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Abstract. In this paper, we present a batching technique for oracles
corresponding to codewords of a Reed–Solomon code. This protocol is
inspired by the round function of the STIR protocol (CRYPTO 2024).
Using this oracle batching protocol, we propose a construction of a prac-
tically efficient accumulation scheme, which we call BOIL. Our accumu-
lation scheme can be initiated with an arbitrary correlated holographic
IOP, leading to a new class of PCD constructions. The results of this
paper were originally given as a presentation at zkSummit12.

1 Introduction

Proof-carrying data (PCD) [Chi10] is a cryptographic primitive that enables
the dynamic compilation of a distributed computation, where each message is
augmented by a short proof verifying that some local condition is met. An ideal
PCD construction achieves this goal with minimal additional computation or
communication overhead. A specific instance of PCD is incrementally verifiable
computation (IVC) [Val08], a cryptographic primitive that allows one to produce
a proof of the correctness of an iterative computation in an incremental fashion.

PCD via Recursive Composition. Early constructions of IVC and PCD
relied on recursive composition, where each prover attaches a proof to each
outgoing message, attesting that all previous local conditions have been met
[BCCT12,BCTV14,COS20]. To achieve this, the constructions included a circuit
representation of the verifier algorithm within a recursive statement. As a result,
PCD was primarily limited to SNARKs – proof systems where the verifier’s
description is asymptotically smaller than the overall size of the statement being
verified.

PCD via Accumulation. Later works [BGH19,BDFG21,BCMS20,BCL+21]
showed that it is often possible to avoid the complete recursive proof verification
at each iteration. Instead, the most expensive part of the verification can be
accumulated outside the recursive statement, and checked only once at the very
end of the distributed computation. Verifying the proof of the correctness of the
accumulation is usually much simpler than a full proof verification. The fold-
ing approach can be considered an extreme version of accumulation schemes for



constructing IVC [KST22,BC23,EG23]. While a very small recursive overhead
distinguishes constructions using folding, the accumulation approach allows us-
ing a broader class of NARKs as a basic block of the PCD scheme.

However, accumulation and folding schemes usually require the use of addi-
tively homomorphic commitment schemes. Therefore, this entire series of results
is not compatible with (S)NARKs relying on code-based polynomial commit-
ments, which are not homomorphic. However, even when using a full in-circuit
verifier for recursion [COS20], such SNARKs perform excellently and are widely
used in practice [Sta21,Teaa,Teab,KPV22]. The work of [BMNW24a] was the
first attempt in trying to close this gap, showing how to build an accumula-
tion scheme by postponing the code proximity test of such non-homomorphic
constructions to the end. However, their work has significant shortcomings, dis-
cussed below in more detail, which our new construction addresses.

1.1 Our contributions

Oracle Batching Protocol. In this paper, we consider SNARKs that are built
using a compilation of a Polynomial-IOP and a proximity proof for a linear
code. This approach is widely adopted in the industry. Among the reasons, we
can highlight the following.

– No need for a trusted ceremony and trapdoors to generate parameters.
– Such systems do not require public key assumptions.
– The system parameters can be adjusted to alter the efficiency trade-off be-

tween the prover and the verifier.
– Protocols for code proximity tests, for example, FRI, keep all arithmetic

in the same field for prover and verifier, so no field switching is necessary.
This means, in particular, that the recursive composition of proofs does not
require the use of cycles of elliptic curves.

However, the polynomial commitment schemes derived from proximity proofs
are not an additive like KZG [KZG10] or Pedersen [Ped92], which prevents a
direct application of standard accumulation results.

Informally, the primary goal of FRI [BBHR18] (or any other proximity test)
is to distinguish, by querying a function f : D → F at a few locations, whether
f coincides with the evaluation of some polynomial of degree less than d < |D|
on the domain D, or whether it is far in relative Hamming distance from the
evaluation of any low-degree polynomial. The batched version of the protocol
[BCI+20,Hab22] allows one to perform a proximity test for several functions
f1, . . . , fn at once. However, to build more efficient IVC/PCD schemes, we need
a reduction for multiple functions that does not require a full-fledged proximity
test. Informally, this allows the incremental aggregation of new functions in
batches, during the long-running computation. The problem of finding such a
reduction was partially solved in [BMNW24a], but with a limitation on the
number of recursive steps allowed. The question of finding a more general solution
remained open.
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Our first contribution is a batching oracle protocol heavily inspired by the
recent STIR protocol [ACFY24a]. Suppose that we have n functions f1, . . . , fn :
D → F, for some D ⊂ F. The verifier has oracle access to them, and the prover
claims that fi is δ-close to a low-degree polynomial, for all i = 1, . . . , n. The
protocol will produce a function fnew : D′ → F, for some other D′ ⊂ F, and
reduce the n claims above to the single claim that fnew is δ-close to a low-degree
polynomial.

This protocol does not require a proximity test, so it is much more efficient
than batched FRI. We think it can be a base block for various designs such
as a split accumulator or a linear combination scheme for PCS [BDFG21]. We
consider the first construction in detail. The second follows implicitly, but the
formalization is out of the scope of this paper.

Split Accumulation for IOPP. The new oracle batching protocol opens the
doors for more efficient aggregation and recursive composition of proofs. In-
formally speaking, instead of performing a low-degree proximity test on each
iteration of recursion, we can use the oracle batching protocol, thereby deferring
this expensive test to the very end of the computation.

In the context of IVC/PCD constructions, an important performance met-
ric is the recursive overhead. In the case of SNARKs based on the low-degree
proximity test for Reed–Solomon codes, the recursive statement usually includes
many hash invocations. The paper [COS20] formally shows how such SNARKs
can be used to construct IVC/PCD. The described approach requires repre-
senting the verifier as a circuit, in which the lion’s share is occupied by hash
operations, even when using SNARK-friendly hash functions such as Poseidon
[GKR+21]. The proximity test makes the largest contribution to this size:

O(λ · cδ log2 d) hash invocations,

where λ is a security parameter, d is the corresponding polynomial degree and
cδ depends on the proximity parameter δ.

The paper [BMNW24a] proposes an alternative construction of the IVC/PCD
based on a linearity test and exclusively symmetric assumptions. Their linearity
test has a better asymptotic estimate of O(λ·cδ log d) hash invocations. However,
its use entails the problem of distance decay: with each iteration, the provable
distance increases, so a much smaller proximity parameter δ/T must be used,
where T is the number of iterations. For practically significant parameters, this
negates the advantage since O(λ ·cδ/T log d) can be comparable to or even larger

than O(λ · cδ log2 d).
Our technique, which we call BOIL (Batching Oracles for IOPP from

Linearity), allows us to get the best of both worlds – logarithmic complexity
and the absence of the distance decay problem. It is a theoretical and practical
improvement over previous results.

We aim to show that BOIL can be used with various proof systems. There-
fore, for formalization, we use the abstraction of correlated Holographic IOPs
[CBBZ23]. Roughly speaking, a δ-correlated Holographic IOP (HIOP) [BGK+23]
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is a holographic proof system in which the verifier has access to an oracle that
checks whether the requested polynomial is close to the Reed–Solomon code.
This model captures many protocols (PLONK [GWC19a], Plonky2 [Teaa], RISC
Zero [Teab], Redshift [KPV22]) and gives us the flexibility we need. We show
that we can build a split accumulation scheme, given a round-by-round (RBR)
knowledge sound δ-correlated HIOP, the Oracle batching protocol, and a RBR
sound proximity test. The result of [BCL+21] directly yields the IVC/PCD con-
struction.

1.2 Our techniques

To build our split accumulation scheme, we follow the overall strategy
of [BMNW24a]: we start from a NARK and build a split accumulation scheme
for its verifier relation.

As discussed above, running a proximity test for the Reed–Solomon code
RS[F, D, d] within a circuit is expensive, due to the large amount of hashes. Thus,
we want to defer as much to the end of the recursive computation as we can, to
minimize the size of the in-circuit verifier in the final IVC/PCD construction.

To achieve this, we want to recursively aggregate all these proximity checks
for Reed–Solomon into a single one, which will be performed only once at the
end, hence our interest in an oracle batching technique. This was achieved
in [BMNW24a], using a simpler oracle batching technique. However, it imposed
some limitations on their parameter choices which hindered the practicality of
the scheme.

Oracle batching The construction in [BMNW24a] achieves the goal above
by a technique that can be thought of as a single round of the FRI proximity
test [BBHR18]: given functions f1, . . . , fn : D → F, these are combined into a
single function fnew : D → F by means of a random linear combination, with
randomness supplied by the verifier. Informally, if an honestly computed fnew is
δ-close to RS[F, D, d], then with high probability so are f1, . . . , fn. The prover
sends an oracle for the purported fnew. The verifier ensures consistency between
f1, . . . , fn and fnew by means of spot checks at random points in D. This process
can be iterated upon, and at the end the verifier simply checks proximity of the
final aggregated function to RS[F, D, d]. This can be performed directly or by
means of a fully fledged proximity test, like FRI or STIR.

This works, but has two significant limitations. One is that this approach
requires to work within the unique decoding radius (1−ρ)/2 of the Reed–Solomon
code, where ρ is the code rate, to prevent ambiguous decoding which thwarts the
security proof of the accumulator. This leads to parameters that are inefficient
in practice: the smaller the decoding radius, the more queries are necessary
to guarantee the same level of soundness in the spot checks phase. The other
issue is that the distance guarantee degrades with subsequent iterations of this
procedure. Informally, what happens is that we can guarantee that

– fnew is δ-close to RS[F, D, d], due to the final proximity test.
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– the honest folding of f1, . . . , fn is δ-close to fnew, due to the spot checks.

Hence, overall we can just guarantee that f1, . . . , fn are 2δ-close to the code.
More generally, over k recursion steps, we can only guarantee kδ-closeness to
the code. From a theoretical point of view, this means that we can only build
bounded-depth accumulation from this technique (although [BMNW24a] shows
that this is enough to build PCD). From a practical point of view, this makes
us into even more expensive choices of the code’s proximity parameter, namely
(1− δ)/2k.

These two problems are solved if we try to use a round from STIR [ACFY24a]
instead of a round from FRI as our batching technique. It starts exactly as the
previous approach, but includes additional steps at the end. Namely, it adds an
out-of domain check and quotienting to disambiguate the decoding of fnew.

This is very reminiscent of the technique often used to turn FRI into a poly-
nomial commitment scheme [KPV22]. Informally, this ensures that, with high
probability, there is only one valid choice of codeword, even if we are in the
list decoding regime. Moreover, it also gets rid of the distance decay issue: we
can directly prove that if a (possibly dishonest) fnew is δ-close to the code, then
f1, . . . , fn are δ-close to the code. This allows us to work with the much better
proximity parameter 1−√ρ (or 1− ρ, under the usual Reed–Solomon decoding
conjectures).

Split accumulation Our starting point is the framework of δ-correlated IOPs
from [BGK+23]. These are IOPs equipped with an oracle that checks for δ-
correlated agreement. Informally, n functions f1, . . . , fn : D → F are in δ-
correlated agreement if each of them agrees with some codeword in RS[F, D, d]
in at least a (1 − d) fraction of the points in d, and the agreement subset of D
is the same for all fi.

This captures the notion of an IOP that relies on polynomial check and
a proximity/correlated agreement as part of its final verification. Indeed, they
show that a δ-correlated IOP for a relation R can be combined with a (regular)
IOP for correlated agreement to produce a (regular) IOP for R, with soundness
being preserved through the transformation.

Once we have a regular IOP, we can use the BCS transformation [BCS16] to
obtain a NARK in the random oracle model. Finally, we build a split accumulator
for the verifier relation of this NARK, using our new oracle batching technique as
a key building block. This results in a construction with an accumulator verifier
that does not need to run a full proximity test on each accumulation step. Thus,
we avoid the issue of running a full proximity test inside of a circuit. Moreover,
because of the STIR-based oracle batching technique, our construction does not
inherit the same parameter limitations as the one in [BMNW24a].

1.3 Related works

Comparison with Folding-based constructions. Nova-like folding schemes
[KST22,KS22,KS24] allow efficient IVC constructions but are based on the use of
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R1CS or CCS arithmetization. Our construction allows the use of the Plonkish
arithmetization [GW20b,GW20a], which is very expressive and widely used in
practice.

Another important difference is that the EC-based IVC/PCD designs use
cycles of curves [KST22,BC23,EG23]. This makes formalization somewhat more
complicated [KS23,NBS23]. Moreover it requires the use of non-native arith-
metic, which significantly increases the recursive overhead. By avoiding cycles of
curves, we get a conceptually more straightforward construction.

Finally, IVC constructions are usually neither succinct nor zero knowledge:
the size of the state that the prover must maintain is proportional to the size of
the circuit. This significantly complicates the parallelization of proof generation
for a distributed computation. In our design, this state size can be significantly
reduced using the Oracle batching protocol. In particular, for a circuit repre-
sented by a matrix of N ×M elements, the state size will be proportional to one
column, i.e. N elements. In this aspect, we obtain some properties of end-to-end
IVC schemes [Sou23].
PCD from solely symmetric-key assumptions. The authors of [BMNW24a]
built a bounded depth accumulator without using a proximity test as in [COS20]
and without public key assumptions. Our work improves this result and shows
that building a full-fledged split accumulator in this setting is possible.

1.4 A note on concurrent work

Our results were first presented at zkSummit12 [KNS24]. Between this event and
the publication of this text, two independent papers [BMNW24b] and [Sze24]
were published, which also use the idea of a STIR-based oracle batching protocol,
and provide a rigorous formalization.

Our work uses different building blocks, and our final design has some ex-
plicit practical optimizations of independent interest. However, during the pro-
cess of writing this document, our ongoing work in formalizing split accumulation
seemed to have much in common with the analysis in [BMNW24b]. Thus, we de-
cided to publish the current semi-formal version of this paper. We believe that
the approach used and some details of the constructions are different enough
between these works. But, at the same time, we see little contribution in dupli-
cating the analysis of [BMNW24b]. This explains the current state of Section 4,
in which part of the proofs are not fully formalized.

2 Preliminaries

2.1 Reed–Solomon codes

Let F be a finite field, and D ⊂ F. Given a function f : D → F, we denote by f̂
the lowest-degree polynomial in F[X] that extends f .

Let RS[D, d] be the Reed–Solomon code over D ⊂ F with degree bound
d | #D, that is,

RS[D, d] = {f : D → F | deg f̂ < d}.
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We might write RS[F, D, d] if we want to make the field explicit, but most of the
time we ignore it for simplicity. The code rate is defined as ρ = d/#D.

Given f, g : D → F, we denote by ∆(f, g) the relative Hamming distance
between them, i.e.

∆(f, g) =
#{x ∈ D | f(x) ̸= g(x)}

#D
.

Similarly, for a set S ⊂ FD, we denote

∆(f, S) = min
g∈S
{∆(f, g)}.

W define the list decoding of a function f : D → F as

List(f, d, δ) = {g ∈ RS[D, d] | ∆(f, g) ≤ δ}.

We say that RS[D, d] is (δ, ℓ)-list decodable if

List(f, d, δ) ≤ ℓ ∀f : D → F.

Folding preserves correlated agreement For δ ≥ 0, we say that f1, . . . , fn :
D → F have δ-corellated agreement in RS[D, d] if there exist

– a set S ⊂ D, with size #S/#D ≥ (1− δ), and
– codewords g1, . . . , gn ∈ RS[D, d],

such that
fi|S = gi|S , ∀i = 1, . . . , n.

In particular, this implies that

∆(fi,RS[D, d]) < δ, ∀i = 1, . . . , n.

Let f1, . . . , fn : D → F and α ∈ F. We define:

Foldα(f1, . . . , fn) =
n∑

i=1

fiα
i.

Note that it is defined over the same domain as each individual function.

Lemma 1 ([BCI+20], Theorems 4.1 and 5.1 and [ACFY24a], Theorem
4.1). Let f1, . . . , fn : D → F, d ∈ N, ρ = d/#D, δ ∈ (0, 1−√ρ). Define the error
term

εfold = εfold(d, ρ, δ, n) =


(n−1)·d
ρ·#F if 0 < δ ≤ 1−ρ

2 .
(n−1)·d2

#F·(2·min{1−√ρ−δ, ρ
20})

7 if 1−ρ
2 < δ < 1− ρ.

Suppose that f1, . . . , fn do not have δ-corellated agreement in RS[D, d]. Then

Pr [α← F : ∆(Foldα(f1, . . . , fn),RS[D, d]) ≤ δ] ≤ εfold,
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Out-of-domain sampling

Lemma 2 ([ACFY24a], Lemma 4.5). Let f : D → F, d, s ∈ N, δ ∈ [0, 1].
Define the error term

εout =

(
ℓ
2

)
·
(

d− 1

#F−#D

)s

≤ ds · ℓ2

2 · (#F−#D)s
.

If RS[D, d] is (δ, ℓ)-list decodable, then

Pr

x1, . . . , xs ← F \D :
∃u, u′ ∈ List(f, d, δ) s. t.
u ̸= u′ ∧ u(xi) = u′(xi)

∀i = 1, . . . , s

 ≤ εout.

Quotienting Let f : D → F and x,y,∈ Fq, with D ∩ x = ∅. We define
Quotient(f,x,y) : D → F as follows. Let p̂ ∈ F[X] such that deg p < q and
p(xj) = yj for j = 1, . . . , q. Then

Quotient(f,x,y)(x) =
f(x)− p̂(x)∏q
j=1(x− xj)

.

Lemma 3 ([ACFY24a], Lemma 4.4). Let f : D → F, d ∈ N, δ ∈ (0, 1),x,y ∈
Fq with D∩x = ∅ and q < d. Suppose that for every u ∈ List(f, d, δ), there exists
j ∈ {1, . . . , q} such that û(xj) ̸= yj. Then

∆(Quotient(f,x,y),RS[D, d− (t+ 1)]) > δ.

Degree correction Let f : D → F and d, d∗ ∈ N, r ∈ F with 0 ≤ d ≤ d∗. We
define DegCor : D → F as follows:

DegCor(d∗, r, f, d)(x) = f(x) ·

(
d∗−d∑
ℓ=0

(rx)ℓ

)
.

Lemma 4 ([ACFY24a], Lemma 4.13). Let f : D → F, d, d∗ ∈ N, r ∈ F with
0 ≤ d ≤ d∗. Let ρ = d∗/#D, δ ∈ (0,min{1−√ρ, 1− ρ− 1/#D}). Suppose that
∆(f,RS[D, d]) > δ. Then

Pr [r ← F : ∆(DegCor(d∗, r, f, d),RS[D, d∗]) ≤ δ] ≤ εcorr,

where εcorr = εfold(d
∗, ρ, δ, n(d∗ + 1)− d) is the error term defined in Lemma 1.

2.2 Merkle commitments

We recall Merkle tree based vector commitment schemes, following the syntax
of [CY24]. Let k ∈ N, and H : {0, 1}∗ → {0, 1}k. Let Σ be an alphabet, and let
l ∈ N be the length of the vector to commit. The Merkle tree vector commitment
scheme MT[k,Σ, l] is composed by the following algorithms:
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– MT.Commit: receives as input a message vector m ∈ Σl, and computes a
Merkle commitment rt ∈ {0, 1}k and corresponding opening trapdoor td ∈
{0, 1}O(k·l).

– MT.Open: receives as input opening trapdoor td and a subset I ⊆ [l], and
computes an opening proof ap that authenticates the values at the locations
in I.

– MT.Check: receives as input a Merkle commitment rt, subset I ⊆ [l], claimed
values a ∈ ΣI , and opening proof ap, and computes a bit indicating whether
the opening proof ap authenticates a as values for the locations in I with
respect to rt.

Merkle tree vector commitments are used in the BCS transformation, de-
scribed below, to swap oracles to functions by short descriptions of those func-
tions, allowing to obtain an IP from an IOP.

2.3 Interactive oracle proofs

We denote oracle access to a function f by
�� ��f . The result of a query at a point

x is denoted by
�� ��f(x) .

We follow the definitions of Holographic IOPs from [COS20]. We consider
indexed relations R = {(i,x,w)}. In the context of verifiable computation, i
is an index that defines the computation, x is the statement that contains the
public inputs, and w is the witness that contains the secret inputs. In many
modern general-purpose proof systems, these take polynomial form. We define
the indexed language Li = {x | ∃w s. t. (i,x,w) ∈ R}.

The work of [BGK+23] considers oracle relations, that is, relations in which
w may contain some functions, and x contains oracles to those functions. This is
convenient to frame proximity proofs as IOPs, so we follow this approach. Thus,
all definitions below apply to both regular relations and oracle relations, unless
it is specified otherwise.

A Holographic Interactive Oracle Proof (HIOP) for an indexed relation R
is a tuple Π = (I,P,V), where I is a PT algorithm, and P,V are state-
ful PPT algorithms. The prover and verifier engage interactively. The record
of communications between them is called a transcript, and we denote it by
π ← ⟨P(i,x,w),VI(i)(x)⟩. At the end, the verifier examines the transcript and
outputs a bit. We denote this by 0/1← VI(i)(x, π).

A HIOP Π = (I,P,V) has perfect completeness if, for all (i,x,w) ∈ R,

Pr
[
π ← ⟨P(i,x,w),VI(i)(x)⟩ : 1← VI(i)(x, π)

]
= 1.

Flavors of soundness We first introduce the regular notions of soundness, as
presented in [COS20, Section 4].1

1 The error terms in the following definitions are allowed to depend on i,x, but we
often omit this for simplicity. We will make the dependency explicit when there is
some ambiguity.
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Definition 1. A HIOP Π = (I,P,V) for a relation R has soundness error ε
if, for any PPT adversary P̃, all i and all x ̸∈ Li, we have that

Pr
[
π ← ⟨P̃(i,x),VI(i)(x)⟩ : 1← V(i,x, π)

]
< ε,

over the coin tosses of V.

Definition 2. A HIOP Π = (I,P,V) for a relation R has knowledge error κ
if there exists a PPT extractor Ext such that, for any PPT adversary P̃ and all
i,x, we have that

Pr
[
π ← ⟨P̃(i,x),VI(i)(x)⟩ : 1← V(i,x, π)

]
− Pr

[
w← ExtP̃(i,x) : (i,x,w) ∈ R

]
< κ.

We now introduce round-by-round soundness and round-by-round knowledge
soundness. These are interesting properties to us, because they are preserved
through the transformations presented below.

We follow the formulation of [BGK+23, Definitions 3.12 and 3.13].

Definition 3. A public-coin HIOP Π for a relation R has round-by-round
soundness error εrbr if, for all indices i, there exists a set DoomedSet such that:

1. x ̸∈ Li =⇒ (x; ∅) ∈ DoomedSet.
2. (x; τ) ∈ DoomedSet =⇒ VI(i)(x; τ) = 0 for any complete transcript τ .

3. (x; τ) ∈ DoomedSet =⇒ Prc←$[(x; τ ||m||c) ̸∈ DoomedSet] < εrbr for any
partial transcript τ and any prover message m.

Definition 4. A public-coin HIOP Π for a relation R has round-by-round
knowledge error κrbr if there exists a PT extractor Ext such that, for all indices
i, there exists a set DoomedSet such that:

1. (x; ∅) ∈ DoomedSet for all x.

2. (x; τ) ∈ DoomedSet =⇒ VI(i)(x; τ) = 0 for any complete transcript τ .

3. (x; τ) ∈ DoomedSet ∧ Prc←$[(x; τ ||m||c) ̸∈ DoomedSet] > κrbr =⇒
(i,x,w) ∈ R, where w ← Ext(i,x, τ,m), for any partial transcript τ and
any prover message m.

From IOPs to non-interactive arguments in the ROM An IOP can be
seen as a generalization of both IPs and PCPs, both of which can be transformed
into non-interactive arguments, via the Fiat–Shamir transformation [FS87,PS96]
and the CS proofs construction [Mic00,Val08], respectively. Thus, it is natu-
ral that a combination of this techniques yields a generic transformation from
IOPs to non-interactive arguments. This was formalized as the BCS transforma-
tion [BCS16]. We summarize its properties in the following result.
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Theorem 1. Let H : {0, 1}∗ → {0, 1}k be a random oracle, and let Q ∈ N be
a bound on the number of queries to H. Let (I,P,V) be a HIOP for a regular
(non-oracle) relation R = {(i,x,w)}, with the following properties:2

– ℓ: proof length.
– q: number of queries to oracles provided by the prover (and oracles in x, in

the case of oracle relations).
– εrbr: round-by-round soundness error.
– κrbr: round-by-round knowledge error.

Then, there exists a PT transformation BCS such that (IBCS,PBCS,VBCS) :=
BCSH(I,P,V) is a non-interactive holographic proof system for R in the ROM,
with the following properties:

– adaptive soundness error and knowledge error against Q-query adversaries:

εfs(Q, k) = Qεrbr + 3(Q2 + 1)/2k,

κfs(Q, k) = Qκrbr + 3(Q2 + 1)/2k.

– adaptive soundness error and knowledge error against Q−O(q log(ℓ))-query
quantum adversaries:

εqfs(Q, k) = Θ(Q · εfs),
κqfs(Q, k) = Θ(Q · κfs).

2.4 δ-correlated IOPs

A common strategy to build SNARKs is to combine a polynomial IOP with a
proximity test for a Reed–Solomon code, and the BCS transformation. We recall
the notion of δ-correlated HIOPs, introduced in [BGK+23], which provides a
framework for some such polynomial IOPs, e.g. Plonk [GWC19b].

We start by considering a certain type of oracle relations relative to a fixed
Reed–Solomon code.

Definition 5. An oracle relation R is a (F, D, d)-polynomial oracle relation if
the oracles in statements in R correspond to codewords in RS[F, D, d].

In particular, we consider the following strict (F, D, d)-polynomial oracle re-
lation.

CoAgg =


 i

x

w

 =

 F, D, d, δ, n�� ��f1, . . . , fn

f1, . . . , fn

 | δ, n > 0, fi : D → F,
∆(fi,RS[F, D, d]) ≤ δ ∀i = 1, . . . , n

(with δ-correlated agreement)

 .

Additionally, let OCoAgg(δ) be a function that works as follows. It receives as
input (i,x), with δ being the proximity parameter in i. Then, it outputs 1 if and
only if (i,x,w) ∈ CoAgg.

2 As with the error terms, ℓ, q also depend on i,x.
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Given a statement x and a (potentially partial) transcript τ , let
�� ��F(x, τ)

denote the set of oracles that have appeared so far in either of them. We denote
the set of functions behind these oracles by F(x, τ).

Definition 6. Let δ ≥ 0. A HIOP Π = (I,P,V) for a (F, D, d)-polynomial
oracle relation R is δ-correlated if the following hold:

– V has oracle access to OCoAgg(δ).
– Let τ denote the transcript up to the last round of interaction. For the last

round:

• V sends ζ ← S ⊂ F (or an extension of F).
• P sends evaluations of functions in F(x, τ).

– V’s final check consists of the following:

• Assert whether the evaluations sent by the prover in the final round are
roots of a certain multivariate polynomial, determined from i,x, τ .

• Check that a set of maps

{Quotient(fi, xi,ζ , fi(xi,ζ)) | fi ∈ F(x, τ)}ri=1

has δ-correlated agreement in RS[D, d− 1], using OCoAgg on their ora-
cles.

From δ-correrlated IOPs to regular IOPs One of the main results
from [BGK+23] is that one can turn a 0-correlated HIOP Π for R into a
δ-correlated IOP for R, and then combine it with a HIOP for the CoAgg re-
lation to produce a standard HIOP for R. We summarize the properties of the
transformation here.

Theorem 2 ([BGK+23], Theorem 4.6). Consider the following HIOPs:

– ΠCA is a HIOP for CoAgg, with round-by-round soundness error εCArbr .
– ΠOCoAgg(0) = (I,P,V) is a 0-correlated HIOP for a (F, D, d)-polynomial

oracle relation R, with:
• round-by-round soundness error εrbr.
• round-by-round knowledge error κrbr

Let ρ be the code rate of RS[D, d], and let δ < 1−√ρ and η = 1−√ρ−δ > 0.

Then, there exists a HIOP Π for R with the following properties:

– Round-by-round soundness error:

ε′rbr(i) = max

{
εrbr(i)

2η
√
ρ
, εCArbr (iCA)

}
,

where iCA = (F, D, d, δ, n), and n is the number of functions fi involved in
V’s final check for δ-correlated agreement.
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– Round-by-round knowledge error:

κ′rbr(i) = max

{
κrbr(i)

2η
√
ρ
, εCArbr (iCA)

}
,

where iCA is the same as in the item above.

Given a 0-correlated HIOP Π, the transformation can be instantiated by
using as ΠCA any correlated agreement protocol, like the batch variants of
FRI [BBHR18], STIR [ACFY24a] or WHIR [ACFY24b].3 Moreover, one can
just use the trivial check in which the verifier reads the whole function by query-
ing the oracles at every position. Afterwards, the BCS transformation can be
applied, yielding a non-interactive argument in the ROM.

2.5 Split accumulation in the ROM

We follow the split accumulation definitions from [BCL+21], adapted to our
setting. Let R = {(qi, qx, qw)} be a relation. A split accumulation scheme for R
is a tuple of algorithms SA = (I,P,V,D) with the following syntax:

– I(qi) outputs the index-specific prover key pk, verifier key vk, and decider
key dk.

– P
(
pk, (qxi, qwi)

n
i=1, (accj)

m
j=1

)
outputs an accumulator acc = (acc.x, acc.w),

and a proof πacc of correct accumulation. We consider acc.x and acc.w the
short part and long part of the accumulator, respectively.

– V
(
vk, (qx)ni=1, (accj .x)

m
j=1, acc.x, πacc

)
outputs 0/1. Note that it only accesses

the short part of accumulators.
– D(dk, acc) outputs 0/1. Unlike V, the decider has access to a full accumulator.

A split accumulation scheme in the ROM is a split accumulation scheme in
which P,V have access to the same random oracle H.

Definition 7 (Completeness).
A split accumulation scheme in the ROM SA = (I,P,V,D) has perfect

completeness if for any
(
qi, (qxi, qwi)

n
i=1, (accj)

m
j=1

)
and any random oracle

H : {0, 1}∗ → {0, 1}k, we have that

Pr


(pk, vk, dk)← I(qi),

(acc, πacc)← PH

 pk,
(qxi, qwi)

n
i=1,

(accj)
m
j=1

 :

(qi, qxi, qwi) ∈ R ∀i ∈ [n]
1← D(dk, accj) ∀j ∈ [m]

⇒

1← VH

 vk, (qxi)
n
i=1,

(accj .x)
m
j=1,

acc.x, πacc


1← D(dk, acc)


= 1.

3 In fact, one can see these protocols as HIOPs for CoAgg, with n = 1 in the non-batch
case.
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Definition 8 (Knowledge soundness). A split accumulation scheme in the
ROM SA = (I,P,V,D) has knowledge error κ if there exists a PPT extractor
Ext such that, for any PPT P̃, any auxiliary input ai, and any random oracle
H : {0, 1}∗ → {0, 1}k, we have that

Pr



qi, (qxi)
n
i=1,

(acc.x)mj=1,
acc, πacc, r

← P̃H(ai)(
(qwi)

n
i=1,

(accj .w)mj=1

)
← ExtH,P̃(ai, r)

:

1← VH

 vk, (qxi)
n
i=1,

(accj .x)
m
j=1,

acc.x, πacc


1← D(dk, acc)

⇒
(qi, qxi, qwi) ∈ R ∀i ∈ [n]
1← D(dk, accj) ∀j ∈ [m]


≥ 1− κ,

where r is the randomness used by P̃ above, and accj = (accj .x, accj .w).

Split accumulators are particularly useful if we can build them for the verifier
relation of a NARK for circuit satisfiability. More precisely, let R = {(i,x,w)}
be the relation for circuit satisfability, and let ARG = (I,P,V) be a NARK for
R, and let us write

qi = i,

qx = (x, π.x),

qw = π.w.

Then, we define the relation RV such that

(qi, qx, qw) ∈ RV ⇐⇒ 1← V(vkNARK,x, (π.x, π.w))

where vkNARK is the NARK verifier key obtained from I(i).
Suppose that there is a split accumulation scheme SA for RV . Then, we can

use ARG and SA to build PCD schemes [BCL+21, Theorem 5.3].

3 Oracle batching

3.1 The core interactive protocol

Suppose that we have n functions f1, . . . , fn : D → F. The verifier has oracle
access to them, and the prover claims that fi is δ-close to a low-degree polyno-
mial, for all i = 1, . . . , n. The following protocol will produce a function fnew, and
reduce the n claims above to the single claim that fnew is δ-close to a low-degree
polynomial. The function fnew is defined over some other domain D′ such that
D ∩D′ = ∅. The domains D,D′ can be chosen as the two cosets of degree 2s of
the group of roots of unity of degree 2s+1.

In our description below, we start from fi ∈ RS[D, d] (or close) for i =
1, . . . , n, and end up with fnew ∈ RS[D′] (or close), where t is a parameter that
determines the number of verifier queries. Because we want to iteratively apply
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this protocol to aggregate incoming sets of functions of degree d, we will apply
some degree correction to fnew, to bring it back to degree d.

We describe the interactive protocol in Figure 3.1, and denote by fnew ←
OB(f1, . . . , fn) its execution with input oracles to f1, . . . , fn and output an oracle
to fnew.

4

Prover

�� ��f1, . . . , fn Verifier

α← F

α

ffold = ˆFoldα(f1, . . . , fn)|D′ �� ��ffold

x0 ← F \D′

x0

y0 = f̂fold(x0)

y0

x1, . . . , xt ← D

yj =

n∑
i=1

�� ��fi(xj) · αi ∀j = 1, . . . , t�� ��fquot = Quotient(
�� ��ffold ,x,y), where

x = (x0, . . . , xt) and y = (y0, . . . , yt).

r ← F�� ��fnew = DegCor(d, r,
�� ��fquot , d− (t+ 1))

Fig. 1. The oracle batching (OB) interactive protocol.

Proposition 1. Let f1, . . . , fn : D → F, and let d ∈ N. Suppose that, for all
i = 1, . . . , n, we have that fi ∈ RS[D, d]. Then

Pr [fnew ← OB(f1, . . . , fn) : fnew ∈ RS[D′, d]] = 1.
4 Note that Quotient(ffold,x,y) is well defined, since ffold is defined over D′, whereas
x0 ∈ F \D′, x1, . . . , xn ∈ D, and D ∩D′ = ∅.
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Proof. We need to show that deg f̂quot < d − (t + 1). From this, it will follow

that deg f̂new < d, since DegCor is simply multiplying f̂quot by a polynomial of
degree t+ 1.

To prove this, observe that, if deg f̂i < d, then clearly deg f̂fold < d, as folding
honestly does not increase the degree. Next, we show that the quotient behaves
as expected. Indeed, it is easy to check by inspection that f̂fold(xj) = yj , and thus∏t

j=0(X − xj) | f̂fold(X)− p̂(X), where p̂ is as defined in Section 2.1. Therefore,

deg f̂quot = deg f̂fold − (t+ 1) < d− (t+ 1), concluding the proof. ⊓⊔

3.2 A proximity proof from oracle batching

Given the oracle batching protocol above, OB = (POB,VOB), it is trivial to turn
it into an IOP ΠOB = (I,P,V) for the CoAgg relation, i.e. a batched proximity
check:

– I chooses the parameters of a Reed–Solomon code RS[F, D, d], the proximity
parameter δ, and the number n of functions in correlated agreement.

– P is the same as prover POB.
– V runs VOB, and then checks directly whether ∆(fnew,RS[D

′, d]) ≤ δ, accept-
ing if and only if this check passes.

By itself, this protocol is not very useful because of the expensive verifier,
but can fit nicely into the accumulator construction, where the expensive part
of checking fnew is relegated to the decider.

Proposition 2. Let δ ∈ (0,min{1−√ρ, 1−ρ−1/#D}). The IOP ΠOB described
above has round-by-round soundness error

εrbr = max{εfold, εout, εcorr, (1− δ)t},

where εfold, εout, εcorr are as defined in Lemmas 1, 2 and 4, respectively, t is the
query parameter in the protocol, and δ is specified on i.

Proof. We start by fixing an index i, which fixes a certain Reed–Solomon code
RS[D, d]. Let Li be the language of statements for this particular i. We want to
prove that there exists DoomedSet in the conditions of Definition 3. We construct
DoomedSet to include the following four types of entries.

(A) (x; ∅) such that x ̸∈ Li, i.e. f1, . . . , fn do not have δ-correlated agreement.
(B) (x;α) such that:

– x is as in (A), and
– α does not lead to an unlucky fold. An unlucky fold is the event that

∆(Foldα(f1, . . . , fn),RS[D, d]) ≤ δ.
(C) (x;α||ffold||x0) such that:

– (x, α) is as in (B), and
– x0 does not lead to an unlucky decoding. An unlucky decoding is the

event that ∃u, u′ ∈ List(ffold, d, δ) such that u ̸= u′ and u(x0) = u′(x0).
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(D) (x;α||ffold||x0||y0||x1, . . . , xt) such that:
– (x;α||ffold||x0) is as in (C), and
– x1, . . . , xt do not lead to an unlucky spot check. An unlucky spot check

is the event that ∃u ∈ List(ffold, d, δ) such that û(xj) = yj for all j ∈
{0, . . . , t}.

(E) (x;α||ffold||x0||y0||x1, . . . , xt||r) such that:
– (x;α||ffold||x0||y0||x1, . . . , xt) is as in (D), and
– r do not lead to an unlucky degree correction. An unlucky degree correc-

tion is the event that ∆(fnew,RS[D
′, d]) ≤ δ.

Clearly, DoomedSet satisfies condition 1 from Definition 3, due to the inclu-
sion of type-(A) entries.

We argue that full transcripts in DoomedSet, i.e. type-(E) entries, are always
rejected. Indeed, because an unlucky degree correction does not happen,

∆(fnew,RS[D
′, d]) > δ,

so the direct check on fnew will fail, and the verifier will reject. Therefore, con-
dition 2 is also met. It just remains to argue that condition 3 is met, that is,
doomed transcripts stay doomed with high probability.

– Type-(A) transcripts become type-(B) transcripts unless we have an unlucky
fold, which happens with probability εfold, due to Lemma 1.

– Type-(B) transcripts become type-(C) transcripts unless we have an unlucky
out-of-domain check, which happen with probability εout, due to Lemma 2.

– Type-(C) transcripts become type-(D) transcripts unless we have an unlucky
spot check, so we consider the probability of this event. Suppose that we have
an unlucky spot check, i.e. ∃u ∈ List(ffold, d, δ) such that û(xj) = yj for all
j ∈ {0, . . . , t}. At this point, observe that:
(i) An unlucky fold did not happen, so ∆(Foldα(f1, . . . , fn),RS[D, d]) > δ.
(ii) An unlucky out-of-domain check did not happen, so u is unique.
Therefore, due to (ii), the probability of an unlucky spot check happening is
bounded by

Pr

 α← F,
x0 ← F \D′,

x1, . . . , xt ← D
: ˆFoldα(f1, . . . , fn)(xj) = û(xj) ∀j = 1, . . . , t

 .

Moreover, (i) implies that Foldα(f1, . . . , fn) and û|D only agree on a (1− δ)-
fraction of the points in D at most, and therefore the probability of them
agreeing on t random points x1, . . . , xt ← D is at most (1− δ)t.

– Type-(D) transcripts become type-(E) transcripts unless we have an un-
lucky degree correction. Because an unlucky spot check does not happen,
for any u ∈ List(ffold, d, δ), there exists j ∈ {1, . . . , n} such that û(xi) ̸=
Foldα(f1, . . . , fn)(xi). Hence, by Lemma 3,

∆(fquot,RS[D
′, d− (t+ 1)]) > δ.
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Therefore, aplying Lemma 4 to fnew = DegCor(d, r, fquot, d−(t+1)), we have
that

∆(fnew,RS[D
′, d]) > δ

except with probability εcorr. This completes the proof.
⊓⊔

Remark 1. The out-of-domain check is necessary to reduce Pr[E3] to the proba-
bility of Foldα(f1, . . . , fn) agreeing on t random points with a single codeword u.
Without this requirement, we could have different u ∈ List(ffold, d, δ) that agree
with Foldα(f1, . . . , fn) in different subsets of D.

4 NARKs from correlated HIOP

In this section, we often deal with non-interactive versions of protocols obtained
using the BCS transform or its modifications. In this case, the prover computes
the Merkle-tree root for every oracle message and uses it as a short commitment.

For the sake of clarity, we will use f as shorthand for the part of the output

of the non-interactive prover corresponding to a (possibly virtual) oracle
�� ��f . In

particular, f contains

– The Merkle-tree root rt = MT.Commit(g|D) for some function g : D → F. If�� ��f is not virtual then g = f ,

– (d∗, r, d) if
�� ��f = DegCor(d∗, r,

�� ��g , d),

– (x,y) if
�� ��f = Quotient(

�� ��g ,x,y).

We also denote by Check the verification that all value-position pairs of
[vi, posi]

t
i=1 with the corresponding Merkle-tree paths [api]

t
i=1 are consistent with

the description of the oracle.

Check([vi, posi]
t
i=1, [api]

t
i=1, f )→ 0/1:

1. for i = 1, . . . , t:
2. Parse value gi = g(posi) from api.

3. Given gi and f , calculate f(posi).

4. bi = (f(posi) = vi) ∧ (MT.Check( f .rt, posi, gi, api) = 1).

5. return ∧ti=1bi.

To begin, we present a slight modification of transformation that allows us
to compile a δ-correlated HIOP and IOPP into a classical HIOP (Theorem 2).
The main difference is that we split the Verifier into two parts. The first one
makes his final decision before the interactive part of the second one starts. This
way, we can separate the part of the proof (in the non-interactive version) for
independent verification. This transformation simplifies our construction of the
split accumulator. Let δ ≥ δ0.
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Definition 9. The transformation T[δ, δ0] takes as input a public coin
δ-correlated HIOP Π = (I,P,V) for indexed polynomial oracle relation R =
(i,x,w), HIOP ΠCA = (ICA,PCA,VCA) for polynomial oracle relation CoAgg and
outputs a plain HIOP (I,P,V) defined below.

– I outputs encodings Π.I(i) and iCA(i), where the latter contains the param-
eters of a Reed–Solomon code RS[F,D, d], the proximity parameter δ0, and
the number n of functions in correlated agreement.

– P(i,x,w) is a pair of interactive algorithms P1,P2, where
• P1 is the same as the prover Π.P,
• P2 is the same as the prover ΠCA.PCA.

First, the algorithm P1(i,x,w) is executed. Let f = (f1, . . . , fn) be the words
on which the verifier would call the oracle OCoAgg(δ) during its final decision

process. Then, the algorithm P2(iCA,
�� ��f , f) is executed.

– VI(i)(x) is a pair of interactive algorithms V1,V2, where
• V1 is the same as the verifier Π.V except that it does not call oracle
OCoAgg. Instead, upon completion, it sends an additional ”dummy” mes-
sage.

• V2 is the same as the verifier ΠCA.VCA.

Verifier launches VI(i)1 (x), then ViCA
2 (

�� ��f ). V accepts if and only if V1 ∧ V2.

If we applied the BCS transformation (Theorem 1) to the T[δ, δ0](Π,ΠCA),
the proof format would be as follows

π =
(
(rt1, . . . , rtk1), (ap1, . . . , apq1), σk1 , (rt

CA
1 , . . . , rtCAk2 ), (ap

CA
1 , . . . , apCAq2 ), σ

CA
k2

)
,

where k1 and k2 are the number of oracle messages sent by P1 and P2, respec-
tively, q1 and q2 are the number of requests to these oracles and the index made
by V1 and V2, respectively. Thanks to this transformation, the verifier has an
intermediate Merkle-tree root σk1

, which allows after all k1 rounds of Π to check
the first part of the proof independently of the remaining part. We will reflect
this in our modification of the BCS transformation (Definition 10).

Definition 10. The transformation BCST takes as input a public coin HIOP
Π′ = T[δ, δ0](Π,ΠCA) and outputs the preprocessing non-interactive argument in
the ROM (I,P,V = (V1,V2)), defined below.

– IH(i) → (pk, vk). The algorithm is the same as what we would get by ap-
plying the BCS transformation. For simplicity, we write the iCA parameters
directly into the verification vk and proving pk keys. We denote corresponding
deterministic extraction algorithm as Parse(vk/pk))→ iCA.

– PH(pk,x,w) → π = (π.x, π.w). We make the following changes compared
to the prover obtained using the BCS transform.
• If the prover sends several oracles in one round, a separate commitment
is calculated for each in the non-interactive version.

• The parameters for calculating the value of the virtual oracle at each
point are written directly to the proof (degree, vectors for quotients, etc.)
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Then the proof π has the form

π.x = ((m1, . . . ,mk1), (ap1, . . . , apq1), σk1
) ,

π.w =
(
(mCA

1 , . . . ,mCA
k2 ), (ap

CA
1 , . . . , apCAq2 ), σ

CA
k2

)
,

k1, k2, q1, q2 are as described above, messages mi,m
CA
j contain the roots of

Merkle-trees and scalar values.
– VH(vk,x, π) = (VH1 ,VH2 )(vk,x, π) → {0, 1}. We split the verifier that we

obtained using the BCS transformation into two parts.
• VH1 (vk,x, π.x) verifies the first part of the proof, makes a decision, and

saves the state aux = ( f1, . . . , fn , σk1
). We denote the deterministic

oracle extraction algorithm as ParseDesc(vk, π.x).
• VH2 (aux, vk,x, π.w) uses the state to continue verifying the rest of the
proof. The correctness of requests to functions fi is checked using Check

and the corresponding fi .

V accepts if and only if
1. VH1 (vk,x, π.x) = 1
2. VH2 (aux, vk,x, π.w) = 1, where aux = (ParseDesc(vk, π.x), σk1

)

Now, let us consider a trivial version of the proximity test. Although such a
test is of no practical interest, it helps us conceptualize the split accumulation
scheme. Let ΠTRV = (I,P,V) is a HIOP for the polynomial oracle relation CoAgg
(Section 2.4).

– I outputs iCA, which contains the parameters of a Reed–Solomon code
RS[F,D, d], the proximity parameter δ0, and the number n of functions in
correlated agreement.

– V checks directly (by reading the oracle
�� ��f entirely) whether (iCA,

�� ��f , f) ∈
CoAgg(δ0), accepting if this check passes.

Suppose that we use the transformation T together with the HIOP ΠTRV for
some δ0-correlated HIOP Π. Then, in the non-interactive version of the result

BCST(T[δ, δ0](Π,ΠTRV)),

the second part of the proof π.w will contain only value-authentication path

pairs [vi, ap
CA
i ]

n·|D|
i=1 . This is a consequence of the fact that the prover ΠTRV.P

does not send additional oracle messages and the verifier ΠTRV.V does not need
additional randomness. The job of the verifier V2 is

– to check the authentication paths api with respect to the f1, . . . , fn con-

tained in aux, and the oracle H. We denote the deterministic values and au-
thentication paths extraction algorithms as ParseEvaluations(vk, π.w) →
vi and ParseAP(vk, π.w)→ api, respectively. Then:

CheckAP( f , vk, π.w)→ 0/1:

1. vi ← ParseEvaluations(vk, π.w)
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2. api ← ParseAP(vk, π.w)

3. return Check([vi, i], [api], f )

– to check that the resulting vector of values is δ0-close to the RS[F, D, d], and
make the final decision.

Therefore, V2 only needs a simplified interface (without x and σk1
):

VH2 (aux′, vk, π.w), where aux′ = ParseDesc(vk, π.x).

Since we only check for proximity to the code, some values may differ from
the expected ones. Therefore, we will also allow some authentication paths to
be missing. To reflect this, we will introduce another modification of the BCS
transformation (Definition 11) for the special case of ΠTRV.

Definition 11. The transformation BCST⊥ takes as input a public coin HIOP
Π′ = T[δ, δ0](Π,ΠTRV) and outputs the preprocessing non-interactive argument
in the ROM (I,P,V = (V1,V2)). The transformation BCST⊥ is identical to
BCST except for the algorithm V2, which can now accept the symbol ⊥ instead
of the authentication path api. In this case, when checking the proximity to the
RS[F, D, d], it considers the corresponding value to be ⊥.

Let
Π = BCST[δ, δ0](T(Π0,ΠTRV)),

Π⊥ = BCST⊥(T[δ, δ0](Π0,ΠTRV)).

If Π is knowldge sound then Π⊥ is knowledge sound.
Finally, let us consider the last ingredient. We denote by OCoAgg(k) the oracle

for the verification algorithm of the correlation agreement for a set of k functions.
Then, we present a transformation from a δ-correlated HIOP, during which the
verifier calls OCoAgg(n), to a δ-correlated HIOPk during which the verifier calls
OCoAgg(1).

Definition 12. The transformation B takes as input a public coin δ-correlated

HIOP Π = (I,P,VOCoAgg(n)) for indexed polynomial oracle relation R = (i,x,w)

and outputs another δ-correlated HIOP ΠB = (IB,PB,V
OCoAgg(1)

B ) for the same
relation R. Let OB = (POB,VOB) be as defined in Section 3.

– IB is same as the indexer I,
– PB(i,x,w) is a pair of interactive algorithms P1,P2, where

• P1 is the same as the prover Π.P,
• P2 is the same as the prover OB.POB .

First, the algorithm P1(i,x,w) is executed. Let f = (f1, . . . , fn) be the words
on which the verifier would call the oracle OCoAgg(n)(δ) during its final de-

cision process. Then, the algorithm P2(iCA,
�� ��f , f) is executed.

– VB
I(i),OCoAgg(1)(x) is a pair of interactive algorithms V1,V2, where
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• V1 is the same as verifier Π.V except that it does not call oracle OCoAgg.
Instead, upon completion, it sends an additional ”dummy” message.

• V2 is the same as verifier OB.VOB, except that, upon completion, V2
queries OCoAgg(1)(

�� ��fnew ).

The verifier launches VI(i)1 (x), then ViCA
2 (

�� ��f ). V accepts if and only if V1∧V2.

Let Π be a RBR knowledge sound δ-correlated HIOP for an indexed poly-
nomial oracle relation R = (i,x,w). Then B(Π) is a RBR knowledge sound
δ-correlated HIOP for the relation R.

5 Split accumulation and PCD

Let us recall our notations.

– ParseDesc(vk/pk, π.x) parses the proof and outputs a description f for

which the proximity test is performed.
– ParseEvaluation(pk, π.w) and ParseAP(pk, π.w) parse the proof and out-

put a vector of evaluations vi and corresponding auth paths api, respectively.

– CheckAP( f , pk, π.w) parses the proof and verifies authentication paths with

respect to f .

Let Π be a RBR knowledge sound δ-correlated HIOP for an indexed regular
(non-oracle) relation R = (i,x,w) and

NARK = BCST⊥(T[δ, 0](B(Π),ΠTRV)) = (I,P,V = (V1,V2)).

In this section, we build a split accumulation scheme SA for the non-interactive
argument system NARK. We will use the relation RV defined below:

RV =


 qi

qx
qw

 =

 i

(x, π.x)
π.w

 | (pkNARK, vkNARK)← NARK.IH(i),
NARK.VH(vkNARK,x, (π.x, π.w)) = 1

 .

We will also define a non-interactive version of the oracle batching protocol,
a key block in our design.

NOB = BCST⊥(T[δ, 0](OB,ΠTRV)).

The accumulator is represented by a short part acc.x, containing the de-

scription of the oracle f , and a witness part acc.w, including authentication

paths to the vector of the evaluations of function f . In practice, all the au-
thentication paths in witness part can be represented by a single hash code
corresponding to the root of the Merkle-tree. The introduced notations make
calls ParseDesc(acc.x) and ParseEvaluation(acc.w) legitimate.

Formally, the split accumulation scheme SA is represented by the following
algorithms.
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– SA.IH(qi)→ (pkSA, vkSA, dkSA).
1. (pkNARK, vkNARK)← NARK.IH(qi)
2. Set iNOB

(a) iNOB ← Parse(vkNARK). Note that we change the number of functions
for a correlated agreement check from 1 to n+m.

3. (pkNOB, vkNOB)← NOB.IH(iNOB)
4. pkSA = pkNARK||pkNOB

5. vkSA = vkNARK||vkNOB

6. dkSA = vkNOB

– SA.PH(pkSA, (qxi, qwi)
n
i=1, (accj)

m
j=1)→ (acc = (acc.x, acc.w), πacc)

1. (pkNARK, pkNOB)← Parse(pkSA)
2. for i ∈ [n]

(a) ((xi, πi.x), πi.w)← Parse(qxi, qwi)

(b) fi ← ParseDesc(pkNARK, πi.x)

(c) fi ← ParseEvaluation(pkNARK, πi.w)
3. for j ∈ [m]

(a) fi+j ← ParseDesc(pkSA, accj .x)

(b) fn+j ← ParseEvaluation(pkSA, accj .w)

4. x′ = f1, . . . , fn+m

5. w′ = (f1, . . . , fn+m)
6. (πNOB.x, πNOB.w)← NOB.PH(pkNOB,x

′,w′)
7. acc.x← ParseDesc(pkNOB, πNOB.x)
8. acc.w← πNOB.w
9. πacc = πNOB.x

– SA.VH(vkSA, (qxi)
n
i=1, (accj .x)

m
j=1, acc.x, πacc)→ 0/1.

1. (vkNARK, vkNOB)← Parse(vkSA)
2. for i ∈ [n]

(a) (xi, πi.x)← Parse(qxi)
(b) vi ← NARK.VH1 (vkNARK,xi, πi.x)

(c) fi ← ParseDesc(vkNARK, πi.x)

3. for j ∈ [m]

(a) fn+j ← ParseDesc(vkSA, accj .x)

4. x′ = f1, . . . , fn+m

5. vn+1 ← NOB.VH1 (vkNOB,x
′, πacc)

6. vn+2 = (ParseDesc(vkSA, acc.x) == ParseDesc(vkNOB, πacc))

7. return
∧n+2

i=1 vi

– SA.DH(dkSA, acc)→ 0/1.
1. vkNOB ← Parse(dkSA)

2. f ← ParseDesc(acc.x)

3. v ← NOB.VH2 ( f , vkNOB, acc.w)

23



4. return v

Proposition 3. SA is complete.

Proof. We will that the probability

Pr



(pkSA, vkSA, dkSA)← SA.IH(qi)(
acc,
πacc

)
← SA.PH

 pkSA,
(qxi, qwi)

n
i=1,

(accj)
m
j=1

 :

(qi, qxi, qwi) ∈ RV ∀i ∈ [n]
1← SA.DH(dkSA, accj) ∀j ∈ [m]

⇓

1← SA.VH


vkSA,

(qxi)
n
i=1,

(accj .x)
m
j=1,

acc.x, πacc


1← SA.DH(dkSA, acc)


is equal to 1. ∀i ∈ [n],∀j ∈ [m]{

(qi, qxi, qwi) ∈ RV ,
SA.DH(dkSA, accj) = 1

⇒

{
NARK.VH2 ( fi , vkNARK, πi.w) = 1,

NOB.VH2 ( fn+j , vkNOB, accj .w) = 1,

where

– (vkNARK, vkNOB)← Parse(vkSA)
– (pkNARK, pkNOB)← Parse(pkSA)
– ((xi, πi.x), πi.w)← Parse(qxi, qwi) ∀i ∈ [n]

– fi ← ParseDesc(vkNARK, πi.x) ∀i ∈ [n]

– fi ← ParseEvaluation(pkNARK, πi.w) ∀i ∈ [n]

– fn+j ← ParseDesc(pkSA, accj .x) ∀j ∈ [m]

– fn+j ← ParseEvaluation(pkSA, accj .w) ∀j ∈ [m]

In particular, this means that

(iNOB,
�� ��fi , fi) ∈ CoAgg(0),

where iNOB ← Parse(vkNARK). And with probability 1,

NOB.VH2 ( g , vkNOB, πNOB.w) = 1,

where

– x
′ = f1, . . . , fn+m ,

– w
′ = (f1, . . . , fn+m),

– NOB.PH(pkNOB,x
′,w′)→ (πNOB.x, πNOB.w),

– g ← ParseDesc(pkNOB, πNOB.x) = ParseDesc(acc.x).
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In other words, SA.DH(dkSA, acc) = 1. We have already shown that{
∀i ∈ [n] NARK.VH1 (vkNARK,xi, πi.x) = 1,

NOB.VH1 (vkNOB,x
′, πNOB.x) = 1.

This means that

SA.VH
(
vkSA, (qxi)

n
i=1, (accj .x)

m
j=1, acc.x, πacc

)
= 1

with probability 1. ⊓⊔

Following [BMNW24a], we also show the knowledge soundness with respect
to δ0 = δ. Namely, we consider the specified property relative to the following
systems

NARK⊥ = BCST⊥(T[δ, δ](B(Π),ΠTRV)),

NOB⊥ = BCST⊥(T[δ, δ](OB,ΠTRV)).

Theorem 3. SA is knowledge sound with respect to NARK⊥ and NOB⊥.

Proof. We need to show that the following probability:

Pr



ai← D(1λ) qi, (qxi)
n
i=1,

(accj .x)
m
j=1,

acc, πacc

← P̃H(ai)(
(qwi)

n
i=1,

(accj .w)mj=1)

)
← EP̃ ,H(ai)

(pkSA, vkSA, dkSA)← SA.IH(qi)

:

1← SA.VH

 vkSA, (qxi)
n
i=1,

(accj .x)
m
j=1,

acc.x, πacc


1← SA.DH(dkSA, acc)

⇓

(qi, qxi, qwi) ∈ RV ∀i ∈ [n]
1← SA.DH(dk, accj) ∀j ∈ [m]


is negligibly close to 1. It is easy to see that

NOB⊥.VH(vkNOB,x
′, (πacc, acc.w)) = 1,

where

– (vkNARK, vkNOB)← Parse(vkSA),
– (pkNARK, pkNOB)← Parse(pkSA),
– (xi, πi.x)← Parse(qxi)∀i ∈ [n],

– fi ← ParseDesc(vkNARK, πi.x)∀i ∈ [n],

– fn+j ← ParseDesc(pkSA, accj .x)∀j ∈ [m],

– x
′ = f1, . . . , fn+m .

Then, except with probability at most κNOB⊥
, we have that

EP̃ ,H
NOB⊥ → π̂1, . . . , π̂n+m,
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where ENOB⊥ is a knowledge extractor for NOB⊥, and

CheckAP( fi , pkNOB, π̂i) = true ∀i ∈ [n+m].

This means that

SA.DH(dkSA, (accj .x, π̂j)) = 1 for j = i+ 1, . . . , n+m,

NARK⊥.VH(vkNARK,xi, (πi.x, π̂i)) = 1, ∀i ∈ [n].

Thus, the knowledge soundness error is equal to κNOB⊥
. ⊓⊔

Given NARK and the split accumulation scheme SA, we can use [BCL+21,
Theorem 5.3] to build a PCD scheme. Recall that PCD allows us to show the
correctness of a distributed computation. More precisely, given a compliance
predicate ϕ, PCD enables untrusted provers to demonstrate that if a computa-
tional node uses local input data zloc, received messages z1, . . . , zt, and outputs
zout, then

ϕ(zout, zloc, z1, . . . , zt) = 1.

Informally speaking, the PCD prover takes as input zloc, zout and messages
(zi)

t
i=1 augmented with corresponding PCD proofs (πPCD

i )ti=1, where

πPCD
i = ((πi.x, πi.w), (acci.x, acci.w)).

It accumulates ((zi, πi.x), πi.w, (acci.x, acci.w))
t
i=1 to obtain a new accumulator

acc and accumulation proof πacc. Finally, the prover uses NARK to generate a
proof πNARK for the following statement (presented as a circuit):
1. ϕ(zout, zloc, (zi)

t
i=1) = 1,

2. SA.V((zi, πi.x)
t
i=1, (acci.x)

t
i=1, acc.x, πacc) = 1.

The PCD prover outputs the new proof πPCD = (πNARK, acc).

Proof size The size of the PCD proof is largely determined by the value of
|π.w|+|acc.w| and, for many practical constructions, is comparable to the size of
the recursive circuit. Generally, this requires provers to send significant amounts
of data and complicates parallelization. Due to the fact that we use the OB
protocol twice, in the accumulator scheme and in the NARK, we get a much
smaller size of the PCD proof. In particular, for a Plonkish circuit represented
by a matrix of N×M elements, the proof size will be proportional to one column,
i.e., N elements. In practice, this results in a smaller proof by several orders of
magnitude.

Decider efficiency The PCD verifier takes as input a message z, a proof πPCD,
and outputs a decision bit (using NARK’s verifier and SA’s decider algorithms).
In practice, we can take an additional step to accumulate πNARK and acc and get
a new accumulator accfinal and accumulation proof πfinal

acc . In addition, we can use
algorithms such as FRI or STIR to obtain succinct proof πPRX of the accfinal’s
proximity to the RS.
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