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Abstract. In this paper we define the novel concept token-based key exchange
(TBKE), which can be considered a cross between non-interactive key exchange
(NIKE) and attribute-based encryption (ABE). TBKE is a scheme that allows users
within an organization to generate shared keys for a subgroup of users through the
use of personal tokens and secret key. The shared key generation is performed locally
and no interaction between users or with a server is needed.
The personal tokens are derived from a set of universal tokens and a master secret key
which are generated and stored on a trusted central server. Users are only required
to interact with the server during setup or if new tokens are provided. To reduce key
escrow issues the server can be erased after all users have received their secret keys.
Alternatively, if the server is kept available TBKE can additionally provide token
revocation, addition and update.
We propose a very simple TBKE protocol using bilinear pairings. The protocol
is secure against user coalitions based upon a novel hidden matrix problem. The
problems requires an adversary to compute where the adversary must compute a
matrix product in the exponent, where some components are given in the clear and
others are hidden as unknown exponents. We argue that the hidden matrix problem
is as hard as dLog in the bilinear group model.
Keywords: Non-interactive key exchange · Attribute-based encryption · Broadcast
encryption

1 Introduction
Consider an organization such as a university. All university members; professors, students,
teaching assistants and administrative staff belong to the same organization, but they do
not, nor should they, have access to the same information and sub-domains. For example,
exam solutions for a course should only be accessible to professors and teaching assistants
(TAs) in that specific course. In particular, students should not be able to use their role
as teaching assistant in one course to gain access to exam solutions for a different course.
Even if a student convinces a professor in a different course to help them cheat, such a
coalition should not succeed.

By introducing attributes such as professor, student, TA, cryptography and CRYPTO101,
etc. students and employees alike can be given appropriate tokens. In the above example
only people with access to both professor and CRYPTO101 token should be able to access
the CRYPTO101 exam solution. A professor in BITCOIN101 collaborating with a student
taking CRYPTO101 should not be able to gain access to the CRYPTO101 exam solution,
even though the union of their tokens matches the requirements.
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(Kristian Gjøsteen)
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The scheme proposed in this paper can be viewed as a merge between non-interactive
key exchange (NIKE) [FHKP13, CKS08, DH76] and attribute based encryption (ABE)
[GPSW06,SW05], where multiple users are able to produce a shared secret key based upon
internal data (tokens) without interacting. We differentiate between an attribute, a value
that is incorporated into something else, e.g. a key or ciphertext, and a token, a value in
and of itself. The proposed scheme is denoted token-based key exchange (TBKE).

TBKE only requires a single back and forth interaction with a trusted central server
for each user during an initial setup. Once all members have been added and tokens and
keys are distributed the server may be erased to reduce key escrow issues. Alternatively, if
the server is kept running, new tokens can be provided and old ones revoked or updated.

The goal of TBKE is threefold. First, to reduce the number of distributed symmetric
keys needed within a domain. In an extreme scenario an organization consisting of n users
would require 2n symmetric keys to be able to communicate in any possible subgroup.
Through tokens the TBKE scheme can reduce this number down to as few as n tokens.

Example 1. In an organization consisting of n users and n tokens, number both tokens
and users 1 though n. Distribute the tokens so that user i gets access to all tokens except
token number i. Then, to create a shared key for a subset of users U , use all tokens
i ∈ {1, 2, · · ·n} \ U .

In the case of pre-shared keys, the second goal of a TBKE scheme is to reduce the
amount of planning needed when setting up a domain. If, instead, the keys are exchanged
using a group key exchange protocol [ACDT20, CCG+18, BBR+23] TBKE drastically
reduces transmission overhead.

The third benefit is the removal of membership knowledge. That is, users are no
longer required to know all user-identities to compute a shared key when using a TBKE
protocol. This is useful when the target audience is large and independent but still has
clear mutual interests, e.g. conference participants. We would like to note that TBKE does
not prevent membership knowledge, it only removes the strict requirement. Furthermore,
authentication on sent messages may still be included at the discretion of the symmetric
protocol used for message encryption.

1.1 General Construction

A TBKE scheme starts by setting up a trusted central server. The server produces a set of
universal tokens and a single master secret key. These values function as a backdoor
and blueprint for all secret information that is later distributed to individual users. It is
important to note that neither the master key nor the universal tokens should ever be
shared or leave the central server.

After server setup, users may be added to the organization. A user is given a distinct
set of personal tokens as well as a unique personal secret key. The personal tokens
are derived in correspondence to the users access rights.

A user selects a subset of personal tokens and together with its secret key derives a
shared key. The set of personal tokens used for that specific key generation determines the
shared key’s access restriction. The shared key can then be used for message encryption.
Only users with personal tokens that encompass the access restriction will be able to derive
the correct shared key needed for decryption.

In order for a TBKE to be secure we require that a correctly derived shared key
remains indistinguishable from a random value when at least one token is unknown. This
requirement must hold true even if users decide to collaborate and pool all their secret keys
and personal tokens, as long as none of the users can compute the shared key individually.
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1.2 Proposed Protocol
We propose a matrix-based protocol. The protocol is simple and elegant in its design, and
requires no harder operations than matrix multiplication and possibly a single bilinear
pairing to compute personal information or a shared secret key.

The universal tokens are pairwise random, invertible matrices, with a fixed ordering.
The server derives personal tokens as follows: For each new user added to the organization
an initial invertible matrix is selected at random. Then for each universal token select
further random invertible matrices. The first personal token is computed by multiplying
the inverse of the initial random invertible matrix with the first universal token. This
product is then multiplied with the random invertible matrix for the next token. A similar
process happens for the remaining personal tokens where the previous token’s random
matrix is used as the initial matrix. In essence a personal token hides its corresponding
universal token by bracketing the universal token with random matrices.

The personal tokens are designed in such a way that the random matrices cancel when
the personal tokens are multiplied in order, which forces the users to use their tokens in the
predefined order. Furthermore, by taking advantage of the non-commutative properties of
matrices we prevent users from pooling their values.

As a basis for the security argument we introduce the hidden matrix problem. The
hardness assumption of the problem is based on the fact that an adversary must, in a
bilinear group structure, compute a matrix product in the exponent when only having
access to some of the factors. The rest of the factors are hidden in the exponent or by
other matrices.

1.3 Related Work
This work is similar to non-interactive key exchange and attribute-based encryption.
Previous effort put in to combining the two research areas resulted in protocols requiring
substantially more complex techniques to achieve the desired goal compared to our
protocol [TZL17].

Attribute based encryption has become increasingly popular in recent years, expanding
into multiple different sub-categories. At its core, ABE is an asymmetric encryption scheme
that allows users to fine-tune access control to encrypted data based on attributes instead
of the traditional public key identifier. The attributes are inherently public. An access
policy, based on these attributes, is integrated either into each user’s secret key or into the
ciphertext, resulting in two variants: ciphertext-policy (CP) ABE and key-policy (KP)
ABE.

If we disregard the difference between a key exchange and an asymmetric encryption
scheme, the handling and secrecy concerning attributes (tokens) remains as one significant
difference between a general ABE scheme and the construction in this paper. Comparing
the two schemes, TBKE has more of a symmetric flavor than its counterpart, where only
participating members should be able to derive the keys. The requirement concerning
public attributes is thus circumvented.

Attribute based key exchange [KKL+16, GBG10] is similar to TBKE in the same
way key encapsulation is similar to NIKE. The general difference between a TBKE
scheme and ABE concerning the secrecy surrounding attributes, however, also applies to
attribute based key exchange. This can mainly be seen in the ciphertext generated during
encapsulation [GBG10], which scales linearly to the number of attributes in the access
structure.

Broadcast encryption [FN94,BGW05,KMW23] aims to allow a streaming service to
broadcast its content while preventing users without a valid subscription from benefiting
from the stream. In terms of use case, broadcast encryption is quite similar to TBKE.
There are, however, a couple key differences. The first is that broadcast encryption requires
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an online server connection, whereas in TBKE the need of a trusted centralized server
during shared key generation is removed. The trusted centralized server will only be
needed during admission of new users into the organization, i.e., distribution of personal
tokens and personal secret keys. When using the protocol to produce shared keys the
server is never queried. In other words, when running a TBKE protocol, the centralized
server may be erased after all users with their accesses are added, minimizing the amount
of trust needed to be placed on such servers.

The second difference between broadcast encryption and TBKE is in the roles users
have. In TBKE any user may be the one to initiate communication on a specific shared
key, while in broadcast encryption the roles are static. The streaming service will always
be the one broadcasting while users try to decrypt.

Previous work converging on TBKE from a NIKE viewpoint generally evolves around
expanding NIKE to group communication [BC94,DLL22]. Their focus has mainly been
on generating keys for user-subgroups using their public keys and ids. No additional
separation values are considered.

2 Prerequisites
Let λ ∈ N be a natural number. We use 1λ to denote the string consisting of λ 1’s
concatenated.

Let S denote a set and P(S) the power set of S. Furthermore, let s←$ S denote the
process where s is sampled from S uniformly at random. If S is a distribution over S then
s←$ S denotes the process where s is sampled from S with probability distribution S. Let
A be a probabilistic algorithm, and we write s ←$ A(x1, x2, · · · , xn) to denote that s is
the output of the algorithm when run on input x1, x2, · · · , xn.

We write vectors, v ∈ Zk
q , in lowercase bold font, while matrices, A ∈ Zl×k

q , are written
in uppercase bold font. The identity matrix in Zk×k

q is denoted Ik.
Let G be a cyclic group with generator g and let a ∈ Z be a scalar. We then use

the notation from [EHK+13] and write [a] = ga to denote the element in G that occurs
by applying generator g a times. Consequently, if A = (ai,j) ∈ Zl×k is a matrix then
[A] = (gai,j ) ∈ Gl×k.

We extend this notation to bilinear pairing group structures. Let G1,G2,G3 be cyclic
groups of order q and let e : G1 × G2 → G3 be a bilinear map. We assume that there are
fixed generators g1 ∈ G1, g2 ∈ G2 and g3 ∈ G3 and for any matrix A = (ai,j) ∈ Zl×k we
use the notation [A]u = (gai,j

u ) ∈ Gl×k
u , for u ∈ {1, 2, 3}.

3 Security Model
Conceptually we can view token-based key exchange (TBKE) as a non-interactive group
key exchange algorithm that utilizes attributes, represented as tokens, to provide access-
restricted shared keys. A trusted central server is needed during setup, key generation and
if desirable to produce new tokens. Users in the organization produce shared secret keys
by combining their personal secret key with a selection of personal tokens. The selection
of personal tokens used in the generation of a shared key determines the access restriction
of all messages encrypted under the key.

The security model used for TBKE shares many similarities with both the model
presented by Gorantla, Boyd, and Nieto [GBG10] for attribute based key exchange, as
well as the security model from Freire et.al. [FHKP13] regarding NIKE.

Definition 1 (Token-Based Key Exchange). A token-based key exchange protocol TBKE
consists of three mandatory PPT algorithms setup, keyGen and sharedKey and two
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optional PPT algorithms newToken and distToken. The algorithms have the following
properties.

setup(1λ, n)→ (pp, msk, {ti}n
i=1)

The setup algorithm takes a security parameter 1λ and the maximum number n of
tokens as input. It outputs a set of system parameters, pp, together with a master
secret key msk and a sequence of n universal tokens (t1, t2, . . . , tn).

keyGen(msk, {ti}n
i=1, pp, id, J)→ (skid, {t̃(id)

j }j∈J)
The key generation algorithm takes the master secret key msk, universal tokens
{ti}n

i=1, system parameters pp, user id id and a list of access rights J as input. It
outputs a personal private key skid together with a list of personal tokens {t̃(id)

j }j∈J .
The algorithm requires that J ⊆ {1, 2, · · · , n}.

sharedKey(skid, {t̃(id)
j }j∈J , K)→ (kK)

The shared key algorithm takes the personal secret key skid, personal tokens {t̃(id)
j }j∈J

and access restriction K as input. The algorithm outputs either a shared key k, or
⊥ if the algorithm failed. If K ̸⊆ J then ⊥ is returned.

newToken(msk, {ti}n
i=1, pp)→ (pp′, tn+1) (Optional)

The new token algorithm takes the master secret key msk, a list of all universal
tokens {ti}n

i=1 and the public parameters pp as input. It outputs updated public
parameters pp′, and a new token tn+1.

distToken(msk, {ti}n
i=1, pp, id, i)→

(
t̃
(id)
i

)
(Optional)

The new personal token algorithm takes the master secret key msk, universal tokens
{ti}n

i=1, public parameter pp, user id id and token id i as input. It outputs a personal
token t̃

(id)
i for user id based on token i. The algorithm requires that i ∈ {1, 2, . . . , n}.

TBKE protocols that implement both optional algorithms are said to be dynamic, while
protocols that implement neither are said to be static.

Let universal tokens and master secret be generated as (pp0, msk, {ti}n
i=1) ←$

setup(1λ, n) and (ppl, tn+l)←$ newToken(msk, {ti}n+l−1
i=1 , ppl−1), for l = 1, 2, . . . , s + 1

where s is the number of new tokens added after setup. Let id1, id2 be two identities,
let J1, J2 ⊆ {1, 2, . . . , n + s}, let s1, s2 ∈ {0, 1, . . . , s} and let J̃i = Ji ∩ {1, 2, . . . , n + si},
i = 1, 2. Let, for i = 1, 2, the personal key material be generated as (skidi

, {t̃(idi)
j }j∈J̃i

)←$

keyGen(msk, {tj}n+si
j=1 , ppsi

, idi, J̃i) and t̃
(idi)
v ←$ distToken(msk, {tj}n+v

j=1 , ppv, idi, v).
Let K ⊆ {1, 2, · · · , n + s} be an access restriction such that K ⊆ J1 and K ⊆ J2.
We say that correctness holds if

sharedKey(skid1 , {t̃(id1)
j }j∈J1 , K) = sharedKey(skid2 , {t̃(id2)

j }j∈J2 , K).

The public parameter pp include the number of tokens available in the protocol at all
times. The public parameter is initially created during setup and further updated when
new tokens are introduced with newToken.

The setup algorithm is run by a trusted server and produces a master key msk together
with a list of universal tokens (t1, t2, · · · , tn). Both the master secret key as well as the
universal tokens are private information and are only ever known to the server. New
tokens can be added by the server with the optional newToken-algorithm, which can be
run anytime after setup to initiate the creation of additional tokens. If newToken is not
implemented the number of tags n will be fixed during setup and not changed subsequently.

To add a new user to the organization the server is queried by the user with its desired
access rights. The server generates a new personal secret key and personal tokens according
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to the access right using keyGen. The personal secret key as well as the personal tokens
are sent to the user. (Determining if a user query is valid in terms of access rights is up to
the individual application to ensure that specific access policies are enforced.)

To expand a user’s access rights, tokens can be distributed after the initial keyGen-
algorithm was run by allowing users to query the server for additional tokens. The
distToken-algorithm is run by the server and generates and outputs the specified personal
token for the requesting user. The algorithm is optional. If the algorithm is not implemented
a user’s access rights will be fixed after added to the organization.

In order to derive a shared key kK , users execute the sharedKey algorithm with
their secret key and the personal tokens corresponding to K as input. The computation
is performed locally by each user individually. Only those organization members with
all the required tokens, as defined by K, should be able to correctly compute kK . Note
sharedKey is the only TBKE algorithm run by the users, all the other algorithms are
run by a trusted central server.
Remark 1. We would like to emphasize the fact that if the optional algorithms are not
implemented then all secret data stored on the server can be erased once all users are
added to the organization. This reduces the amount of trust needed to be placed in the
server in terms of honesty and secure storage. The drawback of erasing the server, however,
is that any implemented TBKE protocol becomes static both in terms of available and
accessible tokens as well as organization membership.

3.1 Security Notion
Informally, users should only be able to generate shared keys where they have all the
required tokens. Computing a shared secret key when at least one token is unknown should
not result in a meaningful value. Furthermore, coalitions of users should not gain any
information nor access to more shared secret keys than they would individually.

This means that a computed shared key should not leak any other information than the
access requirements. Moreover, personal tokens and secret keys should not leak information
about the underlying universal tokens and master secret key, nor should combining multiple
users personal tokens and secret keys leak any more information than they do individually.

The security experiment, ExpT BKE , defined in Definition 2 runs a simulation of a
TBKE protocol Π against a real-or-random adversary. The adversary can influence and
gain information about the experiment by issuing specific queries. At one point it will
request a challenge key for an access restriction K, and receive either the real shared key
or a random key. The adversary wins if it correctly determines if the key was real or
random. The adversary’s advantage is defined in the usual way, as the distance from 1/2
to the probability that an adversary will guess correctly indicates the security level of the
protocol. The experiment is modular and can be used for both static and dynamic TBKE
protocols.

Definition 2. Let Π be a TBKE scheme, and let ExpT BKE be the experiment described
in Figure 1. An adversary against Π interacts with the experiment. The advantage of an
adversary A against Π is defined to be

AdvX−TBKE
Π−A (λ) = 2

∣∣∣∣Pr
[
ExpX−T KBE

Π−A (1λ, n)
]
− 1

2

∣∣∣∣ ,
where X ∈ {dynamic, static}.

Remark 2. Since personal tokens and secret keys are all derived from the universal tokens
and the master key, the experiment has full access to all private information. Due to the
correctness requirement of any TBKE protocol all personal secret keys and tokens should
produce the same shared key when computed on corresponding input. As such we allow



Elsie Mestl Fondevik, Kristian Gjøsteen 7

ExpX−T BKE
Π−A (1λ, n)

1 : C = ∅; CR[·] = ∅
2 : b←$ {0, 1}

3 : (pp, msk, {ti}n
i=1)←$ setup(1λ

, n)

4 : K ←$ AX (n)

5 : kK,0 ←$ sharedKey(msk, {ti}n
i=1, K)

6 : kK,1 ←$ K

7 : b
′ ←$ AX (kK,b)

8 : A wins if b = b
′ and K ̸∈ C.

Oracle OaddToken()
1 : Require X = dynamic

2 : pp, tn+1 ←$ newT oken(msk, {ti}n
i=1, pp)

3 : {ti}n
i=1

∪←− {tn+1}
4 : return pp

Oracle OsharedKey(J)
1 : C ∪←− {J}

2 : return sharedKey(msk, {ti}n
i=1, J)

Oracle OrevealUser(id, J)
1 : Require J ⊆ {1, 2, · · · , n}
2 : if CR[id] = ∅

3 : (skid, {t̃(id)
j
}j∈J )←$ keyGen(msk, {ti}n

i=1, pp, id, J)

4 : CR[id]← (skid, {t̃(id)
j
}j∈J )

5 : else

6 : (skid, {t̃(id)
j
}j∈J̃ )← CR[id]

7 : Require
(

J̃ ⊆ J
)
∧ (X = dynamic)

8 : for l ∈ J \ J̃

9 : t̃
(id)
l
←$ distT oken(msk, {ti}n

i=1, pp, id, l)

10 : CR[id]← (skid, {t̃(id)
j
}j∈J̃ ∪ {t̃

(id)
l
}

11 : C ∪←− P(J)
12 : return CR[id]

Figure 1: TBKE security experiment for both static and dynamic TBKE. The set C
indicates a collection of revealed personal token-sets, while CR indicates generated and
revealed users.
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for abuse of notation and permit algorithm sharedKey to be run on universal tokens and
the master secret key in place of personal tokens and secret key.

A TBKE adversary against ExpX−T BKE
Π can query OrevealUser to gain access to

personal tokens and secret keys. The adversary sends a user id as well as a desired set of
access rights as input to the query. If the user has not previously been queried, the oracle
will compute personal tokens and the secret key according to keyGen. If the user has
already been revealed, and Π is dynamic, the necessary additional personal tokens will
be derived. If Π is static no further computation occurs after the first initial query. The
resulting personal secret key and personal tokens will be returned to the adversary.

To gain access to shared secret keys it would normally not be able to compute, the
adversary has access to oracle OsharedKey. The adversary sends an access restriction as
input to the oracle and receives a shared key with the specified access restriction in return.
The shared key is generated in accordance to the sharedKey algorithm. The oracle does
not reveal the secret information needed for computation, only the resulting computed key.

In the case where Π is a dynamic TBKE protocol the adversary has access to one
additional oracle; OaddToken. This oracle takes no input and generates one universal token
per query. It returns an updated public parameter to the adversary. The generated token
is not revealed.

At some point the adversary can ask the experiment for a challenge on an access
restriction K. The adversary will then receive a shared secret key kK,b in return. The goal
of the adversary is to determine if kK,b is real or random (ROR). The adversary wins if it
correctly determines the validity of the shared secret key. To prevent the adversary from
trivially winning we require that the access restriction K is not contained in an access
right the adversary has revealed through OrevealUser or queried directly to OsharedKey.

4 Hidden Matrices and a TBKE Protocol
The final part of the paper describes a TBKE protocol that we later argue to be secure.
The protocol comes in both a static and dynamic variant.

To simplify the construction, we expand upon the concept of tokens. It is important to
note that all alterations to the tokens could be defined as part of the personal secret keys,
but for presentational purposes and readability it is incorporated into an extended token.
In other words, the alteration is cosmetic, not functional.

The change we introduce is splitting all tokens into a yes- and no-part. The yes-part of
the token is distributed as before to users depending on the specific users’ access rights. The
no-part of the token, however, is distributed to all users independent of access rights. In
other words, a user with access rights J will gain yes-tokens tyes

j for all j ∈ J and no-tokens
tno
j for all j ∈ {1, 2, · · · , n}. Then to generate a shared key kK , all yes-tokens corresponding

to the access restriction K are selected. For the remaining values {1, 2, · · · , n} \K the
corresponding no-tokens are used.

It should be clear that yes-tokens work as regular tokens where shared key generation
depends on specific users access rights. The no-tokens, on the other hand, are distributed
to all and play more of a “filler” role. They are, however, personal.

4.1 Protocol Construction
For protocol construction we will focus on the static version. A description is later given
of how to expand the static TBKE protocol to a dynamic variant. The full static protocol
can be found in Figure 2.

In the construction, each universal token ti = (Tyes
i , Tno

i ) consists of two independent
random invertible (k × k)-matrices. From the universal tokens the personal tokens are
created by multiplying the universal token with matrices on both sides. The matrices are
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setup(1λ, n)
1 : for i = 1, 2, · · · , n :
2 : Tyes

i , Tno
i ←$ Dk,k

3 : ti ← (Tno
i , Tyes

i )
4 : L←$ Dl,k

5 : R ←$ Dk,m

6 : msk ← (L, R)
7 : return pp, msk, {ti}n

i=1

sharedKey(skid, {t̃(id)
i }n

i=1, K)
1 :

(
pp, [LA0]1 ,

[
A−1

n R
]

2

)
← skid

2 : TK ←
n∏

i=1

Tf(i,K)
id,i

3 : k′
K ← e([LA0TK ]1 ,

[
A−1

n R
]

2
)

4 : kK ← H
(
K, k′

K

)
5 : return kK

keyGen(msk, {ti}n
i=1, pp, id, J)

1 : (L, R)← msk

2 : A0, A1, · · · , An ←$ Dk,k

3 : skid ←
(
pp, [LA0]1 ,

[
A−1

n R
]

2

)
4 : for i = 1, 2, · · · , n :

5 : Tyes
id,i ←

{
A−1

i−1Tyes
i Ai, if i ∈ J

Ik, else

6 : Tno
id,i ← A−1

i−1Tno
i Ai

7 : t̃
(id)
i ← (Tno

id,i, Tyes
id,i )

8 : return skid, {t̃(id)
i }

n
i=1

Figure 2: A static-TBKE protocol description. The public parameters pp contain the
appropriate bilinear pairing structure as well as the total number of tags currently in use.
The function f : Z×P(Z)→ {yes, no} takes a number j and a set J as input and returns
yes if j ∈ J and otherwise returns no. The distribution Dl,k is the uniform distribution
over full rank matrices in Zl×k

q . H is a hash function.

unique per user and cancel when yes- or no-tokens, from a single user, are multiplied in order.
That is, the personal token t̃

(id)
i for user with user id id takes the form t̃

(id)
i = (Tyes

id,i , Tno
id,i)

where Tx
id,i = A−1

i−1Tx
i Ai, x ∈ {yes, no} and where the matrices Ai ∈ Zk×k are random,

invertible and user-specific.
The master secret key msk = (L, R) consist of two non-square matrices taken over

cyclic groups G1 and G2 respectively, i.e., L ∈ Gl×k
1 and R ∈ Gk×m

2 . The secret key,
skid = (Lid, Rid), for user id, is also a pair of non square matrices. The two matrices Lid
and Rid are generated from the master secret key using the left and right cancellation
matrix for tokens t̃

(id)
0 and t̃

(id)
n , respectively.

To generate a shared key kK , yes-tokens for j ∈ K and no-tokens for j /∈ K are
multiplied and used as an exponent with the left matrix of skid as base. The right
matrix is incorporated using a bilinear pairing e : Gl×k

1 × Gk×m
2 → Gl×m

3 that maps
([U]1, [V]2) 7→ [UV]3, where U ∈ Zl×k and V ∈ Zk×m.

Theorem 1. Let TBKE be the protocol described in Figure 2. Then TBKE is a token
based key exchange protocol.

Proof. We need to show that TBKE satisfies the syntactical requirements and that
correctness holds. As discussed in the beginning of the section, all changes to the original
protocol definition are purely cosmetic and as such the syntactical requirement follows
directly from Definition 1. What remains to show is correctness.

Let id1, id2 be the user ids of two arbitrary users in the same organization. Let J1, J2 ⊆
{1, 2, · · · , n} be two arbitrary access rights. Let (msk, pp, (ti)n

i=1) ←$ setup(1λ, n),
(skidx

, {t̃(idx)
j }j∈Jx) ←$ keyGen(msk, pp, idx, Jx) for x ∈ {1, 2} be the personal tokens

and secret keys generated for the two users id1 and id2. Then for any arbitrary access right
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K where K ⊆ J1 ∩ J2, the shared key computed by user idx is a follows

sharedKey(skidx
, {t̃(idx)

j }j∈Jx
, K) = H

(
K, e

(
[LAidx,0TK ]1 ,

[
A−1

idx,nR
]

2

))
= H

(
K, e

([
LAidx,0

n∏
i=1

Tf(i,K)
idx,i

]
1

,
[
A−1

idx,nR
]

2

))

= H

(
K, e

([
LAidx,0

n∏
i=1

A−1
idx,i−1Tf(i,K)

i Aidx,i

]
1

,
[
A−1

idx,nR
]

2

))

= H

(
K, e

([
L

n∏
i=1

Tf(i,K)
i ·Aidx,n

]
1

,
[
A−1

idx,nR
]

2

))

= H

(
K,

[
L

n∏
i=1

Tf(i,K)
i ·Aidx,nA−1

idx,nR
]

3

)

= H

(
K,

[
L

n∏
i=1

Tf(i,K)
i R

]
3

)

It is clear that as long as the users id1 and id2 both have access rights that contain K
then

sharedKey(skid1 , {t̃(id1)
j }j∈J1 , K) = sharedKey(skid2 , {t̃(id2)

j }j∈J2 , K)

and the correctness requirement holds.

4.1.1 Optional dynamic expansion.

The protocol can be expanded to allow for dynamic token generation and distribution. The
dynamic property introduced gives rise to additional properties such as token revocation
and update.

The dynamic expansion is based upon the fact that if a user does not have access to
multiple tokens in a row the no-tokens for those instances can be combined to reduce space
without losing functionality. Taking advantage of this fact, the inverse can be utilized to
create additional tokens.

The expansion functions by never distributing a personal yes-token for the last universal
token. By never distributing the yes-token for the final token we have in essence never
created the last universal yes-token. This last universal token can then be arbitrarily
factorized to create a new token. By always leaving the last token unfulfilled an unbounded
number of tokens can be created.

If users then come to an agreement to discontinue a specific token, the corresponding
(personal) yes-token can be erased. The remaining no-token can then be compressed, by
multiplying it, into one of the tokens on either side. This compression keeps the number
of tokens stored at a minimum. It is here important that a leftover no-token is multiplied
into both the no- and yes-token (if it exists). The tokens can be renumbered if desired, or
the original numbering can be kept to prevent ambiguity.

If corrupted users are detected, an old token can be revoked and a new token can be
generated and distributed to all users, with the exception of the corrupted user. This
efficiently and effectively excludes the user from the protocol.

4.2 Security
We are now ready to look at the security of the proposed protocol. It is clear that if the
personal tokens and secret keys leak information about the underlying universal tokens
then the whole construction will break. The first step in determining the security of the
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protocol is to ensure that no such leakage exists, even when multiple sets of personal tokens
and keys are known. We will start by taking a step back and consider the relationship
between universal tokens, personal tokens and the token-product generated as a sub-step
when computing a shared key.

Universal tokens can be viewed as a 2n+2 sequence of matrices, L ∈ Zl×k
q , Tx1

1 , Tx2
2 , . . . ,

Txn
n ∈ Zk×k

q , xi ∈ {yes, no}, R ∈ Zk×m
q , all of maximal rank. Let e : G1 × G2 → G3 be a

bilinear group structure where all the groups have order q. Then for J ⊆ {1, 2, . . . , n},
and a sequence of invertible matrices A0, A1, . . . , An, we define (J, Ai)-reveal over the
universal tokens to be the sequence [LA0]1 ∈ Gl×k

1 , A−1
i−1Tno

i Ai ∈ Zk×k
q , i = 1, 2, . . . , n,

A−1
i−1Tyes

i Ai ∈ Zk×k
q , i ∈ J , and [A−1

n R]2 ∈ Gk×m
2 . In other words a (J, Ai)-reveal creates

personal tokens given an access right J and a predefined sequence of hiding matrices Ai.
Combining the task of computing the token-product [L

∏n
i=1 Tf(i,J)

i R]3 with an ad-
versary that may ask to reveal personal tokens gives rise to a new problem; the general
hidden matrix problem.

Given a sequence of matrices, L ∈ Zl×k
q , Tx1

1 , Tx2
2 , . . . , Txn

n ∈ Zk×k
q , xi ∈ {yes, no},

R ∈ Zk×m
q , and a bilinear pairing e : G1 × G2 → G3. An adversary against the general

hidden matrix problem has access to a reveal-oracle that on input Jj samples a sequence
of invertible matrices A0, A1, . . . , An and returns a (Jj , Aj,i)-reveal of the hidden matrix
sequence. At some point, the adversary outputs J ⊆ {1, 2, . . . , n} and eventually also an
element G ∈ Gl×m

3 . The adversary wins if

G = [L
n∏

i=1
Tf(i,J)

i R]3,

and J ̸⊆ Jj for all reveal query inputs Jj . The advantage of the adversary is the probability
that it wins.

We consider two variants of the general hidden matrix problem. In the selective variant,
the adversary specifies the target J before making any oracle queries. In the gap variation,
the adversary has access to a gap-oracle that on input of J ′ and an element of Gl×m

3 returns
1 if the group elements equal [L

∏n
i=1 Tf(i,J′)

i R]3, and 0 otherwise.
We start by considering the relationship between the gap general hidden matrix problem

and the construction from Figure 2.

Theorem 2. Let A be a adversary against the construction from Figure 2. Then there
exists an adversary B against the gap general hidden matrix problem with essentially the
same run-time and the same advantage.

Proof. The proof idea is to create an adversary B that uses A as an internal algorithm
by simulating a run of Figure 2 to solve the problem. Since we operate in the random
oracle model, the only way A can distinguish a shared key from a random value is if it
queries the random oracle on specific inputs. Input which A necessarily needs to be able
to compute. By using the gap oracle and keeping a log of all oracle queries, the adversary
B is able to determine when and if the challenge is computed, and return this value.

Now for the construction of B. In order for this construction to work, B must simulate
oracles revealUser, sharedKey and the random-oracle used for hashing, in such a
way that B is able to detect whenever the adversary makes the correct query to the
random-oracle.

The revealUser-oracle is trivially simulated using reveal-oracle of the general hidden
matrix problem.

To simulate the random-oracle and the sharedKey-oracle, we keep one list of random
oracle queries, a list of gap oracle queries with their results and one list of known shared
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keys. Then when sharedKey-oracle gets J ′, it first checks if J ′ is in the list of known
shared keys and if so outputs the corresponding shared key. Otherwise, it samples a
random key, records that key as a known shared key for J ′ and returns the key.

Recall that all queries to the random-oracle take the form J ′ together with an element
in Gl,k

3 . The random-oracle is simulated by first forwarding the oracle query to the gap
oracle. If the gap oracle returns 0, a new hash value is sampled and returned. If the gap
oracle returns 1 and J ′ is on the list of known shared keys we instead use the known shared
key as the hash value. Otherwise, we sample a hash value and record a known shared key
for J ′ and the sampled hash value and return the hash value.

When adversary A specifies the target J , we let B select the same target and forward
a "hashed"-version of the challenge to A. If any subsequent gap oracle query involving J
results in 1, let B output the query. We also go through the list of previous queries to see
if any gap oracle queries involving J resulted in 1, in which case we output that query.

When A stops, B stops with random output.
By inspection, we see that our simulation of the oracles is perfect and requires negligible

extra time. Furthermore, if B ever stops before A stops, it outputs a correct answer. The
claim follows.

There are two options for handling the dynamic protocol version. We could have defined
a dynamic version of the general hidden matrix problem and proven a similar security
result for that problem. The better approach is to observe that due to compression, we can
start with a static problem with some large number of matrices and use it to simulate the
general hidden matrix problem for fewer matrices. We leave the details to the interested
reader.

More pressing is the fact that the general hidden matrix problem is just the construction
from Figure 2 without the hash function, and the security goal, which can be considered
a one-way variant of the protocol security goal. In that regard, the above theorem does
not say much about the security of the cryptographic construction. We still need to get a
better idea of the hardness of the general hidden matrix problem and the gap variation.

One can consider the gap general hidden matrix problem to indicate that the computa-
tional and decisional versions of the problem are not equivalent, that is, the computational
general hidden matrix problem cannot be reduced to the corresponding decisional problem.
Due to the problem structure, finding a non-trivial input to the gap oracle looks like
solving a different instance of the same underlying problem. It therefore seems plausible
that the gap oracle is of little help, and the gap variant is as hard as the ordinary general
hidden matrix problem.

We now consider the selective variant, where the challenge set must be specified before
reveal queries are issued. Since the selective variant only removes power from the adversary
it can clearly not be easier than the ordinary problem. Left to determine is if the selective
variant is harder.

There is a trivial reduction from the ordinary problem to the selective variant; simply
by guessing the target J at the start and aborting if the guess turns out to be incorrect.
However, since the number of possible guesses is approximately 2n, this reduction is only
effective for very small n. To some extent the weak reduction can be compensated by
choosing a larger bilinear group structure, but this does not work very well if n is large.
This weak reduction does, however, suggest that if using the reveal oracle before choosing
the target confers some advantage, it is not of substantial amount. In other words, even
though we do not have an effective reduction, it seems plausible that the selective variant
is not much harder than the ordinary problem.

It follows that we want to better understand the hardness of the selective variant. To
do that, we return to the construction from Figure 2 and make the basic observation
that given two universal tokens t1 = (Tno

1 , Tyes
1 ) and t2 = (Tno

2 , Tyes
2 ) we can reconstruct

the product S3 = Tyes
1 Tyes

2 from the three products S0 = Tyes
1 Tno

2 , S1 = Tno
1 Tno

2 and
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S2 = Tno
1 Tyes

2 as S3 = S0S−1
1 S2. If this translates to a collection of personal tokens it

poses a major risk to the security guarantee of the proposed protocol, and will result in an
adversary with advantage 1. Assume that user one has access to personal yes-token Tyes

id1,1,
while user two has knowledge of Tyes

id2,2. Then user 1 can generate a variant of S0, while
user 2 can generate a variant of S2. Both users can generate versions of S1. It is, therefore,
crucial to determine if the personal S-variants are such that the statement about S3 still
holds. This gives rise to the hidden matrix problem.

Definition 3. Let G1,G2,G3 be cyclic groups of order q, let e : G1 ×G2 → G3 be a bilinear
pairing and let [·]i represent the embedding of a matrix in Gi. We say that the hidden
matrix problem (HMP) with respect to this structure holds if for all PPT adversaries A,
given [L]1, [R]2, [LA−1]1, [B−1R]2, S0, S1, AS1B and AS2B, the probability that A
can compute [LS0S−1

1 S2R]3 is negligible, where A, B, S0, S1, S2 ←$ Zk×k
q , L←$ Zl×k

q and
R ←$ Zk×m

q , all of which have maximal rank.

In essence the hidden matrix problem asks whether or not it is hard to extract a matrix,
S2 from a matrix product AS2B when neither of the hiding matrices A and B are know
directly, or alternatively whether there might be ways to combine the matrices such that
the hiding matrices cancel to provide the desired product.

We discuss the hardness of the hidden matrix problem further in Appendix A. The
result of the argument is that the hidden matrix problem is as hard, but no harder than
the discrete logarithm problem.

Finally, we show that the selective variant of the general hidden matrix problem reduces
to the hidden matrix problem.

Theorem 3. Let A be a selective adversary against the general hidden matrix problem
with advantage ϵ. Then there exists an adversary B against the hidden matrix problem
with advantage ϵ/n2, with essentially the same runtime as A.

Proof. We first argue that we only need two distinct tokens, which means that we only
need to guess the two token positions that the adversary will not simultaneously reveal
(which accounts for the 1/n2 loss in advantage). Then we argue that we only need two
users, where one has the first yes-token and the other has the second yes-token, but neither
have both. Finally, we argue that for two tokens and two users, we can trivially embed
the hidden matrix problem into the stated problem.

First, suppose that n = 2. We need to simulate more tokens, with the given tokens
placed in position i′ and i′′. Assume without loss of generality that i′ < i′′. We want to
simulate some tokens before token number i′, some between token number i′ and i′′ and
some after token number i′′. The simulated matrices Tf(i,J)

i , i ∈ {1, 2, · · · , n′} \ {i′, i′′}
are sampled such that they cancel out between real tokens. That is, we require that

i′−1∏
i=1

Tf(i,J)
i =

i′′−1∏
i=i′+1

Tf(i,J)
i =

n′∏
i=i′′+1

Tf(i,J)
i = I.

To create personal tokens, we sample appropriate matrices Ai for each user. The matrices
are multiplied into the corresponding token matrices to create simulated personal tokens.
This is done both for real and simulated tokens, meaning that the real tokens will have a
double buffer of matrices around the universal matrix. The cancellation requirement of
the simulated universal tokens is not visible to the adversary because of the matrices Ai

that do not cancel completely without knowledge of the real tokens.
It follows that we may restrict attention to the two-token case, n = 2. In this case

some users have the first yes-token, while others have the second yes-token. Any two users
that have the first yes-token differ only in the matrices Ai used to generate their personal
tokens and secret keys. It is clear that we can re-randomize key material by sampling
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Ã0, Ã1 and Ã2 and multiplying them into the given tokens and representations, thereby
simulating further users that have the first yes-token. Likewise we can simulate users
that have the second yes-token by starting with one user with the second yes-token and
selecting random matrices to re-randomize. In other words, we may assume that u = 2.

We now show that when n = 2 and u = 2, we can embed a hidden matrix problem
instance. That is we can use an adversary against token product to create an adversary
against the hidden matrix problem. Let A be an adversary that aims to compute the
stated token product.

Given a hidden matrix instance with matrices [L]1, [R]2, [LA−1]1, [B−1R]2, S0, S1,
AS1B and AS2B.

Choose random matrices Tno
id1,1 and Tno

id2,2, and compute

Tyes
id1,1 = S0(Tno

id1,2)−1 Tno
id2,1 = AS1B(Tno

id2,2)−1

Tno
id1,2 = (Tno

id1,1)−1S1 Tyes
id2,2 = (Tno

id2,1)−1AS2B
.

Give the personal tokens to the adversary A.
The idea is to let Aid1,0 = I = Aid1,2, Aid2,0 = A and Aid2,2 = B−1, while the matrices

Aid1,1 and Aid2,1 give us the needed two degrees of freedom.
We first observe that the personal no-tokens are consistent. Meaning that both users

will will generate the same value up to matrix multiplication.

A−1Tno
id2,1Tno

id2,2B−1 = A−1AS1B(Tno
id2,2)−1Tno

id2,2B−1 = S1 = Tno
id1,1Tno

id1,2.

Furthermore,

S0 = Tyes
id1,1Tno

id1,2 S1 = Tno
id1,1Tno

id1,2 AS2B = Tno
id2,1Tyes

id2,2

If A output the correct answer [LTyes
1 Tyes

2 R]3 then this is also the correct answer for
the hidden matrix problem since:

Tyes
1 Tyes

2 = Tyes
id1,1Tno

id1,2(Tno
id1,1Tno

id1,2)−1A−1Tno
id2,1Tyes

id2,2B−1 = S0S−1
1 S2

as desired.
We have therefore perfectly simulated the distribution of tokens with n = 2 and

u = 2, and the correct answer for A equals the correct answer for B, which completes the
argument.

To summarize, Theorem 2 shows that the security of the construction in Figure 2
follows from the gap variant of the general hidden matrix problem. We have argued that
the gap oracle does not help the adversary, so if the general hidden matrix problem is hard,
the construction should be secure. Further, we have argued that the general hidden matrix
problem should not be much easier than the selective variant. Theorem 3 shows that the
selective variant is hard if a simpler problem, the hidden matrix problem (Definition 3), is
hard. Finally, we have argued (in Appendix A) that the hidden matrix problem is hard.

In other words, we conjecture that the construction in Figure 2 is secure.
Remark 3. Since it is easy to define a gap variant of the hidden matrix problem, and
this variant does not seem to introduce any additional problems with the analysis in
Appendix A, it is natural to ask if Theorem 3 could be generalized to cover a reduction
from a gap variant of the hidden matrix problem to the gap variant of the selective general
hidden matrix problem. This seems to be difficult, since we cannot assume that the two
tokens are adjacent, which means that it would be hard to adapt any general hidden
matrix gap query to a hidden matrix gap query.
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A On the hidden matrix problem
It is not obvious that the hidden matrix problem is hard. In the following, we argue
informally. First, we simplify the hidden matrix problem, resulting in a problem that
intuitively seems to be hard. Then we sketch an argument for hardness in the generic
bilinear group model.

Problem restatement In the hidden matrix problem, the adversary gets access to the
following matrices and matrix representations:

[L]1 [R]2 [LA−1]1 [B−1R]2 S0 S1 AS1B AS2B

The goal of the adversary is to compute [LS0S−1
1 S2R]3.
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Removing S2: The first step is remove all traces of the hidden matrix S2, both in the
provided matrices as well as the target product. This is achieved through a re-naming
procedure.

We observe that (AS1B)−1AS1R = B−1R. If we set U1 ← AS1B and U2 ← AS2B,
the original problem can be restated as follows without altering hardness, since this is just
a change of variables.

The adversary now gets access to the following matrices and matrix representations:

[L]1 [R]2 [LA−1]1 [U−1
1 AS1R]2 S0 S1 U1 U2

The goal of the adversary is to compute [LS0S−1
1 A−1U2U−1

1 AS1R]3.

Removing R: Similarly to the previous step we now aim to remove the need for a
specific matrix through a change of variables.

Set R̃ ← S1R and substitute into the problem, to alter the previous statement
accordingly.

The adversary now gets access to the following matrices and matrix representations:

[L]1 S−1
1 [R̃]2 [LA−1]1 U−1

1 [AR̃]2 S0 S1 U1 U2

The goal of the adversary is to compute [LS0S−1
1 A−1U2U−1

1 AR̃]3.

Simplifying statement of provided information: Observe again that the adversary
is given S1 and U1, so it does not actually matter if we give the adversary S−1

1 [R̃]2 or just
[R̃]2. The same applies to [AR̃]2.

The adversary now gets access to the following matrices and matrix representations:

[L]1 [R̃]2 [LA−1]1 [AR̃]2 S0 S1 U1 U2

The goal of the adversary is to compute [LS0S−1
1 A−1U2U−1

1 AR̃]3.

More statement simplification: The four matrices given in the clear appear only as
specific products in the adversarial goal. We may, therefore, substitute V1 for S0S−1

1 and
V2 for U2U−1

1 .
The adversary now gets access to the following matrices and matrix representations:

[L]1 [R̃]2 [LA−1]1 [AR̃]2 V1 V2

The goal of the adversary is to compute [LV1A−1V2AR̃]3.

Discussion This simpler reformulation suggests that the problem is indeed hard. An
adversary would have to force matrices V1 and V2 into the middle of a matrix representation
without any knowledge or information of A or the other surrounding matrices. The fact
that A largely remains unknown should follow because discrete logarithms are hard to
compute.

Further, depending on the dimensions of L and R, the adversary may not even have
enough information to solve the problem.

In other words, the hidden matrix problem does seem hard.

Remark 4. It is now easy to see that the hidden matrix problem is not hard in the
one-dimensional case.
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Hardness Argument To further justify that the intuition above holds we sketch an
argument in the generic bilinear group model.

Given a random bijections to represent cyclic groups Zp, we introduce variables Xij , Yij ,
Zij and Wij and let the matrices (Xij), (Yij), (Zij) and (Wij) represent the group elements
[L]1, [R̃]2, [LA−1]1 and [AR̃]2, respectively. An ideal I over the resulting polynomial ring
is generated by the polynomials in (Xij)− (Zij)A and A(Yij)− (Wij), i.e.,

I = ⟨(Xij)− (Zij)A, A(Yij)− (Wij)⟩

.
Since A is random, the odds of any generic bilinear group adversary computing linear

polynomials such that a difference lies in the ideal is bounded by the number of queries
the adversary can make to the group operation and pairing oracles, in the usual manner.

Let
J = ⟨(Xij)(Yij)− (Zij)(Wij)⟩

be another ideal. A generic bilinear group adversary can trivially generate elements
(polynomials of degree at least 2) in this ideal using the bilinear paring. It is clear that
J ⊆ I.

We can now compute modulo the ideal J instead of I. Since the matrix A is unknown
and only hidden in the matrix representation, the probability that a generic bilinear group
model adversary notices the different modulus should be bounded by the number of queries
to the discrete logarithm oracle, in the usual manner.

Finally, we observe that when computing modulo J , the adversary has no information
about the matrix A, in which case the matrix is indeed hidden and the hidden matrix
problem is trivially hard. In other words, the hidden matrix problem does seem hard in the
generic bilinear group model.
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