
On format preserving encryption with nonce
Alexander Maximov and Jukka Ylitalo

Ericsson Research. Lund, Sweden and Jorvas, Finland
alexander.maximov,jukka.ylitalo@ericsson.com

Abstract.
In this short paper we consider a format preserving encryption when a nonce is
available. The encryption itself mimics a stream cipher where the keystream is of a
(non-binary) radix R. We give a few practical and efficient ways to generate such a
keystream from a binary keystream generator.
Keywords: FPE · nonce

1 Introduction
A Format Preserving Encryption (FPE) is a way of encrypting plaintext message such that
the resulting ciphertext keeps the same format as the plaintext. A complete FPE assumes
to have a secret key as input to the algorithm, but the database containing the plaintext
is not assumed to have a dedicated field for a Nonce. This way, an FPE algorithm can
be seen as a keyed secret permutation over the complete (non-binary) plaintext, and this
problem is, in general, challenging.

NIST (National Institute of Standards and Technology) has standardised two modes
of FPE, namely, FF1 and FF3 [Dwo16]. The FF3 mode is known to be vulnerable for
so-called small domain attacks [DV17]. Therefore, the focus has been on improving the
performance of FF1 mode, e.g. [YWXL24], and finding new FPE algorithms that perform
in higher speed rates than FF1, e.g. [DHHV21][PGSC20].

Our approach is similar to the FPE algorithm design presented by Pérez-Resa et al
in [PGSC20]. They implement an FPE algorithm in a stream cipher fashion using a
binary block cipher in CTR mode with a modulo operation. Pérez-Resa et al present two
alternative ways for generating a key stream in their paper (Figure 2).

In this paper, we assume that a nonce is available, and discuss a few efficient alternatives
for a (non-binary) keystream generation from a binary stream, while the encryption
procedure is the same as in [PGSC20], where the plaintext and the keystream are added
modulo the radix R. In the example given in Section VI of [PGSC20], for R = 267 and the
secret key of 128 bits, it requires at least 149 bits from the binary generator, while in our
scenario it is sufficient to have only around 72 binary bits to maintain the 128-bit security.
I.e., one needs to collect around 2128 to be able to distinguish such a radix-R-distribution
from random.

1.1 Preliminaries and notations
Let the plaintext be p1, p2, . . . , pL and the ciphertext be c1, c2, . . . , cL, both of length L
symbols where each symbol is from an alphabet of radix R ≥ 2, i.e., pi, ci ∈ ZR, i = 1..L.
Then we want to generate a keystream k1, k2, . . . , kL from the same alphabet such that
the encryption is done as in a stream cipher ci = (pi + ki) mod R, and the corresponding
decryption is pi = (ci − ki) mod R.

mailto:alexander.maximov,jukka.ylitalo@ericsson.com

2 On format preserving encryption with nonce

Let us have a binary pseudo-random keystream generator KG that accepts a secret
key Key and a nonce Nonce, and provides a pseudo-random binary stream, then we will
consider ways of utilising that binary KG to produce a keystream of radix R, that is then
used for encryption and decryption. For the binary keystream generator KG we could
utilise e.g. the 256-bit wide block Rijndael cipher, where the nonce is combined with a
counter and other parameters, and such input is then encrypted with Rijndael. The output
is considered as the binary bit-stream. We define the function KG.bits(n) that returns
a pseudo-random and uniformly distributed integer value from the range [0..2n − 1], by
utilising the next n bits of the binary keystream produced by KG.

Alternatively, a KG can be any secure binary stream cipher.

1.2 On KG and nonce

It is convenient to define a binary KG over the 256-bit wide block Rijndael cipher [DR02],
as this not only allows to adopt a nonce value of a decent size, but also has bit-space
for domain separation and yet another counter. Also, Rijndael can be implemented by
using AES-NI SIMD instructions for the standard AES, with a fixed 32 bytes permutation
between the rounds, while each round of 256-bit block Rijndael consists of two parallel
calls to the AES round function. This makes Rijndael a fast and perfect candidate as a
building block for a binary KG.

As an example, consider a secret key Key to be a 128/192/256-bit long, and we adopt
the 256-bit wide block cipher OUT = RijndaelKey(IN). Then the 256-bit input block
IN can be constructed as given in Table 1.

Table 1: A possible structure of the 256-bit input block to Rijndael for FPE.

bytes 24 bytes [0..23] 4 bytes [24..27] 4 bytes [28..31]
IN Nonce F ieldID Counter

Here, the Nonce is allowed to be up to 24 bytes, which should be unique per file, then
FieldID is a fixed identifier to each field within that file to be encrypted with FPE. Each
field may have a different radix and length. Then the last field Counter is used by KG
to generate a pseudo-random binary sequence. This way, every field can be as long as
≈ 256 · 232/2 bits, but in practical use cases these fields are much shorter. The output
of Rijndael, i.e., OUT = RijndaelKey(IN), can be regarded as 256 bits of the binary
stream, if more bits are needed, then KG constructs and then encrypts the same IN but
with incremented Counter, and so on. The construction of KG can vary depending on
the specific use case.

The remaining question is where to get the Nonce from? As mentioned, in this paper
we assume that the nonce is available, and it should be unique per file. If that file has other
non-encrypted fields, such as a timestamp, user-ID, and/or other unique identifiers, then
the Nonce can be constructed as a Hash-based Message Authentication Code (HMAC) of
the unencrypted part of the file.

However, the Nonce can be stored to a database or carried in meta-data in a message
together with the ciphertext. In this way, it is possible to distribute more easily the
encryption with the same master key between nodes in a data center without synchronising
nonces.

Finally, one should also consider the use of a message authentication code (MAC)
to safeguard the file’s integrity and ensure that no single bit has been altered during
transmission. However, this topic falls outside the scope of this paper.

Alexander Maximov and Jukka Ylitalo 3

2 Keystream generation
2.1 Using U [0, 1)
There exists many methods and libraries that generate and return a uniformly distributed
pseudo-random real value in the range [0, 1), see e.g. [L’E97, L’E17]. A generator could
be seeded with (Key, Nonce) as it’s initial state, so that the generated sequence would be
the same for both encryption and decryption procedures. Then a keystream value ki in
the radix R can be computed as:

ti = U [0, 1).get_next()
ki = ⌊R · ti⌋

where U [0, 1).get_next() is a function that returns the next pseudo-random value in the
range [0, 1) from a generator U [0, 1) with a state. Mathematically, this seems an ideal
approach that would generate a uniformly distributed pseudo-random sequence of integers
in the range U [0, R − 1]. However, in a real implementation the value ti must have a
certain number of precision bits to maintain a desired security level, not mentioning the
details of U [0, 1) itself and it’s cryptographic properties. We refer to Section 2.4 for more
details on precision.

2.2 Monte Carlo method, non-constant time
Another standard approach is using the Monte Carlo method [Wik24], where we sample
from a larger domain and drop those samples that do not fit in the smaller domain. Let
us have two integer parameters q ≥ 1 and a ≥ 1 such that

q · R ≤ 2a

Then, we would sample from the binary KG by requesting a bits repeatedly until we
get a value x such that x < q · R, then the resulting sample in radix R is computed as
ki = x mod R. That would implement a uniformly distributed pseudo-random sequence
of integers modulo R. Then the algorithm to get a new sample may look as follows:

int get_new_sample (int a, int q, int R) :=
while (1)
{ int x = KG.bits(a)

if(x < q * R) return x % R;
}

The efficiency of the algorithm above can be measured in terms of the number of times
the loop needs to be repeated, in average; and the average number of bits needed from
KG to get a single sample in radix R. Obviously, the algorithm needs less cycles if we
pick the smallest a:

a = ⌈log2(q · R)⌉

Then the number of loops to get a single sample in average is:

NAvr
time(a, q, R) = 2a

q · R
loops per symbol.

The average number of bits from KG needed to produce a single symbol is therefore

NAvr
bits (a, q, R) = a · 2a

q · R
bits per symbol.

4 On format preserving encryption with nonce

Note that for an optimal a = ⌈log2(q · R)⌉, we get the smallest number of bits per symbol
NAvr

bits (a, q, R) when q = 1. Examples:

(a = 8, q = 25, R = 10) ⇒ NAvr
time = 1.024, NAvr

bits = 8.192
(a = 4, q = 1, R = 10) ⇒ NAvr

time = 1.6, NAvr
bits = 6.4

In the first case KG is requested one byte each time, and almost every sample is accepted,
but the number of bits per a keystream symbol needed is 8.192. In the second case the KG
is requested only 4 bits each time and the loop needs to be repeated in average 1.6 times,
but in the end the average number of bits needed to derive a single keystream symbol is
much smaller – 6.4 bits. This may lead to a less number of invocations of Rijndael.

However, this approach is not deterministic and may have a variable time of encryption.

2.3 One keystream symbol at a time, sequentially
Let b = ⌈log2 R⌉ and an integer s > 0. Assume we take a random X1 of size s + b bits
from the binary KG and compute a keystream symbol as k1 = X1 mod R. However,
for a small s the distribution of such keystream symbols may have a very large bias and
therefore such a keystream can be easily distinguished from random. On the other hand,
for a sufficiently large s we can get a very small bias of the keystream distribution and,
thus, a decent security level.

Let us derive the bias of the keystream symbols computed that way. X is uniformly
distributed over the set of {0, 1, . . . , 2s+b − 1} as it is originated from a perfect KG. We
count the number of occurences for (X mod R = k) for each value of k ∈ [0..R − 1]. It is
clear that each occurence of k will be either ⌊2s+b/R⌋ or (1 + ⌊2s+b/R⌋) times. Thus, for
any value of k ∈ [0..R − 1] the difference between the probability Pr{X mod R = k} and
the uniform probability Pr{U = k} = 1/R is upper bounded by

∆ =
∣∣∣∣0.5 ± 0.5 + ⌊2s+b/R⌋

2s+b
− 1

R

∣∣∣∣ < 2−(s+b).

The bias of the keystream distribution can be upper bounded in the form of the Squared
Euclidean Imbalance (SEI) [BJV04] as follows:

ϵ(k = X mod R) = R

R−1∑
i=0

∆2
i < R

R−1∑
i=0

2−2(s+b) = 22 log2 R−2(s+b).

That keystream can be distinguished from random by having O(1/ϵ) number of samples.
This way, if we want a t-bit security level, then we need to upper bound SEI as

22 log2 R−2(s+b) ≤ 2−t ⇒ s + (b − log2 R) ≥ t/2

and since (b − log2 R) ≥ 0, it is sufficient to require s ≥ t/2 to maintain the security level
of t bits.

In a naïve approach, the next keystream symbol k2 could be derived by requesting new
(s + b) bits from the GK. However, if we represent X1 as X1 = r · R + k1, then k1 = X1
mod R is the keystream symbol, and r = ⌊X1/R⌋ is the remaining randomness that is not
used anywhere else, but we can reuse it to construct the next pseudo-random X2 while
only requesting b fresh random bits from the KG, as follows:

X2 = 2b · ⌊X1/R⌋ + KG.bits(b)
k2 = X2 mod R

This way, instead of requesting (s + b) · L bits from the GK we would only need to request
(s + b · L) bits, which could save a lot of performance especially in case s is large and b is

Alexander Maximov and Jukka Ylitalo 5

small in practical instantiations. For example: let b = 8, s = 64, L = 100, then in the naïve
approach we need 7200 pseudo-random bits that corresponds to 29 invocations of Rijndael,
and in the optimised variant 864 bits are needed with only 4 calls to Rijndael.

Table 2: The results are simulated values of log2(ϵ(k1, k2, . . . , kT)).

R b s Exp.SEI T=1 T=2 T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10
X is bounded by s + b bits

3 2 5 -10 -13.00 -11.39 -10.70 -10.26 -10.00 -9.77 -9.54 -9.32 -9.13 -8.97
3 2 10 -20 -23.00 -21.79 -21.09 -20.63 -20.33 -20.04 -19.78 -19.55 -19.34 -19.17
5 3 10 -20 -23.42 -22.35 -21.84 -21.46 -21.19 -20.94 -20.72 -20.54 -20.38
7 3 10 -20 -22.68 -21.47 -20.63 -19.88 -19.30 -18.85 -18.49 -18.19 -17.95
9 4 8 -16 -21.00 -19.95 -19.24 -18.78 -18.41 -18.12 -17.88
15 4 8 -16 -20.19 -17.82 -16.29 -15.19 -14.34 -13.66 -13.13

X is bounded by s + b + 1 bits
3 2 5 -10 -13.00 -12.54 -12.37 -12.02 -11.72 -11.49 -11.30 -11.16 -11.03 -10.89
3 2 10 -20 -23.00 -22.75 -22.48 -22.07 -21.67 -21.38 -21.19 -21.07 -20.95 -20.79
5 3 10 -20 -23.42 -23.02 -22.70 -22.49 -22.36 -22.22 -22.10 -22.00 -21.90
7 3 10 -20 -22.68 -22.05 -21.91 -21.55 -21.32 -21.23 -20.90 -20.60 -20.22
9 4 8 -16 -21.00 -20.56 -20.29 -19.74 -19.37 -19.11 -18.90
15 4 8 -16 -20.19 -18.47 -17.54 -17.10 -16.98 -16.69 -16.59

X is bounded by s + b + 2 bits
3 2 5 -10 -13.00 -12.54 -12.37 -12.25 -12.19 -12.07 -11.96 -11.87 -11.80 -11.74
3 2 10 -20 -23.00 -22.75 -22.48 -22.39 -22.32 -22.20 -22.10 -22.01 -21.94 -21.89
5 3 10 -20 -23.42 -23.02 -22.90 -22.74 -22.65 -22.58 -22.53 -22.48 -22.44
7 3 10 -20 -22.68 -22.05 -21.91 -21.55 -21.32 -21.23 -21.16 -21.09 -21.04
9 4 8 -16 -21.00 -20.56 -20.38 -20.26 -20.17 -20.06 -19.97
15 4 8 -16 -20.19 -18.47 -17.54 -17.10 -16.98 -16.69 -16.59

X is a 64-bit variable
3 2 5 -10 -13.00 -12.54 -12.37 -12.25 -12.19 -12.16 -12.15 -12.14 -12.13 -12.13
3 2 10 -20 -23.00 -22.75 -22.48 -22.39 -22.32 -22.28 -22.27 -22.26 -22.25 -22.25
5 3 10 -20 -23.42 -23.02 -22.90 -22.86 -22.84 -22.84 -22.84 -22.84 -22.84
7 3 10 -20 -22.68 -22.04 -21.91 -21.55 -21.31 -21.22 21.16 -21.09 -21.04
9 4 8 -16 -21.00 -20.56 -20.38 -20.31 -20.31 -20.30 -20.30
15 4 8 -16 -20.19 -18.47 -17.53 -17.10 -16.98 -16.69 -16.59

Note that here r = ⌊X1/R⌋ is the remaining randomness from X1, and it may actually
be larger than s bits, resulting X2 to contain more than s + b bits. If X2 has a capacity to
store more than s + b bits then it is only better for randomness; in another scenario X2
can be truncated. We investigate the effect of truncation on security further.

Multidimensional SEI. We perform a set of simulations where by using the above
algorithm compute the multidimensional distribution of T -tuples (k1, k2, . . . , kT), given a
few cases, to see how the dependency grows.

The results are given in Table 2, from where we see that the growth of SEI is not
significant for a multidimensional distinguisher. However, simulations also show that if the
size of X is tight (s + b) bits, the scheme cannot maintain full security as SEI tends to
increase larger than the expected SEI, see the red-marked valued. When the size of X is
at least ∼ (s + b + 1) bits the expected security is generally maintained, though slightly
degrading with a larger T . E.g., we double checked an affordable case R = 3, b = 2, s = 5
and T = 19, i.e. considering the multidimensional distribution D(k1, k2, . . . , k19), with
the bound of (s + b + 1) bits for X and the SEI is 2−9.96 (for T = 11..19, log2(SEI)
is {−10.75, −10.62, −10.50, −10.40, −10.30, −10.21, −10.12, −10.03, −9.96}, respectively)
that is converging to slightly above the expected 2−10. This result is expected since e.g.
the full entropy of ⌊X1/R⌋ in X2 can be maintained by utilising one extra bit to the
original (s + b) bits of X1. The more bits X has, the better security.

Exampled instantiation. If we only want to use the type uint64_t for X, then we
can pick b = 8 and s = 64 − b − 1 = 55, which allows all R ∈ [2..256] and gives the security
close to 2110. The algorithm is therefore as follows.

int b = \ lceil log_2 (R) \ rceil // this can be replaced with b=8
uint64_t X = KG.bits (64 - b);

6 On format preserving encryption with nonce

for(int i = 0; i < L; i++)
{ X = (X << b) | KG.bits(b);

k[i] = X % R;
X /= R;

}

2.4 All keystream symbols in parallel via a long division
The good point of the previous method is that it produces keystream symbols one by
one, has a small state, and can process very large plaintexts. The negative point is
that the security is only partially proven and partly relies on our own simulations on
multidimensional distributions. Here we present yet another method that generates all
keystream symbols in parallel, relies on the security proof as given in Section 2.3. The
drawback of this method is that it needs to compute all keystream symbols in parallel,
thus a memory storage of the full plaintext length L is needed. This method is also more
time consuming (quadratic time in this method vs. linear time in the previous method).

Represent all keystream symbols as a (very) large integer K:

K = kL · RL−1 . . . + k3 · R2 + k2 · R1 + k1 · R0 ∈ [0, RL − 1].

Then we want to get K by taking K = X mod RL where X has a sufficient number of
binary bits from GK, in order to fullfill the required security level, following the security
proof as given in Section 2.3. Thus, if we want the security level of t bits then the total
number of needed pseudo-random bits for X is

w = ⌈(t/2 − log2 R)︸ ︷︷ ︸
security level t

+ (L · log2 R)︸ ︷︷ ︸
for K

⌉ = ⌈t/2 + (L − 1) log2 R⌉

Then the algorithm of generating the complete keystream is as follows:

k1 = ⌊X/R0⌋ mod R

k2 = ⌊X/R1⌋ mod R (1)
k3 = ⌊X/R2⌋ mod R

...

Let X be represented in u chunks of q-bit integers, such that u · q ≥ w, i.e.

X = Xu−1 · 2(u−1)·q + . . . + X2 · 22·q + X1 · 21·q + X0 · 20·q

Then the computation of k1 = (X mod R) and Y = ⌊X/R⌋, where Y is also represented
as a vector of u q-bit integers similarly to X above, can be implemented iteratively as
follows:

k1 = 0
for i = u − 1 downto 0

Yi = k1 · 2q + Xi

k1 = Yi mod R

Yi = ⌊Yi/R⌋

Note that the next keystream word k2 is computed as k2 = (Y mod R) in a similar
way. Thus, we can merge the computation of the remainders in a combined loop, while

Alexander Maximov and Jukka Ylitalo 7

dropping the results of the divisors Y as not needed for further computation:

k1, k2, . . . , kL = 0
for i = u − 1 downto 0

x = Xi « x is a q-bit integer
for j = 1 to L

y = kj · 2q + x « y is at most (q + b)-bit integer
kj = y mod R

x = ⌊y/R⌋

Verification of the above algorithm can be done easily by constructing X from those
Xi-values added as q fresh least significant bits, and then computing ki as in the algo-
rithm above, and compare the resulting keystream against Equation 1. For example,
let L = 10, R = 19, and we represent X as a polynomial over the powers of R, hav-
ing u = 12 coefficients each q = 5 bits long, and assume KG produces 12 5-bit ran-
dom values Xi = {9,3,30,4,1,12,22,14,18,16,9,17}, i.e. X = 0x08a6127598127869.
Both methods give the same result of L = 10 keystream symbols modulo R = 19:
ki = {0,1,18,4,6,14,6,11,6,4}.

Using 64-bit wide integers, an implementation of the above idea could be as follows:
uint8_t k[1..L] = {0 ,... ,0}
w = \ lceil t/2 + (L -1)\ log_2 R \ rceil
b = \ lceil \ log_2 (R) \ rceil
cap = 64 - b;
for(int bits = 0; bits < w; bits += cap)
{ uint64_t x = KG.bits(cap);

for(int j = 1; j <= L; j++)
{ uint64_t y = x + ((uint64_t)k[j] << cap);

k[j] = y % R;
x = y / R;

}
}

Note that there is no connection between the security level t and the size of the available
type (uint64_t) for the intermediate integer x, thus a standard type like uint64_t can
be used for that long division. The advantage here is that each call to KG requests only a
manageable amount of bits, so that for the purpose of a long division there is no need to
know the complete X in advance. Also note that in the above exampled implementation
X may have more bits than needed minimum w bits (in case (w mod cap) ̸= 0), but this
only increases the security level while keeping the implementation simpler.

Possible modifications. If cap is not a multiple of 8 bits, it might be more difficult
to handle bit-level random values from KG. In this case, we can propose two possible
modifications, as follows.

1. Reduce cap to the nearest multiple of 8, so that only full bytes are requested from
KG, i.e. cap -= cap % 8.

2. In order to make the implementation simpler, we can request a fixed number of bits
KG.bits(64), instead of KG.bits(cap), and either skip the upper b bits, or keep them
as an additional noise that does not have an effect on the resulting bias, but only
“rotates” the remainders when added as x + (k[j] « cap). In the above exampled
implementation, the number of 64-bit blocks needed is ⌈w/cap⌉.

For example, R = 256 − 1, L = 100, t = 128, then we derive that w = 856 random bits
are needed; with b = 8 and capacity of 64 − b = 56 bits, we then need 16 64-bit random
values from KG, which corresponds to 4 invocations of Rijndael. On the other hand, if

8 On format preserving encryption with nonce

R = 128 + 1, L = 100, we then compute b = 8, w = 759, cap = 56 – this needs 14 64-bit
random values. If we do not apply the optimised call to KG and each time request exactly
cap bits, then we need only 12 64-bit random values for the latter case, that corresponds
to only 3 invocations of Rijndael. However, managing non-64-bit random variables might
be costly and it could indeed be simpler to use an optimised version with the replaced line
uint64_t x = KG.bits(64).

2.5 Aggregated mode
All the previously discussed techniques can be speeded up by utilising a so-called “aggregated
mode” of encryption, where the plaintext is split into n chunks each of which is then
encrypted independently. The KG for each chunk needs to be initialised with the triple
(Key, Nonce, Index), where Index ∈ [0..n − 1] is a hard-coded index of a corresponding
encryption stream.

3 Encryption/Decryption with SIMD
Encryption. Once the keystream in radix R is produced, the encryption can be done in
parallel over blocks of plaintext symbols. For example, assume R ≤ 256 thus a plaintext
symbol pi can fit into a single byte (i.e., uint8_t), and the same for ki. Now using
e.g. a 64-byte ZMM register, available in AVX-512, we want to compute 64 expressions
ci = (pi + ki) mod R in parallel, by utilising SIMD instructions, see e.g. [Int24].

Assume the following 64-byte registers are (pre-)loaded:
__m512i KS = _mm512_loadu_si512 (keystream);
__m512i PT = _mm512_loadu_si512 (plaintext);
__m512i RAD= _mm512_set1_epi8 (Radix);

In case both pi, ki ∈ ZR, and R ≤ 127 we get the 64-byte vector of ciphertext symbols
CT in the radix R as follows:

__m512i CT = _mm512_add_epi8 (PT , KS);
__mmask64 m = _mm512_cmpge_epu8_mask (CT , RAD); // when c >=R
CT = _mm512_mask_sub_epi8 (CT , m, CT , RAD);

A similar result can be achieved with e.g. AVX (applied to 32-byte vectors):
Q = _mm256_andnot_si256 (_mm256_cmpeq_epi8 (CT ,

_mm256_max_epu8 (CT , PT)), RAD);
CT = _mm256_sub_epi8 (CT , Q);

In case R ∈ [128..255] we may have a byte-overflow and thus a modified procedure
should apply (but this procedure also works for R ≤ 127):

__m512i CT = _mm512_add_epi8 (PT , KS);
__mmask64 m = _kor_mask64 (_mm512_cmplt_epu8_mask (CT , PT), // when c >=2^8

_mm512_cmpge_epu8_mask (CT , RAD)); // when c >=R
CT = _mm512_mask_sub_epi8 (CT , m, CT , RAD);

In case pi ∈ ZR, but ki ∈ Zq·R, where R < 256, q · R ≤ 256, we may need to use a
function for taking the actual remainder, i.e.:

__m512i CT = _mm512_add_epi8 (PT , KS);
__mmask64 m = _mm512_cmplt_epu8_mask (CT , PT); // when c >=2^8
CT = _mm512_mask_sub_epi8 (CT , m, CT , RAD);
CT = _mm512_rem_epu8 (CT , RAD); // c%=R, SVML

However note that the instruction _mm512_rem_epu8() is a sequence of other SIMD instructions,
and the function is implemented by an SVML library – not all compilers support that.

Decryption. The decryption procedure may be done through the encryption procedure,
preceded by the negation of the keystream symbols, since Dec({ki}, CT) = Enc({q · R −

Alexander Maximov and Jukka Ylitalo 9

ki}, CT). Thus, we simply modify the keystream symbols as below, and push the ciphertext
into the encryption engine.

KS_dec = _mm512_sub_epi8 (_mm512_set1_epi8 (q*R), KS_enc)

References
[BJV04] Thomas Baignères, Pascal Junod, and Serge Vaudenay. How Far Can We Go

Beyond Linear Cryptanalysis? In Pil Joong Lee, editor, ASIACRYPT 2004,
volume 3329 of LNCS, pages 432–450, December 2004.

[DHHV21] F Betül Durak, Henning Horst, Michael Horst, and Serge Vaudenay. FAST:
secure and high performance format-preserving encryption and tokenization.
In International Conference on the Theory and Application of Cryptology and
Information Security, pages 465–489. Springer, 2021.

[DR02] Joan Daemen and Vincent Rijmen. The design of Rijndael, volume 2. Springer,
2002.

[DV17] F Betül Durak and Serge Vaudenay. Breaking the FF3 format-preserving
encryption standard over small domains. In Annual international cryptology
conference, pages 679–707. Springer, 2017.

[Dwo16] M Dworkin. Recommendation for Block Cipher Modes of Operation: Methods
for Format-Preserving Encryption. NIST Special Publication 800-38G, 2016.

[Int24] Intel. Intel Intrinsics Guide, 2024. https://www.intel.com/content/www/
us/en/docs/intrinsics-guide/index.html.

[L’E97] Pierre L’Ecuyer. Uniform random numbers generators: a review. In S. An-
dradóttir and K. J. Healy and, editors, Proceedings of the 29th conference on
Winter Simulation Conference, pages 127–134, New York, NY, USA, 1997.
ACM Press.

[L’E17] Pierre L’Ecuyer. History of uniform random number generation. In 2017
Winter Simulation Conference (WSC), pages 202–230, 2017.

[PGSC20] Adrián Pérez-Resa, Miguel Garcia-Bosque, Carlos Sánchez-Azqueta, and San-
tiago Celma. A New Method for Format Preserving Encryption in High-Data
Rate Communications. IEEE Access, 8:21003–21016, 2020.

[Wik24] Wikipedia. Monte Carlo method — Wikipedia, The Free Encyclopedia, 2024.
Accessed: 2024-10-29.

[YWXL24] Xian-Wei Yang, Lan Wang, Ma-Li Xing, and Qiang Li. Improved Execu-
tion Efficiency of FPE Scheme Algorithm Based on Structural Optimization.
Electronics, 13(20), 2024.

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html

	Introduction
	Preliminaries and notations
	On KG and nonce

	Keystream generation
	Using U[0,1)
	Monte Carlo method, non-constant time
	One keystream symbol at a time, sequentially
	All keystream symbols in parallel via a long division
	Aggregated mode

	Encryption/Decryption with SIMD

