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Abstract. We propose a modification to the fork choice rule of proof-
of-work blockchains. Instead of choosing the heaviest chain, we choose
the chain with the most intrinsic work. The intrinsic work of a block
is roughly the number of zeroes at the front of its hash. This modifi-
cation allows us to safely decrease the confirmations required, yielding
a 28.5% improvement in confirmation delay or, dually, safely increase
the block production rate, yielding a 16.3% improvement in throughput,
as compared to the vanilla Bitcoin proof-of-work fork choice rule. Our
modification is at the level of the proof-of-work inequality, and thus can
be composed with any other methods to improve latency or throughput
that have been proposed in the literature. We report the experimental
findings by measuring them on a production-grade implementation of
our system, whose testnet is already deployed in the wild. Lastly, we
formally prove the security of our new protocol in the Bitcoin Backbone
model.

1 Introduction

In Bitcoin [24], a population of miners attempt to find blocks in the form B =
h ∥x ∥ ctr, where h is a pointer to the previous block, x contains a sequence of
transactions, and ctr is a nonce. The nonce is brute forced by the miner to satisfy
the proof-of-work inequality H(B) < T , where H is a hash function with output
in the interval (0, 1) and T is a small target in the interval (0, 1). Any B that
satisfies this inequality is considered a valid block, whereas candidates that do
not satisfy the inequality are invalid. Simply put, valid blocks must have hashes
that begin with a desired number of 0s. These blocks form linked lists known as
chains. Among such chains, the heaviest chain is chosen as the canonical one.

Some blocks B satisfy the proof-of-work inequality better than others. Namely,
they satisfy not only H(B) < T , but also H(B) < T

2w for some w ∈ R+. Nev-
ertheless, these heavier blocks are counted all the same when choosing which
chain to pick. We posit that the weight of a block is information that can be
useful to improve the protocol. In this paper, we introduce PoEM. We modify
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the fork choice rule of Bitcoin to take this information into account. We build
a protocol which retains the same level of security as Bitcoin, while achieving
better confirmation latency or transaction throughput, because the number of
confirmations can be safely reduced, or the block production rate can be safely
increased respectively.

We report on our production implementation of a real-world system in which
we employ this new rule, and show that it achieves a 28.5% improvement in
confirmation latency and a 16.3% improvement in throughput as compared to
Bitcoin. We also theoretically prove our new protocol is secure using the Bitcoin
Backbone model. Our theoretical analysis introduces a new technique, the real-
valued random oracle, which we prove behaves similarly to the usual random
oracle. This variant of the random oracle allows for the use of an arsenal of
theoretical tools from the continuous domain (such as continuous distributions),
easing the theoretical exposition, and may be of independent interest.
Construction overview. The classical Bitcoin protocol uses the heaviest chain
fork choice. Among two different chains, the one with the most work is chosen as
the canonical one, where the work (or difficulty) of a block is defined as 1

T , with
T being the mining target. We modify this rule as follows: Each block counts for
its intrinsic work − lg H(B)

T , where H(B) denotes the hash of the block target.
Intuitively, this corresponds to counting the “number of extra zeroes” at the front
of the actually achieved hash of each block, not just accounting for its nominal
target. The zeroes at the front of the hash are already guaranteed to be at least
− lg T , but can be more. The score of each block is how many extra zeroes it has.
The chain with the most total intrinsic work is chosen as the canonical chain.

To see the benefits of this rule, first observe that it provides a natural tie-
breaking rule: If two honest parties observe the same block tree, they will agree
on the canonical chain, regardless of the order of network message arrival. The
PoEM protocol outperforms Bitcoin when the block production rate is increased.
It is generally desirable to increase the block production rate, because it corre-
sponds to an increase in the chain growth rate, which, in turn, increases the
transaction throughput. However, when the expected block interarrival time ap-
proaches the network delay, multiple honest blocks can be produced in short
succession without allowing for honest nodes to synchronize their views. As a
result, multiple honest nodes may produce blocks at the same height, and only
one of these will eventually make it to the canonical chain, while the others will
be discarded. These discarded blocks do not contribute to the growth of the
length of the honest chain. Our protocol is similar to Bitcoin in that, whenever
multiple honest blocks are found simultaneously, only one of them survives in
the canonical chain, and the rest are discarded. However, the surviving block is
the heaviest block among them, in terms of intrinsic work, as illustrated in Fig-
ure 1. Hence, the discarded work is less. This gives an advantage to the honest
parties when they are racing against a private mining attacker, since they can
produce chains that grow at a faster rate. This intuition generalizes to arbitrary
adversaries. The small change we introduce in the fork choice rule allows us to
safely increase the block production rate, as compared to Bitcoin, without sacri-
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Fig. 1: The same block mining successes awarded to the honest parties (top)
or the adversary (bottom) with equal mining power on Bitcoin (left) or PoEM
(right) respectively. The adversary can place all blocks in one sequence because
she does not incur any network delay. The honest parties, due to the delay,
may place blocks at the same height (dashed section of duration ∆). In this
example, when 3 honest blocks were found almost simultaneously, 2 out of them
were abandoned in Bitcoin and did not make it to the canonical longest chain
(top-most chain). In the PoEM example, 2 out of 3 of the honest blocks were
abandoned, but the cumulative intrinsic work wasted only happened to be 1/2
of the intrinsic work produced during this interval. We illustrate the intrinsic
work of a block by its size.

ficing adversarial resilience. The resulting protocol allows for faster transaction
confirmation, or better throughput, while retaining the same level of security.
Related work. Bitcoin was first proven secure in the static population set-
ting [10], and later also studied in the variable population setting [11]. The
idea of using a more nuanced proof-of-work inequality in which some blocks
are considered heavier than others was first put forth by Andrew Miller [22],
with the first complete protocol to utilize it being Proofs of Proof-of-Work [16].
These were later refined multiple times to account for non-interactivity [18],
backwards compatibility [19], onlineness [17], on-chain data efficiency [15], gas
consumption [4], bribing resilience [31], and variable populations [30]. We are the
first to modify the fork choice rule to take these refinements into account, follow-
ing our previous short paper “POEM: Proof of Entropy Minima” [21], where the
entropic fork choice rule was defined but not analyzed. Previous modifications to
the fork choice rule include PHANTOM [29], SPECTRE [26], GhostDAG [27],
and GHOST [28]. Alternative mechanisms towards improving the latency and
throughput of proof-of-work blockchains at the consensus layer include parallel
chains [8], separation of transaction/consensus blocks [1], hybrid approaches be-
tween proof-of-work and proof-of-stake [20], and the use of microblocks [7]. These
mechanisms are orthogonal and can be combined with our approach, yielding
even further performance gains.
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2 Definitions & Model

Notation. Given a sequence Y , we address it using Y [i] to mean the ith element
(starting from 0). We use |Y | to denote the length of Y . Negative indices address
elements from the end, so Y [−i] is the ith element from the end, and Y [−1] in
particular is the last. We use Y [i:j] to denote the subarray of Y consisting of the
elements indexed from i (inclusive) to j (exclusive). The notation Y [i:] means
the subarray of Y from i onwards, while Y [:j] means the subsequence of Y up to
(but not including) j. The notation ∥ denotes the concatenation of two strings.
Given a sequence of strings (Yi)i∈[n] we denote by

∥∥
i∈[n]

Yi the concatenation
of all the strings in the sequence, in order. We denote by Bern(p) the Bernoulli
distribution with parameter p, and Exp(λ) the exponential distribution with
mean 1

λ . We use → to mean implication, and ⇒ to mean a logical deduction
step in a proof.

Definition 1 (Distributed Ledger Protocol). A distributed ledger protocol
is an Interactive Turing Machine (ITM) which exposes the following methods:

– write(tx): Takes user input by accepting some transaction tx.
– read(): Produces user output in the form of a ledger (a sequence of trans-

actions)

The distributed ledger protocol is executed by a set of n parties. In a dis-
tributed ledger protocol execution, the notation PLLLr denotes the output of
read() invoked on party P at the end of round r. We denote that ledger
P1LLLr1 is a prefix of ledger P2LLLr2 , using the notation P1LLLr1 ≼ P2LLLr2 . When
(P1LLLr1 ≼ P2LLLr2) ∨ (P2LLLr2 ≼ P1LLLr1) holds, we use the notation P1LLLr1 ∼ P2LLLr2 .

Definition 2 (Safety). A distributed ledger protocol is safe if for any honest
parties P1, P2 and any rounds r1, r2, it holds that P1LLLr1 ∼ P2LLLr2 .

Definition 3 (Liveness). A distributed ledger protocol is live(u) if for any
honest party that attempts to inject a transaction tx at round r, it holds that
tx ∈ PLLLr+u for all honest parties P .

Definition 4 (Security). A distributed ledger protocol is secure if it is both
safe and live(u).

Bitcoin Backbone. We analyze the protocol using the model introduced in
the Bitcoin Backbone [10] paper. The polynomially bound protocol execution
is parametrized by a security parameter κ and orchestrated by an environment
Z which is similar but distinct from Canneti’s UC model [3]. The execution
commences in discrete rounds 1, 2, . . ., and has a total duration of L, polynomial
in the security parameter κ ∈ N. We assume a synchronous communication
network: If an honest party sends a message to the network at some round r,
this message is delivered to all honest parties (including itself) at round r + 1.
We also assume a static setting, where the protocol is executed by a fixed total
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number of n ∈ N parties, unknown to the honest parties. In the execution, the
adversary controls t < n of the parties, and each of the n − t other parties
are honest and execute the prescribed Distributed Ledger Protocol. We let the
first 1, 2, . . . , n − t parties be the honest parties and the last n − t + 1, . . . , n
parties be the corrupted parties, which may behave arbitrarily. This choice is
without loss of generality [10, Proposition 18]. Parties communicate through an
unauthenticated network, meaning that the adversary can “spoof” [6] the source
address of any message that is delivered.
Static difficulty. Our analysis is in the static population model in which the
difficulty and target remain static. In the static model, Bitcoin uses the longest
chain rule [10], where each block counts for 1 unit. On the contrary, in the
real deployment of Bitcoin, the difficulty is dynamically adjusted (the variable
population model [11]), and the heaviest chain is chosen. The scoring in the
variable difficulty model makes each block count for 1

T , where T is the nominal
target of the block. In PoEM, we count the intrinsic work of each block, which
is different from the nominal target T and depends on the value H(B) < T , and
choose the heaviest chain based on this rule: Each block counts for − lg H(B)

T .
Like Bitcoin, PoEM can also be adapted to work in the variable difficulty setting
by adjusting the difficulty depending on the observed block production rate of
the system. We perform our analysis in the static population model, and leave
the analysis in the variable population model for future work.

We work in the following variant of the Random Oracle model [2], in which
the random oracle returns a real number instead of κ bits of output. One techni-
cality with this model is that the real number cannot be directly returned to the
machine invoking the oracle. Instead, we allow the querying machine to choose
which bit of the number to obtain.

Definition 5 (Real-Valued Random Oracle). The real-valued random or-
acle H can be queried with an input value x and a bit index j and returns the
value H(x)[j] as follows. When queried with x for the first time, it samples a real
value y uniformly at random from the continuous interval (0, 1), and returns its
j-th bit from the binary representation of the real number y. It then remembers
the pair (x, y). We denote by H(x) this sampled value y. When queried with x
for a subsequent time, it returns the j-th bit of the stored y.

We denote by H(x)[i:j] the query that obtains the slice of H(x) from bit index
i to j. We liberally use the rest of the previously introduced slicing notation with
the hash output, implying that the random oracle is queried with the desired
number of bits. In particular, we will write H̃(x) to denote H(x)[:κ].
The q-bounded model. Following the tradition of the Bitcoin Backbone [10]
paper, during each round, each honest party is allowed to query the random
oracle with q different x values. Similarly, the adversary is allowed to query the
random oracle with tq different x values.
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3 Construction

In the PoEM construction, only the fork choice rule of the original Bitcoin pro-
tocol is modified. Honest parties, instead of adopting the longest chain, at the
beginning of each round, now adopt the chain with the most intrinsic work.

Algorithm 1 The honest party.

1: G
2: C ← [ ]
3: function constructor(G′)
4: G ← G′ ▷ Select Genesis Block
5: C ← [G] ▷ Add Genesis Block to start of chain
6: round ← 1
7: end function
8: function executenet(1κ)
9: ▷ Receive chains from the network

10: M̄ ← net.receive()
11: C ← maxvalid(C ∪ M̄) ▷ Adopt heaviest chain
12: x← input() ▷ Take all transactions in mempool
13: B ← PoW(x, H̃(C[−1])) ▷ Mine a new block
14: if B ̸= ⊥ then ▷ Successful mining
15: net.broadcast(C ∥B) ▷ Broadcast mined chain
16: else
17: net.broadcast(C) ▷ Broadcast adopted chain
18: end if
19: round ← round+1
20: end function
21: function read
22: return ([:−k]◁ C).x
23: end function

A block is any triplet of the form B = (h, x, ctr), where h ∈ {0, 1}κ, x ∈
{0, 1}∗, and ctr ∈ N. The hash of block B is denoted as H(B) = H(h ∥x ∥ ctr).
The h is a reference to a previous block B′ and contains the first κ bits of its
hash H(B′)[:κ] (recall that, in the real-valued random oracle model, each hash
output has an infinite real-valued bit expansion, but only the first κ bits are
included in this reference).

A chain C is a sequence of blocks. The chains considered by honest parties
begin with a designated block G, the genesis block. The genesis block is a constant
block known to all parties at the beginning of the execution, which we consider
honest by definition.

When a chain C appears in the execution, we say that block C[j] extends
block C[i] if i < j.
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Definition 6 (Block Intrinsic Work). The intrinsic work of a block hash A
is denoted as work(A) = γ − lgA. The approximate intrinsic work of a block
hash A is denoted w̃ork(A) = γ − lgA[:κ], where γ ∈ R+ is the bias parameter
of the protocol.

For genesis, we set work(G) = 1 (an arbitrary constant) by convention. To
simplify the analysis, we will use set γ = 0.

In this definition, the full hash value, interpreted as a real number in the
interval (0, 1), is used, whereas approximate work uses only the first κ bits of
the value. Said differently, for any A ∈ (0, 1), w̃ork(A) = − lg ⌊2κA⌋

2κ .

Definition 7 (Chain Intrinsic Work). The intrinsic work of a chain C is
the sum of the intrinsic work of all blocks in C. It is denoted as work(C) =∑

B∈C work(H(B)). The approximate intrinsic work of a chain is w̃ork(C) =∑
B∈C w̃ork(H(B)).

Blockchain notation. For chain C, we write [α] ◁ C to denote the ith block
of C such that work(C[:i− 1]) < α ≤ work(C[:i]). If work(C) < α, then let
[α]◁C = ⊥. If α is negative, then [α]◁C is defined as the ith block of C such that
work(C[i− 1:]) < −α ≤ work(C[i:]). We use the slicing notation [α:β]◁C to
denote C[i:j] where i is the index of [α]◁ C and j is the index of [β]◁ C in C
respectively. The notation [α:]◁C means C[i:], and the notation [:β]◁C means
C[:j], where i and j are defined with respect to α and β respectively as above.
Given a block B, we denote by B.x the sequence of transactions included in B.
Given a chain C, we denote by C.x the sequence of transactions in all the blocks
of C in order, namely

∥∥
B∈C

B.x.
In Algorithm 1 we show the code of an honest party. First, the party is

constructed using the constructor function (Line 3). In every round, each
party is executed by the environment using function execute (note that this
function is due to the lockstep round-based nature of our time model).

Algorithm 2 The Proof-of-Work discovery algorithm
1: function PoWH,T,q(x, h)
2: ctr

$← {0, 1}κ
3: for i← 1 to q do
4: B ← h ∥x ∥ ctr
5: if H̃(B) < T then
6: return B
7: end if
8: ctr ← ctr + 1
9: end for

10: return ⊥
11: end function
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The honest party begins each round with a certain value stored in his chain
C. We say that the honest party has chain C at this round. The party calls
net.receive() to get all the chains from the network (Line 10) and chooses
the “best” chain among them. We say that the honest party adopts this chain.
By PCCCr, we denote the chain that was adopted by party P at round r. This
comparison for the “best” chain is performed by function maxvalid in Line 11,
and is the single point that we deviate from the original Bitcoin protocol. Next,
the honest party attempts to mine a block using the PoW function (Line 2),
which also remains the same as the original protocol: He repeatedly tries to find
a block B that satisfies the PoW equation H̃(B) < T , where the target T is a
small real number in the interval (0, 1) satisfying T = T [:κ] (this last equality
guarantees that T can be stored in κ bits). If a block is found, this block is
broadcast6 to the network using function net.broadcast().

Algorithm 3 The maxvalid algorithm
1: function maxvalidG(C)
2: Cmax ← ϵ
3: maxwork← 0
4: for C ∈ C do
5: if ¬validateG(C) then
6: continue
7: end if
8: thiswork← w̃ork(C) ▷ Computed as

∑
B∈C H(B)[:κ]

9: if thiswork > maxwork then
10: Cmax ← C
11: maxwork← thiswork
12: end if
13: end for
14: return Cmax
15: end function

We will now analyze the functionality of maxvalid. The method receives
as input a set of chains and returns the “best” chain based on a validation
and chain adoption rule. The function iterates over all the provided chains and
first checks their validity in Line 9, using function validate (Algorithm 4). The
validate function remains unchanged compared to the original Bitcoin protocol.
The chains that satisfy the validation rule are compared with one another in
order to find the chain with the most intrinsic work (hereforth “heaviest chain”).
Finally, in Line 14, we return the “best” chain Cmax.

6We use the term broadcast to mean the unreliable, best-effort anonymous manner
of communication between honest parties that guarantees message delivery from one
honest party to all other honest parties. This is called diffuse in the Backbone series
of works.
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Algorithm 4 The chain validation algorithm remains unchanged. First, in
Line 2, we check that the first block of the chain is the genesis block. Then, in
Line 8, we check that all blocks satisfy the PoW equation and correctly point to
their previous block. State transition validation is excluded for simplicity.
1: function validateG(C)
2: if C[0] ̸= G then
3: return false
4: end if
5: ĥ← H̃(C[0])
6: for B ∈ C[1:] do
7: (h, x, ctr)← B

8: if H̃(B) ≥ T ∨ h ̸= ĥ then
9: return false ▷ Invalid PoW or ancestry

10: end if
11: ĥ← H(B)[:κ]
12: end for
13: return true
14: end function

When the time comes to report the stable chain (function read in Algo-
rithm 1 Line 21), after the function execute has been called, the honest party
removes the unstable part of the chain, namely the last k bits of work from the
chain, and reports the remaining chain as stable. Note that, contrary to Bitcoin,
the variable k is measured in bits of work, and not in blocks (looking ahead, k
will be shown to be polynomial in the security parameter κ, and we will calculate
its value in the analysis section).

This concludes the PoEM construction.

4 Experiments & Deployment

In this section, we report on a real-world implementation and deployment of our
protocol, and experimental measurements illustrating the concrete improvements
in latency and throughput as compared to vanilla Bitcoin.

4.1 Real-world Deployment

We have implemented and deployed PoEM in a real-world permissionless peer-
to-peer setting7. The deployment is on a testnet that has been continuously

7The source code resides in the following repositories:

1. https://github.com/gameofpointers/go-quai/tree/poem-sim-honest
2. https://github.com/gameofpointers/go-quai/tree/poem-sim-adv
3. https://github.com/gameofpointers/go-quai/tree/bitcoin-sim-honest
4. https://github.com/gameofpointers/go-quai/tree/poem-sim-adv
5. https://github.com/gameofpointers/quai-cpu-miner/tree/sim-miner

https://github.com/gameofpointers/go-quai/tree/poem-sim-honest
https://github.com/gameofpointers/go-quai/tree/poem-sim-adv
https://github.com/gameofpointers/go-quai/tree/bitcoin-sim-honest
https://github.com/gameofpointers/go-quai/tree/poem-sim-adv
https://github.com/gameofpointers/quai-cpu-miner/tree/sim-miner
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operating for four months. During this period, the network generated over 7.5
million blocks with participation from more than 2000 miners/node operators
from the community. Moreover, PoEM has facilitated the confirmation of over
500 million testnet transactions. This deployment maintained an average hash
rate exceeding 50GH/s using the ProgPoW [23] hash algorithm. The network
participants computed more than 518 petahashes in 4 months. The network
operated in a variable difficulty and bias setting with the difficulty ( 2256

T ) varying
between 18 billion and 790 billion and γ varying between 32 and 38.

4.2 Experimental Methodology

We ran multiple simulations in order to ascertain the optimal configuration for
operating both Bitcoin and PoEM in order to achieve the minimum confirmation
delay. We simulated an artificial network delay of ∆ (measured in seconds) in
the communication between the honest parties in order to indirectly control
the honest block production rate g, measured in blocks per network delay. We
define g to be the number of valid blocks cumulatively produced by the honest
parties in one network delay on average, including blocks that were subsequently
abandoned (following the terminology in [5]). This corresponds to the average
number of successful honest random oracle queries per network delay. In the
meantime, we kept the mining target T constant throughout the simulations
(instead of varying the network delay ∆ and keeping T constant, we could have,
equivalently, kept ∆ constant and varied the target T ). The target T was not
dynamically adjusted during the simulation, in order to mimic the static nature
corresponding to our theoretical analysis. Our goal was to plot the confirmation
delay d (in seconds) as a function of the block production rate g for both systems.

All executions included exactly n = 49 parties, of which t = 12 were adver-
sarial and n− t = 37 were honest. The adversarial ratio was β = t

n = 0.244. The
honest parties ran the honest code of Bitcoin or PoEM respectively. We fixed the
adversarial strategy to be the private mining attack, which was proven [5] to be
the best possible attack against Bitcoin in the continuous-time domain [14]. This
means that the network began with a genesis block given to all honest and ad-
versarial parties. The adversary then mined blocks in private on her own chain,
whereas the honest parties mined their own blocktree without intervention by
the adversary, following the heaviest chain rule (in Bitcoin) or the most intrin-
sic work rule (in PoEM) respectively. To emulate the puppetmaster nature of
the adversary, we imposed no artificial network delay for the adversary. On the
contrary, every honest message was artificially delayed by exactly the maximum
delay bound ∆.

Simulations were run on 49 virtual machines in Google Cloud all co-located
in the same data center. The configuration of the nodes used was 4 CPU cores,
4 GB of RAM, with a 10 GB SSD running Ubuntu 22.4. The honest party had

6. https://github.com/gameofpointers/simulation

https://github.com/gameofpointers/simulation
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an artificial network delay between 100-1000ms (to allow for simulating vary-
ing g). This delay was achieved by adding a sleep prior to every block message
broadcast. The adversary’s network delay was only the inherent delay in commu-
nication between virtual machines and was <5 ms. The tests were coordinated
using Ansible and the machines were given 2 minutes to peer with each other
and stabilize at the beginning of each test. Both Bitcoin and PoEM were run
on the same codebase, with the exception of the appropriate modification to the
proof-of-work inequality.

We ran each simulation until one of the honest parties managed to obtain
a chain of length 200 blocks, at which point the simulation was halted and its
lifetime L (in units of ∆) was measured. We recorded g for that simulation as
the number of honest blocks produced divided by L to find the average number
of honest blocks produced per network delay (regardless of whether they were
ultimately abandoned or not).

For Bitcoin, at every block height 1, . . . , 200 that appeared in the simulation,
we recorded a flag indicating whether the honest parties or the adversary was
ahead. For each configuration of g, we repeated the simulation 100 times in a
Monte Carlo fashion, and chose the value k∗ to be the block height such that at
least 90% of the Monte Carlo simulations indicated that the honest parties were
ahead of the adversary from height k∗ onwards. This corresponds to accepting
a probability of Common Prefix failure of up to 10%. We calculated the average
honest chain growth rate f as f = L/200 (noting that f ≤ g and 0 ≤ f ≤ 1,
roughly following the terminology of the Analysis section, and observing that,
due to the heaviest chain rule, the chain can grow no more than 1 block per
network delay when the honest parties are operating alone). The confirmation
delay (d) for each configuration g was obtained by dividing this k∗ by f to
calculate the time needed to get k∗ blocks on average.

In PoEM’s case, at every work point in intervals of γ + 1
ln 2 (corresponding

to the expected amount of work per valid block), namely γ + 1
ln 2 , 2

(
γ + 1

ln 2

)
,

. . . , 200
(
γ + 1

ln 2

)
. For each of those work points, we record a flag indicating

whether the honest parties or the adversary first mined a chain with at least that
amount of work. Similar to the Bitcoin experiments, we ran 100 Monte Carlo
simulations and calculated k∗ to be the work point such that at least 90% of
the Monte Carlo simulations indicated that the honest parties were ahead of the
adversary from that work point onwards. The confirmation delay (d) for each
configuration g was obtained by dividing this k∗ by f

γ+ 1
ln 2

to calculate the time
needed to get k∗ work on average.

4.3 Experimental Results

Figure 2(a) illustrates the evolution of d across different g values. We identi-
fied the best operating conditions for a protocol as the point where the con-
firmation delay is minimized. In our simulations, Bitcoin achieved its lowest
delay of 25.58∆ at a block rate of g = 0.98. On the other hand, at the same
g, PoEM reached the minimal delay of 18.29∆ operating with γ = 10. This
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Fig. 2: (a) Confirmation delay d (measured in network delay ∆ units) vs. the
block production rate g. PoEM typically demonstrates lower confirmation delay
for any given value of g, and the difference becomes more pronounced at large g.
(b) The relationship between the honest block production rate g and the honest
chain growth rate f for Bitcoin and PoEM.
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means for the configuration minimizing the delay of each protocol, PoEM had a
25.58−18.29

25.58 = 28.5% lower confirmation delay as compared to Bitcoin.
When either system operates at higher block production rate g, the honest

chain grows faster (f also increases), but the confirmation delay d increases as
well. We found that the relationships between g and f in Bitcoin and PoEM are
comparable (Figure 2(b)). However, for a given delay, PoEM can safely operate
at a higher block production rate g than Bitcoin, yielding an operation point with
a higher honest chain growth rate f . In particular, we found that, for example
at d = 25.6∆, Bitcoin gives a chain growth rate of f = 0.43, whereas PoEM,
for a close delay of d = 27.4∆, gives a chain growth rate of f = 0.5, marking a
16.3% improvement in transaction throughput.

5 Analysis

We now prove the security of PoEM.

Definition 8 (Entropic Growth). The Entropic Growth property of a PoEM
execution, parametrized by the growth interval s ∈ N and the entropic growth
velocity τ ∈ R+, states that for all honest parties P and all rounds r1 + s ≤ r2,
the chains C1, C2 of P at rounds r1, r2 respectively satisfy work(C2[|C1|:]) ≥ sτ .

Definition 9 (Existential Entropic Quality). The Existential Entropic Qual-
ity property of a PoEM execution, parametrized by the entropic quality chunk
parameter ℓ ∈ N, states that for all honest parties P and all rounds r, the chain
C that P adopts at round r has the property that for every 0 ≤ α < work(C)−ℓ,
there is at least one honestly generated block in the chain [α:α+ ℓ]◁ C.

Definition 10 (Entropic Common Prefix). The Entropic Common Prefix
property of a PoEM execution, parametrized by the common prefix parameter
k ∈ N states that for all honest parties P1, P2 and all rounds r1 ≤ r2, the chains
C1, C2 that P1, P2 adopt at rounds r1, r2 respectively satisfy [:−k]◁ C1 ≼ C2.

In the analysis we are going to assume honest majority.

Definition 11 (Honest Majority Assumption). We say that an execution
has honest majority with honest advantage parameter 0 < δ ≤ 1, if the number
t of corrupted parties out of n parties satisfies t < (1− δ)(n− t).

Consider an execution of the PoEM protocol.
We define a random variable Ar,i,j as follows. If at round r, the j-th query of

(honest or adversarial) party Pi is a valid block B, then Ar,i,j = work(H(B)).
If no valid block is found, Ar,i,j = 0.

We define Xr = maxqj=1 maxn−t
i=1 Ar,i,j . If at round r at least one honest party

finds a valid block (Xr > 0), we say that round r is a successful round. We let
f = Pr[Xr > 0] = 1 − (1 − T )q(n−t) ≥ q(n − t)T . Solving for T we obtain
f = 1− (1− T )q(n−t) ⇒ 1− f = (1− T )q(n−t) ⇒ (1− f)

1
q(n−t) = 1− T ⇒ T =

1− (1− f)
1

q(n−t) .
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In our protocol parametrization, we are free to choose how quickly blocks are
produced by honest parties by adjusting the target T parameter, but only some
configurations will yield the desired security results. We will set T such that the
following condition is satisfied.

Definition 12 (Secure Configuration). Given an environment which affords
q(n − t) queries per round to the honest parties, the secure configuration f
of PoEM requires f = δ

6 . This is achieved by using the secure target value
T = 1− (1− δ

6 )
1

q(n−t) .

We will prove the PoEM protocol is secure if the above configuration is
followed.

We let Xr =
∑n−t

i=1

∑q
j=1 Ar,i,j and

Xr =

{
0, if there are no i, j with Ar,i,j > 0; otherwise,
Ar,i,j , where (i, j) are the minimum such (i, j).

Observe that Xr ≤ Xr ≤ Xr and E[Xr] ≤ E[Xr] ≤ E[Xr].
We define a random variable Yr as follows. If at round r exactly one hon-

est party obtains a valid block, then Yr = Xr, and we call r a convergence
opportunity. Otherwise, Yr = 0.

We define Zr as the sum of all intrinsic work generated by all adversarial
party queries during round r: Zr =

∑n
i=n−t+1

∑q
j=1 Ar,i,j .

Given a set of rounds S, we define X(S) =
∑

r∈S Xr, X(S) =
∑

r∈S Xr,
X(S) =

∑
r∈S Xr, Y (S) =

∑
r∈S Yr and Z(S) =

∑
r∈S Zr. Observe X(S) ≤

X(S) ≤ X(S).

Lemma 1 (Expectation Bounds). The following bounds hold.

1. f
1−f > Tq(n− t)

2. E[Xr] =
1−(1−T )q(n−t)

ln 2 = f
ln 2 > (1−f)Tq(n−t)

ln 2

3. E[Xr] <
f

1−f
1

ln 2

4. E[Yr] >
(1− δ

3 )f

ln 2

5. E[Zr] =
tqT
ln 2 < t

n−t ·
f

1−f · 1
ln 2 <

(
1 + δ

2

)
t

n−t ·
f

ln 2

6. E[Zr] < E[Xr]

Proof. Observe that Ar,i,j can be expressed in the form Ar,i,j = Cr,i,jWr,i,j ,
with independent boolean random variable Cr,i,j ∼ Bern(T ) indicating whether
the query was successful and real random variable Wr,i,j ∼ Exp(ln 2) measuring
the work of the block found. Concerning expectations, E[Wr,i,j ] = 1

ln 2 , and,
furthermore, E[Ar,i,j ] = E[Ar,i,j |Cr,i,j = 0]Pr[Cr,i,j = 0] + E[Ar,i,j |Cr,i,j =
1]Pr[Cr,i,j = 1] = E[Ar,i,j |Cr,i,j = 1]Pr[Cr,i,j = 1] = T

ln 2 . The following bounds
are similar to [10].
Bounds for f . We note that f

1−f = 1−(1−T )q(n−t)

(1−T )q(n−t) = (1 − T )−q(n−t) − 1 >

(1 + T )q(n−t) − 1 > Tq(n − t). Here, the penultimate inequality stems from
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(1 − T )−q(n−t) > (1 + T )q(n−t) ⇐ (1 − T )−1 > 1 + T ⇐ 1 − T 2 < 1 ⇐ T > 0.
The last inequality stems from Bernoulli’s inequality, namely (1 + x)r ≥ 1 + rx
for integer r ≥ 1 and real x ≥ −1.
Bounds for E[X]. The expectation E[Xr] = 1−(1−T )q(n−t)

ln 2 follows from fact
that Xr ∼ Bern(1 − (1 − T )q(n−t))Exp(ln 2). The bound on E[Xr] follows from
the previous bound on f . The expectation E[Xr] =

Tq(n−t)
ln 2 < f

1−f
1

ln 2 follows
from the fact that Xr is the sum of q(n − t) independent random variables
distributed as Bern(T )Exp(ln 2) and the above bounds on f .
Bounds for E[Y ]. The probability of a convergence opportunity is (n−t)(1−(1−
T )q)(1−T )q(n−t−1) ≥ Tq(n−t)(1−T )q(n−t)−1 > Tq(n−t)(1−(q(n−t)−1)T ) >
Tq(n − t)(1 − Tq(n − t)). The first expression is the binomial probability that
exactly one, among n− t, honest party is successful; the second is the binomial
probability that exactly one, among q(n − t), honest query is successful, which
implies that exactly one honest party was successful. The penultimate inequality
is by Bernoulli’s inequality, namely (1 + x)r ≥ 1 + rx for integer r ≥ 1 and real
x ≥ −1.

We have Yr ∼ Bern((n− t)(1− (1− T )q)(1− T )q(n−t−1))Exp(ln 2), therefore,
E[Yr] >

Tq(n−t)(1−Tq(n−t))
ln 2 ≥ f(1−f)

ln 2 >
(1− δ

3 )f

ln 2 . For the inequality concerning
E[Yr], the derivation is analogous to [10].
Bounds for E[Z]. The expectation E[Zr] =

tqT
ln 2 follows from the fact that Zr is

distributed as a sum of tq independent samples distributed as Bern(T )Exp(ln 2).
For the bound, we have E[Zr] <

t
n−t

f
1−f

1
ln 2 <

(
1 + δ

2

)
t

n−t ·
f

ln 2 using an analysis
completely analogous to the one in [10].

For E[Zr] < E[Xr], we have E[Zr] < E[Xr] ⇐ E[Zr] < E[Xr] ⇐ tqT
ln 2 <

(1−f)Tq(n−t)
ln 2 ⇐ t

n−t < 1 − f ⇐ 1 − δ < 1 − f ⇐ f < δ, which follows from the
secure configuration.

Definition 13 (Causality). An execution is causal if no block (directly or
indirectly) extends one which is computed at a later or the same random oracle
query.

Definition 14 (PoEM Typical Execution). An execution of PoEM is (ϵ, λ)-
typical (or just typical), for ϵ ∈ (0, 1) and integer λ > 4, if for any set S of at
least λ consecutive rounds, the following hold.

– (1− ϵ)E[X(S)] < X(S) < (1 + ϵ)E[X(S)] (1)
– (1− ϵ)E[Y (S)] < Y (S) (2)
– Z(S) < (1 + ϵ)E[Z(S)] (3)
– It is causal.
– It has hash separation.

In our analysis, we will let ϵ = δ
6 . If the desired maximum probability of

failure is made concrete, this ϵ, together with the concrete probabilities later
calculated in Theorem 1, will determine the concrete value of λ, from which the
rest of the concrete protocol parameters follow. In particular, the value k for the
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ledger stabilization rule is determined by λ and f , and λ can be calculated from
ϵ, whereas both f and ϵ can be determined from the desired acceptable honest
advantage δ.

We will now prove that typical executions occur with overwhelming proba-
bility. Towards this purpose, we will need a couple of auxiliary lemmas.

In the following arguments, we connect the real valued random oracle, eval-
uated using the work(B) ∈ R+ function (an ideal quantity unobservable by
any Turing Machine, as it cannot process real-valued inputs), and its κ-bit dis-
crete approximation w̃ork(B) (observable by a Turing Machine by invoking
H(B)[:κ]). We show the difference between these two quantities is immaterial
for polynomially bound computations, namely they notably diverge only with
negligible probability. This connection between real-valued and discrete-valued
random variables will allow us to conduct our analysis using real-valued random
variables and, in particular, random variables distributed according to the con-
tinuous exponential distribution. These distributions lend themselves to easier
tools than conducting a cumbersome analysis in the discrete domain. The fol-
lowing lemmas that translate between the continuous and discrete worlds will
allow us to later utilize our continuous results in the discrete realization of the
protocol.

First, we make a few observations about the relationship between the real
and the approximate work of blocks and chains. Observe that for hash input A,
we have H̃(A) ≤ H(A) and for block B we have w̃ork(B) ≥ work(B), and
for blocks B1, B2 we have work(B1) ≥ work(B2) → w̃ork(B1) ≥ w̃ork(B2).
Additionally, because T = T [:κ], for any block B it holds that H̃(B) < T ↔
H(B) < T .

Furthermore, taking approximate works preserves the order of blocks in the
following fashion.

Lemma 2. For all A,B ∈ (0, 1), it holds that work(A) ≥ work(B) →
w̃ork(A) ≥ w̃ork(B).

Proof.

work(A) ≥ work(B) ⇒ − lgA ≥ − lgB ⇒ lgA ≤ lgB

⇒A ≤ B ⇒ 2κA ≤ 2κB ⇒ ⌊2κA⌋ ≤ ⌊2κB⌋ ⇒ ⌊2κA⌋
2κ

≤ ⌊2κB⌋
2κ

⇒ lg
⌊2κA⌋
2κ

≤ lg
⌊2κB⌋
2κ

⇒ − lg
⌊2κA⌋
2κ

≥ − lg
⌊2κB⌋
2κ

⇒w̃ork(A) ≥ w̃ork(B)

⊓⊔

Showing that the order of chains is preserved under approximate work is a
bit more involved, and we will work towards it next. Towards this, we observe
that the approximate work of a block is close to its real work.
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Lemma 3 (Block Work Approximation). In a PoEM execution, consider
the event CLOSE that all blocks B have w̃ork(B) − work(B) < 2−κ/2. The
probability Pr[CLOSE] is overwhelming in κ.

Proof. Consider the event E in which for all blocks B it holds that H(B) > 1
2κ/2 .

Let us calculate the probability of ¬E. For ¬E to happen, at least one block
must have H(B) ≤ 1

2κ/2 . For any block B, it holds that Pr[H(B) ≤ 1
2κ/2 ] =

1
2κ/2 (from the uniform distribution of H(B) in the interval (0, 1) due to it
being a real-valued random oracle). Since there are at most nqL blocks in the
execution, by applying a union bound, we have Pr[¬E] = Pr[∃B : H(B) ≤

1
2κ/2 ] ≤

∑
B Pr[H(B) ≤ 1

2κ/2 ] ≤ nqL
2κ/2 , which is negligible in κ, so E happens

with overwhelming probability.
Consider a block B of the execution, conditioned on the event E. Then

w̃ork(B)− work(B) = − lg H̃(B)− (− lgH(B))

<− lg

(
H(B)− 1

2κ

)
− (− lgH(B))

≤− lg

(
1

2κ/2
− 1

2κ

)
−

(
− lg

1

2κ/2

)
=− lg

1− 2−κ/2

2κ/2
− κ

2

=− lg 1− 2−κ/2 ≤ − ln 1− 2−κ/2 ≤ 2−κ/2 .

The first inequality stems from the fact that H̃(B) and H(B) must differ
by less than 1

2κ . The second inequality stems from the fact that the function
− lg

(
x− 1

2κ

)
− (− lg x) is decreasing for x > 1

2κ . ⊓⊔

The approximate work of a chain is also close to the real work of a chain.

Corollary 1 (Chain Work Approximation). In a PoEM execution, the
probability that all chains C have w̃ork(C) − work(C) < Lqn2−κ/2 is over-
whelming in κ.

Proof. Conditioned on the overwhelming event of Lemma 3, for all chains C it
holds that

w̃ork(C)− work(C) =
∑
B∈C

w̃ork(B)− work(B)

<
∑
B∈C

2−κ/2 = |C|2−κ/2 ≤ Lqn2−κ/2 .

⊓⊔

We are now ready to prove a technical lemma which shows that works of
chains do not fall dangerously close to each other.
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Lemma 4. Consider a PoEM execution E with n parties, q queries per round
per party, and total lifetime L. Consider the j-th random oracle query in this
execution. If the query is successful, let B indicate its produced block, let w =
work(B), w̃ = w̃ork(B), and let C be the chain it extends, let w1 = work(C), w̃1 =

w̃ork(C), and w′
1 = work(CB), w̃′

1 = w̃ork(CB). Consider any other chain
Ci that appears in the execution, and let w2 = work(Ci), w̃2 = w̃ork(Ci).
Let BADRANGEj,i denote the event that both w1 < w2, and, furthermore,
either w2 − nqL

2κ/2 − 1
2κ/2 ≤ w1 + w < w2 or w2 < w1 + w ≤ w2 +

nqL
2κ/2 + 1

2κ/2 .
Let BADRANGE denote the event that there exists a random oracle query
j and a chain Ci in the execution such that BADRANGEj,i. The probability
Pr[BADRANGE] is negligible in κ.

Proof. If the j-th query does take place, its w is distributed as Exp(ln 2), so for
every other chain Ci in the execution for which w1 < w2 we have

Pr[w2 −
nqL

2κ/2
− 1

2κ/2
≤ w1 + w < w2|w1 < w2] =

Pr[w2 − w1 −
nqL

2κ/2
− 1

2κ/2
≤ w < w2 − w1|w1 < w2] =

(1− 2−(w2−w1))− (1− 2
−
(
w2−w1− nqL

2κ/2
− 1

2κ/2

)
) =

2
−
(
w2−w1− nqL

2κ/2
− 1

2κ/2

)
− 2−(w2−w1) =

2−(w2−w1)(2
nqL

2κ/2
+ 1

2κ/2 − 1) ≤ 2
nqL

2κ/2
+ 1

2κ/2 − 1 <
nqL

2κ/2
+

1

2κ/2
.

The second relation is from the cumulative distribution function of the expo-
nential distribution; the fifth relation is from the conditioning on w1 < w2, and
the last relation is from Lemma 11, noting that 0 < nqL+1

2κ/2 < 1.
Similarly, for the other direction,

Pr[w2 < w1 + w ≤ w2 +
nqL

2κ/2
+

1

2κ/2
|w1 < w2] =

Pr[w2 − w1 < w ≤ w2 − w1 +
nqL

2κ/2
+

1

2κ/2
|w1 < w2] =

(1− 2
−
(
w2−w1+

nqL

2κ/2
+ 1

2κ/2

)
)− (1− 2−(w2−w1)) =

2−(w2−w1) − 2
−
(
w2−w1+

nqL

2κ/2
+ 1

2κ/2

)
=

2−(w2−w1)(1− 2
− nqL

2κ/2
− 1

2κ/2 ) ≤ 1− 2
− nqL

2κ/2
− 1

2κ/2 <
nqL

2κ/2
+

1

2κ/2
.
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Consequently,

Pr[BADRANGEj,i] = Pr[BADRANGEj,i|w1 < w2] Pr[w1 < w2]

≤Pr[BADRANGEj,i|w1 < w2]

=Pr[w2 −
nqL

2κ/2
− 1

2κ/2
≤ w1 + w < w2|w1 < w2]+

Pr[w2 < w1 + w ≤ w2 +
nqL

2κ/2
+

1

2κ/2
|w1 < w2]

=2
nqL+ 1

2κ/2

Applying a union bound over all the queries j and chains i of the execution,
we obtain Pr[BADRANGE] ≤ 2(nqL)2 · nqL+1

2κ/2 , which is negligible in κ. ⊓⊔

Lemma 5 (Hash Separation). Consider a causal execution of PoEM. Let HS
be the event that for all two (adversarial or honest) chains C1, C2 appearing in
the execution, if work(C1) < work(C2), then w̃ork(C1) < w̃ork(C2). The
probability that ¬HS is negligible in κ.

Proof. Consider a causal execution of PoEM for which the event CLOSE of
Lemma 3 and the event ¬BADRANGE of Lemma 4 both hold. Observe that
the statement of Corollary 1 holds in this conditioning. From the two lemmas
we know Pr[CLOSE] and Pr[¬BADRANGE] are both overwhelming, therefore
Pr[CLOSE ∧ ¬BADRANGE] is overwhelming. Conditioned on this event, we
will show that the desired statement holds with probability 1.

Let HSj denote the predicate that HS holds for all chains appearing before,
or at, the j-th random oracle query, with j = 0 indicating the beginning of the
execution. We will use induction on j to show that for all 0 ≤ j ≤ Lnq, HSj

holds. We know that HS0 always holds by definition.
Now, consider the j-th random oracle query and suppose HSj−1 holds. If the

query was unsuccessful, then HSj holds, and we are done. Otherwise, let C1 be
the chain that the j-th random oracle query extends, let B be the block mined
on it, let C ′

1 = C1B, and let w = work(B), w1 = work(C1), w
′
1 = work(C ′

1)
and w̃, w̃1, w̃

′
1 be the respective approximate works. Consider any other chain

C2 with work w2 = work(C2) and approximate work w̃2 that has already
appeared in the execution, and consider the undesirable event FLIPC1,C2 that
w′

1 < w2 ∧ w̃′
1 ≥ w̃2 or w′

1 > w2 ∧ w̃′
1 ≤ w̃2. If w1 ≥ w2, then, because w > 0,

therefore w1 + w > w2 and hence w′
1 > w2. Additionally, by HSj−1 we have

w̃1 > w̃2, therefore w̃1 + w̃ > w̃2, and w̃′
1 > w̃2. From this, it follows that

w1 ≥ w2 yields ¬FLIPC1,C2
. Thus, it suffices to only consider the situation

where w1 < w2.
Case 1: w1 + w < w2. From the conditioning on ¬BADRANGE, we have

w1 + w < w2 − nqL
2κ/2 − 1

2κ/2 , therefore w̃1 − nqL
2κ/2 + w < w2 − nqL

2κ/2 − 1
2κ/2 ⇒

w̃1 + w < w2 − 1
2κ/2 ⇒ w̃1 + w̃ − 1

2κ/2 < w2 − 1
2κ/2 ⇒ w̃1 + w̃ < w2 ⇒ w̃′

1 <
w2 ≤ w̃2. The first inequality is obtained from the conditioning on CLOSE,
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noting that w̃1 − nqL
2κ/2 < w1 follows from w̃1 − w1 < Lqn2−κ/2 (Corollary 1).

The third inequality is also obtained from the conditioning on CLOSE, noting
that w̃ − 1

2κ/2 < w follows from w̃ − w < 2−κ/2 (Lemma 3). It follows that
¬FLIPC1,C2 .

Case 2: w1 + w > w2. From the conditioning on ¬BADRANGE, we have
w1 +w > w2 +

nqL
2κ/2 + 1

2κ/2 > w2 +
nqL
2κ/2 , therefore w1 +w > w̃2 − nqL

2κ/2 + nqL
2κ/2 ⇒

w1 + w > w̃2 ⇒ w̃1 + w̃ > w̃2 ⇒ w̃′
1 > w̃2. Again, it follows that ¬FLIPC1,C2

.
From this and HSj−1 it follows that HSj holds. Therefore, by induction,

HSLnq holds, and hence HS holds. Since our conditioning was on an overwhelm-
ing event, the lemma follows. ⊓⊔

Corollary 2 (Approximate Fork Choice). In Hash Separated executions of
PoEM, for any two chains C1, C2 it holds that w̃ork(C1) < w̃ork(C2) →
work(C1) < work(C2).

Proof. Suppose towards a contradiction w̃ork(C1) < w̃ork(C2), but work(C1) ≥
work(C2). From Hash Separation, it follows that w̃ork(C1) ≥ w̃ork(C2),
which is a contradiction. ⊓⊔

Theorem 1 (Typicality). An execution of duration L of PoEM is (ϵ, λ)-typical
with probability 1− e−Ω(λ−logL) − e−Ω(κ−logL), namely, overwhelming in λ and
κ.

Proof. For each S with |S| = λ,

Pr[X(S) < (1− ϵ)E[X(S)]] ≤
Pr[X(S) < (1− ϵ)E[X(S)]] ≤ e−Ω(λ) .

Pr[X(S) > (1 + ϵ)E[X(S)]] ≤
Pr[X(S) > (1 + ϵ)E[X(S)]] ≤ e−Ω(λ) .

Pr[Y (S) < (1− ϵ)E[Y (S)]] ≤ e−Ω(λ) .

Pr[Z(S) > (1 + ϵ)E[Z(S)]] ≤ e−Ω(λ) .

The e−Ω(λ) bounds are obtained by applying Lemma 12 to each of the random
variables X(S), X(S), Y (S) and Z(S), each of which is the sum of Θ(λ) i.i.d.
random variables distributed according to Bern(p)×Exp(ln 2) for some respective
p ∈ (0, 1). Applying a union bound for all S (of which there are L− λ+ 1), we
obtain that typicality Eq. 1, Eq. 2 and Eq. 3 hold with probability 1−e−Ω(λ)+lnL.
If typicality bounds hold for all S with |S| = λ, then they hold for all S with
|S| ≥ λ.

The probability bound for causality follows from the stochastic nature of the
Random Oracle and is proven in [10].

Lastly, Hash Separation follows from Lemma 5. ⊓⊔

Definition 15 (Block Work Interval). A block B of chain C has work in-
terval I(B) = {ξ ≥ 0 : [ξ]◁ C = B}.
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Lemma 6 (Entropic Pairing Lemma). Consider a typical execution of PoEM.
Suppose a block B of a chain C with work interval I(B) was computed by an
honest party in a convergence opportunity. For every ξ ∈ I(B) and every chain
C ′ of the execution, block B′ = [ξ] ◁ C ′ is either B or adversarial, as long as
B′ ̸= ⊥.

Proof. Consider an execution as in the statement and suppose, towards a contra-
diction, that block B′ is not B and is honestly computed. Since B was computed
in a convergence opportunity, B and B′ cannot have been computed in the same
round. Let r be the earliest round on which B or B′ was computed, and C be
the chain whose tip this block is. Since it was computed by an honest party, at
round r+1, every other honest party receives a chain with work greater or equal
to ξ.

Claim: Every block computed after round r will be extending a chain
with work at least ξ. To see this, consider a chain C∗ that an honest party is
extending after r. Since the party has adopted C∗, by the heaviest chain rule,
w̃ork(C∗) ≥ w̃ork(C). By Hash Separation, work(C∗) ≥ work(C) ≥ ξ.

If B is computed after round r, it holds that ξ ̸∈ I (noting that work(B) >
0). If B′ is computed after round r, it holds that B′ ̸= [ξ] ◁ C ′. Both lead to a
contradiction. ⊓⊔

Lemma 7 (Entropic Chain Growth Lemma). Suppose that at round r1 an
honest party has a chain of work w. Then, by round r2 ≥ r1, every honest party
adopts a chain of work at least w +

∑r2−1
r=r1

Xr.

Proof. By induction on r2. For the inductive base (r2 = r1), observe that if at
round r1 an honest party has a chain C of work w, then that party broadcasted
C at the end or round r1 − 1. It follows that every honest party receives C at
round r1 and adopts a chain with greater or equal work.

For the inductive step, note that by the inductive hypothesis, every honest
party has received a chain of work at least w′ = w+

∑r2−2
r=r1

Xr by round r2 − 1.
When Xr2−1 = 0 the statement follows directly, so assume Xr2−1 > 0. Observe
that an honest party successfully queried the random oracle with a chain of
work at least w′ +Xr2−1 and broadcasted it to the network. At round r2, every
honest party receives the chain and adopts a chain of work at least w′+Xr2−1 =

w +
∑r2−1

r=r1
Xr. ⊓⊔

Lemma 8 (Typical Bounds). In typical PoEM executions, for any set S of
at least λ consecutive rounds, it holds that:

1. Z(S) < t
n−t ·

f
1−f · |S|

ln 2 + ϵf |S|
ln 2 ≤ (1− 2δ

3 )f |S|
ln 2 .

2. Z(S) <
(
1 + δ

2

)
t

n−tX(S) + ϵf |S|
ln 2 .

3. Z(S) < Y (S).
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Proof. Proposition 1.

Z(S) < (1 + ϵ)E[Z(S)] = (1 + ϵ)E[Zr]|S|
= E[Zr]|S|+ ϵE[Zr]|S|

<
t

n− t
· f

1− f
· |S|
ln 2

+ ϵ
t

n− t
· f

1− f
· |S|
ln 2

<
t

n− t
· f

1− f
· |S|
ln 2

+ ϵf
|S|
ln 2

=

(
t

n− t
· 1

1− f
+ ϵ

)
f
|S|
ln 2

≤
(
1− 2δ

3

)
f
|S|
ln 2

.

The first relation follows from Definition 14 Eq. 3, the second from the inde-
pendence of Zr, the fourth from the bound in Lemma 1 Eq. 5, the fifth and the
last from the bounds in [32, Section 13.2.2].

Proposition 2. Z(S) < t
n−t ·

f
1−f · |S|

ln 2 + ϵf |S|
ln 2 <

(
1 + δ

2

)
· t
n−tX(S)+ ϵf |S|

ln 2 .
The first relation follows from part (1) of this proof, and the second from the
bound in [10, Lemma 11(c)].

Proposition 3. Y (S) > (1 − ϵ)E[Y (S)] >
(
1− δ

3

)
f |S|

ln 2 >
(
1− 2δ

3

)
f |S|

ln 2 >
Z(S). The first inequality follows from Definition 14 Eq. 2, the second from the
bound in Lemma 1 Eq. 4, and the last one from part (1) of this proof. ⊓⊔

Theorem 2 (Entropic Growth). Typical executions of PoEM satisfy the En-
tropic Growth property with s = λ and τ = (1− ϵ) f

ln 2 .

Proof. Consider a typical PoEM execution in which an honest party has a chain
C1 at round r1 and adopts a chain C2 at round r2 ≥ r1+s. Let S = {r1, . . . , r2−
1}. Then |S| ≥ s = λ and, applying Definition 14 we obtain X(S) > (1 −
ϵ)E[X(S)]. By Lemma 1, E[X(S)] ≥ f

ln 2 |S|. Hence, X(S) > (1 − ϵ) f
ln 2 |S|. By

Lemma 7, work(C2) ≥ work(C1) +X(S), as desired. ⊓⊔

Lemma 9 (Entropic Patience). In a typical execution, any chained work
k ≥ 2λ f

1−f
1

ln 2 + 8 is computed in more than k−8
2 f

1−f
1

ln 2

≥ λ consecutive rounds.

Proof. Assume, towards a contradiction, there is a set of consecutive rounds S′

in which the chained work k was computed and |S′| ≤ k−8
2 f

1−f
1

ln 2

. It holds that
X(S′) + Z(S′) ≥ k. Then, there is a set S ⊇ S′ of consecutive rounds with

|S| =
⌈

k−8
2 f

1−f
1

ln 2

⌉
+1 < k−8

2 f
1−f

1
ln 2

+2 such that X(S)+Z(S) ≥ X(S′)+Z(S′) ≥ k.

However, because |S| > λ, typicality applies and from Lemma 8 we obtain
X(S) < (1 + ϵ)E[X(S)] ≤ (1 + ϵ)E[Xr]|S| < (1 + ϵ) f

1−f
|S|
ln 2 and Z(S) < (1 +
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ϵ)E[Z(S)] ≤ (1+ ϵ)E[Zr]|S| < (1+ ϵ) t
n−t

f
1−f

|S|
ln 2 < (1+ ϵ)(1− δ) f

1−f
|S|
ln 2 . Hence,

X(S) + Z(S) < (1 + ϵ)
f

1− f

|S|
ln 2

(1 + 1− δ) < 2
f

1− f

|S|
ln 2

<

2
k − 8

2 f
1−f

1
ln 2

f

1− f

1

ln 2
+ 4

f

1− f

1

ln 2
=

k − 8 + 4
f

1− f

1

ln 2
= k − 4

(
2− f

1− f

1

ln 2

)
< k .

The second inequality follows from the fact that ϵ = δ
6 ⇒ (1+ ϵ)(2− δ) < 2. The

last inequality follows from f < 1
2 ⇒ 2− f

1−f
1

ln 2 < 0. ⊓⊔

Corollary 3. In a typical execution of PoEM, for any honest party P and any
round r it holds that work([:−k]◁ PCCCr) < 2k.

Proof. From Entropic Patience (Lemma 9), every block has less than k work.
Therefore, work([−k] ◁ PCCCr) < k. From the definition of the slicing notation
([:]◁) it holds that work(([−k:]◁PCCCr)[1:]) ≤ k. Summing the two constituents,
we obtain

work([−k:]◁ PCCCr) =

work(([−k:]◁ PCCCr)[1:]) + work([−k]◁ PCCCr) < 2k .

⊓⊔

Lemma 10 (Entropic Common Prefix Lemma). For all rounds r, and
all honest parties P1, P2, where P1 has C1 and P2 adopts C2 at round r of a
typical PoEM execution, it holds that [:−k]◁ C1 ≼ C2 and [:−k]◁ C2 ≼ C1 for
k = 2λ f

1−f
1

ln 2 + 8.

Proof. Consider an execution as in the statement and suppose, towards a con-
tradiction, that [:−k] ◁ C1 ̸≼ C2 or [:−k] ◁ C2 ̸≼ C1. Consider the last block
B∗ with index i∗ on the common prefix of C1 and C2 that was computed by an
honest party and let r∗ be the round at which it was computed; if no such block
exists let r∗ = 0. Define the set of rounds S = {i : r∗ < i < r}. We claim that
Z(S) ≥ Y (S).

We show this by pairing all work of blocks computed by honest parties during
convergence opportunities in S with adversarial work computed during S. Let
Y(S) be the set of honestly produced blocks in convergence opportunities during
S, and Ξ =

⋃
{I(B) : B ∈ Y(S)}.

Note that, if Ξ ̸= ∅, then inf Ξ ≥ max I(B∗) because the chain ending in
block B∗ was diffused at round r∗, and all honestly produced blocks after round
r∗ are extending a chain with greater or equal work. Also note that work(C1) ≥
maxΞ and work(C2) ≥ maxΞ because the honest party that computed the
chain with work maxΞ diffused it and any chain adopted by honest parties at
any later round should have at least maxΞ work. Hence, for every ξ ∈ Ξ it
holds that [ξ]◁ C1 ̸= ⊥ and [ξ]◁ C2 ̸= ⊥.
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We now argue that for every ξ ∈ Ξ either block [ξ] ◁ C1 or block [ξ] ◁ C2

is adversarial. If the block lies on the common prefix of C1 and C2, namely
[ξ] ◁ C1 = [ξ] ◁ C2, then it is adversarial by the definition of B∗. Otherwise,
there is one block in C1 and another one in C2, and by Lemma 6, it holds that
[ξ] ◁ C1 and [ξ] ◁ C2 cannot both be honest. This completes the proof of the
claim Z(S) ≥ Y (S).

All the chained work max(work(C1[i
∗:]),work(C2[i

∗:])) ≥ k was produced
during S ∪ {r∗}. Hence, from Lemma 9, |S ∪ {r∗}| > λ ⇒ |S| ≥ λ and the
properties of a typical execution apply. Therefore, by Lemma 8, Z(S) < Y (S)
which contradicts the previous claim. ⊓⊔

Theorem 3 (Entropic Common Prefix). Typical executions of PoEM satisfy
Entropic Common Prefix with k = 2λ f

1−f
1

ln 2 + 8.

Proof. Consider a typical execution and suppose, towards a contradiction, that
Common Prefix is violated, and let r2 be the first round during which it is
violated. At r2 there is an honest party P2 who adopts chain C2 inconsistent
with the chain C1 adopted by an honest party P1 at a round r1 ≤ r2, namely
[:−k]◁ C1 ̸⪯ C2.
Case r1 < r2. At round r2, party P1 has a chain C, which it adopted at r2 − 1
(not excluding the case where C = C1). It holds that [:−k]◁C1 ⪯ C due to the
minimality of r2 (otherwise, the Common Prefix virtue would have been broken
at r2 − 1 by chains C1 and C). Furthermore, work(C) ≥ work(C1) due to the
heaviest chain rule followed by P1. Therefore, [:−k] ◁ C1 ⪯ [:−k] ◁ C. By the
Common Prefix lemma, we have [:−k]◁C ⪯ C2 (at r2, party P1 has C and party
P2 adopts C2). By transitivity of ⪯, we have [:−k]◁C1 ⪯ C2, which contradicts
the violation of Common Prefix.
Case r1 = r2. Let C be the chain that P1 adopts at r1 + 1 (not excluding the
case where C = C1). By the Common Prefix lemma, we have that [:−k]◁C1 ⪯ C
(at r1+1, party P1 adopts C and has C1). Furthermore, work(C) ≥ work(C1)
due to the heaviest chain rule followed by P1. Because work(C) ≥ work(C1),
therefore [:−k] ◁ C1 ⪯ [:−k] ◁ C. By the Common Prefix lemma, we have that
[:−k]◁C ⪯ C2 (at r1+1, party P1 adopts C and party P2 has C2). By transitivity
of ⪯, we have [:−k]◁C1 ⪯ C2, which contradicts the violation of Common Prefix.

⊓⊔

Theorem 4 (Entropic Quality). Typical executions of PoEM satisfy the En-
tropic Quality property with ℓ = 2λ f

1−f
1

ln 2 + 8 and µ = 1− (1 + δ
2 )

t
n−t −

ϵ
1−ϵ .

Proof. Suppose, towards a contradiction, that there is a chain quality violation
in a typical PoEM execution. Then there is an honest party P who adopts a
chain C3 at round r for which chain quality is violated. This means there are
u, v such that the chain C1 = C3[u:v] has work(C1) ≥ ℓ and quality lower than
µ, namely the sum x of works of all honestly generated blocks in C1 is less than
µwork(C1). Consider the minimum work chain C2 = C3[u

′:v′] such that C1 is
fully included in C2 (i.e., u′ ≤ u and v′ ≥ v) with the following properties:
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1. C3[u
′] was computed by an honest party P1 (this will exist because C3[0]

is the genesis block, which is honestly generated) at some round r1 (letting
r1 = 0 if u′ = 0).

2. C3[v
′] was the tip of the adopted chain by an honest party P2 at some round

r2 (this will exist because P adopts C3).

Let L = work(C2) and S = {r1, . . . , r2 − 1}. Note that, by causality, all the
work L was computed in S. By the supposition, we have x < µℓ ≤ µL.

We have that Z(S) ≥ L− x. To see this, observe that, by the minimality of
C2, all the blocks with heights u′, . . . , u as well as the blocks with heights v, . . . , v′
were computed by the adversary, and so the only honest work computed within
L is x.

Additionally, L ≥ X(S). To see this, note that at round r1, party P1 produced
C3[u

′], and so every honest party adopts a chain of weight at least work(C3[u
′:])

from round r1 + 1 onwards. Therefore, by Lemma 7, at round r2, every honest
party adopts a chain of weight at least work(C3[u

′:])+X(S). But we know that
P2 adopts a chain of length work(C3[u

′:]) + L, and so L ≥ X(S).
Therefore,

Z(S) ≥ L− x > (1− µ)L ≥ (1− µ)X(S) ≥ ((1 +
δ

2
) · t

n− t
+

ϵ

1− ϵ
)X(S) .

The last inequality follows from replacing the value of µ from the state-
ment. By Lemma 9, |S| > λ and typical bounds apply. Therefore, X(S) >
(1− ϵ)E[X(S)] = (1− ϵ) f

ln 2 and, from this and the previous inequality, Z(S) ≥
(1 + δ

2 ) ·
t

n−tX(S) + ϵf |S|
ln 2 . However, this contradicts the bound in Lemma 8.

⊓⊔

Theorem 5 (PoEM is Safe). Typical executions of PoEM are safe.

Proof. Consider any two honest parties P1, P2 and any rounds r1, r2. Let C1, C2

be the chains that P1, P2 adopt at rounds r1, r2 respectively. From Entropic
Common Prefix (Theorem 3), it follows that if r1 ≤ r2, then [:−k] ◁ C1 ≼ C2;
and if r2 ≤ r1, then [:−k]◁C2 ≼ C1. In both cases, it follows that [:−k]◁C1 ∼
[:−k]◁C2. Therefore, for the ledgers P1LLLr1 ,

P2LLLr2 returned when read is invoked
on parties P1, P2 after rounds r1, r2 respectively, it holds that P1LLLr1 ∼ P2LLLr2 .

Theorem 6 (PoEM is Live). Typical executions of PoEM are live with pa-
rameter u = max(

⌈
ℓ+2k
(1−ϵ)f ln 2

⌉
, s).

Proof. Consider any round r. Because u ≥ s, invoking Entropic Growth(s, τ)
(Theorem 2), we conclude that for all honest parties P and all rounds r′ ≥ r+u,
it holds that work(PCCCr′ [|

PCCCr|:]) ≥ uτ ≥ ℓ + 2k. From Corollary 3, it follows
that work([:−k]◁ PCCCr′ [|

PCCCr|:]) ≥ ℓ. Invoking Entropic Quality (Theorem 4),
it holds that in the chain segment [:−k] ◁ PCCCr′ [|

PCCCr|:], there is at least one
honestly generated block that was produced after round r.
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Now, consider that an honest party attempts to inject a transaction tx at
round r. At the beginning of round r + 1, all honest parties receive tx and
include it in their mempool [32, Section 5.7]. Hence, all honest blocks produced
after round r will either include, or extend a chain that includes transaction tx.
Because of this and the above, for all honest parties P and rounds r′ ≥ r + u,
we conclude that tx ∈ PLLLr′ . ⊓⊔

Corollary 4 (PoEM is Secure). PoEM is secure with overwhelming proba-
bility.

Proof. Executions are typical with overwhelming probability (Theorem 1). Typ-
ical executions are safe (Theorem 5), and live (Theorem 6), from which security
follows. ⊓⊔

6 Discussion & Future Work

Composability. Because PoEM changes only the proof-of-work inequality, it
can be composed with other previously proposed improvements upon PoW to
give cumulative benefits. Such examples are hierarchical chain constructions
like Bitcoin-NG [7], FruitChains [25], Prism [1], Parallel Chains [8], PHAN-
TOM [29], SPECTRE [26], GhostDAG [27], GHOST [28], Ledger Combiners [9]
and HLCR [13]. A formal proof of the composability of PoEM with these pro-
tocols is left for future work.
Bias. Whereas our security analysis was conducted for γ = 0, the real-world
PoEM deployment uses positive values for γ. We also used positive values for γ
when conducting our experiments in Section 4. We have experimentally observed
that increasing γ improves the rate at which the sum of independent random
variables each distributed as Bern(·)(γ + Exp(ln 2)) converges, but the expecta-
tions deteriorate as far as security is concerned. We suspect that, for a given
acceptable probability of failure given by the security parameter κ, there is an
optimal parametrization triplet (g, γ, k) that minimizes the confirmation delay.
Can this optimal parametrization be found analytically?

Additionally, we know that, at the operating limit of γ → ∞, the protocol is
exactly Bitcoin, so we have proofs of security for both γ = 0 and γ → ∞, but
not for 0 < γ < ∞. We leave the formal analysis of these questions for future
work.
Work functions. We used the function work(B) = γ−lgH(B). This definition
corresponds to the intuitive idea that each successful query to the random oracle
reduces the number of possible evolutionary paths of the system, thus reducing
its entropy (hence the name PoEM, Proof of Entropy Minima). An open question
is whether this function is optimal, or whether a different function optimizes
delay and throughput.
Tight bounds. In our proofs, we have used the conservative configuration f =
δ
6 , which yields a small value for the honest block production rate g, following
the model of [10]. Follow up works in Bitcoin [12] have shown tighter operating
limits for Bitcoin, and we expect that similar results can be obtained for PoEM.
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We have experimentally demonstrated that consensus is achieved with higher
values of g when the honest parties play against a private mining adversary. This
instills confidence, because we know from the work in [5] that this private mining
attack is indeed the best possible attack against Bitcoin in the continuous-time
domain [14]. However, no such result exists for PoEM. Showing that PoEM is
secure for high values of g against any adversary, or that indeed the private
mining attack is also the best possible attack against PoEM, is left for future
work. Such an analysis poses technical challenges because, even though PoEM
might have better behavior of expected values, the concentration of the random
variables is worse than in Bitcoin.
Difficulty adjustment. In our security proof, we assumed a static population
in accordance with the Bitcoin Backbone analysis [10]. The practical deploy-
ments of both Bitcoin and PoEM adjust their difficulty in response to changes
in the miner population. Bitcoin was proven secure in this variable difficulty
setting [11]. We leave the variable difficulty analysis of PoEM for future work.
DAGs. Some engineering work in our real-world deployment has indicated that
using PoEM’s fork choice rule in a DAG-based blockchain with a particular
topology may be beneficial. More research is needed to explore this direction.

7 Conclusion
In this paper, we introduced PoEM, a new fork choice rule, in which each block
counts for work(B) = − lg H(B)

T instead of the usual work(B) = 1
T (Sec-

tion 3). We illustrated experimentally (Section 4.3) that PoEM achieves better
transaction confirmation latency (28.5% improvement), or better transaction
throughput (16.3% improvement), for the same level of adversarial resilience
(β = t

n ) and level of security (security parameter κ). We formally proved the
security of PoEM (Corollary 4) in the Bitcoin Backbone model (Section 5). In
our proof, we introduced the novel real-valued random oracle model (Section 2),
which allowed us to use tools from the continuous domain such as the expo-
nential distribution. We showed this model to be closely related to the discrete
random oracle model (Lemma 5), and believe this new mathematical tooling
may be independently useful for the analysis of other protocols. We reported on
the production-grade deployment of our protocol, which has an already deployed
testnet and has seen wide community adoption (Section 4.1). Our protocol only
changes the proof-of-work inequality, and thus is composable with a multitude of
previously proposed improvements for latency and throughput in proof-of-work
blockchains. We are hopeful that our modification will be adopted by existing
and future proof-of-work protocols in the community.
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A The Bias Parameter

In our analysis, we assumed γ = 0 for simplicity, but the γ parameter seems to be
a promising knob to tune the performance of PoEM. While we leave the analytic
treatment of the optimal γ for future work, we note here that, for a given value
of g, the delay of the system behaves as illustrated in Figure 3 for varying values
of γ. We believe that this graph behaves convexly for small values of γ, whereas,
for γ → ∞, the delay converges to the behavior of Bitcoin. Indeed, if γ is made
sufficiently large, the bias parameter dominates against the − lg H(B)

T term, and
the system behaves as if each block counts the same amount of work, converging
at the limit to the longest chain rule.

B Mathematical Background

Lemma 11. For all 0 < y < 1, it holds that 2y − 1 < y and 1− 2−y < y.
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Fig. 3: Confirmation delay d (measured in network delay ∆ units) vs. the bias
γ. The bias, γ was experimentally optimized for the g = 0.99 which showed the
lowest confirmation delay in Bitcoin.

Proof. For the first part, it suffices to show that (y + 1)1/y > 2, as this implies
that 2y < y + 1 and, ultimately, 2y − 1 < y. The inequality (y + 1)1/y > 2 holds
due to Bernoulli’s inequality ((1 + x)r > 1 + rx for all x > 0 and r > 1), when
setting x = y and r = 1

y .
For the second part, it suffices to show that (1 − y)1/y < 1

2 . Let f(y) =

(1− y)1/y and

d

dy
f(y) =

d

dy
(1− y)1/y =

d

dy
e

1
y ln(1−y) =

(1− y)1/y
(
− 1

y(1− y)
− ln(1− y)

y2

)
=

(1− y)1/y
(
y − (y − 1) ln(1− y)

y2(y − 1)

)
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Letting ϕ(y) = y − (y − 1) ln(1 − y), we have d
dyf(y) = (1 − y)1/y

(
ϕ(y)

y2(y−1)

)
.

Observe that ϕ(y) is continuous and differentiable for y ∈ (0, 1). It holds that

d

dy
ϕ(y) =

d

dy
(y − (y − 1) ln(1− y)) =

d

dy
(y − y ln(1− y) + ln(1− y)) =

1− ln(1− y) +
y

1− y
− 1

1− y
=

1− ln(1− y)− 1− y

1− y
= − ln(1− y)

Hence, for y ∈ (0, 1), it holds that d
dyϕ(y) > 0 and ϕ(y) is increasing. Because

ϕ(0) = 0, it holds that ϕ(y) > 0 for y ∈ (0, 1). Therefore, for y ∈ (0, 1), it holds
that d

dyf(y) < 0 and f(y) is decreasing.
Setting ω = − 1

y , we have

lim
y→0

f(y) = lim
y→0

(1− y)
1
y = lim

ω→−∞

(
1 +

1

ω

)−ω

=

1

limω→−∞
(
1 + 1

ω

)ω =
1

e

Pick an arbitrary 0 < ϵ < 1
2 −

1
e . By the definition of the limit, there exists a

δ > 0 such that for all y ∈ (0, δ), it holds that |f(y)− 1
e | < ϵ ⇔ f(y) < 1

2 . Hence,
for y ∈ (0, 1), because f(y) is continuous and decreasing, it holds that f(y) < 1

2 .
⊓⊔

Lemma 12 (Concentration of Bern × Exp). Let {Ai}i∈[n] and {Bi}i∈[n] be
two families of i.i.d. random variables, all mutually independent, with Ai dis-
tributed as Bern(p) and Bi distributed as Exp(λ). Let Xi = AiBi, and X =∑n

i=1 Xi. Then for any 0 < ϵ < 1, it holds that Pr[X > (1 + ϵ)E[X]] < e−Ω(n)

and Pr[X < (1− ϵ)E[X]] < e−Ω(n), which is negligible in n.

Proof. E[Xi] = E[AiBi] = E[Ai]E[Bi] =
p
λ , therefore E[X] = np

λ . For the mo-
ment generating functions we have

E[etXi ] = E[etAiBi ] =

E[etAiBi |Ai = 0]Pr[Ai = 0]

+E[etAiBi |Ai = 1]Pr[Ai = 1] =

E[etAiBi |Ai = 0](1− p)+E[etAiBi |Ai = 1]p =

(1− p) + pE[etBi ] = (1− p) + p
λ

λ− t
.
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E[etX ] = E[et
∑n

i=1 Xi ] = E[
n∏

i=1

etXi ] =

n∏
i=1

E[etXi ] =

E[etAiBi ]n =

[
(1− p) + p

λ

λ− t

]n
= en ln[(1−p)+p λ

λ−t ] .

For all 0 < t < λ:

Pr[X > (1 + ϵ)E[X]] = Pr[X > (1 + ϵ)
np

λ
]

≤ E[etX ]e−t(1+ϵ)np
λ = en ln[(1−p)+p λ

λ−t ]−nt(1+ϵ) p
λ .

Consider the factor f(t) = ln
[
(1− p) + p λ

λ−t

]
− t(1+ ϵ) pλ in front of n in the

exponent. Taking its derivative with respect to t:

d

dt
ln

[
(1− p) + p

λ

λ− t

]
− t(1 + ϵ)

p

λ
=

1

(1− p) + p λ
λ−t

d

dt

[
(1− p) + p

λ

λ− t

]
− (1 + ϵ)

p

λ
=

p λ
(λ−t)2

(1− p) + p λ
λ−t

− (1 + ϵ)
p

λ

At t = 0 we have f(0) = 0 and

d

dt
f(0) =

p
λ

(1− p) + p
− (1 + ϵ)

p

λ
=

p

λ
(1− 1− ϵ) = −ϵp

λ
< 0 .

Since d
dtf is continuous at 0 and d

dtf(0) < 0, there must exist some 0 < t∗ < λ

such that for all 0 < t < t∗ it holds that d
dtf(t) < 0. Because f is continuous

and differentiable in [0, t∗], by the Mean Value Theorem, there must exist some
ξ ∈ (0, t∗) such that d

dtf(ξ) =
f(t∗)−f(0)

t∗−0 = f(t∗)
t∗ . Since t∗ > 0 and d

dtf(ξ) < 0,
therefore f(t∗) < 0. This t∗ makes the factor in front of n in the exponent
negative, and therefore gives us a bound for which Pr[X > (1+ϵ)E[X]] < e−Ω(n).

For all t < 0:

Pr[X < (1− ϵ)E[X]] = Pr
[
X < (1− ϵ)

np

λ

]
≤ E[etX ]e−t(1−ϵ)np

λ

= en ln[(1−p)+p λ
λ−t ]−nt(1−ϵ) p

λ
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Consider the factor f(t) = ln
[
(1− p) + p λ

λ−t

]
− t(1− ϵ) pλ in front of n in the

exponent. Taking its derivative with respect to t:

d

dt
ln

[
(1− p) + p

λ

λ− t

]
− t(1− ϵ)

p

λ
=

1

(1− p) + p λ
λ−t

d

dt

[
(1− p) + p

λ

λ− t

]
− (1− ϵ)

p

λ
=

p λ
(λ−t)2

(1− p) + p λ
λ−t

− (1− ϵ)
p

λ

At t = 0 we have f(0) = 0 and

d

dt
f(0) =

p
λ

(1− p) + p
− (1− ϵ)

p

λ
=

p

λ
(1− 1 + ϵ) =

ϵp

λ
> 0 .

Since d
dtf is continuous at 0 and d

dtf(0) > 0, there must exist some t∗ < 0

such that for all t∗ < t < 0 it holds that d
dtf(t) > 0. Because f is continuous

and differentiable in [t∗, 0], by the Mean Value Theorem, there must exist some
ξ ∈ (t∗, 0) such that d

dtf(ξ) =
f(0)−f(t∗)

0−t∗ = f(t∗)
t∗ . Since t∗ < 0 and d

dtf(ξ) > 0,
therefore f(t∗) < 0. This t∗ makes the factor in front of n in the exponent
negative, and therefore gives us a bound for which Pr[X < (1−ϵ)E[X]] < e−Ω(n).

⊓⊔
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