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Abstract—This work proposes a multi-level compiler framework
to transform programs with loop structures to efficient algo-
rithms over fully homomorphic encryption (FHE). We observe
that, when loops operate over ciphertexts, it becomes extremely
challenging to effectively interpret the control structures within
the loop and construct operator cost models for the main body of
the loop. Consequently, most existing compiler frameworks have
inadequate support for programs involving non-trivial loops,
undermining the expressiveness of programming over FHE. To
achieve both efficient and general program execution over FHE,
we propose CHLOE, a new compiler framework with multi-level
control-flow analysis for the effective optimization of compound
repetition control structures. We observe that loops over FHE
can be classified into two categories depending on whether
the loop condition is encrypted, namely, the transparent loops
and the oblivious loops. For transparent loops, we can directly
inspect the control structures and build operator cost models
to apply FHE-specific loop segmentation and vectorization in a
fine-grained manner. Meanwhile, for oblivious loops, we derive
closed-form expressions and static analysis techniques to reduce
the number of potential loop paths and conditional branches. In
the experiment, we show that CHLOE can compile programs
with complex loop structures into efficient executable codes over
FHE, where the performance improvement ranges from 1.5×
to 54× (up to 105× for programs containing oblivious loops)
when compared to programs produced by the-state-of-the-art
FHE compilers.

1. Introduction

Fully homomorphic encryption (FHE) is a class of
cryptosystems that are capable to handling computing tasks
over encrypted data without revealing the decryption key.
Owing to the low communication complexity and high
algorithm expressiveness, FHE presents to be useful in
both composing compound secure multi-party computation
(MPC) protocols [1–5], and establishing standalone privacy-
preserving applications [2, 6–15].

In theory, FHE is generally applicable in the sense that
any arbitrary program can be transformed to run over FHE

1 #include<s t d i o . h>
2 i n t data ana lys is ( i n t data [ 5 1 2 ] )
3 {
4 i n t r e s u l t = 0 ;
5 for ( u i n t16 t i = 0 ; i < 512; i ++) {
6 i f ( data [ i ] < 400)
7 r e s u l t += data [ i ] ;
8 }
9 return r e s u l t ;

10 }

Figure 1. An example of a manually-written data analysis program.

primitives. However, due to the oblivious nature of data
encryption, programs behave in a significantly different
manner on ciphertexts than on plaintexts. For example, it is
well known [8, 13, 16] that logic circuits are significantly
more difficult to evaluate than arithmetic circuits over FHE
ciphertexts, where the performance can easily differ by more
than three orders of magnitude [13]. Furthermore, even for
purely arithmetic-circuit programs, the performance is still
heavily impacted by data encodings [2, 17], scheduling
strategies [18, 19], and the encryption parameters [1, 3, 20].

Motivated by the high design complexities of FHE
algorithms, various types of FHE compilers have emerged
to automatically translate programs on plaintext to those
over FHE ciphertexts. In general, we see two distinct ap-
proaches towards FHE compiler designs: application-specific
and general-purpose. For application-specific compilers, the
design focus is on optimizing one particular set of FHE
operators to perform well under a given circumstance. For
example, a stream of FHE compilers [19, 21–27] focuses on
how to optimize vectorized arithmetic over FHE ciphertexts,
leveraging the single-instruction-multi-data (SIMD) capabil-
ity of ring-based FHE schemes [28–30]. However, existing
application-specific FHE compilers are mostly optimized for
compiling arithmetic circuits only (i.e., circuits consisting of
additions and multiplications), and are not good at handling
non-arithmetic computations, e.g., comparisons, piece-wise
functions, bit-wise operations, etc. To solve the usability
issue, general-purpose FHE compilers [16, 31–33] are de-
veloped to translate (ideally) arbitrary plaintext programs to
algorithms over FHE. Nonetheless, many existing general-
purpose FHE compilers rely on logic synthesis tools to



transform the programs into Boolean-circuit representations,
inducing significant performance overheads. To better balance
the usability and efficiency, cross-scheme FHE compil-
ers [16, 33, 34] are recently developed to make use of
multiple FHE schemes in synthesizing a single program.
For instance, by utilizing both the CKKS [30] and the
TFHE [35] schemes, it is demonstrated [16, 33] that the
generated programs can run significantly faster than the
entirely circuit-based compiler [31].

Despite the considerable progress made in code trans-
formation, most existing FHE compilers still remain less
optimized for a crucial building block of structured pro-
gramming: loop. A loop is one of the fundamental control
structures, and it is well-known that programs often spend
90% of the time running 10% of the code in loops [36].
Additionally, loops are indispensable in implementing many
non-algebraic expressions, such as transcendental functions,
series, integrals, etc. As illustrated in Figure 1, a loop consists
of two basic elements: a loop body and a loop condition.
By definition, we see two fundamental challenges against
effective optimizations of loops in FHE. First, the main body
of the loop can contain arbitrary program segments, which
makes it hard to optimize over FHE ciphertexts. For example,
though some application-specific FHE compilers apply loop
unrolling to vectorized SIMD arithmetic operations [24, 26],
such compilers cannot successfully synthesize the program
shown in Figure 1, due to the branching statement in the
loop body. Second, in a homomorphic program (and secure
multi-party algorithms in general [37]), we call the loop
oblivious if the loop condition is private, and transparent
otherwise. It is obvious that determining loop termination
for oblivious loops can be extremely challenging (if not
impossible). As a result, existing solutions either need to
force a full loop unroll [31] or invoke periodic client-server
interactions [15] to complete the loop, each of which incur
expensive performance penalties. In short, a careful treatment
of loops is essential in establishing a usable FHE compiler
for the efficient synthesis of general-purpose programs.

1.1. Our Contributions

We propose CHLOE, a multi-level compiler framework
that automatically synthesizes general-purpose programs into
cross-scheme FHE algorithms. We observe that, similar to
sequential programs, loops are also composed of arithmetic
and non-arithmetic circuits. Hence, in CHLOE we first
segment a complex loop into the respective arithmetic
and non-arithmetic parts. Then, we apply fine-grained loop
distribution [38] techniques to efficiently vectorize both
arithmetic and non-arithmetic loops over SIMD-compatible
FHE primitives such as CKKS [30] and BFV [28, 39].
Lastly, for oblivious loops, we derive closed-form expressions
and propose new loop condition evaluation techniques to
reduce the number of fully-unrolled control paths. The main
contributions of this work are summarized as follows.

• A Loop-Compatible FHE Compiler: To the best
of our knowledge, CHLOE is the first FHE compiler

that can perform end-to-end transformations for
programs containing non-trivial loops without human
intervention. We observe that multiple levels of
loop-specific optimizations involving both static and
dynamic analyses are crucial in optimizing complex
loops containing nested branching statements.

• Mix-Circuit Vectorization: We point out that prop-
erly vectorizing loops that contain both arithmetic
and non-arithmetic circuit computations can be highly
non-trivial. Specifically, the compiler needs to apply a
series of segmentation, distribution, cost analysis and
type alignment techniques to find the correct trans-
formation pattern, such that we can fully leverage
the SIMD capabilities of the FHE primitives.

• Analyzing Oblivious Loops: By carefully inspecting
the control structures, we propose multiple optimiza-
tion passes to boost the performance of oblivious
loop evaluation. In particular, we derive close-form
expressions to avoid fully unrolling oblivious loops,
and propose new branching methods to optimize the
performance of iteration selection when necessary.

• Thorough Evaluation: We rigorously study the
performance and general applicability of CHLOE
on various loop-containing program benchmarks.
Specifically, we show that programs produced by
CHLOE run 3.2×–54× faster on application pro-
grams containing transparent loops. Moreover, for
oblivious loops, CHLOE can generate programs
that run as much as 1.5×–105× faster than human-
assisted existing solutions that require heavy full
loop unrolling. An open-source implementation of
CHLOE will be publicly available.

1.2. Related Works

Here, we first briefly summarize existing literature on
MPC compilers in Section 1.2.1, and then give an overview
on existing FHE compiler designs in Section 1.2.2. Our
discussions pay particular attention to how loops are treated
in the respective works.

1.2.1. MPC Compilers. Here, we focus on the class of MPC
compilers whose primary goals are to enhance the usability
and efficiency of MPC protocols [37, 46–57]. Similar to
FHE compilers, we also classify existing MPC compilers
into the application-specific ones and the general-purpose
ones, and provide a brief summary as follows.

Application-Specific MPC Compilers: A line of MPC
compilers target on how to implement specific privacy-
preserving tasks efficiently [1, 3, 58, 59]. For instance,
[58] proposes both basic MPC primitives and an end-to-
end protocol compilation framework for privacy-preserving
network analysis. Likewise, many application-specific MPC
compilers, such as [1, 3, 59] optimizes privacy-preserving
machine learning by automating the process of protocol
selection and parameter instantiation. Overall, application-
specific MPC compilers produce protocols that have near-
optimized performance under a specific application context,
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TABLE 1. SUMMARY OF RECENT (F)HE COMPILER DESIGNS

Application-Specific FHE Compilers General-Purpose FHE Compilers

[19, 40] [23] [24, 41] [42, 43] [22] [34] [31, 44] [26, 27, 45] [33] [16] Ours

FHE Scheme CKKS BFV BFV/BGV⋆ BFV BFV BFV TFHE CKKS CKKS+ CKKS+ BFV+TFHE
TFHE TFHE +CKKS

Scheme Switch N/A N/A N/A N/A N/A N/A N/A N/A ⋆⋆

Arith. SIMD
Cond. SIMD † ⋄ ⋄

Loop Type‡ N/A N/A TB TB TB N/A TOB TB⋄ TB TB TOB
Loop Vec.
Loop Seg.
Loop Dist.

In the table, Arith. SIMD and Cond. SIMD refers to the capabilities of leverage arithmetic SIMD and conditional SIMD operators over RLWE ciphertexts. Loop vec., loop
seg. and loop dist. denote the use of loop vectorization, loop segmentation and loop distribution, respectively.

⋆ The backend for Marble [41] and HECO [24] can be either BFV or BGV, but not both.
⋆⋆

Scheme switching is a planned feature for Google HEIR [33].
† In theory, Ramparts [22] supports SIMD encoding for conditional statements by encoding Boolean values into the coefficients of a polynomial. However, such encoding

requires assistances from the client and may not be generally applicable.
‡ TB depicts the support of transparent loop without conditional statements, and TB refers loops with nested conditional statements. TOB means that the compiler supports

both transparent and oblivious loops with conditional statements.
⋄ As described in [26], the programmer can construct an approximate polynomial for processing conditional statement (with or without SIMD). However, such approximation

needs to be done manually before the compilation process [26, 27, 45]

but the optimizations often do not apply to other protocol
use cases.

General-Purpose MPC Compilers: To strengthen the
general applicability of MPC, a plethora of general-purpose
compilers are developed to compile arbitrary programs into
MPC protocols [46–50, 52–54]. Given the large number of
distinct MPC primitives, producing an optimal protocol for a
given privacy-preserving task can be extremely hard [60, 61].
Thus, some MPC compilers propose to adopt domain-specific
languages to reduce the design complexity and enhance
security [51, 62–64]. Nonetheless, the learning costs of
multiple domain-specific languages can be non-negligible,
which motivated the development of MPC compilers that
use native C or Java as the surface languages [49, 50, 52–
54, 65, 66]. Even though general-purpose MPC compilers
can significantly alleviate the usability issue, the frequently
evolving nature of MPC primitives may quickly render
such compilers obsolete. Moreover, while some very recent
works [67, 68] start to explore how to leverage vectorized
MPC primitives to accelerate protocol execution, most
existing MPC compilers still lack sufficient optimization
against non-trivial loops [37].

1.2.2. FHE Compilers. As illustrated in Table 1, a stream
of works are proposed to design and implement compilers
tailored for FHE [15, 16, 19, 21–25, 27, 31, 32, 34, 40, 41,
43, 44, 69, 70]. Similar to Section 1.2.1, we also group FHE
compilers depending on whether they are application-specific
or general-purpose, and compare the main compilation
features as follows.

Application-Specific FHE Compilers: Most compilers
of this class adopt the BFV [28] and the CKKS [30]
types of FHE schemes, where arithmetic operators such as
ciphertext additions and multiplications can act over batched
ciphertexts. Application-specific FHE compilers [19, 21–
24, 40, 43] can produce highly efficient programs for

polynomial computations, such as linear transformations,
polynomial-approximated functions, etc. However, as shown
in Table 1, most application-specific FHE compilers do not
support conditional statements well. In addition, albeit some
recent work [43] studies how to efficiently vectorize loops,
the design exploration is limited to simple loops that are
composed of arithmetic operations only (i.e., vectorized
homomorphic additions, multiplications, and rotations).

General-Purpose FHE Compilers: Based on the recent
advances in FHE bootstrapping [35, 71–76], general-purpose
FHE compilers become a viable solution for general program
compilation. Within general-purpose FHE compilers, we
identify three distinct approaches: polynomial-based, circuit-
based, and hybrid. First, polynomial-based FHE compil-
ers [26, 27, 45] convert a program into a sequence of
polynomial evaluations, where each polynomial approximate
(or evaluate exactly) one particular block of codes, where the
approximated functionalities range from linear transforma-
tions, IF-ELSE statements to FOR loops. Nevertheless, it can
be highly non-trivial to automate the process of polynomial
approximation, and most polynomial-based FHE compilers
rely on manual analysis for code block segmentation. Second,
circuit-based FHE compilers [15, 31, 32, 44] employ a set
of functionally complete Boolean gates to express general
programs by circuits, i.e., sequences of Boolean gates. By
leveraging electronic design automation tools [31, 32, 44], it
is much easier to implement a general-purpose FHE compiler
based on circuits than other approaches. Unfortunately, since
FHE operators are not inherently Boolean, representing gen-
eral programs as logic circuits result in degraded performance,
especially for heavily-algebraic tasks (e.g., matrix-vector
multiplication). Finally, hybrid compilers [16, 33, 69, 70]
strive to achieve the best of both worlds. By incorporating
both polynomial- and circuit-based representations, hybrid
compilers first segment a given program into the arithmetic
and logic parts, and then apply FHE-specific optimizations to
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the respective code segments. Unfortunately, similar to other
types of compilers [24, 43], most hybrid FHE compilers
can only handle elementary loops, weakening the general
applicability of such compiler frameworks.

2. Preliminaries and Background

In this work, we make use of three types of lattice-
based FHE schemes: the BFV/BGV type [28, 29, 77], the
CKKS [30] type, and the FHEW/TFHE type [35, 78–81]. In
what follows, we describe the basic constructions and key
operators for each of the FHE schemes in Section 2.1 and
Section 2.2, respectively.

For notations, we use λ to denote the security parameter,
p the plaintext modulus, q/Q the ciphertext moduli, where
it generally holds that Q > q. Zq denote the set of integers
modulo q, and N is the set of natural numbers. For some
lattice dimension N , we write RN,Q = ZQ[X]/(XN + 1).
We use tilde lower-case letters with square brackets such as
ã[X] to refer to polynomials in the variable X , and bold
lower-case letters such as a to depict vectors. a[i] notes the
i-th element in the vector a.

2.1. FHE Constructions

In this work, we use three types of ciphertexts: LWE,
RLWE, RGSW, which are all constructed over the standard
lattice hardness assumptions, i.e., the learning with errors
(LWE) and ring learning with errors (RLWE) problems.
Details for each type of ciphertext is explained as follows.

• LWE Ciphertext: First, for a plaintext message m ∈ Z
and the secret key s ∈ Znq , an LWE ciphertext is given by

LWEn,qs (m) = (b,a) = (−aTs+∆m+ e,a), (1)

where a ∈ Znq uniformly random, e is chosen from some
distribution χnoise with standard deviation noise, and ∆ is
a scaling factor.

• RLWE Ciphertext: Given an encoded plaintext poly-
nomial m̃ ∈ RN,Q and a secret key polynomial s̃ ∈ RN,Q,
an RLWE ciphertext is defined as

RLWEN,Qs̃ (m̃) = (b̃, ã) = (−ã · s̃+ m̃+ ẽ, ã). (2)

Here, ã ∈ RN,Q is a random polynomial, and ẽ is sampled
from χnoise. As discussed later, we merge the scaling factor
for the RLWE ciphertext into the encoding process.

• RGSW Ciphertext: For a decomposition parameter
l, and a message m ∈ Zp, an RGSW ciphertext under
the secret key s ∈ Znq is given by RGSWN ′,Q′

s̃ (m) =

(B,A) ∈ Z2l×2
Q′ . The concrete constructions of RGSW can

be found in [79, 82]. Here, we can simply consider an RGSW
ciphertext as a tuple of two 2l-degree RLWE ciphertexts.

Plaintext Encodings for RLWE Ciphertexts: As men-
tioned, to be encrypted under RLWE, a message needs to be
encoded into a plaintext polynomial m̃ in advance [83, 84].
To encode a vector of messages m ∈ ZNp into a plaintext
polynomial m̃ ∈ RN,Q, we have two main parameters: the
embedding function σ and the scaling factor ∆. Based on

the two parameters, the encoding process can be formulated
as

m̃ = ∆σ(m), (3)

where ∆ ∈ R and σ can be the slot embedding [85] or the
coefficient embedding [2, 7]. For example, for (a slightly
modified version of) the CKKS scheme implemented in the
SEAL [86] library, σ is instantiated to be the inverse number
theoretic transform (INTT), and ∆ is an arbitrary real number.
In contrast, for BFV also realized in SEAL, σ is the identity
function and ∆ = ⌊q/p⌉ [85].

2.2. FHE Operators

Here, we briefly overview the key FHE operators orga-
nized according to the ciphertext types of the associated
operands.

2.2.1. Operators for LWE Ciphertexts. As described in
Eq. (1), one LWE ciphertext can only encrypt a single
integer message m ∈ Z. Therefore, we have the following
homomorphic operators permitted over LWE ciphertexts.

• +, − and ·: We note that LWE ciphertexts have
basic additive homomorphism. Hence, LWE ciphertexts are
compatible with standard ciphertext addition, subtraction and
constant multiplication.

• CMUX(RGSW(ŝ),LWE(m0),LWE(m1)): Given in-
puts LWE(m0) and LWE(m1), for a ciphertext control input
RGSW(ŝ) where ŝ ∈ {0, 1}, CMUX homomorphically
computes ŝ ? LWE(m0) : LWE(m1), i.e., the function
outputs LWE(m0) if ŝ = 1 and LWE(m1) if ŝ = 0 (without
revealing ŝ).

• PBS(LWE(m), T (x)): Given an LWE ciphertext
ct = LWEn,qs (m), a discrete function T (x), PBS outputs
LWEn,qs (T (m)) with a constant (i.e., input-independent)
level of noise.

2.2.2. Operators for RLWE Ciphertexts. Different from
LWE ciphertexts, an RLWE ciphertext can encrypt a poly-
nomial encoding a vector of plaintext messages into a single
ciphertext. Here, we summarize the list of key operators over
RLWE ciphertexts.

• +, − and ·: Similar to LWE, RLWE supports the
execution of ciphertext addition, subtraction and constant
multiplication operators. Furthermore, we can also apply
ciphertext-ciphertext multiplication over RLWE ciphertexts,
i.e., RLWE(m0) · RLWE(m1) = RLWE(m0 ·m1).

• HOMPOLYp̃(RLWE(m̃)): For any polynomial p̃[x],
HOMPOLYp̃(RLWE(m̃)) represents the homomorphic
evaluation of p̃[x] over the input ciphertext, i.e.,
HOMPOLYp̃(RLWE(m̃)) = RLWE(p̃[m̃]).

• ROTATION(RLWE(m̃), d̂): For a given ciphertext
RLWE(m̃), ROTATION(RLWE(m̃, d̂) outputs a new cipher-
text RLWEout(m̃[X d̂]), i.e., the coefficient of the plaintext
polynomial is rearranged by the parameter d̂.

• EXTPRODUCT(RGSW(m̃0),RLWE(m̃1)): Given two
encoded plaintext m̃0 and m̃1, EXTPRODUCT is another
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way of carrying out homomorphic multiplication where
EXTPRODUCT(RGSW(m̃0),RLWE(m̃1)) = RLWE(m̃0 ·
m̃1). In general, EXTPRODUCT runs faster and generates
significantly less noise compared to a straightforward homo-
morphic multiplication.

• SIMD-PBS(RLWE(m̃), T (x)): Recently proposed
in [39], SIMD-PBS is basically a SIMD-version of the
PBS operator, where the function T act over all elements
of m̃ in a coefficient-wise manner, i.e., RLWE(T (m̃)) =
SIMD-PBS(RLWE(m̃), T (x)).

2.2.3. Conversion Operators. To support the evaluation
of both logic and arithmetic functions, ciphertext format
conversion operators are proposed to achieve the best of both
worlds. Here, we mainly consider four conversion operators:
EXTRACTLWE and PACKLWE that convert the ciphertext
between the LWE format and the RLWE format [8, 35, 87,
88], as well as STOC and CTOS that convert the underlying
plaintext format in an RLWE ciphertext between the slot
encoding and the coefficient encoding [89, 90].

• EXTRACTLWE: EXTRACTLWE can extract an ele-
ment of the encoded vector in an RLWE ciphertext ct
(ct ∈ RLWEN,Qs̃ (m̃)) into an LWE ciphertext of the form

EXTRACTLWE(ct, i) → LWEN,Qs (m̃i), i ∈ {1, · · · , N}.

Here, the equation extracts the i-th plaintext message m̃i

encrypted in the RLWE ciphertext ct.
• PACKLWE: PACKLWE can pack a set of LWE cipher-

texts {cti}i∈⟨N⟩, cti ∈ LWEN,Qs (m[i]) into a single RLWE
ciphertext:

PACKLWE({cti}i∈⟨N⟩) → RLWEN,Qs̃ (m̃),

where the set of LWE ciphertexts encrypt each element of
the plaintext vector m, and the output RLWE ciphertext
encrypts m̃ such that m̃i = m[i].

• STOC and CTOS: Let σs be the slot encoding and σc
the coefficient encoding, we have that

RLWE(∆σc(m)) = STOC
(
RLWE(∆σs(m))

)
, and

RLWE(∆σs(m)) = CTOS
(
RLWE(∆σc(m))

)
.

3. The CHLOE Compiler Framework

In this section, we first describe the challenges for
compiling loops over FHE in Section 3.1. Then, we sketch
the high-level overview of CHLOE and the set of proposed
multi-level intermediate representations (IRs) in Section 3.2
and Section 3.3, respectively.

3.1. Problem Formulation and Key Observations

As mentioned, to compile general programs over FHE,
the transformation and optimization of loops can be both
crucial and challenging. On one hand, instructions outside
loops in application programs tend to be one-time operations
that are lightweight and deterministic. On the other hand,
the evaluation of loops often involves repeated executions of

complex computations with irregular branching structures.
Therefore, the main objective of this work can be formulated
as the following question. How can we architect a compiler
infrastructure such that programs with non-trivial loop struc-
tures can be transformed into efficient algorithms over FHE?
Here, we list the main obstacles against the design of such
compiler and provide our key observations.

Challenge and Observation 1: The first challenge
against loop transformation over FHE rises when the main
loop body contains both conditional statements and arithmetic
operations. As illustrated in Table 1, most existing FHE
compilers, such as HECO [24] and Viaduct-HE [43], only
support the unrolling and vectorization for loops containing
only arithmetic operators, i.e., additions and multiplications.
While some recent work [16] can compile loops containing
arithmetic operations mixed with conditional statements, the
transformed code segments cannot be optimized using the
SIMD FHE operators, resulting in degraded performance
of the generated programs. To tackle with such challenge,
our first key observation is that the main loop body can be
segmented into different code blocks (similar to the idea of
loop distribution), such that the conditional and arithmetic
operations can be separately unrolled and vectorized.

Challenge and Observation 2: The second difficulty is
how to compile oblivious loops, i.e., loops with private loop
conditions. As explained in Section 1.2, handling oblivious
loops is hard for both FHE and general MPC compilers,
where the compiler may not always be able to decide the
exact exit point of the loop. Some existing work [15] rely on
client-server interactions to periodically check the status of
the loop condition, which can be heavy in both computation
and communication. Therefore, our second observation is
that many real-world loops are well-structured and can
be optimized through static and dynamic loop analysis
techniques.

3.2. CHLOE Workflow

Similar to recent FHE compiler constructions [16, 24,
26, 33], CHLOE is also developed on top of the MLIR
framework [91]. To cope with the advanced looping structures
and complex FHE schemes, however, we need to reformulate
the designs of the MLIR layers to enable the proper mapping
of FHE operators. The overall dialect architecture and
compilation pipeline of CHLOE is sketched in Figure 2,
and we provide a high-level explanation for each of the
compilation stages as follows.

① Front-End Passes: CHLOE accepts C-like plaintext
code as surface language and uses Polygeist [92] as the
front-end module to transform the high-level language into
static single assignment (SSA) style IRs. Since Polygeist
produces a program with high-level plaintext MLIR dialects,
we need to map the operators and data types of the program
produced by Polygeist to the unified fhe dialect. Within the
fhe layer, the program is further segmented into arithmetic
and non-arithmetic regions based on the method in [16].
Note that, at this stage, loops are treated as a black-box
region and remain unchanged.
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Section 5: Oblivious LoopSection 5: Oblivious Loop

Section 4: Transparent LoopSection 4: Transparent Loop
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Figure 2. An overview on the compilation flow of CHLOE.

② Loop Optimization Passes: In this stage, CHLOE
establishes a compilation pipeline tailored on dealing with
non-trivial loop structures. Here, the lowering passes are
split into two routines: transparent loop lowering (Section 4)
and oblivious loop lowering (Section 5). Transparent loops
can be further classified based on the operations within the
loop. Loops composed only of additions, subtractions, and
multiplications (i.e., arithmetic operations) are defined as
arithmetic-circuit loops. In contrast, loops that contain both
arithmetic and non-arithmetic operations (such as conditional
statements) are defined as mixed-circuit loops. Since trans-
formations for arithmetic-circuit loops are relatively well
studied [24, 43], we integrate the proposed optimization
passes into CHLOE. Meanwhile, for the transformations of
mixed-circuit loops, the core passes include loop segmenta-
tion, segment type analysis and cost-aware type alignment,
which are further elaborated in Section 4. Lastly, for oblivious
loops, CHLOE inspects the structures of the loops to apply
branch-related optimizations and closed-form analysis, such
that the high costs of full loop unrolling can be mitigated or
avoided.

③ Back-End Passes and Code Generation: After the
loop-specific transformations, the program is ready to be
lowered to an output binary with FHE-compatible data and
control flows. In the back-end passes, higher level IRs
are mapped into the lwe, rlwe dialects, where the exact
encryption parameters for the respective ciphertexts can be
properly determined. Finally, the program will be lowered
to specific FHE operators implemented by a back-end FHE
library via the MLIR EmitC toolchain.

3.3. Dialects in CHLOE

Here, we discuss the IR structures for CHLOE in detail.
As shown in Figure 3, IRs in CHLOE form four main dialect
layers: plaintext layer, unified encrypted layer, operational
ciphertext layer and fundamental ciphertext layer. In each
of the different dialect layers, we define layer-specific type
aliases and operators, and the concrete constructions are
explained below.

Plaintext Layer: In the front-end of CHLOE, an input
program written in C is transformed into standard SSA-style
dialect IRs, which we define as the plaintext representation
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Figure 3. The dialect structure of CHLOE.

layer. In this layer, dialects such as Arith and Memref are
adopted to express computation and data storage operations,
while Affine and Func are used to represent the control flows
and function structures of the input program. Optimization
passes for generic programs, such as common sub-expression
elimination and dead code elimination, are deployed based
on the existing front-end compilation infrastructure. How-
ever, since CHLOE does not make use of domain-specific
languages, there is no clear distinction between plaintext
computation and encrypted data processing in the plaintext
layer.

Unified Encrypted Layer: In this layer, the input pro-
gram represented as IRs in the plaintext layer is transformed
into the fhe IR. The primary goal of establishing a unified
fhe dialect is to differentiate plaintext computations from
ciphertext operations as much as possible, such that the
amount of computation over FHE can be minimized. Thus,
we define two basic data types in the fhe: plain and
cipher. In CHLOE, all of the input variables and their
subsequently derived variables are marked as cipher, while
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other variables are considered as type plain. Based on such
definition, we can optimize away complex computations over
data marked as plain types, as these computations can
be taken care of by standard (non-encrypted) compilation
pipelines.

Operational Ciphertext Layer: We point out that a
unified fhe dialect is inadequate for fine-grained optimiza-
tions, especially for non-scalar variables. For instance, an
encrypted vector can be lowered to either an array of
RLWE ciphertexts, a single RLWE ciphertext or an array of
LWE ciphertexts, depending on the input vector length and
subsequent computations. Therefore, we further granulate the
fhe dialect into type-specific dialects such as encVec and
encLoop. In encLoop dialect, we define operations suited
for loop structures. For example, a new IF operation is defined
to simplify optimizations for loop segmentation, dependency
analysis, and further processing for loop conditions. In
encVec dialect, we define data types including EncVector
and PlainVector. We propose multiple optimization
passes based on computation cost analysis to vectorized
variables and configure the exact FHE attributes such as
encoding method, encoding parameters, and data layouts
assigned to the EncVector and PlainVector variables.

Fundamental Ciphertext Layer: After going through
the optimizations made in the higher layers, we define low-
level dialects that have strict one-to-one mappings with the
application-program interfaces (APIs) of the underlying FHE
implementation library. Since CHLOE uses three types of
ciphertexts, we construct the LWE, RLWE, and RGSW
dialects to represent different ciphertext formats and the
associated computation and conversion operators introduced
in Section 2 for final executable generation.

3.4. Threat Model

The threat model for CHLOE is similar to that of
most existing FHE compilers [16, 24, 33, 45], where we
have provable security under a semi-honest secure two-
party computation model. In such scenario, both the client
and the server are semi-honest adversaries against each
other, where both parties do not actively manipulate the
computation or compilation processes but only passively
observes the ciphertexts (or plaintext results) in an attempt
to gain knowledge of data that are private to the other party.
Note that, we assume that all input data to the compiled
program are owned by the client. Hence, the compilation
process can be executed either by the client or by the server,
since a semi-honest adversary will honestly execute the
compilation procedures to produce the output programs over
FHE.

4. Transparent Loop Transformation

As mentioned earlier, transforming transparent loops
into FHE-friendly forms is a key compilation pipeline in
CHLOE. Throughout this section, we use the code block
shown in Figure 1 as an example input program, which
a data analysis application commonly used in querying

databases. The program starts by first identifying if the value
of the data is less than 400 using an IF-ELSE statement.
If the condition holds, the data[i] value loaded in that
iteration is accumulated into the result variable. Therefore,
the example program in Figure 1 demonstrates a typical
loop that contains both arithmetic and non-arithmetic (IF
statement) operations within its loop body, which most
existing compilers cannot efficiently process.

4.1. Transformation Overview

As shown in Figure 2, the transformation of a mixed-
circuit transparent loop contains three sub-procedures: (1)
loop segmentation, (2) segment type analysis, and (3) type
alignment. Here, we use the example program in Figure 1 to
give an overview on the above three sub-procedures, where
further details can be found in the respective sections.

Before processing the loop, note that we have already
transformed the input program from the C-level description
into the fhe dialect, as shown in Figure 4(a) for the example
program in Figure 1. Here, due to the encryption of the
condition variable, the IF statements over FHE are trans-
formed into a sequence of instructions to execute all possible
branches followed by a multiplexing of the conditioned result.
After the IF transformation, operations inside the main loop
body becomes a purely sequential structure, and we are ready
to further process the loop.

(1) Loop Segmentation (Section 4.2): Here, we first an-
alyze loop-carried dependencies in regions of non-arithmetic
operations. Then, we identify regions in the main loop body
that can be segmented, where each loop segment contains
either arithmetic or non-arithmetic operations, but not both.
For example, for the loop in Figure 4(a), Line 5–6 is a
segment of non-arithmetic operations that can be completely
separate from Line 7–12, which are two condition branches
composed of purely arithmetic circuits. Therefore, by loop
segmentation, we can distribute a complex loop into multiple
simple loops, each containing only a single type of operation.

(2) Segment Type Analysis (Section 4.3): After seg-
mentation, we analyze the operator type for each of the
individual segments. Meanwhile, we establish cost models
for each of the FHE operators in terms of their computation
complexities to serve as a foundation for later optimization
passes.

(3) Cost-Aware Type Alignment (Section 4.4): In
this step, we perform type alignment, where concrete data
types and encodings of the input and output ciphertexts
are instantiated for each of the segmented loop pieces. The
rewriting rules for data type alignment are supported by the
cost model based on the dependency analysis in between
different segments. Lastly, the respective scheme-switching
and encoding-switching operators are inserted to bridge
different ciphertext formats inside and outside the loop.

4.2. Loop Segmentation

To leverage the efficient SIMD packing capabilities of
both the arithmetic and non-arithmetic FHE operators, we
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1 func . func @data analysis(%arg0 : cipherVec<512>) −>
c ipher {

2 %c400 = fhe . constant 400 : p l a i n
3 %c0 = fhe . constant 0 : p l a i n
4 %0 = af f ine . for %arg1 = 0 to 512 i t e r a r g s (%arg2 =

%c0 ) −> ( c ipher ) {
5 %1 = fhe . load %arg0[%arg1 ] : cipherVec<512>
6 %2 = fhe .cmp l t , %1, %c400 : c ipher
7 %3 = af f ine . i f %2 −> ( c ipher ) {
8 %4 = fhe . add %arg2 , %1 : c ipher
9 af f ine . yie ld %4 : c ipher

10 } else { af f ine . yie ld %arg2 : c ipher }
11 af f ine . yie ld %3 : c ipher
12 }
13 return %0 : c ipher
14 }

(a) The intermediate representation version of data analysis program.

1 LWECipher data ana lys is (RLWECipher data )
2 {
3 RLWECipher d i f f = RLWE Sub( data , 400) ;
4 / / Batched Comparison
5 vector<LWECipher> d i f f V e c = SToCThenExtract ( d i f f ) ;
6 RLWECipher index = SIMD PBS( d i f fVec , LUT SIGN) ;
7 RLWECipher tmp = RLWE MULT( data , index ) ;
8 RLWECipher rotTmp ;
9 / / Resul t Accumulat ion

10 for ( i n t i = 1 ; i <= log2 (512) , i ++) {
11 rotTmp = RLWE Rotate ( tmp , 512/pow(2 , i ) ) ;
12 tmp = RLWE Add( tmp , rotTmp ) ;
13 }
14 LWECipher r e s u l t = Sample Extract ( tmp , 0) ;
15 return r e s u l t ;
16 }

(b) The data analysis program after loop transformation.

Figure 4. Two programs calculating the sum of all data less than 400 out of a vector. (a) the input program of CHLOE represented in SSA IR format,
which performs a comparison individually in each iteration and calculates aggregation if the condition is satisfied. (b) the output program of CHLOE,
which transforms the comparisons into a SIMD functional bootstrapping and a batched multiplication to improve the efficiency of the program.

SEGMENT
u ∈ {Inputs,Variables} OP TYPE = {ARITH,NonARITH} {useOpi}i∈N ← u.getUseOp Type(useOpi) ! = Type(u.op)

Initialize segOp← SEGMENTOP segOp.setSegID(seg id) u.replaceUse(i)← segOp segOp.setUse← useOpi

GROUP
u ∈ {Inputs, V ariables} seg id← getSegID(u.ParentOp)

u.op.setSegID← seg id

Figure 5. The graph rewriting rules for operator grouping in CHLOE.

need to segment the main body of the loop into mutually-
independent regions of purely arithmetic or non-arithmetic
circuits, and then aggregate the results from each of the loop
segments. We refer to this process as the loop segmentation
stage, and the concrete steps are explained as follows.

(i) Branch Flattening: Since selective execution is not
compatible with FHE computation, branch structures need
to be flattened into sequential operators over ciphertexts.
Hence, we traces the Def-Use chain of all variables appear
in branches. If a variable is referenced outside the branch,
we insert a multiplexing operation before the reference point
to keep or clear the value stored in the variable depending
on the encrypted IF condition.

(ii) Loop-Carried Dependency Analysis: The aim of loop
segmentation is to separate loops of different circuit types,
such that the SIMD capability of the low-level RLWE cipher-
text can be effectively utilized. However, we observe that non-
arithmetic operations with loop-carried dependencies can be
difficult to batch. In contrast, arithmetic operations with loop-
carried dependencies, such as array aggregation and inner
product, are subject to SIMD optimization. Consequently, if
any loop-carried variables are detected to act as operands in
non-arithmetic operations, we stop trying to further segment
and batch the loop. Otherwise, the loop is marked as SIMD-
compatible for subsequent optimization passes.

(iii) Operator Grouping: In this step, we split the code
block inside the main loop body into different segments.
Based on the type of operations within the loop segment, we
construct arithmetic and non-arithmetic loop segments. In
other words, an arithmetic loop segment refers to the case
where all operations contained in the segment are arithmetic

Algorithm 1: Loop Splitting
Input : DAG of the program segment within a loop

G = (V, E) , total number of segments K
Output : Transformed DAG of the program G = (V, E)
▷ Code Segments Generation

1 for u ∈ V do
2 op = u.getOp
3 Segop.seg id.append(op)
4 end
▷ Boundary Variable Vectorization

5 for Segk ∈ ∪{Segi} do
6 Inputs,Outputs← IdentifyLoopIO(Segk)
7 for u ∈ {Inputs,Outouts} do
8 if u is a Iterative Variable then
9 u′ ← AggregateIterations(u)

VecInputs.append(u′) // or VecOutputs
10 else
11 VecInputs.append(u) // or VecOutputs
12 end
13 end
14 Loopk ← GenLoop(Segk,VecInputs,VecOutputs)
15 end

Return : {Loopk}k∈K

operations (i.e., only additions, subtractions, multiplications
and rotations). In Figure 5, we show the rewriting rules that
group operations into different loop segments with Def-Use
dependency analysis. Roughly speaking, when a variable is
referenced multiple times by operators that have incompatible
types with each other, we insert a segmentation operator at
each of the operator-type-switching boundaries. We denote
this class of variables as boundary variables.
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(iv) Loop Splitting: In (iii), we identify the segment
boundaries and insert segmentation operators. Next, we
distribute the segments of loop into different independent
loops. The primary tasks here are dependency analysis
and variable vectorization. In Algorithm 1, we show the
concrete procedures for loop splitting. First, on Line 1-7, we
reconstruct the loop according to the execution order of the
instructions, ensuring that all variables needed in downstream
loop segments are produced in the preceding segments.
Second, on Line 8–18, boundary variables need to be
transformed into vectorized variables since their definitions
and usages are separated into different loop segments. We
provide a concrete example to illustrate the transformation
process in Section A.1.

4.3. Segment Type Analysis

After loop segmentation, long and complex loops are
broken down into simple loops that are either arithmetic or
non-arithmetic. Next, we proceed the optimization process
by applying segment type analysis, a step that analyze each
of the loop segments and establish their cost models. In
particular, the most important optimization is if SIMD is to
be applied to the loop segments, since vectorized evaluation
does not always improve computational efficiency, especially
the number of batched elements are small.

4.3.1. Vectorization Analysis. Here, we identify the vec-
torization techniques that can be applied to both arithmetic
loop segments and non-arithmetic loop segments.

Non-Arithmetic Loop Segments: In this work, we utilize
the PBS and SIMD-PBS to evaluate all non-arithmetic
functions. Since PBS and SIMD-PBS virtually permit any
non-arithmetic functions to be applied to a ciphertext, we can
group consecutive non-arithmetic functions into a single PBS
invocation function composition to minimize the number of
bootstrapping operations, e.g.,

PBS MERGE
PBS(PBS(f,u), g),u.T ype ∈ EncScalar

PBS(u, f ◦ g)

Hence, a non-arithmetic loop segment has two transformation
options. First, since there is no dependency within the loop,
we can vectorize the entire loop segment with SIMD-PBS
operations. Second, when the overall number of iterations is
small, we can also completely unroll the loop and evaluate
the statements within the loop iteration-by-iteration.

Arithmetic Loop Segment: Since only arithmetic oper-
ations are permitted in here, we can fully use the SIMD
batching technique proposed in existing literature [16, 19, 24].
Therefore, we have three different options when transforming
the loop. First, we can transform the loop iterations to
SIMD-style computations on RLWE slot-encoding cipher-
texts. Second, the loop can be converted into vectorized
computations on coefficient-encoding ciphertexts. Third, as
mentioned above, if the number of iterations is limited, we
can fully unroll the loop directly.

Algorithm 2: Cost-Based Program Transformation
Input : DAG of the input program G = (V, E), where V is

a set of code segments, and E is a set of
dependencies between code segments.

Output : Transformed program DAG with minimum total
computation cost.

1 Vloop ← loop segments in V
2 for each vertex v ∈ Vloop do
3 if Type(v) == Arithmetic then
4 Transform(v)←

{Unroll, Slot SIMD,Coeff SIMD}
5 else if Type(v) == Non− Arithmetic then
6 Transform(v)← {Unroll,PBS SIMD}
7 end
8 end
9 min cost←∞

10 Gmin ← {}
11 for each Transform Combination for all vertex v do
12 current cost← 0
13 for each vertex v ∈ V do
14 if v ∈ Vloop then
15 current cost←

current cost+ Cost(Transform(v))
16 else
17 current cost← current cost+ Cost(v)
18 end
19 end
20 for each edge (u, v) ∈ E do
21 current cost←

current cost+ Cost(Conversion(u, v))
22 V.append(Convertion Operation)
23 end
24 if current cost < min cost then
25 min cost← current cost
26 Gmin ← GCurrent

27 end
28 end

Return : Transformed DAG with transforms Gmin

4.3.2. Cost Model Establishment. Given the large number
of possible transformation options, it is crucial to evalu-
ate each of the options based on a concrete set of cost
models. In CHLOE, we establish the set of cost models
for each of the FHE operators described in Section 2.2
based on the number of polynomial multiplication calls,
since polynomial multiplication is the dominant cost for
most FHE operators. Our analysis includes two classes
of operators: namely, basic FHE operators and advanced
FHE operators. Basic operators include plaintext-ciphertext
multiplication, ciphertext-ciphertext multiplication, ciphertext
rotation, and the external product operators. Advanced oper-
ators are those that can be built out of the basic operators,
such as homomorphic linear transformation, homomorphic
polynomial evaluation, programmable bootstrapping and
SIMD programmable bootstrapping. Due to space constraint,
the complete set of operators along with the cost analyses
are placed in Section A.2.

4.4. Cost-Aware Type Alignment

Based on the cost models, we align ciphertext and
operator types in a cost-efficient manner. Here, we formulate
the program into a Def-Use dependency graph G = (V, E),
where each vertex is a code segment and edges represent
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the dependencies between the segments. We note that any
two neighboring vertices in G have different operation types
due to the above loop segmentation passes. Therefore, when
evaluating the overall computation cost of the program, we
consider not only the costs of loop segments per se but
also the costs of ciphertext type conversion and input/output
encoding alignments. Hence, the cost model of the overall
program can be formulated as:

Costprog =
∑
V

Costseg(vi)+
∑
E

Costconv(Evi→vj ). (4)

To achieve efficient cost-based type alignment, we pro-
pose the algorithm illustrated in Algorithm 2 to find a graph
path with the minimal cost. On Line 1-7 in Algorithm 2,
we define the potential transformations based on the loop
segment types as analyzed in Section 4.3. Then, on Line 11-
24, we traverse all the possible transformation combinations
across the graph. In this process, conversion operations
between segments are inserted automatically for ciphertext
type alignment based on the rewriting rules. In each traversal
iteration, we assign different transformation types to the
vertices (i.e., loop segments), and the overall cost is updated
at the end of the iteration to identify if the current graph
achieves the minimal evaluation cost. Lastly, we execute the
program transformation according to Gmin, the segmentation
graph with the minimal amount of computational cost. At
this stage, all processes in the transparent loop transformation
stage has finished, and the program is ready to be further
lowered to fundamental ciphertext dialects for executable
program generation.

5. Oblivious Loop Transformation

As noted in Section 3.1, oblivious loops are much harder
to compile than transparent loops (Section 4) due to the
obliviousness of the private loop conditions. By default,
the encryption of the loop condition turns any loop into an
infinite one. However, by carefully inspecting the different
looping structures, we identify three main types of oblivious
loops: closed-form oblivious loops, numeric oblivious loops,
and general oblivious loops. First, as later explained in
Section 5.1, we discover that a compiler can help to trans-
form closed-form oblivious loops into single-line analytical
expressions that do not involve iterative control structures,
significantly improving the actual program performance.
Second, by analyzing the data types of the loop variables, we
can statically determine the termination condition for certain
loops (termed numeric loops in Section 5.2). Lastly, general
oblivious loops refer to loops that do not give any plaintext
information on their termination conditions at compile time.
For general oblivious loops, we need to add protocol-level
primitives to help the program evaluator determine the exact
loop termination status.

The main steps that CHLOE takes to handle oblivious
loops are sketched in Figure 6. First, in (1) closed-form
analysis (Section 5.1), we analyze and try to derive closed-
form expressions for the input loop segment. If the loop
cannot be expressed in closed form, we perform (2) static

Oblivious Loop 
Segment

(1) Closed-Form
Analysis

(2) Static
Analysis

Recurrence 
Inference

(3) Branch 
Optimization

Interactive 
Execution

Dynamic 
Optimization

Numeric
Loops

General
Loops

Figure 6. The overall transformation process for oblivious loops.

analysis (Section 5.2) to determine the exact loop type. Next,
in step (3) branch optimization (Section 5.3), we carry out
fine-grained control-path reduction to further optimize the
performance of numeric oblivious loops. In what follows,
we provide more detailed explanations for each of the
transformation step.

5.1. Closed-Form Analysis

In CHLOE, once a loop is identified to be oblivious,
closed-form analysis is first applied to the loop before any
other optimization techniques. Here, we take an α-order
(α ∈ N) recurrence relation R on a sequence f(κ) for κ ∈ N
for example, where

f(κ+ α) = R(f(κ), · · · , f(κ+ α), κ)). (5)

It is easy to see that Eq. (5) is equivalent to a FOR
loop that apply some function R on f(κ) and κ in the
(κ+ α)-th iteration step. When κ is a private variable (i.e.,
encrypted), such FOR loop can be treated as unsolvable
by existing compilers [37]. In contrast, we observe that
a number of recurrence relations, such as those belong to
Gosper-summable and C-finite recurrences, have closed-form
expression where the function f(κ) can be directly solved
without iteration. For instance, C-finite recurrence relations
can be reduced to the general form of

f(κ) = ã0(κ)Θ
κ
0 + · · ·+ ãψ−1Θ

κ−1
ψ−1, (6)

where Θ0, · · · ,Θψ−1 are ψ distinct roots of the charac-
teristic polynomial of f(κ), and ãi(κ)’s are polynomials
with degrees less than the multiplicity of Θi for i =
0, · · · , ψ−1 [93, 94]. In particular, it is known that any linear
recurrence with equality-checking conditional statements can
be formulated as C-finite recurrence relations [94]. Therefore,
by applying closed-form analysis, we are able to efficiently
execute a number of oblivious loops that are practically
useful (as exemplified in Section 6.2.2).

Remark: Note that, expressing a loop in its closed
form can be quite non-trivial for programmers who are
not familiar with FHE. For example, the closed form
for a general Fibonacci program Fibonacci(a, b, n) is

Fn = (
√
5−1
2
√
5
a+ 1√

5
b)( 1+

√
5

2 )n+(
√
5+1
2
√
5
a− 1√

5
b)(

1−
√

(5)

2 )n.
Since coding in such a manner can be highly counter-intuitive,
we believe that compiler-assisted loop translation can be
essential in enhancing the practical performance of general
programs over FHE.
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5.2. Static Loop Analysis

Static loop analysis is a typical tool in plaintext program
synthesis to infer the worse-case number of iterations at
compile time [95–97]. For oblivious loops, static analysis
becomes crucial in inferring the structures and termination
conditions of loops. For programs over FHE, we basically
have two main types of oblivious loops: the numeric type
and the general type, where the classification is based on
whether the loop variable is an induction variable. If the
loop variable is an induction variable, it is referred to as
a numeric oblivious loop. For numeric oblivious loops, we
can easily decide the maximum number of iterations based
on the data type of the induction variable. In addition, it is
easy to see that an induction variable with narrower domain
results in less number of loop unrolls. Thus, CHLOE permits
the definition of custom data types, such that the program
designer can decide on the exact number of loop bounds to
reduce performance overheads. Meanwhile, when the loop
variable is not inductive, the loop is known as a general
oblivious loops, and it may not be possible to decide how
much loop unrolls are needed at compile time. In such case,
client-server communications need to be inserted into the
final protocol to guarantee program termination, e.g., [15].

5.3. Branch Optimization

After a numeric oblivious loop is fully unrolled, within
each of the unrolled iterations, the encrypted execution result
needs to be multiplied by the encrypted loop condition,
such that the correct iteration step can be homomorphically
selected. Consider the following piece of loop example.

for (uint8_t i = 0; i <= cipher(200); i++){
if (a[i] < 10)
result = a[i];

}

Since the loop condition cipher(200) is encrypted, we
need to homomorphically identify the termination condition,
i.e., i == cipher(200), which translates to:

28−1∑
i=0

(
cipher(τi) · cipher(li)

)
. (7)

Here, we define a vector ℓ where, for each li ∈ ℓ, li = 1
when i = 200 and li = 0 elsewhere. Meanwhile, τi is the
value in the result variable after executing the main loop
body i times. In other words, since we do not know when to
stop, we have to fully unroll a loop originally of length 200
to a 28 = 256 one, and homomorphically select the loop
that iterated 200 times out of the 28 options.

To achieve such homomorphic selection, we basically
need to translate Eq. (7) into concrete FHE operators and data
types. Here, the main difficulty is how to efficiently generate
ℓ homomorphically, since the product between τ̃ encoding
different values of result and l̃ encoding the elements
in ℓ can be easily computed using a SIMD multiplication
over RLWE ciphertexts (more detailed explanations are

TABLE 2. THE ENCRYPTION PARAMETERS SETS

Works Scheme Parameters

CHLOE
TFHE n = 1024, q = 216 + 1

BFV N = 215, log2(Q) = 673, t = 216 + 1

HEIR [16]
TFHE n = 4096, log2(q) = 96

CKKS N = 213,Max((log2(Q)) = 192

PEGASUS [8]
TFHE n = 1024/4096, log2(q) = 45

CKKS N = 216,Max(log2(Q)) = 599

provided in the full manuscript). To compute ℓ, we have three
different approaches: the SIMD-PBS-based, the polynomial-
approximation-based, and the EXTPRODUCT-based. In short,
let ĩ and ˜200 be two polynomials whose coefficients are
all fixed to the values of i and 200, respectively, for the
SIMD-PBS approach, the evaluation of CIPHER(l̃) can be
given by

RLWE(l̃i) = SIMD-PBS(RLWE(̃i)− RLWE( ˜200)), TZ),
(8)

where TZ(x) is the zero-testing function, i.e., TZ(x) =
1 if and only if x = 0. In contrast, for the approximate
polynomial case,

RLWE(l̃i) = HOMPOLYpTZ
(RLWE(̃i)− RLWE( ˜200)),

(9)

where pTZ is a polynomial that approximates the TZ func-
tion. Finally, when the encrypted loop condition is an input
to the program, we can actually directly encrypt the condition
200 to be an RGSW ciphertext as RGSW(x−200). In such
case, we can skip evaluating Eq. (7) altogether. Instead, we
can encode each and every τj for j = 0, · · · , 28 − 1 into the
coefficients of a polynomial r̃ (i.e., r̃ =

∑28−1
j=0 τjx

j) and
compute

EXTRACTLWE
(
EXTPRODUCT(r̃,RGSW(x−200)), 0

)
,

(10)

and we get LWE(τi). Essentially, we rotate the r̃ poly-
nomial such that the fifth coefficient τ200x200 becomes
the constant term τ200x

0. We then perform LWE(τ200) =
EXTRACTLWE(RLWE(r̃ ·x−200), 0) to extract the constant
term and get the output LWE(τ200) for the loop. Since the
evaluation of Eq. (10) only involves a single ciphertext multi-
plication, the EXTPRODUCT-based approach is significantly
faster than the other two. However, the underlying assumption
here is that the encrypted loop condition cipher(200) can
be directly lowered into RGSW(x−200), which may not
always be true in the general case.

6. Evaluation

In this section, we evaluate the performance of programs
compiled by CHLOE. We first compare CHLOE against
the state-of-the-art general-purpose FHE compilers that
support mixed-circuit compilation, such as Transpiler [31],
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Figure 7. The results for the run time of compiled programs containing transparent loop programs in benchmarks of: (a) database querying (b) SVM
classification, (c) iterative threshold algorithm for image segmentation, and (d) KMeans classification with two centroids.
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Figure 8. Execution time for different program benchmarks containing oblivious loops where the maximum number of iterations is set to be 64. PA refers
to the polynomial-approximation-based branch optimization approach, and EP means the EXTPRODUCT-based approach.

HEIR [16], and programs manually crafted based on the
PEGASUS [8] library in Section 6.2. Then, we compare
CHLOE against approximation-polynomial based compila-
tion approach based on the OpenFHE [98] framework in
Section 6.3. Finally, in Section 6.4, we provide memory
usage analysis for the generated programs to provide a more
comprehensive view of CHLOE.

6.1. Evaluation Setup

We develop CHLOE based on the MLIR 19.0.0 frame-
work and C++17. The final output program from the CHLOE
compiler targets a unified FHE library built on top of
SEAL [86], which is publicly available1. Our benchmark
evaluations are conducted on a machine equipped with an
Intel Xeon Gold 5318Y processor and 512GB of RAM, using
a single thread for computation.

The FHE parameters instantiated in this work are sum-
marized in Table 2, which are configured to achieve 128-bit
security measured by [99]. Note that the RNS representation
is employed for both BFV and CKKS ciphertexts, where the
upper bound for each modulus is Max(log(qi)) = 60.

6.2. Benchmarks

Here, we evaluate the efficiency of programs compiled
by CHLOE using a set of benchmark programs that are
specifically crafted to test the loop-related optimizations
under both transparent and oblivious loop conditions.

1. https://github.com/heir-compiler/CHLOE. Note that the implementation
does not contain the SIMD-PBS operator.

6.2.1. Evaluations for Transparent Loop Benchmarks.
When compiling programs with transparent loops, we demon-
strate the efficiency of CHLOE on four different applications:
database query, SVM classification, image segmentation and
KMeans classification. We note that, since PEGASUS does
not have compilation capability, we evaluate the benchmark
performance using manually-crafted programs implemented
over the library [100].

Due to the complexity of the KMeans circuit, which
prevents the Transpiler from successfully compiling it for
more than 8 data points, the experiment results of Transpiler
KMeans classification are excluded from the evaluation.

Performance: As depicted in Figure 7, across all four
benchmark evaluations, CHLOE achieves comparable or
better execution time compared to Transpiler, PEGASUS
and HEIR. Overall, CHLOE achieves a speedup of 1×–102×
for database querying, 1×–140× for SVM classification, 1×–
172× for image segmentation, and 1×–172× for KMeans
classification. Here, we observe that, while the hand-tuned
programs of PEGASUS run faster when the data size is small,
CHLOE runs significantly faster as the data size increases.
By amortizing the bootstrapping cost with SIMD-PBS, the
increase in execution time of CHLOE is nearly independent
of the vector size. Whereas, the latency of programs produced
by other FHE compilers remain linear with respect to the
vector size.

6.2.2. Evaluations for Oblivious Loop Benchmarks. To
evaluate the performance of oblivious loops on existing FHE
compilers, we rewrite the input programs to transform the
oblivious loops into transparent loops, inserting IF statement
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Figure 9. Execution time for evaluating SIGN and LOGISTIC functions with
polynomial approximation used in DaCapo and cost-aware CHLOE PBS.

to test the equality between the induction variables and
the loop conditions. Meanwhile, as explained in Section 5,
CHLOE employs different branch optimization strategies
to compile the oblivious loop depending on the induction
variable. To show the performance trade-offs, we provide dif-
ferent versions of the same application in the experiment. For
instance, when evaluating the program of conditional updates
on a variable-length vector, CHLOE uses EXTPRODUCT-
based approach to optimize the program when the loop
condition is directly given in program input and uses SIMD-
PBS-based approach to optimize the other version of the
program.

Performance: As illustrated in Figure 8, we present
the execution time for evaluating five different applications
with various compilers. All loop condition types used in
the benchmarks are restricted to uint6 t, translating to a
maximum iteration number of 26 = 64. Since we can derive
closed-form expressions for the Fibonacci and the Markov
state transition matrix benchmarks, such program benchmarks
run extremely fast on CHLOE, where end-to-end program
execution runs under 100 ms, translating to a speedup of
105× compared to [16, 31]. For the other three benchmarks
of compound interest, summation of variable-length vectors
and conditional vector updates, we implement the three
different types of loop branching as described in Section 5.3.
Overall, CHLOE achieves of 1.4×–2.2× faster evaluation
speed for compound interest and conditional vector update
computations, and 6×–50× faster for the summation of a
variable-length vector.

6.3. Comparison with Polynomial Approximation

In CHLOE, we primarily employ PBS and SIMD-PBS
to evaluate non-arithmetic operations. However, another
stream of compilers [27, 101, 102] focus on optimizing
CKKS scheme over mixed-circuit programs, where non-
arithmetic operations are carried out using polynomial ap-
proximations. To compare the efficiency of the CHLOE
against CKKS-type FHE compilers [27], we investigate
two common non-polynomial functions encountered in real-

world applications, namely, the Sign function for ho-
momorphic comparison and the Logistic function for
privacy-preserving data analysis. Since the state-of-the-art
CKKS-type compiler [27] is not open-sourced, we manually
implement the program based on techniques in [27] using the
OpenFHE library [98]. For fair comparison, we apply CKKS
bootstrapping after evaluating the non-arithmetic functions
to restore the multiplication levels.

As the result presented in Figure 9, when data size is
relatively small, CHLOE effectively uses the PBS from
standard TFHE to avoid heavy HOMPOLY operations. As
data size increases, CHLOE invokes SIMD-PBS for large
data sizes since the overall cost is amortized over mul-
tiple data. We note that the efficiency of SIMD-PBS is
related to the concrete function to evaluate. For instance,
evaluating Sign function is more efficient than Logistic
function over SIMD-PBS. In contrast, CKKS polynomial
approximation is more efficient in evaluating continuous
functions such as Logistic. Concretely, we generate a
103-order approximation polynomial for the Logistic
function and a 3989-order one for the Sign function using
the Chebyshev algorithm [103], both of which can achieve
exactly 9-bit data precision. From Figure 9, we can see that,
depending on the type of function and the size of the input
data, both polynomial approximation and SIMD-PBS can
outperform the other. Note that, since DaCapo treats CKKS
bootstrapping as a single call of FHE bootstrapping operator,
the performance differences shown in Figure 9 come from
the fundamental differences of FHE operators, rather than
compiler optimizations.

6.4. Discussions

While CHLOE provides substantial performance gains for
loop-containing FHE programs, we do identify the following
shortcomings and limitations that come as the costs of our
optimizations.

Memory Overheads: As illustrated in Figure 10, the
significant performance gains from segmenting SIMD-
compatible loops do result in worse memory consumption.
The memory overheads primarily come from the SIMDPBS
operator, and can be further reduced with certain operator
optimizations (e.g., [89]).

Nested Dependency: We note that, when there are
immediate data dependency between some of the arithmetic
and the non-arithmetic statements in the loop, the loop
segmentation cannot be performed. In such case, the loop is
transformed into a long series of IF –ELSE statements, and
evaluated in a similar way to the HEIR compiler. Hence, As
shown in Figure 7 and Figure 10, both latency and memory
consumption figures of CHLOE and HEIR come close
when there are nested dependencies exist in the application
programs (in this case a minimum index program). However,
we do point out that, when a loop contains both inseparable
(due to dependency) and separable statements, the compiler
can group the inseparable statements to form a new loop
that is separated from the separable statements, reducing the
negative performance impacts of such control structures.

13



Figure 10. Time-memory trade-off comparison across six benchmark programs. For SVM, KMeans, iterative threshold image segmentation and database
querying, CHLOE consumes more memory due to the use of SIMD-PBS when the number of input data becomes large. By using SIMD-PBS, CHLOE
provides approximately 100-fold reduction in latency. However, for programs with nested dependency and mixed-circuit data reuse, SIMD optimizations are
not applicable. Hence, under these conditions, the performance of CHLOE is comparable to HEIR in both latency and memory consumption.

Mixed-Circuit Data Reuse: At its current state, CHLOE
has a corner case limitation when a vector element
is simultaneously used as by an arithmetic statement
(e.g., c[i] = a[i] ∗ b[i]) and a non-arithmetic statement (e.g.,
if(a[i] > 0)). This is more of an implementation limitation,
and can be solved by inserting ciphertext conversion operators
in between segmented loops.

7. Conclusion

We propose CHLOE, a loop-compatible compiler frame-
work for the efficient transformation of general FHE pro-
grams. We introduce a set of new loop-related transformation
passes into a multi-level intermediate representation system
to effectively simplify and optimize complex loops with
interleaved arithmetic and non-arithmetic computations. In
the experiment, we show that programs generated by CHLOE
can outperform those of existing FHE compilers by orders
of magnitudes. Additionally, we demonstrate that automated
cost-based program compilation can significantly improve
the evaluation of loop-related FHE operations by up to 54×.
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Appendix Table A1. INSTRUCTIONS AND DATA TYPES SUPPORTED IN
SURFACE LANGUAGE

Instructions Data Type Description

+, += FP16 Addition
-, -= FP16 Substraction
∗, ∗ = FP16 Multiplication
= FP16 Assignment
== FP8 Equality comparison
>,≥ FP8 Greater than operator
<,≤ FP8 Less than operator
a[i] FP16 Member access from an array
if else FP8 If Else statement
for FP8/FP16 For Loop statement
Function Call FP8 Instructions defined by function call

1 func . func @data analysis(%arg0 : cipherVec<512xi16>)
−> c ipher {

2 %c400 = fhe . constant 400 : p l a i n
3 %c0 = fhe . constant 0 : p l a i n
4 %0 = fhe . constant 0 : cipherVec<512xi16>
5 af f ine . for %arg1 = 0 to 512 {
6 %1 = fhe . load %arg0[%arg1 ] : cipherVec<512xi16>
7 %2 = fhe .cmp l t , %1, %c400 : c ipher
8 fhe . store %2, %0[%arg1 ] : cipherVec<512xi16>
9 }

10 %3 = af f ine . for %arg2 = 0 to 512
11 i t e r a r g s (%arg3 = %c0 ) −> ( c ipher ) {
12 %4 = fhe . load %arg0[%arg2 ] : cipherVec<512xi16>
13 %5 = fhe . load %0[%arg2 ] : cipherVec<512xi16>
14 %6 = fhe . mult %5, %4 : c ipher
15 %7 = fhe . add %arg3 , %6 : c ipher
16 af f ine . yie ld %7 : c ipher
17 }
18 return %3 : c ipher
19 }

Appendix Figure A1. The data analysis program after loop segmentation
passes.

Appendix A.
Supplementary Materials

A.1. Example Program after Loop Segmentation

In Figure A1, we present the example data analysis
program after applying loop segmentation passes. Compared
to the original program, the loop structure is segmented
into two independent loops. The first loop on Lines 5-
9 performs the non-arithmetic operations for comparison
(Lines 5-6 in Figure 4(a)). The second loop on Lines 10-17
performs arithmetic operations for data aggregation (Lines
7-10 in Figure 4(a)) and inherits the loop-carried variable
%c0 from the original loop. To address the boundary variable
vectorization in the loop splitting step, a vector variable %0
with cipherVec<512xi16> type is created to store the
results of %2 from different iterations. Subsequently, all the
uses of %2 in the second loop are replaced by %0, with an
additional VECTORLOAD operator introduced on Line 13.

A.2. FHE Operator Cost Analysis

The cost models for each of the FHE operators are
summarized as follows. We established the cost models

based on complexity analysis in terms of the number of
degree-N polynomial multiplications required, where N is
the lattice dimension for the RLWE ciphertexts.

- Plaintext-Ciphertext Multiplication: The computation
cost between a plaintext polynomial and an RLWE ciphertext
RLWEN,

∏k
i=1 qi

s̃ (m̃) in RNS representation with k moduli
is LPM = 2k.

- Ciphertext Multiplication: For multiplications between
RLWE ciphertexts with k moduli, there exists 4k polynomial
multiplications. In the relinearization phase, the computation
between the linearization key and multiplied ciphertext
requires 2k polynomial multiplications. Therefore, the com-
putation cost of ciphertext multiplication is LCM = 6k.

- Ciphertext Rotation: In this operation, we omit the
automorphism part and only consider the cost of key switch-
ing. Considering a key-switching key with a decomposition
parameter ℓ, the cost of rotating a ciphertext with k moduli
is LRot = 2kℓ.

- External Product: In this operation, multiplication
is carried out between an RGSW ciphertext with a de-
composition parameter ℓ and an RLWE ciphertext with k
moduli. The process of an external product performs 2ℓ
plaintext-ciphertext multiplications in parallel. Therefore, the
computation cost of EXTPRODUCT is LEP = 4kℓ.

Based on the computation cost model of the above low-
level homomorphic operations, the cost of numerous high-
level homomorphic operations are given as follows.

- Linear Transform: By using the Giant-Step Baby-
Step (BSGS) technique, linear transform can be evaluated
on an RLWE ciphertext and a plain matrix A ∈ ZR×N

p

where R < N is power-of-2. The cost can be represented
as LLT = (2

√
R + log(N/R))LRot +

√
RLPM . We note

that encoding conversion operations CTOS and STOC are
equivalent to a linear transform with A ∈ ZN×N

p .
- PBS: For an LWE ciphertext LWEN,qs (m), PBS can be

evaluated through computing external product and accumula-
tion iteratively. Thus, the cost of PBS is LPBS = 2NLEP .

- SIMD-PBS: This operation can evaluate PBS on
R = 2r LWE ciphertexts simultaneously. The process
of SIMD-PBS is composed of a linear transform and a
HOMPOLY operation. Therefore, the cost of SIMD-PBS is
LSPBS = (2

√
R+log(N/R))LRot+

√
RLPM +

√
2tLCM .

- PackLWE: In this operation, R = 2r LWE ciphertexts
can be packed into an RLWE ciphertext either in slot
encoding or coefficient encoding. For slot encoding packing,
the procedure and computation cost are identical to SIMD-
PBS. For coefficient encoding [88], the cost of repacking
operation is LPack = (R− 1 + log(N/R))LRot.

A.3. Branch Optimization for Oblivious Loops

Here, we discuss how an oblivious loop can be evaluated
through a full loop unroll. Consider the same simple loop
segment as discussed in Section 5.3

1 for (uint8_t i = 0; i < cipher(200); i++){
2 if (a[i] < 10)
3 result = a[i]
4 }
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The idea of a full loop unroll is that, regardless of the exact
value of the encrypted condition cipher(200), the loop
will always terminate within 256 iterations since the value of
the uint8-t-type variable i can only take 256 possibilities
(i.e., i = 28). Consequently, we can transform the above
loop into the evaluation of the following equation:

256∑
i=0

resulti · (i == cipher(200))

where resulti is the value of result at the i-th loop
iteration. In other words, to generate an output variable from
a fully unrolled loop, we need to take an inner product
between a sequnce of particular variable (result in this
case) at each iteration step and the sequence of the loop
condition i == cipher(200) at each iteration step. Since
the condition i == cipher(200) only holds true when
i = 200, we have that

ℓ = [0 · · · 0 1 · · · 0], and (A1)
τ = [result0 result1 · · · result255], (A2)

and we can see that ℓ ◦ τ (where ◦ is the Hadamard product)
can homomorphically clear all but 200-th element in τ .
Therefore, we can encode both ℓ and τ as the coefficients
of two polynomials, l̃ and τ̃ , respectively, which can be
encrypted as ciphertexts or produced by homomorphic
computations. Then, a homomorphic Hadamard produce can
be used to clear the encrypted τ̃ using l̃.

Note that, in Section 5.3, we introduced three ways of
generating l̃. Since Eq. (8) and Eq. (9) involve the evaluations
of ciphertext bootstrapping, it appears that such approaches
are less performant than the solution in Eq. (10). Nonetheless,
we note that Eq. (10) requires the condition variable to be
encrypted in a special format, namely, RGSW(x−200), which
may not be practical if the conditional variable is generated
on-the-fly instead of given as inputs to the program. While
it is possible to convert both LWE and RLWE ciphertexts to
RGSW ciphertext with exponent encoding, such conversion
involves non-trivial use of circuit bootstrapping [71], and is
not as efficient as Eq. (8) and Eq. (9).
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