
Revisiting OKVS-based OPRF and PSI:
Cryptanalysis and Better Construction

Kyoohyung Han1, Seongkwang Kim1, Byeonghak Lee1, and Yongha Son2⋆

1 Samsung SDS, Seoul, Korea,
{kh89.han,sk39.kim,byghak.lee}@samsung.com

2 Sungshin Women’s University, Seoul, Korea,
yongha.son@sungshin.ac.kr

Abstract. Oblivious pseudorandom function (OPRF) is a two-party
cryptographic protocol that allows the receiver to input x and learn F (x)
for some PRF F , only known to the sender. For private set intersection
(PSI) applications, OPRF protocols have evolved to enhance efficiency,
primarily using symmetric key cryptography. Current state-of-the-art
protocols, such as those by Rindal and Schoppmann (Eurocrypt ’21),
leverage vector oblivious linear evaluation (VOLE) and oblivious key-
value store (OKVS) constructions.
In this work, we identify a flaw in an existing security proof, and present
practical attacks in the malicious model, which results in additional PRF
evaluations than the previous works’ claim. In particular, the attack for
malicious model is related to the concept of OKVS overfitting, whose
hardness is conjectured in previous works. Our attack is the first one to
discuss the concrete hardness of OKVS overfitting problem.
As another flavour of contribution, we generalize OKVS-based OPRF
constructions, suggesting new instantiations using a VOLE protocol with
only Minicrypt assumptions. Our generalized construction shows im-
proved performance in high-speed network environments, narrowing the
efficiency gap between the OPRF constructions over Cryptomania and
Minicrypt.

Keywords: oblivious pseudorandom function, oblivious key-value store, private
set intersection

1 Introduction

Oblivious pseudo random function (OPRF) is a two-party cryptographic protocol
that allows the receiver to input x and learn F (x) for some PRF F , only known
to the sender. OPRF in general can be thought of as a two-party protocol where
the sender inputs a secret key and the receiver inputs some items to evaluated
and obtains a PRF value for each input. In contrast, OPRF for PSI application
– which will be called batch OPRF – have been advanced in an independent
⋆ This work was done while Y. Son was at Samsung SDS.

direction. As two-party PSI does not require the sender to choose the secret key
nor to evaluate each item separately, batch OPRF usually outputs a random
secret key to the sender and batched PRF evaluations to the receiver. Any item
which is not in the batched inputs at the moment of invoking the OPRF protocol
cannot be evaluated.

At the cost of such demerits, batch OPRFs are concretely efficient since they
heavily use symmetric key cryptography rather than public key cryptography
such as Diffie-Hellman computation. Pinkas et al. [9] proposed a PSI protocol
based on a special sort of data structure called oblivious key-value store (OKVS)
(called PaXoS at that time of writing). Although this paper does not include any
explicit OPRF construction, the PSI protocol can be naturally extend to a PSI
protocol, which we call PRTY construction hereafter. After then, Rindal and
Schoppmann proposed an improved construction while replacing a subroutine
of the PRTY construction by another functionality called vector-oblivious linear
evaluation (VOLE), which forms the state-of-the-art protocols of (batch) OPRF
and PSI protocols [10,3], and we call this by RS construction.

Currently, the RS construction that utilizes VOLE over large field such as
GF(2128) has much better performance than the PRTY construction, in both
computation and communication view. It depends on so-called VOLE protocols
based on pseudorandom correlation generator (PCG) [5,4,11], which assumes
some (some variants of) Learning Parity with Noise (LPN). Meanwhile, the
PRTY construction used the OOS functionality [8] (or GF(2)-VOLE), which
can be realized with only Minicrypt assumptions. However, as the performance
gap between two constructions is fairly large currently, the advantage of PRTY
construction in robustness may seem less attractive.

In batch OPRF protocols based on OKVS, the receiver encodes all its input
items into an OKVS to obtain the PRF values of them. Because of the linearity
of existing OKVS, the OPRF protocols based on OKVS by nature allows more
evaluations than it should. Pinkas et al. upper bound the allowed number of
evaluations information-theoretically, and Garimella et al. formalize the problem
to overpack in an OKVS as OKVS overfitting problem.

1.1 Our Contribution

We revisit the security of batch OPRFs, with respect to the number of evaluation.
Although OPRF protocols should prevent the receiver to arbitrarily evaluate the
PRF value, we found that batch OPRF protocols in [13,10,3] based on OKVS
allow more evaluations than the authors claimed. We point out the flaw in the
security proof, and present practical attacks on them.

In the malicious model, we propose an overfitting algorithm to solve the
OKVS overfitting problem, whose main idea is to reduce the overfitting prob-
lem of OKVS to either a k-XOR problem or a multicollision finding problem.
To the best of our knowledge, the second attack is the first constructive (not
information-theoretical) solving algorithm for the OKVS overfitting problem [7].
To prevent these attacks, [13] in the malicious setting incurs 1371% communi-
cation overhead, where the number of items is set to 220.

2

In PSI applications, our attacks usually incur a situation that a corrupt re-
ceiver knows “the sender does not have some specific items”. In the literature, the
security of PSI only refers to the opposite side (“the sender have some specific
items”). However, we clarify that such situation may leak some membership in-
formation by computing statistical distance. Depends on the application setting,
the distance may exceed 2−λ where λ is the statistical security parameter.

In a construction aspect, we suggest some possible mitigations to prevent our
proposed attacks, and also provide revised security proof along with the mitiga-
tions in the malicious model. The mitigations shows more efficiency compared
to solely following the PRTY information-theoretic bound.

We also investigate more general instantiations of OKVS-based OPRF con-
struction, and suggest new instantiations that generalize the PRTY construction
[9] using a recently proposed VOLE protocol over Minicrypt assumptions [14].
In the fast network environments, our generalization even outperforms the RS
construction (with quasi-cyclic code). In slower network environment, as our
generalization requires more communication than the RS constructions, the RS
constructions remains the best one. Although, our generalization is still meaning-
ful in a view that it narrows the communication gap between the RS construction
(Cryptomania) and the PRTY construction (Minicrypt) from 4.2x to 1.3x.

2 Preliminaries

2.1 Notation

For a matrix A, each i-th row vector is denoted by A⃗i and j-th column vector
is denoted by A⃗j . For a vector ∆⃗ = (∆1, · · · , ∆n) and a matrix U , we denote
∆⃗⊙U := (∆1 · U⃗1, · · · , ∆nc

· U⃗nc). Unless otherwise stated, every field F in our
paper is assumed to be of characteristic 2, or we explicitly write the finite field
(or Galois field) of size q by GF(q). For a field F, we write a linear code C in a
kc dimensional subspace in Fnc with minimum distance dc by [nc, kc, dc]F, with
an exception of [nc, kc, dc]2 for F = GF(2) case. We often consider a [nc, kc, dc]F
linear code as a map C : Fkc → Fnc to write the codeword on x⃗ ∈ Bkc by
C(x⃗). We denote computational security parameter by κ, and statistical security
parameter by λ. We denote B(n, p) binomial distribution of probability p and n
independent experiments.

2.2 Vector Oblivious Linear Evaluation

A (subfield) vector oblivious linear evaluation, precisely (F,B)-VOLE outputs
two parties a secret shares of scalar-vector multiplication ∆ · U⃗ for randomly
chosen ∆ ∈ F and U⃗ ∈ Bm to each party. When the subfield B equals to F, we
call it simply by F-VOLE. The corresponding ideal functionality Fvole is defined
as Figure 1.

During the past few years, the performance of VOLE for large fields such as
GF(2128) has been rapidly improved, thanks to the advances on pseudorandom

3

correlation generator (PCG) [5] based on learning with parity (LPN) problem.
However, such rapid performance is enabled by assuming the hardness of LPN
over somewhat non-standard codes [6,4,11]. Indeed, there has been proposed an
attack [11] on the silver code utilized in [6]. Meanwhile, Roy [14] proposed a novel
VOLE protocol that only requires Minicrypt assumptions, unlike the LPN-based
protocols. It is practically efficient for small field such as GF(2f) with f ≤ 8.

Parameters: Two parties (a sender and a receiver). A field F with a subfield B,
and an integer m representing the length of output vector.

Functionality:

– If the receiver is malicious, wait for them to send V⃗ ∈ Fm and U⃗ ∈ Bm.
Then sample ∆← F and let W⃗ := V⃗ + ∆ · U⃗ ∈ Fm.

– If the sender is malicious, wait for them to send W⃗ ∈ Fm and ∆ ∈ F. Then
sample U⃗ ← Bm and let V⃗ := W⃗ −∆ · U⃗ ∈ Fm.

– Otherwise, i.e., adversarial party is semi-honest, sample V⃗ ← Fm, U⃗ ← Bm

and ∆← F, and let W⃗ = V⃗ + ∆ · U⃗ ∈ Fm

Output W⃗ ∈ Fm and ∆ ∈ F to the sender, and V⃗ ∈ Fm and U⃗ ∈ Bm to the
receiver.

Fig. 1: An ideal functionality of Fvole(F,B) for (F,B)-vector oblivious linear eval-
uation

2.3 Oblivious Key-Value Store

Informally, an oblivious key-value store (OKVS) is a data structure that effi-
ciently encodes n pairs of keys and values, which satisfies if a value are random,
the corresponding key cannot be recovered from the encoding of the key-value
pairs.

Definition 1 (Oblivious Key-Value Store). An oblivious key-value store
(OKVS) with key universe K and value universe V consists of two functions:

– Ecd : (K × V)n→Vm ∪ {⊥}, a function that receives n distinct key-value
pairs (ki, vi)i∈[n] then outputs encoding S or failure symbol ⊥;

– Dcd : Vm × K→V, a function that receives encoding S and a key k then
outputs the associated value v.

For correctness, for all I ⊂ K × V of n elements with distinct keys and an
ordering I⃗ ∈ (K × V)n of I, an OKVS should satisfies

(k, v) ∈ I and Ecd(I⃗) = S ̸= ⊥⇒Dcd(S, k) = v.

4

For obliviousness, for any pair of lists of n distinct keys (k1, . . . , kn) ∈ Kn and
(k′1, . . . , k′n) ∈ Kn and n random values v1, . . . , vn ←$ V, Ecd ((k1, v1), . . . , (kn, vn))
and Ecd ((k′1, v1), . . . , (k′n, vn)) should be computationally indistinguishable.

The storage efficiency of OKVS can be measure by the expansion ratio of
the number of key-value pairs n and the length of the encoding vector m. Many
known OKVS constructions achieves m = (1 + εokvs) · n for some small constant
εokvs: PaXoS [9] achieves ε ≈ 1.4, 3H-GCT [7] and RR22 [10] achieve ε ≈ 0.3,
and RB-OKVS [3] achieve ε down to 0.03.

Several OKVS applications, such as OPRF and PSI, expect OKVS to have
linearity and support for some sort of homomorphic operations, and we call such
OKVS by linear OKVS.

Definition 2 (Linear OKVS). An OKVS is linear if there exists a function
row : K→Vm such that Dcd(S, k) = ⟨row(k), S⟩ for all k ∈ K and S ∈ Vm. If
the range of such function row can be restricted to a set of binary vectors, i.e.,
row : K→{0, 1}m, we call the OKVS as binary linear, or simply binary.

3 Oblivious PRF and OKVS-based Constructions

This section provides a formal definition of oblivious PRF (and private set inter-
section), and reviews the OKVS-based OPRF constructions [9,13], which consists
of the state-of-the-art protocols [10,3].

3.1 Ideal Functionalities and Generic PSI Construction

The ideal functionality of an oblivious pseudorandom function (OPRF) is de-
scribed in Figure 2, and the (two-party) private set intersection (PSI) function-
ality is described in Figure 3. Ideally, the receiver should not be able to obtain
any OPRF evaluations other than for its input. However, the OPRF definition
in Figure 2 allows more PRF evaluations, denoted by n′ > n for a malicious
receiver, and the PSI definition also allows at most n′ items for the malicious
receiver. This reflects the fact that known OPRF (or PSI) protocols enable an

Parameters: Two parties (a sender and a receiver). The receiver’s set size pa-
rameters n for the semi-honest model and n′ for the malicious model. An OPRF
output length ℓ2.

Functionality: Upon the receiver’s input set X, abort if |X| > n′ when the
receiver is malicious.
The functionality defines a random function F : {0, 1}∗ → {0, 1}ℓ2 , and output
F (X) = {F (x) | x ∈ X} to the receiver. After then, upon the sender’s query y,
the functionality sends F (y) to the Sender.

Fig. 2: Ideal functionality Foprf of oblivious pseudorandom function.

5

Parameters: Two parties (a sender and a receiver). The sender’s set size pa-
rameter ny, and the receiver’s set size parameters nx for the semi-honest model
and n′ for the malicious model.

Functionality: Upon the receiver’s input set X and the Sender’s input set Y ,
abort if |X| > n′ when the receiver is malicious, and outputs X ∩ Y to the
receiver.

Fig. 3: Ideal functionality Fpsi of (2-party) private set intersection.

adversary to learn OPRF values F (X) (or X ∩Y) for some n′(> n)-sized set X,
while pretending to run the protocol with a size n set. This type of definition
has been widely adopted in the literature [9,13].
PSI from OPRF. Given an OPRF functionality Foprf , it is straightforward
to construct a protocol that realizes Fpsi, as shown in Figure 4. This protocol
requires one additional round of communication, with ℓ2 · ny bits transferred
from the sender to the receiver, on top of the communication cost for realizing
Foprf . The concrete choice of ℓ2 has been improved using better security proofs,
and our paper adapts the state-of-the-art result from [13].

Parameters: Two parties (a sender and a receiver). An OPRF functionality
Foprf with set size parameters nx or n′, and OPRF length ℓ2.

Protocol: Upon an input set X from the receiver, and an input set Y from the
sender, the protocol runs as follows:

1. The sender and the receiver interact with Foprf with the receiver’s input set
X.

2. As Foprf outputs, the receiver obtains F (X). Then the sender obtains F (Y) =
{F (y) ∈ {0, 1}ℓ2 : y ∈ Y } by querying each y ∈ Y to Foprf .

3. The sender sends F (Y) to the receiver in a random order, who outputs
Z = {x ∈ X : F (x) ∈ F (Y)}.

Fig. 4: Protocol Πpsi for a private set intersection using Foprf .

Theorem 1 (Adapted from [13]). The protocol Πpsi realizes the Fpsi func-
tionality in the semi-honest model with ℓ2 = λ + log(nxny) and in the malicious
model with ℓ2 = κ, in a Foprf-hybrid model.

Remark 1. In more detail, the simulated view against the malicious sender in
[13] is distinguishable from the real protocol execution with 2ℓ2/nx random oracle
queries. Hence, the simulation with ℓ2 = κ can be distinguished by fewer than

6

2κ queries. Rindal and Schoppmann was already aware of this fact while they
sticked to use ℓ2 = κ [13]. To be more rigorous, it is required to set ℓ2 = κ+log nx

in order to simulate against the malicious sender. But we follow the choice ℓ2 = κ
as the distinguishing advantage does not lead to any actual information leakage.

3.2 OKVS-based OPRF Constructions

We present an overview of the OKVS-based OPRF construction in Figure 5,
which captures the RS construction [13,10,3] with F = GF(2128) and the identity
linear code [1, 1, 1]GF(2128), as well as the natural OPRF extension from the PRTY
PSI protocol [9,7] with F = GF(2) and non-trivial binary linear codes. Detailed
parameter selections and security arguments will be presented in later sections,
as one of our main contributions is to identify the flaws in previous works.

Parameters:

– Random oracles H1 : {0, 1}∗→{0, 1}ℓ1 and H2 : {0, 1}∗→{0, 1}ℓ2

– A finite field F and a [nc, kc, d]F-linear code C.
– A linear OKVS (Ecd, Dcd) of expansion factor εokvs.
– The number of items n of the receiver which will be evaluated.

Protocol: Upon an input set X from the receiver, the protocol runs as follows:

1. Using nc times F-VOLE of length m = (1 + εokvs)n, two parties generate
W, V ∈ Fm×nc (U ∈ Fm×nc , resp) such that W = V + ∆⃗⊙ U .

2. The receiver computes an OKVS encoding P ∈ {0, 1}m×ℓ1 on the set
{(x, vx) : x ∈ X, vx = H1(x)}.

3. The receiver computes C(P) where C is applied in a row-wise manner, and
sends U ′ = C(P) − U ∈ Fm×nc to the sender who locally computes W ′ =
W + ∆⃗⊙ U ′.

4. The receiver outputs {H2 (x, Dcd(V, x)) | x ∈ X} (as F (X)).
5. The sender defines the OPRF function F : {0, 1}∗→{0, 1}ℓ2 by

F (y) := H2

(
y, Dcd(W ′, y)− ∆⃗⊙ C(H1(y))

)
.

Fig. 5: Integrated overview of OKVS-based OPRF protocols.

To see the correctness, the set {H2(x, Dcd(V, x)) | x ∈ X} should equal to
F (X) with the sender’s definition F (y) = H2(y, Dcd(W, y) − ∆⃗ ⊙ C(H1(y))).

7

From the linearity of Dcd and the linear code C, we have

F (y) = H2(y, Dcd(W ′, y)− ∆⃗⊙ C(H1(y)))

= H2(y, Dcd(V, y)− ∆⃗⊙ C(Dcd(P, y)−H1(y)))

for any y ∈ {0, 1}∗. So, the OKVS correctness is ensured by the fact that
Dcd(P, x) = H1(x) for every x ∈ X. Thus, we further have

F (x) = H2(x, Dcd(V, y)− ∆⃗⊙ C(Dcd(P, y)−H1(y))) = H2(x, Dcd(V, x)). (1)

Remark 2. The original description in [9] used OOS (correlated) OT exten-
sion [8] instead of VOLE over GF(2), but two functionalities are exactly same.
Overfitted OKVS. The key to the correctness of OKVS-based OPRF in (1)
is the equality Dcd(P, x) = H(x) for every x ∈ X, ensured by the OKVS cor-
rectness. However, in OKVS-based OPRF protocols, a malicious receiver can
arbitrarily generate the OKVS encoding P , allowing more than n items x such
that Dcd(P, x) = H1(x). This enables the receiver to obtain the PRF values for
these x. Garimella et al. [7] formalize this issue as the OKVS overfitting game
as follows.

Definition 3 ((n, n′)-OKVS overfitting game, [7]). Let (Ecd, Dcd) be an
OKVS with parameters chosen to support n items, and let H1 : {0, 1}∗ →
{0, 1}ℓ1 be a random oracle. For any arbitrary PPT adversary A that outputs
P ∈ {0, 1}ℓ1×m ← AH(1κ), define

X ′ = {x | A queried H1 at x and Dcd(P, x) = H1(x)}.

If |X ′| > n′, then the adversary wins the (n, n′)-OKVS overfitting game.
We say the (n, n′)-OKVS overfitting problem is hard for an OKVS construc-

tion if no PPT adversary wins this game except with negligible probability.

PRTY bound. It can be easily observed that if the underlying OKVS is linear,
a malicious receiver can obtain m = (1 + εokvs) · n PRF evaluations with almost
no computational overhead. This fact leads OKVS-based OPRF protocols to
focus on n′ = c ·m for some c > 1.

In [9], Pinkas et al. analyzed the choice of ℓ1 (the output bit-length of
H1 in Figure 5) that makes the OKVS-based OPRF construction information-
theoretically secure against malicious adversaries. This analysis can be rephrased
using OKVS terminology as follows.

Lemma 1 (PRTY bound, [9]). Suppose an adversary makes q queries to
random oracle H1 with output length ℓ1, and then generates an OKVS P of size
m. For a fixed integer n′, let E denote the event that Dcd(P, x) = H1(x) for at
least n′ values x that were queried to H1. Then,

Pr[E] ≤
(

q
n′

)
2(n′−m)ℓ1

.

8

Suppose there is a linear system Ax = b where A ∈ (F2ℓ1)n′×m (n′ > m) is
invertible and b←$ (F2ℓ1)m. The probability that b produces a solvable system
is 2(n′−m)ℓ1 . Since the number of n′-tuples of queried items is

(
q
n′

)
, the bound in

Lemma 1 is quite tight, with only a small gap possible due to a non-invertible
OKVS system.

4 Security Flaws of OKVS-based OPRFs

The OKVS-based OPRF naturally allows the receiver to locally computes F (x)
that satisfies Dcd(P, x) = H1(x) ∈ {0, 1}ℓ1 . Thus, the length ℓ1 should be set
properly to prevent unwanted PRF evaluations. Indeed, previous OKVS-based
OPRF protocols suggested some appropriate choice of ℓ1 to bound the number of
PRF evaluation by n (semi-honest) or n′ (malicious), along with corresponding
security arguments. However, in this section, we present some (possible) vulner-
abilities in the previous works setting on n, n′ and ℓ1, and show that it indeed
implies more number of PRF evaluations than the works claimed.

4.1 Caution for Possible Semi-honest OPRF

Although previous works [9,13,10] claimed the malicious security of the OPRF
protocol or the semi-honest security of the PSI protocol rather than the semi-
honest security of OPRF protocol, one can naturally derive an semi-honest ver-
sion of OPRF protocol and try to use it. In this section, we briefly point out
which security issue can be popped up.

All semi-honest OKVS-based PSI protocols set ℓ1 = λ+2 log n where n is the
number of items in both parties, whose rationale is to prevent unwanted collision
of hashed values. However, as random oracle is an idealization of cryptographic
hash function, it should be assumed that the receiver is free to query to the
random oracle before or after the protocol. It implies that the probability of the
equality Dcd(P, x) = H1(x) for a fixed P and a random x is 1/2ℓ1 .

This fact discloses the trivial attack on the natural OPRF extension; for a
fixed P after the OPRF protocol, the corrupt receiver can query to H1 and find
inputs satisfying Dcd(P, x) = H1(x). As the computational security parameter
κ is much larger than those choices of ℓ1, the receiver can obtain q/ℓ1 extra
evaluations with q local computation of H1.

4.2 Malicious Flaw: Hardness of OKVS Overfitting Game

The OPRF (PSI) protocol of PRTY [9] takes ℓ1 so that Pr[E] in the PRTY bound
(Lemma 1) is bounded by 2−λ, given n′ = c ·m. One can check that larger n′

yields smaller ℓ1, and such smaller ℓ1 naturally brings better efficiency. Indeed,
[9] set n′ ≈ 12n to have efficient protocol where they reported experimental
results. Meanwhile, Rindal and Schoppmann [13] (implicitly) argued that n′ can
be limited by only m = (1 + εokvs)n, by setting ℓ1 = κ. This obviously makes it
possible to take smaller ℓ1 than [9] protocol, so that has better parameter choice

9

and better performance of the OPRF protocol.3 This has also been continously
adapted in the following works [10,3]; whose main points are improving OKVS
performance while following the framework of [13].

However, we claim the choice of ℓ1 = κ of RS construction with n′ = m
is flawed. The reason is simple: ℓ1 = κ is less than ℓ1 derived from the PRTY
bound with n′ = m. That is, the malicious receiver with unbounded power can
indeed find (more than) n′ items x fitting in some P . However, such presence of
unbounded adversary could be not considered as serious one, because one can
simply assume the computational hardness of OKVS overfitting problem to make
[13] secure. Indeed, Garimella et. al. [7] stated that OKVS overfitting could be
computationally hard even ℓ1 is below PRTY bound.

What we further make is the concrete attack that shows OKVS overfitting
can be computationally done, so that ℓ1 = κ choice of [13,10,3] allows more PRF
evaluations than n′ = m using less than 2κ computational cost. The details are
placed in the next section independently.

Flaw in the security proof. The Hybrid 4 of Lemma 2 in [13] is the relevant
argument that argues n′ can be limited to m = (1 + εokvs)n. However, their
argument only considered the case where the malicious adversary fixes the OKVS
encoding P and then expects that Dcd(P, x) = H1(x) for additional x. This
makes the proof false, because the malicious adversary can make q = O(2κ)
amount of H1 queries in advance, and then tries to find some maximal subset
X ′ that overfits to some P of size m among the H1 queries.

4.3 Efficacy of Extra Evaluation

In the OPRF view, extra evaluation directly violates the security requirements.
However, the implication on PSI need some consideration. If the receiver obtains
an additional PRF evaluation F (y) for y ∈ Y \X, this immediately violates the
PSI functionality since the receiver knows other information than the intersection
X ∩Y . The case where the additional PRF evaluation F (y) is for y /∈ X ∪Y lets
the receiver know that the element y is not in the sender’s set Y , whose effect
seems a bit ambiguous.

In fact, we can measure the amount of information leakage from the informa-
tion y /∈ Ȳ . Suppose that D1 be the original distribution of the sender’s dataset
Ȳ with p1(Ȳ) = PrY∼D1 [Y = Ȳ]. And, let D2 be the distribution of the dataset
without an element z in a universe of items in set. From the additional leakage of
z /∈ Ȳ , the corrupt receiver now have the distribution D2 of the sender’s dataset.
And the probability function of D2 can be computed as follows:

p2(X̄) =
{

1
1−p′ · p1(X̄) if z /∈ X̄

0 otherwise

3 We are not saying that every performance gain of [13] comes from such small ℓ1;
indeed the primary change from [9] to [13] that greatly affects to the performance is
replacing OOS functionality into LPN-based VOLE.

10

where p′ =
∑
{X̄|z∈X̄} p1(X̄). Note that the probability p2(X̄) is increased pro-

portionally to have sum of all the probability 1 when z /∈ X̄. Now we can compute
the statistical distance between D1 and D2,

dist(D1,D2) =
∑
z /∈X̄

∣∣p1(X̄)− p2(X̄)
∣∣ +

∑
z∈X̄

∣∣p1(X̄)− p2(X̄)
∣∣ = 2p′.

From this, we conclude that the information of y /∈ Y can lead to a non-negligible
amount of information, if y has a non-negligible probability (> 2−λ) to be in-
cluded in the honest party’s dataset. Moreover, this series of computations shows
an undesirable feature of the PSI protocol, which is the dependency of the secu-
rity on the distribution of the dataset.

5 Overfitting Attacks on Various OKVS

The ℓ1 bound in [13] was found out to be information-theoretically not secure.
To connect the information-theoretic vulnerability to a concrete attack, we need
to overfit the OKVS P . Overfitting P refers to a problem to find n′ > m items
x1, . . . , xn′ and a vector P that satisfy Dcd(P, xi) = H1(xi) for all i. Since the
OKVS algorithm used in [13] is binary linear, there is a function row : {0, 1}∗ →
{0, 1}ℓ1 such that Dcd(P, x) = ⟨row(x), P ⟩. Then overfitting P is in principle
a finding X⃗ = (x1, . . . , xn′) which builds a redundant (i.e., linearly dependent)
system of linear equations row(X⃗) · P = H1(X⃗) for n′ > n, where row(X⃗) (and
H1(X⃗)) is a matrix whose i-th row is row(xi) (and H1(xi)).

For the idea of the attacks, observe that if there are some elements x1, . . . , xk

in X⃗ satisfy that
∑k

j=1 row(xj)∥H1(xj) = 0, they contribute to the rank of
row(X⃗) by at most k− 1. Finding such x1, . . . , xk is equivalent to solving the k-
XOR problem for k ≥ 2, and hence we can build X⃗ of length k(m−1)/(k−1) > m

by solving the k-XOR problem repeatedly. Although row(X⃗) is a quite large
matrix of size k ×m where k-XOR problem is difficult in general, the attacks
can be practically feasible thanks to the special structure of row(X⃗) observed
in previous OKVS constructions [13,10,3], whose details are described in the
following subsections.

Before presenting the attacks, we provide some definitions of basic problems
required to formulate the attacks.
k-XOR Problem and Multi-collision Finding Problem. Before explaining
our attacks, we briefly introduce the k-XOR problem and the multi-collision
finding problem since it is a crucial subroutine of our attacks to solve these
problems. The k-XOR problem is to find a k-tuple in some lists whose sum is 0.
Formally, a k-XOR problem is defined as follows.

Definition 4 (k-XOR Problem). Given lists of n-bit strings L1, . . . , Lk, find
k distinct elements a1 ∈ L1, . . . , ak ∈ Lk such that their XOR sum is zero:

a1 ⊕ a2 ⊕ · · · ⊕ ak = 0.

11

The state of the art algorithm to solve the k-XOR problem is Wagner’s k-tree
algorithm [17]. It costs O(k · 2n/(1+⌊log k⌋)) time and space with lists of size
O(2n/(1+⌊log k⌋)) each.

For a given cryptographic hash function, the multi-collision finding problem
is to find c multi-collisions which give the same hash output. Formally, a multi-
collision finding problem is defined as follows.

Definition 5 (c-Multicollision Finding Problem). Given a hash function
H : {0, 1}∗ → {0, 1}n, find c distinct elements a1, . . . , ac such that:

H(a1) = H(a2) = · · · = H(ac).

The best algorithm to solve the c-multicollision finding problem is proposed by
Suzuki et al. [15], which costs O((c!)1/c · 2(c−1)n/c) time and space.

5.1 Overfitting PaXoS

PaXoS [9] is the firstly proposed OKVS with linear complexity. Given a vector
of input items X⃗, which is an ordering of the set X, PaXoS has a following type
of the row(X⃗) matrix.

row(X⃗) = [RX⃗ | DX⃗]

where RX⃗ ∈ Fn×m
2 is defined by a pair of hash functions (h1, h2) each to [m] =

{1, . . . , m}, and DX⃗ ∈ Fn×d
2 is a matrix with uniformly random entries. Each

row of RX⃗ corresponds to an item x, and it has only two 1’s whose positions are
h1(x) and h2(x). In the same row, the row of DX⃗ also corresponds to the same
item x, and it is defined by a uniform hash function h0 : {0, 1}∗ → {0, 1}d. We
note that m is set to be 2.4n in [13].

As RX⃗ is a sparse matrix, it is hard to apply Wagner’s k-tree algorithm
directly on row(x)∥H1(x). So, we will solve the k-XOR problem over h0(x)∥H1(x)
rather than row(X⃗)∥H1(x). To make RX⃗ part also sum to zero, we bucketize
row(X⃗)∥H1(x) by h1 and h2, and deliberately organize a singular combination
of buckets. For an easy example, if three items x1, x2, x3 satisfy

h1(x1) = 1, h2(x1) = 2,

h1(x2) = 2, h2(x2) = 3,

h1(x3) = 3, h2(x3) = 1,

then RX⃗ part of those three items sum to zero. Then, solving 3-XOR problem in
those three buckets gives a small redundant system of equations of rank 2. Our
attack on [13] basically repeats these steps until row(X⃗) has full rank, but the
number of buckets may vary. In the following, we describe the detailed procedure
of the attack.

– (Case n′ < 2(m − 1)) For this case, we reduce the (n, k(m−1)
k−1)-overfitting

game to a k-XOR problem as follows. We will assume that k − 1 | m − 1,
but the attack also works well otherwise.

12

1. Let Q = {x1, . . . , xq} be an arbitrary subset in {0, 1}∗. Query all the
items in Q to h0, h1, h2, and H1. Bucketize Q by {h1, h2}, denoting
Bh1,h2 the corresponding bucket. Then, there are

(
m
2
)

buckets, and there
are expectedly q/

(
m
2
)

items per bucket.
2. Make a k × k-matrix K over F2 such that
• rank(K) = k − 1;
• rank(K ′) = k − 1 where K ′ ∈ F(k−1)×(k−1)

2 is sub-matrix of K with
first k − 1 rows and first k − 1 columns;
• each row of K should have only two 1’s.

See Figure 6 for examples.
3. Set X ′ ← ∅, and do the following for j ∈ {1, 1 + (k − 1), 1 + 2(k −

1), . . . , m− k + 2}.
(a) Denote the positions of two 1’s in the i-th row (1 ≤ i ≤ k) of K

by pi and p′i. Solve a k-XOR problem for h0(x) ∥ H1(x) in buckets
Bj+p1,j+p′

1
, . . . , Bj+pk,j+p′

k
.

(b) Denote the solution (x1, . . . , xk), then it satisfies

k∑
i=1

h0(xi)∥H1(xi) = 0.

Set X ′ ← X ′ ∪ {x1, . . . , xk}
4. Let X⃗ ′ = (x′1, . . . , x′n′) be an ordering of X ′ where n′ = k(m−1)

k−1 . Since
rank(row(X⃗ ′)) = rank(row(X⃗ ′)|H1(X⃗ ′)), there is a solution P ′ of the lin-
ear equation row(X⃗ ′)·P ′ = H1(X⃗ ′) where H1(X⃗ ′) = (H1(x′1), . . . , H1(x′n′)).

As solving a k-XOR problem of (d+ℓ1)-bit strings costs O
(

k2
d+ℓ1

1+⌊log k⌋

)
time,

our attack costs O
(

m22
d+ℓ1

1+⌊log k⌋

)
time including time for querying to the

random oracle. Note that the time cost for random oracle query dominates
the cost for solving k-XOR problems.

1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

(a) k = 4

1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
1 0 0 0 1

(b) k = 5

Fig. 6: Examples of Step 2.

13

– (Case n′ ≥ 2m) For this case, we reduce the (n, c(m − 1))-overfitting game
to a c-multicollision (c ≥ 2) finding problem as follows.
1. Let Q = {x1, . . . , xq} be an arbitrary subset in {0, 1}∗. Query all the

items in Q to h0, h1, h2, and H1. Bucketize Q by {h1, h2}, denoting
Bh1,h2 the corresponding bucket. Then, there are

(
m
2
)

buckets, and there
are expectedly q/

(
m
2
)

items per bucket.
2. Set X ′ ← ∅ and do the following for j ∈ {1, 2, . . . , m− 1}.

(a) Find a c-multicollision for h0(x) ∥H1(x) from bucket Bj,j+1.
(b) Gather the solutions of the problem to X ′.

3. Let X⃗ ′ = (x′1, . . . , x′n′) be an ordering of X ′ where n′ = c(m− 1). Since
rank(row(X⃗ ′)) = rank(row(X⃗ ′)|H1(X⃗ ′)), there is a solution P ′ of the
linear equation row(X⃗ ′) · P ′ = H1(X⃗ ′).

As finding c-multicollision of (d + ℓ1)-bit strings costs O((c!)1/c2
(c−1)(d+ℓ1)

c)
time, our attack costs O(m22

(c−1)(d+ℓ1)
c) time for small enough c.

5.2 Overfitting 3H-GCT or RR22

Garimella et.al. [7] proposed a 3H-GCT OKVS that generalizes PaXoS by using
3 hashes instead of 2 hashes. Raghuraman and Rindal [10] proposed a similar
OKVS that has only w 1’s in RX⃗ part, which is almost the same with 3H-GCT for
w = 3. Precisely, it also follows the form row(X⃗) = [RX⃗ |DX⃗], where RX⃗ ∈ Fn×m

2
is defined by a triple of hash functions (h1, h2, h3) each to [m], and DX⃗ ∈ Fn×d′

2ℓ1

is a matrix with uniformly random entries; 3H-GCT proposal sets ℓ1 = 1, and
RR22 sets ℓ1 = κ. We denote d = d′ℓ1. Each row of RX⃗ corresponds to an item
x, and it has only three 1’s whose positions are h1(x), h2(x) and h3(x). Each
row of DX⃗ also corresponds to the same item x, and it is defined by a uniform
hash function h0 : {0, 1}∗ → {0, 1}d. We note that m is set to be approximately
1.3n in [13].

As PaXoS and 3H-GCT are similar, the attacks for PaXoS work well on this
case except some details. The buckets should be labeled with three hash values
{h1, h2, h3}. In Step 2, since 3H-GCT uses three hash functions, the submatrix
should be of the different form. Step 2 can be rephrased to attack 3H-GCT as
follows.

2. For an even integer k > 2, make a k × (3k/2)-matrix over F2 of rank k − 1.
Each row of this matrix should have only three 1’s. See Figure 7 for examples.

The asymptotic time complexity should be O(m) times larger than that for
PaXoS.

5.3 Overfitting RB-OKVS

RB-OKVS is an OKVS proposed by Bienstock et al. [3], whose row(X⃗) has
no sparse part unlike PaXoS or 3H-GCT. Given a pair of hash functions h1 :

14

1 1 1 0 0 0
0 0 1 0 1 1
1 0 0 1 0 1
0 1 0 1 1 0

(a) k = 4

1 1 0 1 0 0 0 0 0
1 0 1 0 1 0 0 0 0
0 1 0 0 0 1 0 1 0
0 0 0 1 1 0 1 0 0
0 0 0 0 0 1 1 0 1
0 0 1 0 0 0 0 1 1

(b) k = 6

Fig. 7: Examples of submatrices when attacking 3H-GCT.

{0, 1}∗ → [m− d] and h0 : {0, 1}∗ → {0, 1}d, row(x) for an item x is defined by

row(x)[i] =
{

h0(x)[i− h1(x)] if h1(x) < i ≤ h1(x) + d

0 otherwise

where v[n] for a vector v denotes the n-th component of v.
The attack can be done in the almost similar way to PaXoS and 3H-GCT.

The details can be found in Appendix A due to the space limit.

5.4 Efficacy of the Attacks

To measure the effectiveness of the attacks, we plot three dot graphs of ℓ1 cor-
responding to the extra-evaluation ratio n′/m for each OKVS in Figure 8b, 8a,
and 8c. Common to all the three graphs, the blue curve is the PRTY bound [9]
for each parameter set, and the yellow line is ℓ1 which was claimed secure in
[13]. We note that [10,3] follow the choice of ℓ1. The red dots are the least ℓ1
to prevent our attacks. Each red dot corresponds to either 3 ≤ k ≤ 20 of the
k-XOR problem or 2 ≤ c ≤ 3 of the c-multicollision finding problem. The hash
length ℓ1 to prevent our attacks are much larger than ℓ1 claimed in [13]. Each
graph is plotted for n = 220, and the detailed choice of parameters is written in
each figures.

When the attacks are applied in the context of PSI, it implies that a corrupt
receiver can input n′ random items rather than n chosen items. As data is not
distributed uniformly at random in practice, n′ random items seem less valuable
than n chosen items so the attacks are quite useless. However, the attacks can
still evaluate more items than claimed including n chosen items as follows.

1. For a fixed (ordered) set X⃗ = (x1, . . . , xn), make the row(X⃗) matrix.
2. Using Gaussian elimination, find all the non-pivot positions. There are at

least (m− n) non-pivot positions.
3. Let Q be a set of items whose hi (1 ≤ i ≤ 3) values are all in the non-pivot

positions.
4. Mount the attack with Q as if there is no pivot positions.

15

1 2 30
128

500

1,000

1,500

n′/m

ℓ1

Claim of RS21
Our attack

PRTY20 bound

(a) (RR22 [10]) We set the number of
hashes 3, the expansion ratio 1.23, and
the number of F2128 -dense columns 2.

1 2 30128
500

1,000

1,500

2,000

n′/m

ℓ1

Claim of RS21
Our attack

PRTY20 bound

(b) (PaXoS [9]). We set the number of
hashes 2, the expansion ratio 2.4, and the
number of dense columns 40.

1 2 30128
500

1,000

1,500

2,0002,000

n′/m

ℓ1

Claim of RS21
Our attack

PRTY20 bound

(c) (RB-OKVS [3]). We set the expan-
sion ratio 1.1, and the number of dense
columns 206.

Fig. 8: ℓ1 to prevent the attack to various protocols.

It is straightforward that this variation for RS21 and RR22 can evaluate n +
n′

m · (m − n) with similar complexities. For BPSY23, it is not always true. If
a consecutive d positions do not include k − 1 non-pivot positions, the attack
cannot utilize all the non-pivot positions so that the number of evaluation may
be less than n′

m · (m−n). For the worst case (most of the consecutive d positions
do not include k − 1 non-pivot positions), this variation may not evaluate more
than m items.

6 Generic Security Considerations

In this section, we propose generic mitigations for our attacks, and a modified
OKVS-based OPRF with provably secure choice of parameters.

16

6.1 Mitigations for Attacks and Revised Parameter Selection

For the semi-honest case, note that the attack in Section 4.1 allows one addi-
tional PRF evaluation with probability 1/2ℓ1 . Thus, to prevent this attack, we
recommend to raise ℓ1 to at least κ for the semi-honest case, from the previous
works choice ℓ1 = λ + 2 log n.

For the malicious case, the adversary can try to overfit OKVS, which founds
additional PRF evaluation more efficiently. Here, observe that the possibility of
OKVS overfitting depends on the number of H1 queries, say q, as well as the
length ℓ1. If we can restrict q less than 2κ, OKVS overfitting would gets harder
and then we can utilize more efficient OPRF parameters. This can be simply
done by set a sort of timeout for the (corrupt) receiver. To do this, we modify
two parts of the protocol, as following.

1. At the beginning of the protocol, the sender samples random salt salt and
transmit it to receiver. Then, both parties incorporates salt into all random
oracle inputs. This clearly prevents the malicious receiver prepare H1 values
before the protocol starts.

2. The sender aborts the protocol if the time between sending the salt and
receiving the correction matrix back from the receiver exceeds a certain
amount of time.

Given that the overfitting attack is more effective than the semi-honest attack,
this mitigation technique has an effect of reducing the number of queries for
the overfitting attack. We formalize this problem as a new overfitting game as
follows.

Definition 6 ((n, n′, qon, qoff)-OKVS online overfitting game). Let (Ecd, Dcd)
be an OKVS with parameters chosen to support n items, and let A be an arbi-
trary PPT adversary. Run P ← AH1(1κ, qon) where qon is the number of queries
to H1 before outputting P . Define

X ′ = {x | A queried H1 at x and Dcd(P, x) = H1(x)}

where A can query to H1 less than qoff times after P is produced. If |X ′| > n′,
then the adversary wins the (n, n′, qon, qoff)-OKVS online overfitting game.

The online query complexity qon should be determined after reviewing a
number of factors; such as, computing power of participating parties, timeout
time, or network environments. Given that recent Bitcoin’s hash rate is about
269 hashes per second,4 if those factors are unknown beforehand, qon = 296 seems
a safe choice for not a long timeout time. The offline query complexity qoff is the
original amount of permitted query, which is usually O(2κ).
Concrete Choice of ℓ1. We provide some concrete choices of ℓ1 that makes
OKVS online overfitting game. For that, we first consider n′1 by the maximum
4 This data is retrieved from https://www.blockchain.com/explorer/charts/

hash-rate in May 2024.

17

https://www.blockchain.com/explorer/charts/hash-rate
https://www.blockchain.com/explorer/charts/hash-rate

number of allowed evaluations following the PRTY bound given that qon random
oracle queries are permitted. Then we let n′2 be the least integer such that

Pr
S←B(qoff ,2−ℓ1)

[S > n′2] < 2−λ,

which can be rewritten by multiplicative Chernoff bound as follows.

(
eqoff
n′22ℓ1

)n′
2

< 2−λ

Then, this ℓ1 is a secure choice of n′ = n′1 + n′2 allowed evaluations. Table 1
summarizes ℓ1 according to n′ and qon.

log qon

n′/m 1.5 2 3 4 5

32 111 110 109 108 108
64 134 112 109 108 108
96 226 150 113 111 109
128 322 214 160 141 132

Table 1: The choice of ℓ1 depending on qon and n′, where m is set to be 1.3×220,
and qoff is set to be 2128. For qon = 2128, the offline complexity qoff is set to be
0, which is same as the original PRTY bound with q = 2128.

In Table 1, a reader might feel that ℓ1 converges to 108 when n′/m is suffi-
ciently large, whatever qon is. It is because the semi-honest attack allows 2 times
more evaluation if ℓ1 is decreased by a single bit. So, ℓ1 can be less than 108 if
n′/m is large enough; if n′/m = 1000, then ℓ1 = 100.

On ℓ1 for the semi-honest model. At the beginning of this section, we rec-
ommend to set ℓ1 = κ = 128 for the semi-honest model. Meanwhile, the choices
of ℓ1 for the malicious model presented in Table 1 for qon ≤ 296 is less than 128.
One may think this weird, because the malicious model allows smaller ℓ1 than
the semi-honest model. However, we stress that not only the adversarial model
that determines the possible attacks, but the bound n′ for the number of PRF
evaluations is also an important factor for ℓ1: In the semi-honest model, the
bound n′ is implicitly set by n, whereas the malicious model allows somewhat
larger n′ such as c · m for m = (1 + εokvs)n. Finally, it would be possible to
extend the definition of semi-honest OPRF to allowing further PRF evaluation
n′, which is not explicitly done in our OPRF definition, which enables to set
ℓ1 = 128− log n′ for the semi-honest model.

18

6.2 Revised Security Proof

We present the revised OKVS-based OPRF construction in Figure 9, and The-
orem 2 that specifies the correct conditions of parameters, which reflects the
previous works the security flaws.
Correctness. We check that the set {H2(Dcd(V, x)+w) | x ∈ X} indeed equals
to F (X) with the sender’s definition

F (x) = H2(x, Dcd(W ′, x) + w − ∆⃗⊙ C(H1(x, salt))).

For the readability, we omit salt in H1 and w for a while, which are common for
both parties. Then it holds that from the linearity of Dcd and linear code C

Dcd(W ′, y)− ∆⃗⊙ C(H1(y)) = Dcd(V + ∆⃗⊙ C(P), y)− ∆⃗⊙ C(H1(y))

= Dcd(V, y)− ∆⃗⊙ (Dcd(C(P), y)− C(H1(y))

= Dcd(V, y)− ∆⃗⊙ C(Dcd(P, y))− C(H1(y)))

= Dcd(V, y)− ∆⃗⊙ C(Dcd(P, y)−H1(y)) (2)

for any y ∈ {0, 1}∗. Note that Dcd(C(P), y) = C(Dcd(P, y)) requires that row(y)
is a vector of Bnc for every y ∈ {0, 1}∗, which is always true when the underlying
OKVS is binary. Now, the OKVS correctness property ensures Dcd(P, x) =
H1(x) for every x ∈ X, then eq. (2) further becomes

Dcd(W ′, x)− ∆⃗⊙ C(H1(x)) = Dcd(V, x)− ∆⃗⊙ C(Dcd(P, x)−H1(x))

= Dcd(V, x)− ∆⃗⊙ C(H1(x)−H1(x)))
= Dcd(V, x),

which concludes the correctness of our framework.
Security Proof. The underlying proof idea is similar to the previous works [9,13],
whose main idea is to show that Dy := Dcd(P, y) − H1(y) has sufficient (≥ κ)
entropy. However, our statement and proof have two distinct points. First, it
provides general conditions on the linear code [nc, kc, d]B for arbitrary choice of
F and B, which correctly applies to both previous constructions. Second, our
proof correctly provides the condition on ℓ1 considering our proposed attack;
namely online OKVS overfitting game.

Theorem 2. Let F be a field, B be a subfield of F, and ℓ1 > 0 be an integer that
makes (n, n′, qon, qoff)-online OKVS overfitting game hard. Let C = [nc, kc, d]B
be a B-linear code where kc · log |B| ≥ ℓ1 and d · log |F| ≥ κ. Then the protocol
of Figure 9 securely realizes Foprf against (qon, qoff)-malicious adversary in a
Fvole(F,B)-hybrid model.

We prove the theorem by the following two lemmas.

Lemma 2. The the protocol of Figure 9 securely realizes Foprf against malicious
sender A who queries to random oracles at most q times.

19

Parameters: A finite field F with a subfield B, and a [nc, kc, d]B-linear code
C. The input set size nx, and three random oracles H : {0, 1}∗→{0, 1}2κ,
H1 : {0, 1}∗→{0, 1}ℓ1 such that ℓ1 ≤ log |B| · kc and H2 : {0, 1}∗→{0, 1}ℓ2 . A
linear OKVS algorithm pair (Ecd, Dcd) of expansion factor εokvs.

Protocol: Upon an input set X from the receiver, the protocol runs as follows:

1. Two parties execute nc times of (F,B)-sVOLE of length m = (1+εokvs) ·n. In
each i-th execution, the sender obtains W⃗ i ∈ Fm and ∆i ∈ F and the receiver
obtains V⃗ i ∈ Fm and U⃗ i ∈ Bm. Two parties let W, V ∈ Fm×nc (U ∈ Bm×nc ,
resp) as matrices of i-th column vector W⃗ i, V⃗ i (U⃗ i, resp).

2. The sender samples salt ← {0, 1}κ, and ws ← Fnc , and compute cs =
H1(ws). Then it sends salt and cs to the receiver.

3. The receiver samples wr ← Fnc , and computes an OKVS encoding P ∈
{0, 1}m×ℓ1 on the set {(x, vx) : x ∈ X, vx = H1(x, salt)}.

4. The receiver applies C on each row vector P⃗i ∈ {0, 1}ℓ1 of P by embedding
it into Bkc . Write the resulting matrix by C(P) ∈ Bm×nc whose i-th row is
C(P⃗i) ∈ Bnc .

5. The receiver sends wr and the correction matrix U ′ = C(P) − U ∈ Bm×nc

to the sender who locally computes W ′ = W + ∆⃗⊙ U ′.
6. The sender sends ws to the receiver, who aborts if cs ̸= H1(ws). Two parties

define w := ws + wr.
7. The receiver outputs {H2 (x, Dcd(V, x) + w) | x ∈ X} (as F (X)).
8. The sender defines the OPRF function F : {0, 1}∗→{0, 1}ℓ2 by

F (y) := H2

(
y, Dcd(W ′, y) + w − ∆⃗⊙ C(H1(y, salt))

)
.

Fig. 9: Modified OKVS-based OPRF construction.

Proof. The S interacts with A as follows:

– S plays the role of Fvole. S waits for A to send (W⃗i, ∆i)i∈[nc] ∈ (Fm × F)nc .
– On behalf of the receiver, S waits for A to send salt and cs. Then, S sends

uniform wr ∈ Fnc and U ′ ∈ Bm×nc . Next, S waits for A to send ws and
aborts if cs ̸= H(ws).

– For every queries to H, S abort if there exists output collision.
– Whenever A queries H2(y, q), if q = Dcd(W ′, y) + w − ∆⃗ ⊙ C(H1(y, salt))

and H2(y, q) has not previously been queried, send y to Foprf and programs
H2 to the response. Otherwise, H2 responses normally.

To prove that this simulation is indistinguishable, consider the following hybrids.

– G0: The same as the real protocol except S plays the role of Fvole.

20

– G1: S aborts if there exists output collision in H queries. As H as output
length 2κ,

Pr [G1 aborts] ≤ q2

22κ

– G2: S samples U ′ uniformly instead of computing U ′ = C(P) − U . Since U
is chosen uniformly at random, the distribution of A’s view does not change
except when Ecd aborts. Since the probability that Ecd abort is less than
2−λ, the difference from the previous game is negligible:

|Pr [A wins G1]− Pr [A wins G2]| ≤ Pr [Ecd aborts in G0] ≤ 1
2λ

– G3: When S samples U ′ and wr, abort if there exists (y, σ) such that H2(y, σ)
has previously been queried and σ = Dcd(W ′, y) + w − ∆⃗ ⊙ C(H1(y)). As
wr is chosen uniformly at random, we have

Pr[G3 aborts.] ≤ q

|F|nc
≤ q

2κ

Note this hybrid represents why wr should be sampled by the receiver and
sent to the sender.

– G3: Whenever A queries H2(y, σ) after U ′ is sampled, if σ = Dcd(W ′, y) +
w − ∆⃗⊙ C(H1(y)) and H2(y, σ) has not previously been queried, send y to
Foprf and programs H2 to the response. Otherwise, H2 responses normally.
As output distribution of Foprf is random, the distribution of A’s view is
identical. ⊓⊔

Lemma 3. The the protocol of Figure 9 securely realizes Foprf against (qon, qoff)-
malicious receiver A.

Proof. The S interacts with A as follows:

– S plays the role of Fvole. S waits for A to send (V⃗i, U⃗i)i∈[nc] ∈ (Fm ×Bm)nc .
– On behalf of sender, S sends uniform salt and cs to A.
– When A sends wr, sample uniform ws and program H(ws) = cs.
– When A sends U ′, compute U ′ − U = C(P). For H1(x) queries made by A,
S checks if Dcd(C(P), x) = C(H1(x, salt)), S sends x to Foprf and receives it
as F (x).

– For each x ∈ X, S programs H2(x, Dcd(W ′, x)+w−∆⃗⊙C(H1(x))) as F (x).

To prove that this simulation is indistinguishable, consider the following hybrids.

– G0: The same as the real protocol except S plays the role of Fvole, so S waits
for A to send (V⃗i, U⃗i)i∈[nc] ∈ (Fm × Bm)nc .

– G1: When S samples uniform salt, S abort if there exists a prior query from
A to H1 with form H1(·, salt). As |salt| ≥ κ, we have

Pr [G1 aborts] ≤ qoff
2κ

21

– G2: When A sends U ′ and wr, compute U ′−U = C(P). For each of the previ-
ous H1(x, salt) queries made by A, S checks if Dcd(C(P), x) = C(H1(x, salt))
and if so adds x to X. S sends X to Foprf and receives {F (x) | x ∈ X} in
response.

– G3: S samples uniform cs instead of computing H, but programs H(ws) = cs

after sampling ws uniformly at random. G3 aborts if there exists a previous
query to H with input collision or there exists a previous query H2(x, σ)
such that σ = Dcd(V, x) + w. Then, as ws is chosen uniformly at random
from Fnc

Pr [G2 aborts] ≤ qoff
Fnc
≤ qoff

2κ

Next, S programs H2(x, Dcd(V, x)+w) = F (x) for x ∈ X and by the unifor-
mity of F (x), it does not change A’s view. Note that this hybrid represents
why ws is required.

– G4: For each query H2(x, σ), S add x into X and programs H2(x, σ) =
Foprf(x) if {

σ = Dcd(V, x) + w

Dcd(C(P), x) = C(H1(x, salt))

then, add x to X and program H2(x, σ) = Foprf(x). Similarly, for each query
H1(x, salt), S add x into X and programs H2(x, Dcd(V, x) + w) = Foprf(x) if

Dcd(C(P), x) = C(H1(x, salt)).

By the uniformity of Foprf(x), this does not change the view of A. Note
that |X| ≤ n′, by the hardness of (n, n′, qon, qoff)-online OKVS overfitting
problem.

– G5: At the end of protocol, S samples ∆ and aborts if A ever makes an
H2(x, σ) query for x /∈ X such that

σ = Dcd(W ′, x)− ∆⃗⊙ C(H1(x, salt)).

By (2), for queries H2(x, σ) such that Dcd(P, x) ̸= H1(x, salt), as there is at
least d log |F|-bit entropy from ∆⃗, we have

Pr[G5 abort] ≤ q

2κ
.

⊓⊔

6.3 Double Execution of OPRF

This section proposes a novel idea for the extreme case where much tighter n′ ≈
m is required. Recall that the underlying idea of preventing OKVS overfitting
is to limit the number of H1 queries that the malicious receiver can obtain.
The basic idea of what we call double execution of OPRF is to change H1 by
another OPRF, say F , and using the value again to encode OKVS. Precisely, for
a given OPRF functionality OPRFn for n items with variable number of allowed
evaluations, the double execution proceeds as follows.

22

1. The sender and the receiver invoke OPRFn with n′′ ≫ m allowed evaluations.
The receiver gets at most n′′ evaluated items {F (x1), . . . , F (xn′′)}. We will
denote the bit-length of H1 in this phase ℓ′′1 .

2. The sender and the receiver invoke OPRFn one more time. But the value
set VX at OKVS encoding step at receiver’s side becomes {F (x) : x ∈ X}
instead of {H1(x) : x ∈ X}. As a result, the receiver gets at most n′ evaluated
items {G(xi1)), . . . , G(xin′))} where ik ∈ [n′].

The double execution has in fact the same effect of constraining online com-
plexity. In the second phase, since the receiver use F (x) instead of H1(x), a
corrupt receiver can try to overfit an OKVS with only n′′ random oracle queries.
As ℓ1 required for tight n′ ≈ m is so huge in the PRTY bound, the double exe-
cution is an economic choice for a tight n′ ≈ m. For example, if a sender and a
receiver want to achieve n′ = 1.02m in [10] with qon = 2128, n = 220, ℓ1 should
be no less than 5492 bits by PRTY bound. If they use double execution in this
case, it is sufficient that ℓ′′1 = 109 for n′′ = 24m and ℓ1 = 307 for n′ = 1.02m.
The communication of double execution is 13.2 ≈ 5492/(109+307) times smaller
than the single execution.

7 Better OPRFs from Intermediate Fields

Although the original purpose of Figure 9 was to address both the PRTY con-
struction (with F = GF(2)) and the RS construction (with F = GF(2128)) si-
multaneously, it also demonstrates another instantiation with F = GF(2f) for
1 < f < κ, beyond the binary field GF(2) and the full κ-degree field GF(2κ).
This section discusses these alternative instantiations and reveals more efficient
OKVS-based OPRF protocols compared to previous ones.

7.1 Concrete Instantiations
We first consider the instantiation with small-sized F, for example, F = GF(2f)
with f ≤ 10. In this case, the underlying VOLE can be efficiently realized by
the protocol due to [14], referred to as SoftSpokenVOLE, which is based solely
on Minicrypt assumptions. The computation cost of the VOLE scheme grows
exponentially with respect to the parameter f , limiting its practical application
when f becomes too large. As a result, the experiments conducted in [14] were
restricted to values of f up to 10.

For larger fields F, the LPN-based VOLE protocol, known as SilentVOLE
[5], offers a more efficient solution compared to the SoftSpokenVOLE protocol.
It has a linear computational complexity with respect to the field size, making
it suitable for handling large fields without incurring excessive computational
costs. However, due to the linear complexity of the VOLE, there is no benefit to
using nc > 1. Therefore, we only consider small-sized F hereafter.
Choice of B. To complete the instantiation, we need to specify the choice of
the subfield degree b that determines B = GF(2b), which can be freely chosen
among the divisors of f . Here, we highlight two advantages of taking b = 1.

23

First, the main computation of SoftSpokenVOLE consists of B operations, so
taking b = 1 makes every computation in the VOLE as bit-operations, resulting
in the fastest performance. In fact, the original proposal and its application
[2] used b = 1 for efficiency. Second, the transmission of the correction matrix
U ′ ∈ Bm×nc (from the receiver to the sender) dominates the communication cost
of our OPRF protocol with m · nc · log |B| = m · nc · b bits. As m is determined
by the input set size n and OKVS expansion factor εokvs, the choice of b only
affects nc ·b. Considering the general bound nc ≥ dc +kc−1 for every linear code
and the conditions kc ≥ ℓ1/b and dc ≥ κ/f in Theorem 2, we have the inequality
nc ·b ≥ κ ·b/f +ℓ1−b. This implies that b = 1 allows the minimal communication
cost. However, for b = 1, the linear code achieving nc = dc+kc−1 (called maximal
distance separable code) does not always exist, and that argument cannot assure
that b = 1 is the best choice. For these reasons, we investigate the known lower
bounds of nc such that the linear code [nc, kc, dc]B exists in [1] for given kc and
dc in Table 2, which shows that b = 1 provides the minimal nc · b.

ℓ1 = 109 ℓ1 = 150
F dc B kc nc nc · b F dc B kc nc nc · b

GF(28) 16
GF(2) 109 149 149

GF(28) 16
GF(2) 150 192 192

GF(22) 55 78 156 GF(22) 75 99 198
GF(28) 14 29 232 GF(28) 19 34 272

GF(26) 22

GF(2) 109 162 162

GF(26) 22

GF(2) 150 206 206
GF(22) 55 86 172 GF(22) 75 107 214
GF(23) 37 62 186 GF(23) 50 75 225
GF(26) 19 40 240 GF(26) 25 46 276

GF(24) 32
GF(2) 109 184 184

GF(24) 32
GF(2) 150 230 230

GF(22) 55 99 198 GF(22) 75 120 240
GF(24) 28 59 236 GF(24) 38 69 276

GF(22) 64 GF(2) 109 250 250
GF(22) 55 145 290

Table 2: Some minimal possible values of nc and corresponding nc · b where
[nc, kc, dc]B can exist. The length ℓ1 = 109 (resp., 150) is taken from Table 1
with qon = 296 with n′ = 5m (resp., 2m).

Meanwhile, the choice of b affects other computational parts. The compu-
tation of F (·), particularly the OKVS decoding Dcd(W ′, x) or Dcd(V, x) where
W ′, V ∈ Fm×nc , becomes maximal when b = 1 since it consists of XOR opera-
tions of (nc · f)-bit strings. Furthermore, two parties need to execute nc times of
(F,B)-VOLE, and the number of VOLE instances would be maximal for b = 1.

Considering these facts, another choice of b other than 1 could provide a
trade-off between computation and communication costs. As verifying the com-
putational benefit of other choices of b requires another extensive experimental

24

effort, we choose to fix b = 1 for its clear communication advantage and leave
the investigation of further trade-offs with other choices of b ̸= 1 for future work.
Communication Cost. This framework consists of two phases of interaction:
VOLE, and the transmission of U ′ = C(P) − U ∈ Bm×nc from the receiver
to the sender. Assuming the VOLE communication is negligible (a reasonable
assumption due to recent advances in VOLE), the second phase dominates the
total communication cost, specifically

commoprf = (nc log |B|) ·m = (nc log |B|) · (1 + εokvs) · n. (3)

Comparison with RS constructions. As the RS construction that combines
LPN-based VOLE and OKVS represents the state-of-the-art for OPRF and PSI,
we provide some comparisons with it. To recall, the RS construction can be un-
derstood as Figure 9 with ℓ1 = 128, F = B = GF(2128) and the identity linear
map [1, 1, 1]B, which requires 128 ·m bits of communication, as shown in Equa-
tion (3). As the value of nc ·b in Table 2 always exceeds 128, the RS construction
still incurs a smaller communication cost. However, another important factor is
the bound for PRF evaluation n′. The RS construction itself does not have the
online hash mitigation, and the PRF bound n′ should be calculated with respect
to 2128 queries, resulting in n′ = 5.6m with m = 1.3n (assuming OKVS from
[10]). On the other hand, our choice of ℓ1 = 109 and 150 comes from n′ = 5m
and 2m, respectively, which is smaller than the RS construction’s n′ = 5.6m. In
other words, for the original RS construction to achieve n′ = 5m or 2m, their ℓ1
should be taken larger.

7.2 Performance Evaluation

We present some experimental results to evaluate performance of our newly
proposed protocol. Since there is a trade-off between computational and com-
munication complexities, our evaluation was carried out under different network
settings with varying the field degree f from 1 to 8 (while fixing the subfield
degree by b = 1), and the set size n = 220.

For the SoftSpokenVOLE realization, we utilize the implementation of libOTe
library [12]. We also choose to employ the OKVS algorithm proposed by [10],
whose implementation is publicly available at [16]. Note that this the okvs ex-
pansion factor εokvs ≈ 0.3, so every m below can be regarded as 1.3n. We remark
that RB-OKVS [3] is claimed to have smaller εokvs while having similar perfor-
mance with [10]. However, we found no public implementation of RB-OKVS,
and our internal implementation of RB-OKVS cannot reproduce the numbers in
the original paper, so we simply use [10] for experiments. Note that the choice of
OKVS might change the absolute numbers in this section, but our main contents
are almost independent to the choice of OKVS.

The tests were performed using a machine equipped with 3.50 GHz Intel
Xeon E5-1650 v3 (Haswell) CPU and 128 GB RAM, using a single thread. For
concrete parameters, we use λ = 40 bit of statistical security and κ = 128 bits of

25

computational security. To simulate various network environments, we employed
the tc command in conjunction with a local network setup.

ℓ1 f nc Binary code

109

1 550 RS[50, 19, 32]64 + [11, 6, 4]2
2 350 RS[50, 19, 32]64 + [7, 6, 2]2
4 238 RS[34, 19, 16]64 + [7, 6, 2]2
6 192 RS[32, 22, 11]32 + [6, 5, 2]2
8 174 RS[29, 22, 8]32 + [6, 5, 2]2

150

1 616 RS[56, 25, 32]64 + [11, 6, 4]2
2 392 RS[56, 25, 32]64 + [7, 6, 2]2
4 280 RS[40, 25, 16]64 + [7, 6, 2]2
6 245 RS[35, 25, 11]64 + [7, 6, 2]2
8 224 RS[32, 25, 8]64 + [7, 6, 2]2

Table 3: Specification of the binary linear codes for our experiments.

In this evaluation, we focus on the maliciously secure version. We consider
two values of ℓ1 in Table 1 with qon = 296; ℓ1 = 109 for n′ = 5 ·m for m ≈ 1.3n,
and ℓ1 = 150 for n′ = 2 ·m for m ≈ 1.3n.

Main Comparison Target. Our main comparison target is the state-of-the-
art OPRF protocol [10] in the RS construction (fast version) that using LPN-
based VOLE over GF(2128). The performance of those performance strongly
depends on the specific choice of the code for LPN. We consider quasi-cyclic
LDPC code [5] which we denote below by QC, and a new family of codes named
expand-convolute codes proposed by Rindal et al. [11], especially ExConv7x24
(resp. ExConv21x24) implemented in libOTe by EC1 (resp. EC2).

Remark 3. There was another recent proposal of code family called Silver [6] that
retains quite aggressive structure to have blazing-fast performance. However, we
do not compare with this family, as it turns out to be vulnerable [11].

Concrete Linear Codes. Although Table 2 provides the minimal length of
nc such that [nc, ℓ1, ⌈128/f⌉]2, the concrete construction of such linear code is
not known for most cases. Thus, for our experiments, we use the binary linear
code constructed by combining a Reed-Solomon (RS) code and another binary
code, which method is already used in [9]: To be precise, given ℓ1-bit input, we
first apply some RS code RS[nrs, krs, drs]q by embedding ℓ1-bit inputs into krs
elements of GF(q), which outputs nrs elements of GF(q). After then, we apply
[nb, log q, db]2 code for each GF(q) element by understanding it as log q-bits.
This implies a binary code [nrs ·nb, ℓ1, drs ·db]2. Given ℓ1 and dc, we exhaustively
searched through all possible RS codes and binary linear codes to find the one

26

n = 220, m ≈ 1.3n Ours [10]
n′/m 5 2 5.6

ℓ1 109 150 128

Communication
(MB)

f = 1 93.56 104.8
22.23(QC)
22.78(EC1)
22.42(EC2)

f = 2 59.56 66.71
f = 4 40.53 47.68
f = 6 32.71 41.75
f = 8 29.67 38.20

Table 4: Total communication costs of our OPRF and [10] for n = 220 items.
The ‘n′/m’ row shows the number of PRF values that malicious receiver can
obtain. Our protocols can set qon = 296 and qoff = 2128 thanks to our mitigation,
which is not applicable to the previous work.

satisfying drs · db = dc with the shortest nrs · nb, and the concrete codes are
obtained from SageMath. The results are summarized in Table 3.

Remark 4. There would be another construction of linear code [nc, ℓ1, dc] shorter
than our found RS code & binary code combination; for example, it is known a
construction of [164, 109, 16]2 linear code [1] for ℓ1 = 109 and f = 8 case, which
is 10-bit shorter than our construction [174, 110, 16]2. One might try to replace
our codes by investigating further shorter linear code, which directly improves
the performance without any harm on security.

Communication Costs. Recall that the transmission of the correction matrix
U ′ ∈ Bm×nc dominates the communincation cost, precisely nc · b · (1 + ϵokvs)nx

bits. Thus the communication cost would be totally proportional to nc · b, which
is nc in our case, and b = 128 in [10]. Table 4 shows the communication cost
based on the concrete linear codes found in Table 3, and one can check that
indeed the communication cost is exactly proportional to nc · b. We have to
say that [10] requires smaller communication than ours, as it has nc · b = 128.
However, we would like to remark that the f = 1 case is actually corresponds to
the original PRTY construction [9] while replacing the subroutines to latest one.
In this view, our generalized f choice narrows the gap between [10] protocols
and our one: for example ℓ1 = 109 (or n′ = 5m), the communication cost gap
between Minicrypt and LPN drops to 4.2x (f = 1) to 1.3x (f = 8).

Running Time. To check the total running time of OPRF in various network
setting, we used 3 settings. The first one is 100Mbps with 100ms rtt (round trip
time), and the second one is 1Gbps with 1ms rtt, the last one is 5Gbps with 1ms
rtt. These settings are done by using linux tc command in local host network.
We further note that the public implementation [16] of [10] only supports fixed
ℓ1 = 128 now, which translates to n′ = 5.6m. As a fair comparison, we provide
the performances for ℓ1 = 109 case of n′ = 5m in Table 5.

27

n = 220 100Mbps 1Gbps 5Gbps Assumption

Ours

f = 1 14.2 2.62 2.03

Minicrypt
f = 2 10.0 2.18 1.80
f = 4 7.787 2.25 1.99
f = 6 7.783 2.96 2.74
f = 8 9.37 4.75 4.55

[10]
QC 5.304 2.32 2.31

dual-LPNEC1 4.647 0.990 0.980
EC2 5.056 1.629 1.577

Table 5: Total running time (in second) of our OPRF and [10] on various network
settings for n = 220 items. Under the parameters used in this evaluation, our
protocol allows at most n′ = 5m PRF evaluations, and [10] allows at most
n′ = 5.6m PRF evaluations.

Table 5 shows OPRF running time with f = 1, 2, 4, 6, 8 at our construction
and the previous work [10]. The implementation of the previous work is in pub-
lic [16], so we re-run the code in our evaluation setting for fair comparison. In
the fast (5Gbps and 1Gbps) network environments, our f = 2 case is even faster
than [10] with QC. Since our protocol only requires Minicrypt assumption while
QC is not, we might say our protocol is strictly better than it.

In slower network (100Mbps) environment where the communication cost
affects a lot, the protocols of [10] are clearly still better. However, we can confirm
again the generalized field choice helps to narrow the gap between [10] protocols
and our one. Specifically, the f = 1 case that corresponds to revised PRTY
construction takes 14.2s, which is 2.7 − 3x than [10] protocols, while our f = 6
of 7.783s decreases the gap by 1.5− 1.7x.

Discussion with Breakdown. Table 6 shows the breakdown for of our protocol
timing results in Table 5. The ‘Transpose V ’ row is an implementation-specific
part, which cannot be seen in Figure 9: The VOLE outputs V, W ∈ Fm×nc are
obtained by nc independent call of VOLE, and they are naturally arranged in
a column-wise manner. However, the OKVS decoding understands V (and W)
as a length m vector of nc · log |F|-bits, we need to transpose them. As Table 6
shows, such transpose also takes quite a large computational cost.

We finally remark that the first two steps (VOLE and transpose) can be
done in offline, before the input set X is determined. In other words, they can
be understood as a setup phase before the main OPRF starts. Concretely, for
f = 8, the first two steps occupy from 77% in the total timings un the 5Gbps
network. Thus, we can conclude that our protocol with f = 8 would be a nice
choice for the situations where some offline computation is allowed, probably
even better than [10] protocol with EC-LPN-based VOLE .

28

100Mbps 1Gbps 5Gbps
f 1 4 8 1 4 8 1 4 8

VOLE 0.670 0.822 2.673 0.246 0.430 2.333 0.244 0.414 2.324
Transpose 0.133 0.263 0.664 0.132 0.265 0.675 0.134 0.263 0.667

OKVS Encode 0.356 0.350 0.348 0.356 0.361 0.354 0.352 0.354 0.354
Apply Lin. Code 0.373 0.114 0.100 0.378 0.116 0.100 0.379 0.116 0.101
Send/Recv Corr. 12.14 5.568 4.580 0.995 0.418 0.331 0.404 0.182 0.140
OKVS Decode 0.343 0.491 0.615 0.332 0.485 0.620 0.336 0.485 0.627

Table 6: Breakdown of our protocol timings (in second) in Table 5.

Acknowledgments

The authors would like to thank Peter Rindal for helpful comments and discus-
sions, especially for verifying the early discovery of the flaw and providing clear
understanding on the current state of OPRF and PSI protocols.

References

1. Code Tables: Bounds on the parameters of various types of codes (2022), http:
//codetables.de/

2. Baum, C., Braun, L., de Saint Guilhem, C.D., Klooß, M., Orsini, E., Roy, L., Scholl,
P.: Publicly Verifiable Zero-Knowledge and Post-Quantum Signatures from VOLE-
in-the-Head. In: Handschuh, H., Lysyanskaya, A. (eds.) Advances in Cryptology –
CRYPTO 2023. pp. 581–615. Springer Nature Switzerland, Cham (2023)

3. Bienstock, A., Patel, S., Seo, J.Y., Yeo, K.: Near-Optimal Oblivious Key-
Value Stores for Efficient PSI, PSU and Volume-Hiding Multi-Maps. In: 32nd
USENIX Security Symposium (USENIX Security 23). pp. 301–318. USENIX
Association, Anaheim, CA (Aug 2023), https://www.usenix.org/conference/
usenixsecurity23/presentation/bienstock

4. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Resch, N., Scholl, P.: Corre-
lated Pseudorandomness from Expand-Accumulate Codes. In: Dodis, Y., Shrimp-
ton, T. (eds.) Advances in Cryptology – CRYPTO 2022. Springer Nature Switzer-
land, Cham (2022)

5. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Rindal, P., Scholl, P.: Effi-
cient Two-Round OT Extension and Silent Non-Interactive Secure Computation.
In: CCS 2019. pp. 291–308 (2019)

6. Couteau, G., Rindal, P., Raghuraman, S.: Silver: Silent VOLE and Oblivious Trans-
fer from Hardness of Decoding Structured LDPC Codes. In: CRYPTO 2021. pp.
502–534. Springer, Cham (2021)

7. Garimella, G., Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: Oblivious key-value
stores and amplification for private set intersection. In: CRYPTO 2021. pp. 395–
425. Springer (2021)

8. Orrù, M., Orsini, E., Scholl, P.: Actively Secure 1-out-of-N OT Extension with Ap-
plication to Private Set Intersection. In: Handschuh, H. (ed.) Topics in Cryptology
– CT-RSA 2017. pp. 381–396. Springer International Publishing, Cham (2017)

29

http://codetables.de/
http://codetables.de/
https://www.usenix.org/conference/usenixsecurity23/presentation/bienstock
https://www.usenix.org/conference/usenixsecurity23/presentation/bienstock

9. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: PSI from PaXoS: fast, malicious
Private Set Intersection. In: EUROCRYPT 2020. pp. 739–767. Springer (2020)

10. Raghuraman, S., Rindal, P.: Blazing Fast PSI from Improved OKVS and Subfield
VOLE. In: CCS 2022. pp. 2505–2517. ACM, New York, NY, USA (2022)

11. Raghuraman, S., Rindal, P., Tanguy, T.: Expand-Convolute Codes for Pseudoran-
dom Correlation Generators from LPN. In: Handschuh, H., Lysyanskaya, A. (eds.)
Advances in Cryptology – CRYPTO 2023. Springer Nature Switzerland, Cham
(2023)

12. Rindal, P.: libOTe: an efficient, portable, and easy to use Oblivious Transfer Library
(2022), https://github.com/osu-crypto/libOTe

13. Rindal, P., Schoppmann, P.: VOLE-PSI: Fast OPRF and Circuit-PSI from Vector-
OLE. In: EUROCRYPT 2021. pp. 901–930. Springer, Cham (2021)

14. Roy, L.: SoftSpokenOT: Quieter OT Extension from Small-Field Silent VOLE
in the Minicrypt Model. In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryp-
tology - CRYPTO 2022 - 42nd Annual International Cryptology Conference,
CRYPTO 2022, Santa Barbara, CA, USA, August 15-18, 2022, Proceedings, Part
I. Lecture Notes in Computer Science, vol. 13507, pp. 657–687. Springer (2022).
https://doi.org/10.1007/978-3-031-15802-5_23, https://doi.org/10.1007/
978-3-031-15802-5_23

15. Suzuki, K., Tonien, D., Kurosawa, K., Toyota, K.: Birthday Paradox for Multi-
collisions. In: Rhee, M.S., Lee, B. (eds.) Information Security and Cryptology –
ICISC 2006. pp. 29–40. Springer Berlin Heidelberg, Berlin, Heidelberg (2006)

16. Visa-Research: volepsi: Efficient private set intersection base on vole (2022), https:
//github.com/Visa-Research/volepsi

17. Wagner, D.: A Generalized Birthday Problem. In: Yung, M. (ed.) Advances in
Cryptology — CRYPTO 2002. pp. 288–304. Springer Berlin Heidelberg, Berlin,
Heidelberg (2002)

30

https://github.com/osu-crypto/libOTe
https://doi.org/10.1007/978-3-031-15802-5_23
https://doi.org/10.1007/978-3-031-15802-5_23
https://doi.org/10.1007/978-3-031-15802-5_23
https://doi.org/10.1007/978-3-031-15802-5_23
https://github.com/Visa-Research/volepsi
https://github.com/Visa-Research/volepsi

A Details for RB-OKVS Overfitting Attack

Case n′ < 2m. Similarly to PaXoS, we reduce the (n, km
k−1)-overfitting game to a

k-XOR problem for k > 2 as follows. As solving a k-XOR problem of (d+ ℓ1)-bit
strings costs O(k2

d+ℓ1
1+⌊log k⌋) time, our attack costs O(m2

d+ℓ1
1+⌊log k⌋) time including

time for querying to the random oracle.

1. Let Q = {x1, . . . , xq} be an arbitrary subset in {0, 1}∗. Query all the items
in Q to h0, h1, and H1. Bucketize Q by h1, denoting Bh1 the corresponding
bucket. Then, there are m buckets, and there are expectedly q/m items per
bucket. For simplicity, we assume that (k − 1)|d and (k − 1)|m.

2. For j ∈ {1, k, . . . , m− d− k + 2}, do the following with initialization X ′ ←
{}.
(a) Solve a k-XOR problem for h0(x)∥H1(x) in buckets Bj . If leftmost k ×

(k− 1)-submatrix has rank strictly less than k− 1, then repeat this step
to find another solution.

(b) Gather the proper solutions of the k-XOR problem to X ′.
3. For j ∈ {m− d + 1, m− d + k, . . . , m− k + 2}, do the following with initial-

ization Y ← {}.
(a) Solve a k-XOR problem for h0(x)∥H1(x) in buckets Bm−d+1 and let

x′1, . . . , x′k are solutions.
(b) Make a matrix K ∈ Fk×(m+ℓ1)

2 from row(xi)∥H1(xi).
(c) Let K ′ be a submatrix of K in Fk×(k−1)

2 , whose i-th column is equal to
the (j + i− 1)-th column of K.

(d) If rank(K ′) = k − 1, then add x′1, . . . , x′k to Y . Otherwise, repeat step 3
for same j.

4. Denote X ′ = {x′1, . . . , x′n′} where n′ = k · m−d
k−1 + k · d

k−1 = km
k−1 . Since

rank(row(X⃗ ′)) = rank(row(X⃗ ′)|H1(X⃗ ′)), there is a solution P ′ of the linear
equation row(X ′) · P ′ = H1(X ′).

Case n′ ≥ 2m. Similarly to PaXoS, we reduce the OKVS overfitting problem to
a c-multicollision finding problem as follows. As finding c-multicollision of (d +
ℓ1)-bit strings costs O((c!)1/c2

(c−1)(d+ℓ1)
c) time, our attack costs O(m2

(c−1)(d+ℓ1)
c)

time for small enough c.

1. Let Q = {x1, . . . , xq} be an arbitrary subset in {0, 1}∗. Query all the items
in Q to h0, h1, and H1. Bucketize Q by h1, denoting Bh1 the corresponding
bucket. Then, there are m buckets, and there are expectedly q/m items per
bucket.

2. Let k > 2. For j ∈ {1, 2, . . . , m− d}, do the following with initialization
X ′ ← {}.
(a) Find a c-multicollision for h0(x)∥H1(x) from bucket Bj . If the first bit

of h0(x) is 0, find another solution.

31

(b) Gather the proper solutions of the problem to X ′.
3. For j ∈ {m− d + 1, m− d, . . . , m}, do the following with initialization Y ←
{}.
(a) Find a c-multicollision for h0(x)∥H1(x) in buckets Bm−d+1 and let x′1, . . . , x′c

are those solutions.
(b) Add proper solutions x′1, . . . , x′c to Y .

4. If row(Y) has rank less than d, go back to Step 3. Otherwise, X ′ ← X ′ ∪ Y .
5. Denote X ′ = {x′1, . . . , x′n′} where n′ = cm. Since rank(row(X⃗ ′)) = rank(row(X⃗ ′)|H1(X⃗ ′)),

there is a solution P ′ of the linear equation row(X ′) · P ′ = H1(X ′).

32

	Revisiting OKVS-based OPRF and PSI: Cryptanalysis and Better Construction

