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2 Université Paris-Saclay, UVSQ, CNRS, Laboratoire de mathématiques de
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Abstract. We will present here new multivariate encryption algorithms.
This is interesting since few multivariate encryption scheme currently
exist, while their exist many more multivariate signature schemes. Our
algorithms will combine several ideas, in particular the idea of the LL’
perturbation originally introduced, but only for signature, in [GP06]. In
this paper, the LL’ perturbation will be used for encryption and will
greatly differ from [GP06]. As we will see, our algorithms resists to all
known attacks (in particular Gröbner attacks and MinRank attacks) and
have reasonable computation time.
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1 Introduction

Multivariate Cryptography is one of the main families of algorithms used to
make post-quantum public key cryptography. We can trace it’s origin with the
article [MI88] that introduced the so called C∗ scheme. The scheme was broken
in [Pat95] but it lead to multiple algorithms. With multivariate cryptography
it is supposedly possible to do encryption, signatures and authentication. Yet,
these last years almost all know multivariate encryption algorithms have been
broken due to the discovery and improvements of attacks such as the MinRank
attacks. Due to this, at present most of the algorithms that are basing their
security on the MQ problem can only be used for signatures or authentications.
(For example the UOV [KPG99] family is currently largely represented in the
recent NIST standardisation process).

Another major multivariate algorithm is Hidden Field Equations (HFE)
[Pat96]. Until recently HFE was one the main candidate for multivariate cryp-
tography. Especially since it was one of the few able to be use for encryption
(contrary to UOV previously mentioned) as well as signatures. Since it’s origin
it was suggested to add perturbations in order to reinforce it’s security.

HFE has a lot of variants. In the recent article [CMRPV24] the most impor-
tant perturbations are presented with their current cryptanalysis properties. In



this article, the authors showed that it is hard to use HFE for encryption, indeed
the perturbations that they studied have a high cost in order to avoid all at-
tacks. However, the authors of [CMRPV24] have proposed a variant that seems
to work for signatures. Other tries around HFE or more generally around multi-
variate cryptography in encryption have been made [SDP16], [IPS+18], [BM09],
[CBD+09]. They generally have failed to resist to all of the attacks [CCFST24],
[BM09] or have been found to be far less effective than expected. This is why
it is considered to be much easier to make multivariate signature schemes than
encryption scheme.

The main novelty of this article is that we will be using the perturbation LL’
introduced in [GP06] in a specific and original way for encryption. Our LL’ can
also be viewed as a particular case of the other perturbation Hat+ [FmRPP22],
but as we will see, our LL’ is much more efficient than Hat+.

2 Vanilla HFE

Here by ”vanilla” HFE or ”Nude” HFE we mean the basic HFE scheme, i.e.
without any additional perturbation.

The main idea for algorithm based on the difficulty to solve a quadratic
system (Multivariate Quadratic problem) is to find structured quadratic poly-
nomial that makes the problem easy to solve.Then we will hide their structure
via secret linear transform. For example let f a quadratic polynomial such that
the equation in x, f(x) = y is easy to solve. Such polynomial f will be called
the central map of the system. Let T, S be two linear transform. The public key
will be T ◦ f ◦ S, that way the public key will hopefully mimic the behaviour
of a random quadratic map. Here the private key will be: T, S, f , hence with
the private key and the hypothesis that f is easily ”invertible” we can make an
encryption/signature algorithm.

HFE uses such structure. HFE use the fact that Fqn can be seen as the vector
space Fn

q with a canonical morphism. Then an univariate polynomial f(x) of Fqn

can also be seen as a multivariate polynomial f(x1, . . . , xn). For vanilla HFE f(x)
will be a polynomial like this:

f(x) =
∑
i,j≤d

aijx
qi+qj

We see that the monomials are quadratic in Fq and that the degree is limited
by D = 2 ∗ qd. This is to ensure that Berlekamp algorithm will find a solution
in a reasonable time. Then let T, S be two linear transform Fn

q → Fn
q . Let

ϕ : Fqn → Fn
q be the canonical morphism from the field extension of Fq to the

vector space. Then the public key will be :

T ◦ ϕ ◦ f ◦ ϕ−1 ◦ S.

However most of the time in literature the morphism ϕ will not be written but
only implied. So the public key could also be written as :

T ◦ f ◦ S.



The private key will be :

T, S, f.

From an attacker point of view the goal would either be to invert the system
directly (via Gröbner basis for example) or recover the linear transform T or S
(via a MinRank attack for example). Both will be using the fact that the degree
of the central map f is limited.

N.B. When the level of security is higher than 80bits, vanilla HFE require
large D, therefore unrealistic computation time . This is why we need perturba-
tions from the main algorithm in order to achieve higher level of security.

3 LL’ perturbation

3.1 Our LL’ perturbation in encryption

Let P1, . . . , Pn be the public key of a multivariate central map (e.g HFE).
P1, . . . , Pn are polynomials of degree 2 in x1, . . . xn. Let r be an integer such
that 1 ≤ r ≤ n. Let Li, 1 ≤ i ≤ r and L′

i, 1 ≤ i ≤ r be 2 r secret linear
forms in x1, . . . xn. Our “outside” LL’ consist in adding secret linear combina-
tion

∑
i αi,jLiL

′
i to the equations Pj , 1 ≤ j ≤ n

therefore P ′
j = Pj +

∑
i αi,jLiL

′
i

3.2 Analog description

Let A1, . . . , An the secret analog equations of this central map (A1, . . . , An are
secret polynomials of degree 2 in a1, . . . , an. In fact we can go from Ai to Pi via
the linear transformation S and T . Our “inside” LL’ consist in adding secret
linear combinations to the Aj , 1 ≤ j ≤ n so A′

j = Aj +
∑

i αi,jLiL
′
i. In fact our

“inside” and “outside” transformation are similar (since we can go from one to
the other description by just modifying S and T), but for the analysis we will
sometime alternatively use “inside” or “outside”.

3.3 Variants

– Usually, x1, . . . xn will be on the small field GF(2). Yet, this perturbation
LL’ can work on other very small Field (GF(3) for example) however it will
be less efficient as the probability for a linear form to be null on a point will
decrease.

– Usually, we will have public equations of degree 2. Later in this paper we
will also present a variant with equations of degree 3.

– It is also possible to use very simple linear combination for LiL
′
i. Instead

of a general linear combination of the form:
∑

i αi,jLiL
′
i we can imagine to

just add LiL
′
i to Pi. At present, this variant does not seems to reduce the

security, but it does not accelerate the decryption either.



– In this paper, we will use our LL’ perturbation with HFE central map. Other
central maps may also be used, for example C* ,cf. [MI88]. However, so far
all attempts to repair C* have failed. Therefore we are more confident with
HFE and a specific analysis will probably be required on C*.
Remark: A central map (as HFE for example) is really needed, i.e. LL’
cannot be used alone. This is because a random linear combination of LL’
equation will have a non-negligible probability to have a small rank and from
this property it is possible to find S or T

3.4 Decryption

The main idea of the LL’ perturbation is that on F2 we have a probability 1/4
that LiL

′
i ̸= 0. In order to decrypt, we will evaluate the expected number of

products LiL
′
i ̸= 0 (it will be r/4 in average, but it can be much less as we will

see below). Then, after exhaustive search on the indices i such that LiL
′
i ̸= 0

i.e. LiL
′
i = 1 we will solve the system like a normal HFE system.

3.5 How to make our LL’ less expensive in computations

As said above, about r/4 products LiL
′
i are non zero. However sometimes much

less products are non zero. In order to be in such a good situation for decryption,
one possibility is to send many messages and hope that at least one of them has
only a small number of LiL

′
i ̸= 0. We will see below (sections 5 and 6) how many

messages to send in average in order to have a good probability for this to occur.

3.6 Transmission of a session key

Usually a public key encryption algorithm is used not to encrypt a cleartext, but
to encrypt a session key that will be used later. Then we can imagine that (with
the same public key) we will encrypt potential session keys k1, . . . kl and if kα is
successfully decrypted then the receiver, in order to explain that kα was chosen,
he will send back a hash of kα (or alternatively, he will use a key derived by kα
and send an encrypted text with this key).

Remark. If no send messages has a small number of LiL
′
i ̸= 0 then the receiver

will have to ask for a new set of messages. In order to not leak any information
when this occur, it is possible to randomly ask for new messages even if we were
able to decrypt the system.

3.7 Transmission of a specific message m

It is mandatory that an opponent do not have much more equations on the clear
text than the number of variables of the clear text (otherwise the system becomes
much easier to solve with a Gröbner basis attack). But we need to encrypt the
message several time in order to have a good probability that for at least one of
these ciphertext only a small number of LiL

′
i are non zero.



In order to do so while keeping the same public key we will transform the
message M with several codes M1, ...,Mk with the help of a public transform
(such as an AES with public secret keys). Then, the Mi will be encrypted with
the public key of our HFE LL’.

3.8 Differences between our LL’ and the LL’ of [GP06]

in [GP06] a perturbation LL’ was also described. However the description differed
greatly from ours and it was used in signature rather than encryption. In [GP06]
n products LiL

′
i are used rather than a limited number and we simply added

them to the public key without any linear combination: P ′
i = Pi + LiL

′
i. Yet, in

this paper we only have r products LiL
′
i and

P ′
j = Pj +

∑
i

αi,jLiL
′
i

or

A′
j = Aj +

∑
i

αi,jLiL
′
i.

Moreover in [GP06] not all of the public equations have to be satisfied, unlike in
this paper where all the equations are valid equations.

3.9 LL’ as a particular case of Hat+

The perturbation Hat+ was introduced in [FmRPP22]. With Hat+ we have r
random quadratic equations that are linearly combined on the public (or secret)
quadratic equation. In LL’ we combine r product LiL

′
i. Therefore LL’ can be

seen as a special case of Hat+.

However our perturbation will be much less costly in terms of computation
time than Hat+. This is because LiL

′
i is 0 with a probability 3/4 unlike 1/2 for

Hat+.

The article [FmRPP22] gave another description for Hat+: let t be the pa-
rameter of the modifier, let βi ∈ Fqn for i ∈ {1 . . . t} be random elements, and

p̂i(x) = Trn

(∑
j,k αi,j,kx

qj+qk
)
where αi,j,k are random element of Fqn and let

Q(x) =
∑

i βip̂i(x). The central map of the modifier is H(x) = F (x) + Q(x)
where F (x) is the central map of a vanilla HFE. Here with LL’ instead of a
random polynomial p̂i(x) we will take a product of polynomial of the form :

L(x) =
∑

i aix
qi . It shows clearly the link between the two perturbations. And

shows that Hat+ is more general than LL’. However we will later show that it
does not appear to induce any weaknesses to LL’ compared to Hat+. Indeed the
cryptanalysis of the two perturbations shows similar results.

In our toy examples we will keep the first representation of the perturbation.
But for our cryptanalysis we will prefer the second.



4 Cryptanalysis of LL’

4.1 General considerations

In this section 4 we will study how LL’ resist against the classical known attacks
in multivariate cryptography (such as MinRank and Gröbner attacks). We may
be afraid by the fact that in our schemes, sometimes almost all, or even all, the
terms LiL

′
i are 0 on a given cyphertext. Is this a serious problem for the security

? It does not seems so. On MinRank attacks we study the public equations
(including the hidden terms LiL

′
i) independently from it’s values, so the fact

that some LiL
′
i = 0 does not intervene. On Gröbner attacks we try to solve the

public equations with all the terms LiL
′
i, and the fact that we want to decrypt

even when all these terms are 0 does not really help since these terms are hidden.
This was confirmed on many simulations that we did (cf. section 4.5).

Remark. It looks really difficult for an attacker to be able to recover the
equations without the LiL

′
i from cleartext/cyphertext pairs. This is because he

does not know which message will be decrypted (i.e. which messages have almost
all LiL

′
i = 0) among all the messages send. And also since the messages (the

session key ) can be publicly transformed with random values, before encryption.
We will now give more details about LL’ can resist all known attacks. Since

LL’ can be seen as a variant of Hat plus we will conduct a similar analysis as
done in [FmRPP22] and compare Hat+ and LL’. First of all we will distinguish
two types of attacks, Direct attacks (Gröbner Basis) and key recovery attacks
(MinRank attacks).

The study of Hat plus as well as our simulations showed that LL’ and Hat plus
have a very similar behaviour against both types of attacks. So we will consider
that both perturbation have the same impact on the degree of regularity of the
polynomial. So it follows the following formula:

dreg = (d+ r)/2 + 2

where r is the number of product of linear forms added to the public equations.
For the MinRank attacks analysis we should distinguish two forms of Min-

Rank that we will note MinRank T, MinRank S. The goal of the MinRank will
be to recover one of the linear transform of the private key, once one of them is
found the rest of the key is ”easy” to find. Hence MinRank T will denote the
fact that we will try to recover the matrix T first and MinRank S the fact that
we will try to recover the matrix S. Let us define first the MinRank problem.

Definition 1. Let n, m, r, k ∈ N and let M1,M2, . . .Mk n×m matrices over
the field F. The MinRank problem consists to find u1, u2, . . . uk over F such that
rank(

∑k
i=1uiMi) ≤ r.

In order to rewrite the problem of finding one of the two matrices as a Min-
Rank. The goal will to use the public key matrices: P1 . . .Pn as the matrices
M1,M2, . . .Mk (N.B for MinRank S we will not directly use the public key ma-
trices) and to use some of the coefficient of the matrices T or S as the solution
vector.

We should also remind here the matrix writing of the HFE map:



Lemma 1. Let S,T ∈ Mn×n(Fq) then the public key P can be written

P = (P1, . . .Pn) = (SMnH
∗0Mt

nS
t, . . . ,SMnH

∗nMt
nS

t)M−1
n T

where H∗i is the matrix representation of the qith power of the secret polynomial
h.

4.2 MinRank T

Let’s start with MinRank T, this method can be found in [BFP11]:
Let q, n,D be standard HFE parameters, (P1, . . .Pn) the public key and

T,S,H the secret key as defined earlier. Then we have

(P1, . . . ,Pn) = (SMnH
∗0Mt

nS
t, . . . ,SMnH

∗nMt
nS

t)M−1
n T.

So we can write

(P1, . . .Pn)T
−1Mn = (SMnH

∗0Mt
nS

t, . . . ,SMnH
∗n−1Mt

nS
t).

We will write U = T−1Mn and W = SMn. Then we have

(P1, . . . ,Pn)U = (WH∗0Wt, . . . ,WH∗nWt).

Let (u0,0, u1,0, . . . , un−1,0) be the first column of U then we have

n−1∑
i=0

u0,iPi = WHWt.

Due to the addition of random polynomials the rank of H is likely very high.
However if we write these polynomials in the field extension then like for Hat
plus. There exist β1, . . . , βr coefficient in Fqn and L1, L

′
1, . . . , Ln, L

′
n linear forms.

Such that the central map h(x) verify the equation:

h(x) = f(x) +

r∑
i=0

βiLiL
′
i

where f(x) is vanilla HFE central map. If we want to fully keep a univariate rep-

resentation we can write. Li(x) = Tr(
∑

i aix
qi) (where Tr is the trace function

of a field extansion). Hence there exist a linear map Π : Fqn → Fqn such that
∀i,Π(βi) = 0. This map has a degree at least r [FmRPP22]. So we can further
write:

(P1, . . . ,Pn)UΠ = (WH′∗0Wt, . . . ,WH′∗nWt).

where H′ = HΠ where then the rank of the right member is at most d+ r Let
U′ = UΠ. Hence

rank(

n−1∑
i=0

u′
0,iPi) = logq(D) + r



which is small so finding the first column of U reduces to solve a MinRank
instance with k = n and rank = logq(D) + r on the matrices P1, . . . ,Pn. As
we can see the increase of the rank is due to the randomness of the βi (in the
univariate representation of the perturbation), the fact that we took special
quadratic polynomial in the form LiL

′
i instead of random quadratic pi (like in

HFE Hat+) does not seems to change the complexity of the attack.

4.3 MinRank S

MinRankS was first proposed by Ward Beullens and by Tao et al. [TPD21].
Retaining the notationsU andW from the previous attack, we have (P1, . . .Pn−1) =

(WH∗0Wt, . . . ,WH∗n−1Wt)U−1. Then we obtain

(W−1P1W
−1,t, . . . ,W−1Pn−1W

−1,t) = (H∗0, . . . ,H∗n−1)U−1.

This leads us to study the matrix whose line i is the first line of the matrix
H∗i in other word it’s the first line of the representative matrix of the central
map after applying the froebenius morphism i times. Let’s call this matrix G

We can decompose H H = F+Q. With F being the central map of a vanilla
HFE and Q the perturbation LL′/ +hat. The Froebenius operation being linear
we can study the effect of the operation on F and Q separately. The form of F

is sparse then the matrix we will obtain will be of the form:

A1

0
A2


On the other the matrix by Q will be of no particular form:

q0

...
qn

 . However,

We can write that qi is the first row of the matrix
∑t

i=0 β
qi

i Qi. Indeed Qi is the
representative matrix of the polynomial p̂i(x) or Tr(Li(x)L

′
i(x))(respectively

in the case of Hat+ and LL’) whose image is in Fq. Hence the polynomial is
unchanged by the Froebenius morphism.

Z = (U−1)t ×G, Z = (U−1)
t ×


A1

0
A2

+

q0

...
qn


.

It means that the rank of the right matrix is at most r and thus the rank of

the matrix

A1

0
A2

+

q0

...
qn

 is at most d+ r.

Furthermore, using the proposition above and the matrix equation of HFE:

Theorem 1. Let P1, . . . ,Pn matrices of the public key and W the matrix previ-
ously defined. If one notes (w−1

0 , w−1
1 , . . . w−1

n−1) the first row of the matrix W−1,

and bi = (w−1
0 , w−1

1 , . . . w−1
n−1)Pi, then the matrix V whose rows are the bi has

a rank at most d+ t.



Proof. From the previous proposition we know that the rank of VW−1t is
bounded by d+ r, hence the rank of V is bounded by d+ r

For both MinRank once we recover the coefficient of T or S we can recover
of the totality of the key like in [BFP11], [TPD21].

As mentioned we have essentially reused the cryptanalysis of HFE Hat+
[FmRPP22]. We have successfully simulated this result using a modified ver-
sion of the code that was published alongside the article [BBC+22]. We did
not effectively performed the attack, in other word we did not effectively solved
the MinRank. But we computed the rank that appeared in the equation previ-
ously mentioned. Which confirms the analysis we have performed. So our results
showed the augmentation of rank as we have announced.

We performed our tests on a toy example taking: n = 20, d = 7, LL′ = 1, 2, 3
and using Hat+ with similar parameters n = 20, d = 7, t = 1, 2, 3.

In the end, we computed the rank of the matrix VW−1t and the matrix U′ =
UΠ. and found that their rank coincided with the theory we have developed.

4.4 Resolution of MinRank

The MinRank problem is solved using the support minor method as described
in [BBB+22], [BBC+22]. The complexity of the resolution do not depend on the
type of MinRank (T or S) but only on the target rank, the Field characteristic
and the degree of the extension.

O

(
(d+ r)(n− 1)4

(
2(d+ r) + 1

d+ r

)2
)
.

This gives us a good idea of the number of LL′ that needs to be added. We then
have:

r = 12 for 80 bits of security
r = 17 for 100 bits of security
r = 24 for 128 bits of security
r = 40 for 192 bits of security
r = 56 for 256 bits of security

(these numbers are obtained with the assumption that d = 0 which is never
the case, therefore in the parameters section these numbers will be slightly re-
duced).

4.5 Direct attacks (Gröbner)

In this section we describe the behaviour of direct attacks using Gröbner basis
against HFE LL’. To study the complexity of the attack, the good notion is the
degree of regularity. So we will focus on the behaviour of the degree of regularity
of HFE LL’ central map.



Number of perturbation HFE +ˆ HFE LL’

0 0.86 0.86

1 1.75 1.65

2 2.17 2.13

3 2.11 2.14

4 2.09 2.09
Table 1. Time to solve the public key of HFE +hat compared with HFE LL’ using a
Gröbner basis

The work of Joux and Faugère showed the link between the rank and the
degree of regularity. Analysis of Hat+ showed that the degree of regularity was
increased by the action of Hat+ (cf. [FmRPP22]). Our tests confirmed this result
and showed that LL’ had a very similar impact. The computation of the Table
1 have been made on a toy example using q = 3, D = 7, n = 10. It shows that
both of perturbations have a similar impact against Gröbner. N.B the results
are the average for 10 Gröbner inversion so the fact that the time may slightly
decrease is simply due to the usage of small parameters. We have a bound for
the degree of regularity of HFE. Ding et. al [Kle12] showed that the degree of

regularity Dreg is such that. Dreg ≤ (q−1)d
2 + q. It leads to an evaluation of the

complexity of the resolution of the gröbner basis of the system.

In order to find a Gröbner basis for a system we are using algorithms from
Jean-Charles Faugère (F4, F5 [Fau99][Fau02]).

As we saw LL’ have a good impact against Gröbner attacks. However, we
could wonder if their exists vulnerabilities that depends in the choice of the
ciphertext. For example, let f be the public key of a HFE LL’ and let X =
{x1, . . . xn} Y = f(X) be such that ∀i ≤ rLi(X)L′

i(X) = 0 then we could wonder
if the resolution of the equation Y = f(X) with Gröbner basis is easier. We
performed tests on a toy example (n=15, r=3, d=7). And found that it was not
different from the general case. Meaning that the fact that ∀i ≤ rLi(X)L′

i(X) =
0 does not induce any vulnerabilities.

With random ciphertext with chosen ciphertext

17.3 17.03
Table 2. Time to solve a HFE LL’ when the ciphertext is randomly chosen, compared
with a ciphertext such that Y = f(X) be such that ∀i ≤ rLi(X)L′

i(X) = 0

As we can see in 2 in average we take about 17sec to solve both. We each time
we compared the same public key, first with a random ciphertext and then with a
chosen one. We also found out that from a given public key no major differences
were found for example even if we have a time to solve that greatly differs from
the average we still find close resolution time for a random ciphertext and a
chosen one: (for example 20.3 sec, 20.6 sec). From a theoretical perspective, this



is not a great surprise as the algorithm that find a Gröbner basis do not involve
the xi’s in the first place. The algorithm of Buchberger involve the reduction
of S-polynomials, even if it depends on the choice of Y it does not depend on
the choice of X. Then the degree of regularity of such system should not change
hence the complexity of the resolution of the system via Gröbner Basis will not
change.

4.6 Other attacks

In order to break HFE other attacks exists but none of them can achieve the same
efficiency as MinRank or direct attacks. We can however mention differential
attacks [FGS05] [DGS07]. These attacks were at the time efficient due to the
choice of parameters that was at the time too optimistic. However, due to the
Gröbner basis and MinRank attacks for public keys of degree 2, parameters are
nowadays chosen to a point that differential attacks are irrelevant for our specific
case. In some cases however (like taking a HFE polynomial of degree 3 or higher)
differential attacks are still important.

4.7 Why the Li and LiL
′
i must be kept secret

If the Li and L′
i linear form are made public then some efficient attacks are

possible. We present here two attacks.

– With Gröbner: Sometimes all the products LiL
′
i are 0 on a message send.

Then when the 2r values Li are public, an attacker can make an exhaus-
tive search on r forms Li or L′

i among these 2r forms, say L1, . . . , Lr,
and then solve with Gröbner algorithm the system of public equation plus
L1 = 0, . . . Lr = 0. Here, the Gröbner algorithm will be efficient due to these
extra equations and to the fact that all the perturbations LiL

′
i vanished. i.e.

from a ciphertext Y the attacker will found the corresponding cleartext X.
Moreover, this attack still works even if wrong linear forms Li” are given
in addiction to the right Li and L′

i. This attack can also easily be extended
when a small number of LiL

′
i are non zero.

– With MinRank: Once we know some Li we can determine their kernelKi and
their image Imi. So we can find a projection ΠK such that Li ◦ΠK = 0 or a
projection ΠIm such that ΠIm ◦ Li = 0. Should we compose the projection
ΠK it means we can perform an attack on the matrix S and find a rank of d
instead of d+ r. Similarly, we can compose the projection ΠIm it means we
can perform an attack on the matrix T and find a rank of d instead of d+ r.

5 Number of encryption in function of the number of
copies sent

In this section we will answer the question of the average number of message
required to be able to decrypt the message depending of the number of LiL

′
i = 1

allowed.



In the following we will keep the parameters we obtained in section 4.4 to
avoid MinRank attacks i.e.:

r = 12 for 80 bits of security
r = 17 for 100 bits of security
r = 24 for 128 bits of security
r = 40 for 192 bits of security
r = 56 for 256 bits of security

5.1 With all LiL
′
i = 0

The probability to have all LiL
′
i = 0 on a given encryption is (3/4)r. Therefore,

we will send about (4/3)r messages if we want this to occur with a good prob-
ability. For example,for 128 bits of expected security we have r=24 this gives
approximately 996 messages to be send. In this case the number of decryption
will be equal to the number of message send, so 996 decryption (cf. Table 5)

5.2 With only one LiL
′
i = 1

The probability to have exactly one LiL
′
i = 1 is (3/4)r−1 ∗ (r/4). Therefore

it is about (3/4)r + (3/4)r−1 ∗ (r/4) for at most one LiL
′
i = 1. For 128 bits of

security (r=24) this gives a probability of about 0.9% and we will send about 110
messages. In this case the number of decryptions will be about 110+110× 24 =
2750 (cf. Table 5).

5.3 General formula

The probability to have exactly α equalities LiL
′
i = 1 is given by the binomial

distribution: (
3

4

)r−α(
1

4

)α(
r

α

)
.

This leads to the Tables 3,4,5,6,7 below.

5.4 Tables of complexities for decryption with quadratic public
equations

Table 3 shows orders of magnitude for the number of messages required to be
sent and the number of decryption required in function of the number of accepted
LiL

′
i = 1.
For example with Hat+ we would have required 212 tries but in average we

require only half of them to find the right perturbation.
In our example if we send 31 cypher text we have 63% of chance that one of

the messages have all of it’s LiL
′
i to be null. And if this happens we will find it

in approximately 15-16 tries.
For 80 bits of security, the advantage of LL’ against Hat+ is that we decrypt

130 times faster while retaining the same security. However, one must take into



Computations and Transmissions for 80 bits of expected security

Number of LiL
′
i = 1 Probability for 1 message sent number of messages sent number of decryption

0 3.16% 31.5 31.5

≤ 1 15.8 % 6.3 81.9

≤ 2 39.0 % 2.5 198

≤ 3 64.8 % 1.5 450

≤ 4 84.1 % 1.2 820

≤ 5 94.4 % 1.06 1680

Table 3. Maximal numbers of LiL
′
i = 1, number of required messages, number of

decryption needed, security 80 bits: r = 12

account the cost of the encryption/decryption using a secret key algorithm and
the fact that one must send more cypher text in case of a failure of the decryption.
While the advantage is limited it remains significant. The advantage will be much
more significant when we increase the number of security bits.

Computations and Transmissions for 100 bits of expected security

Number of LiL
′
i = 1 Probability for 1 message sent number of messages sent number of decryption

0 0.75% 133 133

≤ 1 5.76 % 17.3 311

≤ 2 17.12 % 5.8 794

≤ 3 36 % 2.77 1886

≤ 4 58.1 % 1.72 4093

≤ 5 77.3 % 1.29 8007

Table 4. Maximal numbers of LiL
′
i = 1, number of required messages, number of

decryption needed, security 100 bits: r = 17

In Table 4 the number of decryption for Hat+ would be 217 = 131072. So
if we send only 17 cypher text we will be 420 times (131072/311 = 420) faster
than Hat+.

In Table 5, if we send about 25 cypher text the computing time will be 2200
(227/7525) times faster than Hat+. The advantages are then significant in regard
to Hat+. One must do 7500 decryption which remains realistic. Then 128 bits of
security seems reasonable according to the current complexity of the MinRank
and Gröbner attacks.

In Table 6 the computation will be about 4 millions times faster than Hat+.
Still it requires about 285 000 decryptions. This begins to be quite excessive to
be realistically used.

In Table 7, the gains compared to Hat+ are astonishing (8 billions times faster
in the case of all LiL

′
i = 0) but it is not realistically feasible to send 10 millions

messages, or to do 8 millions decryptions. And if we send 462 messages, while
the gain is still 33 millions times faster it requires to send 2 billions messages



Computations and Transmissions for 128 bits of expected security

Number of LiL
′
i = 1 Probability for 1 message sent number of messages sent number of decryption

0 0.1% 996 996

≤ 1 0.9 % 110 2750

≤ 2 3.9 % 25 7525

≤ 3 11.5 % 8.7 20227

≤ 4 24.6 % 4 51804

≤ 5 42.15 % 2.3 128000

≤ 6 60.6 % 1.6 304000

Table 5. Maximal numbers of LiL
′
i = 1, number of required messages, number of

decryption needed, security 128 bits: r = 24

Computations and Transmissions for 192 bits of expected security

Number of LiL
′
i = 1 Probability for 1 message sent number of messages sent number of decryption

0 0.001% 100000 100000

≤ 1 0.014 % 7000 285 000

≤ 2 0.101 % 984 800 000

≤ 3 0.47 % 213 221.2

≤ 4 1.6 % 62 222.7

≤ 5 4.3 % 23 224.1

≤ 6 9.6 % 10.4 225.5

≤ 7 18.1 % 5.5 226.9

≤ 8 29.9 % 3.3 228.4

Table 6. Maximal numbers of LiL
′
i = 1, number of required messages, number of

decryption needed, security 192 bits: r = 40

Computations and Transmissions for 256 bits of expected security

Number of LiL
′
i = 1 Probability for 1 message sent number of messages sent number of decryption

0 0.00001% 107 223

≤ 1 0.0002 % 5 ∗ 105 224.8

≤ 2 0.0019 % 52000 226.4

≤ 3 0.012 % 8200 228

≤ 4 0.0058 % 1700 229.4

≤ 5 0.216 % 462 231.0

≤ 6 0.665 % 150 232.4

≤ 7 1.73 % 57 234.0

≤ 8 3.91 % 25.5 235.1

Table 7. Maximal numbers of LiL
′
i = 1, number of required messages, number of

decryption needed, security 256 bits: r = 56



which is too much. Then the 256 bits of security will probably not be attained
with the LL’ method.

6 Variant with equation of degree 3

If the public equation are of degree 3 (instead of 2) then we can add some
perturbations LiL

′
iL

′′
i (instead of LiL

′
i) where Li, L

′
i and L′′

i are secret linear
forms in x1, . . . , xn. Then the public key will be bigger. For example with n ≈
200 the size of the public key in degree 3 will be about n4

6 bits, i.e. about

32 Megabytes (Compared to n3

2 , about 500 kilobytes in degree 2). However,
LiL

′
iL

′′
i = 0 with a probability 7

8 (instead of 3
4 for LiL

′
i = 0 in degree 2).

Therefore we can expect a more efficient scheme in terms of computations and
number of bits to send.

6.1 Differential attack and number of terms LiL
′
iL

′′
i

Very often, when we study a multivariate scheme of degree 3, after a differential
we obtain a similar scheme of degree 2. Hence, very often the study of multi-
variate degree 3 scheme does not fundamentally change from the one in degree
2.

Let see the results we obtain after a differential. Let X = (x1, . . . , xn) and
A = (a1, . . . , an). Let f(x) = x1x2x3 (it’s a simplified notation of LiL

′
iL

′′
i ). Then

the differential f(X +A) + f(A) is:

(x1 + a1)(x2 + a2)(x3 + a3) + x1x2x3

= a1x2x3 + a2x1x3 + a3x1x2

(we ignore terms of degree 1). If a1 = a2 = a3 = 0 then the rank of this expression
is 0. If only one of the ai is non zero, then the rank is 1. If two are non zero,
then the rank is also 1, since x2x3 + x1x3 = x3(x2 + x1). If a1 = a2 = a3 = 1
then the rank is 2, since x2x3 +x1x3 +x2x1 = x2x1 +x3(x2 +x1). Therefore, in
average, the rank will be:

0× 1

8
+ 1× 6

8
+ 2× 1

8
= 1.

This means that if we use r terms LiL
′
iL

′′
i , then in the differential in average we

will obtain r terms MiM
′
i with Mi and M ′

i of degree one. Therefore, we should
keep in degree 3 about the same value r as before in degree 2 for the same level
of security.

For example for 128 bits of security we will keep r ≈ 24, as we can see in the
Table 8. This Table 8 can be compared with Table 5 (in degree 2). For example
in Table 8 we can send 25 messages and only 25 decryptions will be needed
(instead of 7525 decryptions on 25 messages in Table 5). The only drawback
would be the size of the public key of about 32 Megabyte, if n ≈ 200 instead of



Computations and Transmissions for 128 bits of expected security in degree 3

Number of LiL
′
iL

′′
i = 1 Probability for 1 message sent number of messages sent number of decryption

0 4.05% 24.6 24.6

≤ 1 17.9 % 5.56 139

≤ 2 40.1 % 2.45 737

≤ 3 64 % 1.56 3627

Table 8. Maximal numbers of LiL
′
i = 1, number of required messages, number of

decryption needed, security 128 bits: r = 24 (degree 3)

Computations and Transmissions for 256 bits of expected security in degree 3

Number of LiL
′
i = 1 Probability for 1 message sent number of messages sent number of decryption

0 0.056% 1768 1768

≤ 1 0.509 % 196 11172

≤ 2 0.0019 % 44 70268

Table 9. Maximal numbers of LiL
′
i = 1, number of required messages, number of

decryption needed, security 256 bits: r = 56 (degree 3)

about 500KB in degree 2. Moreover, the study of systems of degree 3 is rather
poor compared to the prolific study of degree 2 system. Therefore, there may be
better cryptanalysis possible.

From Table 9 we see that for 256 bits of expected security, even with public
equation of degree 3, the complexities are really high (probably not realistic,
except in for very special usage): Public key of about 32 Megabyte (n ≈ 200),
about 1768 messages to send and about 1768 decryptions.

With public equation of degree 4 much less computations are required but

the public key becomes unrealistic (n
5

24 ≈ 1.55 GB for n ≈ 200). And then again,
better cryptanalysis may exist in degree 4.

7 Examples of parameters and performances with public
equations of degree 2

In this section we will present some explicit examples for our scheme HFE LL’
with parameters and it’s performance.

We will present parameters for five level of expected security: 80, 100, 128,
192, 256 bits of security. We realised our tests of performances using the code
for GeMSS (more precisely the reference implementation as it allows for flexible
parameters choices). Although the code was designed for signatures, it gives us
a reasonable indication for the time to decrypt (as the process of decryption is
similar to the one to sign). The code does not directly model the perturbation
LL’ so we multiply the number of cycles we obtained by the average number of
decryption required for each level of security. We chose the parameters in order
to be protected from the attacks we previously presented.

For clarity we have chosen here only one parameter for the maximal number
of LiL

′
i = 1 but as shown in the tables of section 5 other trade-off are possible.



Here, we have chosen a HFE central map with public key of degree 2 and a secret
polynomial of degree 17. With such central map the rank, without perturbation,
is 5 (and not 0), it explains why in Tables 10 and 11 we used a parameter r
slightly smaller than in section 5.

So we have to obtain parameters such that :

2s ≤

(
(d+ r)(n− 1)4

(
2(d+ r) + 1

d+ r

)2
)
.

Where s is the security parameter and such that:

2s ≤
(
n+ dreg

n

)ω

,

with

dreg ≈ d+ r

2
+ 2.

Security bits (q,n,D,r,e) Decrypt one message (Cycles) Avg. nbr. of decryptions Total cycles Total time (s)

80 (2, 100, 17, 10,0) 2M 17.7 35.5M 0.011

100 (2, 110, 17, 14,0) 2M 56 112M 0.035

128 (2, 138, 17, 22,1) 2M 1700 3400M 1.06

192 (2, 200, 17, 38,1) 3M 168883 506649 158.32

256 (2, 266, 17, 52,2) 4M 28530507 114122030 35663.13

Table 10. Computation time of a HFELL′ scheme, q is the characteristic, n the size
of the field extension, D the degree of the central map, r the number of LiL

′
i, and e

the maximal number of LiL
′
i = 1. The total time is an estimation.

Security bits (q,n,D,r,e) |pk| (KB) |Cyphertext| of one cyphertext(b) number of messages Total size

80 (2, 100, 17, 10,0) 45 100 17.7 1770.1

100 (2, 110, 17, 14,0) 61 110 56.12 6173.2

128 (2, 138, 17, 22,1) 163 138 73 10198.2

192 (2, 200, 17, 38,1) 497 200 4330 866066.0

256 (2, 266, 17, 52,2) 1171 266 20689 5503274

Table 11. Sizes of the cyphertext send for a HFELL′ schemes, q is the characteristic,
n the size of the field extension, D the degree of the central map, r the number of LiL

′
i,

and e the maximal number of LiL
′
i = 1.

In Table 10 we can see that up until 128 bits we have reasonable decryption
time. Benchmarking was done on an Intel Core i7-10850H 3.2GHz CPU with



level of security MinRank Direct attacks

80 84 80.9

100 101 103

128 134 129

192 200 199

256 258 252

Table 12. Complexity of MinRank attack and direct attacks on our parameters (the
complexity of Gröbner attack is optimistic)

32GB of RAM. We can note that the computations are easily parallelisable. We
could also use a different central map than HFE. For example we could use a
C* ([MI88]) central map, that is known to be faster than HFE. However, as we
already mentioned, all attempts to repair C* have failed. Therefore we are much
more confident with HFE LL’ than with C* LL’ where a specific analysis would
be required.

As far as we know the cryptanalysis of HFE LL’ does not differ much from
the results obtained for HFE +hat as we showed earlier. Hence, we are confident
with the current parameters according to the current state of attacks as we can
see in Table 12 (the complexity of the attack is computed using the parameters
as stated in Table 10).Unless a new idea is discovered and a vulnerability exploits
the particular form of the polynomial we add, we should not expect any major
changes for our parameters.

8 Conclusion

Very few efficient and secure multivariate encryption algorithms exist at present.
This is mainly due to the fast progress of MinRank attacks (to recover the secret
key) or Gröbner attacks (to inverse the system). New type of attack (MinRank
on S cf. [TPD21]) and new method of resolution (support minor [BBB+22])
have threatened the security of HFE and also threatened the security of most
multivariate encryption algorithm (many of them are based on variants of HFE).
For example, Vanilla HFE is not efficient when we want more than 80 bits of
security.

In this paper, we have presented a new perturbation, called LL’, to enforce
the security of a multivariate encryption scheme, for example HFE. LL’ was
previously used for signatures, but in a very different way cf.[GP06]. With our
perturbation LL’ we have been able to design efficient schemes up to 128 bits
of security. (For 128 bits of expected security we need about 1s to decrypt with
public equations of degree 2, and the encryption is very fast, as usually in mul-
tivariate cryptography). It may also be possible to have more security bits (by
using public equations of degree 3 or 4), but then the public key become very
large.

Due to the recent introduction of this algorithm, we do not recommend us-
ing this scheme right now for very sensible application since many multivariate



scheme have been broken in the past. However it is interesting to notice that
new ideas can still be found to reinforce the security of multivariate scheme.
It is also interesting to notice that, again, it seems possible to use multivariate
scheme for encryption.
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