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Abstract. This article generalizes the widely-used GLV decomposition
for scalar multiplication to a broader range of elliptic curves with mod-
erate CM discriminant D < 0 (up to a few thousand in absolute value).
Previously, it was commonly believed that this technique could only be
applied efficiently for small D values (e.g., up to 100). In practice, curves
with j-invariant 0 are most frequently employed, as they have the small-
est possible D = −3. This article participates in the decade-long devel-
opment of numerous real-world curves with moderate D in the context
of ZK-SNARKs. Such curves are typically derived from others, which
limits the ability to generate them while controlling the magnitude of
D. The most notable example is so-called “lollipop” curves demanded,
among others, in the Mina protocol.

Additionally, the new results are relevant to one of the “classical” curves
(with D = −619) from the Russian ECC standard. This curve was likely
found using the CM method (with overwhelming probability), though
this is not explicitly stated in the standard. Its developers seemingly
sought to avoid curves with small D values, aiming to mitigate potential
DLP attacks on such curves, and hoped these attacks would not extend
effectively to D = −619. One goal of the present article is to address
the perceived disparity between the D = −3 curves and the Russian
curve. Specifically, the Russian curve should either be excluded from the
standard for potential security reasons or local software should begin
leveraging the advantages of the GLV decomposition.
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1 Introduction

Throughout the article, E will stand for an elliptic curve over a finite field Fq
of large characteristic (for simplicity). The GLV (Gallant–Lambert–Vanstone)
technique, as described in [18], is a well-known method for accelerating a scalar
multiplication on E. Specifically, it applies to curves having an efficient Fq-
endomorphism ϕ ∈ End(E). The method is especially advantageous for curves
with j-invariant j = 0 (or j = 1728), as it enables to take on the role of ϕ a
non-trivial automorphism with only a single modular multiplication. Addition-
ally, the GLV approach is easily extended to curves for which the endomorphism
requires somewhat more computational effort, that is, the degree d := deg(ϕ)
is slightly greater than 1. The most famous instance is the Bandersnatch curve
[22] admitting d = 2.

As is typical in DLP-based cryptography, the Fq-point group E(Fq) contains
a subgroup G of huge prime order r. For compactness, let’s put ℓ := ⌈log2(r)⌉
and ℓ′ := ⌈ℓ/2⌉. Assume that an entity of a cryptographic protocol wants to
compute the scalar multiplication Q := nP for P ∈ G and n ∈ Z/r. Evidently,
Q can be determined by means of one of the general exponentiation methods,
such as the schoolbook double-add method, requiring ℓ doublings and at worst
≈ ℓ additions on E.

In practice, the embedding degree of G is > 1, that is, G = E(Fq)[r]. Con-
sequently, any endomorphism ϕ acts on G as the multiplication by some scalar
λ ∈ Z/r. The eigenvalue λ is one of the two roots in Z/r of the characteristic

polynomial (x − ϕ)(x − ϕ̂) = x2 − ax + d considered over Z/r, where ϕ̂ is the
dual endomorphism and a ∈ Z is the trace of ϕ. The latter can be determined
via Schoof’s like algorithm [4, Appendix A] whenever the degree d is sufficiently
smooth (as in the setting of this article).

To explain the GLV method, we lack the rank-2 lattice L := s−1(0) ⊂ Z2,
where s(v, v′) := v + λv′ ∈ Z/r, generated by the (long) vectors (r, 0), (λ,−1).
It is suggested to introduce new numbers m, m′ ∈ Z/r (to be specified later)
such that Q = mP +m′P ′, where P ′ := ϕ(P ) = λP . The difference (v0, v

′
0) :=

(n, 0)− (m,m′) = (n−m,−m′) evidently lies in L. Note that (m,m′) = (n, 0)−
(v0, v

′
0) = (n − v0,−v′0). The aim is to obtain the vector (m,m′) shorter than

(n, 0) in the infinity norm || · ||∞, i.e., the vector (v0, v
′
0) closer to (n, 0) than

the origin (0, 0). This can be done, e.g., via one of quick Babai’s algorithms
[16, Sections 18.1 and 18.2]. As it turns out, one can expect the bit lengths
log2(|m|), log2(|m′|) ≈ ℓ′. For this, it is necessary to prepare in advance (e.g.,
via (Lagrange–)Gauss’ reduction [16, Section 17.1]) a short basis of the lattice L
whose two vectors are also of bit lengths ≈ ℓ′. To find Q, it remains to employ
any double-scalar multiplication algorithm. For instance, (Shamir–)Straus’ trick
[26] costs ℓ′ doublings and at most ≈ ℓ′ additions on E.

The endomorphism ϕ for the GLV decomposition has to be different from
scalar endomorphisms on E. The point is that it is impossible to evaluate almost
for free [λ] ∈ End(E) (of degree λ2) for a huge number λ ∈ Z/r. Meanwhile, for
the other λ, the numbers m, m′ simultaneously do not have (on average) half
bit lengths. In turn, the eigenvalue λ of the non-scalar ϕ is most likely enormous
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as needed. In fact, there is a folklore trick (see, e.g., [14]) when ϕ = [2ℓ
′
], i.e.,

λ = 2ℓ
′
and m, m′ are respectively the remainder and quotient for the division of

n by 2ℓ
′
. The overall running time of this non-authentic GLV method amounts to

ℓ doublings (ℓ′ ones if the point P , i.e., P ′ is fixed) and at worst ≈ ℓ′ additions.

It is also worth mentioning the fake GLV approach [15] resembling the idea
of [3] for faster verification of ECDSA signatures. The given GLV variation takes
place even if an elliptic curve does not enjoy an appropriate endomorphism. In
the scenario under consideration an entity simply desires to check the equality
Q = nP with the a priori known point Q. More precisely, the corresponding
testing has the form kQ+ k′P = O, where k, k′ ∈ Z/r are still some numbers of
half bit lengths and O := (0 : 1 : 0) is the infinity (i.e., zero) point on E.

In 99.9 . . .% of cases, the modern landscape of discrete logarithm problem
(DLP) elliptic curve cryptography (ECC) is founded on ordinary (i.e., non-
supersingular) elliptic curves. The only exceptions are supersingular curves in-
volved in 2-cycles of pairing-friendly abelian varieties [10,11]. Since the result of
the present article is irrelevant to supersingular curves, we can neglect them
to avoid confusion. The endomorphism ring of each ordinary curve E/Fq is
independent of the base field and isomorphic to a rank-2 order OD (of some
complex multiplication discriminant D < 0) in the imaginary quadratic field

F := Q(
√
t2 − 4q), where t is the Frobenius trace of E. For instance, D = −8

for the Bandersnatch curve.

For the sake of simplicity, we will deal solely with fundamental CM discrim-
inants, i.e., those for which OD is the integer ring of F . Recall that such D are
square free up to 4 in their structure. From the cryptographic point of view,
generality is not lost under the given assumption. Indeed, an elliptic Fq-curve
of non-fundamental CM discriminant is Fq-isogenous to that of fundamental
one. Clearly, Fq-isogenous curves are almost always equivalent concerning the
hardness of the DLP. The opposite theoretical but impractical scenario (where
p2 | D for a large prime p) is discussed in [16, Section 25.6] and [17]. On the
other hand, curves with a predefined D are constructed exclusively via the CM
method (see, e.g., [27]). This method becomes infeasible for large CM discrim-
inants, specifically when −D > 1017, given current computational capabilities.
Consequently, there is no efficient way to generate an Fq-curve that admits an
ascending Fq-isogeny of a very large prime degree p.

Let us represent E in (weighted) projective coordinates to avoid the com-
putationally expensive inversion operation in F∗

q . As explained in Section 2.2,
classical Vélu’s formulas [16, Section 25.1.1] for evaluating ϕ ∈ End(E) require
at most ≈ cd multiplications in Fq with the constant c = 7.5. Meanwhile, one
doubling [2] on E (according to [6], [19, Annex A.10.4]) costs c′ ∈ {8, 9, 10} field
multiplications for the short Weierstrass form y2 = x3 + a4x+ a6. The concrete
choice for c′ depends on the magnitude of the coefficient a4 (inter alia, c′ = 8 if
a4 = −3). Looking ahead, we will not encounter in this paper any curves admit-
ting commonly used composite-order forms [16, Section 9.12], for which c′ would
need to be slightly smaller. As we see, c′ℓ′ multiplications are the total overhead
of [2ℓ

′
]. Therefore, the GLV technique with respect to ϕ is a faster solution than
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the aforementioned folklore trick only if d is quite small, or rather d is less than
≈ c′ℓ′/c.

It is known that the minimal degree dmin of a non-scalar endomorphism on
E is equal to −D/4 or (1 − D)/4, depending on whether D mod 4 is 0 or 1,
respectively. However, dmin is often not smooth enough to allow the successful
application of [16, Theorem 25.1.2], i.e., to decompose the associated endomor-
phism ϕmin into small-degree Fq-isogenies. Consequently, it was widely believed
in the past that scalar multiplication on the majority of curves is not subject to
extra acceleration.

1.1 New contribution

The idea of the current work is elementary, but powerful. To the authors’ knowl-
edge, it has not yet occurred in the public literature. Not looking at dmin, it is
suggested to originally take a loop (cycle) ofm ∈ N non-backtracking Fq-isogenies
ϕi : Ei → Ei+1 (where E = E1 = Em+1) of little prime degrees di. “Non-

backtracking” means that ϕi+1 differs from the dual isogeny ϕ̂i : Ei+1 → Ei,
hence the loop cannot be shortened. Every isogeny ϕi itself is not an endomor-
phism (except for m = 1), but so is their entire composition ϕ = ϕm ◦ · · · ◦ ϕ1 of
degree d = d1 · · · dm. Thereby, the overall running time of evaluating ϕ ∈ End(E)
is obviously reduced to ≈ c(d1 + · · ·+ dm) multiplications in Fq instead of ≈ cd
ones. Of course, it is necessary to verify that the endomorphism ϕ is non-scalar.
In particular, this is the case whenever

√
d ̸∈ Z. Curiously, d may be much

greater than the lower bound dmin ≈ −D/4, despite the better performance of
ϕ rather than ϕmin.

Let’s bring into play the (ideal) class group Cl of the ring OD (i.e., of the
field F ). It will not hurt to briefly overview main concepts and results connected
with Cl. They (or at least most of them) can be encountered, e.g., in [12], [16,
Sections 25.3.1 and 25.4.1]. First, Cl is a finite abelian group. Its order h := #Cl
is called (ideal) class number and behaves approximately like

√
−D as D → −∞.

The group Cl acts regularly on the crater (surface), i.e., on the set of all elliptic
Fq-curves of the same trace t and with the endomorphism ring ≃ OD. In other
words, an ideal class [I] ∈ Cl maps such a curve E to some horizontally Fq-
isogenous one E′.

By definition, the cardinality, i.e., index n := #(OD/I) = (OD : I) is the (nu-
merical) norm of I. Do not confuse this concept with the norm map N : F → Q,
for which N(OD) ⊂ Z. The ideal I, being the unique integral reduced one in
[I], coincides, as a lattice (up to homothety by

√
n), with the rank-2 lattice

Hom(E,E′) of all (Fq)-isogenies between E and E′. The corresponding integral
positive definite quadratic forms on I and Hom(E,E′) are the tweaked norm
N′ := N/n and the degree deg, respectively. The map [I] 7→ N′ defines an iso-
morphism of Cl onto the group (also denoted Cl) of all reduced binary quadratic
forms of discriminant D, endowed with Gauss’ (also known as Dirichlet’s or
Legendre’s) composition law.

Denote by m the order of the ideal class [I] in the group Cl. Consequently,
the m successive actions of [I] (beginning with E) produce an isogeny loop
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Ei → Ei+1 of length m | h. It is sufficient to choose at each step an isogeny
ϕi of the same degree δ := di among the non-zero values of N′ = deg on I ≃
Hom(Ei, Ei+1). The most reasonable choice for δ is perhaps the minimal (often
prime) value, that is, the norm n. Once m is odd, δ is not a perfect square, and
m, δ are both pretty small, we come to the desired non-scalar endomorphism ϕ
on E of degree d = δm. In the new notation, ϕ can be sequentially evaluated at
the price of ≈ cmδ multiplications in Fq instead of ≈ cδm ones. We will see on
practical examples that the theory under consideration actually works.

By the way, isogeny loops are ubiquitous in isogeny-based cryptography. For
instance, they are related to collisions in seminal Charles–Lauter–Goren’s hash
function [9]. Moreover, “smoothing” isogenies of large prime degrees (by increas-
ing the dimension) has become a popular technique in the field of isogeny-based
cryptography (see, e.g., [23]). The action of the ideal class group of an imaginary
quadratic field also plays an important role [13] in the given post-quantum cryp-
tography, although supersingular curves in this context are more preferable [8]
than ordinary ones. Finally, the hard DLP in the group Cl gives rise to yet an-
other type of (pre-quantum) cryptography starting with [7]. It is appropriate for
developing more specific mechanisms such as verifiable delay functions (VDF)
[28], which cannot be achieved on elliptic curves due to Schoof’s point counting
algorithm. It is worth stressing that, in the cryptographic domains mentioned,
CM discriminants are of exponential size, unlike the small values of D considered
in the present paper.

2 Preliminaries

2.1 Binary quadratic forms in connection with isogenies

For convenience of the reader, in this section we briefly remind basic notions
and properties related to binary quadratic forms and their relationship with
elliptic curve isogenies. For comprehensive details on the former, see, e.g., [12].
For detailed information on the latter, refer to [16, Sections 9, 25] for example.

An integral binary quadratic form is a homogeneous Z-polynomial of the
type f(x, y) = ax2 + bxy + cy2 traditionally denoted by (a, b, c) for laconicity.
As always, the discriminant of f is the number D := b2− 4ac ≡ 0, 1 (mod 4). It
is said to be fundamental if either D ≡ 1 (mod 4) and D is square-free, or so is
D/4 ∈ Z and D/4 ≡ 2, 3 (mod 4). If the form f is non-degenerate (i.e., D ̸= 0)
and returns exclusively positive values (except for x = y = 0), then f is referred
to as positive definite. This holds if and only if D < 0, but a > 0. We will assume
everywhere that our forms are integral, positive definite, and with fundamental
discriminant. Finally, such a form f is reduced whenever |b| ⩽ a ⩽ c and b ⩾ 0 if
a = c. It is easily proved that under these conditions, a = f(1, 0) is the minimal
non-zero value of f on Z2.

We say that two binary quadratic forms are (properly) equivalent if they differ
by a matrix from the special linear group SL2(Z). Suppose that gcd(a1, a2, (b1+
b2)/2) = 1 given two forms fi = (ai, bi, ci) of the same discriminant D (with
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i ∈ {1, 2}). Their (Dirichlet) composition is f1 · f2 := (a1a2, B,
B2−D
4a1a2

), where

B is the unique integer modulo 2a1a2 such that B ≡ bi (mod 2ai) and B2 ≡
D (mod 4a1a2). It turns out that this operation is well-defined on equivalence
classes and it produces a finite abelian group Cl under the name class group. If
D ≡ 0 (mod 4), then the identity element of this group is (1, 0,−D/4). In turn,
if D ≡ 1 (mod 4), then it is (1, 1, (1 − D)/4). Furthermore, the form inverse
to fi is nothing but f−1i = (ai,−bi, ci). Even though there are quick reduction
algorithms, the forms f1 ·f2 and f−1i themselves are not necessarily reduced even
if f1, f2 are initially so.

Binary quadratic forms of discriminant D, ideals in the integer ring (i.e., the
maximal order) OD of the imaginary quadratic field F = Q(

√
D), and isogenies

between elliptic curves of CM discriminant D are intimately interwoven. More
precisely, a reduced form f = (a, b, c) corresponds to the integral reduced ideal
I := aZ+ b′Z, where b′ := (b+

√
D)/2. Moreover, this correspondence yields an

isomorphism of the group Cl to the group of (fractional) ideals of OD modulo
principal ideals. It is important to remember that there exists a unique reduced
form (or, alternatively, reduced ideal) in every equivalence class, hence in practice
all the work is carried out with the given representatives. It can be shown that
a is the numerical norm of I and N(ax + b′y) = af(x, y) regardless of x, y ∈ Z
for the norm map N: OD → Z.

In addition, for any elliptic curve E admitting a ring isomorphism ι : OD ≃
End(E), the reduced ideal I defines the horizontal isogeny E → E/K (of degree
a) with the cyclic kernel K := E[a] ∩ ker(ι(b′)). To put it in another way, the
group Cl regularly (i.e., transitively and freely) acts on the crater of the isogeny
volcano.

2.2 Evaluating isogenies in projective coordinates

Let E, E′ be two short Weierstrass Fq-curves on the projective plane P2
(x:y:z). By

virtue of [16, Lemma 9.6.12 and Corollary 25.1.8], any Fq-isogeny ψ : E → E′ of
odd degree d > 1 relatively prime to q can be expressed as follows:

ψ(x : y : z) =
(
(ψ1ψ3)(x, z) : yψ2(x, z)z

d′−d2−1 : ψ3
3(x, z)z

)
,

where ψi are binary homogeneous Fq-polynomials of degrees di := deg(ψi),
namely

d1 = d, d2 ⩽ 3
d− 1

2
, d3 =

d− 1

2
, and d′ := d1 + d3 =

3d− 1

2
.

The last number d′ is nothing but the same degree of the resulting coordinates of
ψ. At worst, d2 = d′−1 = 3(d−1)/2. For our purposes, it will be sufficient to work
under this less favorable condition in order to eliminate d2 as an independent
variable.

By definition, ψi =
∑di

j=0 ci,jx
jzdi−j with coefficients ci,j ∈ Fq. The homoge-

neous version of Horner’s scheme has the form

ψi(x, z) = ci,0z
di + x(ci,1z

di−1 + x(ci,2z
di−2 + · · ·+ ci,di

) · · · ).
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Separately, each polynomial ψi can be evaluated at a point P ∈ E(Fq) at the price
of ≈ 3di multiplications in Fq. Truly, ≈ di ones are needed for all the powers zj ,
for the multiplications by x, and finally the same amount when multiplying by
ci,j . However, it is enough to determine zj solely in the case of the largest degree
d2. Consequently, computing ψ(P ) requires ≈ 2d′ + 3d2 ≈ 7.5d multiplications
in total.

In the given quantity we do not take into account the fact that the coefficients
ci,j may be repeated or little (even zero) for the concrete isogeny ψ. Hence, its
real cost may be (drastically) less. One more further optimization (when d is not
small) consists in determining ψi(P ) through the algorithm described in [20]. It
has the better asymptotic complexity 2di+Θ(log(di)), which implies the overall
one 6d+Θ(log(d)). Lastly, it is worth saying about the fundamentally different
evaluation strategy from [5] (so-called square-root Vélu’s formulas or just

√
élu),

which reduces the complexity to Õ(
√
d). Of course, the actual running time is

decreased only for the pretty big d. An attempt to find this borderline is done
in [1].

3 Examples

This section is dedicated to a few practical elliptic curves of moderate (as earlier,
fundamental) CM discriminants D. It is accompanied by the code [21] written
in the computer algebra system Sage. In particular, the reader can find there the
parameters of the curves and the coefficients of isogenies forming loops. We will
keep the notation of the introduction. Table 1 contains the basic information on
the curves and on the ideal class groups Cl for the given D. In turn, Table 2
exhaustively lists the elements of Cl, namely the reduced binary quadratic forms
of discriminants D.

Curve Reference ℓ D dmin h = m n = δ d = δm

Russian curve [2, Appendices B, E] 256 −619 5 · 31 5 5 3125

Lollipop curves [11, Section 5]
201 −547 137 3 11 1331

261 −3019 5 · 151 7 5 78125

Table 1. Some real-world curves of moderate CM discriminants D and their derived
parameters. In every case, Cl ≃ Z/h.

All the curves E : y2 = x3+a4x+a6 under consideration are of prime order,
although not all of them have the Weierstrass form E′ : y2 = x3 − 3x + a′6
over Fq. Alternatively, the fraction −3/a4 may not have any quartic roots in
Fq, as can be easily checked. Recall that one doubling on E′ amounts to c′ = 8
multiplications in Fq rather than 9 or 10 ones in general. Nonetheless, let’s always
suppose for uniformity that the constant c′ = 8. One cannot rule out that the
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Russian curve (1, 1, 155), (5,±1, 31), (7,±5, 23)

Lollipop curves
(1, 1, 137), (11,±5, 13)

(1, 1, 755), (5,±1, 151), (13,±7, 59), (25,±9, 31)

Table 2. The reduced binary quadratic forms of discriminants D. The first one in each
row is the neutral element in Cl.

curves E enjoy small-degree Fq-isogenies to (from) Fq-curves E′ of the desired
form, enabling to accomplish a scalar multiplication on E′ instead of E. Hence,
it is fairer to assume that [2] costs as few as possible and to demonstrate that
even in this hypothetical case, the doubling-free GLV approach is still better.

To justify the contribution of this article, it is sufficient to leverage the simple
evaluation method from Section 2.2, as we are primarily interested in loops of
small-degree isogenies. As noted in that section, large-degree isogenies in the de-
composition of the “minimal” endomorphism ϕmin could benefit from additional
optimizations. Nevertheless, it is highly unlikely that ϕmin would (noticeably)
outperform the “looped” endomorphism ϕ. The authors chose not to derive the
absolutely fair cost for ϕmin, as doing so would significantly complicate the text.
The primary objective is to compare ϕ with the scalar endomorphism [2ℓ

′
]. It

is generally believed that ϕmin is unlikely to be (much) faster than [2ℓ
′
], except

when the degree dmin is extremely smooth, such as d = δm.

Generally speaking, dmin =
∏k

i=1 p
ei
i , where pi are pairwise distinct primes,

and k, ei ∈ N. We lack a symbol for the sum σ :=
∑k

i=1 eipi. According to Table
3, the endomorphism ϕ outperforms the others in speed on the curves E (or
E′) listed below. For each curve, the columns [2ℓ

′
], ϕmin, and ϕ in this table

correspond to the values 8ℓ′, ⌈7.5σ⌉, and ⌈7.5mδ⌉, respectively.

Curve [2ℓ
′
] ϕmin ϕ

Russian curve 1024 270 188

Lollipop curves
808 1028 248

1048 1170 263

Table 3. Approximate numbers of field multiplications for evaluating the endomor-
phisms [2ℓ

′
], ϕmin, and ϕ.

The executing time of inverting in F∗
q weakly correlates with that of multi-

plying in the field. Therefore, we abstract from the former, working entirely in
projective coordinates. As a downside, this greatly increases the number of mul-
tiplications compared to affine coordinates. As is customary, the given approach
is anyway worthwhile for evaluating [2ℓ

′
], otherwise ℓ′ non-batchable inversions
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must be carried out. However, the loop for the endomorphism ϕ (not to mention
ϕmin) consists of the non-considerable number m of isogenies. Thus, evaluating
them in affine coordinates may be in reality a (much) more rapid solution. For
clarity of comparison, it is nevertheless suggested to operate in the idealized
computational model not admitting the inversion operation. The authentic cost
of ϕ (as opposed to [2ℓ

′
]) can only get better than reported in Table 3.

3.1 Russian curve

It is about a prime-order Weierstrass curve E : y2 = x3 − 3x + a6 over the
prime field Fq of order q = 2255 + 3225. Its official name is id-GostR3410-2001-
CryptoPro-B-ParamSet [2, Appendices B, E] or just GC256C [25]. As shown in
Table 1, the degrees dmin = 5 · 31 and d = 55 for this curve. One 31-isogeny is
not much slower to evaluate than four 5-isogenies (cf. Table 3). Our contribution
is thereby not so interesting for the curve in question, although it is actually the
state of the art. Moreover, it is unlikely that many Russian developers have heard
about the GLV technique before and used it at least with the endomorphism
ϕmin.

The Russian ECC standard includes two more prime-order curves at the
128-bit security level, namely GC256A and GC256B. Interestingly, their values
of D are significantly large, meaning they could not be generated using the
CM method. This is one reason why GC256C appears to be less popular in
Russia compared to its counterparts, although all these curves are maintained
by Russian servers on an equal basis. However, the curves GC256A and GC256B
are also not entirely pseudo-random, as noted in [24, Section 4.1], due to the fact
that their coefficients a6 are relatively small (while a4 = −3).

3.2 Lollipop curves

In this section, we discuss the components of plain (i.e., non-pairing-friendly)
2-cycles that lie in the “sticks” of certain pairing-friendly lollipops, as described
in [11, Section 5]. This complex construction has recently emerged as a response
to the lack of known pairing-friendly cycles with suitable embedding degrees
⩾ 12. The existence of such cycles is one of the most important open problems in
modern DLP-based ECC. Fortunately, lollipops allow the majority of operations
to be performed in the optimized stick before irreversibly moving to the more
time-consuming 2-cycle of supersingular pairing-friendly curves.

As seen in the tables above, the authors chose to consider only a few lollipops
to illustrate the main idea of the article. Perhaps, it is extended to several others
generated by Costello and Korpal. In particular, the instance with bit length ℓ =
261 (i.e., lollipop-574-261) was selected, as it offers an almost optimal security
level, in contrast to lollipop-489-201. Thus, the 261-bit lollipop may soon be
deployed in real-world cryptographic applications.
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4 Conclusion

This paper offers a fresh perspective on the classical GLV method, extending
its applicability to a broader class of elliptic curves with moderate CM discrim-
inants. These include, apart from one Russian standardized curve, the plain
2-cycles that form part of certain pairing-friendly lollipops. While the curves
discussed in the paper are quite exotic, it is possible that other real-world curves
affected by this result already exist or may emerge in the near future. Although
the authors do not consider their contribution groundbreaking, it nonetheless
opens a new chapter in accelerating elliptic curve cryptography.
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and Benjamin Smith for fruitful email correspondence regarding the techniques
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