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Abstract. In this paper, we aim to enhance and automate advanced techniques
for impossible differential attacks. To demonstrate these advancements, we present
improved attacks on the LBlock and HIGHT block ciphers. More precisely, we (a)
introduce a methodology to automatically invert symmetric ciphers when represented
as directed acyclic graphs, a fundamental step in the search for impossible differential
trails and in key recovery techniques; (b) automate the search for impossible differ-
ential distinguishers, reproducing recent techniques and results; (c) present a new
hybrid model combining cell-wise properties and bit-wise granularity; (d) integrate
these techniques in the automated tool CLAASP; (e) demonstrate the effectiveness of
the tool by reproducing a state-of-the-art 16-round impossible differential for LBlock
previously obtained using a different technique and exhibiting a new 18-round im-
probable trail; (f) improve the state-of-the-art single-key recovery of HIGHT for 27
rounds, by automating the use of hash tables to current state-of-the-art results.
Keywords: Impossible differential; LBlock; HIGHT; CLAASP; Automated cryptanal-
ysis

1 Introduction
Understanding the security properties of block ciphers is one of the most fundamental
research areas in symmetric cryptanalysis, because, unlike public-key cryptosystems, their
security cannot be convincingly proven based on a security assumption, but requires
evaluating them against known attacks; on the other hand, secure block ciphers are a
cornerstone for all modern applications and serve as building blocks for many primitives.

The most prominent techniques for block cipher cryptanalysis are derived from Differ-
ential cryptanalysis, introduced in the late 1980s by Biham and Shamir [BS90]. Differential
attacks study the propagation of a bitwise XOR difference δ through the block cipher.
When such a differential δ → γ has a high probability, the attack is a classical differential
attack. When it has probability 0, it is an Impossible Differential (ID) attack, as introduced
independently by Biham et al. [BBS99] and Knudsen [Knu98].

Impossible differential cryptanalysis is an important part of the cryptographic landscape
and was notably the first technique to break seven rounds of AES-128 [LDKK08]. To
this day, the best-known cryptanalysis on CAMELIA [BNS14] is an impossible differential
attack.

Finding differential distinguishers, and by extension, impossible differentials, has been
a challenge for many years. Automated tools, mostly relying on CP, SAT, and MILP, have
played a prominent role in making this task easier. However, the search for impossible
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differential remains more difficult than that of classical differentials. Intuitively, a classical
differential distinguisher requires showing the existence of one differential trail. On the
other hand, an impossible differential requires proving that such a property does not exist.
Given the size of the search space, it is significantly easier to show that a property exists
for some choice of input and output difference, than to prove that no trail connecting them
exists.

The usual approach is to either enumerate a small subspace of the possible input
and output differences and test the existence of a trail linking them with a MILP-based
model, as in Sasaki and Todo’s [ST17] and Cui et al. [CJF+16], or use a miss-in-the-middle
approach, where probability 1 differentials in the forward and backwards direction are
shown to be incompatible, as in [SGWW20]. Improving these automated methods is an
active research area in the field.

In addition to the search for distinguishers, recent works have focused on finding
optimal attacks. In particular, it is well known that the longest or most likely distinguisher
is not always the best for key recovery and that structural properties, such as the position
of the active patterns, play an important part. Recognizing this, Hadipour et al. [HSE23]
proposed a generic, satisfiability-based CP model to unify ID, ZC, and integral attacks,
incorporating the complexity of the corresponding key recovery directly in their model.
Building on this, the authors in [HGSE24] introduced a series of improvements. These
include a flexible contradiction-location mechanism, a bit-wise model to address weakly
aligned ciphers, and a CP model for the partial-sum technique. Their methodology
demonstrated versatility by yielding significant improvements across diverse cipher designs,
from strongly aligned ones like ForkSKINNY [ALP+19] and QARMAv2 [ABD+23] to
weakly aligned ones such as Ascon [DEMS21] and PRESENT [BKL+07]. Another work
that recently sought to improve the key recovery procedure of impossible attacks was
presented at Eurocrypt 2024 [BDD+24]. In this paper, Boura et al. introduced an
automatic tool to find the most efficient key-guessing order. Although limited to SPN
ciphers with a linear or nearly linear key schedule, it represents progress toward fully
automated attacks.

A broader trend in symmetric key cryptanalysis is to introduce such techniques into
automatic tools, such as CLAASP [BGG+23a], so that they can be easily generalized
to other primitives without the need for extensive and error prone dedicated manual
implementation. As a recent example, the NSA block cipher ARADI, published without a
security analysis, was evaluated automatically against most common attacks a few weeks
after its release [BFG+24] using such a tool. For this reason, it is important to design
cryptanalytic techniques that can be easily integrated into such automated frameworks.

This paper focuses on improving and automating state-of-the-art techniques for impos-
sible differential attacks. These improvements are demonstrated by improving attacks on
the LBlock [WZ11] and HIGHT [HSH+06] block ciphers.

1.1 Our contributions
• We propose a fully automated search for impossible differential distinguishers, au-

tomating the techniques presented by Hadipour et al.’s framework [HGSE24] and
introducing a novel technique to automatically generate the inverse of a symmetric
cryptographic primitive when represented as a directed acyclic graph.

• We propose and automate a new hybrid model that combines the cell-wise properties
of [SGWW20] and the granularity of the bit-wise models proposed in [CZZ22]
and [HGSE24].

• In the related-key setting, our hybrid model also supports probabilistic transitions,
which allow us to detect more incompatibilities than a standard truncated model, by
leveraging the impossible differential clustering effect.
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• We apply this model to LBlock [WZ11] and find 16-round impossible differentials,
including some previously obtained using the different technique of [CJF+16]. We
also show that the 17-round improbable trail presented in [CZZ22] is invalid and we
exhibit an 18-round improbable trail that is valid for about 2−0.83 of the key space.
Previous results only reached 16 rounds.

• We extend the open-source cryptanalysis library CLAASP with our models to make
our results easy to reproduce and make the application of our techniques to more
ciphers straightforward (as it only requires implementing the cipher in CLAASP and
running the corresponding search function from the library);

• We extend the automatic technique of [HGSE24] for ID attacks with the use of
hash-tables to reduce the time complexity as in [CWP12]. We apply this technique
to the cryptanalysis of the HIGHT block cipher by improving the state-of-the-art
27-round single-key recovery attack, reaching a time complexity of 2118.9 and a data
complexity of 255 (previous time complexity was 2120.58 and data complexity 259.3).

1.2 Outline

The paper is organized as follows. In Section 2, we introduce preliminary concepts
about Impossible Differential Cryptanalysis (IDC) and describe automatic search tools
applied to the search of impossible differentials. In Section 3, we depict a methodology to
automatically invert a symmetric cipher when represented as a directed acyclic graph (a
common representation used in automated tools). In Section 4 and Section 5, we focus
on LBlock. Firstly, we describe previously impossible differential cryptanalysis results
and disprove an existing result. Secondly, we develop a new hybrid approach, a unified
model to identify impossible differentials using both bit-based and cell-based properties.
We finally demonstrate its application by presenting a new 18-round trail. In Section 6
and Section 7, we focus on HIGHT. As done for LBlock, we initially present previous
impossible differential results described in the literature. We then improve an existing
model to find ID attacks, by exploiting the concept of hash tables, and show the improved
results in the ID cryptanalysis of the cipher. In Section 8, we then draw conclusions.

2 Preliminaries

2.1 Differential and Impossible Differential Cryptanalysis

Differential cryptanalysis, introduced by Biham and Shamir in [BS91], studies the propaga-
tion of a difference through a cryptographic function. For a block cipher E : Fn

2 ×Fk
2 → Fn

2 ,
differential cryptanalysis is interested in differentials ∆in, ∆out such that Ek(x)⊕ Ek(x⊕
∆in = ∆out holds with a high probability over all plaintexts x and keys k. The Differential
Distribution Table (DDT) of a cryptographic list the probabilities of each differential
transition.

Conversely, Impossible Differential Cryptanalysis (IDC) focuses on differentials with
probability 0, i.e., ∆in, ∆out such that Ek(x)⊕ Ek(x⊕∆in = ∆out has no solution.

The search for impossible differentials usually relies on a miss-in-the-middle approach,
where two probability 1 differentials are incompatible. More specifically, let ∆in → γ be
a probability 1 differential on rf rounds in the forward direction, and let δ ← ∆out be a
probability 1 differential on rb rounds in the backward direction. If γ ̸= δ, then ∆in, ∆out

is an impossible differential on rf + rb rounds.
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2.2 Automatic Search Tools for Impossible Differential Trail Search
Optimization and operational research tools have become prominent in symmetric key
cryptanalysis. Following the introduction of Mixed Integer Linear Programming (MILP)
models for differential cryptanalysis [MWGP11], SAT and Constraint Programming (CP)
have also been used for various cryptanalysis tasks. In these declarative frameworks, a
model describing the problem in terms of variables and constraints is solved by a dedicated
solver. The formalism in which the problems are described depends on the technique:
boolean CNF formulas for SAT, linear inequalities for MILP, and generic constraints for
CP.

Such automatic tools have been successfully applied to the search for impossible
differentials in recent years. Two independent works by Sasaki and Todo [ST17] and Cui et
al. [CJF+16] proposed the use of MILP to identify impossible differentials. Both approaches
involve modeling the differential properties of the cipher and imposing constraints on the
input and output differences until the problem becomes unsatisfiable. However, because this
method requires fixing specific input and output differences, optimality is only confirmed
through an exhaustive search over all possible input-output difference pairs. Sun et
al. [SGWW20] first attempted to overcome this limitation with a CP-based method to
find deterministic truncated differential trails in cell-oriented ciphers. Subsequent works
expanded this approach to handling bit-oriented operations [CZZ22] and incorporated
estimates of the overall attack complexity [HSE23, HGSE24].

2.2.1 Sun et al.[SGWW20]

Method The tool employs the miss-in-the-middle strategy to identify ID trails in cell-
oriented ciphers. By converting the search for truncated differentials into a CSP, it
separately enumerates forward truncated trails ∆in0 → ∆out0 and backward truncated
trails ∆out1 ← ∆in1 . Incompatibility between the ∆out0 and ∆out1 is then verified outside
the CP model.

Variables Consider ∆X = (∆X0, ∆X1, . . . ∆Xl−1), the difference of the internal state X
of size l · s bits, with Xi ∈ Fs

2. For each cell difference ∆X1, two variables are introduced:
δXi ∈ {0, 1, 2, 3} represents the differential pattern of ∆Xi and ζXi ∈ {−2,−1, 0, . . . , 2s−1}
represents the actual value of ∆Xi:

δXi =


0 if ∆Xi = 0 (Z)
1 if ∆Xi is nonzero and fixed (N)
2 if ∆Xi is nonzero (N∗)
3 if ∆Xi is unknown (U)

ζXi ∈


{0} if δXi = 0
{1, . . . , 2s−1} if δXi = 1
{−1} if δXi = 2
{−2} if δXi = 3

Constraints
• For the branching operation, the differential patterns satisfy:

δY0 = δX and ζY0 = ζX and δY1 = δX and ζY1 = ζX

• For the XOR operation Y = X0 ⊕X1, the differential patterns satisfy:

if δX0 + δX1 > 2 then δY = 3 and ζY = −2
elseif δX0 + δX1 = 1 then δY = 1 and ζY = ζX0 + ζX1

elseif δX0 = δX1 = 0 then δY = 0 and ζY = 0
elseif ζX0 + ζX1 < 0 then δY = 2 and ζY = −1
elseif ζX0 = ζX1 then δY = 0 and ζY = 0
else δY = 1 and ζY = ζX0 ⊕ ζX1 endif
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• For the bijective S-box application Y = S(X), the differential patterns satisfy:

δY ̸= 1 and δX + δY ∈ {0, 3, 4, 6} and δY ≥ δX and δY − δX ≤ 1

• For the m×m MDS matrix Y = M(X), the differential patterns satisfy:

if
m−1∑
i=0

δXi ≡ 0 then δY0 = δY1 = · · · = δYm−1 = 0

elseif
m−1∑
i=0

δXi ≡ 1 then δY0 = δY1 = · · · = δYm−1 = 2

elseif
m−1∑
i=0

δXi ≡ 2 and
m−1∑
i=0

ζXi < 0 then δY0 = δY1 = · · · = δYm−1 = 2

else δY0 = δY1 = · · · = δYm−1 = 3 endif

Limitations While the approach presents the benefit of automatically testing all input
patterns, the S-box model does not take into account the DDT itself, limiting its precision.
Furthermore, the forward and backward trail searches are conducted independently, rather
than within a single model. Finally, the model is not applicable to ARX constructions.

2.2.2 Cao et al.[CZZ22]

An extension to ARX ciphers was introduced by Cao et al.[CZZ22]. Their model relies on
undisturbed differential bits, a concept previously defined by Teczan[Tez14]. For an input
difference ∆in, an output bit ∆outi is said to be undisturbed if its value is deterministically
fixed by ∆in; such bits play a valuable role in identifying bit-level incompatibilities.

Method The miss-in-the-middle technique (as used in [SGWW20]), in which the propa-
gations are modeled with MILP, is combined with undisturbed bits.

Variables Consider ∆X = (∆X0, ∆X1, . . . ∆Xn−1), the difference of the internal state
X of size n bits. Each bit of the state is associated with a variable δXi ∈ {0, 1, 2} that
represents the value of ∆Xi:

δXi =


0 if ∆Xi = 0
1 if ∆Xi = 1
2 if ∆Xi is unknown

Constraints

• For the XOR operation Y = X0 ⊕X1, the differential patterns satisfy:

if δX0 = 2 or δX1 = 2 then δY = 2
else δY = δX0 ⊕ δX1 endif

• For the AND operation Y = X0 ∧X1, the differential patterns satisfy:

if δX0 + δX1 = 0 then δY = 2
else δY = 2 endif
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• For the Modular Addition operation Z = X ⊞ Y , where X = (xn−1, . . . , x0),
Y = (yn−1, . . . , y0) and Z = (zn−1, . . . , z0), the differential patterns satisfy:

δz0 = δx0 ⊕ δy0, c0 = f1(δx0, δy0)
δz1 = δx1 ⊕ δy1 ⊕ c1, c1 = f2(δx1, δy1, c0)
...
δzn−2 = δxn−2 ⊕ δyn−2, cn−1 = f2(δxn−2, δyn−2, cn−3)
δzn−1 = δxn−1 ⊕ δyn−1 ⊕ cn−2

where f1(x, y) =
{

0 if x + y = 0
2 otherwise

, f2(x, y, c) =
{

0 if x + y + c = 0
2 otherwise.

• For the S-box application Y = S(X), where X = (xn−1, . . . , x0), and Y =
(ym−1, . . . , y0), the DDT restricted to undisturbed bits must be encoded. For each
input difference ∆X, let us consider the set P∆X of undisturbed bits positions
of S under ∆X. For p in P∆X , we denote by bp the undisturbed bit value of at
position p of the output, that is, ∆yp = bp. If P∆X ̸= ∅ then δX = (δXn−1, . . . , δX0)
propagates to the output difference pattern δY = (δYm−1, . . . , δY0), where

δYi =
{

bi if i ∈ P∆X

2 otherwise.

In all the other cases, the output is all unknown: (δYm−1, . . . , δY0) = (2)m−1
i=0 .

Limitations Despite its applicability to bit-oriented primitives, the approach has several
shortcomings. In this model, if a nonzero input does not produce any undisturbed bits, the
output is assigned an unknown value. For bijective operations, this results in the loss of
crucial information, as the output is guaranteed to be nonzero. Furthermore, the method
requires fixing the input patterns, which represents a regression compared to the approach
of [SGWW20]. Finally, some results in the paper appear to be incorrect, indicating
potential issues in the model or its implementation; these are discussed in Subsection 4.1.

2.2.3 Hadipour et al.[HSE23]

Method Zero is a tool developed by Hadipour et al. for identifying impossible differential,
zero-correlation and integral attacks on block ciphers. Like the approach in [SGWW20], it
formulates the differential propagations as a constraint optimization problem. However, in
this case, the forward and backward trail searches are integrated into a single unified model.
The encoding is the one employed in [SGWW20] and thus we refer to Subsubsection 2.2.1
for the detailed definitions of variables and constraints. A key strength of this approach
is that the tool additionally gives the time complexity of the corresponding key recovery,
allowing to find full impossible differential attacks.

Limitations The approach is not applicable to ARX-based constructions, as the encoding
of the model only considers cell-wise patterns. Another drawback is that the number of
rounds forward and backward must be specified in advance.

2.2.4 Hadipour et al.[HGSE24]

Earlier this year, Hadipour et al. released Zeroplus, an improvement of Zero [HSE23].
This updated version extends the tool to weakly aligned primitives by including bit-
wise propagations for the branching, XOR and S-box operations, with the inclusion of
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undisturbed bits, following the approach of [CZZ22]. While Zeroplus still does not apply
to ARX, it addresses the second limitation of the previous version of the tool, by automating
the identification of the middle round, removing the need for manual specification.

Going Further All the previously described approaches were implemented manually for
specific ciphers. This process is often tedious and error-prone, and work towards more
automation is important within the community. We propose a method to automatically
generate the decryption function of a cipher within an automated tool, as a stepping stone
towards the fully automatic generation of impossible differential models.

3 Automating Cipher Inversion
As noted in the previous section, automation can help limit the risk of human oversight.
With this in mind, we aimed to push this principle further by eliminating the need to
manually construct the corresponding impossible differential model for each cryptographic
primitive. This approach aligns with the philosophy behind automated cryptanalysis tools
such as CLAASP [BGG+23a], which served as a starting point for our efforts. Indeed,
CLAASP already supports the generation of SAT, SMT, CP, and MILP models for various
attack scenarios. In particular, the tool can automate the search of differential and
linear distinguishers. The first challenge was the systematic inversion of a cipher from
its representation in CLAASP to model the backward propagations. We also notice that
inversion is a fundamental step in many key recovery techniques. In CLAASP, a primitive
is described as a list of connected components, forming a directed acyclic graph. Each
component is a dictionary containing an identifier, a type, and a description specifying the
operation. It also includes the identifiers of its input components, their bit positions, and
the input and output sizes.

3.1 Method description
To ensure generality, the inversion process operates sequentially on individual components,
starting from the output and working backward through the cipher to the input, rather
than processing groups of components.

The first step is to define how each type of component should be handled. For
components representing a bijective operation, the inversion simply involves swapping the
input and output and applying the inverse permutation. The condition for this component
to be inverted successfully is that all output bits must be available by the time it is reached.
Non-bijective operations, however, require more careful consideration. For instance, the
shift operation is not invertible. If this component is encountered during the inversion
process, it needs to be evaluated; in other words, its input bits must be available for the
inversion to succeed. A practical illustration would be a 2-branch Feistel structure where
the Feistel function is a shift operation. In this case, inversion is still possible because the
input to the Feistel function is also available via the round output.

Another type of operation to examine more thoroughly is the XOR. Given a⊕ b = c,
the operation can be evaluated if a and b are known. Alternatively, it can also be inverted
in two ways: either a = b⊕ c or b = a⊕ c, depending on which input is available first.

Given a target cipher C, the inversion process begins by establishing a list L of available
components. Specifically, at any stage of the process, a component is considered available
if it can either be evaluated or inverted, given the cipher output and the components
previously made available up to that point. Initially, L only contains the output of the
primitive to be inverted as it becomes an input to the inverse: L = [cipher_output]. All the
other components remain in a separate list T , representing components yet to be inverted.
As the components are processed, they are moved from T to L. The inversion is complete
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once T is empty. The procedure is detailed in algorithm 1. The can_be_evaluated()
and can_be_inverted() functions are routines that verify whether enough input and/or
output bits are available to process the component c, by establishing its connection to the
elements of L. The functions evaluate_component() and invert_component() create a
new component c′ from c, based on the rule established for the operation it represents–as
discussed above–and its connection to the elements of L. We illustrate this method on a
toy example in Appendix C.

Algorithm 1: Cipher inversion algorithm
Input : Target cipher C
Output : Inverse cipher Cinv

L = [cipher_output]
T = [c | c ∈ C],
while |T | > 0 do

for c in L do
if can_be_evaluated(c, L) = True then

c′ = evaluate_component(c, L)
L = L + [c′]
remove c from T

end
else if can_be_inverted(c, L) = True then

c′ =invert_component(c, L)
L = L + [c′]
remove c from T

end
end

end
Build Cinv from the components list L

3.2 Limitations of this approach

This inversion method relies exclusively on local information and processes each component
independently, rather than considering larger groups of operations. Consequently, certain
components are challenging to invert. For instance, in the linear layer of Ascon [DEMS21],
each row x is updated through a series of shifts and XORs. Specifically, x is shifted by
two values, r0 and r1, and these shifted versions are then combined with the original x
through an XOR: y = x⊕ (x ≫ r0)⊕ (x ≫ r1). From this expression, the original value
x can be recovered from y by solving the equation. However, consider an implementation
where this transformation is broken into simpler components, as follows:

u = x ≫ r0; v = x ≫ r1; y = x⊕ u⊕ v.

In such a case, the component producing y is simply viewed as a 3-input XOR operation
with no discernible connection to the earlier shifts. This lack of global context prevents
the inversion process from reconstructing x. On the other hand, the entire linear layer
of Ascon can be expressed as a binary matrix multiplication, which is inherently easy to
invert. As such, the effectiveness of this inversion method heavily depends on how the
cipher is implemented.
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Table 1: Previous results of impossible differential distinguishers for LBlock
Setting Rounds Key Space Covered Search Method Ref.

Single-Key 14 Full U-method [WZ11]
Related-Key 15 Full Dedicated [MN12]
Related-Key 16 Full Dedicated [WWZ14]
Related-Key 16 Full MILP (Infeasibility-based) [CJF+16]

Related-Key 17 2−2
MILP

(Deterministic Truncated +
Undisturbed Bits)

[CZZ22]

4 Previous ID cryptanalysis results on LBlock
LBlock is a lightweight block cipher proposed by Wu and Zhang at ACNS 2011 [WZ11].
Its description is given in Appendix A. In the design document, the authors provided
an impossible differential analysis in the single-key setting covering 20 rounds by using
a 14-round distinguisher found with Kim et al.’s U-method [KHS+03]. Using the same
characteristic, this result was improved by Karakoç et al. [KDH12], reaching 21 rounds. A
22-round attack was also devised, using a different 14-round impossible differential path.
A similar characteristic was used by Boura et al. to break 23 rounds [BMNS14].

The first related-key analysis was performed by Minier and Naya-Plasencia [MN12].
Their analysis covered 22 rounds and took advantage of the low diffusion of the key
schedule to find a 15-round impossible differential path. The weakness of the key schedule
was once again used by Wen et al. [WWZ14], who proposed a dedicated algorithm to
search for impossible differential trails in LBlock, allowing them to reach 16 rounds. In
both cases, all the possible key values are split into a partition of differential trails. If a
differential appears to be impossible for each trail, then it holds for the entire key space.
In [CJF+16], Cui et al. reported several 16-round impossible differential paths. To this
date, it is the highest number of rounds for which impossible differentials exist for the
entire key space. In their approach, constraints on the input and the output of the cipher
are added to a MILP model describing the differential behavior of the cipher. When the
system reaches infeasibility, an impossible differential is found. For LBlock, the authors
restricted their search to cases in which there is exactly one bit of difference between the
two master keys and, at most, 1 bit of difference in the input and the output. In 2022,
Cao et al. [CZZ22] proposed an automatic search tool that takes into account the so-called
undisturbed differential bits already defined by Teczan [Tez14]. Additionally, they provided
a 17-round impossible path in the weak related-key model found with their tool. All the
main results on LBlock are summarized in Table 1.

4.1 Disproving the previous result on LBlock
In the work by Cao et al. [CZZ22], the authors present a 17-round related-key improbable
differential trail for LBlock. Rather than modeling the key schedule with deterministic
propagation patterns, they employ probabilistic differential propagations, shown in Table 2.
This approach leads to distinguishers that are longer but are not valid across the entire
key space. However, it appears that their implementation is flawed as the described key
schedule trail follows invalid transitions.

More precisely, producing a subkey difference equal to 0x01800000 at round 5 is not
possible if the subkey difference at round 2 equals 0x00030000. Indeed, it is quite easy to
observe that given any subkey ski = (ski

31ski
30 . . . ski

1, ski
0) of a round i < 9, the following

equalities hold for the subkey of round i + 31:

ski+3
27∼24 = S8(ski

20∼17). (1)
1This was also observed in [WWZ14]
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Table 2: Subkeys used in the 17-round improbable trail by [CZZ22]. α ∈ {0, 1, 2, 3}, β ∈
0, 4, 8, 12, γ ∈ {0, 1}, δ ∈ {0, 2, 4, 6, 8, 10, 12, 14}.

Round Subkey Round Subkey Round Subkey Round Subkey
0 00000000 5 00000000 10 00000000 15 00?00000
1 00030000 6 00000006 11 00000000 16 00000000
2 00000000 7 ?0000000 12 000γδ000
3 00000000 8 00000000 13 00000000
4 01800000 9 00000αβ0 14 00000000

For ∆sk2 = 0x00030000 and ∆sk5 = 0x01800000, Equation 1 would imply that
0x1 → 0x1 is a valid transition for S8, which is false. It is clear how crafting models
manually can be an error-prone process, not as with fully automatic modeling.

5 New 18-round improbable distinguisher for LBlock
Upon the realization that the trail provided by [CZZ22] was incorrect, the natural approach
was to search for other trails using a similar bit-wise model. One first observation is that
the bit-based model with undisturbed bits presents one limitation, as already mentioned
in Subsubsection 2.2.2: it is unable to keep track of groups of bits that are undetermined
yet nonzero. This typically happens when a bijective operation maps a nonzero input
difference to a truncated output difference with no undisturbed bit. Let us consider the
first S-box of LBlock as an example:

S0 = (14, 9, 15, 0, 13, 4, 10, 11, 1, 2, 8, 3, 7, 6, 12, 5).

There are 6 differential transitions with undisturbed bits: (0000 S0−→ 0000), (0001 S0−→
???1), (0010 S0−→???1), (0011 S0−→ 1??0), (1000 S0−→ 1???), (1011 S0−→ 0???).

In the bit-based model, all other cases are mapped to a fully undetermined output
δout =????, which provides no meaningful information for detecting incompatible cases.
However, since the input is nonzero, the output difference should also be nonzero with
probability 1, but this information is lost under this model. In contrast, the cell-wise
model can track such propagations (we refer to description of the S-Box constraint
in Subsubsection 2.2.1) and has proven to be effective for LBlock, as evidenced by the
previous word-based impossible differential cryptanalysis results [WZ11, MN12, WWZ14].

Indeed, it aligns well with the round function, which involves cell-aligned 4-bit opera-
tions. However, the key schedule includes a rotation of 29 bits to the left and would thus
benefit from a bit-based model. Additionally, the undisturbed bits of an S-box provide
extra information that can lead to the detection of more impossible trails. Another case
where the bit-wise model may provide more information than its cell-wise counterpart
is when looking at an XOR operation between one fully known input and one partially
known input: given a =???1 and b = 0010, the bit-wise representation is a⊕ b =???1 while
the cell-wise model abstracts this operation as N ⊕N∗ = U .

These observations motivated us to investigate a hybrid model, which integrates bit-
based and cell-based representations into a unified framework. This approach eliminates
the need to choose between the two models while retaining their respective advantages.

5.1 Hybrid model for the distinguisher search
The core idea of the model is to capture both notions of undisturbed bits and of active
groups of bits in S-box outputs and, more generally, in any nonlinear operation that is
bijective. As such, it can be seen as an extension of the bit-wise deterministic truncated
model with undisturbed bits, to which cell-wise properties are added.
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5.1.1 A toy example

Let us look at a toy example to showcase our hybrid model. We consider a simple Feistel
cipher acting on an 8-bit state (xl||xr), where the Feistel function F is defined by a round
key addition followed by the application of an S-box: F (xl, ki) = S0(xl ⊕ ki), where S0 is
the first S-box used in LBlock, previously defined.

For the sake of simplicity, the key schedule is linear and produces the 4-bit round keys
differences 1000, 0110, 1101, and 0101 at rounds 0, 1, 2, and 3, respectively. Fixing the
input and output differences to (0000, 0000) and (0101, 0000), respectively, Figure 1 shows
that the regular cell-based and bit-based models do not detect any incompatibility whereas
the hybrid model finds the differential to be impossible. Indeed, one extra information that
the hybrid model gains over the other models is that the right branch at the end of round 1
is undetermined but nonzero. More precisely, these models differ in their characterization
of the result of S(S(0000⊕ 1000)⊕ 0110):

• for the cell-based model, S(0000⊕ 1000) is the result of an S-box evaluation on two
fixed inputs, so it is an undetermined nonzero value α. S(S(0000⊕ 1000)⊕ 0110) =
S(α⊕ 0110) is then simplified to the output of an S-box evaluated on an unknown
input2, so the result is unknown;

• for the bit-based model, S(0000⊕ 1000) = 1??? using the undisturbed bits of S, and
thus S(S(0000 ⊕ 1000) ⊕ 0110) = S(1??? ⊕ 0110) = S(1???). Since 1??? has no
undisturbed bits, the result is unknown;

• for the hybrid-based model, as done with the bit-based model, we have S(0000 ⊕
1000) = 1??? using the undisturbed bits of S and thus S(S(0000⊕ 1000)⊕ 0110) =
S(1???⊕ 0110) = S(1???). This is a bijective S-box evaluated on a nonzero input, so
the result is undetermined but nonzero.

5.1.2 Model description

The hybrid model is an extension of the bit-wise model described in Subsubsection 2.2.2.

Data representation We recall that in bit-based approaches, for each round r, each bit
difference is associated to an integer variable δXi,r ∈ {0, 1, 2}, where 2 stands for the
unknown bit. In the hybrid model, this domain is extended by introducing a unique integer
ids,r for each n-bit S-box s of round r that serves as an identifier. The value should not
intersect with the base domain of the bit-wise representation, meaning that for all s and r,
ids,r > 2.

δXi =



0 if ∆Xi,r = 0
1 if ∆Xi,r = 1
2 if ∆Xi,r is unknown
ids,r′ if ∆Xi,r is produced by S-box s of round r′,

evaluated on a nonzero input difference

Whenever a nonzero input difference has no undisturbed bits, the n bits of output are
all set to idi,r to indicate that even though the output is unknown, the sum of the bits is
nonzero. Denoting nsb the number of S-box per round and nr the number of rounds, the
new domain of each variable δXr,i thus becomes D(δXri) = {0, 1, 2}

⋃
s∈Nsb,k∈Nr

{ids,k},

where Nsb = {0, . . . , nsb − 1} and Nr = {0, . . . , nr − 1}. The modeling of the S-box and
XOR operations needs to be changed to reflect this domain extension.

2In our cell-based model, the XOR of an undetermined nonzero input with a fixed input is unknown.
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Figure 1: Comparison of the cell-based, bit-based, and hybrid models.

Extended modeling of a bijective S-box For the S-box application Y = S(X), where S
is the s-th S-box at round r, X = (xn−1, . . . , x0), and Y = (yn−1, . . . , y0), the encoding
still uses information from the DDT restricted to undisturbed bits. For this, we introduce
new variables βXi,r ∈ {0, 1, 2} for each bit difference ∆Xi. These variables satisfy the
bit-wise constraints of the S-box. Consider the sets P∆X and {bp | p ∈ P} as defined
in Subsubsection 2.2.2. If P∆X is not empty then βX = (βXn−1, . . . , βX0) propagates to
the output difference βY = (βYn−1, . . . , βY0), where

βYi,r =
{

bi if i ∈ P∆X

2 otherwise.

In all the other cases, (βYm−1, . . . , βY0) = (2)n−1
i=0 . In turn, extended output patterns

δY = (δYn−1, . . . , δY0) satisfy

δY =


βY or ids,r if ∃i ∈ {0, . . . , n− 1}, δXi = 1
ids,r if ∀i ∈ {0, . . . , n− 1}, δXi = ids′,r′

2 otherwise.

Extended modeling of the XOR For the XOR operation Y = X0 ⊕X1, the propagation
of the differential pattern follows:

if δX0 < 2 ∧ δX1 < 2 then δY = δX0 + δX1

elseif δX0 > 2 ∧ δX1 = 0 then δY = δX0

elseif δX0 = 0 ∧ δX1 > 2 then δY = δX1

else δY = 2
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Table 3: New 16-round impossible differentials found with our model
∆in ∆out ∆K
0x0 0x0 0xb
0x0 0x0 0x580

0x60000000000 0x0 0x580

Objective function With this extended approach, two types of incompatibilities can be
detected. Denoting δXur,i (respectively δXlr,i) the difference in bit i of the internal state
at round r in the forward (respectively backward) direction:

1. a bit-based contradiction occurs if there exist a round r and a bit position i for
which δXur,i + δXlr,i = 1;

2. a word-based contradiction occurs if there exist a round r, n bit positions
i0, . . . in−1 and an S-box index s that verify:

∀j ∈ {i0, . . . , in−1}, (δXur,ij
= ids,r ∧ δXlr,ij

= 0).

5.2 A first application to LBlock
The longest impossible differentials covering the full key space of LBlock were identified
by Cui et al. [CJF+16], who presented several 16-round impossible differentials in the
related-key setting. These results cannot be reproduced using the bit-based model due
to the limitations discussed earlier in this section. In Appendix D, Table 7 and Table 8
detail the propagation in the subkeys and in the state under this model, for the differential
0 16r−−→ 0, with a single active bit located at k11 in the master key.

Using the hybrid model, we recover this differential. The resulting state is shown
in Table 9 of Appendix D. We also provide a script that can find other 16-round impossible
differentials that were not listed in Cui et al.’s paper (Listing 2) and reported them in
Table 3. This highlights the hybrid model’s advantage in bridging gaps left by the bit-based
approach. However, it is still unable to capture all the other differentials reported by Cui
et al. due to differences in our approach compared to theirs.

The strategy described in [CJF+16] involves testing the feasibility of a differential model
given specific constraints on the input and output; if no solution exists, the differential is
deemed impossible. One limitation of this model is that the input and output differences
must be fixed in advance but it offers one advantage over ours: if the set of all differential
characteristics composing a differential can be partitioned into subsets P = ∪pi

such that,
for each pair (pi, pj), the cell or bit positions of the incompatibility differ, Cui et al.’s
model will successfully detect this differential as impossible. In contrast, our truncated
deterministic approach will fail to do so.

One example among the differentials found by Cui et al. is

(0x00000000, 0x00000000) 16r−−−−−−→
∆K=0x40

(0x00000000, 0x00000000).

An examination of the propagations in the key schedule (depicted in Table 10) reveals that
the location of the contradiction at round 9 depends on the most significant bit of the first
byte of the subkey produced at round 8:

• if it equals 1, the differential is impossible due to an inconsistency at byte 15,

• otherwise, the differential is impossible due to an inconsistency at byte 11.
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Table 4: 16-round impossible trails found by [CJF+16] tested against our model.
∆in ∆out ∆K SAT differential model our model

0 0 or 1≪ j, j ∈ {40, 41, 42, 43} 1≪ 11 ✓ only ∆out = 0 or 1≪ j, j ∈ {43, 42}
0 0 or 1≪ j, j ∈ {52, 53, 54, 55} 1≪ 10 ✓ no
0 0 1≪ 6 ✓ ✓
0 0 or 1≪ j, j ∈ {44, 45, 46, 47} 4 ✓ no
0 0 2 no no (p = 2−0.093)
0 0 1 no no (p = 2−0.093)

5.3 A new result using probabilistic trails
As observed in Subsection 5.2, for LBlock, given fixed plaintext, ciphertext, and key
differences, it is possible for the incompatibility to occur at different locations, depending
on the S-box outputs of the key schedule. Subkeys partitioning has previously been used
to manually find impossible differentials [MN12, WWZ14]. Thus, allowing probabilistic
differential transitions for the key schedule in our model can lead to the identification of
more impossible differentials.

The modeling of the two key schedule S-boxes S8 and S9 were changed to encode their
standard DDT and the corresponding probability, as done for automated differential crypt-
analysis [GMS16, AST+17]. Then, we used this probabilistic hybrid model to enumerate
all trails of weight less than 20. Indeed, each transition of S8 and S9 has a probability of
at least 2−3, and with a small number of active bits in the key, we can expect to have very
few active S-boxes even for a high number of rounds. The trails found are then merged to
obtain differentials.

Application to 16 rounds of LBlock For 16 rounds, we are able to retrieve more of
the 16-round impossible differentials found by the authors of [CJF+16]. The results are
summarized in Table 4. While some missing instances are due to a limitation of our
approach, it should be noted we were unable to reproduce the paper’s results when either
bit k0 or k1 of the master key is active, even with the strategy described by the authors.
In fact, the SAT differential model generated by CLAASP shows that the differentials are
satisfiable.

Application to 18 rounds of LBlock For 18 rounds, among the 121 trails of weight less
than 20, 6 are part of the following differential

(0x00000000, 0x00000008) 18r−−−−−−−−−−→
∆K=0x40000000

(0x00000000, 0x00000000).

This impossible differential holds on average for 245 keys and requires a subkey at
round 10 of the form 0xα0000000, where α = 0x0 or 0x8, which occurs with probability
2−0.83. This new trail is reported in Table 11 and the patterns for the subkeys are given
in Table 12 of Appendix E. Additionally, verification scripts based on CLAASP are
provided in Listing 3 and Listing 4 of Appendix E.

6 Previous ID cryptanalysis results on HIGHT
HIGHT is a lightweight block cipher proposed by Hong et al. at CHES 2006 [HSH+06].
Its description is provided in Appendix B. The security analysis performed by the authors
showed impossible differential results up to 18 rounds. Later works brought that number
up to 27 rounds for single-key impossible differential cryptanalysis and 31 rounds for
the related-key setting. In [Lu07], Lu presented new impossible differentials reaching 25
rounds (rounds 6-30) in the single-key scenario and 28 rounds (rounds 3-30) in related-key,
while removing the initial transformation of the cipher. Ozen et al. extended the attack
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Table 5: Previous results of impossible differential cryptanalysis of HIGHT
Scenario Rounds Transformations Time Data Memory Ref.
Single-key 18 (1-18) Both 2109.2 enc. 246.8 plaintexts / [HSH+06]
Single-key 25 (6-30) Only final 2126.75 enc. 260 plaintexts / [Lu07]
Single-key 26 (1-26) Only final 2119.53 enc. 261 plaintexts 2109 B [ÖVTK09]
Single-key 27 (4-30) Both 2126.6 enc. 258 plaintexts 2120 B [CWP12]
Single-key 27 (4-30) Both 2120.58 enc. 259.3 plaintexts 2107.4 B [AAA+18]

Related-key 28 (3-30) Only final 2125.99 enc. 259 plaintexts / [Lu07]
Related-key 31 (1-31) Only final 2127.28 enc. 264 plaintexts 2117 B [ÖVTK09]
Related-key 32 Both 2127.276 enc. 264 plaintexts 2104 B [RCT13]

to 26 (rounds 1-26) and 31 rounds (rounds 1-31) respectively, again without the initial
transformation. In [CWP12] Chen et al. finally included the initial transformation, and
attacked 27 rounds (rounds 4-30) in the single-key scenario, using hash tables to optimize
the attack. This approach was refined by Azimi et al. in [AAA+18]. In [RCT13], Rostami
et al. show a full-round attack for a class of weak keys in the related-key setting. A
summary of all the results can be found in Table 5.

7 New results on HIGHT
The general steps for a key recovery attack, given an impossible differential, are as follows.

1. Distinguisher extension: The attacker propagates the impossible differential trail
to the plaintext and ciphertext. The propagation is performed in the backward
direction from the start of the differential to the plaintext and in the forward direction
from the output difference to the ciphertext.

2. Pairs generation: In the pairs generation phase, pairs satisfying the extended
differential are generated. This is usually done by generating some structures of 2
sets of plaintexts (resp. ciphertexts), where fixed difference bits are constant, and
free difference bits vary so that all plaintexts (resp. ciphertexts) pairs in the structure
satisfy the expected difference. The structures are then encrypted (resp. decrypted),
and the ones satisfying the output (resp. input) extended difference are kept.

3. Pairs elimination: The pairs satisfying each round’s difference are propagated
deterministically forward from the plaintext and backward from the ciphertext,
exhaustively guessing the involved key bits. Since the starting states will contain
more unknown difference bits than in the successive states, this process leads to the
elimination of some of the initial pairs, namely the ones not satisfying at least one
round difference.

4. Subkeys elimination: When the last round of the extension of the distinguisher
is reached, the subkey elimination step begins. Each remaining pair leads to the
elimination of all the guessed subkeys which makes it satisfy the impossible differential.
Indeed, if one of such subkeys were correct, then the impossible differential would be
satisfied for at least one pair, leading to a contradiction.

5. Exhaustive search The remaining keys are exhaustively checked until the correct
one is found.

Chen et al. introduced a variation of the attack in [CWP12] that uses hash tables to
reduce the time complexity of the pairs elimination step, which is the heaviest one. In
particular, portions of the distinguisher’s extension are precomputed, in order to efficiently
deduce the subkeys leading to the impossible differential when the guessed portion is reached
during the pairs elimination phase. Therefore, instead of multiplying the complexities of



16 Impossible Differentials Automation: Model Generation and New Techniques

each step, it is enough to add the sub-extension complexities of the evaluations. The hash
table complexity gains are usually computed on top of an existing impossible differential,
even though different impossible differentials may be better suited; in the following section,
we account for this precomputation step in an impossible differential search model.

7.1 Modeling the search for the distinguisher and its extensions
Our model extends the approach of the bit-based version of [HGSE24] in two ways: first,
we obtain a finer-grained complexity analysis by including the hash tables precomputa-
tion [CWP12] in the objective function. In addition, we let the solver choose the number
of rounds of each part of the trail.

HIGHT operates on words of 8 bits using the XOR, modular addition, and left rotation.
To model these operations, we use the bit-based encoding of [CZZ22] (Subsubsection 2.2.2).
We recall that each bit difference is represented by a variable with values in the set {0, 1, 2},
where 0 and 1 correspond to known bit differences of 0 and 1, and 2 represents an unknown
bit difference.

We use the high-level language MiniZinc [NSB+07] to create this model. In Appendix F,
we provide the MiniZinc implementations of the different functions (Listing 5, Listing 6,
Listing 7). In our standard model (without the use of hash tables), we use the following
matrices:
array [0..7 , 0..7] of var 0..2: P; % Plaintext difference
array [0..7 , 0..7] of var 0..2: C; % Ciphertext difference
array [0.. rounds , 0..7 , 0..7] of var 0..2: St; % Round States differences
array [0.. rounds , 0..7 , 0..7] of var 0..2: Inv_St ; % Round states differences evaluated

from P and C
array [0.. rounds , 0..7] of var 0..8: Fil; % Filtering bytes positions and dimension
array [0.. rounds , 0..7] of var 0..1: Fil_N ; % Ancestors bytes of the Filtering ones (

bytes needed for their evaluation )
array [0..15] of var 0..15: KP; % Permutation of the master key bytes for guessing order
array [0..15] of var 1..16: KP_id ; % Inverse of the permutation of the master key bytes

for guessing order
array [0.. rounds , 0..7] of var 0..16: MK; % Maximum index of msater key byte involved in

byte evaluation
array [0..15] of var 0..128: P_El; % Number of eliminated pairs after each key byte guess

We denote the deterministic propagation of a state through a HIGHT round in the
forward (resp. backward) direction by DirProp (resp. InvProp). We then have:

St[i] = InvProp(St[i + 1]), ∀i ∈ {0, . . . , nI − 1}

St[i] = DirProp(St[i− 1]), ∀i ∈ {nI + 1, . . . , nM}

St[i] = InvProp(St[i + 1]), ∀i ∈ {nM , . . . , nF − 1}

St[i] = DirProp(St[i− 1]), ∀i ∈ {nF + 1, . . . , nr}

where nI is the end round of the initial extension, nM is the meeting round of the impossible
differential, and nF is the start round of the final extension. St[nI ] is the start state
of the impossible differential and St[nF ] is the end state of the impossible differential,
which in our model are all variables. For a differential to be impossible, there must be an
inconsistency in St[nM ], encoded through an additional row in the state table, where both
states are checked for incompatibility.

Modeling the pairs elimination phase In this paragraph, we model the set of all the
bytes to be guessed and the order of guessing.

The former are represented as Fil and Fil_N. The relations encoded for Fil are the
following:
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1. Model the propagation from plaintext and ciphertext,

Inv_St[i] = DirProp(St[i− 1]), ∀i ∈ {1, . . . , nI}

Inv_St[i] = InvProp(St[i + 1]), ∀i ∈ {nF , . . . , nr − 1}

2. Identify the filtering steps bytes and their number of differences,

Fil[i, j] =
∣∣∣{k ∈ {0, 1, . . . , 7} : Inv_St[i, j, k] = 2 ∧ St[i, j, k] ̸= 2

}∣∣∣
3. Deduce all the bytes involved in their evaluations,

∀i, j ∈ {0, . . . , nr} × {0, . . . , 7}, Fil[i, j] ̸= 0 =⇒ Fil_N[i, j] = 1

∀i, j ∈ {1, . . . , nI} × {0, . . . , 3} :
Fil_N[i, 2j + 1] = 1 =⇒ Fil_N[i− 1, (2j + 2) mod 8] = 1
Fil_N[i, 2j + 1] = 1 =⇒ Fil_N[i− 1, (2j + 3) mod 8] = 1
Fil_N[i, 2j] = 1 =⇒ Fil_N[i− 1, 2j + 1] = 1

∀i, j ∈ {nF , . . . , nr − 1} × {0, . . . , 3} :
Fil_N[i, 2j] = 1 =⇒ Fil_N[i + 1, (2j − 1) mod 8] = 1
Fil_N[i, 2j] = 1 =⇒ Fil_N[i + 1, 2j] = 1
Fil_N[i, 2j + 1] = 1 =⇒ Fil_N[i + 1, 2j] = 1

For the order of the guessing, we need the permutation of the key bytes, its inverse, and
the maximum index for the evaluation of each guessed byte:

1. Model the permutation, using the MiniZinc global constraint all_different,

all_different(KP )

2. Model the inverse of the permutation,

∀i ∈ {0, . . . , 15} KP_id[KP [i]] = i + 1

3. Initialize the max index according to the initial and final transformation,

MK[0, 0] = 0 ∧ MK[0, 1] = KP_id[15]
MK[0, 2] = 0 ∧ MK[0, 3] = KP_id[15]
MK[0, 4] = 0 ∧ MK[0, 5] = KP_id[15]
MK[0, 6] = 0 ∧ MK[0, 7] = KP_id[15]
MK[nr, 0] = KP_id[3] ∧ MK[nr, 1] = 0
MK[nr, 2] = KP_id[2] ∧ MK[nr, 3] = 0
MK[nr, 4] = KP_id[1] ∧ MK[nr, 5] = 0
MK[nr, 6] = KP_id[0] ∧ MK[nr, 7] = 0

4. Model the max index,

∀i, j ∈ {1, . . . , nI} × {0, . . . , 3} :{
MK[i, 2j] = MK[i− 1, 2j + 1]
MK[i, 2j + 1] = max(MK[i− 1, 2j + 2], MK[i− 1, 2j + 3], SKj

i )

∀i, j ∈ {nF , . . . , nr − 1} × {0, . . . , 3} :{
MK[i, 2j + 1] = MK[i + 1, 2j]
MK[i, 2j] = max(MK[i + 1, 2j − 1], MK[i + 1, 2j], SKj

i )
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Finally, we can compute the (log2 of the) number of pairs eliminated before each guessing
step:

∀k ∈ {0, . . . , 15}, P_El[k] =
nr∑

i=0

7∑
j=0

(Fil[i, j] · 1Fil[i,j]>0∧MK[i,j]≤k)

where 1 is the indicator function.

7.2 Complexity evaluation and Objective Function
The data complexity evaluation is similar to [HSE23]. In practice, we implement the
complexity of the pairs elimination phase with the set Cguess = (8(i + 1)− P_El[i]). The
heaviest complexity step is the maximum over i of Cguess[i] + log2(|{j s.t. Cguess[j] =
Cguess[i]}|), where for the logarithm we use the approximation log2(x) = 2.2x − 2 as in
[BGG+23b].
For the final exhaustive search, the complexity is as shown in [ÖVTK09],

log2

2128 ·
(

1− 2f

28·(max(MK)−1)

)2IP −P _El[15]


where f is the number of bits of the last filtering byte where a fixed known difference has
to be forced and 2IP is the number of initial pairs. We approximate the function as

log2

(
2128

(
1− 1

2k

)2n)
≈ log2

(
2128 · e−2n−k

)
= 128− 2n−k log2(e)

7.2.1 Modeling the Hash Tables

The main improvement of our automatic model compared to others in the literature is
the automation of the hash tables approach and its integration with the model of the
distinguisher search.

Let IT1, IT2, . . . , ITT denote T tables with binary elements, representing the modeling
of T hash tables. A 1 means that the byte in that position will be guessed in the
corresponding hash table. Another set of T tables, OT1, OT2, . . . , OTT , represents the
bytes that are computed during the creation of the hash table. Among the bytes leading
to pairs eliminations, we select T of them as representatives of the hash tables. The
constraints used for these tables (apart from the relations among the bytes) represent two
properties. First, every selected filtering byte must be active in at least one of the second
set of tables. Moreover, as conditions for the first set of tables, given the filtering bytes
related to a hash table, we set as 1 the nearest bytes to the filtering tables, which are
involved in its computation and have already been evaluated as outputs in at least one
previous table or in the pairs elimination part. An important addition to the model is the
modification of the objective function. Next, the pairs filtering must be modeled only on
the filtering bytes not involved in the hash tables, thus drastically reducing this part of
the total complexity. On the other hand we have to take into account the generation of
the tables and the memory accesses. Regarding the log2 of the first part of the evaluation,
we have that

Tmax
i=1

(8 · (
nr∑

k=0

7∑
j=0

(ITi[k, j]) + TKi))

where TKi is the number of key bytes to be guessed in the computation of table i. For
the second part we count one access as a quarter round of encryption, as in [AAA+18].
Each hash table is represented by some filtering bytes, which involve a total of CTi bit
conditions. Moreover, each table also determines as output some key bytes, denoted KTi.
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Each table is then accessed a total number of times equal to the number of remaining
pairs 2RP , after filtering multiplied by 2 to the power of the sum of the numbers of the
free bits after accessing the previous tables:

Ai = 2RP +
∑i−1

j=1
(8·KTi−CTi)

The log2 of the tables’ access complexity is approximately

Tmax
i=1

(RP +
i−1∑
j=1

(8 ·KTi − CTi)) .

7.3 Results: improved single-key recovery attack
Using our model, we improve the attack complexity on 27-rounds HIGHT in the single-key
setting with initial and final transformations. The extension of the trail can be found
in Table 6, and the complete trail in Appendix G. The hash tables filtering bytes are
highlighted in red, and one of the pairs elimination processes is in blue. The bytes to be
guessed in the pairs elimination process are highlighted in green. A detailed review of the
attack procedure can be found in Appendix H, where the input bytes of each table have
already been guessed or evaluated in previous steps, either the pairs elimination phase or
in previous tables. We first detail the filtering process and give a description of the hash
tables computation. The permutation of the key bytes guessed in the pairs elimination
phase is (0, 3, 13, 12), while the hash tables involve the following filtering bytes (in order of
computation): (S2

28), (S3
6), (S4

27), (S3
8), (S3

7), (S6
26), (S0

25), (S2
25, S2

24),

Table 6: Our impossible differential trail with extensions for a 27 rounds attack on HIGHT
PT ???????0 10000000 00000000 00000000 ???????? ???????? ???????? ????????
R3 ???????0 10000000 00000000 00000000 ???????? ???????? ???????? ???????? ↑
R4 10000000 00000000 00000000 00000000 ???????? ???????? ???????? ???????1 ↑
R5 00000000 00000000 00000000 00000000 ???????? ???????? ???????1 10000000 ↑
R6 00000000 00000000 00000000 00000000 ???????? ???????1 10000000 00000000 ↑
R7 00000000 00000000 00000000 00000000 ???????1 10000000 00000000 00000000 ↑
R8 00000000 00000000 00000000 00000000 10000000 00000000 00000000 00000000 ↑

a ID Trail
R24 00000000 00000000 00000000 ??1????1 00000000 00000000 00000000 00000000 ↓
R25 00000000 ???????? ??1????1 00000000 00000000 00000000 00000000 00000000 ↓
R26 ???????? ???????1 00000000 00000000 00000000 00000000 00000000 ???????? ↓
R27 ???????1 00000000 00000000 00000000 00000000 ???????? ???????? ???????? ↓
R28 00000000 00000000 00000000 ???????? ???????? ???????? ???????? ???????1 ↓
R29 00000000 ???????? ???????? ???????? ???????? ???????? ???????1 00000000 ↓
R30 ???????? ???????? ???????? ???????? ???????? ???????1 00000000 ???????? ↓
CT ???????? ???????? ???????? ???????? ???????? ???????? ???????1 00000000

7.3.1 Complexity Evaluation

We have to generate 2IP initial pairs satisfying the plaintext and ciphertext truncated
differences. From a fixed 64-bit string we can construct 239 plaintexts having the same
bit in the positions where the plaintext difference is fixed and another 239 such that the
difference with the first ones satisfies the plaintext difference. These sets can generate a
total of 278 pairs. Each one of these pairs satisfies the ciphertext condition with probability
2−9, so for each structure, a total of 269 good pairs will remain. Therefore we will need
2IP −69 structures of 239 + 239 = 240 plaintexts each, resulting in a total amount of 2IP −29

initial plaintexts for our attack. A summary of the complexity evaluation of the attack
follows (we count CB as a quarter round encryption, CB = 1

108 CE):
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• Initial pairs generation: the total complexity of the step is C0 = 2IP −29CE

• Pairs elimination: the total complexity is the sum of the complexity of each guessing
step, in our case C1 = 2 · 2IP +16 · 7CB

• Hash tables computation: the total complexity is the sum of the complexity of each
step, whose leading term in our case is C2 ≤ (28)14CB

• Hash tables access: the total complexity is the sum of each the complexity of table
access, in our case C3 = 2IP −24 ·232 ·(28+216+224+224+224+232+232+232+231)CB

• Exhaustive search: C4 = 2128 · (1− 231

288 )2IP −24

By setting IP = 84, the data complexity is 255 plaintexts and the total time complexity is
CT = C0 +C1 +C2 +C3 +C4 ≤ 255CE +(2101 ·7+2112 +2125.33)CB +2116.5CE ≤ 2118.9CE .

8 Conclusions and future work
We presented an extension of previous techniques to find impossible differential trails by
introducing a hybrid model. The model is available in multiple formalisms and combines
the advantages of the cell-wise propagation analysis with the precision of the bit-wise
approach, while also supporting probabilistic transitions in the related-key setting. We
also introduced an effective technique to automatically invert symmetric ciphers. We
demonstrated the generality of the techniques above by implementing them in an automated
tool, namely CLAASP. We effectively applied the tool to the LBlock cipher to not only
recover state-of-the-art results for 16 rounds but also expand them with new 16-round
impossible differentials and a new 18-round improbable differential.

Additionally, we developed a new CP model to evaluate the complexity of ID attacks
and automatically identify the optimal impossible differential trail for key recovery in the
HIGHT block cipher. Our model improves the key-recovery attacks on 27-round HIGHT
by identifying a new trail and leveraging the hash tables approach presented in [CWP12].

Future work will aim to generalize our ID attack model for HIGHT to enhance
automated tools. This will involve expanding support for complexity evaluation of ID
attacks for SAT, SMT, MILP, and CP, with the option to incorporate the hash tables
approach. Another promising direction is integrating the differential clustering effect into
the model for optimal distinguisher search, which is currently performed as a post-processing
step in the hybrid probabilistic model.
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A Description of LBlock
LBlock is a lightweight block cipher proposed by Wu and Zhang at ACNS 2011 [WZ11].
The round function acts on a 64-bit state. It follows a two-branched Feistel structure,
where the receiving branch of the Feistel function is first rotated by 8 bits. The inner
round function is made of one round key addition, a parallel application of 8 different 4-bit
S-boxes and a nibble-wise permutation.

S0

S1

S2

S3

S4

S5

S6

S7

ki

<<< 8

xi
0xi

1

yi+1
0yi+1

1

Figure 2: One round of the LBlock cipher.
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The 80-bit master key K is stored in a key register and denoted as K = k79k78 · · · k1k0.
At each round i, the 32-bit round key ski consists of the 64 leftmost bits of the current
key state: ki = k79∼48. The key update is described in algorithm 2.

Algorithm 2: Key schedule of LBlock
sk0 = K79∼48;
for 1 ≤ r ≤ 31 do

k79∼0 ← k79∼0 ≪ 29;
k79∼76 ← S9(k79∼76);
k75∼72 ← S8(k75∼72);
k50∼47 ← k50∼47 ⊕ [i]2;
sk5r ← k79∼48;

end

B Description of HIGHT
HIGHT is a lightweight block cipher proposed by Hong et al. at CHES 2006 [HSH+06].
The round function acts on a 64-bit state. Its round function is some sort of a concatenation
of 4 Feistel structures acting on pairs of bytes which are then rotated. The key is inducted
alternately on the bytes by XOR and modular addition, while the state operations are
rotations and either XOR, if the key is used with the modular addition, or modular
addition. The 128-bit master key K is used for an initial transformation and then at each
round the 32-bit subkey involved in the state is evaluated via modular addition with fixed
constants of previous subkeys.
The 128-bit initial key MK is used for the computation of the 32-bit round keys SKi and
the initial and final whitening keys WK as shown in algorithm 3 and algorithm 4

Algorithm 3: Whitening key schedule of HIGHT
for 0 ≤ i ≤ 3 do

WKi ←MKi+12;
end
for 4 ≤ i ≤ 7 do

WKi ←MKi−4;
end

The initial and final whitening are performed at the beginning and end of the encryption
by adding or XORing the whitening key to the plaintext and to the last round output
respectively, as shown in algorithm 5. From now on we will indicate the i-th byte of the
r-th round output as Si

r.
The ENC(S) encryption function is evaluated by the application of a round function 32

times. The round function is described in algorithm 6. This function needs the definition
of two auxiliary functions, F0 and F1, which are defined as follows:

F0(x) = (x ≪ 1)⊕ (x ≪ 2)⊕ (x ≪ 7)

F1(x) = (x ≪ 3)⊕ (x ≪ 4)⊕ (x ≪ 6)

A graphic representation of the round function can be found in Figure 3.
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Algorithm 4: Key schedule of HIGHT
δ0 ← 1011010;
for 1 ≤ i ≤ 127 do

δi ← ((δi−1 ⊕ (δi−1 ≫ 3))≪ 6)⊕ (δi−1 ≫ 1);
end
for 0 ≤ i ≤ 7 do

for 0 ≤ j ≤ 7 do
SK16i+j ←MKj−1 mod 8 ⊞ δ16i+j ;

end
for 0 ≤ j ≤ 7 do

SK16i+j+8 ←MK(j−1 mod 8)+8 ⊞ δ16i+j+8;
end

end

Algorithm 5: Initial and final whitening of HIGHT
S0

0 ← P0; S1
0 ← P1 ⊕WK3; S2

0 ← P2; S3
0 ← P3 ⊞ WK2; S4

0 ← P4;
S5

0 ← P5 ⊕WK1; S6
0 ← P6; S7

0 ← P7 ⊞ WK0;
ENC(S);
C0 ← S7

32; C1 ← S0
32 ⊕WK7; C2 ← S1

32; C3 ← S2
32 ⊞ WK6; C4 ← S3

32;
C5 ← S4

32 ⊕WK5; C6 ← S5
32; C7 ← S6

32 ⊞ WK4;

Algorithm 6: Round function of HIGHT
for 0 ≤ r ≤ 31 do

for 0 ≤ i ≤ 3 do
S2i

r+1 ← S2i+1
r

end
for 0 ≤ i ≤ 1 do

S4i−1 mod 8
r+1 ← S4i

r ⊕ (F1(S4i+1
r−1 ) ⊞ SK4r+3−2i)

end
for 0 ≤ i ≤ 1 do

S4i+1
r+1 ← S4i+2

r ⊞ (F1(S4i+3
r−1 )⊕ SK4r+2−2i)

end
end
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Figure 3: One round of the HIGHT cipher.
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C CLAASP automatic cipher inversion: a toy example

cipher = {
...
’cipher_rounds ’ : [
# round 0
[{ # round = 0 - round component = 0

’id ’: ’sbox_0_0 ’,
’type ’: ’sbox ’,
’input_bit_size ’: 3,
’input_id_link ’: [’plaintext ’],
’input_bit_positions ’: [[0 , 1, 2]] ,
’output_bit_size ’: 3,

’description ’: [0, 5, 3, 2, 6, 1, 4, 7]} ,
{ # round = 0 - round component = 1

’id ’: ’xor_0_1 ’,
’type ’: ’word_operation ’,
’input_bit_size ’: 6,
’input_id_link ’: [’sbox_0_0 ’, ’plaintext ’],
’input_bit_positions ’: [[0 , 1, 2], [3, 4, 5]] ,
’output_bit_size ’: 3,
’description ’: [’XOR ’, 2]} ,

{ # round = 0 - round component = 2
’id ’: ’cipher_output_0_2 ’,
’type ’: ’cipher_output ’,
’input_bit_size ’: 6,
’input_id_link ’: [’xor_0_1 ’, ’plaintext ’],
’input_bit_positions ’: [[0 , 1, 2], [0, 1, 2]] ,
’output_bit_size ’: 6,
’description ’: [’cipher_output ’],

}]]
}

Listing 1: CLAASP representation of the toy example

S

cipher_output[3:5]cipher_output[0:2]

xor_0_1
sbox_0_0

plaintext[3:5]plaintext[0:2]

Figure 4: Toy example to il-
lustrate the cipher inversion.

Consider the example depicted in Figure 4 and its CLAASP object (Listing 1):

Step 1. L = [cipher_output_0_2]. The bits plaintext[0:2] can be obtained as
they are equal to cipher_output_0_2[3:5].

Step 2. L = [cipher_output_0_2, plaintext[0:2]]. The S-box sbox_0_0 can be
evaluated as its input bits plaintext[0:2] are available.

Step 3. L = [cipher_output_0_2, plaintext[0:2], sbox_0_0]. The XOR oper-
ation xor_0_1 can be inverted as its output cipher_output_0_2[0:2] and its
second input sbox_0_0 are available.

Step 4. L = [cipher_output_0_2, plaintext[0:2], sbox_0_0, inv_xor_0_1]. Fi-
nally, the last bits plaintext[3:5] can be obtained as they are equal to the output
of the inverted XOR.
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D 16-round impossible differential 0 ∆k11=1−−−−→ 0 found for
LBlock by [CJF+16]

Table 7: Deterministic subkeys used in the 16-round impossible differential 0 ∆k11=1−−−−−→ 0
of [CJF+16].

0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0010 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
?1?? 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 00?1 ??00 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 000? 1??0 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 ?1?? 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 00?1

Table 8: State of the the 16-round impossible differential 0 ∆k11=1−−−−−→ 0 of [CJF+16] using a
bit-wise model.

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 ???1 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 ???? 0000 0000 0000 0000 0000 0000 0000 0000 0000 ???1 0000 0000 0000 0000
???? ???1 0000 0000 0000 0000 0000 0000 0000 ???? 0000 0000 0000 0000 0000 0000
???? 0000 ???? 0000 0000 0000 0000 ???? ???? ???1 0000 0000 0000 0000 0000 0000
0000 0000 ???? ???? 0000 ???? ???? ???1 ???? 0000 ???? 0000 0000 0000 0000 ????
???? ???? 0000 ???? ???? ???? ???? ???? 0000 0000 ???? ???? 0000 ???? ???? ???1
???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????
???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????
0000 ???? ???? ???? 0000 ???? 0000 ???? ???? ???? ???? ???? ???? ???? ???? ????
0000 ???? ???? 0000 0000 0000 ???? ???? 0000 ???? ???? ???? 0000 ???? 0000 ????
0000 ???? 0000 0000 0000 ???? 0000 ???? 0000 ???? ???? 0000 0000 0000 ???? ????
0000 0000 0000 0000 0000 0000 0000 ???? 0000 ???? 0000 0000 0000 ???? 0000 ????
0000 0000 0000 0000 0000 0000 0000 ???? 0000 0000 0000 0000 0000 0000 0000 ????
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 ????
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
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Table 10: Evolution of the LBlock key schedule over 16 rounds, when ∆K = 0x40, in the
bit-wise deterministic truncated model. The differential (000000000, 00000000) 16r−−−−−−→

∆K=0x40
(00000000, 00000000) is impossible due to a contradiction at byte 11 of round 9 if α = 0
and at byte 15 of round 9 otherwise.

Round Subkey
0 0000 0000 0000 0000 0000 0000 0000 0000
1 0000 0000 0000 0000 0000 0000 0000 0000
2 0000 0000 0000 0001 0000 0000 0000 0000
3 0000 0000 0000 0000 0000 0000 0000 0000
4 0000 0000 0000 0000 0000 0000 0000 0000
5 0000 0000 1000 0000 0000 0000 0000 0000
6 0000 0000 0000 0000 0000 0000 0000 0000
7 0000 0000 0000 0000 0000 0000 0000 0010
8 αβγδ 0000 0000 0000 0000 0000 0000 0000
9 0000 0000 0000 0000 0000 0000 0000 0000
10 0000 0000 0000 0000 0000 00αβ γδ00 0000
11 0000 0000 0000 0000 0000 0000 0000 0000
12 0000 0000 0000 0000 0000 0000 0000 0000
13 0000 0000 0000 000α βγδ0 0000 0000 0000
14 0000 0000 0000 0000 0000 0000 0000 0000
15 0000 0000 0000 0000 0000 0000 0000 0000

Table 9: State of the 16-round impossible differential 0 ∆k11=1−−−−−→ 0 of [CJF+16] using the
hybrid model.

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 2222 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 5555 0000 0000 0000 0000 0000 0000 0000 0000 0000 2222 0000 0000 0000 0000
4444 2222 0000 0000 0000 0000 0000 0000 0000 5555 0000 0000 0000 0000 0000 0000
6666 0000 ???? 0000 0000 0000 0000 5555 4444 2222 0000 0000 0000 0000 0000 0000
0000 0000 0000 ???? 0000 2222 4444 2222 6666 0000 ???? 0000 0000 0000 0000 5555
???? ???? 0000 5555 ???? ???? 6666 ???? 0000 0000 0000 ???? 0000 2222 4444 2222
4444 ???? 0000 ???? ???? ???? 5555 ???? ???? ???? ???? ???? ???? ???? ???? ????
???? 0000 ???? ???? 6666 4444 0000 ???? 4444 ???? 0000 ???? ???? ???? 5555 ????
0000 ???? 4444 6666 0000 6666 0000 ???? ???? 0000 ???? ???? 6666 4444 0000 ????
0000 4444 6666 0000 0000 0000 ???? 0000 0000 ???? 4444 6666 0000 6666 0000 ????
0000 6666 0000 0000 0000 ???? 0000 2222 0000 4444 6666 0000 0000 0000 ???? 0000
0000 0000 0000 0000 0000 0000 0000 4444 0000 6666 0000 0000 0000 ???? 0000 2222
0000 0000 0000 0000 0000 0000 0000 6666 0000 0000 0000 0000 0000 0000 0000 4444
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 6666
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

Listing 2: CLAASP script to find 16-round impossible trails with the hybrid model, in the
related-key setting
from claasp . cipher_modules . models .cp. mzn_models .

mzn_hybrid_impossible_xor_differential_model import
MznHybridImpossibleXorDifferentialModel

from claasp . ciphers . block_ciphers . lblock_block_cipher import LBlockBlockCipher
from claasp . cipher_modules . models . utils import set_fixed_variables , integer_to_bit_list
lblock = LBlockBlockCipher ( number_of_rounds =16)
mzn = MznHybridImpossibleXorDifferentialModel ( lblock )
fixed_variables = [ set_fixed_variables (’key ’, ’not_equal ’, range (80) , [0]*80) ]
trails = mzn. find_all_impossible_xor_differential_trails (16 , fixed_variables , ’Chuffed ’

, 1, 8, 16, intermediate_components = False )

E 18-round improbable differential for LBlock
Table 11 shows the 18-round improbable trail, and the patterns for the subkeys are given
in Table 12.
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Table 11: Our 18-round improbable trail. We use a truncated cell-wise notation: 0 indicates
a null word difference, * represents an unknown but nonzero difference, and ? denotes a
fully undetermined difference.

State (truncated) Subkey
(00000000, 00000008) 00000000
(00000800, 00000000) 00000800
(00000000, 00000800) 00000000
(00080000, 00000000) 00000000
(0*000000, 00080000) 00040000
(*?000000, 0*000000) 00000000
(?0*0000*, *?000000) 00000000
(00?*0**?, ?0*0000*) 0*000000
(?*0?*??*, 00?*0**?) 00000000
(???*??*?, ?*0?*??*) 000000?*
(?*?*?**?, ??*?????)
(0?0*?***, ?*?*?**?) α0000000
(?00*0*?0, 0?0*?***) 00000000
(000*0*00, ?00*0*?0) 0000?*00
(000*0000, 000*0*00) 00000000
(000*0000, 000*0000) 00000000
(00000000, 000*0000) 000*0000
(00000000, 00000000) 00000000
(00000000, 00000000) 00000000
(00000000, 00000000)

Table 12: The conditional subkeys used for the 18-round improbable differential. We use a
truncated cell-wise notation: 0 indicates a null word difference, * represents an unknown
but nonzero difference, and ? denotes a fully undetermined difference. Here α equals either
0x0 or 0x8.

Round Deterministic Subkeys Conditional Subkeys
0 00000000 00000000
1 00000800 00000800
2 00000000 00000000
3 00000000 00000000
4 00040000 00040000
5 00000000 00000000
6 00000000 00000000
7 0*000000 0*000000
8 00000000 00000000
9 000000?* 000000?*
10 ?0000000 α0000000
11 00000000 00000000
12 0000?*?0 0000?*00
13 00000000 00000000
14 00000000 00000000
15 000*?000 000*0000
16 00000000 00000000
17 00000000 00000000
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Table 13 shows the state of the 18-round improbable trail for LBlock under the
bit-wise model. The backward propagation leading to byte X10 of round 9 is highlighted in
color. The shade changes whenever the difference goes through an S-box. Information loss
can be seen between the transition from ???1 S4−→???? when computing X11 of round 14.

Table 13: State of the 18-round improbable differential described in Table 11 using a
bit-wise model.

State Subkey
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1000 00000000
0000 0000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 00000800
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 00000000
0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 00000000
0000 1??? 0000 0000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 0000 00040000
???? ???? 0000 0000 0000 0000 0000 0000 0000 1??? 0000 0000 0000 0000 0000 0000 00000000
???? 0000 ???? 0000 0000 0000 0000 1??? ???? ???? 0000 0000 0000 0000 0000 0000 00000000
0000 0000 ???? ???? 0000 ???? ???? ???? ???? 0000 ???? 0000 0000 0000 0000 1??? 02000000
???? ???? 0000 ???? ???? ???? ???? ???? 0000 0000 ???? ???? 0000 ???? ???? ???? 00000000
???? ???? ???? ???? ???? ???? ???? ???? ???? ???? 0000 ???? ???? ???? ???? ???? 00000008
???? ???? ???? ???? 0000 ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????
0000 ???? 0000 ???? 0000 ???? ???? ???1 ???? ???? ???? ???? 0000 ???? ???? ???? 00000000
0000 0000 0000 ???? 0000 ???? ???? 0000 0000 ???? 0000 ???? 0000 ???? ???? ???1 00000000
0000 0000 0000 ???? 0000 ???1 0000 0000 0000 0000 0000 ???? 0000 ???? ???? 0000 00000400
0000 0000 0000 ???? 0000 0000 0000 0000 0000 0000 0000 ???? 0000 ???1 0000 0000 00000000
0000 0000 0000 ???1 0000 0000 0000 0000 0000 0000 0000 ???? 0000 0000 0000 0000 00000000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 ???1 0000 0000 0000 0000 00020000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 00000000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 00000000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

Listing 3: CLAASP script to verify the improbable differential
from claasp . ciphers . block_ciphers . lblock_block_cipher import LBlockBlockCipher
lblock = LBlockBlockCipher ( number_of_rounds =18)
from claasp . cipher_modules . models . utils import set_fixed_variables , integer_to_bit_list
from claasp . cipher_modules . models .sat. sat_models . sat_xor_differential_model import

SatXorDifferentialModel
sat = SatXorDifferentialModel ( lblock )
key = set_fixed_variables ( component_id =’key ’, constraint_type =’equal ’, bit_positions =

range (80) , bit_values =[0] * 49 + [1] + [0]*30)
pt = set_fixed_variables ( component_id =’plaintext ’, constraint_type =’equal ’,

bit_positions = range (64) , bit_values = [0] * 60 + [1 ,0 ,0 ,0])
ct = set_fixed_variables ( component_id =’intermediate_output_17_12 ’, constraint_type =’

equal ’, bit_positions = range (64) , bit_values = [0] * 64)
key_proba = [ set_fixed_variables ( component_id =’intermediate_output_10_0 ’,

constraint_type =’equal ’, bit_positions = range (1 ,4) , bit_values = [0]*3) ]
trail = sat. find_one_xor_differential_trail ( fixed_values = key_proba + [key , pt , ct ])

Listing 4: CLAASP script to verify the probability of the 18-round differential
from claasp . cipher_modules . models .cp. mzn_models .

mzn_hybrid_impossible_xor_differential_model import
MznHybridImpossibleXorDifferentialModel

from claasp . ciphers . block_ciphers . lblock_block_cipher import LBlockBlockCipher
from claasp . cipher_modules . models . utils import set_fixed_variables
lblock = LBlockBlockCipher ( number_of_rounds =18)
model = MznHybridImpossibleXorDifferentialModel ( lblock )
fixed_variables = [ set_fixed_variables ( component_id =’key ’, constraint_type =’equal ’,

bit_positions = range (80) , [0]*49+[1]+[0]*30) ]
fixed_variables . append ( set_fixed_variables ( component_id =’plaintext ’, constraint_type =’

equal ’, range (64) , [0]*60 +[1 ,0 ,0 ,0]))
fixed_variables . append ( set_fixed_variables (’inverse_cipher_output_17_19 ’, ’equal ’,

range (64) , [0]*64) )
trails = model . find_all_impossible_xor_differential_trails (18 , fixed_variables , ’

Chuffed ’, 1, 9, 18, intermediate_components =False , probabilistic =True)

F MiniZinc predicates for the HIGHT model
function array [int] of var 0..2: Xor2( array [int] of var 0..2: a, array [int] of var

0..2: b)=
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array1d (0..( length (a) -1), [if (a[j] == 2 \/ b[j] == 2) then 2 else ((a[j]+b[j]) mod 2)
endif | j in 0..( length (a) -1)]);

Listing 5: The MiniZinc predicate representing the XOR of two bits

predicate Modadd_2 ( array [int] of var 0..2: a, array [int] of var 0..2: b, array [int] of
var 0..2: c) = (

let {
array [0.. length (a) -1] of var 0..2: as = LShift (a ,1) ,
array [0.. length (a) -1] of var 0..2: bs = LShift (b ,1) ,
array [0.. length (a) -1] of var 0..2: cs = LShift (c ,1) ,
var 0.. length (a) -1: pivot ;

} in
forall (i in 0.. length (a) -1) (

if i< pivot then c[i]=2 else (as[i]=0) /\ (bs[i]=0) /\ (cs[i]=0) endif
) /\
xor_bit_p1_2 (a[ pivot ],b[ pivot ],c[ pivot ])
/\ if pivot >0 then a[ pivot ]+b[ pivot ]>0 else true endif

);

Listing 6: The MiniZinc predicate representing the Modular Addition of two words

function array [int] of var 0..2: LRot( array [int] of var 0..2: X, var int: val)=
array1d (0..( length (X) -1), [X[(j+val) mod length (X)] | j in 0..( length (X) -1)]);

Listing 7: The MiniZinc predicate representing the Left Rotation
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G Our full 27 rounds HIGHT attack setting

Table 14: Our impossible differential trail with extensions for a 27 rounds attack on
HIGHT

PT ???????0 10000000 00000000 00000000 ???????? ???????? ???????? ????????
R3 ???????0 10000000 00000000 00000000 ???????? ???????? ???????? ???????? ↑
R4 10000000 00000000 00000000 00000000 ???????? ???????? ???????? ???????1 ↑
R5 00000000 00000000 00000000 00000000 ???????? ???????? ???????1 10000000 ↑
R6 00000000 00000000 00000000 00000000 ???????? ???????1 10000000 00000000 ↑
R7 00000000 00000000 00000000 00000000 ???????1 10000000 00000000 00000000 ↑
R8 00000000 00000000 00000000 00000000 10000000 00000000 00000000 00000000 ↑

a Trail start i
R9 00000000 00000000 00000000 10000000 00000000 00000000 00000000 00000000 ↓
R10 00000000 ?????100 10000000 00000000 00000000 00000000 00000000 00000000 ↓
R11 ?????100 10000000 00000000 00000000 00000000 00000000 00000000 ???????? ↓
R12 10000000 00000000 00000000 00000000 00000000 ???????? ???????? ???????1 ↓
R13 00000000 00000000 00000000 ???????? ???????? ???????? ???????1 10000000 ↓
R14 00000000 ???????? ???????? ???????? ???????? ???????1 10000000 00000000 ↓
R15 ???????? ???????? ???????? ???????? ???????1 10000000 00000000 ???????? ↓
R16 ???????? ???????? ???????? ???????0 10000000 ???????? ???????? ???????? ↓

aa Middle point i
R16 ???????? ???????? ???????? ???????1 ???????? ???????? ???????? ???????? ↑
R17 ???????? ???????? ???????1 00000000 ???????? ???????? ???????? ???????? ↑
R18 ???????? ???????1 00000000 00000000 ???????? ???????? ???????? ???????? ↑
R19 ???????1 00000000 00000000 00000000 ???????? ???????? ???????? ???????? ↑
R20 00000000 00000000 00000000 00000000 ???????? ???????? ???????? ???????1 ↑
R21 00000000 00000000 00000000 00000000 ???????? ???????? ???????1 00000000 ↑
R22 00000000 00000000 00000000 00000000 ???????? ??1????1 00000000 00000000 ↑
R23 00000000 00000000 00000000 00000000 ??1????1 00000000 00000000 00000000 ↑

a Trail end i
R24 00000000 00000000 00000000 ??1????1 00000000 00000000 00000000 00000000 ↓
R25 00000000 ???????? ??1????1 00000000 00000000 00000000 00000000 00000000 ↓
R26 ???????? ???????1 00000000 00000000 00000000 00000000 00000000 ???????? ↓
R27 ???????1 00000000 00000000 00000000 00000000 ???????? ???????? ???????? ↓
R28 00000000 00000000 00000000 ???????? ???????? ???????? ???????? ???????1 ↓
R29 00000000 ???????? ???????? ???????? ???????? ???????? ???????1 00000000 ↓
R30 ???????? ???????? ???????? ???????? ???????? ???????1 00000000 ???????? ↓
CT ???????? ???????? ???????? ???????? ???????? ???????? ???????1 00000000

H Full procedure of the attack on 27-round HIGHT
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Table 15: Impossible differential attack procedure on 27 rounds of HIGHT
Step Description Time complexity

Pairs elimination
Guess MK0, MK3 and compute S0

30, S0
29 by partial decryption for each initial

pair,
1 then eliminate those whose difference does not propagate to the expected one 2 · 2IP · 2 · 216CB

(on average 1 pair every 28 will remain)
2 Guess MK13 and compute S5

3 , S3
4 by partial encryption for each remaining

pair, filtering as before
2 · 2IP −8 · 2 · 224CB

3 Guess MK12 and compute S7
3 , S5

4 , S3
5 by partial encryption for each remaining

pair, filtering as before
2 · 2IP −16 · 3 · 232CB

Memory tables generation
Build table T0 by partial decryption, guessing bytes C1, ∆C1, C2, ∆C2,
S1

29, ∆S1
29, MK2, MK3, MK7.

4 The condition ∆S2
28 = 0 is a 8-bit condition, therefore if we index 2 · (28)9CB

the table by C1, ∆C1, C2, ∆C2, S1
29, ∆S1

29, MK3 and take as outputs
MK2, MK7, for each set of inputs we get on average 28 valid outputs.
Build table T1 by partial encryption, guessing bytes P0, ∆P0, P1, S6

4 , ∆S6
4 ,

S4
5 , ∆S4

5 , MK4, MK7, MK15.
5 The condition ∆S3

6 = 0 is a 8-bit condition, therefore if we index 2 · (28)10CB

the table by P0, ∆P0, P1, S6
4 , ∆S6

4 , S4
5 , ∆S4

5 , MK7 and take as outputs
MK4, MK15, for each set of inputs we get on average 28 valid outputs.
Build table T2 by partial decryption, guessing bytes C3, ∆C3, C4, ∆C4,
S3

29, ∆S3
29, S3

28, ∆S3
28, MK1, MK2, MK6, MK15.

6 The condition ∆S4
27 = 0 is a 8-bit condition, therefore if we index 2 · (28)12CB

the table by C3, ∆C3, C4, ∆C4, S3
29, ∆S3

29, S3
28, ∆S3

28, MK2, MK15 and take as
outputs
MK1, MK6, for each set of inputs we get on average 28 valid outputs.
Build table T3 by partial encryption, guessing bytes S6

5 , ∆S6
5 , S0

4 , S3
4 ,

P2, P3, MK2, MK3, MK6, MK12, MK14, MK15.
7 The condition ∆S3

8 = 0 is a 8-bit condition, therefore if we index 2 · (28)11 · 27CB

the table by S6
5 , ∆S6

5 , S0
4 , ∆S0

4 , S3
4 , P2, P3, MK2, MK3, MK6, MK12, MK15

and take as outputs
MK14, for each set of inputs we get on average 1 valid output.
Build table T4 by partial encryption, guessing bytes S4

6 , ∆S4
6 , S5

6 , ∆S5
6 , MK8.

8 The condition ∆S3
7 = 0 is a 8-bit condition, therefore if we index 2 · (28)4 · 27CB

the table by S4
6 , ∆S4

6 , S5
6 , ∆S5

6 and take as outputs
MK8, for each set of inputs we get on average 1 valid output.
Build table T5 by partial decryption, guessing bytes C6, ∆C6, C7, ∆C7,
S5

29, ∆S5
29, S5

28, ∆S5
28, S5

27, ∆S5
27, MK0, MK1, MK5, MK10, MK14.

9 The condition ∆S6
26 = 0 is a 8-bit condition, therefore if we index 2 · (28)13 · 27CB

the table by
C6, ∆C6, C7, ∆C7, S5

29, ∆S5
29, S5

28, ∆S5
28, S5

27, ∆S5
27, MK0, MK1, MK14 and

take as outputs
MK5, MK10, for each set of inputs we get on average 28 valid outputs.
Build table T6 by partial decryption, guessing bytes S7

26, ∆S7
26, S7

27, ∆S7
27,

S7
28, ∆S7

28, S0
29, S7

29, MK0, MK4, MK9, MK13.
10 The condition ∆S0

25 = 0 is a 8-bit condition, therefore if we index 2 · (28)11 · 27CB

the table by S7
26, ∆S7

26, S7
27, ∆S7

27, S7
28, ∆S7

28, S0
29, S7

29, MK0, MK4, MK13 and
take as outputs
MK9, for each set of inputs we get on average 1 valid output.
Build table T7 by partial decryption, guessing bytes S1

25, ∆S1
25, S1

26, ∆S1
26,

S1
27, S1

28, S2
28, MK7, MK8, MK12.

11 The conditions ∆S2
25 = 0 and ∆S2

24 = 0 are a 9-bit condition, therefore if we
index

2 · (28)10 · 27CB

the table by S1
25, ∆S1

25, S1
26, ∆S1

26, S1
27, S1

28, S2
28, MK7, MK8 and take as

outputs
MK12, for each set of inputs we get on average 1

2 valid outputs.
Each evaluation of the first 3 steps corresponds to some evaluated bytes which
will be the inputs of the hash tables,

12 along with the outputs of the previous tables, therefore for each remaining pair
and subkeys guesses for steps 1-3,
the tables can be accessed and they produce some wrong subkeys (231 in
particular).

13 The remaining keys are exhaustively tested.
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