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Abstract—A long-standing question in the blockchain commu-
nity is which class of computations are efficiently expressible
in cryptocurrencies with limited scripting languages, such
as Bitcoin Script. Such languages expose a reduced trusted
computing base, thereby being less prone to hacks and vulner-
abilities, but have long been believed to support only limited
classes of payments.

In this work, we confute this long-standing belief by
showing for the first time that arbitrary computations can
be encoded in today’s Bitcoin Script, without introducing
any language modification or additional security assumptions,
such as trusted hardware, trusted parties, or committees with
secure majority. In particular, we present BitVM, a two-party
protocol realizing a generic virtual machine by a combination
of cryptographic and incentive mechanisms. We conduct a for-
mal analysis of BitVM, characterizing its functionality, system
assumptions, and security properties. We further demonstrate
the practicality of our approach: in the optimistic case (i.e., in
the absence of disputes between parties), our protocol requires
just three on-chain transactions, whereas in the pessimistic
case, the number of transactions grows logarithmically with
the size of the virtual machine. This work not only solves
a long-standing theoretical problem, but it also promises a
strong practical impact, enabling the development of complex
applications in Bitcoin.

1. Introduction

Smart contracts play a fundamental role in blockchain
ecosystems by enabling decentralized, automated execution
of agreements without the need for trusted intermediaries.
These self-executing contracts offer many advantages, such
as transparency, security, and immutability. In particular,
smart contracts enable programmable money and complex
decentralized applications (dApps), fostering innovation in
fields like decentralized finance (DeFi), governance, supply
chain management, and more.

Smart contracts are typically stored and executed on
the blockchain in a low-level language. Some blockchains
support a very limited scripting language, such as Bitcoin

Script, whereas others feature a quasi-Turing complete1

language, such as EVM bytecode. The former choice is
motivated by a reduced trusted code base, which in principle
reduces the attack surface, whereas the latter is justified by
the need to support advanced computations, such as those
at the core of DeFi.

A long-standing question within the community is the
extent of computational capabilities in Bitcoin Script. This is
not only a compelling theoretical question but one with sub-
stantial practical implications: if limited scripting languages
could support complex computations, they could pave the
way for advanced dApps and DeFi applications on secure
platforms like Bitcoin. Until now, the prevailing view has
been that limited scripting languages, such as Bitcoin Script,
are suited primarily for basic functionalities like conditional
payments or hashed timelock contracts, with arbitrary com-
putations considered out of reach. Realizing such function-
alities would require (i) covenant opcodes [2], which are not
yet available in Bitcoin or many other cryptocurrencies, and
(ii) costly encoding methods, such as counter machines [3].

Contributions. In this work, we challenge this long-
standing belief by showing arbitrary (bounded) computa-
tions can be executed securely on Bitcoin in a practical
manner. We introduce BitVM2, a two-party protocol where
a prover P claims that a function evaluates to a specific
output for a given input, with a verifier V able to prove
fraud and penalize P if the claim is false.

With this mechanism, one can encode any computable
function on Bitcoin and execute transactions depending on
the function output. For instance, imagine a party V wants
to challenge a party P to solve a chess puzzle3, say a
checkmate-in-1 puzzle, and bet 10 coins (5 coins each) on
whether P will solve it in a given timeframe. Note that

1. This term is adopted in the blockchain community to indicate Turing-
complete languages that enforce termination by bounding the execution
(e.g., via gas consumption in Ethereum) [1].

2. This work extends and formalizes the original BitVM design, which
was conceptualized and developed by Robin Linus [4].

3. According to https://en.wikipedia.org/wiki/Chess puzzle, in a chess
puzzle “[. . . ] the goal is to find the single best, ideally aesthetic move or
a series of single best moves in a chess position [. . . ]”. We challenge the
reader to solve the following checkmate-in-1 puzzles [5], [6].

https://en.wikipedia.org/wiki/Chess_puzzle


V may or may not know the solution itself. Both parties
lock up the funds in a BitVM instance that, given the initial
chessboard configuration and a sequence of chess moves,
verifies whether P solves the puzzle in time and distributes
the funds accordingly, e.g., if P solves the puzzle in time
then 10 coins go to P , otherwise 10 coins go to V .

BitVM does not require any consensus change on Bit-
coin and is practical. When parties agree, the on-chain foot-
print is minimal, needing only three transactions to complete
the protocol. In case of a dispute, BitVM ensures a constant
upper bound on the number of on-chain transactions.

The key to enabling expressiveness while retaining ef-
ficiency is the design of a virtual machine supporting a
Turing-complete instruction set, which is then used to exe-
cute programs off-chain and produce a verifiable execution
trace. In case of dispute, the parties can first identify the
point of disagreement in the execution trace and then verify
a single step of computation on-chain leveraging the Bitcoin
Script and the UTXO model, thereby ensuring that disputes
are resolved within Bitcoin’s scripting limitations.

The contributions of this paper are summarized below.
• We present BitVM, the first protocol to encode arbitrary

computations in Bitcoin Script;
• We conduct a formal analysis of BitVM, characterizing its

functionality, system assumptions, and security properties
termed balance security and rational correctness;

• We conduct a complexity analysis, detailing on-chain
costs and settlement time in both optimistic (no disputes)
and dispute scenarios. Specifically, optimistic execution
requires only three on-chain transactions, costing approx-
imately 10, 707 satoshis4 (6.90$ in Sept. 2024). In dis-
putes, the on-chain footprint scales logarithmically with
the virtual machine’s computational power. For a virtual
machine comparable to a high-end ’90s workstation5,
contract settlement may require up to 81 transactions,
costing around 327Ksat, (210$ in Sept. 2024).

Related work. Relatively complex smart contracts can be
implemented in Bitcoin by combining UTXOs and scripts,
effectively splitting functionality across multiple transac-
tions. BitML [7] provides a high-level, domain-specific
language and compiler that translates programs into Bit-
coin transactions, illustrating Bitcoin’s potential for intricate
smart contract designs [8]. These methods, however, incur
substantial on-chain costs, as compiled programs often re-
sult in numerous large transactions that must ultimately be
recorded on-chain.

To mitigate these costs, some approaches leverage
Trusted Execution Environments (TEEs), such as FastKit-
ten [9] that facilitates off-chain computation within a se-
cure hardware enclave. This approach, however, introduces
dependencies on the TEE, a rational adversarial model,
collateral, the involvement of a TEE operator, and a limited
contract duration. POSE [10] improves upon FastKitten by

4. A satoshi is a fraction of a bitcoin, i.e., 1sat = 10−8B.
5. Configured with 232 memory cells for 32-bit integers, supporting up

to 232 instructions and steps.

eliminating the need for collateral and time limitations while
enhancing privacy but it still relies on TEE hardware.

Solutions based on Hashed Timelock contracts (HTLCs)
aim to shift computation off-chain in a way akin to state
channels on Ethereum [11], [12] while remaining compat-
ible with Bitcoin’s inherent contraints [13]. For example,
Discreet Log Contracts (DLCs) [14] and Cryptographic
Oracle-Based Conditional Payments [15] are alternative ap-
proaches that utilize (semi-)trusted oracles to assert specific
events and perform payments conditioned to them. These
events, typically encoded in the preimage of the hash, have
to be known upfront, which restricts the class of supported
functions. For instance, the chess example from Section 1
would not be expressible through HTLCs since the outcome
might not be known a-priori to any of the parties.

In contrast to prior work, BitVM enables quasi-Turing
complete computation on Bitcoin, similar to Ethereum, with-
out relying on additional assumptions such as TEEs or semi-
trusted oracles. BitVM thus represents the first trustless
protocol allowing arbitrary, yet bounded, computation on
Bitcoin, unlocking a range of potential applications. No-
table examples include bridges (e.g., [16], [17], [18]), some
of which are already being deployed based on the initial
informal BitVM concept [4].

Due to the industry’s significant interest in this concept,
a follow-up work proposed an alternative approach with
the main goal of designing a bridge between Bitcoin and
layer-2 systems [19]: The core idea in that work is to
compile a program down to a potentially huge Bitcoin Script
program, split it into chunks, and commit to the intermediary
computation results on-chain, which can then be disputed.
This approach allows permissionless challengers to dispute
false claims of correctness but incurs high on-chain costs.
In case of dispute in [19], the protocol enforces at least one
transaction on-chain that fills an entire 4 MB Bitcoin block,
costing approximately 1.9K$. In contrast, the solution we
present in this paper is better suited to permissioned envi-
ronments, as it is significantly more cost-effective in terms
of on-chain fees compared to [19]; the estimated cost for
BitVM in case of dispute is approximately 210$.

Approach Expressiveness Extra Assumptions On-chain cost
BitML [7], [8] QT None O(n)
TEEs [9], [10] QT TEE O(n)
Gen. Channels [13] Bitcoin None O(1)
Oracles [14], [15] QT trusted oracle O(1)
BitVM QT None O(log(n))

TABLE 1. COMPARISON OF BITCOIN-BASED SMART CONTRACT
APPROACHES. n DENOTES THE UPPER BOUND ON COMPUTATIONAL

STEPS, AND QT REFERS TO QUASI-TURING COMPLETENESS.

2. Model

BitVM is a protocol between two mutually distrusting
parties, the prover P and the verifier V , designed to enable
P to prove on the Bitcoin blockchain that the outcome of
a pre-agreed computation with V was performed correctly.
Concretely, for an agreed-upon Turing-complete program Π,



a BitVM instance secures collateral from both parties and
it enables P to enforce a transaction on-chain based on the
outcome Π(x) for a specific input x. In other words, Π(x)
dictates the payout of the funds within the BitVM instance,
typically allocating them to P and V 6. If P or V stop
collaborating during protocol execution, after a designated
period all the funds are allocated to the other party.

2.1. System model

We assume time advances in discrete rounds (1, 2, . . . ).
Protocol participants run in probabilistic polynomial time
(PPT) in the security parameter κ. We assume synchronous
communication, i.e., messages sent between parties arrive
at the beginning of the next round, as well as authenticated
communication channels. Our protocol employs a hash func-
tion modeled as a random oracle H : {0, 1}∗ → {0, 1}κ
which maps an input of arbitrary length to a fixed κ-sized
output. Moreover, our protocol builds upon a distributed
ledger protocol (e.g., [20], [21], [22]).
Definition 1 (Distributed Ledger Protocol). A distributed

ledger protocol is an interactive Turing machine expos-
ing the following functionality on each party.

• execute(): executes one protocol round and enables the
machine to communicate with the network, invoked by
the environment in every round;

• write(tx): takes as input a transaction from the envi-
ronment;

• read(): outputs a finite, ordered sequence of transac-
tions, also known as transaction ledger L.

We denote LPr as the output of invoking read() on party
P at the end of round r. We restrict honest parties to
only include valid transactions in their ledgers7. As we are
interested in building BitVM on Bitcoin, when we present
the construction, transactions are deemed (in)valid based
on Bitcoin’s validation rules (see Section 3.1). However,
BitVM can be built on top of any distributed ledger protocol
with validation rules as expressive as those of Bitcoin. We
assume that our protocol participants have access to the
functionality exposed by the distributed ledger protocol,
either by being an active participant or by running some
(light) client protocol. We are interested in distributed ledger
protocols that are safe and live, as defined below (cf. [20],
[21], [22]). Given two sequences A and B, we use A ⪯ B
to mean that A is a prefix of B.
Definition 2 (Stickiness). A distributed ledger protocol is

sticky if for any honest party P and any rounds r1 ≤ r2,
it holds that LPr1 ⪯ LPr2 .

Definition 3 (Safety). A distributed ledger protocol is safe, if
it is sticky and for any pair of honest parties P1, P2 and

6. Note that P and V can also agree to allocate the funds to a third
party or, more generally, make the funds spendable under any condition
that can be expressed in Bitcoin Script.

7. This is not strictly necessary and is done mainly for convenience.
Parties could also take an outputted ledger and remove invalid transactions
from it.

any pair of rounds r1, r2, it holds that LP1
r1 ⪯ LP2

r2 ∨L
P2
r2 ⪯

LP1
r1 .

Definition 4 (Liveness). A distributed ledger protocol exe-
cution is live(u), if any transaction that is written to an
honest party’s ledger at round r, appears in the ledger
of all honest parties by round r + u, denoted as L

⋂
r+u.

Throughout this paper, we say “publish a transaction tx
(on L)” to denote calling the function write(tx). Furthermore,
after publishing a valid transaction tx, we sometimes say
“wait until tx appears (on L)”, to denote calling the function
read() every round until tx ∈ L, which happens at most
after u rounds due to liveness. When presenting the BitVM
construction, we sometimes refer to the ledger as blockchain
even though the distributed ledger protocol could be realized
differently. We say something happens on-chain if there are
one or more corresponding transactions in the ledger, and
something happens off-chain if there are no corresponding
transactions on the ledger.

There is a ledger state that is induced by a ledger L,
denoted as st(L), by executing each transaction in order,
starting with a genesis state. The execution of transactions
is captured by a state transition function, taking a state and a
transaction and outputting a new state. We denote balL(P ) ∈
R≥0 as the balance of party P in the state induced by L.
A party can use parts of their balance inP ∈ [0, balL(P )]
as monetary input for a transaction. For a given ledger L,
we define the on-chain (monetary) utility of a transaction
tx ∈ L for a party P as wL(P, tx) := balL1(P )− balL2(P ),
where L1 ≺ L is the ledger up to (not including) tx and
L2 := L1||tx. Usually, it is obvious which ledger we refer to,
so we omit the subscript. In addition to balances of parties,
a ledger state st(L) can include a string s ∈ {0, 1}∗, denoted
as s ∈ st(L), if there exists a transaction tx ∈ L, such that
tx contains the string s.

2.2. Threat model

We analyze BitVM in the presence of a PPT adversary
that may corrupt any protocol party {P, V } during the
execution of the protocol. The adversary can corrupt parties,
causing them to behave either as Byzantine or as rational
actors. Byzantine parties can deviate arbitrarily from the
honest protocol execution. Contrarily, rational parties de-
viate from the honest protocol execution only when such
action increases their monetary utility.

The protocol gives different guarantees based on the
type of corruption. On a high level, we want to show that
(i) honest protocol participants are guaranteed their rightful
balance even if the other party is Byzantine, (ii) rational
parties follow the honest protocol execution, and (iii) if both
parties behave rationally, the protocol follows an optimistic
execution (which is efficient). We formally define these
properties in Section 2.3.

2.3. Protocol goals

The core objectives of BitVM are termed balance se-
curity and rational correctness. Informally, balance security



ensures an honest party will not lose their funds against
Byzantine counterparties, whereas rational correctness guar-
antees that rational parties will follow the protocol. To
formally define balance security we argue in terms of utility,
i.e., the utility of the on-chain state of an honest party after
the settlement of a BitVM instance will be at least equal
to its utility of the correct final state, regardless of the
actions of its counterparty. Rational correctness implies that
if both parties are rational, they will commit on-chain the
correct final state of the BitVM instance. These properties
are standard in the literature: for instance, an honest user of a
Lightning channel [23] can always dispute a malicious com-
mitment and claim the channel funds, while rational players
will always commit to the last agreed-upon state [24].

We formalize these objectives on a generic primitive,
which we call on-chain state verification protocol and is
defined as follows.

Definition 5 (On-chain State Verification Protocol). An
on-chain state verification protocol, parameterized over
a distributed ledger protocol that outputs a ledger L,
is a two-party protocol that exposes the two following
functionalities:

• setup(inP , inV ,Π, f ): takes as input monetary inputs
inP ∈ [0, balL(P )] and inV ∈ [0, balL(V )] of parties P
and V , a computable function (or program) Π : S → O
that maps a set of states S to a set of outcomes O and
an outcome mapping function f : O → R2

≥0, that maps
the set of outcomes O to pairs of utilities (vP , vV )
where vP + vV ≤ inP + inV and returns an instance I.

• execute(I, x): takes as input an instance I returned by
the setup function and a function input x ∈ S (for
function Π).

Consider an execution of this primitive for given inputs
inP , inV ,Π, f , where I ← setup(inP , inV ,Π, f ), and then
execute(I, x) are called, and finish in round r. Let T be
the set of transactions that are included in L

⋂
r+u as a result

of this execution. Moreover, we denote the utility of party
A ∈ {P, V } in f(Π(x)) by fA(Π(x)).
Balance Security. An execution achieves balance security,

if it holds that
∑

tx∈T (w(tx,A)) ≥ vA where vA =
fA(Π(x)), for any honest A ∈ {P, V }.

Rational Correctness. An execution achieves rational
correctness, if P and V are rational and∑

tx∈T (w(tx,A)) = vA where vA = fA(Π(x)),
for any A ∈ {P, V } and Π(x) ∈ st(L

⋂
r+u).

An on-chain state verification protocol achieves bal-
ance security and rational correctness, respectively, if for
any inP , inV ,Π, f the probability that the corresponding
execution does not achieve balance security and rational
correctness, respectively, is negligible in κ.

3. Preliminaries

In this section, we present the necessary background
concerning Bitcoin Script and some key primitives our
construction builds upon.

Notation. Given a sequence A := (a1, . . . , an), A[i] repre-
sents its i-th element.We use A[i : j] to denote the subse-
quence (ai, . . . , aj). We use |A| to denote the length of a
sequence, e.g., |(a1, . . . , an)| = n. For a string s ∈ {0, 1}∗,
we use |s|bit to denote its bit length.

3.1. Transactions in the UTXO model

A user U on a ledger L is identified by the secret-
public key pair (pkU, skU); by σU(m) we denote the digital
signature of U over the message m ∈ {0, 1}∗.

In the unspent transaction output (UTXO) model, a
transaction Tx maps a (non-empty) list of existing, unspent,
transaction outputs to a (non-empty) list of new transaction
outputs. A transaction output is defined as an attribute
tuple out := (aB, lockScript), where out.a ∈ R≥0 is
the amount of coins (expressed in B) held by the out-
put out and out.lockScript is the condition that needs to
be fulfilled to spend it and transfer the coins to a new
output, which we also call UTXO. We distinguish the al-
ready existing transaction outputs (input of a transaction Tx)
from the newly created outputs calling them Tx.inputs and
Tx.outputs, respectively. A transaction input in is defined
as in := (PrevTx, outIndex, lockScript), where the output
being spent is uniquely identified by specifying the trans-
action PrevTx and an output index outIndex. To improve
readability, we also give the locking script lockScript that
is being fulfilled.

We formally define a transaction as a tu-
ple Tx := (inputs,witnesses, outputs) where
Tx.inputs := [in1, . . . , inn] are the transaction inputs,
Tx.outputs := [out1, . . . , outm] are the transaction outputs
and Tx.witnesses := [w1, . . . ,wn] represents the witness
data, i.e., the list of the tuples that fulfill the spending
conditions of the inputs, one witness for each input. The
locking script of an output is expressed in the scripting
language of the ledger. To transfer the coins held in
a UTXO, its locking script is executed with a witness
as script input and must return True; if successful, the
condition is considered fulfilled. If the script execution
returns False, the condition is not fulfilled and the UTXO
is not spendable8.

A transaction is valid only if every UTXO in input is
unspent, the witnesses fulfill the conditions of the corre-
sponding locking scripts, and the sum of the coins held in
the inputs is equal to or greater than the sum of the coins
held in the outputs.
Transaction spending conditions. Bitcoin has a stack-
based scripting language. Below, we describe the subset of
Bitcoin spending conditions that we use in this paper.
• Signature locks. The spending condition CheckSigpkU(m)

is fulfilled if the signature σU(m) is part of the witness.
• Multisignature locks. To fulfill this spending condition,
k out of n signatures are required. In particular, for two

8. In this work, we separate the locking script from the witness for
readability. However, note that in practice, the protocol is implemented
using SegWit [25] transactions, where the locking script is included in the
witness.



users A and B, a spending condition that represents a
2-of-2 multi-signature of a message m between them is
denoted as CheckMSigpkA,B

(m) and is fulfilled by giving
the signature σA,B(m) as part of the witness of the
spending transaction.

• Relative timelocks make a transaction output spendable
only after a specified time ∆ has elapsed since the
transaction was included on-chain. We denote the relative
timelock spending condition as TL(∆).

• Taproot trees [26], also known as Taptrees, enable a
UTXO to be spent by satisfying one of several possi-
ble spending conditions. These conditions, referred to as
Tapleaves, form the leaves of a Merkle tree. To spend a
UTXO locked by a Taptree locking script, the user must
provide a witness for one of the Tapleaves along with
proof of inclusion of that leaf in the Taptree.
We denote the Tapleaves of a Taptree locking script as
⟨leaf1, . . . , leafr⟩. When a user fulfills the script leafi to
unlock the j-th output of the transaction Tx, the corre-
sponding input is represented as (Tx, j, ⟨leafi⟩).
Whenever a user spends a UTXO via a Tapleaf of a
Taptree, we assume that they have provided a valid Merkle
proof of inclusion for that Tapleaf.

• Other conditions. We denote with True (False) a condi-
tion that is always fulfilled (can never be fulfilled), and
with h(x) the hash of x.

We use ∗ to denote a generic transaction input, witness, or
output that is not directly relevant to our protocol, provided
it remains valid under Bitcoin consensus rules.
Combining spending conditions. When presenting spend-
ing conditions with complex logic, we explicitly provide
their pseudocode. We use the conditions described in this
section as building blocks, combining them with standard
Bitcoin Script constructions using logical operators ∧ (and)
and ∨ (or). Furthermore, for convenience, inside long scripts
we append the keyword Verify to sub-spending conditions
that return either True or False with the following meaning:
if the sub-spending condition returns True, pop True from
the stack and continue to execute the rest of the script, if it
returns False, mark the transaction as invalid (and thus fail
to unlock the long script). This is meant to mimic how the
Bitcoin OP_VERIFY opcode works.

3.2. Lamport digital signature scheme

Let h : X → Y be a one-way function, where X :=
{0, 1}∗ and Y := {0, 1}λ, for a given security parameter
λ. Let m ∈ {0, 1}ℓ be a ℓ-bit message, with ℓ ∈ N>0. A
Lamport digital signature scheme [27] Lamp consists of a
triple of algorithms (KeyGen,Sig,Vrfy), where:
• (pkM, skM) ← Lamp.KeyGen(ℓ) (cf. Algorithm 1), is

a Probabilistic Polynomial Time (PPT) algorithm that
takes as input a positive integer ℓ and returns a key pair,
consisting of a secret key skM and a public key pkM
which can be used for one-time signing an ℓ-bit message.
We use M = {0, 1}ℓ as an alias for the ℓ-bit message
space.

• cm ← Lamp.SigskM
(m) (cf. Algorithm 2), is a Deter-

ministic Polynomial Time (DPT) algorithm parameterized
by a secret key skM, that takes as input a message
m ∈ M and outputs the signature cm, which we also
call (Lamport) commitment.

• {True,False} ← Lamp.VrfypkM
(m, cm) (cf. Algo-

rithm 3), is a DPT algorithm parameterized by a public
key pkM that takes as input a message m, a signature cm,
and outputs True iff cm is a valid signature for m gener-
ated by the secret key skM, corresponding to pkM, i.e.,
(pkM, skM) is a key pair generated by Lamp.KeyGen.

Algorithm 1 The key generation algorithm Lamp.KeyGen for
a ℓ-bit messages space M. In the following algorithms, we use
matrix notation, i.e., for a given two-dimensional matrix a, a[i, j]
refers to the element at row i and column j of it.

1: function Lamp.KeyGen(ℓ)

2: Let skM ←
(
x[0, 0], . . . , x[0, ℓ− 1]
x[1, 0], . . . , x[1, ℓ− 1]

)
, where every ele-

ment x[i, j] is sampled uniformly at random from the set
X;

3: for i = 0, 1 and j = 0, . . . , ℓ− 1 do
4: y[i, j]← h(x[i, j]);

5: Let pkM ←
(
y[0, 0], . . . , y[0, ℓ− 1]
y[1, 0], . . . , y[1, ℓ− 1]

)
;

6: return (skM, pkM).

Algorithm 2 The Lamport signature algorithm Lamp.Sig, pa-
rameterized over a secret key skM for a ℓ-bit sized message space
M.

1: function LampSigskM (m)
2: for i = 0, . . . , ℓ− 1 do
3: Let cm[i]← skM[m[i], i];
4: return cm.

Algorithm 3 Lamport verification algorithm Lamp.Vrfy, param-
eterized over a public key pkM for a ℓ-bit message space M.

1: function Lamp.VrfypkM
(m, cm)

2: for i = 0, . . . , ℓ− 1 do
3: if h(cm[i]) ̸= pkM[m[i], i] then
4: return False;
5: return True.

Lamport signatures are secure one-time signatures. Given
a message space M, it is possible to sign any message
m ∈ M by using the secret key skM of the key pair
(skM, pkM), i.e., the key pair associated to M. When the
message m is signed and cm is created, the key pair becomes
bound to m. No polynomially bounded adversary is able to
forge a signature for a different message m′ ̸= m with
non-negligible probability. However, if the signer uses the
same secret key skM to sign another different ℓ-bit messages
m′′ ̸= m, they can be held accountable. We call this action
equivocation and we show how to detect it in Algorithm 4.

Notice that signing the ℓ-bit message m with the secret
key skM consists in revealing for every bit i = 0, . . . , ℓ− 1



of m one of the two preimages that compose the i − th
column of secret key skM, namely, revealing x[0, i] to claim
that m[i] = 0, or revealing x[1, i] to claim that m[i] = 1.
When the signer reveals both x[0, i], x[1, i] for any bit i,
they are equivocating.

For a formal discussion about one-time security and a
proof that Lamport signatures are one-time secure (assuming
the existence of one-way functions), see, e.g., [28]. One-time
security is crucial for the correctness of BitVM as it enables
the signer of a message to make a non-repudiable commit-
ment to that message. Lamport signatures are implementable
using Bitcoin Script, as demostrated in [29].

Algorithm 4 The CheckEquivocation algorithm for a bit b ∈
B = {0, 1}. The input is the corresponding public key pkB and
two preimages x′, x′′ ∈ X .

1: function CheckEquivocation(pkB, x′, x′′)
2: if

(
h(x′) = pkB[0, 0] and h(x′′) = pkB[1, 0]

)
then

3: return True;
4: ▷ The committer is trying to commit to both 0 and 1

for the bit b. ◁
5: else
6: return False.

In the following, we are interested in Lamport signatures
as a mechanism to enable a party to commit to (single or
multiple bits) messages. Thus, we will refer to Algorithm 2
as Comm instead of Lamp.Sig and to Algorithm 3 as
CheckComm instead of Lamp.Vrfy.

3.3. Stateful Bitcoin scripting

Although the Bitcoin scripting language is stateless,
a clever use of one-time digital signature schemes, such
as Lamport signatures, enables state preservation across
different Bitcoin transactions.

Consider the following example: Let a user U hold a
Lamport key pair (skM, pkM) associated with M, the set
of all ℓ-bit messages. We can think of M as a variable that
can hold any ℓ-bit string. U can assign a value m to M by
creating the commitment cm ← CommskM

(m).
By hard-coding CheckCommpkM for a public key pkM

in the locking script of multiple outputs, this variable as-
signment can not only be verified but also transferred from
one output to another, effectively establishing a global state
in Bitcoin. This is accomplished by reading m and cm from
the unlocking script of one output and passing them to
another output through its witness. For example, consider
two different transactions Tx1 := (∗, ∗, [out1, ∗]) and Tx2 :=
(∗, ∗, [out′1, ∗]), where the outputs are defined as out1 :=
(aB,CheckCommpkM) and out′1 := (bB,CheckCommpkM).
To unlock both out1 and out′1, a Lamport commitment
cm must be provided. Since the same Lamport public key
appears in both scripts, every party in the network knows
that when U unlocks these scripts, U is assigning a value to
the same variableM. Following from one-time security, no
user other than U can assign a different value toM without

knowing skM. Moreover, U cannot assign two different
values m1 ̸= m2 to M without equivocating, which is
detectable and can be punished on-chain.

4. BitVM Virtual Machine

In the BitVM protocol, both parties employ a Virtual
Machine (VM) to run off-chain any deterministic program
Π. Although the underlying concept closely resembles an
abstract machine, we choose to retain the term “VM” to
stay consistent with the original naming of the construction.
In this section, we describe the components of the VM and
demonstrate how to initialize them for practical deployment
of the protocol.
VM components. At a high level, the virtual machine
(VM) executes programs composed of instructions written
in a VM-compatible language. While the program is run-
ning, the VM continuously performs an instruction cycle,
or state transition function. In each cycle, the VM fetches
the instruction indicated by the program counter, loads the
values stored at specific memory addresses referenced by the
instruction, executes the operation defined by the instruction
on those values, stores the result at the designated memory
address, and updates the program counter accordingly (cf.
Definition 7).

This process repeats until the program terminates or
reaches a predefined execution limit. Throughout its execu-
tion, the VM produces an execution trace, recording (i) the
current program counter value and (ii) a commitment to the
state of memory at each step. The BitVM protocol leverages
this execution trace for dispute resolution, as described
in Section 6.3 and Section A.1.

Formally, let a VM address be an integer addr ∈ A :=
{0, 1, . . . ,MemLen − 1} where MemLen ∈ N>0 represents
the memory length. We define the VM memory as the
sequence M ∈ M := {0, 1, . . . , n}MemLen, where n ∈ N>0

specifies the range of values stored at any memory address.
The VM program counter, denoted pc, is an element of the
set PC := {0, 1, . . . , ℓ−1}∪{⊥}, where ℓ ∈ {1, 2, . . . , n} is
the maximum length of the program, and ⊥ indicates termi-
nation. Let OP :=

{
fOP : PC ×{0, . . . , n}×{0, . . . , n} →

PC × {0, . . . , n} ∪ {⊥}
}

be a set of CPU instructions that
the VM can execute9. The function fOP takes as input a
triple (pc, valA, valB) and outputs a pair (pc, valC) or ⊥.
For any CPU instruction fOP ∈ OP , we require that fOP is
executable in Bitcoin Script. A VM program is an ordered
sequence of ℓ elements, denoted Π ∈ Iℓ, where I :={
(fOP, addrA, addrB , addrC) | addrA, addrB , addrC ∈
A, fOP ∈ OP

}
. We can now define the following.

Definition 6 (VM State). A VM state, or simply, state, is
a triple S := (M,pc,Π), where M is the VM memory,
pc is the VM program counter, and Π is a VM program.

Definition 7 (State Transition Function). Let S := M×
PC×Iℓ be the set of all VM states. We define the state

9. Even though OP can be arbitrary, we are interested in a Turing-
complete instruction set. In particular, we later use ADD, BEQ, and JMP,
cf. Algorithm 7 – a well-known Turing-complete instruction set [30].



Figure 1. Overview of the state transition function execution fST . Given a
state Si: (1) instruction Π[pci] is fetched, (2) values valA, valB are taken
from memory at their respective addresses, (3) the instruction is executed,
and (4) part of the result (i.e., valC) is stored in the memory. The state
transition function outputs the new state Si+1.

transition function fST : S → S with fST taking as
argument the state (Mi, pci,Π) and giving as output the
state (Mi+1, pci+1,Π) as specified in Algorithm 5.

Algorithm 5 State Transition Function fST .

1: function fST (M , pc, Π)
2: M ′ ←M ;
3: (fOP, addrA, addrB , addrC)← Π[pc];
4: valA ←M [addrA];
5: valB ←M [addrB ];
6: (pc′, valC)← fOP(valA, valB , pc);
7: if valC ̸= ⊥ then
8: M ′[addrC ]← valC ;
9: return (M ′, pc′,Π).

Given a program Π and a memory configuration M ,
we assume that the entry point of the program, namely the
first instruction that a program executes, is always Π[0].
Thus, we define as initial state the tuple S0 := (M, 0,Π).
We use the shorthand notation f i

ST (S) when we apply the
state transition function fST to a state S exactly i times,
f i
ST (S) := fST (fST (. . . (fST (S)))). We say that a state
Si := (Mi, pci,Π) at step i is correct with respect to an
initial state S0 iff Si = f i

ST (S0). We avoid the subscripts
(and simply refer to the state Si as (M,pc,Π)) when it is
clear from the context which state we are referring to.

Finally, after a number of execution steps equal to final
(final is decided when a VM instance is created), the pro-
gram terminates. We denote the final state, or outcome, as
Π(S0) := ffinal

ST (S0). Fig. 1 provides a visual representation
of the execution of the state transition function fST .

We define a VM instance as a tuple

Γ := ⟨Π,MemLen, n, final⟩.
We write ΓA to refer to the VM instance executed by party
A. We write SA

i to denote a VM state Si that A claims

to have produced during the execution of A’s VM instance
ΓA. We say that two parties A and B agree on the state Si

if SA
i = SB

i , and disagree on Si otherwise.
Definition 8 (Execution Trace Element). Let

(Mi, pci,Π) := f i
ST (S0), and let MRi be the

root of the Merkle tree with the entries of Mi as its
leaves. The i-th VM execution trace element, or simply,
i-th trace element is the pair Ei := (MRi, pci), for
i ∈ {0, . . . , final}.
We write EA

i to denote a VM execution trace element
Ei that A claims to have produced during the execution of
A’s VM instance ΓA. The VM execution trace is defined
as a sequence of consecutive trace elements ExecTrace :=
(E0, . . . , Efinal). We write ExecTraceA as a short-hand for
(EA

0 , . . . , E
A
final).

We describe how the VM behaves in Algorithm 6:
starting from initial state S0, it applies the state transition
function fST to the state and records the related trace ele-
ments until the program Π ends, namely, once pc is set to be
⊥. The VM algorithm is parameterized by final, a parameter
that represents the maximum number of state transitions that
the VM is allowed to perform. The VM algorithm returns
as output the VM execution trace ExecTrace, along with
the resulting memory M after the program execution.

Algorithm 6 The VM algorithm. S0 is the initial VM state.

1: function VMfinal(S0)
2: stepCount← 0;
3: while stepCount < final do
4: EstepCount ← (MR, pc);
5: (M,pc,Π)← fST (M,pc,Π);
6: increment stepCount by 1;
7: EstepCount ← (MR, pc);
8: ExecTrace← (E0, . . . , Efinal);
9: return (ExecTrace,M).

A practical VM instance. For better readability and to
provide a protocol instance that can be deployed in practice,
in the rest of the paper, we will consider a VM instance
Γ := ⟨Π,MemLen, n, final⟩ with the following initialization:
We set the length of the memory as MemLen = 232 and
the greatest integer that can be stored in any entry of the
memory as n = 232.

Furthermore, we assume that the input program Π has
ℓ ≤ 232 number of instructions10 and we set final = 232.

As for the set OP of instructions that the VM can
execute, our VM instance employs the following: OP :=
{ADD,BEQ, JMP}. This is a minimal set of computer
instructions known to be Turing complete [30]. We un-
derscore that the BitVM protocol can function with any
Turing-complete instruction set, provided that each instruc-
tion within the set is implementable in Bitcoin script. In Al-
gorithm 7, we give an implementation of ADD, BEQ and
JMP that can be easily translated in Bitcoin script.

10. In the BitVM protocol, we build a Taproot tree where every program
instruction is a Tapleaf script. We chose such ℓ since 232 << 2128, the
maximum number of leaf scripts in the current specification of Bitcoin [26].



Algorithm 7 The Algorithms ADD, BEQ, and JMP, each taking
as input the tuple (pc, valA, valB), and returning a pair (pc, valC).

1: function ADD(pc, valA, valB)
2: if pc = ⊥ then return (⊥,⊥);
3: return (pc + 1, valA + valB).

4: function BEQ(pc, valA, valB)
5: if pc = ⊥ then return (⊥,⊥);
6: if valA = valB then
7: return (pc+ 1,⊥).
8: else
9: return (pc+ 2,⊥).

10: function JMP(pc, valA, valB)
11: if pc = ⊥ then return (⊥,⊥);
12: return (valA,⊥).

5. The BitVM protocol

The BitVM protocol enhanced the expressiveness of
Bitcoin, allowing the encoding of spending conditions based
on the outcome of quasi-Turing complete programs.
Protocol overview. The protocol proceeds in four phases.
1) In the setup phase, P and V agree on the program Π they

wish to execute. For example, as described in Section 1,
this program could verify the validity of a sequence of
chess moves and check whether or not the chess puzzle
(encoded in the program itself) has been solved. P and
V also agree on the outcome mapping function f , create
and pre-sign all necessary transactions, and post the
initial transaction that locks their coins on-chain, which
we call Setup.

2) In the VM execute phase, performed off-chain, P and V
generate the input S0 for Π (e.g., the chess moves starting
from a given chessboard state) and compute Π(S0).

3) In the commit phase, P posts the CommitComputation
transaction on-chain, i.e., a transaction committing to the
input S0 and the result Π(S0) using Lamport signatures.
Upon seeing this, V can either accept the claim as correct
and wait for P to settle according to f(Π(S0)) (via
publishing a Close transaction), or, if the committed
result does not match Π(S0), initiate a dispute.

4) In the event of a dispute, they enter the resolve dispute
phase. This phase is the main technical challenge of the
BitVM protocol, as it requires an on-chain mechanism
to verify whether P ’s claimed result Π(S0) is correct,
while remaining within Bitcoin’s scripting limitations.

5.1. Resolving Disputes

The core challenge of BitVM is to enable the on-chain
verification of the result of computation that is normally
not expressible in Bitcoin Script. To address this, a novel
approach is necessary to be able to verify the correct
result, Π(S0), when executing Π on input S0. Our solu-
tion leverages our VM (see Section 4) and the resulting
execution trace ExecTrace := (E0, . . . , Efinal) produced
when computing Π(S0). Notably, each successive element

in this execution trace results from applying a single VM
instruction to the preceding element. We demonstrate that
verifying each individual VM instruction can indeed be
accomplished within Bitcoin Script, a process we detail later
in this section. With this in place, the only remaining task
is to identify two consecutive trace elements, where P and
V agree on the former but disagree on the latter. Given that
they both agree on S0, any disagreement over the result
Π(S0) ensures that such a pair of consecutive trace elements
exists. We identify this pair via an on-chain bisection.

We present both of these components in this section,
focusing on describing what the parties do by publishing
certain transactions, not how exactly these are implemented.
The reader can assume that all necessary transaction logic
is feasible within Bitcoin, utilizing Lamport signatures and
other Bitcoin Script features. We defer the concrete imple-
mentation of these Bitcoin transactions and the full protocol
specification to Section 6. Whenever we mention that one
party must respond with a transaction, this is enforced by a
timelock mechanism, allowing the other party to claim all
funds in the event of prolonged inactivity by the first party.

In Fig. 2, we illustrate a protocol execution in case of
disagreement.

Identify Disagreement. Recall that the total length of the
execution trace is final. V initiates the bisection game by
publishing a Kickoff transaction, forcing P to respond with
a TraceResponse1 transaction that reveals the middle trace
element, En31

, where n31 = 231 = final/2.
The loop then begins, where V forces P into pro-

gressively smaller sequences of the trace by publishing a
TraceChallenge1 transaction, Lamport committing to a
value b31 in its witness.

• If V agrees with En31
, V commits to b31 = 1, indicating

that P should reveal a trace element in the right half of
the sequence.

• If V disagrees with En31
, V commits to b31 = 0, indicat-

ing that P should reveal a trace element in the left half
of the sequence.

• Based on b31, P responds by publishing a
TraceResponse2 transaction, revealing the middle
element of the next sequence, En30

, where
n30 = b31 · 231 + 230.

This process continues recursively, with each step re-
vealing the middle trace element of the current sequence. V
publishes a new TraceChallenge32−k at each step, setting
a new bit bk (for k = 30, 29, . . . , 1), indicating whether
to go left (bk = 0) or right (bk = 1). In each response,
P commits to the next middle trace element Enk−1

in
TraceResponse32−k+1, for nk−1 =

∑31
i=k(bi · 2i) + 2k−1.

With the last transaction, TraceChallenge32, V sets
the last bit b0, indicating (dis)agreement with En0

, so that
we finally obtain the index N =

∑31
i=0 bi · 2i. Let N ′ :=

N + 1. For the pair (EN , EN ′), both P and V agree on
the former and disagree on the latter. This pair allows the
protocol to resolve the dispute by examining the exact step
in the computation where the disagreement occurred.
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Figure 2. Example of dispute resolution in the BitVM protocol: To resolve a dispute, (1) P and V engage in a bisection game to identify the point of
disagreement (EN , EN ′ ) in their execution traces, indicating a disagreement in the transition from state SN to SN ′ . Next, (2) P commits on-chain to
all necessary information for executing SN ′ = fST (SN ) (i.e., the values highlighted by colored boxes in the figure). In this example, we assume that P
is committing to an incorrect value for valAθ , resulting in incorrect value for valCθ and MRN ′ . (3) V challenges P through a bisection game over the
path in the memory Merkle tree MN , from the root MRN to the leaf containing valAθ . This bisection game reveals two intermediate nodes, Npar and
Nchild, on which P and V disagree. To get away while using an incorrect value, P would need to prove that Nchild is indeed the left child of Npar,
which is impossible without equivocating, leading to punishment.

At this point, P is forced to publish a
CommitInstruction transaction, committing to the
necessary information to execute SN ′ = fST (SN ):
• pcθ, pcθ′ : the program counter of the states SN and SN ′ ,

respectively;
• insTypeθ ∈ OP: the instruction type at Π[pcθ];
• addrAθ, addrBθ, addrCθ: the memory addresses refer-

enced in Π[pcθ];
• valAθ, valBθ: the memory values at addresses addrAθ

and addrBθ in SN ;
• valCθ: the value at address addrCθ in SN ′ , i.e., after

executing fST (SN ).
In addition to committing to these values, the script

of TraceChallenge32 requires P to provide them so that
(pcθ′ , valCθ) = insTypeθ(pcθ, valAθ, valBθ) holds. In
particular, there is a tapleaf that ensures this for each in-
struction type OP := {ADD,BEQ, JMP}.

Challenge Single Instruction. Armed with the prover’s
commitment to these values and the knowledge that
(pcθ′ , valCθ) = insTypeθ(pcθ, valAθ, valBθ) holds, it re-
mains to verify that the committed values correspond to
the committed states SN and SN ′ . There are five po-
tential errors in the committed values: (i) invalid pro-
gram counter: pcθ is not the program counter of SN ,
(ii) invalid program counter next: pcθ′ is not the program
counter of SN ′ , (iii) invalid instruction: insTypeθ, addrAθ,
addrBθ, or addrCθ do not match Π[pcθ], (iv) invalid read:
MN [addrAθ] ̸= valAθ or MN [addrBθ] ̸= valBθ, and
(v) invalid write: MN ′ [addrCθ] ̸= valCθ. Referring to
Algorithm 5, if SN ′ ̸= fST (SN ) while (pcθ′ , valCθ) =
insTypeθ(pcθ, valAθ, valBθ) holds, one of these five errors
must have occurred. In essence, either the values are not
correctly derived from the agreed upon state SN , or the
result is not stored correctly in SN ′ . By executing this step,

V can pinpoint which of these errors occurred, and thus
choose the appropriate challenge path.

Challenging the Current Program Counter. V can chal-
lenge the current program counter pcθ by publishing a
ChallengeCurrPC transaction. In this transaction, V com-
mits to N , revealing both P ’s commitment to pcN and the
currently disputed value pcθ, proving that pcN ̸= pcθ.

Since V already committed to N bit-by-bit during the
bisection game with P to locate a disagreement point,
V could attempt to equivocate on one of the bits when
recommitting to N in the punishment phase. If equivocation
occurs, P publishes a PunishCurrPC transaction, revealing
two different bitwise commitments to N linked to the veri-
fier’s public key. In this scenario, P claims all funds in the
multisignature, thereby terminating the BitVM protocol.

If P fails to act within a specified time interval ∆,
and V does not equivocate, V redeems the locked coins,
terminating the protocol. This outcome happens either when
P remains inactive or when V successfully proves that
pcN ̸= pcθ without equivocation. This case is analogous
to challenging the next program counter pcθ′ .

Disproving a Wrong Program Instruction. In the
CommitInstruction transaction’s output locking script, a
tapleaf is associated with each line of the program, hard-
coding the program line number (pointed to by pcθ) along
with the corresponding values insTypeθ, addrAθ, addrBθ,
and addrCθ. If the prover commits to an incorrect program
instruction, the verifier can expose this by publishing a
DisproveProgram transaction.

To spend one of these tapleaves, V must provide P ’s
committed values: pcθ, insTypeθ, addrAθ, addrBθ, and
addrCθ. The locking script ensures that the committed
program counter pcθ matches the program line number in
the tapleaf. If the program counter matches but any other



value does not, the DisproveProgram transaction succeeds,
and BitVM terminates with V receiving the coins.
Challenge Read. The verifier challenges the correctness of
valAθ at memory address addrAθ in SN , agreeing with the
Merkle root MRN but disputing the value valAθ. To start
the challenge, V publishes a ChallengeRead transaction,
spending the CommitInstruction output.

The parties engage in a bisection game on the memory
Merkle path PR := (MRN , . . . ,MN [addrAθ]), i.e., the
path from the root MRN to the leaf MN [addrAθ]. The goal
is to isolate a point of disagreement between V and P . Over
5 rounds of challenge-response (given MemLen = 232), they
progressively narrow down the path until they identify a pair
of nodes (Npar,Nchild) where they agree on Npar (i.e., the
parent node) but disagree on Nchild (i.e., the child node).
This bisection game proceeds in a similar fashion as the one
for finding the disagreement in the execution trace.

Once this point of disagreement is found, V challenges
P to provide a valid sibling node Nsib for Nchild, such that
H(Nsib ∥ Nchild) = Npar. If P cannot provide this due to
an invalid commitment, V can claim the locked funds by
publishing the PunishRead transaction. If P provides the
correct sibling and no equivocation occurs, P claims the
funds after the timelock expires. This process is analogous
for valBθ at memory address addrBθ.
Challenge Write. The process for challenging the result of a
write operation is similar to Challenge Read, but with a key
difference: V challenges the value valCθ written to memory
at addrCθ in SN ′ . This affects both the Merkle path rooted
at MRN and the one rooted at MRN ′ . As a result, the
bisection game involves two parallel Merkle paths: PW

(from MRN to MN [addrCθ]) and P ′
W (from MRN ′ to

MN ′ [addrCθ]). In each round, P reveals corresponding
nodes from both paths. If P commits to incorrect values
on PW , V focuses on that path (as in Challenge Read).
Otherwise, if there is a disagreement on P ′

W , V focuses
on that path. The game ends when a pair of parent-child
nodes from both paths are isolated, and P must provide
a valid sibling node Nsib to prove the correctness of the
Merkle structure. If P equivocates, V can claim the coins
by publishing PunishWrite, similarly to Challenge Read.

5.2. Honest Closure

In the happy path where the parties agree on the outcome
of the computation, the on-chain footprint of the protocol is
minimal, with only 3 transactions being published. After a
set time period, P can spend the transaction in which they
committed to the outcome by signing a pre-signed transac-
tion that includes the result as a witness and distributes the
coins according to the outcome mapping function f applied
to this result. Should P equivocate, V claims all the funds.

Moreover, BitVM ensures a constant maximum number
of transactions in case of dispute, once the VM instance
is fixed. For example, consider a VM with 232 memory
cells, each capable of storing a 32-bit integer, executing a
program up to 232 instructions long, and requiring up to 232

execution steps. Resolving a dispute in the execution of this
VM would require publishing at most 81 transactions on-
chain. This occurs when V first publishes a Kickoff trans-
action to initiate the Identify Disagreement phase. Once this
phase is completed, V publishes on-chain a ChallengeRead
transaction to initiate the Challenge Read path (or, similarly,
V can initiate the Challenge Write path).

6. The BitVM full protocol

In this section, we present the full BitVM protocol
specification. All scripts that we use comprise only (multi-)
signature and Lamport signature verification, if/else state-
ments, timelocks, and hashing, and are thus compatible with
Bitcoin. Due to space constraints, we present the setup, VM
execute, and commit phases and defer the resolve dispute
phase to Appendix A.

6.1. Setup

In the setup phase, the prover P and the verifier V
create and presign the necessary transactions for both honest
protocol execution and potential dispute resolution; then
both P and V lock an on-chain deposit, inP and inV ,
respectively.

At first, both P and V create all the transactions
that are defined in this section and Appendix A, except
Setup. Whenever such a transaction contains a new Lam-
port public key, the corresponding party creates one using
Lamp.KeyGen and shares the public key with the other party.

Each transaction output either requires a 2-of-2 multisig-
nature σPV to be spent and is presigned by both parties or
requires a signature from one party along with a timelock.
The timelock condition ensures that if a party ceases partici-
pation in the BitVM protocol, they forfeit the deposit, which
the counterparty can then claim, along with their deposit.

After creating the transactions, the parties exchange
them for presigning. For each transaction P (V ) verifies it is
well-formed according to the definitions below. If verified,
the transaction is signed and sent to V (P ). The

Finally, P and V sign and publish the Setup (cf. Eq. (1))
transaction on-chain. This transaction takes inputs from P
(holding inP B) and V (holding (inV B), creating an output
that can be unlocked by both parties under the following
conditions: P can spend the output by presenting Lamport
commitments to MR0 and MRfinal (i.e., the commitments
to the input and output of program Π), while V can spend
the output after a timeout period ∆. For brevity, we use
σU when the signature is in a transaction’s witness; the
message signed in that case is the transaction body (inputs
and outputs without witnesses).



Setup :=(
in = [(∗, ∗,CheckSigpk

P
), (∗, ∗,CheckSigpk

V
)],

wit = [(σP ), (σV )],

out = [(dB; ⟨CommitComputationScript,TL(∆)∧

CheckSigpk
V
⟩)]

)
,

(1)

The script CommitComputationScript is defined below.

CommitComputationScript :=

CheckMSigpk
PV
∧ CheckCommpk

E0
∧ CheckCommpk

Efinal
.

6.2. VM Execute

The prover P sends to the verifier V the input x
of program Π via a communication channel. Both P and
V execute off-chain the program Π with input x on their
VM instance. They copy x into the VM memory M and
call Algorithm 6 with input S0 := (M, 0,Π). They get as
output the VM execution trace ExecTrace and the memory
M , from which they fetch the output y of program Π with
input x. We stress that this is the most resource-intensive
phase of BitVM and it is entirely performed off-chain.

6.3. Commit

The prover P publishes the CommitComputation
transaction (cf. Eq. (2)) on-chain, which spends the output of
the Setup transaction by providing a Lamport commitment
to E0 := (MR0, pc0) and Efinal := (MRfinal, pcfinal).

CommitComputation :=(
[in = (Setup, 0,CommitComputationScript)],

[wit = (σPV , E0, cE0 , Efinal, cEfinal)],

[out = (dB; ⟨CheckMSigpk
PV

,CloseScript,

CheckSigpk
V
∧ TL(2∆)⟩)]

)
.

(2)

The script CloseScripti is defined in Algorithm 8.

Algorithm 8 The script CloseScripti. In the setup phase, the
public key pkMRfinal

is hard-coded in the script.

1: function CloseScripti(σPV , MRfinal, cMRfinal )
2: TL(∆);
3: CheckMSigVerifypk

PV
(σPV );

4: CheckCommVerifypk
MRfinal

(MRfinal, cMRfinal);
5: if MRfinal =MRi then
6: return True;
7: return False.

The verifier V can either challenge P if they disagree
with the MRfinal published on-chain by P or simply take no
action if they agree. Since the VM execution is determin-
istic, honest parties running the same program on the same
input naturally agree on MRfinal. A disagreement, therefore,
implies that one party is behaving dishonestly.

Close. V agrees with P ’s commitment to MRfinal and
does not dispute it. The BitVM protocol follows the happy
path: after a timeout period ∆, P publishes one of the
close transactions, Close1, . . . , Closem. Each of these trans-
actions distributes the funds according to the outcome map-
ping function f , applied to one of the possible results
of the computation11. If P does not publish any Closei
transaction after that TL(2∆) expires after the publica-
tion of CommitComputation transaction, V can unlock
CommitComputation output with their signature and claim
all the funds.

Transaction Closei (cf. Eq. (3)) spends the output of
CommitComputation by unlocking CloseScripti and cre-
ates two outputs. The first output carries oP B and can be
unlocked by P after a timeout period ∆ or by V if P
equivocates on MRfinal (as shown in Algorithm 9). The
second output carries oV B and can be unlocked by V .

Closei :=(
[in = (CommitComputation, 0,CloseScript)],

[wit = (σPV ,MRfinal, cMRfinal)],

[out = (vP ; ⟨CheckSigpk
P
∧ TL(∆),

PunishCloseScript⟩), (vV ;CheckSigpk
V
)]
)
.

(3)

Algorithm 9 The script PunishCloseScript. In the setup phase,
the public key pkMRfinal

is hard-coded in the script.

1: function PunishCloseScript(σPV , c0, c1)
2: CheckMSigVerifypk

PV
(σPV );

3: for i = 1, . . . , |MRfinal|bit do
4: if Equivocation(pkMRfinal[i]

, c0, c1) = True then
5: return True;
6: return False.

Identify Disagreement. V disagrees with P ’s commitment
to MRfinal. To dispute P ’s result, V publishes the KickOff
transaction (cf. Eq. (4)) by spending CommitComputation’s
output, unlocking it through the multisignature.

KickOff :=(
[in = (CommitComputation, 0,CheckMSigpk

PV
)],

wit = [(σPV )],

out = [(dB; ⟨ChallScript1,TL(∆) ∧ CheckSigpk
V
⟩)]

)
.

(4)

The script ChallScriptj, with j ∈ {1, . . . , 31}, is defined
as follows:

ChallScriptj := CheckMSigpkPV
∧ CheckCommpkEn32−j

.

11. During the setup phase, P and V agree on f and jointly create and
sign a finite set of closing transactions, one for each possible outcome. The
funds are distributed to P and V according to the result of f .



The parties engage in an on-chain interactive protocol
known as dispute bisection game (cf. Section B.1): the
game is played over the VM execution trace ExecTrace :=
(E0, . . . , Efinal) and has the goal to determine a pair of
consecutive VM trace elements (EN , EN ′), where N ′ :=
N + 1, such that they agree on EN and disagree on EN ′ .

After that, V initiates the bisection game by publishing
the Kickoff transaction, P responds by publishing the
TraceResponse1 transaction (cf. Eq. (5)), committing to
En31

in the witness, where n31 = 1 · 231.

TraceResponse1 :=(
in = [(KickOff, 0,CheckMSigpk

PV
∧

CheckCommpk
En31

)],

wit = [(σPV , En31 , cEn31
)],

out = [(dB; ⟨RespScript1,TL(∆) ∧ CheckSigpk
P
⟩)]

)
.

(5)

The script RespScripti, with i ∈ {1, . . . , 32}, is defined
as follows:

RespScripti := CheckMSigpkPV
∧ CheckCommpkb32−i

.

Next, V publishes the TraceChallenge1 transaction
(cf. Eq. (6)), committing to bit b31 in the witness.

TraceChallenge1 :=(
in = [(TraceResponse1, 0,RespScript1)],

wit = [(σPV , b31, cb31)],

out = [(dB; ⟨ChallScript2,TL(∆) ∧ CheckSigpk
V
⟩)]

)
.

(6)

During the dispute bisection game, P publishes transac-
tions TraceResponsei (cf. Eq. (7)), with i = 1, . . . , 32, and
V publishes transactions TraceChallengej (cf. Eq. (8)),
with j = 1, . . . , 31.

TraceResponsei :=(
in = [(TraceChallengei−1, 0,ChallScripti−1)],

wit = [(σPV , En32−i , cEn32−i
)],

out = [(dB; ⟨RespScripti,TL(∆) ∧ CheckSigpk
P
⟩)]

)
,

(7)

where n32−i = 1 · 232−i +
∑31

k=32−i+1 bk · 2k.

TraceChallengej :=(
in = [(TraceResponsej, 0,RespScriptj)],

wit = [(σPV , b32−j , cb32−j )],

out = [(dB; ⟨ChallScriptj+1,TL(∆) ∧ CheckSigpk
V
⟩)]

)
,

(8)

Finally, V publishes TraceChallenge32 (cf. Eq. (9)).

TraceChallenge32 :=(
in = [(TraceResponse32, 0,RespScript32)],

wit = [(σPV , b0, cb0)],

out = [(dB; ⟨ADDScript,BEQScript, JMPScript,

TL(∆) ∧ CheckSigpk
V
⟩)]

)
,

(9)

To unlock the TraceChallenge32 output, P is forced
to provide a commitment for pcθ, pcθ′ , insTypeθ, addrAθ,
addrBθ, addrCθ, valAθ, valBθ, valCθ. The instruc-
tion insTypeθ must match the leaf being spent and
pcθ, pcθ′ , valAθ, valBθ, valCθ must align with the
instruction’s semantics. For instance, if P unlocks the
ADDScript tapleaf (cf. Algorithm 10), the condition
ADD(pcθ, valAθ, valBθ) = (pcθ′ , valCθ) must hold, where
ADD is the VM instruction defined in Algorithm 7, lines 1
to 3. The leaves BEQScript and JMPScript are analogous to
ADDScript but they encode the semantics of the BEQ and
JMP instructions, respectively. The resolve dispute phase is
deferred to Appendix A.

Algorithm 10 The script ADDScript. In the setup phase,
the public keys pkpcθ , pkpcθ′ , pkinsTypeθ

, pkaddrAθ
, pkaddrBθ

,
pkaddrCθ

, pkvalAθ
, pkvalBθ

, pkvalCθ
and the sematics of the ADD

instruction are hard-coded in the script.

1: function ADDScript(σPV , pcθ , cpcθ , pcθ′ , cpcθ′ , insTypeθ ,
cinsTypeθ , addrAθ , caddrAθ , addrBθ , caddrBθ , addrCθ ,
caddrCθ , valAθ , cvalAθ , valBθ , cvalBθ , valCθ , cvalCθ )

2: CheckMSigVerifypk
PV

(σPV );
3: CheckCommVerifypkpcθ

(pcθ, cpcθ );
4: CheckCommVerifypkpc

θ′
(pcθ′ , cpcθ′ );

5: CheckCommVerifypk
insTypeθ

(insTypeθ, cinsTypeθ );
6: CheckCommVerifypk

addrAθ

(addrAθ, caddrAθ );
7: CheckCommVerifypk

addrBθ

(addrBθ, caddrBθ );
8: CheckCommVerifypk

addrCθ

(addrCθ, caddrCθ );
9: CheckCommVerifypk

valAθ

(valAθ, cvalAθ );
10: CheckCommVerifypk

valBθ

(valBθ, cvalBθ );
11: CheckCommVerifypk

valCθ

(valCθ, cvalCθ );
12: if insTypeθ = ADD ∧ ADD(pcθ, valAθ, valBθ) =

(pcθ′ , valCθ) then
13: return True;
14: else
15: return False.

7. Security Analysis

In this section, we show that BitVM is On-chain State
Verification Protocol.BitVM satisfies Balance Security and
Rational Correctness. To achieve that, we first argue about
the correctness of each phase of the protocol, i.e., setup,
execution, dispute, and punishment phase, in Lemmas D.1–
D.13. Then, we model BitVM as an Extensive Form Game
(EFG) for which we provide the related background in
Appendix C. Last, we combine the aforementioned Lemmas
and the EFG representation to prove that BitVM satisfies
Rational Correctness and Balance Security.

7.1. Balance Security

We consider two scenarios: (i) both parties act honestly,
and (ii) one party, A ∈ {P, V }, deviates at any step of
the protocol. In both cases, we prove that an honest party



retains their funds.

Setup. If either party deviates during Setup, the honest party
will refuse to sign the Setup transaction, ensuring no coins
are locked unless both parties have received all necessary
pre-signed transactions (cf. Lemma D.1).

Both parties honest. When both parties are honest, BitVM
follows an optimistic path: P posts the correct computation
result on-chain in CommitComputation and, after a time-
lock ∆, publishes Close to distribute funds according to
the outcome function f (cf. Lemma D.3).

V is honest and P is Byzantine. If P fails to publish
CommitComputation, because of either being inactive or
executing invalid computations, or subsequently fails to post
Close, V can claim the coins after the relevant timelocks
expire (∆ or 2∆) (cf. Lemmas D.2, D.3). This mechanism
prevents hostage scenarios by enabling V to reclaim funds
in case of non-responsiveness.

If P has committed an incorrect computation result
in CommitComputation, V publishes KickOff (Identify
Disagreement phase). As shown in (cf. Lemma D.4), if P is
inactive, V can claim the coins after the relevant timelock
expires. If the Identify Disagreement phase completes, V
knows a step for which P has committed on-chain to an
execution of the VM state transition function (Algorithm 5)
incorrectly (cf. Lemma D.7).

P can deviate in the following ways: by using an
incorrect program counter (current or next), making an
incorrect memory read or write, or using invalid instruc-
tions. For each of these deviations, V can post the cor-
responding transaction on-chain (e.g., ChallengeCurrPC,
ChallengeNextPC, ChallengeRead, ChallengeWrite,
PunishInstruction). Following the respective dispute
path, V is able to disprove P ’s computation and claim
the coins, as we conclude in Lemma D.14.

P is honest and V is Byzantine. V can misbehave
by publishing KickOff on-chain to initiate the Dispute
Phase, although P has committed to the correct out-
put of the execution in CommitComputation. We show
that if V is inactive during the Identify Disagreement
phase, P can claim the coins after the timelock expires
(cf. Lemma D.5). Otherwise, if the Identify Disagreement
phase completes, V has to publish one of the transactions
ChallengeCurrPC, ChallengeNextPC, ChallengeRead,
ChallengeWrite, PunishInstruction. Since P has com-
mitted to the correct values, V cannot disprove P , as we
conclude in Lemma D.15.

7.2. Rational Correctness

We have shown that if a party A ∈ {P, V } misbehaves
at any point, the other party A′ can claim all the coins.
Therefore, when both parties are rational, no party will
misbehave but instead follow the optimistic path of BitVM.

8. Discussion

In the following, we outline BitVM ’s costs to demon-
strate its feasibility and efficiency, discuss potential applica-
tions, its limitations – particularly its permissioned nature –
and conclude with possible improvements.

Feasibility & Cost Evaluation. To assess the feasibility of
our approach, we estimate the transaction fees for both an
optimistic run and the most expensive dispute run of BitVM,
using the VM instance defined in Section 4.

We assume constant transaction fees of 3sat/vB12, a
Bitcoin price of 64, 300$ (as of 24 September 2024). For
the Lamport signatures, we set λ = 160, thus public key
and commitment are of length 20B; for an a-bit message
they occupy a × 20B = a × 5vB. We also assume that
∆ = 12 hours, meaning each timelock expires after half a
day. Different concrete values can be chosen, but any such
selection would require scaling the evaluation accordingly.
For details on how we computed the actual transaction sizes,
we refer the reader to Appendix E.
Optimistic case. In the optimistic case, three on-
chain transactions are published: Setup (187vB),
CommitComputation (2, 093vB), and Close (1, 289vB),
totaling 3, 569vB. The protocol’s execution cost is 10, 707
sat (6.90$). In terms of execution time, once Setup is
published, BitVM completes in at most 2u rounds.
Dispute case. We focus on the most expensive path in
terms of fees, the Challenge Write path. Besides the Setup
and the CommitComputation transactions, the following
transactions are also published on-chain in case of dispute:
• 1 KickOff, 32 TraceChallenge, 32 TraceResponse, 1
ChallengeWrite, 5 WriteChallenge transactions, with
up to 1, 112vB.

• 5 WriteResponse, transactions, with up to 2, 093vB.
• The transactions CommitWrite1 and PunishWrite1 with

up to 7, 286vB.
• The transaction CommitInstruction with up to
2, 751vB.

Overall, the path weighs 109, 020vB. The total protocol
execution cost is roughly 327Ksat, or about 210$, and, once
the Setup transaction is published on-chain, it takes at most
80×∆ = 40 days to complete its execution.

Applications, Limitations & Improvements. This paper
aims to formalize BitVM and prove its security, establishing
for the first time that quasi-Turing complete on-chain state
verification is feasible on blockchains like Bitcoin. By facil-
itating the verification of such programs on Bitcoin, BitVM
unlocks a diverse array of applications, including cross-
chain bridges, light clients, zk-proof verification, state chan-
nels, games, and escrow contracts. Off-chain computation by
users eliminates additional costs for miners, making BitVM
a practical and scalable solution for complex applications.

12. In Bitcoin, the size of a SegWit [25] transaction is expressed in
virtual Bytes, or vBytes (vB). The number of vBytes of a transaction
witness is equal to its number of Bytes divided by four.



Nevertheless, the current construction is not optimized
for efficiency. Possible improvements include undergoing
engineering efforts [16], [17], replacing Lamport signatures
with Winternitz signatures [28], or incorporating future op-
codes, such as covenants [2].

Furthermore, the current construction is a two-party
permissioned protocol, limiting its direct applicability com-
pared to [19], for example, which permits anyone to act
as the verifier. However, this added flexibility incurs a
significantly higher cost of 1.9K$ (due to filling an entire
4MB Bitcoin block), compared to BitVM ’s practical cost
range of 7− 200$.

Acknowledgments

The work was partially supported by CoBloX Labs,
by the European Research Council (ERC) under the Eu-
ropean Union’s Horizon 2020 research (grant agreement
771527-BROWSEC), by the Austrian Science Fund (FWF)
through the SpyCode SFB project F8510-N and the project
CoRaF (grant agreement 2020388), by the Austrian Federal
Ministry for Digital and Economic Affairs, the National
Foundation for Research, Technology and Development
and the Christian Doppler Research Association through
the Christian Doppler Laboratory Blockchain Technologies
for the Internet of Things (CDL-BOT), by the WWTF
through the project 10.47379/ICT22045, and by Ministero
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Appendix A.
The BitVM Full Protocol: Resolve Dispute

A.1. Resolve Dispute

P spends the TraceChallenge32 output by publishing
the CommitInstruction transaction (cf. Eq. (10)).

CommitInstruction :=(
in = [(TraceChallenge32, 0,OPScript)],

wit = [(σPV , pcθ, cpcθ , pcθ′ , cpcθ′ , insTypeθ,

cinsTypeθ , addrAθ, caddrAθ , addrBθ, caddrBθ , addrCθ,

caddrCθ , valAθ, cvalAθ , valBθ, cvalBθ , valCθ, cvalCθ )],

out = [(dB; ⟨CheckMSigpk
PV

, {CIScriptPCCurri}i∈{1,...,32},

{CISCriptPCNexti}i∈{1,...,32}, {CIScriptInstrj}j∈{1,...,ℓ},

TL(∆) ∧ CheckSigpk
P
⟩)]

)
.

(10)
The tapleaf that P unlocks when publish-
ing CommitInstruction is OPScript ∈
{ADDScript,BEQScript, JMPScript}.

By publishing the CommitInstruction transaction, P
reveals all the information necessary for the state tran-
sition from SN to SN ′ . Depending on the specific er-
ror that V claims P made, V spends the output of
CommitInstruction in one of the following ways.
A.1.1. Challenging the Current Program Counter. V
is claiming that, by publishing CommitInstruction, P is
committing to a program counter pcθ at step N that differs
from the program counter pcN (previously committed by
P during the dispute bisection game). V challenges the
current program counter pcθ by unlocking one of the leaves
CIScriptPCCurri (cf. Algorithm 11) via the publication of
transaction ChallengeCurrPC (cf. Eq. (11)). We use Algo-
rithm 12 to map the challenge-response rounds to the leaves
CIScriptPCCurr0, . . . , CIScriptPCCurr31. When V unlocks
leaf CIScriptPCCurri, they challenge the program counter
of the (32 − i)-th challenge-response round of the dispute
bisection game.

ChallengeCurrPC :=(
in = [(CommitInstruction, 0,CIScriptPCCurrN )],

wit = [(σPV ,N , cN , pcN , cpcN , pcθ, cpcθ )],

out = [(dB; ⟨ChallPCScript,TL(∆) ∧ CheckSigpk
V
⟩)]

)
.

(11)
In the ChallengeCurrPC transaction, V commits again

to N , potentially equivocating. P can punish equivocation
by unlocking ChallPCScript script (cf. Algorithm 13).

If V equivocates, P publishes PunishCurrPC
(cf. Eq. (12)), redeeming all the funds in the multisignature.

PunishCurrPC :=(
in = [(ChallengeCurrPC, 0,ChallPCScript)],

wit = [(σPV , c0, c1)],

out = [(dB;CheckSigpk
P
)]
)
.

(12)

Algorithm 11 The script CIScriptPCCurri, for i ∈ {0, . . . , 31}.
For each CIScriptPCCurri, in the setup phase, we hard-code the
public keys pkpcθ , pkN . For each CIScriptPCCurri, for i ∈
{1, . . . , 31}, we hard-code the same public key pkpci hard-coded
in ChallScripti. For CIScriptPCCurr0, we hard-code the same
public key pkpc0 hard-coded in CommitComputationScript.

1: function CIScriptPCCurri(σPV , N , cN , pci, cpci , pcθ , cpcθ )
2: CheckMSigVerifypk

PV
(σPV );

3: CheckCommVerifypkN
(N , cN );

4: if CountZeroes(N ) ̸= i then
5: ▷ Maps N to one of the 32 program counters pcn0 ,

. . . , pcn31 . ◁
6: return False;
7: CheckCommVerifypkpci

(pci, cpci);
8: CheckCommVerifypkpcθ

(pcθ, cpcθ );
9: if pci ̸= pcθ then

10: return True;
11: else
12: return False.

Algorithm 12 The algorithm CountZeroes. It counts the number
of consecutive bits set to 0 in the binary representation of a number
N , starting from the least significant bit (LSB), until the first
occurrence of a bit set to 1.

1: function CountZeroes(N )
2: counter ← 0;
3: flag ← False;
4: for i = 0, . . . , |N |bit − 1 do
5: if N [|N |bit − i] = 1 then
6: flag ← True;
7: ▷ Set the flag, stop incrementing the counter. ◁
8: else
9: if flag = False then

10: counter ← counter + 1;
11: return counter.

A.1.2. Challenging the Next Program Counter. V is
claiming that, by publishing CommitInstruction, P is
committing to a program counter pcθ′ at step N ′ (output of
the VM operation executed on-chain) that differs from the
previously committed program counter pcN ′ . V challenges
the next program counter pcθ′ by unlocking one of the leaves
CIScriptPCNexti (cf. Algorithm 14) via the publication of
transaction ChallengeNextPC (cf. Eq. (13)).

Algorithm 13 The script ChallPCScript. In the setup phase, the
public key pkN is hard-coded in the script.

1: function ChallPCScript(σPV , c0, c1)
2: CheckMSigVerifypk

PV
(σPV );

3: for i = 1, . . . , |N |bit do
4: if Equivocation(pkN [i], c0, c1) = True then
5: return True;
6: return False.



Algorithm 14 The script CIScriptPCNexti, for i ∈ {0, . . . , 31}.
In the script CIScriptPCNexti, during the setup phase we hard-
code the same public keys that we hard-code in the script
CIScriptPCCurri, except for public key pkpcθ . We hard-code
pkpcθ′ instead.

1: function CIScriptPCNexti(σPV , N ′, cN ′ , pci, cpci , pcθ′ ,
cpcθ′ )

2: CheckMSigVerifypk
PV

(σPV );
3: CheckCommVerifypkN

(N ′, cN ′);
4: if CountZeroes(N ′) ̸= i then
5: ▷ Maps N ′ to one of the 32 program counters pcn0 ,

. . . , pcn31 . ◁
6: return False;
7: CheckCommVerifypkpci

(pci, cpci);
8: CheckCommVerifypkpc

θ′
(pcθ′ , cpcθ′ );

9: if pci ̸= pcθ′ then
10: return True;
11: else
12: return False.

ChallengeNextPC :=(
in = [(CommitInstruction, 0,CIScriptPCNextN ′)],

wit = [(σPV ,N ′, cN ′ , pcN ′ , cpcN′ , pcθ′ , cpcθ′ )],

out = [(dB; ⟨ChallPCScript,TL(∆) ∧ CheckSigpk
V
⟩)]

)
.

(13)
In this challenge path, V can equivocate on N ′13. P

can punish equivocation by publishing the PunishNextPC
transaction (cf. Eq. (14)), which unlocks ChallPCScript by
proving the equivocation. Upon doing so, P redeems all the
funds locked in the multisignature.

PunishNextPC :=(
in = [(ChallengeNextPC, 0,ChallPCScript)],

wit = [(σPV , c0, c1)], out = [(dB;CheckSigpk
P
)]
)
.

(14)

A.1.3. Punish Wrong Instruction. P has committed
to a current program counter pcθ that does not cor-
respond to the correct program instruction, specifically:
Π[pcθ] ̸= (insTypeθ, addrAθ, addrBθ, addrCθ).

V spends the CommitInstruction output by unlocking
the script CIScriptInstrj (cf. Algorithm 15) and publishing
the DisproveProgram transaction (cf. Eq. (15)). A script
CIScriptInstr exists for each of the ℓ instructions in the
program Π.

DisproveProgram :=(
in = [(CommitInstruction, 0,CIScriptInstrpcθ )],

wit = [(σPV , pcθ, cpcθ , insTypeθ, cinsTypeθ ,

addrAθ, caddrAθ , addrBθ, caddrBθ , addrCθ, caddrCθ )],

out = [(dB;CheckSigpk
V
)]
)
.

(15)

13. We use N ′ to emphasize that challenging the next program counter
is a distinct path from challenging the current program counter. However,
in practice, V commits to the same bits b0, . . . , b31, i.e. , the same public
key pkN is used in both current and next program counter challenge paths.

Algorithm 15 The script CIScriptInstrj, for j ∈ {1, ..., ℓ}. In
the script CIScriptInstrj, during the setup phase we hard-code the
public keys pkpcθ , pkinsTypeθ

, pkaddrAθ
, pkaddrBθ

, pkaddrCθ
, for

j ∈ {1, . . . , ℓ}. In addition to the public keys, the j-th instruction
of Π is also hard-coded into the script CIScriptInstrj.

1: function CIScriptInstrj(σPV , pcθ , cpcθ , insTypeθ , cinsTypeθ ,
addrAθ , caddrAθ , addrBθ , caddrBθ , addrCθ , caddrCθ )

2: CheckMSigVerifypk
PV

(σPV );
3: CheckCommVerifypkpcθ

(pcθ, cpcθ );
4: CheckCommVerifypk

insTypeθ

(insTypeθ, cinsTypeθ );
5: CheckCommVerifypk

addrAθ

(addrAθ, caddrAθ );
6: CheckCommVerifypk

addrBθ

(addrBθ, caddrBθ );
7: CheckCommVerifypk

addrCθ

(addrCθ, caddrCθ );

8: if
(
(pcθ = j) ∧ (insTypej ̸= insTypeθ ∨ addrAj ̸=

addrAθ ∨ addrBj ̸= addrBθ ∨ addrCj ̸= addrCθ)
)

then
9: return True;

10: else
11: return False.

A.1.4. Challenge Read. V starts the challenge by publish-
ing the ChallengeRead transaction (cf. Eq. (16)), spending
the CommitInstruction output14.

ChallengeRead :=(
in = [(CommitInstruction, 0,CheckMSigpk

PV
)],

wit = [(σPV )],

out = [(dB; ⟨ReadChallScript1,TL(∆) ∧ CheckSigpk
V
⟩)]

)
.

(16)
The script ReadChallScriptj, with j ∈ {1, . . . , 5} is

defined as follows:

ReadChallScriptj := CheckMSigpk
PV
∧ CheckCommpk

Noded5−j

.

The parties engage in the read bisection game (cf. Sec-
tion B.2) . The game is played over the sequence PR :=
(MRN , . . . ,MN [addrAθ]), namely, a path from the root
to one of the leaves in MerkleTreeMN , i.e., the Merkle
tree of the memory at step N . P responds by publishing
the ReadResponse1 transaction (cf. Eq. (17)), committing
to Noded4 := PR[d4] in the witness, where d4 = 1 · 24.

ReadResponse1 :=(
in = [(ChallengeRead, 0,ReadChallScript1)],

wit = [(σPV ,Noded4 , cNoded4
)],

out = [(dB; ⟨ReadRespScript1,TL(∆) ∧ CheckSigpk
P
⟩)]

)
.

(17)
ReadRespScripti with i ∈ {1, . . . , 5} is defined as:

ReadRespScripti := CheckMSigpkPV
∧ CheckCommpk

b′
5−i

.

14. We explain how Challenge Read works by presenting a challenge to
valAθ ; the process for challenging valBθ is analogous.



Then, V publishes ReadChallenge1 transaction
(cf. Eq. (18)), committing to bit b′4 in the witness, where
b′4 = 1 if V agrees with Noded4 , and b′4 = 0 otherwise.

ReadChallenge1 :=(
in = [(ReadResponse1, 0,ReadRespScript1)],

wit = [(σPV , b′4, cb′4)],

out = [(dB; ⟨ReadChallScript2,TL(∆) ∧ CheckSigpk
V
⟩))]

)
;

(18)
P and V continue playing the read bisection game by

publishing transactions ReadResponsei (cf. Eq. (19) and
ReadChallengej (cf. Eq. (20)), respectively, with i =
2, . . . , 5 and j = 1, . . . , 4.

ReadResponsei :=(
in = [(ReadChallengei−1, 0,ReadChallScripti)],

wit = [(σPV ,Noded5−i , cNoded5−i
)],

out = [(dB; ⟨ReadRespScripti,TL(∆) ∧ CheckSigpk
P
⟩)]

)
;

(19)

ReadChallengej :=(
in = [(ReadResponsej, 0,ReadRespScriptj)],

wit = [(σPV , b′5−j , cb′5−j
)],

out = [(dB; ⟨ReadChallScriptj+1,TL(∆) ∧ CheckSigpk
V
⟩)]

)
;

(20)
where d5−i = 1 · 25−i +

∑4
k=5−i+1 b

′
k · 2k.

Then, V publishes the ReadChallenge5 transaction
(cf. Eq. (21)). In total, V has committed to the bits
b′4, . . . , b

′
0. These bits determine the last element on the

path PR upon which P and V agree. Let NMer be the
corresponding integer, computed as NMer =

∑4
k=0 b

′
k · 2k.

ReadChallenge5 :=(
in = [(ReadResponse5, 0,ReadRespScript5)],

wit = [(σPV , b′0, cb′0)],

out = [(dB; ⟨HashReadScript1, . . . ,HashReadScript20,
RootReadScript1, . . . ,RootReadScript32,ValueAScript,

TL(∆) ∧ CheckSigpk
V
⟩)]

)
.

(21)
The integer NMer, chosen by V , conditions which Ta-

pleaves P can unlock to spend the ReadChallenge5 output.
We can distinguish three cases.
(A) Commit Read. The point of disagreement is between
two consecutive elements of the path PR, excluding the
first and the last. P publishes the CommitRead1 transaction
(cf. Eq. (22)) to spend the ReadChallenge5 output. To do
so, P provides a witness that unlocks one of the scripts
HashReadScript1, . . . , HashReadScript20. Each script hard-
codes the public key of a pair of nodes belonging to
{Noded0 , . . . ,Noded4}, the first being the parent node in
MerkleTreeMRN and the second being the child node15.

15. Since any node can be the parent of any other, we need 20 scripts
to capture all the possibilities.

Additionally, P provide a sibling node Nsib, claiming
whether it is the left or right sibling by committing to the
bit vpos, the NMer-th bit of addrAθ. To unlock the script, it
must hold that the child node, when concatenated with the
sibling node, hashes to the parent node.

We present the pseudocode of the script in
HashReadScript1 in Algorithm 16. The scripts
HashReadScript2, . . . , HashReadScript20 are identical
except for the public keys hard-coded to set the parent
and the child nodes, and the mapping from NMer to the
appropriate Tapleaf.

Algorithm 16 The script HashReadScript1. The bit vpos ∈
{0, 1} represents the position of the child node (vpos = 0 means
that Noded0 is the left child of Noded4 , vpos = 1 means the
opposite. Nsib is the sibling node of Noded0 that P presents. In the
setup phase, the public keys pkNMer

, pkaddrAθ
, pkNoded4

, pkNoded0
,

are hard-coded in the script.

1: function HashReadScript1(σPV , NMer , cNMer , vpos, cvpos ,
caddrAθ , Nsib, Noded4 , cNoded4

, Noded0 , cNoded0
)

2: CheckMSigVerifypk
PV

(σPV );
3: CheckCommVerifypkNMer

(NMer, cNMer );
4: ▷ Since V committed to NMer , P does not know

skNMer
. Therefore, to satisfy this guard, has to pro-

vide the commitment that V made ◁
5: if CountZeroes(NMer) ̸= 5− 1 then
6: ▷ Since Noded4 is the parent node here,

CountZeroes(NMer) should be 4. ◁
7: return False;
8: CheckCommVerifypk

addrAθ [NMer ]
(vpos, caddrAθ [NMer ]);

9: ▷ The whole public key pkaddrAθ
is hard-coded in the

script, but only the the NMer-th entry is used ◁
10: CheckCommVerifypk

Noded4

(Noded4 , cNoded4
); ▷ Parent

node
11: CheckCommVerifypk

Noded0

(Noded0 , cNoded0 ); ▷ Child node

12: if vpos = 0 then
13: if H(Noded0 ||Nsib) = Noded4 then
14: return True;
15: else
16: return False;
17: else
18: if H(Nsib||Noded0) = Noded4 then
19: return True;
20: else
21: return False.

CommitRead1 :=(
in = [(ReadChallenge5, 0,HashReadScripti)],

wit = [(σPV ,NMer, cNMer , vpos, cvpos , caddrAθ ,Nsib,

Npar, cNpar,Nchild, cNchild)],

out = [(dB; ⟨CommitRead1Script,TL(∆) ∧ CheckSigpk
P
⟩)]

)
.

(22)
V can punish P if they equivocate either on Npar,

Nchild, vpos by publishing PunishRead1 (cf. Eq. (23)),
which requires to unlock the CommitRead1Script (cf. Al-
gorithm 17) script.



Algorithm 17 The script CommitRead1Script. The public keys
pkNpar, pkNchild, and pkaddrAθ

are hard-coded during the setup.

1: function CommitRead1Script(σPV , c0, c1)
2: CheckMSigVerifypk

PV
(σPV );

3: for i = 1, . . . , |Npar|bit do
4: if Equivocation(pkNpar[i], c0, c1) = True ∨

Equivocation(pkNchild[i], c0, c1) = True ∨
Equivocation(pkaddrAθ [i]

, c0, c1) = True then
5: return True;
6: return False.

PunishRead1 :=(
in = [(CommitRead1, 0,CommitRead1Script)],

wit = [(σPV , c0, c1)], out = [(dB;CheckSigpk
V
]
)
.

(23)

(B) Commit Value A. If V agrees with every element that
P committed (i.e., b′4 = · · · = b′0 = 1), NMer is set to
31. The point of disagreement is between the last interme-
diate node published by P , Noded0 , and valAθ; To spend
the ReadChallenge5 output, P unlocks ValueAScript.
ValueAScript is analogous to HashReadScripti with the
following differences: (i) CountZeroes(NMer) = 0; (ii) the
parent node is Noded0 ; (iii) the child node is not one of the
nodes Noded4 , . . . , Noded0 , but valAθ instead.

P publishes CommitRead2 transaction (analogous
to CommitRead1, but unlocking ValueAScript instead).
V can publish transaction PunishRead2 (analogous to
PunishRead1) if P equivocates on the values committed
in the CommitRead2 transaction.
(C) Commit Read Root. If V disagrees with every element
that P committed (i.e., b′4 = · · · = b′0 = 0),NMer is set to 0.
The point of disagreement is between the last intermediate
node published by P , Noded0 , and MRN . P unlocks one
of the leaves RootReadScript1, . . . , RootReadScript32, ac-
cording to which number N V committed at the end of
the dispute bisection game. We provide RootReadScripti
in Algorithm 18.

P unlocks RootReadScripti by publishing the
CommitRead3 transaction (cf Eq. (24)).

CommitRead3 :=(
in = [(ReadChallenge5, 0,ReadRootScripti)],

wit = [(σPV ,NMer, cNMer ,N , cN ,Noded0 , cNoded0 )],

out = [(dB; ⟨CommitRead3Script,TL(∆) ∧ CheckSigpk
P
⟩)]

)
.

(24)
V can punish P if they equivocate on Noded0 , MRi or

addrAθ by publishing PunishRead3 (cf. Eq. (25)),
which unlocks CommitRead3Script, analogous to
CommitRead1Script but with pkMRi

, pkNoded0
instead

of pkNpar, pkNchild.

PunishRead3 :=(
in = [(CommitRead3, 0,CommitRead3Script)],

wit = [(σPV , c0, c1)], out = [(dB;CheckSigpk
V
]
)
.

(25)

Algorithm 18 The script RootReadScripti. In the setup phase,
the public keys pkNMer

, pkN , pkNoded0
, pkMRi

are hard-coded in
the script.

1: function RootReadScripti(σPV , NMer , cNMer , vpos, cvpos ,
caddrAθ , Nsib, N , cN , Noded0 , cNoded0

, MRi, cMRi )
2: CheckMSigVerifypk

PV
(σPV );

3: CheckCommVerifypkNMer

(NMer, cNMer );
4: ▷ Since V committed to NMer , P does not know

skNMer
. Therefore, to satisfy this guard, P has to

provide the commitment that V made ◁
5: CheckCommVerifypkN

(N , cN );
6: ▷ P has to provide the commitment that V made in the

dispute phase ◁
7: if CountZeroes(N ) ̸= i then
8: return False;
9: if CountZeroes(NMer) ̸= 5 then ▷ NMer must be equal

to 0
10: return False;
11: CheckCommVerifypk

addrAθ [NMer ]
(vpos, caddrAθ [NMer ]);

12: CheckCommVerifypk
Noded0

(Noded0 , cNoded0 );

13: ▷ for any RootReadScripti, Noded0 is always the child
node ◁

14: CheckCommVerifypk
MRi

(Noded0 , cNoded0 );
15: if vpos = 0 then
16: if H(Noded0 ||Nsib) = MRi then
17: return True;
18: else
19: return False;
20: else
21: if H(Nsib||Noded0) = MRi then
22: return True;
23: else
24: return False.

A.1.5. Challenge Write. V challenges the result of the
writing operation. Specifically, V claims that P is writing
valC ′

θ ̸= valCθ in MN ′ [addrCθ] in their local VM execu-
tion16. As a result, the memory root MRN ′ is incorrect.

The parties engage in the write bisection
game (cf. Section B.3) over the sequences
PW := (MRN , . . . ,MN [addrCθ]) and P ′

W :=
(MRN ′ , . . . ,M ′

N [addrCθ]), that are paths in the merkle
trees MerkleTreeMN and MerkleTreeMN′ , respectively.
The transactions and locking scripts in the challenge write
branch of the protocol closely follow the structure of those
in the challenge read branch, with the following differences:
• The structure of the WriteResponsei transaction is anal-

ogous to ReadResponsei transaction but, in the witness,
P provides two values (and their commitments) instead
of one. These values are the d5−i-th elements of PW and
P ′
W , respectively.

• As long as V agrees on the elements of the path PW ,
they focus on finding the disagreement in the path
P ′
W . In the WriteChallengej transaction (analogously

16. We assume P commits correctly to valCθ in the witness of the
CommitInstruction transaction, regardless of local execution. For ex-
ample, if insTypeθ := ADD, then valAθ + valBθ = valCθ . If valCθ

is incorrect, V can challenge valAθ or valBθ .



to ReadChallengej), V sets (and commits to) the bit
b′5−j = 0 if V agrees with the element of P ′

W provided by
P . Otherwise, V sets (and commits to) the bit b′5−j = 1.
However, once V finds a disagreement in an element of
PW , from that point on, V focuses on PW and set the bit
b′5−j as in the Challenge Read branch.

During the write bisection game, P commits to the pairs
nodes {(Noded4 , Node′d4), . . . , (Noded0 , Node′d0)}, where
Noded4 , . . . ,Noded0 ∈ PW and Node′d4 , . . . ,Node

′
d0
∈ P ′

W .
Analogous to the Challenge Read branch, V commits bit by
bit to an integer NMer =

∑4
k=0 b

′
k · 2k, which conditions

how P can unlock WriteChallenge5. There are three
cases.

Note that P does not explicitly know which pair of ele-
ments in PW or P ′

W V disagrees with. However, as long as
P is able to provide a pair of nodes (Npar,Nchild) for PW ,
a pair of nodes (Npar′,Nchild′) for P ′

W , and a node Nsib
such that H(Nsib||Nchild) = Npar and H(Nsib||Nchild′) =
Npar′, they will be able to unlock WriteChallenge5.
(A) CommitWrite. The point of disagreement is be-
tween two consecutive elements of PW or between two
consecutive elements of P ′

W , excluding for both paths
the first and the last elements. P can unlock one of
the scripts HashWriteScript1 (cf. Algorithm 19) , . . . ,
HashWriteScript20 via publishing the CommitWrite1 trans-
action (cf. Eq. (26)).

CommitWrite1 :=(
in = [(WriteChallenge5, 0,HashWriteScripti)],

wit = [(σPV ,NMer, cNMer , vpos, cvpos , caddrCθ ,Nsib,

Npar, cNpar,Nchild, cNchild,Npar
′, cNpar′ ,Nchild

′,

cNchild′)],

out = [(dB; ⟨CommitWrite1Script,TL(∆) ∧ CheckSigpk
P
⟩)]

)
;

(26)
The script CommitWrite1Script is identical to

CommitRead1Script (cf. Algorithm 17) except that
it also checks for potential equivocation on Npar’,
Nchild’, and addrCθ rather than addrAθ. As a
consequence, the PunishWrite1 transaction is analogous
to PunishRead1. Thus, if P equivocates while committing
to Npar,Nchild,Npar′,Nchild′, V can claim all the coins
locked in the multisignature.
(B) Commit Value C. NMer = 31, the point of disagree-
ment is between Noded0 and valCθ or between Node′d0 and
valCθ. This case is analogous to the “commit value A” case
of the Challenge Read branch. For ValueCScript, the differ-
ence with HashWriteScripti, is that: (i) CountZero = 0; (ii)
the parent nodes are Noded0 and Node′d0 , and (iii) the child
node is valCθ.

P publishes CommitWrite2 transaction (analogous
to CommitWrite1, but unlocking ValueCScript instead).
V can publish transaction PunishWrite2 (analogous to
PunishWrite1) if P equivocates on the values committed
in the CommitWrite2 transaction.
(C) Commit Write Root. NMer = 0, the point of
disagreement is between MRN and Noded0 or between

Algorithm 19 The script HashWriteScript1. The bit vpos ∈
{0, 1} represents the position of the child nodes (vpos = 0 means
that Noded0 and Node′d0 are the left childs of Noded4 and Node′d4 ,
respectively). Nsib is the sibling node of Noded0 in PW and
of Node′d0 in P ′

W . In the setup phase, the public keys pkNMer
,

pkaddrCθ
, pkNoded4 , pkNoded0

, pkNode′
d4

, pkNode′
d0

are hard-coded in
the script.

1: function HashWriteScript1(σPV , NMer , cNMer , vpos, cvpos ,
caddrCθ , Nsib, Noded4 , cNoded4

, Noded0 , cNoded4 , Node′d4 ,
cNode′

d4
, Node′d0 , cNode′

d4
)

2: CheckMSigVerifypk
PV

(σPV );
3: CheckCommVerifypkNMer

(NMer, cNMer );
4: ▷ Since V committed to NMer , P does not know

skNMer
. Therefore, to satisfy this guard, has to provide

the commitment that V made ◁
5: if CountZeroes(NMer) ̸= 5− 1 then
6: ▷ Since Noded4 , Node′d4 are the parent nodes here,

CountZeroes(NMer) should be 4. ◁
7: return False;
8: CheckCommVerifypk

addrCθ [NMer ]
(vpos, caddrCθ [NMer ]);

9: ▷ The whole public key pkaddrCθ
is hardcoded in the

script, but only the the NMer-th entry is used ◁
10: CheckCommVerifypk

Noded4

(Noded4 , cNoded4 ); ▷ Parent

node in PW

11: CheckCommVerifypk
Noded0

(Noded0 , cNoded0 ); ▷ Child node

in PW

12: CheckCommVerifypk
Node′

d4

(Node′d4 , cNode′d4
); ▷ Parent

node in P ′
W

13: CheckCommVerifypk
Node′

d0

(Node′d0 , cNode′d0
); ▷ Child node

in P ′
W

14: if vpos = 0 then
15: if H(Noded0 ||Nsib) = Noded4 ∧H(Node′d0 ||Nsib) =

Node′d4 then
16: return True
17: else
18: return False
19: else
20: if H(Nsib||Noded0) = Noded4 ∧H(Nsib||Node′d0) =

Node′d4 then
21: return True
22: else
23: return False

MRN ′ and Node′d0 . This case is analogous to the “com-
mit read root” case of the Challenge Read branch. The
script RootWriteScripti, with i ∈ {0, . . . , 31} is the same
as RootReadScripti but takes as additional inputs Node′d0 ,
MRi+1 (their public key are hard-coded in the script ac-
cordingly), and takes as input caddrCθ

instead of caddrAθ
.

In RootWriteScripti, instead of lines 15 to 24 of Algo-
rithm 18 the code is the one in Algorithm 20. V can punish
P if they equivocate on Noded0 , Node′d0 , MRi, MRi+1,
addrCθ.



Algorithm 20 The script RootWriteScripti. In the setup phase,
the public keys pkNMer

, pkN , pkNoded0 , pkMRi
are hard-coded in

the script.

1: function RootWriteScripti
2: ▷ ... ◁
3: if vpos = 0 then
4: if H(Noded0 ||Nsib) = MRi ∧H(Node′d0 ||Nsib) =

MRi+1 then
5: return True;
6: else
7: return False;
8: else
9: if H(Nsib||Noded0) = MRi ∧H(Nsib||Node′d0 =

MRi+1) then
10: return True;
11: else
12: return False.

Appendix B.
Bisection game

In this section, we formally describe the bisection games
that the prover and verifier play interactively during the
dispute, challenge read, and challenge write subphases of
the BitVM protocol. These are referred to as the dispute
bisection game, read bisection game, and write bisection
game, respectively.

In general, the bisection game is played as follows. P
and V each hold a sequence of values, which are assumed to
be identical. The prover makes public the first and the last el-
ements of their sequence. If the verifier disagrees with one of
these two values, V initiates a bisection game to find a point
of disagreement, i.e. , a pair of consecutive sequence ele-
ments such that they agree on one of them and disagree on
the other. Given sequences AP and AV , a point of disagree-
ment is defined as a tuple (AP [i], AP [i+1], AV [i], AV [i+1])
such that either AP [i] = AV [i] ∧AP [i+ 1] ̸= AV [i+ 1] or
AP [i] ̸= AV [i] ∧ AP [i + 1] = AV [i + 1] (for brevity, we
refer to such a point of disagreement as (A[i], A[i+ 1])).

The first stage of the game is called disagreement phase:
the game progresses as the prover responds to the verifier’s
challenges by revealing specific elements of their sequence.
A response consists of publishing an on-chain transaction
with a commitment to a sequence element in the witness,
while a challenge consists of publishing a transaction with
a commitment to a bit, indicating which element should be
revealed next.

After a point of disagreement has been found, the dispute
bisection game ends, while the read and write bisection
games proceed to the solve phase. At the end of the solve
phase, either P or V is declared the winner, and the other
one is declared the loser of the bisection game.

For brevity and readability, we use a shorthand nota-
tion for transactions that abstracts away all but the funda-
mental components needed to present the bisection game.
Specifically, if party A ∈ {P, V } wants to publish a
transaction with m variables v1, . . . , vm as part of the
witness, and for n of them they want to publish their

Lamport commitment as well, we express this by writing
TxA[{v1, . . . , vn}, vn+1, . . . , vm]. Furthermore, we assume
that every transaction that we describe in this section has a
timelock mechanism that punishes inactivity (as we explain
in Section 5.1).

B.1. Dispute bisection game

Disagreement phase. P and V play the dispute bisection
game to find a point of disagreement in their VM execution
traces. P runs DisagreeP(ExecTraceP , |ExecTraceP |)
(cf. Algorithm 21, lines 1 to 14), where ExecTraceP

is the VM execution trace of the VM instance ΓP

run by the prover during the BitVM protocol. V
runs DisagreeV(ExecTraceV , |ExecTraceV |) (cf. Algo-
rithm 21, lines 15 to 32).

Algorithm 21 DisagreeP and DisagreeV are the algorithms run
by P and V as they interact with each other through the ledger L
through the dispute/read bisection game. The variable IP denotes
the prover’s sequence and n denotes its length. Likewise, the
variable IV denotes the verifier’s sequence and n denotes its length.

1: function DisagreeP(IP , n)
2: l← 1; ▷ Left search boundary
3: r ← n; ▷ Right search boundary
4: i← 1; ▷ Counter
5: while l + 1 < r do
6: m← ⌊ l+r

2
⌋;

7: Publish TxPi [{IP [m]}] on L;
8: Wait until TxVi [{bi}] appears in L, where bi is part of

the witness of transaction TxVi published by V . Then,
fetch bi from TxVi [{bi}];

9: if bi = 0 then
10: r ← m;
11: else
12: l← m;
13: i← i+ 1;
14: return r − 1.

15: function DisagreeV(IV , n)
16: l← 1; ▷ Left search boundary
17: r ← n; ▷ Right search boundary
18: i← 1; ▷ Counter
19: while l + 1 < r do
20: Wait until TxPi [{IP [m]}] appears in L, where IP [m]

is part of the witness of transaction TxPi published by
P . Then, fetch IP [m] from TxPi [{IP [m]}];

21: m← ⌊ l+r
2
⌋;

22: if IP [m] ̸= IV [m] then ▷ Disagreement
23: bi ← 0;
24: else
25: bi ← 1;
26: Publish TxVi [{bi}] on L;
27: if bi = 0 then
28: r ← m;▷ Challenge the left half of at the next step
29: else
30: l← m;▷ Challenge the right half of at the next step
31: i← i+ 1;
32: return r − 1.



B.2. Read bisection game

Disagreement phase. P and V play this phase of
the read bisection game to find a point of disagree-
ment in the path from the root to MN [addrAθ]
in the merkle tree of the memory MN . P runs
DisagreeP(PP

R , |PP
R |) (cf. Algorithm 21, lines 1 to 14),

where PP
R := (MRP

N , . . . ,MP
N [addrAθ]). The algorithm

outputs the index of a point of disagreement. V runs
DisagreeV(PV

R , |PV
R |) (cf. Algorithm 21, lines 15 to 32).

The algorithm outputs the index of a point of disagreement.

Solve phase. Let (Npar,Nchild) be the point of disagree-
ment identified by P and V during the disagreement phase.
In the read bisection game, a point of disagreement is a pair
of intermediate Merkle tree nodes, where one is the parent of
the other. P runs SolveReadP(NparP ,NchildP ,Nsib, vpos)
(cf. Algorithm 22, lines 1 to 7). In the algorithm, P asserts
that NchildP is the left or right child of NparP by setting the
bit vpos to 0 or 1, respectively. To do so, P provides a sib-
ling node Nsib. P publishes the transaction CommitReadP ,
where they provide a commitment for NparP ,NchildP , vPpos.
V runs SolveReadV(.) (cf. Algorithm 22, lines 8 to 14),
where V publishes the transaction PunishReadV if P equiv-
ocated on any of the values published as part of the witness
of CommitReadP .

Notice that P does not risk equivocation only if NchildP

is a real child node of NparP , meaning that the leaf that they
provided in MP

N [addrAθ] is really the addrAθ-th leaf of the
Merkle tree with root MRP

N .
The winning conditions of the prover and the verifier for

the read bisection game are shown in Fig. 3.

Verifier wins. The verifier wins once one of these events
happens:

1) During the execution of DisagreeP (DisagreeWriteP)
algorithm, P fails to publish Responsei transaction
within ∆ rounds after Challengei transaction has been
published.

2) During the execution of SolveReadP (SolveWriteP)
algorithm, P fails to publish CommitRead
(CommitWrite) transaction within ∆ rounds
after the last tx Challengei has been published.

3) V publishes PunishRead (PunishWrite) transaction.
Prover wins. The prover wins once one of these events
happens:

1) During the execution of DisagreeV (DisagreeWriteV)
algorithm, V fails to publish Challengei transaction
within ∆ rounds after Responsei transaction has been
published.

2) During the execution of SolveReadV (SolveWriteV)
algorithm, V fails to publish PunishRead
(PunishWrite) transaction within ∆ rounds after
CommitRead (CommitWrite) transaction has been
published.

Figure 3. The conditions that determine the winner of the read bisection
game (write bisection game).

Algorithm 22 SolveReadP and SolveReadV are the algorithms
executed by P and V , respectively, as they interact through the
ledger L to resolve the disagreement in the read bisection game
in favor of either P or V . The variables Npar, Nchild, and Nsib
represent a triple, where Npar is the parent node in a Merkle tree,
and Nchild and Nsib are the child nodes, with Nchild being the
left or right child based on the bit vpos.

1: function SolveReadP(Npar, Nchild, Nsib, vpos)
2: if vpos = 0 then
3: if H(Nchild||Nsib) = Npar then
4: Publish CommitReadP [{Npar,Nchild, vpos},

Nsib] on L.
5: else
6: if H(Nsib||Nchild) = Npar then
7: Publish CommitReadP [{Npar,Nchild, vpos},

Nsib] on L.

8: function SolveReadV(.)
9: Wait until CommitReadP [{Npar,Nchild, vpos},Nsib] ap-

pears in L, where Npar,Nchild, vpos,Nsib is part of the
witness of transaction CommitReadP published by P .

10: if there is a bit b of Npar, Nchild, vpos for which there are
two different commitments then

11: ▷ Recall that V cannot forge such commitments if P
has not equivocated ◁

12: Let c0 be the commitment for b = 0;
13: Let c1 be the commitment for b = 1;
14: Publish PunishReadV [c0, c1] on L.

B.3. Write bisection game

Disagreement phase. Let PW :=
(MRP

N , . . . ,MP
N [addrCθ]) be the path from the root

to MP
N [addrCθ] in the merkle tree of the memory MP

N .
Let P ′

W := (MRP
N ′ , . . . ,MP

N ′ [addrCθ]) be the path in
the merkle tree of the memory MP

N ′ from the root to
MP

N ′ [addrCθ].
P runs DisagreeWriteP(PP

W ,P ′
W

P
, |PP

W |), which re-
turns the index of a point of disagreement. V runs
DisagreeWriteV(PV

W ,P ′
W

V
, |PV

W |), which returns the index
of a point of disagreement.

In the disagreement phase, the verifier seeks a point of
disagreement in the path P ′

W , given that P and V agree
on the sequence PW . However, as soon as the verifier
identifies a disagreement in PW (cf. Algorithm 23, l. 24), V
shifts focus to finding a point of disagreement within PW .
From this point forward, V disregards the elements of P ′

W
published by P and considers only the elements of PW to
determine how to set the bit bi.

Solve phase. The point of disagreement is either the
pair (Npar,Nchild) or the pair (Npar′,Nchild′). P runs
SolveWriteP(NparP ,NchildP ,Npar′

P
,Nchild′

P
,Nsib, vpos)

(cf. Algorithm 24, Lines 1 to 7). In the algorithm, P asserts
that NchildP and Nchild′

P are the left or right child of the
nodes NparP and Npar′

P , respectively, based on the bit
vpos (similar to the read bisection game). P demonstrates
this by providing a node Nsib that serves as the sibling of



Algorithm 23 DisagreeWriteP and DisagreeWriteV are the
algorithms run by P and V as they interact with each other through
the ledger L through the write bisection game. The variable IP
denotes the prover’s sequence and n denotes its length. Likewise,
the variable IV denotes the verifier’s sequence and n denotes its
length.

1: function DisagreeWriteP(IP , I ′P , n)
2: l← 1; ▷ Left search boundary
3: r ← n; ▷ Right search boundary
4: i← 1; ▷ Counter
5: while l + 1 < r do
6: m← ⌊ l+r

2
⌋;

7: Publish TxPi [{IP [m], I ′P [m]}] on L;
8: Wait until TxVi [{bi}] appears in L, where bi is part of

the witness of transaction TxVi published by V . Then,
fetch bi from TxVi [{bi}];

9: if bi = 0 then
10: r ← m;
11: else
12: l← m;
13: i← i+ 1;
14: return r − 1.

15: function DisagreeWriteV(IV , I ′V , n)
16: l← 1; ▷ Left search boundary
17: r ← n; ▷ Right search boundary
18: i← 1; ▷ Counter
19: flag ← False;
20: while l + 1 < r do
21: Wait until TxPi [{IP [m], I ′P [m]}] appears in L, where

IP [m], I ′P [m] is part of the witness of transaction
TxPi published by P . Then, fetch IP [m], I ′P [m] from
TxPi [{IP [m], I ′P [m]}];

22: m← ⌊ l+r
2
⌋;

23: if flag = False then
24: if IP [m] ̸= IV [m] then
25: flag = True;▷ From now on, look only for

disagreement on IV
26: bi ← 0;
27: else
28: if I ′P [m] = I ′V [m] then
29: bi ← 0;
30: else
31: bi ← 1;
32: else
33: if IP [m] ̸= IV [m] then
34: bi ← 0;
35: else
36: bi ← 1;
37: Publish TxVi [{bi}] on L;
38: if bi = 0 then
39: r ← m;▷ Challenge the left half of at the next step
40: else
41: l← m;▷ Challenge the right half of at the next step
42: i← i+ 1;
43: return r − 1.

both NchildP and Nchild′
P . P publishes the transaction

CommitWriteP , where they provide a commitment for
NparP ,NchildP ,Npar′

P
,Nchild′

P
, vPpos. Intuitively, the

prover can commit to all the aforementioned elements
without equivocating only if they previously committed to
MRP

N ′ and MP
N ′ [addrCθ] such that MP

N ′ [addrCθ] is really
the addrCθ-th leaf of the Merkle tree with root MRP

N ′ .
V runs SolveWriteV(.)(cf. Algorithm 24, lines 8 to 14),

where V publishes the transaction PunishWriteV if P equiv-
ocated on any of the values published as part of the witness
of CommitWriteP .

Algorithm 24 SolveWriteP and SolveWriteV are the algorithms
executed by P and V , respectively, as they interact through the
ledger L to resolve the disagreement in the write bisection game in
favor of either P or V . The variables Npar, Nchild, Npar′,Nchild′,
and Nsib represent two triples, where Npar and Npar′ are the
parent nodes in a Merkle tree, with Nchild, Nsib and Nchild′,Nsib
as the child nodes, respectively. The nodes Nchild, Nchild′ are the
left or right children based on the bit vpos.

1: function SolveWriteP(Npar, Nchild, Npar’, Nchild’, Nsib,
vpos)

2: if vpos = 0 then
3: if (H(Nchild||Nsib) = Npar) ∧ (H(Nchild′||Nsib) =

Npar′) then
4: Publish CommitWriteP [{Npar,Nchild,

Npar′,Nchild′, vpos},Nsib] on L.
5: else
6: if (H(Nsib||Nchild) = Npar) ∧ (H(Nsib||Nchild′) =

Npar′) then
7: Publish CommitWriteP [{Npar,Nchild,

Npar′,Nchild′, vpos},Nsib] on L.

8: function SolveWriteV(.)
9: Wait until CommitWriteP [{Npar,Nchild,

Npar′,Nchild′, vpos},Nsib] appears in L, where
Npar,Nchild,Npar′,Nchild′, vpos,Nsib is part of the
witness of transaction CommitWriteP published by P .

10: if there is a bit b of Npar, Nchild, Npar’, Nchild’, vpos for
which there are two different commitments then

11: ▷ Recall that V cannot forge such commitments if P
has not equivocated ◁

12: Let c0 be the commitment for b = 0;
13: Let c1 be the commitment for b = 1;
14: Publish PunishWriteV [c0, c1] on L.

The winning conditions of the prover and the verifier for
the write bisection game are the same as the read bisection
game, thus in Fig. 3.

Appendix C.
Extensive Form Games with Perfect Informa-
tion

We introduce the concept of Extensive Form Games
(EFG) as follows. In an EFG, a game tree encapsulates all
possible protocol executions, with nodes representing play-
ers’ decision points, branches indicating possible actions,



and leaves denoting the utility outcomes associated with
chosen strategies.
Definition 9 (Extensive Form Game-EFG). An Extensive

Form Game (EFG) is a tuple G = (N,H,P, u), where
set N represents the game player, the set H captures
EFG game history, T ⊆ H is the set of terminal
histories, P denotes the next player function, and u is the
utility function. The following properties are satisfied.
(A) The set H of histories is a set of sequence actions
with

1) ∅ ∈ H;
2) if the action sequence (ak)

K
k=1 ∈ H and L < K, then

also (ak)
L
k=1 ∈ H;

3) an action sequence is terminal (ak)Kk=1 ∈ T , if there is
no further action aK+1 that (ak)K+1

k=1 ∈ H .
(B) The next player function P

1) assigns the next player p ∈ N to every non-terminal
history (ak)

K
k=1 ∈ H \ T ;

2) after a non-terminal history h, it is player P (h)’s turn to
choose an action from the set A(h) = {a : (h, a) ∈ H}.

A player p’s strategy is a function σp mapping every
history h ∈ H with P (h) = p to an action from A(h).
Formally,

σp : {h ∈ H : P (h) = p} → {a : (h, a) ∈ H,∀h ∈ H},

such that σp(h) ∈ A(h).

A subgame of an EFG is defined as a subtree rooted at
a specific history node, representing the last decision point
in that sequence of actions.
Definition 10 (EFG subgame). The subgame of an EFG

φ = (N,H,P, u) associated to history h ∈ H is
the EFG φ(h) = (N,H|h, P|h, u|h) defined as fol-
lows: H|h := h′|(h, h′) ∈ H , P|h(h

′) := P (h, h′), and
u|h(h

′) := u(h, h′).

The core concept of our proof methodology is to demon-
strate that utility-maximizing players will choose to adhere
to the protocol specification at each step of the protocol. We
further show that this implies rational parties will follow the
optimistic path of BitVM. This is accomplished by lever-
aging the notion of a Subgame Perfect Nash Equilibrium
(Definition 11) [31]. Specifically, we show that the strategy
profile encompassing the ”correct protocol execution” of
BitVM constitutes an SPNE of our game, using a technique
known as backward induction.

In backward induction, we evaluate each decision point
by traversing backwards the EFG, i.e., starting from the final
outcomes and moving backward to the initial decision. At
each step, the player selects the action that maximizes their
utility, assuming that subsequent players will also choose
optimal actions in response. This process continues up the
game tree until the root is reached, yielding a sequence
of optimal strategies that together form a Subgame Perfect
Nash Equilibrium.
Definition 11 (Subgame Perfect Nash Equilibrium

(SPNE)). A subgame perfect equilibrium strategy is

a joint strategy σ = (σ1, ..., σn) ∈ S, s.t. σ|h =
(σ1|h, ..., σn|h) is a Nash Equilibrium of the subgame
φ(h), for every h ∈ H . The strategies σi|h are functions
that map every h′ ∈ H|h with P|h(h

′) = i to an action
from A|h(h

′).

Appendix D.
Security Analysis

Notation and Assumptions. We denote by N1 the number
of execution steps of the VM and by N2 the size of the
memory. For convenience, we denote the logarithm of a
quantity x as x̃ = log(x) and the nested logarithmic value
as ˜̃x = log(log(x)).

Moreover, we denote the balance account of a user
A ∈ {P, V } by ⟨u⟩A, meaning that there are u coins to the
account associated with A. We consider only funds related
to the execution of BitVM and assume a constant fee f for
each transaction.

In the Setup phase, P locks inP = α + (2Ñ1 + 2 ˜̃N2 +
7)f coins in the multisignature, and V inV = β + (2Ñ1 +

2 ˜̃N2 + 7)f coins. This amount ensures that if, w.l.o.g., P
deviates from the protocol and the execution follows the
longest path until V claims the remaining funds, V will
not lose money even if β = 0. That is because, as we will
show in Lemma D.11, in the worst case 2Ñ1 + 2 ˜̃N2 + 7
transactions are posted on-chain.

Last, for the pair of utilities corresponding to any final
state by the outcome mapping function we assume that vP +

vV ≤ inP + inV − (2Ñ1+2 ˜̃N2+7)f . We interpret that cost
as application fees, which is again analogous to the longest
path of the execution.

D.1. Agreement phase

Lemma D.1 (Correctness of the setup). Let PresignedP
be the set of presigned transactions V handovers to P
and PresignedV be the set of presigned transactions
P handovers to V during the Setup phase. If Setup is
published on chain, then:

1) Presigned transactions availability: P possesses all the
transactions ∈ PresignedP along with V ’s signature.
V possesses all the transactions ∈ PresignedV along
with P ’s signature.

2) Locking the deposit: α+β+(4Ñ1+4 ˜̃N2+14)f coins
are locked in the multisig σPV of P and V .

Proof: First, since Setup is accepted by the miners, both P
and V must have signed Setup. Given that, the following
holds:

1) P signed Setup only after receiving the set of trans-
actions in PresignedP signed by V . Similarly, V
signed Setup only after receiving the transactions in
PresignedV signed by P .

2) Setup has an output of α+β+α+β+(4Ñ1+4 ˜̃N2+14)
to the multisig σPV of P and V .

□



D.2. Execution phase

Lemma D.2 (P does not post CommitComputation). If
Setup is published on chain and CommitComputation
is not published on chain within the timelock ∆, it is a
dominant strategy for V to claim the output of Setup.
As a result, P ’s balance account is ⟨0⟩P and V ’s ⟨α +

β + (4Ñ1 + 4 ˜̃N2 + 12)f⟩v.

Proof: P can only spend Setup by publishing
CommitComputation on chain. If P does not publish
CommitComputation after ∆ when the timelock in Setup
expires, V can claim the output of Setup. If V claims the
collateral, she spends f coins in transaction fees. Moreover,
since P has already posted Setup on-chain, 2f has been
spent in transaction fees in total. Therefore V ’s account is
u1 = ⟨α+β+(4Ñ1+4 ˜̃N2+12)f⟩V . Otherwise, if V does
not claim the collateral, the respective balance account is
u2 = ⟨0⟩V . Since u1 > u2, it is a dominant strategy for V
to claim the output of Setup when the timelock expires. □

D.3. Identify Disagreement phase

D.3.1. Normal closing.
Lemma D.3 (V does not publish KickOff to initiate

a dispute. P is supposed publish a Close trans-
action). Assume that CommitComputation is pub-
lished on-chain and KickOff is not published on-chain
within the timelock ∆. Moreover, consider f(Rfinal) =
(fP , fV ) where Rfinal the final state that uniquely
corresponds to MRfinal which P has committed in
CommitComputation, f is the outcome mapping func-
tion and Closei for some i ∈ {1, ...,m} is the corre-
sponding transaction that distributes the funds accord-
ingly. Then, the following statements hold:

• If P publishes on-chain Closei, P ’s balance account
will be ⟨fP +(2Ñ1+2 ˜̃N2+5.5)f⟩P , and V ’s balance
account will be ⟨fV + (2Ñ1 + 2 ˜̃N2 + 5.5)f⟩V .

• If P publishes on-chain Closej, for some j ∈
{1, ...,m}, j ̸= i, it is dominant strategy for V to claim
the coins in the multi-signature. Then, P ’s balance
account is ⟨α + β + (4Ñ1 + 4 ˜̃N2 + 11)f⟩P and V ’s
⟨0⟩v.

• If none of transactions in the set S = ∪{1,...,m}Closei
is published on-chain within 2∆ since
CommitInstruction was published, it is a
dominant strategy for V to claim the coins in
the multisignature. In that scenario, V ’s balance
account is ⟨α + β + (4Ñ1 + 4 ˜̃N2 + 11)f⟩V and P ’s
⟨0⟩S .

Proof: Since CommitComputation is posted on chain, the
transaction Setup must have been previously published.
That is because CommitComputation spends Setup. There-
fore 2f of the coins in the multisignature have already been
spent in transaction fees.

• Closei redistributes the rest of the coins to the par-
ties according to the outcomes mapping function f ,
namely (fP + (2Ñ1 + 2 ˜̃N2 + 5.5)f) coins to P

and (fP + (2Ñ1 + 2 ˜̃N2 + 5.5)f) coins to V , where
f(Sfinal, α, β) = (fα, fβ). Since the result RP

final
corresponds to MRfinal V cannot spend Closei.

• Since i ̸= j and each transaction in S uniquely corre-
sponds to an outcome of the computation, in Closej
P commits to an MR′

final ̸= MRfinal. V can show
the equivocation of P by providing the conflicting
commitments since for each k ∈ {1, ...,m} the Script
CloseScripti (Algorithm 8) has the same hard-code
keys with CommitComputationScript. As a result P

will have a balance u1 = ⟨α + β + (4Ñ1 + 4 ˜̃N2 +
10)f⟩V , since 4f are spent in the transaction fees for
Setup, CommitComputation, Closej and the trans-
action sending the collateral to their account. In this
scenario, P ’s balance account is ⟨0⟩P . Otherwise, if
V does not utilize the timelock, their balance account
is u2 = ⟨0⟩P . Since u1 > u2 it is a dominant strategy
for V to use the timelock.

• P can only spend CommitComputation by posting
exactly one transaction in S, otherwise V can utilize
the timelock after 2∆. Since P any transaction in S, P
can claim the coins of the multisig after the timelock
2∆, leading to a balance account u1 = ⟨α+β+(4Ñ1+

4 ˜̃N2+11)f⟩V , since 3f are spent in the transaction fees
for Setup, CommitComputation, and the transaction
sending the collateral to their account. In this scenario,
P ’s balance account is ⟨0⟩P . Otherwise, if V does not
utilize the timelock, their balance account is u2 = ⟨0⟩P .
Since u1 > u2 it is a dominant strategy for V to use
the timelock.
□

D.3.2. Dispute bisection game.
Lemma D.4 (P is inactive during the challenge path).

Consider a set of transactions {tx} ⊆ {KickOff} ∪
{TraceChallengei}i∈{1,...,Ñ1}, where {tx} ̸= ∅, is
published on-chain and one of the following scenarios
is true:

1) KickOff ∈ {tx} (let j = 0) and P has not posted
TraceResponse1 within ∆,

2) TraceChallengei ∈ {tx} for i < Ñ1 (let j = i) and
P has not posted TraceResponsei+1 within ∆,

3) TraceChallengeÑ1
∈ {tx} (let j = Ñ1) and P has

not posted CommitInstruction within ∆.
Then, it is a dominant strategy for V to utilize the timelock.

P ’s balance account is then ⟨0⟩P , and V ’s balance
account is ⟨α+ β + (4Ñ1 + 4 ˜̃N2 − 2j + 10)f⟩V .

Proof: Since {tx} ≠ ∅, KickOff has been published on-
chain, P has previously published on-chain Setup, and
CommitComputation, which cost 3f in transaction fees.
If scenario 1 is true and V utilizes the timelock to claim
the output of KickOff, which costs another f in fees (thus



4f in total), her balance account is u1 = ⟨α+ β + (4Ñ1 +

4 ˜̃N2+10)⟩V , and P ’s balance account is ⟨0⟩P . If V does not
utilize the timelock, her balance account is u2 = ⟨0⟩v < u1,
which shows that it is a dominant strategy for her to utilize
the timelock.

Otherwise, if scenario 2 or 3 is true, P has posted
on-chain before {TraceResponsek}k∈{1,...,j} paying ex-
tra jf in transaction fees, and V , in turn, has posted
{TraceChallengek}k∈{1,...,j} paying jf in fees too. Now,
if V utilizes the timelock, her balance account is ⟨u1 =

α+β+(4Ñ1+4 ˜̃N2−2j+10)f⟩V and P ’s balance account
is ⟨0⟩P . Otherwise, if V does not utilize the timelock, V ’s
balance account is u2 = ⟨0⟩V < u1, which again shows that
it is a dominant strategy for her to use the timelock. □

Lemma D.5 (V is inactive during the chal-
lenge path). Consider a set of transactions
{tx} ⊆ {TraceChallengei}i∈{1,...,Ñ1} ∪
{CommitInstruction}, where {tx} ≠ ∅, is published
on-chain and one of the following scenarios is true:

1) TraceResponsei ∈ {tx} for some i ≤ Ñ1 (let j = i),
and V has not posted TraceChallengei within ∆,

2) CommitInstruction ∈ {tx} (let j = Ñ1 +
1) and V has not posted any transaction tx′ ∈
{ChallengeCurrPC, PunishInstruction,
ChallengeRead, ChallengeWrite} within ∆.

Then, it is a dominant strategy for P to utilize the timelock.
P ’s balance account is then ⟨α+β+(4Ñ1+4 ˜̃N2−2j+
11)f⟩P , and V ’s balance account is ⟨0⟩V .

Proof: Since TraceResponsei is posted on-chain, Setup,
Close, KickOff are posted on-chain as well. More-
over, if i > 1 {TraceResponsek}k∈{1,...,i−1} and
{TraceChallengek}k∈{1,...,i−1} are also published on-
chain. More specifically, first, P committed the Setup
and the Close. Then, V posted KickOff. Further-
more, if i > 1, P has also published on-chain
{TraceResponsek}k∈{1,...,i−1} and V the respective
{TraceChallengek}k∈{1,...,i−1}. This results in (2j + 2)f
in transaction fees. Now, if Scenario 2 is true, then V has
published on-chain TraceChallenge ~N1 which P spent by
publishing on-chain CommitInstruction. In both scenar-
ios, 1 and 2, P spends extra f in transaction fees to claim
the collateral. Therefore, P ’s balance account will now be
u1 = ⟨α+ β + (4Ñ1 +4 ˜̃N2− 2j +11)⟩P . In that case, V ’s
balance account is ⟨0⟩V . Otherwise, P ’s balance account is
u2 = ⟨0⟩P < u1, which means that it is a dominant strategy
for P to use the timelock. □

Lemma D.6. Consider parties P and V play the bisection
game on-chain described in Algorithm 21. P runs the
function DisagreeP(A, n) where A is a sequence of n
values, and V runs the function DisagreeV(B, n) where
B is a sequence of n values. The following statements
hold:

• if A[1] = B[1] and A[n] ̸= B[n], the protocol pinpoints
an index j such thatA[j] = B[j] andA[j+1] ̸= B[j+1]
where j ∈ {1, ..., n− 1},

• The bisection game finishes after O(logn) steps.

Proof: We denote the local variable i of P and V by iP

and iV respectively. We say we are in the i−th step of the
bisection game (or the loop) if iP = i. Moreover, we denote
the local variables l, r of P and V in the i-th step of the
loop by lPi , r

P
i , and lVi , rVi respectively.

Precondition. The following condition holds: A[1] = B[1],
A[n] ̸= B[n], P starts with the local variables lP0 = 1, rP0 =
n, lP0 < rP0 , i

P = 1 and V with the local variables lV0 =
1, rV0 = n, lV0 < rV0 , iV = 1.
Loop invariant. We will prove that, in every step of the
loop the protocol maintains the following loop invariant by
induction on the number of steps.

After the i-th step of the loop, P and V have the same
local variables iP = iL = i, and lPi = lVi = li, rPi =
rli = ri with li < ri, and therefore, they continue with the
subsequences A[li : ri],B[li : ri] respectively. Moreover, it
holds that A[li] = B[li] and A[ri] ̸= B[ri].

Base Case. In the base case where n = 2 and A[1] =
B[1], A[2] ̸= B[2], then lP = lV = l = 2, rP = rV = 2,
and since r − l = 1 the condition in line 19 is not satisfied
so the bisection game pinpoints as the point of disagreement
j = 1.

Induction Step. Assume that in the i−th step of the
loop the invariant holds. So, P and V have the same local
variables iP = iL = i, lPi = lVi = li, r

P
i = rVi = ri, li < ri,

and for their subsequences A[li] = B[li] and A[si] ̸= B[si]
respectively. We will show that the invariant holds for the
step i+ 1.

First, P publishes on-chain the value A[m], where m =
⌊ li+ri

2 ⌋ (line 7). When V witnesses A[m] on-chain, we have
the following cases:

• Case 1, A[m] ̸= B[m] : V sets bi = 0 (line 23),
publishes bi on-chain (line 26) and updates its local
variables iV ← i + 1 (line 31) and rVi+1 ← m
(line 28). As soon as P witnesses bi = 0 on-chain
it updates its local variables iP ← i + 1 (line 13)
and rPi+1 ← m (line 10). Moreover, since P and V
entered the loop at step i, ri ̸= li + 1, and ri > li
(by assumption), it must be ri ≥ li + 2. Therefore,
rPi+1 = m = ⌊ li+ri

2 ⌋ ≥ ⌊
2li+2

2 ⌋ = li + 1 = lPi+1 + 1.
Therefore, since li+1 = lPi+1 = lVi+1 = li, ri+1 =
rPi+1 = rli+1 = m, ri+1 > li+1, iV = iP = i + 1,
P and V continue with the subsequences A[li+1 :
ri+1],B[li+1 : ri+1] respectively s.t. A[li+1] = B[li+1],
A[ri+1] ̸= B[ri+1], the invariant still holds.

• Case 2, A[m] = B[m]: V sets bi = 1 (line 25),
publishes bi on-chain (line 26) and updates its local
variables lV ← m (line 30) and iV ← i+ 1 (line 13).
As soon as party P witnesses bi = 1 on-chain it updates
its local variables lP ← m (line 12) and iP ← i + 1
(line 13). Moreover, since P and V entered the loop at
step i, li ≤ ri − 2 and by assumption ri > li, which
means that li+1 = m = ⌊ li+ri

2 ⌋ ≤ ⌊
2ri−2

2 ⌋ = ri − 1.
Since ri+1 = ri, it holds that ri+1 > li+1.
Again, since, lP = lV = li+1,rP = rl = ri+1, ri+1 >
li+1, i

V = iP = i+1 and both parties continue with the



subsequences A[li+1 : ri+1],B[li+1 : ri+1], such that
A[li+1] = B[li+1], A[ri+1] ̸= B[ri+1] the invariant still
holds.

Termination: In every step of the bisection game the interval
of the sequences of P and V remains the half. Moreover,
after the step i of the loop for the local variables of P and
V it holds that lPi+1 = lVi+1 = li+1, rPi+1 = rli+1 = ri+1,
ri+1 > li+1. Since, the subsequences are decreasing to the
half after every step i and ri+1 > li+1, after O(logn) steps
the algorithm will pinpoint the point of disagreement. □
Lemma D.7 (P has committed to the wrong state and

V initiates a dispute). Assume that P has committed
to an execution trace EP

final in CommitComputation
different than the VM execution trace element at step
final, i.e., EP

final ̸= Efinal. Assume that V follows
the protocol specifications, publishes on-chain Kickoff
and P and V run Algorithm 21. Algorithm 21 outputs
a step N such that P has committed to the execution
traces EP

N = EN at step N and EP
N+1 ̸= EN+1 at step

N + 1.

Proof: Let I be the set which consists of i) all the VM steps
to which P has committed to an execution trace on-chain
(line 7), ii) step i = 1, for which P has committed to EP

0 ],
and i = final for which P has committed to EP

final in
CommitInstruction.

By assumption V follows the protocol specification and,
therefore, runs the function DisagreeV(B, final) of Algo-
rithm 21, where the sequence B consists of the VM execu-
tion trace element at each step, i.e., ∀i ∈ {1, ..., final} :
B[i] = Ei.

P runs the function DisagreeP(A, final) of Algo-
rithm 21, where the sequence of values A is constructed
as follows. For every i ∈ I, A[i] = EP

final, i.e., A[i] is the
execution trace to which P has committed on-chain for step
i. For the rest indices, i ∈ {1, ..., final}\I, without loss of
generality, we assume that A[i] = Ei, i.e, A[i] is the correct
VM execution trace element at step i.

By assumption A[1] = B[1] and A[final] ̸= B[final],
and therefore according to Lemma D.6 the bisection game
outputs a step N such that A[N ] = B[N ] and A[N + 1] ̸=
B[N + 1]. □

D.4. Punishment phase

In this section, we consider the case where P has
posted on-chain CommitInstruction along with the wit-
ness, which consists of the values pcθ, pcθ′ , insTypeθ,
addrAθ, addrBθ, addrCθ, valAθ, valBθ, valCθ and the
respective commitments that correspond to the VM state at
step θ. This means that the following arguments are true:

• Since CommitInstruction is accepted by the
miners, Setup must have been first published on
the chain. That is because CommitInstruction spends
TraceChallenge ~N1, which can only exist on-chain
if Setup has previously been published on-chain too.
Therefore, according to Lemma D.1, P has presigned
and sent to V the transactions ChallengeCurrPC,

(or ChallengeNextPC), PunishInstruction,
ChallengeRead, ChallengeWrite.

• Moreover, during the dispute bisection game V has
committed to the bits bj ∈ {0, 1}, j ∈ {0, ..., Ñ1 − 1}
which form the Ñ1-bit integer N =

∑Ñ1−1
j=0 2jbj .

• All the presigned transaction assiociated with the re-
solve dispute phase are available to the parties accord-
ing to Theorem D.1.

Lemma D.8 (Inconsistent program counter). Con-
sider that V publishes on-chain the transaction
ChallengeCurrPC, committing to a number N ′ ∈
{0, ..., N1} and providing P ’s commitment for the pro-
gram counter at a step N∗ ∈ {0, ..., N1}, pcN∗ ̸= pcθ.
Then the following scenarios hold.

• V equivocates: If pcθ = pcN , namely, the program
counter that P included as part of the witness to
CommitInstruction is the one he committed dur-
ing the dispute bisection game at step N , then it
is a dominant strategy for P to claim the output of
CommitInstruction. As a result, P ’s balance account
will be ⟨α+β+(2Ñ1+4 ˜̃N2+8)f⟩P , and V ’s balance
account ⟨0⟩V .

• P misbehaved: If pcθ ̸= pcN and N ′ = N , namely
the program counter that P included as part of witness
to CommitInstruction is different than the one he
committed during the dispute bisection game at step
N , then it is a dominant strategy for V to claim
the output of CommitInstruction. As a result, P ’s
balance account will be ⟨0⟩P , and V ’s balance account
⟨α+ β + (2Ñ1 + 4 ˜̃N2 + 9)f⟩V .

Proof: Since ChallengeCurrPC is published on-chain, P
has published on chain the set of transactions Setup ∪
CommitComputation,∪{TraceResponsei}i∈{1,...,Ñ1} ∪
CommitInstruction and V has published KickOff ∪
{TraceChallengei}i∈{1,...,Ñ1} ∪ ChallengeCurrPC so
(2Ñ1 + 5)f coins have been already spent in transaction
fees.

Moreover, ChallengeCurrPC is accepted by the miners
which means that V unlocked the i− th spending condition
of CommitInstruction for some i ∈ {0, ..., Ñ1 − 1},
by committing to the bits bj , j ∈ {0, ..., Ñ1 − 1} which
form the Ñ1-bit integer N ′ =

∑Ñ1−1
j=0 2jbj such that

CountZeroes(N ′) = i.
Furthermore, for P ’s commitment pcN∗ it must be that

pcN∗ = pcN ′ . Namely, V can only provide as a witness
P ’s commitment at step N ′, which is the execution step V
claimed they disagree. That is, because ChallengeCurrPCi
and the i-th spending condition have the same hard-coded
public key. Therefore, from all of P ’s commitments to
program counters shared during the dispute bisection game,
only the one for pcN ′ satisfies the condition in Algo-
rithm 11, line 8 .

• P is honest (pcθ = pcN ): Since pcθ = pcN and
pcθ ̸= pcN∗ by assumption, and pcN∗ = pcN ′ as
explained before, it must hold that pcN ̸= pcN ′ . There-
fore N ′ ̸= N , which means that V committed now to



N ′ which is different than N , to which V committed
during the dispute bisection game. Since N ′ ̸= N , the
two numbers must differ in at least one bit. W.l.o.g.,
assume the two numbers differ in the k − th bit. P
can spend the transaction ChallengeCurrPC to claim
the coins in the multisignature, spending extra f in
transaction fees too, showing that V equivocates by
providing the secret key to the commitment of b′k ̸= bk.

• P is malicious (pcθ ̸= pcN and N ′ = N ): P cannot
spend the transaction ChallengeCurrPC, since V in-
cluded to ChallengeCurrPC indeed the number N to
which she has committed before. V will do Therefore,
after ∆ where the timelock expires, V can claim the
coins in the multisignature. □

Lemma D.9 (P claims an incorrect instruction). If
and only if the instruction that P claims for the
program counter pcθ is the wrong instruction, i.e.,
Π(pcθ) ̸= (insTypeθ, addrAθ, addrBθ, addrCθ), then
V can claim the output of CommitInstruction by pub-
lishing on-chain PunishInstruction. In that scenario,
P ’s balance account is ⟨0⟩P , and V ’s balance account
⟨α+ β + (2Ñ1 + 4 ˜̃N2 + 9)f⟩V .

Proof: First, since PunishInstruction is
published on-chain, P has published on-
chain the set of transactions Setup ∪
CommitComputation,∪{TraceResponsei}i∈{1,...,Ñ1} ∪
CommitInstruction and V has published KickOff ∪
{TraceChallengei}i∈{1,...,Ñ1} ∪ PunishInstruction so
(2Ñ1 + 5)f coins have been spent in transaction fees.

We remind that the pcθ-th spending condition
of CIScriptPCCurri in CommitInstruction is
true if and only if it receives as witness P ’s
commitment to the program counter pcθ and to the
tuple (insTypeθ, addrAθ, addrBθ, addrCθ) such that
(insTypeθ, addrAθ, addrBθ, addrCθ) ̸= Π(pcθ).
⇒: V provides P ’s commitments to pcθ and (insTypeθ,

addrAθ, addrBθ, addrCθ) as witnesses to unlock the
transaction PunishInstruction by spending the pcθ-
th condition of CIScriptPCCurri. Since Π(pcθ) ̸=
(insTypeθ, addrAθ, addrBθ, addrCθ) by assumption,
V will successfully unlock the pcθ-th locking script
and spend PunishInstruction to claim the output of
CommitInstruction. Therefore, V ’s balance account is
⟨α + β + (2Ñ1 + 4 ˜̃N2 + 9)f⟩V and P ’s balance account
⟨0⟩P .
⇐ Assume that V has managed to spend the trans-

action PunishInstruction. That means that V has un-
locked the pcj − th spending condition for pcj ∈
{1, ..., len(Π)}, which in turn means V provided as
witness P ’s commitment to pcj for which Π(pcj) ̸=
(instrTypej , addrAj , addrBj , addrCj). Since the transac-
tion PunishInstruction and CommitInstruction have
the same hard-coded keys, it must be that pcj = pcθ since
this is the only commitment at program counter which
satisfies the condition in Algorithm 15, line 3. □

D.4.1. Read bisection game.
Lemma D.10 (A party is inactive during the read

bisection game). Assume that V publishes on-
chain the transaction ChallengeRead by spend-
ing the script CIScriptReadA (or CIScriptReadB) of
CommitInstruction.

1) Scenario 1, V is inactive: Assume that
ReadResponsei, i ∈ {1, ..., ˜̃N2} is published on-chain.
If ReadChallengei is not published on-chain after
time ∆, then it is a dominant strategy for P to claim
the coins locked in the multisignature. As a result, P ’s
balance account is (α+β+(2Ñ1+4 ˜̃N2+0− 2i)f)P ,
and V ’s balance account is (0)V .

2) Scenario 2, P is inactive: Assume that a set
of transactions {tx} ⊆ {ChallengeRead} ∪
{ReadChallengei}i∈{1,..., ˜̃N2}

, where {tx} ≠ ∅, is
published on-chain and one of the following scenarios
is true:

a) ChallengeRead ∈ {tx} (let j = 0) and P has not
posted ReadResponse1 within ∆,

b) ReadChallengei ∈ {tx} for i < ˜̃N2 (let j = i) and
P has not posted ReadResponsei+1 within ∆,

c) ReadChallenge ~~N2
∈ {tx} (let j = ˜̃N2) and

P has not posted exactly one transaction tx′ ∈
{MerkleRootHash} ∪ {MerkleHashi}i∈{1,..., ˜̃N2}
within ∆,

Then, it is a dominant strategy for V to claim the coins
locked in the multisignature. P ’s balance account is
then ⟨0⟩P , and V ’s balance account is ⟨α+β+(2Ñ1+

4 ˜̃N2 − 2j + 8)f⟩V .

Proof: First, in every case, since ChallengeRead
is published on-chain, P has published on-
chain the set of transactions SP = Setup ∪
CommitComputation,∪{MerkleResponsei}i∈{1,...,Ñ1} ∪
CommitInstruction and V has published
SV = KickOff ∪ {MerkleChallengei}i∈{1,...,Ñ1} ∪
ChallengeRead so (2Ñ1 + 5)f coins have been already
spent in transaction fees.

1) In this scenario, P has published on-chain
SP ∪ {ReadResponsek}k∈{1,...,i}, and V
has published on-chain SV ∪ SV ′ , where
SV ′ = {ReadChallengek}k∈{1,...,i−1} if i > 0,
otherwise V ′ = ∅. Therefore, extra 2i − 1 have been
spent in fees. Since ReadResponsei is published
on-chain and V has not published ReadChallengei
on-chain after ∆, P can activate the timelock to claim
the coins locked in the multisignature. To this end,
P spends extra f in transaction fees. As a result, his
balance account is u1 = (α+β+(2Ñ1+4 ˜̃N2+9−2i)f)
and V ’s account is ⟨0⟩V . Otherwise, P ’s balance
account is 0 < u1, and therefore activating the
timelock is a dominant strategy.

2) In all of the scenarios Items 2a to 2c extra 2j have
been spent in transaction fees. Moreover, since P is



inactive, V can activate the timelock to claim the coins
locked in the multisignature, spending an extra f in
transaction fees. As a result, V ’s balance account is
u1 = (α+ β + (α+ β + (2Ñ1 + 4 ˜̃N2 + 8− 2j)f) and
V ’s account is ⟨0⟩V . Otherwise, V ’s balance account
is 0 < u1, and therefore activating the timelock is a
dominant strategy. □

Lemma D.11 (Read bisection game completes). As-
sume that V publishes on-chain the transaction
ChallengeRead by spending the script CIScriptReadA
(or CIScriptReadB) of CommitInstruction.

1) Scenario 1, P reads an incorrect value from the mem-
ory: ConsiderN the number to which V has committed
during the dispute bisection game. If P has committed
to a correct execution trace element for step N in the
dispute bisection game, i.e., EP

N = EN , and P has
committed to a value valAθ ̸= M [addrAθ] (or to a
value valBθ ̸= M [addrBθ]), it is a dominant strategy
for V to claim the coins in the multisignature. As a
result, P ’s balance account is ⟨0⟩P , and V ’s balance
account is ⟨α+ β + (2Ñ1 + 2 ˜̃N2 + 7)f⟩V .

2) Scenario 2, P follows the protocol specifications: If
P has followed the protocol specifications, P will
eventually claim the coins in the multisignature. In that
scenario, V ’s balance account is ⟨0⟩P , and P ’s balance
account is ⟨α+ β + (2Ñ1 + 2 ˜̃N2 + 8)f⟩V .

Proof: As explained in Lemma D.10, when ChallengeRead
is published on-chain (2Ñ1 + 5)f coins have been already
spent in transaction fees.

1) Consider the Merkle tree of the memory at step
N with root MRN . Moreover, consider the path π
from the root MRN to MN [addrAθ], i.e., π :=
(MRN , . . . ,MN [addrAθ]).
By assumption, V follows the protocol
specification and therefore runs the function
DisagreementReadP(B, n) of Algorithm 21, where the
sequence B of length n = Ñ2 consists of the values
of π, i.e., ∀i ∈ {1, ...Ñ2},B[i] = π[i]. P runs the
function DisagreementReadP(A, n) of Algorithm 21,
where the sequence A of length n = Ñ2 is constructed
as follows. Let I be the set of all the nodes to
which P commits on-chain (line 7) including the
root (i = 1), since P has committed to the root
MRP

N in the dispute bisection game (in the trace
element EP

N ), and the leaf of the path (i = Ñ2)
to which P committed in CommitInstruction,
i.e., MP

N [addrAθ] = valAθ. For every i ∈ I,
A[i] = πP [i], where by πS [i] we denote the nodes
of level (i − 1) to which P has committed on-chain.
For the rest indices, i ∈ {1, ..., Ñ2} \ I, without
loss of generality we assume that A[i] = π[i], i.e,
A[i] is the correct node of π at level (i − 1). By
assumption A[1] = B[1] and A[Ñ2] ̸= B[Ñ2], and
therefore according to Lemma D.6 the bisection game
outputs a step NMer such that A[NMer] = B[NMer]

and A[NMer + 1] ̸= B[NMer + 1] and finishes in ˜̃N2

steps. Depending on the value of NMer, P can spend
the transaction ReadChallenge ~~N2

as follows.

NMer = 0. P can unlock the script RootReadScripti
(Algorithm 18) for some i ∈ {1, ..., Ñ1} by providing
the commitment of V to NMer made in the disagree-
ment phase of the read bisection game (line 3). and
the commitment of V to N , the number output in
the Identify Disagreement phase (line 5), for which
it must hold Count Zeroes(N) = i. Since V follows
the protocol specifications, the condition NMer = 0 is
true only when V disagrees with every node committed
by P , including the node u = B[2] committed in
ReadResponse ~~N2

which is on of the children of the
root B[1] = MRP

N . To unlock the script, P must
provide as input three nodes (Npar,Nchild,Nsib) s.t.
Npar = B[1], Nchild = B[2], and i) if Nchild is the
right child of Npar then H(Nchild||Nsib) = Npar (line
16), ii) else H(Nsib||Nchild) = Npar (line 21). We
enforce the position of the child Nchild as follows. We
take the NMer-th bit of the binary representation of
addrAθ which we denote by bNMer

. By construction
of a Merkle Tree, bNMer

defines the position of Nchild,
namely if bNMer

= 1 the Nchild is the right child of
Npar, else Nchild is the left child child of Npar. P
can only provide the wrong position of Nchild only
by providing a commitment to addrA′

θ ̸= addrAθ,
i.e., in which case V can prove the equivocation
and publish PunishRead3 to claim the coins in the
multisignature. That is because the scripts for un-
locking CommitInstruction and RootReadScripti
hard-code the same public key pkaddrAθ

for addrAθ

(line 11). For the rest of the proof, we assume that P
did not equivocate at this point and that, w.l.o.g., Nchild
is the right child of Npar.
Since V has followed the protocol specifications, V
knows a node NsibV that satisfies this condition, i.e.,
for the input x = NsibV ||A[2] the hash function H
returns H(x) = A[1]. P must find a value Nsib
s.t. x′ = Nsib||B[2] ̸= x (since B[2] ̸= A[2]), and
H(x) = B[1] = H(x′) (since B[1] = A[1],) which
can happen only with a negligible probability since
H is a collision-resistant function. Therefore, to sat-
isfy the condition, P must equivocate and provide
Nchild = A[2] ̸= B[2] or Npar = A[1] ̸= B[1]. In both
cases V proves the equivocation and publish on-chain
PunishRead3 to claim the coins in the multisignature,
since the scripts ChallScripti and RootReadScripti have
the same hard-coded public key for MRP

N and the
scripts ReadChallScript5 and RootReadScripti have
the same hard-coded public key for Noded0 .

NMer ̸= 0. To spend the transaction ReadChallenge ~N2
P must unlock the script ValueAScript if NMer =
Ñ2 − 1, otherwise unlock the script HashReadScripti
(Algorithm 16) for some i s.t. Count Zero(NMer) = i.
In both scenarios, P must provide as input three nodes
in the path (Npar,Nchild,Nsib) s.t. Npar = B[j],
Nchild = B[j + 1], and i) if Nchild is the right



child of Npar then H(Nsib||Nchild) = Npar, ii) else
H(Nchild||Nsib) = Npar. Again, we enforce the po-
sition of Nchild using the NMer-th bit of the binary
representation of addrAθ. W.l.o.g., we assume that
Nchild is the right child of Npar.
Since V has followed the protocol specifications V
knows a node NsibV s.t. for the input x = NsibV ||A[j+
1] the hash function H returns H(x) = A[j]. P must
find a value Nsib s.t. x′ = Nsib||B[j + 1] ̸= x (since
B[j + 1] ̸= A[j + 1]), and H(x) = B[j] = H(x′)
(since B[j] = A[j],) which can happen only with
a negligible probability since we assume a collision-
resistant function H .
To provide such a pair P has to equivocate and
therefore present a pair s.t. at least Npar ̸= B[j] or
Nchild ̸= B[j + 1]. More specifically, we have the
following scenarios:
• NMer ∈ {1, ..., Ñ2 − 2} : In this scenario, V can

show the equivocation because the hard-coded pub-
lic keys for the pair Nchild,Npar corresponding to
HashReadScripti are the same to which P commits
during the disagreement phase of the read bisection
game.

• NMer = Ñ2 − 1 : If P equivocates on Npar, V
can prove the equivocation as explained for NMer ∈
{1, ..., Ñ2−2}. The extra condition in this situation is
that the hard-coded public key of Nchild is the same
with valAθ in CommitInstruction. Therefore, if
P equivocates on Nchild, V can again provide the
conflicting commitments.
In the worst case, the set of transactions
{ReadChallengei, WriteChallengei}i∈{1,..., ˜̃N2}
is published on-chain along with two extra
transactions, when P equivocate while. Thus,
(2 ˜̃N2 + 2)f have been spent in transaction fees.
Therefore, if V disproves P , V ’s balance account
is ⟨α + β + (2Ñ1 + 2 ˜̃N2 + 7)f⟩V and P ’s balance
account is ⟨0⟩P . If V does not disprove P the
respective balance account is ⟨0⟩P , and thus it is a
dominant strategy to disprove P .

2) For any number N and NMer committed by V dur-
ing the dispute bisection game and the read bisec-
tion game, P will use the respective script (either
ValueAScript or HashReadScripti or RootReadScripti
for some i ∈ {1, ..., Ñ1}), to spend the transaction
ReadChallenge ~~N2

. In the worst case, one less transac-
tion is published than Scenario 1 since V cannot prove
an equivocation when P provides the required triple of
nodes. Therefore, if P claim the deposits P ’s balance
account is ⟨α + β + (2Ñ1 + 2 ˜̃N2 + 8)f⟩P and V ’s
balance account is ⟨0⟩V . This is the dominant strategy
for P , since otherwise the respective balance account
is ⟨0⟩P . □

D.4.2. Write bisection game.

Lemma D.12 (A party is inactive during the Write bisection

game). Assume that V spends the script CIScriptWriteC
of CommitInstruction to publish on-chain the trans-
action ChallengeWrite. The following statements hold
for the Write bisection game.

1) V is inactive: Assume WriteResponsei,
i ∈ {1, ..., ˜̃N2} is published on-chain. If
WriteChallengei is not published on-chain after
time ∆, then it is a dominant strategy for P to claim
the coins locked in the multisignature. As a result, P ’s
balance account is (α+β+(2Ñ1+4 ˜̃N2+0− 2i)f)P ,
and V ’s balance account is (0)V .

2) P is inactive: Assume that a set of trans-
actions {tx} ⊆ {ChallengeValueC} ∪
{WriteChallengei}i∈{1,..., ˜̃N2}

, where {tx} ̸= ∅, is
published on-chain and one of the following scenarios
is true:

a) ChallengeValueC ∈ {tx} (let j = 0) and P has
not posted WriteResponse1 within ∆,

b) WriteChallengei ∈ {tx} for i < ˜̃N2 (let j = i)
and P has not posted WriteResponsei+1 within ∆,

c) WriteChallenge ˜̃N2
∈ {tx} (let j = ˜̃N2) and

P has not posted exactly one transaction tx′ ∈
{MerkleRootHash} ∪ {MerkleHashi}i∈{1,..., ˜̃N2}
within ∆,

Then, it is a dominant strategy for V to claim the coins
locked in the multisignature. P ’s balance account is
then ⟨0⟩P , and V ’s balance account is ⟨α+β+(2Ñ1+

4 ˜̃N2 − 2j + 8)f⟩V .

Proof: Since ChallengeWrite is published on-chain, P
has published on-chain the set of transactions P = Setup∪
CommitComputation,∪{TraceResponsei}i∈{1,...,Ñ1} ∪
CommitInstruction and V has published V = KickOff∪
{TraceChallengei}i∈{1,...,Ñ1} ∪ ChallengeRead so
(2Ñ1 + 5)f coins have been already spent in transaction
fees.

1) In this scenario, P has published on-chain
P ∪ {WriteResponsek}k∈{1,...,i}, and V
has published on-chain V ∪ V ′, where
V ′ = {WriteChallengek}k∈{1,...,i−1} if i > 0,
otherwise V ′ = ∅. Therefore, extra 2i − 1 have been
spent in fees. Since WriteResponsei is published
on-chain and V has not published WriteChallengei
on-chain after ∆, P can activate the timelock to claim
the coins locked in the multisignature. To this end,
P spends extra f in transaction fees. As a result, his
balance account is u1 = (α+β+(2Ñ1+4 ˜̃N2+9−2i)f)
and V ’s account is ⟨0⟩V . Otherwise, P ’s balance
account is 0 < u1, and therefore activating the
timelock is a dominant strategy.

2) In all of the scenarios Items 2a to 2c extra 2j have
been spent in transaction fees. Moreover, since P is
inactive, V can activate the timelock to claim the coins
locked in the multisignature, spending an extra f in
transaction fees. As a result, V ’s balance account is



u1 = (α+ β + (α+ β + (2Ñ1 + 4 ˜̃N2 + 8− 2j)f) and
V ’s account is ⟨0⟩V . Otherwise, V ’s balance account
is 0 < u1, and therefore activating the timelock is a
dominant strategy. □

Lemma D.13 (The Write bisection game completes).
Assume that V spends the script CIScriptWriteC of
CommitInstruction to publish on-chain the transac-
tion ChallengeWrite. The following statements hold
for the Write Bisection game.

1) Scenario 1, P has written incorrect values in the
memory: Consider the number N the number to which
V has committed during the dispute bisection game.
If P has committed to two execution trace elements
for steps N and N + 1 s.t. EP

N = EN and EP
N+1 ̸=

EN+1 and P has committed only correct values in
CommitInstruction, then it is a dominant strategy
for V to claim the coins in the multisignature. As a
result, P ’s balance account is ⟨0⟩P , and V ’s balance
account is ⟨α+ β + (2Ñ1 + 2 ˜̃N2 + 7)f⟩V .

2) Scenario 2, P follows the protocol specifications: If P
has followed the protocol specifications, P will eventu-
ally claim the coins in the multisignature. As a result,
P ’s In that scenario, V ’s balance account is ⟨0⟩P , and
P ’s balance account is ⟨α+β+(2Ñ1 +2 ˜̃N2 +8)f⟩V .

Proof: First, in both scenarios, since ChallengeWrite is
published on-chain (2Ñ1+5)f coins have been already spent
in transaction fees as explained in Lemma D.12.

1) Consider the Merkle trees of the memory at steps
N , N + 1 with the respective roots MRN ,MRN+1.
Moreover, consider the path π from the root MRN to
MN [addrCθ] and the path π′ from the root MRN+1

to MN+1[addrCθ], where addrCθ was committed by
P in CommitInstruction .
By assumption, V follows the protocol
specifications and therefore runs function
DisagreeWriteV(B1,B2, Ñ2) of Algorithm 23,
where the pair of sequences (B1,B2) consists of
the values of π and π′ respectively, i.e., ∀i ∈
{1, ..., Ñ2}, (B1[i],B2[i]) = (π[i], π′[i]). On the other
side, P runs function DisagreeWriteP(A1,A2, Ñ2)
of Algorithm 23 where the pair of sequences
(A1,A2) is constructed as follows. Let I be the
set of all the nodes to which P commits on-chain
(line 7) including the root (i = 1) for which
A1[1] = MRP

N ,A2[1] = MRP
N+1 to which P

committed via the respective execution trace elements
in the dispute bisection game, and the leaf of the paths
(i = Ñ2), A1[1] = MRP

N ,A2[1] = MRP
N+1 which

are the values P committed in CommitInstruction.
For every i ∈ I, the pair (A1[i],A2[i]) consists of the
nodes to which P has committed on-chain. For the rest
indices, i ∈ {1, ..., Ñ2} \ I, without loss of generality,
we assume that P ’s pair of sequences holds the correct
nodes of the paths, i.e., (A1[i],A2[i]) = (π[i], π′[i]).
We will show that Algorithm 23 pinpoints a step NMer

such that Ai[NMer] = Bi[NMer] and Ai[NMer +1] ̸=

Bi[NMer+1] for at least one i ∈ {1, 2}. To this end, we
decompose the result of the execution of Algorithm 23
in the following cases:
• There is a step of the bisection game i s.t. for some
j ∈ {1, ..., Ñ2} s.t. A1[j] ̸= B1[j]: V will set its
local variable flag to True (line 25. In that situation,
starting from the next iteration i+ 1, V will always
skips the lines 24-31. The remaining code that V and
P run, given that the sequences A2 and B2 do not
affect the execution, is similar to running Section B.2
where V has the sequence A1[1 : j] and P has the
sequence B1[1 : j]. Therefore with a proof similar
to Theorem D.7, we can show that Algorithm 23
pinpoints a step NMer s.t. A2[NMer] = B2[NMer]
and A2[NMer + 1] ̸= B2[NMer + 1].
Otherwise: V ’s local variable flag is always False.
In this case, V will always skips the lines 32-36. For
the remaining code that V and P run the sequences
A2 and B2 do not affect the execution. We can prove
that since A2[1] ̸= B2[1] and A2[Ñ2] = B2[Ñ2] Al-
gorithm 23 pinpoints a step NMer s.t. A2[NMer] =
B2[NMer] and A2[NMer +1] ̸= B2[NMer +1] with
a proof similar to Theorem D.7.

In any case, since the point of disagreement is iden-
tified, we can prove that V will eventually manage
to disprove P similar to the Read Bisection game
(Lemma D.11).

2) Similar to the Read Bisection game (Lemma D.11),
since P has committed to only correct values, V cannot
dispove the computation. Therefore, P will eventually
claim the coins in the multisignature. □

D.5. Concluding Lemmas

Lemma D.14 (P has committed to the wrong state and
CommitInstruction is published on-chain). Assume
that P has committed to the execution trace EP

final

in CommitComputation s.t. EP
final ̸= Efinal, and P

has also published on-chain CommitInstruction com-
mitting to the values pcθ, pcθ′ , insTypeθ, addrAθ,
addrBθ, addrCθ, valAθ, valBθ, valCθ. It is a feasible
and dominant strategy for V to prove the misbehavior.
As a result, V ’s balance account will be (u)V , where
u ≥ α+β+(2Ñ1+2 ˜̃N2+7)f and P ’s balance account
(0)P .

Proof: We will prove that V will eventually claim the coins
in the multisignature by following the protocol specifica-
tions. We will also show that this is the dominant strategy
for V .

CommitInstruction is published on-chain which
means that V initiated the dispute bisection game. That is
because CommitInstruction spends TraceChallenge ~N1
which can only be published on chain if the set of trans-
actions {KickOff} ∪ {TraceChallengei}i∈{1,...,Ñ1−1} ∪
{TraceResponsei}i∈{1,...,Ñ1} is already on-chain. Since
follows the protocol specifications, V holds a sequence



consisting of the correct execution trace elements during the
dispute bisection game, i.e., EV

i = Ei,∀i ∈ {1, ..., final}.
By assumption, P and V agree on the initial execution

trace, i.e., EP
0 = EV

0 = E0, and disagree in the execution
trace of the final step, i.e., EP

final ̸= EV
final = Efinal.

According to Lemma D.7, the Identify Disagreement phase
outputs a step N for which the following condition holds:
for the VM execution steps N and N +1, P has committed
to the execution trace elements EP

N = EV
N = EN and

EP
N+1 ̸= EV

N+1 = EN+1.
Since EP

N = EN and EP
N+1 ̸= EN+1, P has executed

the state transition of the VM at step N + 1 (Algorithm 6,
line 5) incorrectly. The possible ways that P has run incor-
rectly Algorithm 5 at step N + 1, are the following:

• Using incorrect inputs:
– P uses an incorrect program counter: Since EP

N =
(MRP

N , pcPN ) = EN , the program counter to which
P committed during the dispute bisection game, i.e.,
pcPN , is correct. However, P can use a different
program counter at step N + 1 in lines 3 6. P
commits to the program counter of the program at
step N in CommitInstruction, so P can commit
to pcPθ ̸= pcPN . Then, according to Lemma D.8, it
is a dominant strategy for V to claim the coins in
the multisignature. P ’s balance account will be ⟨0⟩P ,
and V ’s balance account ⟨α + β + (2Ñ1 + 4 ˜̃N2 +
9)f⟩V .

– P sets a program instruction which is either in-
valid or does not correspond to the instruction of
Π at the program counter pcN : P can set an incor-
rect program instruction in line 3. However, in that
case, P commits to a program instruction such that
Π(pcθ) ̸= (insTypeθ, addrAθ, addrBθ, addrCθ) in
CommitInstruction. Following from Lemma D.9,
if P commits such an invalid program instruction, it
is a dominant strategy for V to claim the coins in
the multisignature. P ’s balance account is ⟨0⟩P , and
V ’s balance account ⟨α+β+(2Ñ1+4 ˜̃N2+9)f⟩V .

– P reads incorrect values from the memory: P can
read incorrect values (valA or valB) from the mem-
ory (MN [addrA] or MN [addrB]) at step N (lines
4, 5). However, P has committed to the correct
memory root at step N (memory output by exe-
cuting Algorithm 6 correctly), MRP

N = MRN of
the dispute bisection game (since EP

N = EN ). In
Lemma D.10 we show that if P remains inactive
in the Read bisection game, it is a dominant strategy
V to claim the coins in the multisignature. Similarly,
in Lemma D.11, we show that if valA ̸= M [addrA]
or valB ̸= M [addrB ] and the Read bisection game
completes, it is again a dominant strategy for V to
claim the coins. Moreover, P ’s balance account is
⟨0⟩P , and V ’s balance account is in the worst case
⟨α+ β + (2Ñ1 + 2 ˜̃N2 + 7)f⟩V .

• Using correct inputs but executing incorrectly the algo-
rithm. Here we assume that P has provided the correct

inputs i.e., the inputs when executing Algorithm 6
correctly. Since CommitInstruction is successfully
published on-chain it must be that (pcθ′ , valCθ) =
insTypeθ(pcθ, valAθ, valBθ) since this is a necessary
condition to unlock the script of TraceChallenge32.
Therefore the values related to the execution of step
N + 1 that P committed in CommitInstruction are
correct. However, since P has committed to a wrong
execution trace element for step N + 1 in the dispute
bisection game, i.e., EP

N+1 = (MRP
N+1, pc

P
N+1) ̸=

EN+1, one of the following conditions hold:
– pcPθ′ ̸= pcPN+1: Then, according to Lemma D.8, it

is a dominant strategy for V to claim the coins in
the multisignature. P ’s balance account will be ⟨0⟩P ,
and V ’s balance account ⟨α + β + (2Ñ1 + 4 ˜̃N2 +
9)f⟩V .

– P has committed to all the correct values in
CommitInstruction but EP

N+1 ̸= EN+1 or is
inactive during the Write bisection game: according
to Lemmas D.13, D.12 accordingly, V can show that
P has written a wrong value in the memory and
claim the coins in the multisignature. P ’s balance
account is ⟨0⟩P , and V ’s balance account is in the
worst case ⟨α+ β + (2Ñ1 + 2 ˜̃N2 + 7)f⟩V .

In any case, it is a dominant strategy for V to prove P ’s
misbehavior and claim the coins in the multisig. As a result,
V ’s balance account is (u)V , where u ≥ α + β + (2Ñ1 +

2 ˜̃N2 +7)f and P ’s balance account is in any case (0)P . □

Lemma D.15 ( P follows the protocol specifications and
CommitInstruction is published on-chain). Assume
that P
has published on-chain CommitInstruction commit-
ting to the values pcθ, pcθ′ , insTypeθ, addrBθ, addrCθ,
valAθ, valBθ, valCθ. If P follows the protocol specifi-
cations, P will eventually claim the coins in the multisig-
nature. As a result, P ’s balance account will be (u)P ,

where u ≥ α+ β + (2Ñ1 +2 ˜̃N2 +8)f and V ’s balance
account (0)P .

Proof: CommitInstruction is posted on-chain which
means that V initiated the dispute bisection game (as ex-
plained in D.14). Since P follows the protocol specifica-
tions, P has executed the VM algorithm (Algorithm 6)
correctly. Therefore, for any step i s.t. P committed to an
execution trace element during the dispute bisection game
it holds that EP

i = Ei. Moreover, the values that P has
committed in CommitInstruction are correct (they are
derived by executing Algorithm 6 correctly).

The possible ways for V to spend CommitInstruction
is publishing on-chain one of the following transactions:

• V publishes on-chain
PunishFaultyProgramCounter claiming that
pcθ ̸= pcPN (or pcθ′ ̸= pcPN + 1): By assumption,
pcθ = pcPN and pcθ′ = pcPN+1, and according to
Lemma D.8, it is a dominant strategy for P to claim
the deposits. P ’s balance account will be in the worst



case ⟨α+ β + (2Ñ1 + 4 ˜̃N2 + 8)f⟩P , and V ’s balance
account ⟨0⟩V .

• V publishes on-chain ChallengeRead to claim that
valAθ ̸= MN [addrAθ] (or valBθ ̸= MN [addrBθ]):
Then, if i) V remains inactive, or ii) the Read Bisection
game finishes, it is a dominant strategy for V to claim
the deposits as we prove Lemmas D.10, D.11 accord-
ingly. ⟨α+ β+(2Ñ1 +2 ˜̃N2 +8)f⟩P , and V ’s balance
account ⟨0⟩V .

• V publishes ChallengeWrite to claim that P has
written an incorrect value in the memory: either 1)
V remains inactive, or ii) the Write bisection game
completes, we show in Lemmas D.12, D.13 that V
will eventually claim the coins in the multisignature.
Therefore, P ’s balance account is in the worst case
⟨α+β+(2Ñ1+4 ˜̃N2+8)f⟩P , and V ’s balance account
⟨0⟩V .

To summarize, P ’s balance account is ⟨u⟩V , where u ≥
(2Ñ1 + 2 ˜̃N2 + 8)f and V ’s balance account is in any case
⟨u⟩V . □

D.6. Theorems

To prove that BitVM satisfies Rational Validity and
Balance Security, we first represent BitVM as an EFG which
we illustrate in Figs. 4 and 5.

BitVM as an EFG. We represent BitVM as an extensive-
form game, where the players are P and V . The state of a
node in the game tree is defined by the pair (A,B), where
A represents the balance account of P and B represents the
balance account of V .

The game begins after Setup is posted on-chain. The
action set is the following. Initially, P has the possible
actions: i) not post a CommitComputation transaction on-
chain, ii) post a CommitComputation and commit to the
correct result, or iii) post a CommitComputation but com-
mit to an incorrect result. In case i), it is a dominant strategy
for V to claim the funds after the timelock expires (cf.
Lemma D.2). In the other cases (ii and iii), V must decide
whether to post a KickOff transaction, initiating the dispute
phase, or remain inactive. If V does not respond, P has the
following actions: i) post a Close transaction corresponding
to the result committed to CommitComputation, ii) remain
inactive, or iii) post a Close transaction that does not match
the result P committed to CommitComputation. In the
latter two cases (ii and iii), it is a dominant strategy for V
to claim the funds once the timelock expires or to prove the
equivocation made by P (cf. Lemma D.3). For convenience,
and due to similarity, we combine cases i), ii) in the same
node.

On the other side, if V initiates the dispute phase by
posting KickOff, the game enters the Identify Disagreement
phase. During this phase, if either player remains inactive,
it is a dominant strategy for the other party to claim the
funds (cf. Lemmas D.4, D.5). If the dispute completes, the
outcome depends on the correctness of the result to which P

committed in CommitInstruction. More specifically, we
have the following scenarios, i) Dispute A: if P committed
to an incorrect result, V will claim the funds in the Pun-
ishment subtree A (cf. Lemma D.14), ii) Dispute B: if P
committed to the correct result in CommitComputation, P
will eventually claim the funds in the Punishment subtree B
(cf. Lemma D.15).
Theorem D.16. The strategy profile representing the honest

execution of BitVM forms a Subgame Perfect Nash
Equilibrium.

Proof: We prove that by backward induction on Γ depicted
in Figs. 4 and 5.

If P does not post CommitComputation on-chain, V
will claim the funds after the timelock expires. If P posts
CommitComputation committing to an incorrect result of
the computation, V will publish KickOff and eventually
claim the funds in the multisignature. If P commits to the
correct result of the computation in CommitComputation
but does not post the respective Close transaction, V will
again claim the funds. On the other side, if P posts the
correct result of the computation in CommitComputation
and V posts KickOff on-chain, P will eventually claim the
coins. □
Theorem D.17. (Balance Security) BitVM satisfies Balance

Security.

Proof: Let us fix one party A ∈ {P, V } and assume that p
follows the protocol specifications. We prove that no matter
what strategy the other party p′ chooses, p will eventually
claim at least fA(S

∗
final) coins, i.e., the coins which A

should receive according to the outcome mapping function
taking as input the correct result of the computation.

To prove that, we only consider the subtree γ ⊆ Γ,
which gives a comprehensive description of BitVM given
that party A follows the protocol specification. Below, we
consider the respective scenarios where P or V follow the
protocol specifications.

• Case 1: P follows the protocol specifications. We
consider the subtree γ ⊆ Γ, which we derive as
follows. First, consider the subtree γ′ derived by Γ
with the following changes. After P posts Setup on-
chain, the only possible action is to commit to the
correct final result (by posting CommitComputation
on-chain). Moreover, after P has posted the correct
result, in the case where V has not disputed the result,
the only possible action for P is to publish on-chain
the corresponding Close transaction. Then, we derive
γ by deleting any action (or edge) in γ′ where P
remains inactive. The subtree γ gives a comprehen-
sive description of BitVM given that P follows the
protocol specification. For any node u ∈ γ, there is a
path leading to a leaf node where P claims at least
(α+ β + (2Ñ1 + 2 ˜̃N2 + 8)f) ≥ fP by assumption.

• Case 2: V follows the protocol specifications. Now
consider the subtree γ ⊆ Γ, which we derive as
follows. First, if P has posted the correct final result,
V does not publish dispute. Moreover, we delete the



actions where V remains inactive. The subtree γ gives
a comprehensive description of BitVM given that V
follows the protocol specification. For any node u ∈ γ,
there is a path leading to a leaf node where V claims at
least (α+β+(2Ñ1+2 ˜̃N2+5.5)f) ≥ fV by assumption.
□

Appendix E.
Transaction estimation

In this section, we provide a detailed overview of how
we compute the size of the transactions published on the
Bitcoin blockchain during the execution of the BitVM pro-
tocol.

As shown in [32], computing the size of a SegWit [25]
transaction requires estimating both its non-witness and
witness components. For the non-witness portion, each Byte
counts as a vByte, whereas in the witness, 4 Bytes count as
a vByte.

The non-witness portion consists of three main parts(for
fields with variable sizes, we fix the vByte count based on
the transaction that we have in our protocol):
Overhead • The transaction version number (4vB).

• The input count (1vB) and the output count (1vB).
• The timestamp until which the transaction is locked

(4vB).
• SegWit transaction flag (1vB).

Input • The previous transaction ID and index of the out-
put being spent in the previous transaction (36vB)

Output • The amount of B being transferred (8vB).
• The length of the scriptPubKey field (1vB).
• The scriptPubKey (it varies, we upper bound this

with the PayToTaproot(P2TR) vbyte size that is
34vB).

For witnesses, we categorize them based on the type of
scriptPubKey they unlock:

We can distinguish between two kinds of witnesses,
according to which scriptPubKey they unlock:

• PayToWitnessPublicKeyHash(P2WPKH): witness
size is approximately 27vB.

• PayToTaproot: includes a control block, a script, and
the script data. The witness size varies, and transaction
witnesses can be grouped into four size categories
where each group has a similar weight.

Note that the elements that most significantly impact
the size of a witness are the 2-of-2 public key and its mul-
tisignature and the Lamport public keys and commitments.
Consequently, we categorize all transactions that spend a
P2TR output into four groups, (each transaction in these
groups verifies the validity of a multisignature):

1) Transactions where there is one Lamport commitment
verification: we upper bound their weight with 1112vB.
The transactions KickOff, TraceChallenge1,
. . . , TraceChallenge32, TraceResponse1,
. . . , TraceResponse32, ChallengeWrite,
WriteChallenge1, . . . , WriteChallenge5 belong to
this group.

2) Transactions where there are two Lamport com-
mitment verifications: we upper bound their weight
with 2093vB. The transactions CommitComputation,
WriteResponse1, . . . , WriteResponse5 belong to this
group.

3) Transactions where there are four Lamport com-
mitment verifications: we upper bound their weight
with 7268vB. The transactions CommitWrite1 and
PunishWrite1 belong to this group.

4) Transactions where there are nine Lamport com-
mitment verifications: only the CommitInstruction
transaction belongs to this group. We estimate its size
being 2751vB.

Although CommitInstruction verifies more Lamport
commitments than CommitWrite1, it has a smaller size
because it verifies commitments for elements that are at most
4B, while CommitWrite1 verifies the commitment of four
20B elements.
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