Rm,
ϵ > 0, χ ≥ 2ηϵ(Λ), and y ∈ Λ, it holds that

DΛ,χ,c(y) ≤ 2−m · 1 + ϵ

1− ϵ
.

Lemma 3 (Leftover Hash Lemma [HILL99,BDK+11]). Let m,n, q ∈ N. If we draw A ← Zn×m
q ,

y← Zn
q and x← {0, 1}m, we have

∆((A,Ax mod q), (A,y)) ≤ 1

2
· q

n/2

2m/2
.

Lemma 4 (Noise Flooding). Let χ = DZ,σ. For all t ∈ Z, we have ∆(χ, χ + t) ≤
√

π
2 ·
∥t∥
σ . In

particular, if χ ∈ λω(1)‖t‖, then ∆(χ, χ+ t) ∈ negl(λ).

For a proof of Lemma 4, see [BDE+18, Appendix A.2].

3.2 Lattice Assumptions and Lattice Trapdoors

Definition 6 (Learning with Errors). Let q, n,m, χ be parametrised by λ, where n,m, q ∈ N with
n,m ∈ poly(λ). The (decisional) Learning with Errors LWEq,n,m,χ assumption states that for every
PPT distinguisher D, it holds that∣∣∣∣∣∣∣∣∣∣

Pr

b = 0

∣∣∣∣∣∣∣∣∣∣
A←$ Zn×m

q

s←$ Zn
q , e←$ DZm,χ

bT := sTA+ eT mod q

b← D(A,b)

− Pr

b = 0

∣∣∣∣∣∣∣
A←$ Zn×m

q

b←$ Zm
q

b← D(A,b)


∣∣∣∣∣∣∣∣∣∣
∈ negl(λ).

In their seminal work, [MP12] gave algorithms for sampling (almost) uniformly random matrices
together with trapdoors that allow for LWE inversion and preimage lattice sampling. Currently, their
algorithms are the status quo for these tasks, and we will usually assume that the challengers for the
evasive LWE assumptions will resort to them. Hence, we will give here an overview of the guarantees
given in [MP12] for these algorithms:

Theorem 1 ([MP12]). Let m ≥ 3n · log(q) and set w = n · dlog qe. Let χ ∈ Ω(n ·
√
log q). There exist

algorithms (TrapGen, SampPre) with the following properties:

1. TrapGen(1n, 1m) outputs two matrices B ∈ Zn×m
q , td ∈ {−1, 0, 1}w×(m−w) s.t. the statistical distance

between B and U(Zn×m
q ) is upper-bounded by 2−n.

2. Draw (B, td) ← TrapGen(1n, 1m), let u ∈ Zn
q . For e′ ← SampPre(B, td,u, χ) and e ← DΛ⊥

u (B),χ, we
have ∆((B, e), (B, e′)) ∈ O(2−n).
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PrebA(1λ)

B←$ D(
A,P, aux

)
← Samp

(
1λ; rand

)
assert P ∈ BRm×mP

(S,SA)←$ S
hint := (f(S; randf ), fA(SA; randfA))

if b = 0 then

EA ←$ χA, EB ←$ χB , EP ←$ χP

CA := SAA+EA mod q

CB := SB+EB mod q

CP := SP+EP mod q

if b = 1 then

CA ←$RtA×mA
q

CB ←$Rt×m
q

CP ←$Rt×mP
q

return A

 A, B, P,
CA, CB , CP ,

hint, aux,

rand, randfA , randf



PostbB(1
λ)

B←$ D(
A,P, aux

)
← Samp

(
1λ; rand

)
assert P ∈ BRm×mP

(S,SA)←$ S
hint := (f(S; randf ), fA(SA; randfA))

if b = 0 then

EA ←$ χA, EB ←$ χB

CA := SAA+EA mod q

CB := SB+EB mod q

U←$ DΛ⊥
P
(B),Σ

if b = 1 then

CA ←$RtA×mA
q

CB ←$Rt×m
q

U←$ DΛ⊥
P
(B),Σ

return B

 A, B, P,
CA, CB , U,

hint, aux,

rand, randfA , randf


Fig. 2: Experiments Pre and Post for public-coin evasive LWE.

4 Evasive LWE: Definitions, Classes

We formally define the three classes of evasive LWEs outlined in Section 2.3.

4.1 Public-coin Evasive LWE

Definition 7 (Public-coin Evasive LWE). Let the parameters

param = (R, q, n, nA,m,mP ,mA, t, tA,D,S, χB , χP , χA, f, fA, Σ)

be parametrised by λ, where R is a ring admitting an embedding as a lattice in Rφ for some φ ∈ N,
D ∼ Rn×m

q , S ∼ Rt×n
q × RtA×nA

q , χB ∼ Rt×m, χP ∼ Rt×mP , and χA ∼ RtA×mA are distributions,
Σ ∈ Rφm×φm is positive definite, and f, fA are PPT algorithms. Let Samp be a PPT algorithm which,
on input 1λ, outputs (

A ∈ RnA×mA
q , P ∈ Rn×mP

q , aux ∈ {0, 1}∗
)
.

Denote

AdvPreA (λ) :=
∣∣Pr[Pre0A(1λ) = 1

]
− Pr

[
Pre1A(1

λ) = 1
]∣∣,

AdvPostB (λ) :=
∣∣Pr[Post0B(1λ) = 1

]
− Pr

[
Post1B(1

λ) = 1
]∣∣,

where the experiments PrebA and PostbB are defined in Fig. 2. The PublicEvLWEparam assumption states
that for any PPT Samp and B there exists a PPT A such that AdvPreA (λ) ≥ AdvPostB (λ)/poly(λ)− negl(λ).

Remark 5. We parametrise the assumption by the modulus, matrix dimensions, noise parameters, etc..
This is analogous to how the LWE assumption is defined when done precisely, which formally is parametrised
by (R, q, n,m, χ). We emphasise that we believe the plausibility of an evasive LWE assumption should
depend on these parameters, analogous to that the plausibility of LWE depends on e.g. the dimension
n and the ratio q/χ. As we will see, existing public-coin evasive LWE all fall under Definition 7 with
specially chosen parameters.
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Definition 7 is a versatile definition designed to capture both the public-coin flavour and many different
(sometimes implicit) features involved in existing definitions. We elaborate on some key aspects.
Randomness of Samp. The randomness rand used by Samp is made explicit syntactically, to highlight

the public-coin nature. The same convention was used in [HLL24]. Given rand, the inputs (A,P, aux)
to A and B may be omitted as they can be derived from rand; we include them for clarity.

Matrix A. The matrix A serves to represent the LWE matrix not involved in the preimage-image rela-
tion which the evasive LWE assumption concerns, i.e. in the Post experiment, the acquired preimages
do not involve A. This serves to increase expressiveness of the assumption while leaving the intuition
of evasive LWE unchanged, and is required in a number of works [Wee22,WWW22,HLL24,CLW24].
By setting A the empty matrix, we recover the simpler cases outlined in Section 2.

Check P = BRmP . This check makes the evasive LWE assumption formally well-defined: Without this
check, in case P = (pi)i is not in the R-span of B, the distribution DΛ⊥

P(B),Σ , and consequently Postb,
would be ill-defined, since some Λ⊥pi

(B) would be empty. In existing works, this check is implicit since
in those settings w.h.p. B is primitive and all Λ⊥pi

(B) 6= ∅.
Distribution of B. We let B be sampled from a distribution D, the latter being itself a parameter

of the assumption. In the simple setting of [Wee22], D is the uniform distribution over Zn×m
q . As

discussed below, by setting D appropriately, other existing variants, e.g. where an evasive LWE is
defined over multiple Bi’s, can also be naturally captured. To understand and gain confidence in
this generalisation, we discuss some special cases of D. (1) Low-entropy D (in the extreme case B
is deterministic) and n < m: In this case LWE w.r.t. B is likely easy, so that both Preb and Postb

can be efficiently distinguished, and the assumption is vacuously true. (2) D is such that B is (likely)
not primitive: If P is in the column span of B then the rationale of the assumption stays unchanged;
otherwise, the check P = BRmP fails, so that the winning probability in both Preb,Postb are zero
and the assumption is again true. (3) D is such that the lattice Λ⊥(B) (likely) contains no short
vector: The assumption, in particular the distribution DΛ⊥

P(B),Σ , is still well-defined, although with
the unusual scenario that U is (likely) not short, which intuitively only makes distinguishing Postb

harder.
Note on December 10, 2024. The generalisation to arbitrary distributions of B introduces more
weaknesses than we initially realised. See Section 8 for a simple counterexample and related discus-
sions. As such, at the moment, we advise to restrict to uniform B only.

LWE Secret Distributions. The LWE secret distribution S, determining (correlation between) the
LWE secret for samples w.r.t. to (B,P) and A respectively, is parametrised by the assumption
(instead of e.g. fixed to be uniform). This is in line with the intuition of evasive LWE (and already
implicit in existing private-coin variants), which says that secret distributions should not matter to
the if-then relation that the assumption postulates, since intuitively B−1(P) should not be able to
interact with S and SA meaningfully. Note that a poor secret distribution would allow to distinguish
Preb in the first place so that the assumption is vacuously true. As to be discussed below, this
treatment further allows us to interpret some existing variants in an arguably more intuitive way.

Public-coin Hint. The hint on the LWE secrets, which are outputs of the functions f, fA parametrised
by the assumption, manifests the intuition of “secret distributions should not matter to the if-then
relation”, in that leakages on the secret may be given to the distinguishers. We view this as an evasive
analogue of entropic LWE [BD20]. (In private-coin variants, such hint is implicit in aux since Samp
can generate it itself.) To be consistent with the spirit of “public-coin”, we require the randomness
randfA , randf used in generating hint (if any) to be provided to the distinguisher. We note again that
a poor leakage would allow a distinguisher to distinguish Preb so that the assumption is vacuously
true.

B not known to Samp. Similar to the private-coin setting to be discussed up next, in Definition 7 we
forbid the sampler Samp to input B. Although we are unable to provide a provable counterexample
against this case, in Appendix C we provide a heuristic counterexample to support this restriction.

Relating to existing definitions. All existing public-coin evasive LWE can be viewed as special cases
of Definition 7, which we briefly summarise. Most works define an assumption over the integers R = Z.11

11 On the other hand, suppose one is to optimise any involved constructions for efficiency, then it is easy to see
that an analogous evasive LWE instance over other rings R, e.g. the ring of integers of some cyclotomic field,
is to be involved.
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The original evasive LWE of [Wee22], later also used in [Wee24], has secret distribution S such that
SA = S = sT where s is uniform, and fA, f the empty function, i.e. no hint involved. [WWW22] defined
a public-coin evasive LWE with multiple independent and uniform Bi ∈ Zn×m

q , with LWE samples
sTiBi+eTi mod q under independent uniform secrets si, and additionally with samples w.r.t. A under the

concatenated secret (sT1, . . . , s
T
k). This can be expressed by our definition as having B =

B1

. . .
Bk


and secret distribution S such that S = SA = (sT1, . . . , s

T
k). [CLW24] used a public-coin evasive LWE

that is similar to that of [WWW22], but let S be such that S = (sT1, s
T, . . . , sTk, s

T), SA = (sT1, . . . , s
T
k, s

T),
where si, s are all uniform. [HLL24] defined a public-coin evasive LWE with matrices and LWE samples
of the (arguably ad-hoc) forms

B =

B0

...
Bk

 , sTi (B0, . . . ,Bk) + (0T,gT ⊗ eTi,1) + eTi,2 mod q for all i ∈ [I]

(with preimages U = B−1(P) w.r.t. B), where gT = (20, . . . , 2k−1), and with further samples of the form
(sTi , s

T
0)A + eTi,0 mod q for all i ∈ [I]; This can be summarised by our definition as letting B ←$ Znk×m

q

be simply uniformly random, and with structured secret and error distributions S, χB , χA such that

S =

Ŝ
. . .

Ŝ

 where Ŝ =

sT1
...
sTI

 , SA =

sT1, s
T
0

...
sTI , s

T
0

 ,

EB =

(0T,gT ⊗ eT1,1) + eT1,2
...

(0T,gT ⊗ eTI,1) + eTI,2

 , EA =

eT1,0
...

eTI,0

 .

Remark 6 (Relation to evasive circular LWE of [HLL23]). In [HLL23] an “evasive circular LWE assump-
tion” is proposed, which can be viewed as involving a non-trivial hint function. However, despite being
regarded as a public-coin assumption by [HLL23], this does not fall into the public-coin family under
our characterisation (also when factoring out its circular nature), due to its hint function being not
public-coin. Further discussion on this in Appendix D.

4.2 Private-coin Binding Evasive LWE

Definition 8 (Private-coin Binding Evasive LWE). Let the parameters

param = (R, q, n,m,mP , t,D, χB , χP , Σ)

be parametrised by λ, where R is a ring admitting an embedding as a lattice in Rφ for some φ ∈ N,
D ∼ Rn×m

q , χB ∼ Rt×m, and χP ∼ Rt×mP are distributions, and Σ ∈ Rφm×φm is positive definite. Let
Samp be a PPT algorithm which, on input 1λ, outputs(

S ∈ Rt×n
q , P ∈ Rn×mP

q , aux ∈ {0, 1}∗
)
.

Let PrebA and PostbB be the experiments defined in Fig. 3 and denote

AdvPreA (λ) :=
∣∣Pr[Pre0A(1λ) = 1

]
− Pr

[
Pre1A(1

λ) = 1
]∣∣,

AdvPostB (λ) :=
∣∣Pr[Post0B(1λ) = 1

]
− Pr

[
Post1B(1

λ) = 1
]∣∣.

The PrivateBindEvLWEparam assumption states that for any PPT Samp and B there exists a PPT A such
that AdvPreA (λ) ≥ AdvPostB (λ)/poly(λ)− negl(λ).

We explain some key aspects of Definition 8.
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PrebA(1λ)

B←$ D(
S,P, aux

)
← Samp(1λ)

assert P ∈ BRm×mP

if b = 0 then

EB ←$ χB , EP ←$ χP

CB := SB+EB mod q

CP := SP+EP mod q

if b = 1 then

CB ←$Rt×m
q

CP ←$Rt×mP
q

return A
(

B, P,
CB , CP ,

aux

)

PostbB(1
λ)

B←$ D(
S,P, aux

)
← Samp(1λ)

assert P ∈ BRm×mP

if b = 0 then

EB ←$ χB

CB := SB+EB mod q

U←$ DΛ⊥
P
(B),Σ

if b = 1 then

CB ←$Rt×m
q

U←$ DΛ⊥
P
(B),Σ

return B
(

B, P,
CB , U,

aux

)

Fig. 3: Experiments Pre and Post for private-coin binding evasive LWE.

Randomness of Samp. As its name suggests, in Definition 8 the randomness of Samp need not be given
to the distinguishers. This makes the assumption more susceptible to future attacks, as Samp can
embed secret information in aux. For example, as discussed in [VWW22], one may potentially include
in aux a carefully crafted obfuscation containing a trapdoor of P (cf. Remark 3).

B not known to Samp. The assumption is restricted to the class of Samp which does not input the ma-
trix B. This avoids counterexamples such as ours, sketched in Section 2.2 and detailed in Section 5.3.

Correlations among S,P and aux. Samp outputs also the LWE secret S, implying that S can be
correlated to P and aux secretly and arbitrarily. This leads to another potential attack angle of
exploiting such correlations.

Other outputs of Samp. Relative to Definition 7, other components such as A,SA and hint functions
are omitted, since these can now be generated by Samp and contained in aux.

Relating to existing definitions. The private-coin variant of [ARYY23, Lemma 3.4] falls under Definition 8,
where they formulated aux as (aux1, aux2), where aux1 can be proven pseudorandom and P is efficiently
computable from aux2. As reference, the security proofs of [ARYY23] involve calling private-coin evasive
LWE iteratively, some instances due to that aux contains preimages w.r.t. components of P sampled
using a trapdoor which cannot be leaked to the distinguisher, and some others due to that aux involves
secret correlation with S; all instances do not involve correlation between S and P. The same variant
is later used by [AKY24]. Moreover, the evasive circular LWE assumption of [HLL23] is also a member
of Definition 8, for which we discuss in Appendix D.

4.3 Private-coin Hiding Evasive LWE

Definition 9 (Private-coin Hiding Evasive LWE). Let the parameters

param = (R, q, n,m,mP , t,D, χB , χP , ℓ, Σ)

be parametrised by λ, where R is a ring admitting an embedding as a lattice in Rφ for some φ ∈ N,
D ∼ Rn×m

q , χB ∼ Rt×m, and χP ∼ Rt×mP are distributions, Σ ∈ Rφm×φm is positive definite, and
ℓ ∈ {1, 2, . . . , q}. Let Samp be a PPT algorithm which, on input 1λ, outputs(

S ∈ Rt×n
q , P ∈ Rn×mP

q , aux ∈ {0, 1}∗
)
.

Let Pre1bA, Pre2bA and PostbB be the experiments defined in Fig. 4 and denote

AdvPre1A (λ) :=
∣∣Pr[Pre10A(1λ) = 1

]
− Pr

[
Pre11A(1

λ) = 1
]∣∣,

AdvPre2A (λ) :=
∣∣Pr[Pre20A(1λ) = 1

]
− Pr

[
Pre21A(1

λ) = 1
]∣∣,

14



Pre1bA(1λ)

B←$ D(
S,P, aux

)
← Samp(1λ)

assert P ∈ BRm×mP

if b = 0 then

EB ←$ χB , EP ←$ χP

CB := SB+EB mod q

CP := SP+EP mod q

if b = 1 then

CB ←$Rt×m
q

CP ←$Rt×mP
q

return A
(
CB , CP , aux

)
Pre2bA(1λ)(
S,P, aux

)
← Samp(1λ)

if b = 0 then

return A(P, aux)

if b = 1 then

R←$ U({0, 1, ..., ℓ}n×mP )

return A(P+R mod q, aux)

PostbB(1
λ)

B←$ D(
S,P, aux

)
← Samp(1λ)

assert P ∈ BRm×mP

if b = 0 then

EB ←$ χB

CB := SB+EB mod q

U←$ DΛ⊥
P
(B),Σ

if b = 1 then

CB ←$Rt×m
q

U←$ DΛ⊥
P
(B),Σ

return B
(
CB , U, aux

)

Fig. 4: Experiments Pre1, Pre2 and Post for private-coin hiding evasive LWE.

AdvPostB (λ) :=
∣∣Pr[Post0B(1λ) = 1

]
− Pr

[
Post1B(1

λ) = 1
]∣∣.

The PrivateHideEvLWEparam assumption states that for any PPT Samp and B there exists a PPT A such
that AdvPre1A (λ) + AdvPre2A (λ) ≥ AdvPostB (λ)/poly(λ)− negl(λ).

The experiments Pre1,Post in Definition 9 are almost identical to the experiments Pre,Post in Defi-
nition 8, except that the matrix B is not given to the distinguishers A and B, and P also not necessarily.
The obvious distinction is the additional experiment Pre2, which we define below.

Experiment Pre2. This experiment seeks to ensure that “both B,P are sufficiently hidden from the
distinguishers”. First, observe that the indistinguishability of Pre10 and Pre11, i.e., (SB

::
, SP

::
, aux) ≈c

($, $, aux), implies that (SB
::

,SP
::

, aux) does not leak information about B (computationally), since
aux is independent of B. Moreover, the only possible way for a PPT adversaryA to obtain information
about P is via aux. Experiment Pre2b then ensures that the latter is also impossible, in that (P, aux)
and (P+noise, aux) are indistinguishable. In words, given aux, no PPT A can learn sufficiently about
(an approximation of) P, in that P and P+ noise look the same to A.

On ℓ and U({0, 1, . . . , ℓ}). The parameter ℓ parametrises the strength of Pre2 and the overall evasive
LWE assumption. For example, if ℓ = q, then Pre2 can be seen as requiring P to be pseudorandom,
and since this is the hardest case to achieve, the resulting Hiding Evasive LWE assumption is the
weakest. As ℓ decreases, i.e. less noise is added to P, Pre2 becomes easier to be satisfied, and the
evasive LWE assumption grows stronger. The noise distribution U({0, 1, . . . , ℓ}) may alternatively be
replaced by other natural distributions, e.g. discrete Gaussian over R, with the Gaussian parameter
being a suitable ℓ parametrising the hardness of Pre2.

Relating to existing definitions. Suppose ℓ = 0 (which is disallowed in Definition 9), then the experiment
Pre2 is trivial and Definition 9 collapses to the private-coin variant in [VWW22]. Letting mP = 2m, our
counterexamples prove that the assumption for this setting is false (conditioned on other appropriate pa-
rameters). On the other hand, even just by setting ℓ = 1, we are unaware of counterexamples (except the
obfuscation-based one by [VWW22], c.f. Remark 3). Moreover, in Section 6 we will see that Definition 9
with a large ℓ can be applied to the security proof of [VWW22], without altering their parameters.
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Preb,β,γA (1λ)

B←$ Zn×m
q

if β = 0 then(
P, aux

)
← Samp(1λ)

if β = 1 then(
P, aux

)
← Samp(1λ,B)

if b = 0 then

e0 ←$ DZm,χ, e0 ←$ DZ,χ, s←$ Zn
q

c := sTB+ eTB mod q

cP := sTP+ eTP mod q

if b = 1 then

c←$ Zm
q

cP ←$ ZmP
q

if γ = 0 then

return A (c, cP , aux)

if γ = 1 then

return A (B, c, cP , aux)

if γ = 2 then

return A (B, c,P, cP , aux)

Postb,β,γB (1λ)

B←$ Zn×m
q

if β = 0 then(
P, aux

)
← Samp(1λ)

if β = 1 then(
P, aux

)
← Samp(1λ,B)

if b = 0 then

e0 ←$ DZ,χ, s←$ Zn
q

c := sTB+ eTB mod q

D←$ DΛ⊥
P
(B),χ

if b = 1 then

c←$ Zm
q

D←$ DΛ⊥
P
(B),χ

if γ = 0 then

return B (c,D, aux)

if γ ∈ {1, 2} then
return B (B, c,D, aux)

Fig. 5: Experiments Pre and Post for private-coin evasive LWE variants, to which our counterexamples
apply.

Remark 7 (What if Pre2 restricts some but not all entries of P). In Appendix C.1, we sketch an alternative
counterexample against the assumption in [VWW22], which demonstrates that it is necessary for most
entries of P to be irrecoverable, as even leaking only m entries of P (for m the number of columns of B)
would lead to a successful distinguisher for Postb.

Remark 8 (Alternative Pre2 candidate). Another way to potentially capture the intuition of “cannot
approximate P given aux” might be to ask for indistinguishability of P mod ℓ and R mod ℓ, for a uniform
R over Zq.12 Other than the complication in formalisation and potential issues due to number-theoretic
relations between q and ℓ, this alternative is also intuitively a weaker pre-condition (hence leading to
stronger evasive assumption). For more context, in Appendix C.2 we provide a heuristic counterexample
against such alternative Pre2 for ℓ = 2 and mP = O(m2), which may be further generalised to be against
constant ℓ and mP = O(mℓ) [AG11,NMSÜ24].

5 Counterexamples to Existing Variants

We present our counterexamples against a number of existing evasive LWE variants sketched in Sec-
tion 2.2. These variants are formally defined in Fig. 5 and parametrised by β, γ, each controlling if Samp
receives B as input or not, and if the distinguishers receive B, (B,P), or none. We remark that this
definition is a special case of the private-coin variants in existing works, where we consider the restricted
setting of the LWE sample s being sampled honestly by the experiments, not available to Samp.

Denote the advantages of distinguishers A,B and β ∈ {0, 1}, γ ∈ {0, 1, 2} by

AdvPre,β,γA (λ) =
∣∣∣Pr[Pre0,β,γA (1λ) = 0]− Pr[Pre1,β,γA (1λ) = 0]

∣∣∣
AdvPost,β,γA (λ) =

∣∣∣Pr[Post0,β,γA (1λ) = 0]− Pr[Post1,β,γA (1λ) = 0]
∣∣∣

12 These mean, fix the representatives of Zq = {0, 1, . . . , q − 1} and map each entry in Zq to their representative
over Z, then further apply mod ℓ operation. For an intuition, if ℓ = 2k is a power of 2, then P mod ℓ may be
interpreted as the last k bits of (each entry of) P.
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In all counterexamples, we consider the usual case of the ring of integers R = Z and assume that error
noise is distributed according to a discrete Gaussian distribution DZm,χ for a parameter χ > 0 to be
specified. We require q to be prime, and abide to the following parameter restrictions for n,m, χ, q

m ≥ 3n log(q), χ ≥ λm, q ≥ λ3m2χ2.

Remark 9 (On Parameters). The above parameters are polynomial (in particular the modulus q can be
chosen to lie in O(n4λ6), for example) and the attacks we propose in the following have a high advantage
of at least 1−O(1/λ) to win the then challenge. It is possible to increase the advantage to be overwhelming
in λ, by chosing q � χ� m such that q is super-polynomially larger than χ, and χ is super-polynomially
larger than m.

The following lemma upper-bounds the probability of a square Gaussian matrix sampled over random
cosets being not invertible over Zq, which be useful for our counterexamples. Its proof in more generality
is given in Appendix A.

Lemma 5. Let B,P1 ←$ Zn×m
q be uniformly random. Let χ ∈ ω(

√
n), m ≥ 2n log q and let q > n · χ be

prime. We have

Pr
D1←$D

Λ⊥
P1

(B),χ

[det(D1) = 0 mod q] ≤ O (m/χ) .

Remark 10 (Alternative to Lemma 5). As an alternative to Lemma 5, one can use a similar result by
Regev [Reg05], which states that m2 many Gaussian vectors d1, . . . ,dm2 ←$ DZm,χ will contain a basis
of Zm with probability at least 1 − 2Ω(n). Correspondingly, the numbers of columns of the matrices P1

and P3 in Sections 5.1 and 5.2 is required to increase from m to m2 .

5.1 Counterexample 1

We give a counterexample for the case β = 0, γ = 1, i.e., B is given to the distinguishers, but P = (P1,P2)
is not and aux is empty. Our idea is to embed a trapdoor in P2, which we use to distinguish sTB + eT0
from uniform randomness in the Postb challenge. Concretely, let Samp1(1

λ) output the following:

(P = (P1,P2), aux = ⊥)

where

u′ ←$ {0, 1}m−1, P′1 ←$ Zn×(m−1)
q , P′2 ←$ Z(n−1)×m

q ,

uT = ((u′)T, 1) ∈ {0, 1}1×m, P1 =
(
P′1| −P′1u

′ mod q
)
, P2 =

(
P′2
uT

)
.

Proposition 1. Let A be a PPT adversary. Under the LWEZ,q,n,2m,χ assumption, we have for the
experiment Preβ=0,γ=1

A (1λ) in Fig. 5 instantiated with Samp1

AdvPre,0,1A (λ) ∈ negl(λ).

Proof. The proof proceeds via four hybrid experiments:

D0 : The joint distribution of the ifstatement, i.e.(
B, sTB+ eT0 mod q, sTP1 + eT1 mod q, sTP2 + eT2 mod q

)
where B←$Rn×m

q , s←$ Zn
q , e0 ←$ χm, e1 ←$ χm, e2 ←$ χm.

D1 : The last term sTP2 + eT2 mod q is replaced by a random vector y2, i.e.(
B, sTB+ eT0 mod q, sTP1 + eT1 mod q, y2

)
for y2 ←$ Zm

q .
D2 : As D1, but P1 is swapped to random.
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D3 : sTB+ eT0 mod q and sTP1 + eT1 mod q are swapped to random, i.e.

(B, y0, y1, y2)

for y0,y1,y2 ←$ Zm
q .

The statistical distance between D0 and D1 is bounded by q−n+1. This is because for s = (s′, sn)←$ Zn
q ,

sTP2 = s′
T
P′2 + sn · uT mod q is uniformly random if s′ is non-zero (even if we know B, P1, s and u).

Since m ≥ 2n log q, the Leftover-Hash Lemma 3 implies that the statistical distance between P1 =
(P′1| − P′1u

′ mod q) and a uniformly random matrix is bounded by 2−n. Hence, the statistical distance
between D1 and D2 is also bounded by 2−n. Finally, LWEZ,q,n,2m,χ states that D2 and D3 are computa-
tionally indistinguishable.

Therefore, A’s distinguishing advantage between Pre0,0,1A (1λ) = D0 and Pre1,0,1A (1λ) = D3 is bounded
by 2−n+1 plus a negligible term stemming from the LWE assumption. ut

We introduce two more lemmas, their proofs are given in Appendix B.

Lemma 6. Let (P1 ∈ Zn×m
q ,u ∈ {0, 1}m) ← Samp1(1

λ). For B ←$ Zn×m
q and D1 ← DΛ⊥

P1
(B),χ, we

have
Pr [D1 · u = 0 mod q] ≤ O(m/χ).

Lemma 7. Let (P1 ∈ Zn×m
q ,u ∈ {0, 1}m) ← Samp1(1

λ). Sample B ←$ Zn×m
q , e0 ←$ DZm,χ and

D1 ←$ DΛ⊥
P1

(B),χ. We have
Pr
[∣∣eT0 ·D1 · u

∣∣ ≥ λ2m2χ2
]
≤ 2−λ.

Proposition 2. There is a PPT adversary B s.t. we have for the experiment Postβ=0,γ=1
B (1λ) in Fig. 5

instantiated with Samp1

AdvPost,0,1B (λ) ≥ 1−O(1/λ).

Proof. Let B ←$ Zn×m
q and (S,P, aux = ⊥) ← Samp1(1

λ). Sample D ←$ DΛ⊥
P(B),χ and note that

D ∈ Zn×2m can be split into two equally large parts D = (D1|D2), which are distributed as

D1 ←$ DΛ⊥
P1

(B),χ and D2 ←$ DΛ⊥
P2

(B),χ.

Recall that in the experiment Postβ=0,γ=1
B (1λ), B has to decide if cT in(

B, D1, D2, cT
)

equals sTB + eT0 mod q, for e0 ←$ DZm,χ and s ←$ Zn
q , or has been sampled uniformly at random from

Z1×m
q .

Our adversary B proceeds as follows:
1. It recovers P2 := B ·D2 mod q.
2. Since Samp1 samples P2 as

(
P′2
uT

)
, B can extract the binary vector u ∈ {0, 1}m from the last row of

P2.
3. B computes r := cT ·D1 · u mod q.
4. If r ∈ {−λ2χ2m2, . . . , λ2χ2m2} ⊂ Zq, then B outputs 0. Otherwise, it outputs 1.

If c is drawn uniformly at random from Zm
q , then the probability that r lies in {−λ2χ2m2, . . . , λ2χ2m2}

is bounded by O(λ2χ2m2/q) ⊆ O(1/λ). This is because r is distributed uniformly at random in Zq if
D1 ·u mod q is non-zero, which happens with probability at least 1−O(m/χ) = 1−O(1/λ) by Lemma 6.
Hence, if c is uniformly random, B outputs 1 with probability 1−O(1/λ).

Else, if c = BTs+ e0 mod q for e0 ←$ DZm,χ and s←$ Zn
q , then

r =cT ·D1u = (sTB+ eT0) ·D1u = sTB ·D1u+ eT0 ·D1u

=sTP1u+ eT0D1u = eT0D1u mod q.

By Lemma 7, ‖eT0D1u‖ ≤ λ2m2χ2 with probability at least 1 − 2−λ. Hence, B will output 0 if c =
BTs+ e0 mod q with overwhelming probability. It follows that the advantage of B lies in 1−O(1/λ). ut
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5.2 Counterexample 2

We give a counterexample for the case β = γ = 0, i.e. B is not given to the distinguisher. The sampler is
similar to that in Section 5.1, except that we add a third part P3 ←$ Zn×m

q to P, which is also included
in aux. While P3 is harmless on its own, the distinguisher for Postb can use it to recover B and continue
as in the first counterexample. Concretely, let Samp2(1

λ) output the following:

(P = (P1,P2,P3), aux = P3)

where P3 ←$ Zn×m
q and

u′ ←$ {0, 1}m−1, P′1 ←$ Zn×(m−1)
q , P′2 ←$ Z(n−1)×m

q ,

uT = ((u′)T, 1) ∈ {0, 1}1×m, P1 =
(
P′1| −P′1u

′ mod q
)
, P2 =

(
P′2
uT

)
.

Proposition 3. Let A be a PPT adversary. Under the LWEZ,q,n,3m,χ assumption, we have for the
experiment Preβ=0,γ=0

A (1λ) in Fig. 5 instantiated with Samp2

AdvPre,0,0A (λ) ∈ negl(λ).

Proof. Let P1,P2,P3 be the output of Samp2(1
λ). Note that in this case, A has to distinguish between

the distribution (
sTB+ eT0, sTP1 + eT1, sTP2 + eT2, sTP3 + eT3, P3

)
mod q (9)

for B←$Rn×m
q , s←$ Zn

q , e0 ←$ χm, e1 ←$ χm, e2 ←$ χm, and the distribution

(y0, y1, y2, y3, P3) ,

for y0,y1,y2,y3 ←$ Zm
q . By the same argument as in the proof of Proposition 1, the statistical distance

between the distribution in Eq. (9) and(
sTB+ eT0 mod q, sTP′′1 + eT1 mod q, y2, sTP3 + eT3 mod q, P3

)
, (10)

for P′′1 ←$ Zn×m
q and y2 ←$ Zm

q is bounded by 2−n+1. Now, the claim follows by invoking LWEZ,q,n,3m,χ.
ut

Proposition 4. There is a PPT adversary B s.t. we have for the experiment Postβ=0,γ=0
B (1λ) in Fig. 5

instantiated with Samp2

AdvPost,0,0B (λ) ≥ 1−O(1/λ).

Proof. For i = 1, 2, 3, let Di ←$ DΛ⊥
Pi

(B),χ be the short preimages that B is given in Postb. Denote the
adversary of Proposition 2 from counterexample 1 by B′. We want to invoke B′ on Postb, however, note
that B is missing.

Since B and P3 have been sampled uniformly at random, Lemma 5 implies that D3 mod q is invertible
with probability 1−O(1/λ). Hence, B on input

(D1, D2, D3, cT, aux = P3)

proceeds as follows:

1. If D3 mod q is not invertible, then B outputs a random bit and stops.
2. If D3 mod q is invertible, B computes B = D−13 ·P3 mod q.
3. B runs B′(B,D1,D2, c

T) and defers its output to the post challenger.

By Lemma 5 and Proposition 1, the advantage of B is at least 1−O(1/λ). ut
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5.3 Counterexample 3

We give a counterexample for the cases β = 1, γ ∈ {0, 1, 2}. Note that β = 1 implies that Samp gets B as
input. We prove indistinguishability of Preb in the strongest case, where the joint distribution contains
B and P, i.e. γ = 2. We also show that, there exists PPT distinguisher for the weakest Postb challenge,
where the joint distribution will contain neither P nor B, i.e. γ = 0.

Let Samp3(1
λ,B), on input B, output a matrix P constructed as follows:

U = (u1|u2)←$ {0, 1}m×2, P = (p1|p2) := BU mod q ∈ Zn×2
q .

Additionally, Samp3 outputs aux, which consists of the Dual Regev encryptions (under (B|p1) ∈ Zn×(m+1)
q )

of the bits u2,1, . . . , u2,m of u, that is,

aux =
(
rTiB+ f ′

T
i mod q, rTip1 + fi,m+1 +

⌊q
2

⌋
· u2,i mod q

)
i∈[m]

∈ Zm×(m+1)
q

where Samp3 samples r1, . . . , rm ←$ Zn
q and fi = (f ′i , fi,m+1)←$ DZm+1,χ.

Proposition 5. Let A be a PPT adversary. Under the LWEZ,q,n,m+2,χ assumption, we have for the
experiment Preβ=1,γ=2

A (1λ) in Fig. 5 instantiated with Samp3

AdvPre,1,2A (λ) ∈ negl(λ).

Proof. We proceed via the following hybrid experiments:

D0 : This distribution corresponds to the view of A in Pre0,1,2(1λ), i.e.B, sTB+ eT0 mod q, p1, p2, sTp1 + eT1 mod q, sTp2 + eT2 mod q,

aux =
(
rTiB+ f ′

T
i mod q, rTip1 + fi,m+1 +

⌊q
2

⌋
· u2,i mod q

)
i=1,...,m


where B←$ Zn×m

q , (p1,p2, aux)← Samp3(B, 1λ), s←$ Zn
q , e0,←$ DZm,χ, e1, e2 ←$ DZ,χ.

D1 : D1 resembles D0, but we replace p1 in the joint distribution and in the auxiliary information aux
of the sampler with a uniformly random vector p′1 ←$ Zm

q .
D2 : We replace aux =

(
rTiB+ f ′

T
i mod q, rTip

′
1 + fi,m+1 +

⌊
q
2

⌋
· u2,i mod q

)
i∈[m]

by a uniformly random

matrix aux′ ←$ Zm×m+1
q in D1.

D3 : We replace p2 by a uniformly random vector in D2.
D4 : We replace sTB+ eT0, sTp′1 + eT1, and sTp′2 + eT2 by uniformly random vectors and numbers over Zn

q .
D5 : We swap p′2 back to p2 in D4.
D6 : We revert the changes on aux′ and put again

aux =
(
rTiB+ f ′

T
i mod q, rTip

′
1 + fi,m+1 +

⌊q
2

⌋
· u2,i mod q

)
i=1,...,m

.

D7 : Finally, we replace the uniformly random vector p′1 in D6 by the vector p1 = Bu1 outputted by
the sampler. Note that D7 equals now B, c0, p1, p2, c′1, c′2,

aux =
(
rTiB+ f ′

T
i mod q, rTip1 + fi,m+1 +

⌊q
2

⌋
· u2,i mod q

)
i=1,...,m


for c0 ←$ Zm

q , c′1, c′2 ←$ Zq. Hence, D7 is the view of A in Pre1,1,2(1λ).

We claim that the advantage of A to distinguish between the hybrids is negligible: By the Leftover-
Hash Lemma 3, the statistical distance between D0 and D1, between D2 and D3, between D4 and D5

and between D6 and D7 is bounded by 2−n. Going from D1 to D2, we replace the m-fold dual-Regev
encryption aux by a uniformly random matrix aux′ ←$ Zm×(m+1)

q , which we revert again when we go
from D5 to D6. In total, we invoke the LWEZ,q,n,m+1,χ assumption in both directions m times. Finally,
the LWEZ,q,n,m+2,χ assumption stipulates that it is hard for A to distinguish between D3 and D4.

Concluding, the advantage of A to win Preβ=1,γ=2(1λ) is bounded by O(2−n) plus a negligible term
stemming from (2m+ 1)-times of invoking LWE. ut
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We require two more lemmas, their proofs are given in Appendix B.
Lemma 8. For B←$ Zn×m

q , u2 ←$ {0, 1}m, p2 = B · u2 and d2 ←$ DΛ⊥
p2

(B),χ, we have Pr [d2 = u2] ≤
2−m+1 + q−n.

Lemma 9. Draw B ←$ Zn×m
q , u2 ←$ {0, 1}m and set p2 = Bu2 mod q. Draw d2 ←$ DΛ⊥

p2
(B),χ and

f ′1, . . . , f
′
m ←$ DZm,χ.

We have
Pr
[
∃i ∈ [m] :

∣∣fTi · d2

∣∣ ≥ λ2mχ2
]
≤ 2−λ.

Additionally, we have for e0 ←$ DZm
q ,χ,

Pr
[∣∣eT0 · (d2 − u2)

∣∣ ≥ λχ · (λχ+ 1) ·m
]
≤ 2−λ.

Proposition 6. There is a PPT adversary B s.t. we have for the experiment Postβ=1,γ=0
B (1λ) in Fig. 5

instantiated with Samp3

AdvPost,1,0B (λ) ≥ 1−O(1/(λm)).

Proof. Recall that the post challenge consists of c, dT
1, dT

2,

aux =
(
rTiB+ f ′

T
i mod q, rTip1 + fi,m+1 +

⌊q
2

⌋
· u2,i mod q

)
i=1,...,m


for B ←$ Zn×m

q , (p1,p2, aux) ← Samp3(B, 1λ), d1 ←$ DΛ⊥
p1

(B),χ, d2 ←$ DΛ⊥
p2

(B),χ. B has to decide if c
has been sampled uniformly at random from Zm

q or is of shape sTB+eT0 mod q for s←$ Zn
q , e0 ←$ DZm,χ.

The distinguisher B, we propose, proceeds as follows:
1. For i ∈ [m], it computes

gi :=rTip1 + fi,m+1 +
⌊q
2

⌋
· u2,i − (rTiB+ f ′

T
i ) · d1 mod q

=rTip1 + fi,m+1 +
⌊q
2

⌋
· u2,i − rTi · p1 − f ′

T
i · d1 mod q

=fi,m+1 − f ′
T
i · d1 +

⌊q
2

⌋
· u2,i mod q.

Further, it sets u′i = 1 if |gi| ≥ q
4 and else 0, and u′ = (u′1, . . . , u

′
m) ∈ {0, 1}m.

2. It computes r := cT · (d2 − u′) mod q.
3. If r ∈ {−λχ(λχ+ 1) ·m, . . . , λχ(λχ+ 1) ·m} ⊂ Zq, output 0. Else, output 1.

We claim that the dual-Regev decryption of u2,1, . . . , u2,m in step 1 succeeds with overwhelming prob-
ability. Indeed, we have u′i = u2,i whenever

∣∣∣fi,m+1 − f ′
T
i · d1

∣∣∣ is bounded by q/4. Lemma 9 guarantees
that we have ∣∣∣fi,m+1 − f ′

T
i · d1

∣∣∣ < mχ2 <
q

4

with overwhelming probability ≥ 1− 2−λ.
Hence, assume that decryption succeeds, which happens with overwhelming probability, and that B

can recover u′ = u2. Assume that d2 − u′ = d2 − u2 is not zero. We now distinguish two cases:
If c = BTs+ e0, then we have

r = cT · (d2 − u′) = (sTB+ eT0) · (d2 − u′) mod q

= sTB · (d2 − u′) + eT0 · (d2 − u′) mod q

= sT · (p2 − p2) + eT0 · (d2 − u′) = eT0 · (d2 − u′) mod q.

According to Lemma 9, the quantity eT0 ·(d2−u2) is bounded λχ(λχ+1)·m with overwhelming probability
≥ 1− 2−λ. Hence, in this case, B will output 0 with overwhelming probability.

Else, if c ←$ Zn
q , the value r = cT · (d2 − u2) mod q is uniform whenever d2 − u2 6= 0. By Lemma 8

this is the case with overwhelming probability ≥ 1 − q−n − 2−m+2. In this case, the probability that r

lies in {−λχ(λχ+1) ·m, . . . , λχ(λχ+1) ·m} is bounded by 2λχ(λχ+1)m
q ≤ 2(λχ+1)

λ2·χ·m ∈ O(1/(λm)). Hence,
B will output 1 in this case with probability 1 − O(1/(λm)). It follows that the advantage of B lies in
1−O(1/(λm)). ut
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6 Evasive LWE Instance in [VWW22]

We show that we can apply the PrivateHideEvLWE assumption (Definition 9) to the security proof
of [VWW22]. Consequently, assuming PrivateHideEvLWE, the GGM15-encoding in [VWW22], as well
as its witness encryption and null-iO constructions, remains secure.

Let n,w,m, h ∈ poly(λ), let n̂ = wn, t = 2j−1n̂, and fix some j ∈ [h]. To recall, the PPT sampler
used in the proof of [VWW22, Lemma 5.2], which we denote by SampVWW, outputs the following:

S :=
{
Ŝi,b

}
i∈[h],b∈{0,1}

∈ Zt×n̂
q ,

P :=
(
Ŝj,0Aj +Ej,0, Ŝj,1Aj +Ej,1

)
mod q ∈ Zn̂×2m

q ,

aux :=
{
A−1i−1(Ŝi,bAi +Ei,b mod q)

}
i≥j+1,b∈{0,1}

,
{
Ŝi,b

}
i∈[h],b∈{0,1}

,

where

– Ŝi,b ∈ Zn̂×n̂
q for i ∈ [h], b ∈ {0, 1} are arbitrary matrices (in the context of [VWW22] representing a

branching program), and
{
Ŝi,b

}
i∈[h],b∈{0,1}

denotes stacking the 2h matrices vertically,

– Ej,0,Ej,1 ←$ (DZ,χ′)n̂×m are Gaussian with parameter χ′ ≥ λω(1)λhO(n),
– Ai ∈ Zn̂×m

q for i ≥ j + 1 are uniformly random matrices,
– each A−1i−1(Ŝi,bAi +Ei,0 mod q) for i ≥ j +1, b ∈ {0, 1} denotes a Gaussian preimage w.r.t. Ai−1 for

the image Ŝi,bAi +Ei,0 mod q, with parameter χ′′ = O(2
√
nw log q).

The proof of [VWW22, Lemma 5.2] showed that, assuming the condition of [VWW22, Equation 6],
there exists no PPT A distinguishing the Pre1b experiments in Definition 9 with respect to SampVWW

with non-negligible probability. In Proposition 7 below, we show that, for a large ℓ, there exists no
PPT A that can win Pre2 with respect to SampVWW with non-negligible probability. Invoking the
PrivateHideEvLWEparam assumption with param = (Z, q, n,m, 2m, t,U(Zn×m

q ), (DZ,χ)
t×m, (DZ,χ′)t×2m, ℓ, (χ′′)2I)

for χ = λω(1)χ′ completes the proof of [VWW22, Lemma 5.2]. The existence of a secure witness encryp-
tion and null-iO, under the (sub-exponential) LWE and private-coin hiding evasive LWE assumptions,
then follows from [VWW22, Theorem 5.1, Sections 6,7].

Proposition 7. Let ℓ = λh. With respect to SampVWW, there exists no PPT A distinguishing Pre2b

in Definition 9 with non-negligible probability in λ.

Proof. Note that the Gaussian parameter of Ej,0,Ej,1 is χ′ ≥ λω(1)λhO(n), implying χ′ ≥ λω(1)ℓ. Also,
aux contains no information on Ej,0,Ej,1. Therefore, conditioned on aux, for R←$ U({0, 1, . . . , ℓ}n×2m),
we have

P+R = (Ŝj,0Aj +Ej,0, Ŝj,1Aj +Ej,1) +R mod q

≈s(Ŝj,0Aj +Ej,0, Ŝj,1Aj +Ej,1) mod q,

where the second line is due to (Ej,0,Ej,1) +R ≈s (Ej,0,Ej,1) by noise flooding (Lemma 4). Therefore,
(P, aux) ≈s (P+R mod q, aux). The claim follows. ut

7 Obfuscation-Based Counterexample

We provide an obfuscation-based counterexample against private-coin evasive LWEs in general, which
applies simultaneously to variants in prior works and both the binding and hiding evasive LWE from Sec-
tion 4. The idea is similar to that originally sketched in [Wee22,VWW22]; We show that upon minor
tweaks, such counterexample can be readily proven assuming only LWE an the existence null-iO, the
latter implied by LWE and the existence of witness encryption [GKW17,WZ17] (see also Remark 13).

We will sketch a proof of the counterexample against binding evasive LWE (Definition 8). The argu-
ments can be easily adapted to the setting of hiding evasive LWE (Definition 9).

We start by recalling the definition of null-iO.
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Definition 10 (Null-iO). An indistinguishability obfuscation for null-circuits (null-iO) is a
PPT algorithm iO mapping circuits to circuits with the same input domain and the following properties:

Correctness. If C : {0, 1}ℓ → {0, 1} is a circuit, then 1− PrC̃←iO(C,1λ)

[
∀x ∈ {0, 1}ℓ : C̃(x) = C(x)

]
is

negligible.
Security. For all PPT adversaries (D,A) we have the following. If D is such that on input 1λ, with

overwhelming probability, it outputs (C0, C1) of equal size, domain {0, 1}ℓλ and such that for all
x ∈ {0, 1}ℓλ , C0(x) = C1(x) = 0, then∣∣Pr[1 = A(1λ, iO(C0, 1

λ), C0, C1)
]
− Pr

[
1 = A(1λ, iO(C1, 1

λ), C0, C1)
]∣∣

is negligible, where the probability is over (C0, C1)← D(1λ), the random coins of iO and the random
coins of A.

Definition 11 (Factorisation Circuits). For a matrix A ∈ Zm×m
q and control parameters n, t define

the circuit CA,n,t as follows: CA,n,t : (Zm×n
q )2 → {0, 1} takes as input two matrices M1,M2 ∈ Zm×n

q . If
A−M1M

T
2 mod q ∈ {−t, . . . , t}m×m, it outputs 1. Otherwise, it outputs 0.

Lemma 10. Let m > n and t < q. Draw A← Zm×m
q uniformly at random.

1. We have Pr
[
∃M1,M2 ∈ Zm×n

q : A−M1M
T
2 ∈ {−t, . . . , t}m×m

]
≤ q2mn ·

(
2t+1
q

)m2

.

2. With probability ≥ 1−q2mn ·
(

2t+1
q

)m2

, every PPT adversary has negligible advantage in distinguishing
iO(CA,n,t) and iO(0), where 0 is an appropriately padded ciruit that always outputs 0 and is devoid
of any information).

Lemma 11. Let q > 1 be any modulus and let I ⊆ Zq be a consecutive interval. Let u ∈ Zn
q be non-zero

and draw r←$ Zn
q uniformly at random. We have

Pr
[
uT · r mod q ∈ I

]
≤

#I + ‖u‖∞
q

.

We provide the proofs of Lemmas 10 and 11 in Appendix B.

Attack. Consider the parameters

mP ≥ 2m log(q) + 1, m ≥ n log(q),

q ≥ 2(2t+ 1), t = χ′ + λ2χ2 ·m, χ′ ≥ λω(1)χ, χ ≥ 2
√
n.

On input 1λ, the sampler proceeds as follows: It draws

S←$ ZmP×n
q , P←$ Zn×mP

q , E′′ ←$ {−χ′, · · · , χ′}mP×mP

and outputs S,P and as auxiliary information the obfuscated circuit

aux = iO(CSP+E′′,m,t).

Breaking the Post-Challenge. The post adversary is given B,P,U, aux where U is sampled from DZm×mP ,χ

conditioned on

BU = P mod q.

It has to distinguish R = SB + E mod q from uniform randomness R ← ZmP×m
q . It inputs R,UT ∈

ZmP×m
q into the circuit aux = iO(CPS+E′′,m,t). If R = SB+E, we have

SP+E′′ −RU = SP+E′′ − (SB+E)U = E′′ −EU mod q.
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With overwhelming probability ≥ 1− 4m2
P exp(−λ2), the largest entries of E and U are bounded by χλ.

Since the entries of E′′ are bounded by χ′, the entries of E′′ − EU are bounded by t = χ′ + λ2χ2 ·m
with overwhelming probability. In this case, iO(CSP+E′′,m,t) outputs 1.

On the other hand, if R is uniformly random, we claim that SP+E′′ −RU mod q does not lie in
{−t, . . . , t}m×m with probability ≥ 1 − 2t+1+λχ

q . Denote by r ∈ Zm
q the first row of R and by u ∈ Zm

q

the first column of U. The first entry of RU is given by rTu. With overwhelming probability, the entries
of u are bounded by λχ. Hence, Lemma 11 implies that

Pr
[
rTu mod q ∈ {z − t, . . . , z + t}

]
≤ 2t+ 1

q
+

λχ

q
,

where z denotes the first entry of SP+E′′ mod q. It follows iO(CSP+E′′,m,t) outputs 0 with overwhelming
probability if R is uniformly random.

In conclusion, the adversary has a distinguishing advantage of ≥ 1− 2t+1+λχ
q − negl(λ).

On the Security of the Pre-Challenge. The a priori adversary is given B,P, aux = iO(CSP+E′′,m,t) and
is tasked with distinguishing SB+E, SP+E′ from uniform randomness. We prove indistinguishability
by a sequence of hybrids:

(B,SB+E,P,SP+E′, iO(CSP+E′′,m,t))

flood
≈ (B,SB+E,P,SP+E′, iO(CSP+E′′+E′,m,t))

LWE
≈ (B,R1,P,R2, iO(CR2+E′′,m,t))

iO
≈ (B,R1,P,R2, iO(0))

iO
≈ (B,R1,P,R2, iO(CR3+E′′,m,t))

LWE
≈ (B,R1,P,R2, iO(CSP+E′+E′′,m,t))

flood
≈ (B,R1,P,R2, iO(CSP+E′′,m,t))

By a noise-flooding argument with respect to uniform distributions over bounded sets, we can replace the
hard-wired SP+E′′ mod q in the obfuscated circuit by SP+E′′ +E′ mod q and only incur a negligible
statistical difference. By LWE, we can replace SB+E mod q and SP+E′ mod q by random matrices
R1 ←$ ZmP×m

q , R2 ←$ ZmP×mP
q . Now, we invoke null-iO security twice: first, with overwhelming proba-

bility, CR2+E′′,m,t outputs always zero, hence, we can replace aux by iO(0). With the same argument, we
can then replace iO(0) by iO(CR3+E′′,m,t) for an independent uniformly random matrix R3 ←$ Zm×m

q .
We apply LWE again, and replace R3 by SP+E′ mod q in CR3+E′′,m,t. Finally, by flooding, we can
remove E′ and get the same auxiliary information iO(CSP+E′′,m,t) in the joint distribution again.

By using the flooding lemma, we incur a statistical difference of twice
χ

χ′
= λ−ω(1).

To use the security of null-iO, we need that R2 + E′′ and R3 + E′′ do not admit an approximated
factorisation. Since both matrices are uniformly random, this probability is bounded by

≤ q2mPm · (2t+ 1)m
2
P

qm
2
P

=

(
q2m ·

(
2t+ 1

q

)mP
)mP

≤
(
q2m · 2−mP

)mP ≤
(
2−1
)mP

= 2−mP .

This proves the hardness of the a priori challenge against PPT adversaries.

Remark 11 (Applicability to Hiding Evasive LWE). It is easy to see that the above counterexample also
applies to the private-coin hiding evasive LWE (Definition 9). On the one hand, the above distinguisher
of then does not rely on the knowledge of B,P at all. On the other hand, the if condition of private-coin
hiding evasive LWE requires that P hides its lower bits in the presence of aux, which can be argued
in a similar way as above: one can argue that (P, aux) = (P, iO0(CPS+E′′)) is indistinguishable from
(P, iO(0)). Since P is uniformly random, it is now apparent that (P, iO(0)) is equally distributed as
(P+U({0, 1, ..., ℓ}n×mP ), iO(0)), which is indistinguishable from (P+U({0, 1, ..., ℓ}n×mP ), iO(CPS+E′′)).
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Remark 12 (Applicability to Variation of Binding Evasive LWE in [BDJ+24]). In [BDJ+24], a variant
of private-coin binding evasive LWE that is more conservative than Definition 8 has been put forth. In
their definition, Samp is not allowed to generate P on its own. Instead, it takes P as input (which is
indistinguishable from uniform randomness in the view of the sampler) and outputs only S and aux.
Since the above counterexample samples P uniformly at random, Samp can easily be adapted to satisfy
the restrictions of [BDJ+24].

Remark 13 (Assuming Witness Encryption instead of Null-iO). Null-iO can be constructed from wit-
ness encryption when additionally assuming LWE. Concretely, Goyal, Koppula, and Waters [GKW17]
construct lockable encryption from LWE and then show that lockable encryption and witness encryption
together imply null-iO. In a concurrent work, Wichs and Zirdelis [WZ17] build obfuscators for compute-
and-compare programs from LWE and similarly show that these, together with witness encryption, imply
null-iO.

Thus, the above obfuscation-based counterexample can be proven from assuming only the hardness
of LWE and the existence of witness encryption. Interestingly, constructions of witness encryption are
known under several different variants of private-coin evasive LWE. As mentioned, the witness encryp-
tion (and null-iO) of Vaikuntanathan, Wee and Wichs [VWW22] can be proven assuming private-coin
hiding evasive LWE. More recently, Branco, Döttling, Jain, Malavolta, Mathialagan, Peters, and Vaikun-
tanathan [BDJ+24] also construct witness encryption from pseudorandom obfuscation (PRO) assuming
LWE and a variant of private-coin binding evasive LWE. However, it should be emphasised that PRO is
impossible to exist, as the authors point out themselves.

Remark 14 (On Auxiliary Information). The above counterexample provides the obfuscated program iO
in the auxiliary information aux. The same idea would equally apply (up to changing the assumption’s
dimension parameters) when iO is instead embedded in the target image matrix, for example, Samp

outputs P′ =

(
P,

(
R
iO

))
where R is uniformly random, i.e. right-extend the target matrix and let iO

be embedded as the bottom chunk of the extension, and aux = ⊥ is empty. That S

(
R
iO

)
mod q (with or

without error) is randomly distributed is obvious. The distinguisher of then simply ignores the addition
preimages w.r.t. the extension. Overall, the (im)plausibility of private-coin evasive LWE seems to only
loosely depend on the complexity of aux, but more critically on the mere fact the Samp is private-coin.

8 Counterexample against Non-Uniform Matrix B

This section outlines a simple counterexample against evasive LWE with non-uniformly random matrix
B, which we discovered subsequently to publishing the proceedings version. This counterexample applies
to all families Definitions 7 to 9 introduced in Section 4. Since allowing B←$ D to follow arbitrary public
distribution D is insecure, it seems advisable to use evasive LWE only with uniform B, until the role of
the matrix B distribution is better understood.

Counterexample. Consider B =

(
B0

B1

)
to be a 2× 2 block diagonal matrix, where B0,B1 ←$ Zn×m

q

are independent and uniformly random. Let s←$ Z2n
q be uniformly random. Let Samp(1λ) output

P =

(
P0

P1

)
, aux = ⊥,

that is, P is also 2 × 2 block diagonal, and where P0,P1 ←$ Zn×mP
q are independent and uniformly

random.
We can directly show the hardness of the if challenge. Indeed, writing s = (s0, s1) ∈ Zn

q ×Zn
q , we have

(sTB+ eTB , sTP+ eTP ) = (sT0B0 + eTB,0, sT1B1 + eTB,1, sT0P0 + eTP,0, sT1P1 + eTP,1) mod q

≈c (cT0, cT1, dT
0, dT

1) mod q

25



where in the first line we express the error eTB = (eTB,0, e
T
B,1), similarly for eTP , and in the second

line we invoke LWEZ,n,m+mP ,q,χ twice to swap both sT0(B0,P0) + (eTB,0, e
T
P,0) mod q and sT1(B1,P1) +

(eTB,1, e
T
P,1) mod q to uniformly random.

To show that the then condition does not hold, we observe that a preimage matrix U satisfies(
B0

B1

)(
U00 U01

U10 U11

)
︸ ︷︷ ︸

U

=

(
P0

P1

)
mod q

where we pay attention to that U01,U10 are non-zero with overwhelming probability, by a standard
entropy argument of the Gaussian distribution. Therefore we obtain

B0U01 = 0 mod q,

B1U10 = 0 mod q.

This allows to recover an Ajtai-trapdoor of both B0,B1, allowing to distinguish both sT0B0+ eTB,0 mod q

and sT1B1 + eTB,1 mod q from uniform randomness.
It is easy to see that this counterexample can be generalised to, for example, B,P being k × k block

diagonal matrices.

Discussion. The above counterexample has two direct consequences. First, our original claim that the
proposed definitions capture all prior/concurrent evasive LWE variants is false. In particular, for the
public-coin family (Definition 7), unless the instantiation yields B,P,U all being block diagonal matrices,
which happens with negligible probability, Definition 7 is unable to capture the public-coin evasive LWE
variant of [WWW22,CLW24], where the assumption involves multiple LWE samples sTiBi + eTi mod q in
the joint distributions. We do not know an alternative way to capture this type of variants, except by
directly stating them individually in the assumption, as they were also stated in [WWW22,CLW24].

Second, the above counterexample shows that our proposal of allowing B ←$ D to follow arbitrary
public distribution D is insecure in its full generality. Fortunately, all prior works have adopted uniformly
distributed B where such counterexample clearly does not apply. At the moment, we do not have a
comprehensive understanding of how different choices of the distribution of the matrix B affect the
hardness of evasive LWE. Concretely, it is easy to come up with alternative non-uniform distributions
of B where no similarly trivial counterexample seems to apply, but at the same time, similarly trivial
counterexamples still apply to slight variations of the block-diagonal case. At the moment, we are unable
to meaningfully characterise distributions which do not suffer from similar counterexamples. Thus, at
the moment, we advise only using evasive LWE with uniformly random B, as it has been in prior works.
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A On Regular Preimages

We will prove here the following theorem:

Theorem 2. Let χ ∈ ω(
√
n), q > 2 · χ be prime and m ≥ 2n · log q.

Draw B,P← Zn×m
q uniformly at random. Draw U← DZm×m,χ conditioned on BU = P mod q.

Then, we have

Pr[det(U) = 0 mod q] ≤ eπ · m

2bχc+ 1
+ n · 4 exp

(
−π (q − 1)2

4χ2

)
+ 2q−n + 2m · 2−n.

To prove Theorem 2, we will proceed in several steps: Appendix A.1 revisits useful facts about lattices
and proves that sampling a normal Gaussian vector e ← DZm,χ and sampling a Gaussian preimage
e′ under B for a random point u ∈ Zn

q is statistically close. This implies that U is close to being
sampled from DZm×m,χ without conditioning its distribution on BU = P. In Appendix A.2, we revisit
the Schwartz-Zippel lemma and prove a variant of it for points x← DZm,χ of spherical discrete Gaussian
distribution. In Appendix A.3, we conclude the proof by observing that we can bound the probability of
the determinant vanishing on U by our variant of the Schwartz-Zippel lemma.

A.1 More Lattice Preliminaries

We now revisit additional useful notions and facts from lattice theory and prove several corollaries. Recall
that the smoothing parameter [MR04] for a full-rank lattice Λ ⊂ Rm and ϵ > 0 is given by

ηϵ(Λ) := inf{χ > 0 | ρ1/χ(Λ∗ \ {0}) ≤ ϵ}.

Further, denote by λ∞1 (Λ) the infinity-norm of the shortest non-zero vector of Λ ⊂ Rm, i.e.,

λ∞1 (Λ) := min
x∈Λ\{0}

‖x‖∞ = min
(x1,...,xm)∈Λ\{0}

(
max

i=1,...,m
|xi|
)
.

We import the following lemmas from [Reg05,Pei07,GPV08]:

Lemma 12 ([Reg05]). Let m ≥ 2n · log q. If we draw A ← Zn×m
q , then we have with probability at

least 1− q−n

{A · e mod q | e ∈ {0, 1}m} = Zn
q .

Lemma 13 ([Pei07]). Let Λ ⊂ Rm be a full-rank lattice and ϵ > 0. We have

ηϵ(Λ) ≤
√

log(2m) + log(1 + 1/ϵ)

λ∞1 (Λ∗) ·
√
π

.

Lemma 14 ([GPV08]). Let A ∈ Zn×m
q be s.t. A · Zm

q = Zn
q . Let ε ∈ (0, 0.5), χ ≥ ηϵ(Λ

⊥(A)).

1. For e ← DZm,χ and u ← Zn
q , the statistical distance between (A,Ae mod q) and (A,u) is bounded

by 2ε.
2. Fix t ∈ Zm and set u = At mod q. Draw e ← DZm,χ conditioned on Ae = u. Then, e − t is

distributed according to DΛ⊥(A),χ,−t.

Lemma 15 ([GPV08]). Let q be prime, m ≥ 2n · log q. Draw A← Zn×m
q uniformly at random. Then,

we have with probability at least 1− q−n

λ∞1 (Λ(A)) ≥ q

4
.

We now prove the following:

Lemma 16. Let A ∈ Zn×m
q be s.t. A · Zm

q = Zn
q . Let ε ∈ (0, 0.5), χ ≥ ηϵ(Λ

⊥(A)).
Draw e← DZm,χ, set u = Ae mod q and draw e′ ← DZm,χ conditioned on Ae′ = u mod q.
Then, e′ (without seeing e) is distributed according to DZm,χ.
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Proof. For a lattice Λ and a vector x, set

1x∈Λ =

{
1, x ∈ Λ,

0, x /∈ Λ.

Because of the second claim of Lemma 14, e′ is distributed according to

e+DΛ⊥(A),χ,−e.

Now, fix x ∈ Zm. We will compute the probability that e′ equals x:

Pr[e′ = x] =
∑
t∈Zm

Pr[e = t] · Pr[x← t+DΛ⊥(A),χ,−t]

=
∑
t∈Zm

ρχ(t)

ρχ(Zm)
·
ρχ,−t(x− t) · 1x−t∈Λ⊥(A)

ρχ,−t(Λ⊥(A))

=
∑
t∈Zm

ρχ(t)

ρχ(Zm)
·
ρχ(x) · 1x−t∈Λ⊥(A)

ρχ(t+ Λ⊥(A))

=
ρχ(x)

ρχ(Zm)
·
∑
t∈Zm

ρχ(t) · 1x−t∈Λ⊥(A)

ρχ(t+ Λ⊥(A))
.

We claim that
∑

t∈Zm

ρχ(t)·1x−t∈Λ⊥(A)

ρχ(t+Λ⊥(A))
is one. Indeed, we have

∑
t∈Zm

ρχ(t) · 1x−t∈Λ⊥(A)

ρχ(t+ Λ⊥(A))
=

∑
t∈Λ⊥(A)+x

ρχ(t)

ρχ(t+ Λ⊥(A))

=
∑

t∈Λ⊥(A)+x

ρχ(t)

ρχ(x+ Λ⊥(A))
=

ρχ(Λ
⊥(A) + x)

ρχ(x+ Λ⊥(A))
= 1.

Hence, we have Pr[e′ = x] =
ρχ(x)
ρχ(Zm) = DZm,χ(x). ut

We can now show the following:

Corollary 1. Let A ∈ Zn×m
q be s.t. A · Zm

q = Zn
q . Let ε ∈ (0, 0.5), χ ≥ ηϵ(Λ

⊥(A)).
Let D1 be the distribution that samples and outputs e← DZm,χ. Let D2 be the distribution that first

samples u← Zn
q and outputs e′ ← DZm,χ conditioned on Ae = u mod q.

Then, the statistical distance between D1 and D2 is bounded by 2ϵ. Concretely, we have

∆((A, e), (A, e′)) ≤ 2ϵ.

Proof. The first part of Lemma 14 implies that the statistical distance between u ← Zn
q and Ae for

e← DZm,χ is bounded by 2ϵ.
Hence, we can replace D2 by the distribution D3 that samples e ← DZm,χ, sets u = Ae mod q

and outputs e′ ← DZm,χ conditioned on Ae′ = u mod q. Lemma 16 implies now that D1 and D3 are
identical. ut

Corollary 2. Let χ ∈ ω(
√
n), let q be prime. Draw A ← Zn×m

q uniformly at random. With probability
≥ 1− 2q−n over the randomness of A, we have

∆((A, e), (A, e′)) ≤ 2−n+1

where e← DZm,χ, u← Zn
q and e′ ← DZm,χ conditioned on Ae′ = u mod q.

Proof. Set ε = 2−n. Lemma 15 implies for A← Zn×m
q

Pr
[
λ∞1 (Λ(A)) ≥ q

4

]
≥ 1− q−n.
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Note that we have

λ∞1 (Λ(A)) = λ∞1 (q · Λ⊥(A)∗) = q · λ∞1 (Λ⊥(A)∗).

Hence, λ∞1 (Λ⊥(A)∗) is bounded from below by 1/4 with overwhelming probability.
According to Lemma 13, the smoothing parameter of Λ⊥(A) is bounded by

ηϵ(Λ
⊥(A)) ≤

√
log(2m) + log(1 + 2n)

λ∞1 (Λ⊥(A)∗) ·
√
π

∈ O

( √
n

λ∞1 (Λ⊥(A)∗)

)
.

Hence, for almost all n, with probability at least 1 − q−n, χ ∈ ω(
√
n) will be larger than ηϵ(Λ

⊥(A)) ∈
O(
√
n).

Because of Lemma 12, A generates Zn
q with probability at least 1 − q−n. If both conditions are

satisfied

χ ≥ ηϵ(Λ
⊥(A)) and A · Zm

q = Zn
q ,

then Corollary 1 implies

∆((A, e), (A, e′)) ≤ 2ϵ = 2−n+1.

Both conditions will hold simultaneously with probability at least 1−2q−n. Hence, the claim follows. ut

A.2 Schwartz-Zippel over Spherical Discrete Gaussians

We now introduce a variant of the seminal Schwartz-Zippel lemma [DL78,Zip79,Sch80] over the spherical
discrete Gaussian distribution DZm,χ. We use this variation to prove that a square matrix with entries
distributed according to a (spherical) discrete Gaussian distribution has full rank with high probability,
if the variance of the distribution is large enough.

We first show the following variant of the Schwartz-Zippel lemma for any discrete distribution:

Lemma 17 (Schwartz-Zippel for Any Distributions). Let X be any discrete distribution over any
field K. Fix a non-zero polynomial f ∈ K[X1, . . . , Xn]. We have

Pr
x←Xn

[f(x) = 0] ≤ deg(f) · p

where p = maxx∈K X (x).

Proof. As usual, we prove the claim by induction on the number n of variables:
For n = 1, the non-zero polynomial f can have at most deg(f) roots in K. The probability that

x← X lies in f−1(0) hence is bounded by deg(f) · p.
For the induction step, write f as

f(X) =

deg f∑
i=0

fi(X1, . . . , Xn−1) ·Xi
n

with deg fi ≤ deg(f) − i. Since f 6= 0, one of the f0, . . . , fdeg(f) must be non-zero, too. Let d ∈
{0, . . . , deg(f)} be maximal s.t. fd 6= 0. Our induction hypothesis implies

Pr
x′←Xn−1

[fd(x
′) = 0] ≤ d · p.

If fd(x′) is non-zero, then f(x′, Xn) is a univariate polynomial of degree deg(f)− d. Hence, we have

Pr
x′′←X

[f(x′, x′′) = 0] ≤ (deg(f)− d) · p.

By a union bound, the claim follows. ut
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We want to apply the above lemma on the discrete Gaussian distribution DZn,χ. For this end, recall that
the coordinates of a sample x← DZn,χ are independently sampled according to DZ,χ. Indeed, we have

ρχ(x) = exp

(
−π ·

||x||22
χ2

)
= exp

(
−π · x

2
1

χ2

)
· · · exp

(
−π · x

2
n

χ2

)
= ρχ(x1) · · · ρχ(xn)

and

ρχ(Zn) = (ρχ(Z))n .

It now follows:

Corollary 3 (Schwartz-Zippel for Spherical Discrete Gaussian Distributions). Let χ > 1, and
let q > 2χ be prime. Fix a non-zero polynomial f ∈ Zq[X1, . . . , Xn]. We have

Pr
x←DZn,χ

[f(x) = 0] ≤ deg(f)

ρχ({−(q − 1)/2, . . . , (q − 1)/2})
+ 4n · ρχ

(
q − 1

2

)
≤eπ · deg(f)

2bχc+ 1
+ 4n · ρχ

(
q − 1

2

)
.

Proof. Let X be the restriction of DZ,χ to {−(q − 1)/2, . . . , (q − 1)/2}. Because of the subgaussianity of
DZ,χ, the statistical distance of X and DZ,χ is bounded by

∆(X , DZ,χ) ≤2 · Pr
x←DZ,χ

[
|x| > q − 1

2

]
≤ 4 exp

(
−π (q − 1)2

4χ2

)
.

Hence, we can replace DZn,χ in the claim by Xn and incur a statistical error bounded by ≤ 4n · ρχ((q −
1)/2).
X assumes its maximum value at zero. For X (0), we have

X (0) = ρs(0)

ρχ ({−(q − 1)/2, . . . , (q − 1)/2})
≤ 1

ρχ ({−bχc, . . . , bχc})
.

For |x| ≤ χ, we have ρχ(x) = exp(−π · x2/χ2) ≥ exp(−π). Hence,

X (0) ≤ 1

ρχ ({−bχc, . . . , bχc})
≤ eπ

2bχc+ 1
.

The claim follows now by applying Lemma 17. ut

Theorem 3. Let m ∈ N and χ > 1. Let q > 2χ be a prime. Draw M← DZm×m,χ. We have

Pr [det(M) = 0 mod q] ≤ eπ · m

2bχc+ 1
+ 4n · ρχ

(
q − 1

2

)
.

Proof. Note that the determinant det is a polynomial of degree m over m2 variables with coefficients in
Z. Projecting the coefficients modulo q, we get the polynomial f that computes the map

f(M) = det(M) mod q.

f is non-zero, since regular matrices modulo q do exist. Corollary 3 implies now

Pr
M←DZm×m,χ

[det(M) = 0 mod q] = Pr
M←DZm×m,χ

[f(M) = 0] ≤ eπ · m

2bχc+ 1
+ 4n · ρχ

(
q − 1

2

)
.

Hence, our theorem follows. ut

32



A.3 Wrapping Up

We will now finish the proof of Theorem 2:

Proof (Theorem 2). Draw B,P ← Zn×m
q uniformly at random and sample U ← DZm×m,χ conditioned

on BU = P.
Denote the columns of P by p1, . . . ,pm ∈ Zn

q , and the columns of U by u1, . . . ,um ∈ Zm. Note that
the columns u1, . . . ,um are independent of each other. Indeed, each column ui is sampled from DZm,χ

conditioned on B · ui = pi.
Sample new column vectors u′1, . . . ,u

′
m ← DZm,χ and set

U′ = (u′1| · · · |u′m) ∈ Zm×m.

According to Corollary 2, with probability of ≥ 1 − 2q−n over the randomness of B, we have for each
i ∈ [m]

∆(u′i,ui) ≤ 2−n+1.

Since the columns u1, . . . ,um are independent, it follows

∆(U′,U) ≤ m · 2−n+1.

For U′ ← DZm×m,χ, Theorem 3 states

Pr[det(U′) = 0 mod q] ≤ eπ · m

2bχc+ 1
+ n · 4 exp

(
−π (q − 1)2

4χ2

)
.

By taking the statistical errors 2q−n and m · 2−n+1 into account, we can replace U by U′ and get

Pr[det(U) = 0 mod q] ≤ eπ · m

2bχc+ 1
+ n · 4 exp

(
−π (q − 1)2

4χ2

)
+ 2q−n + 2m · 2−n.

This closes the proof of Theorem 2. ut

B Missing Proofs

We provide the missing proofs for Sections 5 and 7. For ease of reading we also restate the related lemmas.

Lemma 6. Let (P1 ∈ Zn×m
q ,u ∈ {0, 1}m) ← Samp1(1

λ). For B ←$ Zn×m
q and D1 ← DΛ⊥

P1
(B),χ, we

have
Pr [D1 · u = 0 mod q] ≤ O(m/χ).

Proof. Because of the Leftover-Hash Lemma 3, P1 is statistically close to a uniformly random matrix.
In the latter case, Lemma 5 implies that D1 is regular with probability at least 1−O(m/χ). Since u is
never zero, D1 · u mod q can only be zero if D1 is not regular. As we explained, the probability for this
event lies in O(m/χ). ut

Lemma 7. Let (P1 ∈ Zn×m
q ,u ∈ {0, 1}m) ← Samp1(1

λ). Sample B ←$ Zn×m
q , e0 ←$ DZm,χ and

D1 ←$ DΛ⊥
P1

(B),χ. We have
Pr
[∣∣eT0 ·D1 · u

∣∣ ≥ λ2m2χ2
]
≤ 2−λ.

Proof. Again, we invoke the Leftover-Hash Lemma 3, to bound the statistical distance of P1 to a uni-
formly random matrix by 2−n. In that case, we prove in Lemma 16 of Appendix A.1 that the columns
of D1 are distributed according to DZm,χ if one does not know P1. In particular, the columns of D1 are
subgaussian with parameter χ. Since e0 is subgaussian with parameter χ, too, the absolute values of each
entry of D1 and e0 is bounded by χλ with probability 1 − exp(−πλ2). Since u only has binary entries,
the quantity |eT0 ·D1 · u| is bounded by λ2m2χ2 with probability at least ≥ 1− (m2+m) exp(−πλ2). ut

Lemma 8. For B←$ Zn×m
q , u2 ←$ {0, 1}m, p2 = B · u2 and d2 ←$ DΛ⊥

p2
(B),χ, we have Pr [d2 = u2] ≤

2−m+1 + q−n.
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Proof. By Lemma 1, with probability at least 1 − q−n, the smoothing parameter of Λ⊥(B) is bounded
by χ ∈ Ω(

√
n). In such cases, fix p2 ∈ Zn

q and consider

DΛ⊥
p2

(B),χ(d2) =DΛ⊥(B),χ,u2
(d2 + u2)

Lemma 2 bounds the latter term by 2−m · 1+ϵ
1−ϵ . Hence, the claim follows. ut

Lemma 9. Draw B ←$ Zn×m
q , u2 ←$ {0, 1}m and set p2 = Bu2 mod q. Draw d2 ←$ DΛ⊥

p2
(B),χ and

f ′1, . . . , f
′
m ←$ DZm,χ.

We have
Pr
[
∃i ∈ [m] :

∣∣fTi · d2

∣∣ ≥ λ2mχ2
]
≤ 2−λ.

Additionally, we have for e0 ←$ DZm
q ,χ,

Pr
[∣∣eT0 · (d2 − u2)

∣∣ ≥ λχ · (λχ+ 1) ·m
]
≤ 2−λ.

Proof. Because of the Leftover-Hash Lemma 3, the statistical distance of p2 to a uniformly random
vector is bounded by 2−n. By using Lemma 16 again, it follows that d2 is distributed according to
DZm,χ, as long as one does not see p2. Hence, the coordinates of d2 are subgaussian with parameter χ.
The vectors f ′1, . . . , f ′m ←$ DZm,χ are subgaussian with parameter χ, too. Ergo, all entries of f ′1, . . . , f ′m,d2

are bounded by χλ with probability ≥ 1 − (m2 + m) exp(−πλ2). In this case, the quantities |fTi · d2|,
i = 1, . . . ,m, are all bounded by λ2mχ2.

Similarly, we can bound |eT0 · (d2 − u2)| by |eT0d2| + |eT0u2| ≤ λ2χ2m + λχm with overwhelming
probability ≥ 1− 2−λ. ut

Lemma 10. Let m > n and t < q. Draw A← Zm×m
q uniformly at random.

1. We have Pr
[
∃M1,M2 ∈ Zm×n

q : A−M1M
T
2 ∈ {−t, . . . , t}m×m

]
≤ q2mn ·

(
2t+1
q

)m2

.

2. With probability ≥ 1−q2mn ·
(

2t+1
q

)m2

, every PPT adversary has negligible advantage in distinguishing
iO(CA,n,t) and iO(0), where 0 is an appropriately padded ciruit that always outputs 0 and is devoid
of any information).

Proof. 1. Set

F :=
{
M1M

T
2 | M1,M2 ∈ Zm×n

q

}
.

Zm×n
q has qmn many elements, hence

#F ≤ q2mn.

Now, for some fixed A ∈ Zm×m
q consider the set

G := {R ∈ Zm×m
q : R−A ∈ {−t, . . . , t}m×m}.

Note that we have

G = A+ {−t, . . . , t}m×m.

Hence,

#G ≤ (2t+ 1)m
2

.

Since

H :={A ∈ Zm×m
q : A−M1M

T
2 ∈ {−t, . . . , t}m×m for some M1,M2 ∈ Zm×n

q }

=
⋃
B∈F

{A ∈ Zm×m
q : A−B ∈ {−t, . . . , t}m×m}
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=
⋃
B∈F

B+ {−t, . . . , t}m×m,

it follows

#H ≤ #F · (2t+ 1)m
2

= q2mn · (2t+ 1)m
2

.

We now have

Pr
[
∃M1,M2 ∈ Zm×n

q : A−M1M
T
2 ∈ {−t, . . . , t}m×m

]
=Pr [A ∈ H] ≤ #H

#Zm×m
q

≤ q2mn · (2t+ 1)m
2

qm2 .

2. With high probability, A ← Zm×m
q will admit no approximated low-rank factorisation. In this case,

CA,n,t will output 0 for each possible input. The claim now follows from the null-iO security. ut

Lemma 11. Let q > 1 be any modulus and let I ⊆ Zq be a consecutive interval. Let u ∈ Zn
q be non-zero

and draw r←$ Zn
q uniformly at random. We have

Pr
[
uT · r mod q ∈ I

]
≤

#I + ‖u‖∞
q

.

Proof. Since the entries of r are uniformly random, it suffices to consider the case n = 1. Hence, let
u ∈ Zq be non-zero and draw r ← Zq. Let p = (u, q) be the greatest common divisor of u and q. Note
that u · r is uniformly distributed in p · Zq = {0, p, . . . , ( qp − 1)p}. Hence, we have

Pr [ur ∈ I] =
#(I ∩ pZq)

q/p
.

The claim now follows, since #(I ∩ pZq) ≤ #I
p + 1 and p ≤ |u|. ut

C Additional Counterexamples

C.1 Counterexample 4 (Sketch)

We sketch a counterexample for the case β = γ = 0, i.e., Samp4 will not receive B as input and neither
B nor P will be part of the joint distribution of the pre and post challenge. Additionally, Samp4 will
output no auxiliary information. However, a key difference will be that the LWE secret S will now be a
matrix of shape m× n chosen by Samp4.

Let v1 ∈ Zm
q be some fixed publicly known vector, for example v1 = (1, 0, . . . , 0). Samp4 first samples

a uniformly random vector w1 ∈ Zm
q . Denote the vector of the lowest bits of the entries of w1 by

u = LSB(w1) ∈ {0, 1}m. Now, Samp4 additionally samples a matrix S ←$ Zm×n
q which is uniformly

random conditioned on uTS = 0. Additionally, Samp4 samples vectors v2, . . . ,vn,w2, . . . ,wn ←$ Zm
q

and sets

P = (P1|P2) =

vT
1 wT

1
...

...
vT
n wT

n

 ∈ Zn×(2m)
q

where P1,P2 ∈ Zn×m
q . Finally, Samp4 outputs (S,P).

In the if-challenge, a challenger has to distinguish

STB+E0 mod q, STP1 +E1 mod q, STP2 +E2 mod q
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for (S,P1,P2)← Samp4(1
λ), B←$ Zn×m

q , E0,E1,E2 ←$ DZm×m,χ from three uniformly random matri-
ces of shape m ×m. Without loss of generality, assume that the first entry u1 of u is one. In this case,
we have for S = (s1| · · · |sn)

s1 = −
n∑

i=2

ui · si mod q

and for BT = (b1| · · · |bn)

SB =s1b
T
1 + . . .+ snb

T
n = s2(b

T
2 − u2b

T
1) + . . .+ sn(b

T
n − unb

T
1) mod q

=(s2| · · · |sn) ·


bT

2
...
bT
n

−
u2

...
un

 · bT
1

 mod q.

The important observation is that (b2| · · · |bn) ∈ Z(n−1)×m
q is uniformly random, and stays uniformly

random if we perturb it by (u2, . . . , un) ·bT
1. Since the last n− 1 columns of S are uniformly random and

independent of each other, by the LWE assumption with secret-key length n− 1, it follows that no PPT
adversary can distinguish between SB+E0 mod q and a uniformly random matrix. The same argument
works analogously for SP1 +E1 mod q and SP2 +E2 mod q, since the last n− 1 rows of P1 and P2 are
uniformly random and independent of each other. Hence, the intractability of the if-challenge follows by
LWE.

Now, in the then-challenge, an adversary receives

C, D1, D2

for (S,P1,P2)← Samp4(1
λ), B←$ Zn×m

q , E0 ←$ DZm×m,χ, Di ←$ DΛ⊥
Pi

(B),χ, i = 1, 2, and has to decide
if C = STB+E0 mod q or if C has been sampled uniformly at random.

The trick is to extract the vector w1, which lowest bits help at distinguishing, from the preimages
D1, D2 by only knowing v1. Because of Lemma 5, D1 mod q ∈ Zm×m

q will be of full rank with high
probability. In that case, the adversary can compute a vector z ∈ Zm

q s.t.

zTD1 = vT
1 mod q,

because v1 is a publicly known vector. Since D1 mod q is regular, the equation system zTD1 = v1 mod q
can only have one solution. Hence, z is unique and must be of shape

zT = (1, 0, . . . , 0)T ·B = bT
1,

since (1, 0, . . . , 0)T ·P1 = vT
1. The adversary can now compute

zT ·D2 = (1, 0, . . . , 0)T ·B ·D2 = (1, 0, . . . , 0)T ·P2 = w1 mod q.

From w1 it can extract u ∈ {0, 1}m, which helps at deciding if C is random, since

uT · (STB+E0) = uT · STB+ uT ·E0 = uTE0 mod q,

where the entries of the vector uTE0 are bounded by mλχ with overwhelming probability, which can be
shown by a usual subgaussianity argument. However, if C would be uniformly random, then the vector
uTC would be statistically close to a uniformly random vector. Hence, we again yield a PPT adversary
for the post challenge with high advantage.

We note again that P is uniformly random except for the first m entries of its first row. However,
one can see that such P fails to achieve indistinguishability as required by Pre2 of private-coin hiding
evasive LWE (Definition 9), since a distinguisher can check the consistency of the first row of P1 with
v1 and, for parameter ℓ = 2, succeed with probability 1− (1/2)m.
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Pre1′
b
A(1λ)

B←$ Zn×m
q(

S,P, aux
)
← Samp(1λ)

if b = 0 then

EB ←$ χB , EP ←$ χP

CB := SB+EB mod q

CP := SP+EP mod q

if b = 1 then

CB ←$ Zt×m
q

CP ←$ Zt×mP
q

return A
(
CB , CP , aux

)
Pre2′

b
A(1λ)(

S,P, aux
)
← Samp(1λ)

if b = 0 then

return A(P mod ℓ, aux)

if b = 1 then

R←$ Zn×mP
q ;

return A(R mod ℓ, aux)

Post′
b
B(1

λ)

B←$ Zn×m
q(

S,P, aux
)
← Samp(1λ)

if b = 0 then

EB ←$ χB

CB := SB+EB mod q

U←$ DΛ⊥
P
(B),Σ

if b = 1 then

CB ←$ Zt×m
q

U←$ DΛ⊥
P
(B),Σ

return B
(
CB , U, aux

)

Fig. 6: Experiments Pre1′, Pre2′ and Post′ for a variation of the private-coin hiding evasive LWE assump-
tion.

C.2 Counterexample 5 (Sketch)
We now sketch here a counterexample13 against a variation of the private-coin hiding evasive LWE
assumption. This variation, summarised in Fig. 6, states that if there is a PPT adversary B which
predicts b in Post′ with non-negligible advantage, then there is either a PPT adversary A1 which predicts
b in Pre1′ with non-negligible advantage, or a PPT adversary A2 which predicts b in Pre2′ with non-
negligible advantage. Different from Definition 9, the experiment Pre2′ now requires that P mod ℓ is
computationally indistinguishable from R mod ℓ, R← Zn×mP

q , given aux. This change enables an attack
with a time complexity of poly(mℓ) so that this variation of private-coin hiding evasive LWE cannot be
secure if one allows ℓ to be constant and P to have up to O(mℓ) columns. Details of the attack follow.

Let

m ≥ 3n log(q), χ ≥ λnℓ ·
(
m+ ℓ− 1

ℓ

)
, q ≥ max(2λ · ℓ, λ3m2χ2).

Similarly to counterexample 2 in Section 5.2, the sampler embeds information into aux which helps the
post adversary to recover B when given the short preimage D. However, this time we have to ensure that
aux does not help at distinguishing between (P mod ℓ) and (R mod ℓ), where R is a uniformly random
matrix of the same shape.

Our attack relies on algorithms for solving the Learning with Bounded Errors problem. In this problem,
one is given an LWE sample (A ∈ Zn×m

q , sTA+eT) and promised that each entry of the noise vector lies
in a set of bounded size14. In its simplest form, where each noise-term lies in a set of size 2, this problem
is known as Learning with Binary Errors. Arora and Ge [AG11] show that this problem can be solved
by relinearization when given m = O(qn2) samples. Algebraic attacks even solve the problem when only
given m = O(n2) samples, cf. [MP13,ACFP14,STA20,Ste24,NMSÜ24]. To make use of these algebraic
attacks, we set the number of columns of P to be

mP = 2m+

(
m+ ℓ− 1

ℓ

)
∈ Θ(mℓ).

13 We thank a reviewer of AsiaCrypt 2024 for pointing out this counterexample to us!
14 In our case, each noise term lies in {0, . . . , ℓ− 1}.
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Samp5(1
λ) outputs the following:

(P = (P1,P2,P3), aux = P3 − (P3 mod ℓ))

where P3 ←$ Zn×(m+ℓ−1
ℓ )

q . Denote by MSB the most significant bits of a vector. P1,P2 are sampled
similar as follows

u′ ←$ {0, 1}m−1, P′1 ←$ Zn×(m−1)
q , P′2 ←$ Z(n−1)×m

q , t←$ Zm
q

uT = ((u′)T, 1) ∈ {0, 1}1×m, P1 =
(
P′1| −P′1u

′ mod q
)
, P2 =

(
P′2

(t+ 2⌈log2(q)⌉−1 · (u−MSB(t)))T

)
.

As usual, the last row of P2 encodes a binary kernel vector of P1. This time, the vector u is encoded in
the most significant bits of P2. Since the last row of P2 is given by t + 2⌈log2(q)⌉−1 · (u −MSB(t)), all
other bits in this row are identically distributed as the corresponding bits of t.

We have to argue that every PPT adversary has a negligible advantage in Pre2′. In this experiment,
an adversary has to distinguish between P mod ℓ and R mod ℓ for R ← Zn×mP

q when given aux =

P3 − (P3 mod ℓ). Decompose R into R1,R2 ←$ Zn×m
q and R3 ←$ Zn×(m+ℓ−1

ℓ )
q . First we note that

P2 mod ℓ and R2 mod ℓ are identically distributed. In particular, P2 mod ℓ is devoid of any information
of u. Hence, P1 is statistically close to R1. Finally, P3 is uniformly random, however P3 − (P3 mod ℓ)
is known by the distinguisher. Since q ≥ ℓ · 2λ, the statistical distance between P3 mod ℓ and R3 mod ℓ
is negligible15. It follows that the advantage of an adversary in determining b in Pre2′ is negligible, and
assuming LWE, the advantage of a PPT adversary in distinguishing b in Pre1′ is also negligible. We omit
the formal argument here, since it follows along the lines of Section 5.2.

Finally, let us turn to the then-challenge. The post adversary receives

D1 ∈ Zm×m
q , D2 ∈ Zm×m

q , D3 ∈ Zm×(m+ℓ−1
ℓ )

q , W := P3 − (P3 mod ℓ)

where Di is short with B ·Di = Pi. It has to distinguish sTB+ eT from a uniformly random vector. We
claim that the adversary can reconstruct B from D3 and W. Let b ∈ Zm

q and w ∈ Z(
m+ℓ−1

ℓ )
q be the i-th

row of B and W Note that we have

w −DT
3 · b ∈ {0, . . . , ℓ− 1}(

m+ℓ−1
ℓ ).

According to Lemma 18 (shown below), the adversary can solve this problem and extract b with success
probability ≥ 1 − O(1/(nλ)) and time complexity lies in poly(mℓ). By a union bound, the adversary
can extract all rows of B from D3 and W with success probability ≥ 1 − O(1/λ). From here on, the
adversary follows the strategy of Section 5.2. I.e., it computes P2 = BD2, extracts the trapdoor u from
P2 and uses D1u to distinguish sTB+ eT from uniform randomness. We omit the rest of the proof as it
is analogous to Section 5.2.

Lemma 18. Set M =
(
m+ℓ−1

ℓ

)
and let q ≥ λ ·χ. There is an algorithm B that runs in time poly(mℓ) s.t.

Pr
D←D

ZM,χ
q

[∀x ∈ Zm
q , e ∈ {0, . . . , ℓ− 1}M : B(D,D · x− e) = x] ≥ 1−O(2mℓM/χM−m + ℓM/χ).

Proof. Set L = {0, . . . , ℓ−1} and N = {−ℓ, . . . , ℓ}. We will first turn to the question of unique solvability.
Draw D ← DZM×m

q ,χ. We claim that it is very unlikely that there exist x1,x2 ∈ Zm
q , e1, e2 ∈ LM s.t.

Dx1 − e1 = Dx2 − e2 and x1 6= x2. Indeed, this would imply

D · (x1 − x2) = e1 − e2 ∈ NM ,

15 For an explanation, sample a number x← {0, . . . , q−1} uniformly at random and decompose it as x = a+ ℓ · b
with a ∈ {0, . . . , ℓ− 1} and b ∈ {0, . . . , ⌊q/ℓ⌋}. Since q is not a power of two, a is sampled uniformly at random
conditioned on b iff b < ⌊q/ℓ⌋. The probability of b = ⌊q/ℓ⌋ is equal to the probability of x ≥ ⌊q/ℓ⌋ · ℓ, which
is (q − ⌊q/ℓ⌋ · ℓ)/q ≤ 2−λ.
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i.e., the high matrix D would have a short image vector. Decompose

D =

(
D1 ∈ Zm×m

q

D2 ∈ Z(M−m)×m
q

)
, e1 − e2 =

(
f1 ∈ Zm

q

f2 ∈ ZM−m
q

)
into top and bottom parts. According to Corollary 3, the probability of D1 being singular is bounded by

≤ eπ · m

2bχc+ 1
+ 4m2 · ρχ

(
q − 1

2

)
∈ O(m/χ).

If D1 is regular, the value of x1−x2 is uniquely determined by f1, since D1(x1−x2) = f1. In particular,
we have f2 = D2 ·D−11 f1. Now, set A := {D1 · f |f ∈ Nm}. Since the entries of D are independent of each
other, we have

Pr
D2←D

Z(M−m)×m
q

,χ
[∃y ∈ A : D2y ∈ NM−m]

≤
∑
y∈A

Pr
D2←D

Z(M−m)×m
q

,χ
[D2y ∈ NM−m]

=
∑
y∈A

Pr
d←DZmq ,χ

[dTy ∈ N ]M−m

≤(2ℓ− 1)m ·max
y∈A

(
Pr

d←DZmq ,χ
[dTy ∈ N ]M−m

)
.

Because of Corollary 3, we have

Pr
d←DZmq ,χ

[dTy ∈ N ] ≤ eπ · 2ℓ− 1

2bχc+ 1
+ 4(2ℓ− 1)2 · ρχ

(
q − 1

2

)
∈ O(ℓ/χ).

Hence,

Pr
D2←D

Z(M−m)×m
q

,χ
[∃y ∈ A : D2y ∈ NM−m]

≤(2ℓ− 1)m ·max
y∈A

(
Pr

d←DZmq ,χ
[dTy ∈ N ]M−m

)
≤(2ℓ− 1)m ·O((ℓ/χ)M−m) = O(2mℓM/χM−m).

Taking everything together, it now follows that the probability, that there exist x1,x2 ∈ Zm
q , e1, e2 ∈ LM

s.t. Dx1 − e1 = Dx2 − e2 and x1 6= x2, lies in

O(m/χ+ 2mℓM/χM−m).

Now, set w = Dx − e and let us assume that the problem Dx = w + e with unknowns x and e
has only one solution. In this case, B has to solve a linear equation system with

(
m+ℓ−1

ℓ

)
equations

over m variables where each equation is perturbed by a noise value in {0, . . . , ℓ − 1}. Introduce formal
variables X1, . . . , Xm that represent the unknown entries of x ∈ Zm

q and let X = (X1, . . . , Xm) be the
corresponding vector of variables. Let f ∈ Zq[Z] be the following univariate polynomial

f(Z) :=

ℓ−1∏
i=0

(Z − i).

We can transform the noisy linear equation system

w −D ·X =

 w1

...
wM

−
 d1

...
dM

 ·
X1

...
Xm

 ∈ LM
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to the following exact polynomial equation system

f(w1 − 〈d1 | X〉) = 0,

...
f(wM − 〈dM | X〉) = 0.

Since we assumed that this problem has only one solution, a Macaulay matrix-based solving algorithm
like Mutant-XL [CKPS00,DBM+08] will eventually find the solution x. To bound the time complexity
of this algorithm, we need to bound the degree of regularity of the polynomial equation system. This is
exactly the degree D at which the ideal generated by the top terms

〈d1 | X〉ℓ, . . . , 〈dM | B〉ℓ

contains all monomials of Zq[X] of degree D. [NMSÜ24] shows that this is with high probability ℓ.
Concretely, let D̃ be the M ×M -matrix whose i-th row contains the coefficients of the polynomial
〈di | X〉ℓ. The polynomial equation system has degree of regularity ℓ iff D̃ has full rank. We can consider
the entries of D̃ as polynomials of degree ℓ in the entries of d1, . . . ,dM , i.e. in the entries of D. Then,
the polynomial det D̃ is of degree ℓ ·M in the entries of D3. [NMSÜ24] proves that this polynomial is
non-zero. Corollary 3 implies now that the probability of det D̃ being zero is bounded by

≤ eπ · ℓM

2bχc+ 1
+ 4(ℓM)2ρχ(

q − 1

2
) ∈ O(ℓM/χ).

It is known that the solving degree (for a Mutant-XL approach) of a polynomial equation system is
bounded by twice the degree of regularity [Sal23,Ste24]. Hence, with probability ≥ 1−O(ℓM/χ), B can
extract x by calculating the Macaulay matrix of the corresponding polynomial equation system up to
2ℓ. The dimensions of this matrix lie in poly(mℓ) and performing Gaussian elimination on it has a time
complexity of poly(mℓ).

With a union bound it follows, the success probability of B is at least

≥ 1−O(m/χ+ 2mℓM/χM−m + ℓM/χ) = 1−O(2mℓM/χM−m + ℓM/χ).

C.3 Counterexample 6 (Sketch)
We sketch here a counterexample16 against a variation of public-coin evasive LWE Definition 9 where
the sampling algorithm inputs17 the matrix B. The key observation here is that the sampling algorithm
can enforce algebraic relationships on D when multiplied from the right to B Concretely, we will let B
and P have 2n rows and let P be

P =

(
0 In
In 0

)
·B

where In is n× n-identity matrix. For D with BD = P it is easy to verify that we must have

BD2 = B.

This can be used by the post adversary, assuming that D2 6= Im of course. Unfortunately, we could not
prove that D will be not a square root of the identity matrix, since D does not have a simple spherical
distribution. Therefore, to bound the success probability of the following attack, we need to assume the
following:
Conjecture 1. Draw B← Z2n×m

q . For D← DZm×m
q ,χ conditioned on

BD =

(
0 In
In 0

)
B,

we have

Pr
[
D2 6= Im

]
/∈ negl(λ).

16 We thank a reviewer of AsiaCrypt 2024 for pointing out this counterexample to us!
17 This demonstrates that public-coin evasive LWE is (presumably) insecure if one allows Samp to take B as

input.
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We argue that Conjecture 1 is plausible. For example, if r ∈ Zm
q is a short kernel vector of B, then we

can add r to any column of D without changing its essential property.
Now, Samp6 works as follows: on input 1λ and B← Z2n×m

q it outputs

P :=

(
0 In
In 0

)
·B

Note that Samp6 is public-coin as it does not use any randomness. The hinting functions are for this
attack defined to be empty (so, there will be no leakage on s). Also, Samp6 will not output an A-matrix
(i.e., mA = 0).

In the if-challenge, an adversary has to distinguish

sTB+ eT0, sTP+ eT1

from uniform randomness given B and P. B and P are strongly dependent, however, we can decompose
them as follows

s =

(
s1 ∈ Zn

q

s2 ∈ Zn
q

)
, B =

(
B1 ∈ Zn×m

q

B2 ∈ Zn×m
q

)
, P =

(
B2 ∈ Zn×m

q

B1 ∈ Zn×m
q

)
.

Then, we have

sTB+ eT0 = s1B1 + s2B2 + eT0,

sTP+ eT1 = s1B2 + s2B1 + eT1.

The pseudorandomness of sTB + eT0, s
TP + eT1 (given B and P) is implied by the pseudorandomness of

s1B1 + eT0, s1B2 + eT1 given B1,B2 and s2. This pseudorandomness follows from LWE for secret vectors
of length n and 2m samples.

Now, for the post challenge, we are given B,P and D short with

B ·D = P =

(
0 In
In 0

)
·B.

In particular, we have BD2 = B. According to Conjecture 1, with some probability, D2 will not be the
identity. In the then-challenge, we have to decide if a vector y ∈ Zm

q is uniformly random or of shape
sTB+ eT0 for short e0 ← DZm,χ. To accomplish that, we compute

z := yT · (D2 − Im).

If y is uniformly random, then z will have large entries (with a probability that depends on D2 not
being the identity). On the other hand, if y = sTB + eT0, then z = eT0 · (D2 − Im) will be short with
high probability. Hence, assuming Conjecture 1, the post adversary has a non-negligible advantage at
breaking the public-coin evasive LWE assumption.

D Evasive Circular LWE

We attempt to give an abstraction of the evasive circular LWE assumption introduced by [HLL23] to
build key-policy ABE for unbounded-depth circuits. We emphasise that our discussion only serves to
understand the structural similarity and differences with its non-circular counterpart, but studying the
plausibility of evasive circular LWE is beyond the scope of this work.

Definition 12 (Evasive Circular LWE). Let the parameters

param = (R, q, n, nA,m,mP ,mA,mcirc, t, tA,D,S, χB , χP , χA, χcirc, f, fA, Σ)

be parametrised by λ, where R is a ring admitting an embedding as a lattice in Rφ for some φ ∈ N,
D ∼ Rn×m

q , S ∼ Rt×n
q × RtA×nA

q , χB ∼ Rt×m, χP ∼ Rt×mP , χA ∼ RtA×mA , and χcirc ∼ Rt×mcirc
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PrebA(1λ)

B←$ D(
A,P, fcirc, aux

)
← Samp

(
1λ; rand

)
assert P ∈ BRm×mP

(S,SA)←$ S
hint := (f(S), fA(SA))

M← fcirc(S)

if b = 0 then

EA ←$ χA, EB ←$ χB , EP ←$ χP

Ecirc ←$ χcirc

CA := SAA+EA mod q

CB := SB+EB mod q

CP := SP+EP mod q

Ccirc := SM+Ecirc mod q

if b = 1 then

CA ←$RtA×mA
q

CB ←$Rt×mB
q

CP ←$Rt×mP
q

Ccirc ←$Rt×mcirc
q mod q

return A
(

A, B, P,
CA, CB , CP , Ccirc,

hint, aux, rand

)

PostbB(1
λ)

B←$ D(
A,P, fcirc, aux

)
← Samp

(
1λ; rand

)
assert P ∈ BRm×mP

(S,SA)←$ S
hint := (f(S), fA(SA))

M← fcirc(S)

if b = 0 then

EA ←$ χA, EB ←$ χB

Ecirc ←$ χcirc

CA := SAA+EA mod q

CB := SB+EB mod q

U←$ DΛ⊥
P
(B),Σ

Ccirc := SM+Ecirc mod q

if b = 1 then

CA ←$RtA×mA
q

CB ←$Rt×mB
q

U←$ DΛ⊥
P
(B),Σ

Ccirc ←$Rt×mcirc
q mod q

return B
(

A, B, P,
CA, CB , U, Ccirc,

hint, aux, rand

)

Fig. 7: Experiments Pre and Post for evasive circular LWE.

are distributions, Σ ∈ Rφm×φm is positive definite, and f, fA are PPT algorithms. Let Samp be a PPT
algorithm which, on input 1λ, outputs(

A ∈ RnA×mA
q , P ∈ Rn×mP

q , fcirc, aux ∈ {0, 1}∗
)

where fcirc is a PPT algorithm. Denote

AdvPreA (λ) :=
∣∣Pr[Pre0A(1λ) = 1

]
− Pr

[
Pre1A(1

λ) = 1
]∣∣,

AdvPostB (λ) :=
∣∣Pr[Post0B(1λ) = 1

]
− Pr

[
Post1B(1

λ) = 1
]∣∣,

where the experiments PrebA and PostbB are defined in Fig. 7. The EvCircLWEparam assumption states that
for any PPT Samp and B there exists a PPT A such that AdvPreA (λ) ≥ AdvPostB (λ)/poly(λ)− negl(λ).

Definition 12 is similar to Definition 7, with the following differences (highlighted in Fig. 7 in gray).

1. there are additional circular LWE samples w.r.t. a matrix M = fcirc(S) which may be correlated with
the secret S, where fcirc is chosen by Samp, and

2. the hint functions fA, f are not required to be public-coin (i.e. randomness used in the evaluation is
not necessarily available to the distinguishers).

Using the notation of the original work, where an LWE secret is r, the evasive circular LWE assump-
tion in [HLL23] can be viewed as a special case of Definition 12 as follows: Let R = Z, the LWE secret
distribution S is such that S = SA = rT ∼ (DZ,σ)

1×n is Gaussian, let the (probabilistic) hint functions

fA = ∅, f : r 7→
(
Afhe, rTAfhe + eTfhe, g(r)

)
mod q
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where Afhe is uniformly random, efhe is Gaussian noise, and

g(r) :=

(
Afhe

rTAfhe + eTfhe

)
R− bits((rT,−1)T)⊗G mod q.

for uniformly random R. Let Samp output(
A
′
, P, fcirc, aux = ()

)
where

fcirc : r 7→ Acirc − (1, bits(g(r)))⊗G mod q

for some Acirc determined by Samp, i.e., the circular matrix M = fcirc(r) depends on the hint component
g(r).

Unlike in our definition of public-coin evasive LWE (Definition 7), here, part of the randomness
involved in evaluating the hint function f , specifically the noise efhe and the matrix R, are not available
to the distinguisher. Indeed, hiding randomness from the distinguisher is necessary since otherwise the
LWE secret r would be efficiently recoverable from rTAfhe + eTfhe mod q, rendering both the Preb and
Postb experiments distinguishable (so that the assumption is vacuously true and presumably not useful).

On the other hand, while Definition 12 does not fall into our family of public-coin evasive LWE
assumptions (Definition 7), it is easy to see that Definition 12 is indeed a special case of the private-coin
binding evasive LWE family (Definition 8): The private-coin Samp computes fA(S), f(S),CA,Ccirc itself,
and lets aux contain all of these.

Finally, we remark that it is possible to formulate a “public-coin evasive circular LWE assumption”
in the style of Definition 7 which involves circularity in analogous sense of Definition 12 via Ccirc, but the
functions fA, f and fcirc remain public-coin. Since the evasive LWE in [HLL23] requires hint functions
with secret random coins, it would also not be captured by such a public-coin evasive circular LWE.
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