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Abstract. This work investigates constructions of threshold fully homo-
morphic encryption with low communication, i.e., with small ciphertexts
and small decryption shares. In this context, we discuss in detail the
technicalities for achieving full-fledged threshold FHE, and put forward
limitations regarding prior works, including an attack against the recent
construction of Boudgoust and Scholl [ASIACRYPT 2023]. In light of
our observations, we generalize the definition of threshold fully homo-
morphic encryption by adding an algorithm which allows to introduce
additional randomness in ciphertexts before they are decrypted by par-
ties. In this setting, we are able to propose a construction which offers
small ciphertexts and small decryption shares.

1 Introduction

Fully homomorphic encryption (FHE) [Gen09] allows to perform arbitrary com-
putations on encrypted data. It has found numerous applications in cryptogra-
phy. One of the vanilla applications is the delegation of heavy computation to
a server: by encrypting data to the server, the server can perform the compu-
tation homomorphically on encrypted data to get an encryption of the result
without learning any information about the raw input data nor the result. Yet,
the data owner, who owns the FHE decryption key, can decrypt the evaluated
ciphertext to get the plain result of the computation. Threshold fully homo-
morphic encryption [AJL+12,BGG+18] extends FHE in the multi-client setting:
the decryption key is split between N parties so that to decrypt a ciphertext,
each party must partially decrypt the ciphertext using its share of the key.1

The plaintext is recovered by combining these partial decryptions. Threshold
FHE has tremendous applications, including multi-party computation, universal
thresholdizer, and delegation of computation over private data owned by multi-
ple parties. In the latter scenario, each party can encrypt its data and upload it
on a server. Anyone can ask the server to perform (homomorphic) computation
over the joint data; yet, to learn the result of a computation, all parties must
jointly decrypt the result, which allows parties to manage access to their data
by possibly refusing decryption depending on the evaluated function.

1 We focus on the N -out-of-N case of threshold FHE, in which all N parties must
participate during decryption.



The most basic idea to turn an FHE scheme into a threshold scheme is as
follows: FHE schemes have ciphertexts of the form (a, b) where a ∈ Znq , and
where b = −a⊺s + µ + e with s ∈ Znq being the secret key, µ the underlying
plaintext, and e a small error term.2 Decrypting such a ciphertext using s is
done by computing a⊺s and adding it to b to recover µ+ e which is close to µ.3

Transforming such a scheme into a threshold variant can be done by splitting the
secret key s as s = s1+ · · ·+sN mod q and giving one share si of the key to each
user Pi [BD10]. Decryption is then replaced by two algorithms (PartDec,FinDec).
The first one is run by each party using its share of the key to compute a partial
decryption share of the ciphertext, while the second one combines all partial
decryption shares to recover the actual plaintext. At a high level, PartDec consists
in computing pi := a⊺si, and a⊺s is reconstructed in FinDec by adding all pi’s;
µ+ e is then recovered by computing a⊺s+ b as in the non-threshold case.

Obviously, this approach is not secure: each of Pi’s partial decryption a⊺si of a
ciphertext (a, b) provides a linear equation in si, therefore si can be recovered by
Gaussian elimination given sufficiently many partial decryptions. An alternative
way to see the problem is to observe that parties recover µ+ e when decrypting,
and then, if µ is known, they recover e. Given µ, e, and a ciphertext (a,a⊺s+µ+
e), one can then recover a linear equation (a,a⊺s) in s and recover the secret key
via Gaussian elimination. While this is not an issue in the non-threshold setting
since decryption requires s anyway, the global secret key s should remain hidden
to parties in the threshold setting. Hence, it is crucial that partial decryptions
hide the value of the error term of the ciphertext e.

The solution proposed in [AJL+12,BGG+18] is to add a noise term di to pi,
i.e., defining pi := a⊺si + di where di is an independent error term. Denoting
d :=

∑
i∈[N ] di, the combination of partial shares during FinDec then allows to

recover µ+ e+ d instead µ+ e. Regarding correctness of decryption, this is still
fine as long as e + d is small compared to µ and, hopefully, adding this error
term now guarantees security by hiding e and therefore s. The main question is
then: what is the minimal magnitude for di’s in order to guarantee security of the
construction? Ideally, one wants di to be as small as possible, since the larger it
gets, the larger one must set other parameters of the scheme to ensure correctness
(and also to ensure security, which decreases as the ratio q/e increases).

Prior works. Early works have shown that adding an exponential noise term
allows to guarantee the security of the scheme. Indeed, consider di of magni-
tude Ω(2λB) where λ denotes the security parameter and B is a bound on the
magnitude of the error term e of the ciphertext (a,a⊺s+µ+ e) to be decrypted.

2 The most efficient FHE instantiations actually rely on Ring-LWE, i.e., replace a, s,
µ and e by ring elements a, s, µ and e. We use LWE notations in the introduction.

3 The plaintext µ can be a scaled version of a message. An additional round-
ing operation removes the error term for exact schemes (e.g., BGV [BGV12],
B/FV [Bra12,FV12], DM/CGGI [DM15,CGGI16], or discrete versions of
CKKS [DMPS24,BCKS24,BKSS24]), while approximate schemes (CKKS [CKKS17])
keep the approximate result µ+ e, seeing e as part of the approximation error of the
computation over R or C.
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Then, the distribution of µ + e + d is statistically close to that of µ + d, which
is independent of e. Security follows: even if parties P1, . . . , PN−1 get corrupted
by an attacker, the last partial decryption share pN of PN allows the attacker
to recover µ + e + d, which is statistically close to µ + d. The latter can be
sampled publicly given the result µ of the decryption. Hence, the attacker learns
statistically nothing about e and therefore s, or equivalently sN , remains hidden.

While this provides security, exponential noise flooding induces a significant
overhead in terms of efficiency, since the scheme must be correct even for expo-
nentially large decryption error terms. Notably, the partial decryption shares pi’s
include an exponential error term and must hence be very large, leading to high
communication cost between parties. Consequently, several recent works have
tried to reduce the magnitude of d in order to improve the efficiency of the
construction. The main work in this area is a recent paper by Boudgoust and
Scholl [BS23a], which aims to build threshold FHE using a security analysis
based on the Rényi divergence. The Rényi divergence has proven to be a pow-
erful tool to reduce the magnitude of noise terms required in security analyses
in the context of lattice-based signatures [BLL+18]. Yet, for primitives whose
security is based on indistinguishability-based games such as FHE, the Rényi
divergence has not been very successful. This contrasts with signatures, whose
unforgeability security notion is a search-based game.

Two other recent works [CSS+22,DWF22] have also attempted to provide
constructions relying on analysis based on the Rényi divergence in order to re-
duce the magnitude of the noise term added during partial decryption. It turns
out that none of these works provides a valid solution to the above problem.
In [DWF22], the authors only claim an extremely weak security statement, where
security holds only for a single partial decryption. In [CSS+22], the authors pro-
pose a security analysis based on so-called public sampleability and claim secu-
rity for threshold FHE based on DM/CGGI with polynomially many decryption
queries. The security claim is again rather weak, since the adversary is selective
(the adversary must declare its encryption and evaluation queries before seeing
challenge ciphertexts). Furthermore, their argument for public sampleability (see
the proof of Theorem 2 in [CSS+22]) relies on a distribution for the randomness r
which can depend on the error underlying an evaluated ciphertext. For public
sampleability, this distribution should be independent of the challenge bit, but
the error underlying an evaluated ciphertext could depend on the plaintexts in-
volved in the computation (hence on the challenge bit) even though the result
of the computation is independent of the challenge bit.

In [DDK+23], the authors provide an intermediate step to efficient thresh-
old FHE, based on DM/CGGI, by proposing the following approach: practical
parameters are used to encrypt and evaluate computation, but before partial
decryption is performed, a ciphertext is passed through a “switch-n-squash”
process. The latter bootstraps a ciphertext to sufficiently large parameters while
keeping the noise small, so that it is possible to flood the noise during thresh-
old decryption of the resulting (large) ciphertext. This allows to have half of
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the communication reduced (communication towards the server) but decryption
shares remain large due to (exponential) noise flooding.

Finally, note that theoretical solutions to threshold FHE exist using generic
MPC techniques (e.g., [BJKL21,Shi22] implies an N -out-of-N threshold FHE
with poly(λ)-size decryption shares), but none of these results achieves prac-
tical efficiency. However, focusing only on threshold PKE instead of FHE, a
recent work by Micciancio and Suhl [MS23] provides an elegant solution (in the
N -out-of-N threshold setting) from LWE via a careful analysis of the noise dis-
tributions. Our main construction follows a similar analysis as theirs, but for
fully homomorphic encryption.

1.1 Our Contributions

First, we remark that only adding a small error term during partial decryption
cannot succeed for some classical schemes (e.g., B/FV or CKKS). This is due to
the error distribution during homomorphic computation and has already been
observed in the context of IND-CPA-D security for CKKS [LMSS22]. Hence, to
circumvent this issue, a natural direction is to further rely on techniques to
sanitize the noise during homomorphic computation, such as relying on circuit-
private FHE, as proposed in [BS23a]. Unfortunately, we show that the transform
from [BS23a] fails to provide threshold security, by proposing a circuit-private
FHE scheme which is insecure when plugged into their transform. In addition,
relying on sanitization techniques (which induce randomized evaluation) rises
a challenging question about the model: security of sanitization is guaranteed
based on the (private) internal randomness of evaluation. Relying on randomized
evaluation in the threshold setting then questions which party does the random-
ized evaluation, and what can we hope from this approach if the party doing the
evaluation (and therefore knowing its internal randomness) is corrupted?

Based on these observations, we extend the definition of threshold FHE by
adding an additional algorithm which allows an uncorrupted party (we assume it
is a server) to process on evaluated ciphertexts before parties run partial decryp-
tion. This randomized operation, termed ServerDec, uses randomness unknown
to parties. Our definition matches the standard threshold FHE definition when
ServerDec is deterministic (or, equivalently, void).

We then propose a construction guaranteeing security in this setting. Our
main construction is round optimal, and relies on two flooding steps: ServerDec
adds an exponential noise to ciphertexts after evaluation, but also compresses
them. Hence, ciphertexts fed to partial decryptions are small, and we prove that
adding a very small noise in PartDec is sufficient for security. In the context of
delegation of computation on a trusted server, this means that the communica-
tion from the server to the parties as well as between parties is small, even if
exponential noise flooding is used on the server side.

We complete our work by providing a few more contributions in the Ap-
pendices. First, in Appendix B we propose a protocol designed for threshold
delegation of computation over private data. It is not a threshold FHE scheme
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properly speaking: our protocol requires an additional round before partial de-
cryption. A specific party (distinct from the server, but possibly one of the
partial decryptors) needs to process the evaluated ciphertext before the other
parties can run partial decryption. On the positive side, our protocol is only
based on circuit-private (non-threshold) FHE and threshold public-key encryp-
tion. Hence it can avoid any (exponential) noise flooding by relying on circuit-
private transforms (e.g., [DS16,BPMW16,Klu22,BI22]). Second, in Appendix C,
we describe connections between various security notions for FHE, notably an
indistinguishability-based notion of threshold security, IND-CPA-D security, and
a weak form of circuit-privacy.

1.2 Technical Overview

We start our technical overview by describing vulnerabilities in prior attempts
to achieve threshold FHE with small partial decryption shares.

Our first observation is a direct generalization of known results in the context
of the CKKS approximate FHE scheme. Recall that a CKKS ciphertext (a, b)
with b = a⊺s + µ + e is decrypted by returning µ + e = b + a⊺s. In [LM21],
the authors show that decryption results can be exploited to mount so-called
IND-CPA-D attacks, which simply exploit the fact that the decryption equa-
tion is a linear equation in s. It is shown in [LMSS22] that adding a Gaussian
noise d to the decryption result µ + e allows to prevent such attacks, but the
magnitude of the noise needs to be exponential in the security parameter. This
was generalized to the threshold variant of CKKS in [KS23]. The attack ex-
ploits the fact that when multiplying two CKKS ciphertexts encrypting µ0, µ1

with error terms e0, e1, the error term of the resulting ciphertext is of the form
µ0e1 + µ1e0 + e′ where ∥e′∥ ≪ ∥µ0e1 + µ1e0∥. Hence, the error distribution is
highly-dependent on the underlying plaintexts. Two computations leading to the
same result could therefore have vastly different error terms because they have
different intermediate values, and hiding the bias during decryption requires to
add an exponentially large noise term. We observe that in the context of thresh-
old FHE, this attack does not exploit any specificity of CKKS. Since B/FV has
identical noise propagation during homomorphic multiplications as CKKS, sim-
ilar lower bounds on d are also required to guarantee the security of threshold
B/FV. Hence, it seems that, in general, only adding a small error term during
partial decryption cannot be a solution to obtain threshold security. This moti-
vates the use of sanitization, to make the noise of the result independent of the
intermediate values.

An attack against the Boudgoust-Scholl transform. In [BS23a], the au-
thors show that a circuit-private FHE scheme can be turned into a threshold
FHE scheme satisfying a one-way security notion by secret-sharing the secret
key between parties and adding an error term of magnitude growing with QD to
partial decryption, where QD is an upper bound on the number of decryptions
made. Note that QD can be much lower than exponential in the security param-
eter. This is made possible by a security analysis based on the Rényi divergence,
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thanks to the fact that one-way security is a search-based security game. Then,
the authors claim that the one-way threshold FHE schemes can be turned into
an IND-CPA threshold FHE schemes via a transform based on hard-core bit
predicates. We refer the reader to Section 3 for details about the transform.

Unfortunately, we show that this transform fails to provide IND-CPA secu-
rity of the resulting threshold FHE scheme. We construct a circuit-private FHE
scheme which results in an insecure threshold FHE scheme once plugged into
the transform. Let us now provide a simplified overview of the attack. Con-
sider a (circuit-private, threshold) FHE scheme whose ciphertexts have the form
(a,a⊺s+µ+e). The adversary’s goal is to distinguish an encryption of µ0 from an
encryption of µ1 given access to a (partial) decryption oracle. Let (a∗, b∗) denote
the challenge ciphertext, where b∗ = a∗⊺s+ µ(β) + e∗, with β ∈ {0, 1} denoting
the challenge bit. Further assume that it is possible, via the circuit-private evalu-
ation, to transform a ciphertext encrypting a plaintext µ into another ciphertext
encrypting the same plaintext, but whose error term e′ is now of the form µ⊺s.
We emphasize that this does not contradict circuit-privacy.4 Our attack exploits
the fact that the adversary can ask decryption of ciphertexts whose underlying
plaintext depends on a∗. Specifically, our attacker submits an encryption query
whose plaintext encodes the most significant bits [a∗] of a∗, applies the above
circuit-private mechanism, and then asks for decryption of the result. Ignoring
the small noise term added during partial decryption, the adversary then recov-
ers an error term of the form [a∗]⊺s, and putting the bits in the appropriate
slots, it can then subtract the most significant bits of a∗⊺s from b∗ to guess the
value of β, leading to a distinguishing attack and contradicting the security of
the transform. The attack being adaptive (it involves a query that depends on
the challenge ciphertext), it might be possible to prove the security of the trans-
form in a selective case, requiring the adversary to declare all its encryption and
evaluation queries before seeing the challenge ciphertext. However, this model
is much weaker than ours and than the model considered in [BS23a]. (At the
time of writing, the current eprint version [BS23b] of [BS23a] considers selective
security, the update having been made based on our notification of a proof flaw
to the authors.)

A generalized definition of threshold FHE. Given our first observation, it
seems that sanitizing evaluated ciphertexts such that the error term is indepen-
dent of the underlying plaintexts is a good start. This can be done by randomiz-
ing evaluation (e.g., using circuit-private evaluation), but it poses a definitional
issue: in threshold FHE, any party can be corrupted, hence if a party performs
the evaluation and gets corrupted, the randomness used during the evaluation is
revealed to the adversary. In this case, there is no randomness in the evaluation
and one cannot rely on it to argue about security, falling back to the prior issues.5

4 One could notice that e′ has no reason to be small or might not even be properly
defined. We assume this is not the case, only for simplifying the overview. Our actual
attack avoids this issue.

5 Note that relying on randomized evaluation also induces issues for some applications
of threshold FHE to threshold cryptography. We provide an example with threshold
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To circumvent this issue, we modify the definition of threshold FHE by adding
an algorithm termed ServerDec. We define a threshold FHE scheme as a tuple
(KeyGen,Enc,Eval,ServerDec,PartDec,FinDec) where KeyGen,Enc,Eval,PartDec,
and FinDec are the usual threshold FHE algorithms. ServerDec is an additional,
public-key, randomized algorithm, which can be performed on fresh or evalu-
ated ciphertexts, and before partial decryption. It returns a ciphertext which
fits the input format of PartDec. We suppose that ServerDec is executed by an
uncorrupted party (e.g., the server) and uses randomness that remains unknown
to all parties (and therefore to the adversary). We recover the prior syntax of
threshold FHE when ServerDec is void (or equivalently, when it is deterministic).
Note that, assuming homomorphic evaluation is performed on an uncorrupted
server as for delegation of computation, ServerDec can be performed directly
following the Eval algorithm by the server. It may seem that it could then be
integrated directly in Eval algorithm, but adding an explicit algorithm increases
flexibility: for instance, ServerDec might convert ciphertext into a format which
prevents further homomorphic evaluation. Also, adding an explicit ServerDec
algorithm allows Eval to possibly remain deterministic. Finally, it allows to iden-
tify precisely the sources of security. Considering an adversary which corrupts
all first N − 1 users, the security is guaranteed thanks to the remaining uncor-
rupted randomness, i.e., (1) the internal randomness of ServerDec, and (2) the
randomness held by PN (its share sN of the key and its internal randomness
of PartDec).

Speaking of security, we define a simulation-based security notion which
closely follows prior notions from [BGG+18]. It is actually slightly stronger:
adaptive queries and multi-hop evaluations are permitted. In short, our security
notion requires that an adversary corrupting at most N − 1 parties should not
learn any valuable information beyond the value of the underlying plaintext. This
is modeled by the existence of an efficient simulator which takes as input infor-
mation available to the adversary (the corrupted shares of the secret key as well
as the plaintext underlying the ciphertext to be decrypted), and returns a simu-
lated ciphertext as well as simulated partial decryption shares for all parties. We
further require that the distribution of the simulation is indistinguishable from
that of the real ciphertext produced by ServerDec and of the honestly generated
partial decryption shares.

Double-flood-and-round threshold FHE. Our main result is a construction
of threshold FHE with low communication. We call our technique Double-Flood-
and-Round. consider a generic FHE scheme whose ciphertexts have the above
form (a,a⊺s+µ+e) over ZQ for some (exponentially) large modulus Q = p ·qdec

signatures. The construction from [BGG+18] of threshold signature from threshold
FHE requires parties to homomorphically evaluate a deterministic signing algorithm,
where the signing key is encrypted, and to reveal partial decryptions of the resulting
ciphertext as partial signatures. For correctness, it is crucial that all parties evaluate
the same signature (which is why it is chosen deterministic), but also the same
ciphertext: randomized evaluation is not an option. However, an analysis based on
Rényi divergence shows that a noise growing with QD suffices in this setting [ASY22].
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with p = Ω(2λ) and qdec = poly(λ). The key generation, encryption, and evalua-
tion algorithms are directly inherited from the underlying FHE scheme, except
that the secret key s is additively secret shared as s = s1 + · · · + sN mod qdec.
Our technique is to first rely on exponential noise flooding to sanitize evaluated
ciphertexts before partial decryption. This is done by the ServerDec algorithm. It
takes a ciphertext (a, b) ∈ ZnQ×ZQ and returns a ciphertext (a′, b′) ∈ Znqdec×Zqdec
with:

a′ =

⌊
1

p
· a

⌉
σ0

, b′ =

⌊
1

p
· (b+ E)

⌉
σ1

.

where ⌊·⌉σ denotes a randomized Gaussian rounding, which on input x ∈ R
returns an element from DZ,x,σ, and where E is an exponentially large Gaussian
noise term. Via standard noise flooding, the error term E statistically hides
the error term from b. Moreover, thanks to the rescaling to qdec = poly(λ), the
ciphertext (a′, b′) sent to parties to be partially decrypted is only (n+1) log(qdec)-
bit long. PartDec and FinDec then follow the same design as before.

We are able to prove that adding a very small amount of noise (whose mag-
nitude is even independent of the number of decryptions QD) during partial
decryption suffices to guarantee security. Specifically, a ciphertext (a′, b′) re-
turned by ServerDec is of the form (a′,a′⊺s + µ + e′), where e′ has the form⌊
1
p · (r

⊺
0s+ E)

⌉
σ1

with r0 denoting the (Gaussian) rounding error of a, i.e.,

r0 = a− p · a′. Therefore, following a similar approach as the proof of [BLP+13,
Lemma 3.5], one can show that e′ is statistically close from a Gaussian distri-
bution whose standard deviation is

√
(σ0∥s∥)2 + (σflood/p)2 + σ2

1 . Assuming ∥s∥
is publicly known, this distribution is publicly sampleable. Thanks to this clean
distribution of e′, the rest of the security analysis is analogous to the recent proof
of security of lattice-based threshold public-key encryption from [MS23].

A partial decryption of (a′, b′) computed by party PN owning sN is of the
form a′

⊺
si + di. Sampling dN from DZ,η, we then obtain that the view of an

adversary corrupting all parties P1, . . . , PN−1 (and therefore s1, . . . , sN−1) is a
triple (a′,a′

⊺
s + µ + e′,a′

⊺
sN + dN ), and adding a′

⊺ ∑
i∈[N−1] sN to the third

term, it is then a triple of the form:

(a′,a′
⊺
s+ µ+ e′,a′

⊺
s+ dN ) ,

with e′ ∼ DZ,
√

(σ0∥s∥)2+(σflood/p)2+σ2
1

and dN ∼ DZ,η. Assuming LWE, we prove

the above distribution is computationally indistinguishable from a triple:

(a′, b′, b′ + h) ,

where h← Dσh
with σh :=

√
(σ0∥s∥)2 + (σflood/p)2 + σ2

1 + η2. The latter distri-
bution is publicly sampleable if ∥s∥ is known, which does not hurt the analysis.

We further note that the partial decryption shares can be rounded, in order
to lower communication (we do not use this for security). This explains why
the construction is called double-round-and-flood. As a final remark, note that
our input FHE ciphertexts are not compact by default, as they are defined over
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a large modulus Q. This problem is solved by relying on transciphering, e.g.,
using [BCK+23]. Hence, all communications are small, and only the steps run
by the server are dealing with large ciphertexts.

Additional contributions. We provide a few more contributions in the Ap-
pendices. First, in Appendix B, we propose an alternative protocol for delegation
of computation in a threshold setting which combines threshold public key en-
cryption with circuit-private FHE. The idea is the following: users generate a
threshold PKE public key and shares of the secret key. A special party, termed
the transcryptor, which could be a trusted third party or one of the users, gen-
erates a pair of keys for a (circuit-private) FHE scheme and keeps the secret key
for itself while revealing the public key to the server and all users. We assume
that the transcryptor and the server are not colluding and that communications
between every party is done via secure channels (e.g., using authenticated sym-
metric encryption). The server receives data from each user, encrypted under the
FHE public key, via secure channels. Then, to perform a computation C over data
µ1, . . . , µN , the server homomorphically evaluates ThEnctpk◦C on the data, where
ThEnc denotes the encryption algorithm of the threshold PKE scheme and tpk
its public key. The result is an FHE encryption of a threshold PKE encryption
of C(µ1, . . . , µN ). Then, this ciphertext is sent to the transcryptor, which de-
crypts it using the FHE secret key, and broadcasts ThEnctpk(C(µ1, . . . , µN )) to
all users. This step adds a communication round compared to approaches based
on threshold FHE in which the outputs of ServerDec computed by the server
can be directly decrypted by all parties: it is not possible to avoid this addi-
tional round since the party (here, the server) performing evaluation must be
independent of the FHE secret key holder. The protocol completes decryption of
the result by having all parties jointly decrypting the threshold PKE ciphertext
using their shares of the decryption key.

Assuming circuit-privacy of the underlying FHE scheme and simulation secu-
rity of the underlying threshold PKE scheme, this protocol achieves simulation
security. This is proven by simulating the view of an adversary by simulating
ThEnctpk(C(µ1, . . . , µN )) using the threshold PKE simulator, and by replacing
the ciphertext computed by the server with a fresh FHE encryption of this sim-
ulated threshold PKE ciphertext. Using circuit-private FHE directly allows to
avoid the use of exponential noise flooding when circuit-privacy is achieved by
mechanisms such as those from [DS16,BPMW16,Klu22,BI22].

We also complete the paper with discussions about various advanced se-
curity notions for FHE, including threshold security, IND-CPA-D security, and
circuit-privacy, and provide connections between these notions. These results are
detailed in Appendix C.

Additional related work. In [ASY22], the authors construct threshold signa-
tures based on threshold FHE techniques, again by relying on an analysis based
on the Rényi divergence to reduce the magnitude of the added noise. We em-
phasize that the authors do not build a threshold FHE scheme, but only use
FHE as a building block in a threshold flavour as part of their threshold signa-
ture construction. The reduction does not rely on the security of threshold FHE:
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the authors directly prove unforgeability (a search-based game) of the threshold
signature by arguing that a small noise is sufficient.

Acknowledgments. We thank Katharina Boudgoust and Peter Scholl for fruit-
ful discussions, as well as Intak Hwang, Seonghong Min and Yongsoo Song for
helpful feedback on a prior version of this work.

2 Preliminaries

Notation. For any integer N ≥ 1, we let [N ] denote the set {1, . . . , N}. Vectors
and matrices are written in bold letters. Vectors are column vectors. For a vec-
tor x, we let x⊺ denote its transpose. Given a finite set S, we let U(S) denote the
uniform distribution over S. The notation log refers to the natural logarithm.
We use the notations negl(λ) = λ−ω(1) and poly(λ) = λO(1), where λ refers to
the security parameter. For X,Y two distributions over a countable set Ω, the
statistical distance between X and Y is defined as ∆(X,Y ) := 1

2

∑
ω∈Ω |Pr[X =

ω]− Pr[Y = ω]|.
For an integer x ∈ Z, a modulus q > 0, and an integer N > 0, we let

Share denote the standard additive secret sharing algorithm which takes as in-
put (x,N, q), samples (x1, . . . , xN−1)← U(ZN−1q ), and returns (x1, . . . , xN ) with
xN = x−

∑
i∈[N−1] xi mod q.

2.1 Gaussian Distributions

Definitions. For an integer n > 0 and σ > 0, we define the n-dimensional
Gaussian function ρσ : Rn → (0, 1] as:

ρσ(x) :=
1

σn
exp

(
−π∥x∥2

σ2

)
.

We say that a random variable X over Rn follows the Gaussian distribution
of standard deviation σ and center c ∈ Rn, denoted Dc,σ, if its density function is
ρX : x 7→ ρσ(x− c). Similarly, a random variable X over Zn follows the discrete
Gaussian distribution of standard deviation parameter σ and center parameter c
if the probability mass function of X is given by:

Pr[X = x] =
ρσ(x− c)

ρσ(Zn)
.

We let DZn,σ,c denote the n-dimensional discrete Gaussian distribution of stan-
dard deviation parameter σ and center parameter c, and drop the index c
if c = 0. We also remark that DZn,σ = DnZ,σ. The definition generalizes to
shifted supports Zn − c. These distributions are efficiently sampleable for all σ
(see, e.g., [BLP+13, Section 5.1]).

Gaussian rounding. In our main construction, we rely on randomized Gaussian
roundings: for a standard deviation parameter σ > 0, we let ⌊·⌉σ denote the
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Gaussian rounding operation which, on input a value x ∈ R returns a sample
from DZ,x,σ, or equivalently, samples z from DZ−x,σ and returns x+z. We extend
it to vectors in a component-wise manner.

Elementary results. We prove the following smudging lemma in Appendix A.

Lemma 2.1. Let σ > 0 and c0, c1 ∈ Z. Then:

∆ (DZ,c0,σ,DZ,c1,σ) ≤ O
(
|c0 − c1|

σ

)
.

In particular, for λ > 0, c ∈ Z and σ > Ω(c2λ), we have ∆(DZ,σ,DZ,c,σ) < 2−λ.

We finally recall the following results about lattice Gaussians. They are ex-
pressed in terms of the smoothing parameter ηε(Zn), defined, for arbitrary ε > 0
and integer n ≥ 1, as the smallest s > 0 such that ρ1/s(Zn\{0}) ≤ ε. By [GPV08,

Lemma 3.1], we know that ηε(Zn) ≤
√

log(2n(1 + 1/ε))/π.

Lemma 2.2. [Reg05, Corollary 3.10] Let n ≥ 1, a, s ∈ Rn and σ, ψ > 0.
Assume that (1/σ2 + (∥s∥/ψ)2)−1/2 ≥ ηε(Zn) for some ε < 1/2. Then, the dis-
tribution of x⊺s+ e where x← DZn+a,σ and e← Dψ is at statistical distance at
most 4ε from D√

(σ∥s∥)2+ψ2 .

Lemma 2.3. [Pei10, Theorem 3.1] Let n ≥ 1 and σ, ψ > 0 with σ ≥ ηε(Zn)
for some ε < 1/2. If sampling x ← Dψ and y ← DZn−x,σ, the distribution
of x + y is at statistical distance at most 8ε from the discrete Gaussian distri-
bution DZn,

√
σ2+ψ2 .

2.2 Hardness Assumptions

We first remind the standard LWE assumption.

Definition 2.4. Let n,m, q, ψ > 0, and χs denote a distribution over Zn. These
parameters are function of the security parameter λ. The LWEn,m,q,ψ,χs assump-
tion states that the distributions

(A,As+ e) and (A,u)

are computationally indistinguishable, where A ← U(Zm×nq ), s ← χns , e ←
DZm,ψ and u← U(Zmq ) .

Our main construction relies on the following yaLWE assumption (yet another
LWE assumption), which is implied by the standard LWE assumption, as we ex-
plain below. It combines the Reused-A LWE and Known-Norm LWE assumptions
considered in [MS23].

11



Definition 2.5. Let n,m, q, σ, η > 0 and χs denote a distribution over Zn.
These parameters are function of the security parameter λ. The yaLWEn,m,q,σ,η,χs

assumption states that the distributions

(A,As+ e,As+ d, ∥s∥) and (A,u,u+ h, ∥s∥)

are computationally indistinguishable, where A ← U(Zm×nq ), s ← χns , e ←
DZm,σ, d← DZm,η,u← U(Zmq ) and h← DZm,

√
σ2+η2

.

Lemma 2.6. Let n,m, q, σs, σe and η > 0, with σe ≥
√
2σs ≥ Ω(

√
λ+ log n)

and σs ≤ poly(λ). Assume that χs = DZn,σs . If the LWEn,m,q,ψ,χs assumption

holds for ψ = (
√
σ−2e + η−2)−1/2, then the yaLWEn,m,q,σe,η,χs

assumption holds.

This essentially follows from [MS23, Corollary 3 and Lemma 9]. In the latter,
the authors prove that LWEn,m,q,ψ,χs implies the Reused-A LWEn,m,q,σs,η,χs as-
sumption. The latter assumption precisely corresponds to our yaLWEn,m,q,σs,η,χs

except for ∥s∥ which is kept secret. (Reused-A LWE considers χs = U(Znq ), but
the analysis from [MS23] generalizes to arbitrary secret key distributions χs.)
Then, Lemma 2.6 follows by the same observation as for Known-Norm LWE in
the same work: any solver for the search variant of yaLWEn,m,q,σs,η,χs

yields a
solver for the search variant of Reused-A LWEn,m,q,σs,η,χs , by first guessing ∥s∥
(this guess being correct with probability 1/poly(λ) as long as ∥s∥ = poly(λ));
then one can rely on [MM11] to relate the search and decision variants. Note
that [MS23, Lemma 9] requires the same distribution for the coordinates of s
and e. In our application (and in the statement of Lemma 2.6), we use larger a
larger standard deviation parameter for the coefficients of e than for those of s.
Reducing the same-noise variant to the latter one is achieved by adding Gaus-
sian noise to the second and third coordinates of the yaLWE sample. The sum
of two discrete Gaussians is indeed very close to a discrete Gaussian (see [BF11,
Lemma 4.12]).

3 Limitations from Prior Works

We start by discussing prior attempts to build threshold FHE with small par-
tial decryption shares. Threshold FHE (and variants of it) has received a lot
of attention in the last few years and some works (notably [BS23a,CSS+22])
claim to obtain efficient constructions based on an analysis relying on the Rényi
divergence. We already pointed issues with [CSS+22] in the introduction and
now focus on explaining technical issues with [BS23a]. We first discuss about
the need for randomness before partial decryption happens to achieve threshold
FHE with small partial decryption shares, then detail our analysis of [BS23a].

3.1 On the Need for Randomness Before Partial Decryption

For the approximate FHE scheme CKKS, lower bounds were proven in [LMSS22]
regarding the amount of (Gaussian) noise to be added after decryption, in order
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to achieve IND-CPA-D security (see Appendix C for a precise definition) when the
evaluation algorithm Eval of the scheme is deterministic. The authors proved that
decryption needs to add a noise of magnitude Ω(2λ/4), and a similar lower bound
was recently proven in the threshold setting (still for CKKS only) in [KS23,
Theorem 12]. (The result is written in the case of multi-key FHE but extends
to threshold FHE.) Our first observation is that these results do not rely on
any specificity of CKKS, except on the fact that the noise after multiplication
of two ciphertexts, encrypting µ1, µ2 and with noise terms e1, e2, is of the form
µ1e2 + µ2e1 + e′ with ∥e′∥ ≪ ∥µ1e2 + µ2e1∥. This noise propagation is also
that of the (exact) B/FV FHE scheme. The lower bound can then be extended
to any threshold FHE scheme with such a format, and in particular to B/FV.
This is not surprising, given that IND-CPA-D can be seen as a particular case of
threshold FHE security (see discussion in Appendix C for details). In short, this
is due to the fact that CKKS decryption corresponds to (noiseless) PartDec as
defined earlier.

To obtain the lower bound, we consider four challenge queries of the form

(µ
(0)
1 , µ

(1)
1 ) = (0, B), (µ

(0)
2 , µ

(1)
1 ) = (0, B) ,

(µ
(0)
3 , µ

(1)
3 ) = (0, B), (µ

(0)
4 , µ

(1)
4 ) = (0,−B) .

We then evaluate µ1µ2 + µ3µ4, which leads to an encryption of 0 (computed
as 02+02 or as B2−B2 respectively, depending on the challenge bit β). The fact
that intermediate plaintexts are 0 is one case and of magnitude B in the other
case implies that the underlying error of the result is simply e′ for β = 0, while
it is of the form Be+ e′ with e′ small relative to Be for β = 1. This difference in
magnitude can be further amplified by making not just 4 queries but 4t queries
of the same form and evaluating

∑
i∈[t](µ1,iµ2,i + µ3,iµ4,i). As explained in the

introduction, partial decryptions allow to recover the error, up to the error added
by each partial decryption. Hence, unless partial decryption adds an exponential
error, there is an efficient distinguisher based on the evaluation error, and the
scheme is not secure. We refer the reader to [LMSS22] for more details. The
main technicality lies in the fact that, outputting a guess based on which of
the two shifted Gaussians in more likely to have generated the challenge sample
essentially provides an efficient distinguisher whose advantage is the statistical
distance between the Gaussians, and an exponential flooding is required to make
this statistical distance negligible.

As a consequence, it seems that relying on sanitization techniques to remove
dependencies between the error term and the plaintexts involved in the compu-
tation is needed to obtain efficient threshold constructions without exponential
noise flooding during partial decryption. This is what is done in [BS23a], by
relying on circuit-private FHE. However, adding randomness before partial de-
cryption rises another question: which party adds this randomness? If this is a
party, then it has to be honest, uncorrupted, and even in this case, it is not clear
that any security can be guaranteed with respect to this party, since it knows
the randomness which serves as source of security. This is what motivates our
generalization of threshold FHE, defined in the next section (Section 4): we add
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a ServerDec operation which processes the evaluated ciphertext to add random-
ness; we assume it is run by a trusted third-party (e.g., a server), so that none
of the (possibly corrupted) parties knows the internal randomness of this step.
Before we move on to our definition, let us analyze [BS23a] in more details.

3.2 A Construction Based on Circuit-Private FHE

In [BS23a], the authors proposed a transformation which allows to convert a
One-Way-CPA (OW-CPA), circuit-private, threshold FHE into an IND-CPA
threshold FHE. The precise definition of OW-CPA threshold FHE is not rele-
vant for our work and we refer the reader to [BS23a] for more details. IND-CPA
threshold FHE is similar to our Definition C.1, though it suffers from minor
caveats. Indeed, in their security notions, the adversary does not have access to
two distinct oracles OEval and ODec but only to a single oracle OEvalDec which
combines evaluation of a circuit C with partial decryption of the resulting cipher-
text. While this could be fine, the issue with their definition is that this oracle
only reveals the partial decryption shares to the adversary and does not reveal
the evaluated ciphertext which was decrypted. Note that, since the ciphertext is
obtained by a circuit-private evaluation, it is not possible for the adversary to
compute the decrypted ciphertext by itself. In practice, parties (and therefore
the adversary) must know the ciphertext to be able to decrypt it, so OEvalDec
should reveal both the ciphertext and the partial decryption shares when Eval is
randomized. Yet, the fact that the ciphertext distribution is correlated to that of
partial decryptions makes it much harder to analyze security. (Also, again, this
rises the question of who does the evaluation since randomness plays a central
role in security.)

Beside this definitional issue, our main contribution in this section is an
attack against the transform. We start by briefly recalling the transform. Let
ThFHE = (KeyGen,Enc,Eval,PartDec,FinDec) be a OW-CPA, circuit-private,
threshold FHE scheme. The authors suggest to construct an IND-CPA threshold
FHE from this OW-CPA threshold FHE scheme by tweaking encryption and
evaluation as follows.

• To encrypt a message µ ∈ {0, 1}δ: sample (s1, . . . , sδ) ← U(Mδ) and x ←
U(M) where M denote the message space of the OW-CPA scheme – we
assume that x has large min-entropy (i.e., that M is large); compute ct ←
Encpk(x) and ri := ⟨x, si⟩ ⊕ µi for i ∈ [δ]; return (ct, (si)i∈δ, (ri)i∈δ).

• To evaluate a circuit C, one first unmasks the ri’s homomorphically using
the encryption of x (and known si’s) to compute an FHE encryption of µ,
and then performs Eval of C on the resulting ciphertext.

Let us first remark that unmasking can be done directly on ciphertexts, and
therefore one can assume that a message µ is simply encrypted using the OW-
CPA scheme (up to some changes in the noise distribution). Therefore, the above
transform would imply that a OW-CPA (circuit-private) threshold FHE scheme
is actually IND-CPA-secure without any change. In Appendix C.4, we show that
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this is actually correct for non-threshold FHE schemes, assuming the scheme
satisfies a mild form of circuit-privacy. The proof relies on a rewinding argument.
However, if the attacker can make decryption queries (e.g., for threshold or IND-
CPA-D security), the rewinding argument blows up the number of decryption
queries and its seems very challenging to extend our result without this blow-up.6

3.3 An Attack Against the [BS23a] Transform

To attack the transform, we construct a threshold circuit-private FHE scheme
which is does not satisfy their claimed security notion once plugged into their
transform.

Syntax of our scheme. We consider a (threshold) FHE scheme with the fol-
lowing syntax. This corresponds in particular to some instantiations of B/FV or
CKKS. The scheme uses a chain of moduli qℓ > qℓ−1 > · · · > q0, providing ℓ+1
levels of computation. Define R = Z[X]/(XN + 1)) for N a power of 2, and
Rq = R/qR for q ≥ 2. A ciphertext at level i is of the form ct = (a,−as+µ+ e)
with a, s, e ∈ Rqi , where µ ∈ R is a polynomial encoding a plaintext.

Let ct0, ct1 denote two level-(i + 1) ciphertexts with ct
(i+1)
β = (aβ ,−aβs +

µβ+ eβ) for β ∈ {0, 1}. We assume that multiplying two level-(i+1) ciphertexts
leads to a level-i ciphertext ct(i) whose error term is of the form qi

qi+1
· (µ0e1 +

µ1e0 + e′) where e′ satisfies ∥e′∥ ≪ ∥µ0e1 + µ1e0∥. In the case of B/FV and
CKKS, decreasing e′ is obtained by increasing the qi’s.

We consider a circuit-private threshold FHE scheme with the above format
and consider three consecutive moduli q2 > q1 > q0 of the modulus chain. We
assume that:

• fresh/evaluated ciphertexts are at level 0 (i.e., encryption, challenge, and
evaluation queries all return level-0 ciphertexts);

• the public parameters contain a level-2 encryption of 1, denoted ct
(2)
pp ;

• the (circuit-private) evaluation of a circuit C has the following form: it starts
by performing a circuit-private evaluation of C resulting in a level-2 cipher-

text ct
(2)
priv; then, the following post-processing is performed:

1. both level-2 ciphertexts ct
(2)
priv and ct

(2)
pp are rescaled to level 1 by applying

the map c 7→ ⌊ q1q2 · c⌉; this results in two level-1 ciphertexts denoted ct
(1)
priv

and ct
(1)
pp , respectively;

2. the ciphertexts ct
(1)
priv and ct

(1)
pp are multiplied, resulting in a level-0 ci-

phertext ct
(0)
res , which is returned as the output of the evaluation.

6 Recall that, the OW-CPA threshold FHE construction proposed in [BS23a] requires
to add a noise term of magnitude O(QD) during partial decryption, with QD an
upper bound on the number of decryption. Hence, if the reduction blows up the
number of decryption queries to argue threshold IND-CPA security, then the amount
of flooding noise shall be increased accordingly.
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• partial decryption of a ciphertext (a, b) with a partial key sj returns asj + d
with d being a noise of amplitude ≈ QD, where QD denote an upper bound
on the number of decryption queries made by the adversary (as suggested
by the analysis based on the Rényi divergence from [BS23a]).

We now add two comments on the evaluation procedure. As ct
(1)
pp is an encryption

of 1, the ciphertext ct
(0)
res properly decrypts to the result of the computation. Fur-

ther note that the evaluation process is circuit-private since the post-processing

is circuit-independent and applies to a circuit-private evaluated ciphertext ct
(2)
priv.

Finally, we assume that q0 ≤ poly(λ ·N ·QD), which suffices to enable correct
decryption.

The attack. Our threshold IND-CPA attack starts as follows:

1. The attacker makes a challenge query (µ0, µ1) using scalar plaintexts. Let
ct∗ = (a∗,−a∗s+ µβ + e∗) denote the resulting level-0 challenge ciphertext.

2. The attacker requests an encryption of the most significant bits of a∗ (i.e.,
of a polynomial whose coefficients are the MSB of that of a∗; let us denote

its encoding as [a∗]), resulting in a level-i ciphertext ct
(0)
1 .

3. The attacker requests an evaluation of the identity circuit on ct
(0)
1 , resulting

in a level-0 ciphertext ct
(0)
2 .

4. The attacker finally requests all partial decryptions of ct
(0)
2 .

Note that the decryption query is valid as the underlying plaintext, which cor-
responds to the MSB of the a∗-part of ct∗, is independent of µβ and therefore
the decryption query does not reveal information about β.

Before completing the attack, let us analyze the various noise terms. By

definition, ct
(0)
1 is a level-0 ciphertext. When the identity circuit is evaluated,

the circuit-private evaluation of the circuit is first run, ending up with a level-2

ciphertext ct
(2)
2 of the form (a

(2)
2 ,−a(2)2 s+ [a∗] + e

(2)
2 ), which is then rescaled to

a level-1 ciphertext ct
(1)
2 . Finally, it is multiplied to the rescaling ct

(1)
pp of ct

(2)
pp .

We have, for k ∈ {2, 1}:

ct(k)pp = (a(k)pp , b
(k)
pp ) with a(k)pp s+ b(k)pp = [1] + e(k)pp ,

where [1] denotes the polynomial encoding of plaintext 1, and

ct
(k)
2 = (a

(k)
2 , b

(k)
2 ) with a

(k)
2 s+ b

(k)
2 = [a∗] + e

(k)
2 .

Recall that a
(1)
2 := ⌊ q1q2 · a

(2)
2 ⌉. Let r2 denote the rounding error r2 := q1

q2
a
(2)
2 −a

(1)
2 .

Then, the error term e
(1)
2 is ⌊r2s+ q1

q2
e
(2)
2 ⌉. By increasing q2/q1, we can make the

error term e
(1)
2 dominated by r2s.

Similarly, letting rpp denote the rounding error rpp := q1
q2
a
(2)
pp − a(1)pp , we see

that the error term e
(1)
pp is dominated by rpps. Note that rpp is publicly com-

putable since a
(2)
pp is part of the public parameters and the rescaling operation

is deterministic.
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Finally, by definition of the scheme, multiplying ct
(1)
pp with ct

(1)
2 leads to an

encryption ct2 = (a2, b2) of [a∗] with b2 = −a2s + [a∗] + e2 where the error
term e2 is of the form [a∗]rpps+r2s+e

′, where e′ is small compared to the other
terms. This error is then approximately [a∗]rpps.

To complete the attack, we observe that the decryption of ct2 allows the
attacker to learn a2sj+dj for j ∈ [N ], with N being the number of parties. Write
d :=

∑
j∈[N ] dj . Then, summing all partial decryptions with b2, the adversary

can recover [a∗]+edec where edec =
qi
qi+1
·([a∗]rpps+[1]r2s+e

′)+d, where ∥e′∥ ≪
∥[a∗]rpps+ [1]r2s∥. Since the attacker knows [a∗], it can recover edec.

The attacker knows rpp, hence it can compute rppct
∗ = (a∗rpp, a

∗srpp +
µβrpp+e

∗rpp) and subtract a scaling of edec to the right-hand term. This has the
effect of making the term a∗srpp small, as [a∗] corresponds to the MSB of a∗.
We then obtain a polynomial µβrpp + esmall, where ∥esmall∥ ≪ q0. As the error
term esmall is small compared to q0, which is itself ≤ poly(λ · N · Q), the er-
ror esmall is not sufficiently large to hide µβrpp. By setting µ0 = 0 and µ1 = [1],
the attacker can guess β with non-negligible advantage based on the largeness
of µβrpp + esmall.

Error in the analysis of the [BS23a] transform. We can trace our at-
tack back to an error in the analysis of [BS23a, Theorem 3]: the issue lies
in how [BS23a, Lemma 2] is applied in the proof. We borrow the notations
from [BS23a, Lemma 2]. The set Z may depend on X, the first input of the
extractor, but it cannot depend on its second input (the uniform distribution
over {0, 1}nδ). This implies that Z should not depend on the Goldreich-Levin
bits sj ’s in the proof of [BS23a, Theorem 3]. However, in that proof, it could
depend on them: the sj ’s are revealed in clear as part of the ciphertexts so the
adversary could submit an encryption (or an evaluation) query whose plaintext
(or circuit) depends on prior sj ’s.

4 A Generalized Definition of Threshold FHE

In this section, we provide a generalization of the definition of threshold fully
homomorphic encryption which allows to introduce (uncorrupted) randomness
to a ciphertext before it is fed to partial decryption. We focus on N -out-of-
N threshold FHE for readability and since our main construction (Section 5)
handles only this setting. However, our definition extends to arbitrary monotone
access structures. As already discussed, we consider that a trusted third-party
(e.g., a server performing the computation) performs a public-key randomized
pre-processing operation on ciphertexts before they can be partially decrypted.
Specifically, the server applies an algorithm termed ServerDec, transforming a
ciphertext into a form that is adequate for partial decryption by users. Using
this terminology, evaluation could be deterministic and ServerDec randomized.
We remark that, if ServerDec is void (or is deterministic), we recover the prior
definition of threshold FHE.

We consider a simulation-based security notion inspired by [BGG+18]. Specif-
ically, assume that the attacker corrupts parties P1, . . . , PN−1 (and therefore
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knows sk1, . . . , skN−1). Let ct denote a ciphertext to be decrypted. It is first pro-
cessed through ServerDec. The result of this operation is a ciphertext ctdec which
can be partially decrypted by all parties. Our security notion requires that ctdec
and the partial decryptions of ctdec do not reveal more information than the
plaintext µ underlying ctdec and what is already known by the adversary. This
is enforced by the existence of a simulation which outputs a simulated ctdec
and partial decryptions whose distribution is indistinguishable from that of the
real ones. The sources of security are then clearly identified: (1) the internal
randomness of ServerDec and (2) the randomness of the uncorrupted party PN
(i.e., the partial secret key skN and the internal randomness dN used when run-
ning PartDec).

We now formalize our generalized definition of threshold functional encryp-
tion with the additional ServerDec algorithm.

Definition 4.1 (Threshold FHE). A threshold fully homomorphic encryption
scheme is a tuple of PPT algorithms ThFHE = (KeyGen,Enc,Eval,ServerDec,
PartDec,FinDec) with the following properties. LetM denote the plaintext space,
C the ciphertext space, Cdec the processed ciphertext space, and Mshare the space
of partial decryption shares.

• KeyGen(1λ, 1N ) takes as input a security parameter, a number of parties N ,
and returns public parameters pp containing descriptions of M, C, Cdec, a
public key pk, an evaluation key ek, and N secret key shares sk1, . . . , skN ;
• Enc(pp, pk, µ) takes as input public parameters pp, a public key pk, and a
plaintext µ ∈M and returns a ciphertext ct ∈ C;
• Eval(pp, ek,C, ct1, . . . , ctℓ) takes as input public parameters pp, an evalua-
tion key ek, a circuit C :Mℓ → M of arbitrary arity ℓ ≥ 0, and ℓ cipher-
texts ct1, . . . , ctℓ, and returns a ciphertext ct ∈ C;
• ServerDec(pp, pk, ct) takes as input public parameters pp, a public key pk,
and a ciphertext ct ∈ C and returns a ciphertext ctdec ∈ Cdec;
• PartDec(pp, ski, ctdec) takes as input public parameters pp, a partial decryp-
tion key ski, and a ciphertext ctdec ∈ Cdec, and returns a partial decryp-
tion pi ∈Mshare.
• FinDec(pp, {pi}i∈[N ]) takes as input public parameters pp and a set of partial
decryptions {pi}i∈[N ] inMshare, and returns a plaintext µ′ ∈M∪ {⊥}.

To ease notation, the public parameters pp are implicit for the rest of the paper.
We require the following properties.
Correctness. For any λ,N > 0, ℓ ≥ 0, C :Mℓ →M, and (µ1, . . . , µℓ) ∈ Mℓ,
we have:

Pr

FinDec({pi}i∈[N ]) = y

∣∣∣∣∣∣∣∣∣∣
(pk, ek, (ski)i∈[N ])← KeyGen(1λ, 1N )
ctj ← Enc(pk, µj),∀j ∈ [ℓ]
ct← Eval(ek,C, ct1, . . . , ctℓ)
ctdec ← ServerDec(pk, ct)
pi ← PartDec(ski, ctdec),∀i ∈ [N ]

≥ 1−negl(λ) ,
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where y = C(µ1, . . . , µℓ) and the probability is over the internal coins of the
algorithms.
Compactness. There exists a polynomial p such that, for any λ,N > 0, and
execution of KeyGen(1λ, 1N ), we have:

log |C|, log |Cdec|, log |Mshare| ≤ p(λ,N) .

Definition 4.2 (Threshold Simulation Security). A threshold FHE scheme
ThFHE = (KeyGen,Enc,Eval,ServerDec,PartDec,FinDec) is simulation-secure if
it satisfies the following two properties:

• the sub-scheme (KeyGen,Enc) is IND-CPA-secure;
• there exists a PPT simulator Sim such that the experiments depicted in Fig-
ure 1 are computationally indistinguishable; specifically, we require that for
any PPT adversary A = (A0,A1),

AdvSimThFHE
A :=

∣∣∣Pr[A(ExpThFHEreal (1λ, 1N )) = 1]−Pr[A(ExpThFHEideal (1λ, 1N )) = 1]
∣∣∣

is negligible.

Our definition fixes a minor issue in [BGG+18, Definition 5.5]. In the latter
definition, a state st is returned by Sim1 when simulating KeyGen and fed as
input to Sim2. With this syntax, Sim1 could run the actual KeyGen algorithm
and st could contain all shares (sk1, . . . , skN ) of the secret key sk. In this case,
Sim2 can simply run the real evaluation/decryption algorithms, and simulation
is perfect, but vacuous. Therefore, this definition could be trivially satisfied. In
our definition, the public and partial keys revealed to the adversary are sampled
identically in both experiments, using the KeyGen algorithm. It is very similar to
the original definition from [JRS17] which did not suffer from the above minor
issue, but our definition is slightly more general as it is multi-hop, adaptive (and
we only require computational indistinguishability). It does not seem obvious to
us that multi-hop, adaptive security is implied by single-hop, selective security
since decryption results of multi-hop evaluation queries can be correlated.

Threshold public-key encryption. We also define a Threshold PKE scheme
ThPKE = (KeyGen,Enc,PartDec,FinDec) based on our definition of Threshold
FHE by requiring Eval and ServerDec to be vacuous algorithms. A definition of
simulation-based security is also obtained from simplifying the above definition
by removing the OEval oracle and the ServerDec step in the oracle ODec (Step 4
in Figure 1).

5 Double-Flood-and-Round Construction

In this section, we propose an N -out-of-N threshold FHE scheme with small
partial decryption shares. The design of our scheme is fairly generic and can be
adapted to most FHE schemes for exact computations. We start by specifying
some high-level structure for the underlying scheme.
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ExpThFHEreal (1λ, 1N ):

1: (pk, ek, (ski)i∈[N ])←KeyGen(1λ, 1N )
2: ctr← 0, L← ∅
3: (S, st)← A0(pk) with |S| = N − 1
4: out←AOEnc,OEval,ODec

1 (pk, (ski)i∈S , st)
5: Return (out = real)

ExpThFHE
ideal (1λ, 1N ):

1: (pk, ek, (ski)i∈[N ])←KeyGen(1λ, 1N )
2: ctr← 0, L← ∅
3: (S, st)← A0(pk) with |S| = N − 1
4: out←AOEnc,OEval,OSim

1 (pk, (ski)i∈S , st)
5: Return (out = ideal)

OEnc(µ):

1: ct← Enc(pk, µ)
2: ctr← ctr + 1
3: L[ctr]← (µ, ct)
4: Return ct

OEval(C, (i1, . . . , iℓ))):

1: For j ∈ [ℓ]:
2: (µj , ctj)← L[ij ]
3: ct← Eval(ek,C, ct1, . . . , ctℓ)
4: ctr← ctr + 1
5: µ← C(µ1, . . . , µℓ)
6: L[ctr]← (µ, ct)
7: Return ct

ODec(j):

1: If j > ctr:
2: Return ⊥
3: (µ, ct)← L[j]
4: ctdec ← ServerDec(pk, ct)
5: pk ← PartDec(skk, ctdec), for k ∈ [N ]
6: Return (ctdec, (pk)k∈[N ])

OSim(j):

1: If j > ctr:
2: Return ⊥
3: (µ, ct)← L[j]
4: (ctdec, (pk)k∈[N ])← Sim(pk, µ, (ski)i∈S)
5: Return (ctdec, (pk)k∈[N ])

Fig. 1. Simulation security games for Threshold FHE.

5.1 Structure of the Underlying FHE Scheme

Let λ denote a security parameter. Let FHE = (FHE.KeyGen,FHE.Enc,FHE.Eval,
FHE.Dec) denote an FHE scheme with the following structure.

1. The public parameters include two dimensionsm ≥ n ≥ 1, a modulus Q ≥ 2,
a secret key distribution χs over Zn whose samples have norms ≤ poly(λ),
and three distributions χe, χv and χf over Z. All these are functions of λ,
and the distributions are assumed to be efficiently sampleable.

2. The key pair is of the form:7

pk = [A|b] with b := −As+ e , sk = s ,

with A← U(Zm×nQ ), s← χs and e← χme . We have pk · (sk, 1)⊺ = e mod Q.

7 We ignore the evaluation key ek in our description and our proof. This is common
even for non-threshold schemes: security of FHE relies on the additional assump-
tion that security still holds given ek (which typically involves a circular security
assumption).
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3. Encrypting a plaintext µ ∈M starts by encoding µ into some plaintext µ′ =
Encodeq(µ) ∈ ZQ (e.g., by setting µ′ = ∆ ·µ for some scaling factor ∆). Then
encryption first computes ct0, ct1 with:

ct0 := v⊺A+ f⊺ , ct1 := v⊺b+ f ′ + µ′ ,

with v← χmv , f ← χnf and f ′ ← χf . Note that this setting handles the case
where both f and f ′ are zero (for instance in FHE schemes where the leftover
hash lemma is relied upon for IND-CPA). The ciphertext is ct = (ct0, ct1).

4. The decryption algorithm Dec is split into two steps (Dec1,Dec2), as follows.
Let ct be its input ciphertext (which can be either a fresh ciphertext or the
result of an homomorphic computation).

(a) Dec1(sk, ct) returns z := ct0 · sk+ ct1 mod Q.

(b) Dec2(z) returns µ := DecodeQ(z). Importantly, it does not use sk; it
might be void, notably in the case of an LWE version of CKKS, whereas
it typically involves a rounding or a modular reduction in exact schemes.

We assume that z = µ′ + eeval where µ
′ = EncodeQ(µ) is an encoding of

the plaintext µ corresponding to ct and eeval is an error term with bounded
magnitude |eeval| ≤ Beval for some Beval > 0. We refer to eeval as the evaluation
error.

Our framework captures most known (LWE-based) FHE schemes. It does
not directly capture GSW, in which messages are encoded as µ ·G for G the
gadget matrix and encrypted as ct = R · pk + F + µ ·G. We could generalize
our description to also encompass GSW but it would hurt the readability re-
garding the decryption procedure, hence we chose this less general but simpler
description.

5.2 Construction

As already mentioned, a simple solution to obtain a threshold FHE (even for
general access structure or when the computation is performed by parties) is
to have the parties add an exponential noise term after decryption such that
no information about their partial decryption key is revealed to other. Yet, a
significant drawback of the noise flooding approach is the size of the output
ciphertexts, as the modulus needs to be large enough to tolerate the addition
of this large noise term at decryption. To mitigate this, we propose a different
approach, in which exponential noise flooding is performed on the server side.
Computation by the server is performed with a large modulus Q which toler-
ates exponential noise-flooding, and the ciphertext is then rounded to a smaller
modulus qdec ≪ Q, before being sent to the users. This modulus remains suffi-
ciently large for the users to be able to add some limited noise term to guarantee
security without impacting decryption correctness. After performing its partial
decryption, a user can round the decryption share to an even smaller modulus:
indeed, there is no more noise that needs to be added, and it is only required
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that the combination of the current noises does not impact correctness. Overall,
the successive roundings allow to minimize bandwidth consumption.8

The scheme is described in Figures 2 and 3. To ease description, our scheme
does not include the second rounding (performed after partial decryption). We
briefly discuss this optimization at the end of this section. The construction relies
on a perfectly correct FHE scheme that fulfills the constraints of Section 5.1. For
the sake of simplicity, we consider an FHE scheme that encodes a plaintext µ
over ZQ as EncodeQ(µ) such that for Q = pqdec, it holds that: 1/p ·EncodeQ(µ) =
Encodeqdec(µ). For example, this holds if plaintexts are encoded in the most
significant bits of the ciphertexts, i.e., EncodeQ(µ) = Q/t ·µ, with t denoting the
plaintext modulus (e.g., as done in B/FV).

We only describe the procedures KeyGen,ServerDec,PartDec,FinDec in Fig-
ures 2 and 3, as the encryption and evaluation procedures Enc and Eval are iden-
tical to those of the underlying FHE scheme (and operate over ZQ with Q being
the larger modulus). The scheme involves two noise flooding parameters σflood
and η. The first flooding parameter σflood is used for exponential flooding, while
the second parameter η is used for small flooding during partial decryption. It
also involves two moduli Q = pqdec and qdec with qdec ≪ Q (we use p ≈ 2λ).
ServerDec uses randomized Gaussian roundings. We reveal the norm of the se-
cret key ∥sk∥ in the public parameters. This is only to ease simulation in our
security analysis. In practice, the scheme is at least as secure if ∥sk∥ is not given,
since removing it only restricts the information available to an attacker.

▶ KeyGen(1λ, 1N ):

1: Construct Q = p · qdec with qdec ≪ Q and the secret key dimension n
2: Sample (sk, pk)← FHE.KeyGen(1λ) with modulus Q
3: Define public parameters pp containing Q, p, qdec as well as ∥sk∥
4: Sample (sk1, . . . , skN )← Share(sk, N, qdec)
5: Return (sk1, . . . , skN , pk, pp)

Fig. 2. Key generation of double-flood-and-round threshold FHE.

The communication involved between parties after the computation is lim-
ited, as only the small modulus qdec is involved. However, communication before
the computation, to provide inputs to the server, remains large as we encrypt
over ZQ. This may be solved using transciphering (see, e.g., [BCK+23] and ref-
erences therein).

The construction can be adapted to further reduce the bandwidth. The users
could apply a second rounding step after their partial decryption, e.g., by re-
turning ⌊qout/qdec · pi⌉ mod qout for qout < qdec, in order to further reduce the

8 Another drawback of exponential flooding, which our construction does not address,
is the need for an LWE parametrization with exponential noise rate.
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▶ ServerDec(pk, ct):

1: ctfresh ← Encpk(0)
2: ctin ← ct+ ctfresh
3: E← Dσflood

4: Parse ctin as (ctin,0, ctin,1) mod Q
5: ctin,1 ← ctin,1 + E

6: ctdec,0 :=
⌊

1
p
· ctin,0

⌉
σ0

mod qdec

7: ctdec,1 :=
⌊

1
p
· ctin,1

⌉
σ1

mod qdec

8: ctdec := (ctdec,0, ctdec,1)
9: Return ctdec

▶ PartDec(ski, ctdec):

1: Parse ctdec as (ctdec,0, ctdec,1)
2: Sample di ← DZ,η
3: pi ← ctdec,0 · ski + di mod qdec
4: Return pi

▶ FinDec(ctdec, {pi}i∈[N ]):

1: Parse ctdec as (ctdec,0, ctdec,1)
2: z←

∑
i∈[N ] pi + ctdec,1 mod qdec

3: µ← Decodeqdec(z)
4: Return µ

Fig. 3. Decryption procedures of double-flood-and-round threshold FHE.

size of communication with other parties. Security follows from that of the base
construction since the modified scheme provides strictly less information to the
adversary. Functionality is preserved as long as parameters are carefully selected
to ensure correctness.

5.3 Analysis of the Double-Flood-and-Round Construction

Let Beval be an upper bound on |ct · sk− EncodeQ(µ)| for any ciphertext ct that
can be produced by a combination of encryptions and evaluations, and where µ
is the underlying plaintext of ct. We assume that fresh ciphertexts also have
decryption noises that are bounded by Beval in absolute value (this follows from
the definition of Beval if FHE.Eval does not do anything for the empty circuit).

Theorem 5.1. Let ThFHE denote the above double-flood-and-round construc-
tion. It is a correct and secure threshold fully homomorphic encryption scheme,
assuming that:

• the decoding procedure of the underlying FHE scheme satisfies

Decodeqdec (Encodeqdec(µ) + e) = µ ,

for any plaintext µ and e with |e| ≤
√
λ · σdec and where σdec is defined as√

(σ0∥s∥)2 + (σflood/p)2 + σ2
1 +Nη2;

• the underlying FHE scheme is IND-CPA-secure;
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• σ0, σ1 = Ω(
√
λ+ log n) and σflood = Ω(p∥sk∥

√
λ+ log n);

• σflood = Ω(2λBeval);
• yaLWEn,QD,qdec,σe,η,χs

holds for σe =
√
(σ0∥s∥)2 + (σflood/p)2 + σ2

1;
• LWEn,Q,χf ,χs holds.

In the above, the variable QD refers to the number of decryption queries made
by the adversary. We assume that QD ≤ poly(λ).

Proof. We prove correctness and threshold simulation security independently.
IND-CPA security follows from that of the underlying FHE scheme.

Correctness. Let ctdec = (ctdec,0, ctdec,1) denote a ciphertext obtained from the
server after it applied ServerDec. We define the rounding error r0 of ctdec,0 as:

r⊺0 := ctin,0 − p · ctdec,0 .

By definition, since ctdec,0 ∼ DZn, 1p ·ctin,0,σ0
, we have r0 ∼ Dp{ 1

p ·ctin,0}+pZn,pσ0
,

where {·} denotes the fractional part defined as {x} := x − ⌊x⌉ for any x ∈ R.
Assume that ctin,1 = ctin,0 · sk + µ′ + eeval + efresh, where eeval is the decryption
noise of the input ct of ServerDec and efresh is the decryption noise of ctfresh (recall
that ctin = ct+ ctfresh). We then have, modulo qdec:

ctdec,1=

⌊
1

p
· (−(p · ctdec,0 + r⊺0) · sk+ µ′ + eeval + efresh + E)

⌉
σ1

= −ctdec,0 · sk+
⌊
1

p
· (−r⊺0 · sk+ µ′ + eeval + efresh + E)

⌉
σ1

= Encodeqdec(µ)− ctdec,0 · sk+
⌊
1

p
· (−r⊺0 · sk+ eeval + efresh + E)

⌉
σ1

. (1)

Let pi = PartDec(ski, ctdec), and recall that pi = ctdec,0 · ski + di, with di ←
DZ,η for i ∈ [N ]. Then, we have, modulo qdec:

FinDec((pi)i∈[N ]) =

 ∑
i∈[N ]

pi

+ ctdec,1

= ctdec,0 · sk+ ctdec,1 +
∑
i∈[N ]

di

= Encodeqdec(µ) + e+
∑
i∈[N ]

di , (2)

where e :=
⌊
1
p · (−r

⊺
0 · sk+ eeval + efresh + E)

⌉
σ1

. We finally obtain:

FinDec((pi)i∈[N ]) = Encodeqdec(µ) + edec mod qdec ,

with edec = e +
∑
i∈[N ] di. Correctness follows as long as |edec| is sufficiently

small to enable correct decoding to µ. In our security analysis below, we show
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in the proof of Lemma 5.3 that edec follows a distribution which is statistically
close to DZ,σdec

, where σdec =
√

(σ0∥s∥)2 + (σflood/p)2 + σ2
1 +Nη2. By standard

Gaussian tail bounds, the samples have magnitudes≤
√
λσdec with overwhelming

probability.

Threshold simulation. As for all known examples of LWE-based FHE scheme,
we ignore the evaluation key in our security analysis. Our actual security claim
is then obtained by additionally assuming that security still holds provided the
extra information contained in the evaluation key. This is the standard circular
security assumption underlying FHE schemes.

Our proof proceeds by a sequence of hybrids. The KeyGen,Enc and Eval
algorithms are modified in none of them and encryption and evaluation queries
are answered by running the corresponding algorithms. Hence, we only focus on
handle decryption queries.

LetA denote an adversary. Without loss of generality, assume thatA corrupts
parties 1, . . . , N−1 so that it knows sk1, . . . , skN−1. Our objective is to prove that
the real experiment distribution ExpThFHEreal is computationally indistinguishable
from the simulated one ExpThFHEideal , which can be run directly given the information
of A (i.e., given the corrupted partial keys and the plaintexts underlying the
ciphertexts that are queried to the decryption oracle, but without sk nor skN ).
The simulator Sim is given in Figure 5.3.

▶ Sim(pk, µ, (sk1, . . . , skN−1)):
1: ctdec,0 ← U(Zn

qdec)
2: ctdec,1 ← U(Zqdec)
3: di ← DZ,η for i ∈ [N − 1]
4: pi ← ctdec,0 · ski + di for i ∈ [N − 1]
5: h← Dσh where σh :=

√
(σ0∥s∥)2 + (σflood/p)2 + σ2

1 + η2

6: pN ← Encodeqdec(µ) + h− ctdec,1 −
∑

i∈[N−1] ctdec,0 · ski
7: Return (ctdec,0, ctdec,1, p1, . . . , pN ).

Fig. 4. Simulator for the double-flooding-and-round threshold FHE.

Let ct denote a ciphertext held by the server and for which the adversary is
requesting decryption. Let µ denote the underlying plaintext. Note that ct could
be a fresh encryption of µ or the result of a homomorphic computation whose
underlying plaintext is µ. We aim to prove that ctdec ← ServerDec(pk, ct), the
ciphertext revealed by the server to all parties, and pN ← PartDec(skN , ctdec),
the partial decryption of the uncorrupted party N , are computationally indis-
tinguishable from those provided by the simulator Sim. We proceed by a hybrid
argument, first considering the real distribution in ExpThFHEreal .

Hyb0. This is the adversary’s view in ExpThFHEreal . Given the constraints we im-
posed on the underlying FHE scheme, the ciphertext ct = (ct0, ct1) to be de-
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crypted satisfies:
ct0 · sk+ ct1 = µ′ + eeval mod Q ,

with µ′ = EncodeQ(µ) and |eeval| ≤ Beval.

Hyb1. In this first hybrid, we change how ctin is defined by the challenger. We
remind that, as for ct, the ciphertext ctin is held by the server and is never
revealed to the adversary. The latter only sees ctdec, which is produced from ctin.

In this hybrid, when the adversary makes a decryption query for a cipher-
text ct encrypting a plaintext µ′, the server now samples (ctin,0, ctin,1) and ctdec
as follows:

• it samples ctin,0 ← a⊺ with a← U(ZnQ);
• it sets ctin,1 ← −a⊺ · sk+ µ′ + E, where E← Dσflood

;
• the rest of the decryption proceeds as before.

We claim that games Hyb0 and Hyb1 are computationally indistinguishable.
The detailed analysis is provided in Lemma 5.2.

We recall the correctness equation (Equation (2)): ∑
i∈[N ]

pi

+ ctdec,1 = Encodeqdec(µ) + e+
∑
i∈[N ]

di mod qdec , (3)

where e is now e :=
⌊
1
p · (−r

⊺
0 · sk+ E)

⌉
σ1

, with r0 ∼ Dp{ 1
p ·ctin,0}+pZn,pσ0

.

Hyb2. In this hybrid, we change how the partial decryption pN of the uncor-
rupted party is computed as well as how ctdec,1 is sampled. Simplifying Equa-
tion (3) above, we obtain that, in Hyb1, the partial decryption pN satisfies:

pN := Encodeqdec(µ) + e+ dN − ctdec,1 −
∑

i∈[N−1]

ctdec,0 · ski . (4)

Motivated by this equation, in Hyb2, we now sample ctdec,1 as ctdec,1 ← U(Zqdec)
and set pN as:

pN := Encodeqdec(µ) + h− ctdec,1 −
∑

i∈[N−1]

ctdec,0 · ski ,

with h← Dσh
and σh :=

√
(σ0∥s∥)2 + (σflood/p)2 + σ2

1 + η2.
We claim that gamesHyb1 andHyb2 are computationally indistinguishable.

The detailed analysis is provided in Lemma 5.3. Note that the distribution in
this game no longer depends on skN and is therefore sampleable by the adversary
given its known information, since σ0, σ1, p, σflood, ∥s∥, η are public parameters.
The view is identical to the one provided by the Sim algorithm from Figure 5.3.

This completes the proof of Theorem 5.1. ⊓⊔

Lemma 5.2. Assuming that σflood = Ω(2λBeval) and that LWEn,Q,χf ,χs holds,
games Hyb0 and Hyb1 are computationally indistinguishable.
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Proof. For simplicity, we focus on simulating a single decryption query: the gen-
eral case where multiple decryption queries are made is obtained by a standard
hybrid argument.

Let ct = (ct0, ct1) denote a ciphertext corresponding to a decryption query
made by the adversary. First, we recall that a fresh encryption ctfresh of 0 is
added to the ciphertext ct at Step 2 of ServerDec(ct) to produce ctin. It is of the
form ctfresh = (ctfresh,0, ctfresh,1) with ctfresh,0 = v⊺A+ f⊺ and ctfresh,1 = −ctfresh,0 ·
s + efresh. Here v ← χmv , f ← χnf and the noise term efresh satisfies |efresh| ≤
Beval. Further, given our assumptions regarding the underlying FHE scheme, the
ciphertext ct = (ct0, ct1) to be decrypted satisfies:

ct0 · s+ ct1 = µ′ + eeval mod Q ,

with µ′ = EncodeQ(µ) and |eeval| ≤ Beval. Overall, the ciphertext ctin is of the
form (ctin,0, ctin,1) with:

ctin,0 = v⊺A+ f⊺ + ct0

and
ctin,1 = −ctin,0 · s+ efresh + eeval + E+ µ′ .

Note that |efresh + eeval| ≤ 2Beval. By Lemma 2.1, taking σflood = Ω(2λBeval), the
above distribution of ctin is statistically indistinguishable from sampling ctin as:

ctin,0 = v⊺A+ f⊺ + ct0 , ctin,1 ← −ctin,0 · s+ E+ µ′ .

Finally, note that ctin,1 no longer contains information about v, f apart from that
carried by ctin,0. In the above, we can hence replace v⊺A + f⊺ by a uniformly
random value over ZnQ, under the LWE assumption. As a result, the distribution
of ctin is computationally indistinguishable from a pair of the form (a⊺,−a⊺s+
E+µ′) where a← U(ZnQ), which is precisely the distribution of ctin in Hyb1. ⊓⊔

Lemma 5.3.Assuming that yaLWEn,QD,qdec,σe,η,χs
holds, games Hyb1 and Hyb2

are computationally indistinguishable.

Proof. We aim to prove that the view of the adversary in gamesHyb1 andHyb2

are computationally indistinguishable. In both games, the ciphertext ctin is de-
fined as (ctin,0, ctin,1)← (a⊺,a⊺sk+ µ′ + E). Then the vector ctdec,0 is computed
as

ctdec,0 ←
⌊
1

p
· a⊺

⌉
σ0

mod qdec ,

which is revealed to the adversary. Note that, since a ∼ U(ZnQ) and p divides Q,
since only ctdec is revealed to the adversary, one can directly sample ctdec,0 uni-
formly over Znqdec . Using the same notation as before (in the proof of correctness),
we define the rounding error of ctdec,0 as r⊺0 := ctin,0 − p · ctdec,0, and recall that,
by definition, we have r0 ∼ Dp{ 1

p ·ctin,0}+pZn,pσ0
.

The adversary’s view in Hyb1 is then (ctdec,0, ctdec,1, (pi)i∈[N ]) where ctdec,0
is defined as above, and (pi)i∈[N−1] can be computed directly by the adversary
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since it knows sk1, . . . , skN−1 and ctdec,0. It remains to deal with ctdec,1 and pN .
By adapting Equation (1) to Hyb1, we have, modulo qdec:

ctdec,1 = Encodeqdec(µ)− ctdec,0 · sk+
⌊
1

p
· (−r⊺0 · sk+ E)

⌉
σ1

.

Further, from Equation (4), we have, modulo qdec:

pN = Encodeqdec(µ)+

⌊
1

p
· (−r⊺0 · sk+ E)

⌉
σ1

+dN − ctdec,1−
∑

i=∈[N−1]

ctdec,0 · ski .

Since µ, ctdec,0 and (ski)i∈[N−1] are known to the adversary, and replacing ctdec,1
in the second equation the right hand side of the first equation, we observe that
it suffices to focus on the quantities (defined modulo qdec):

ct′dec,1 := −ctdec,0 · sk+
⌊
1

p
· (−r⊺0 · sk+ E)

⌉
σ1

and p′N := −ctdec,0 · sk− dN .

The partial decryption noise dN having a distribution that is symmetric aroung 0,
up to inverting the sign, letting a := −ctdec,0 and s := sk, we then have:

ct′dec,1 = a · s+ e mod qdec and p′N = a · s+ dN mod qdec ,

where e :=
⌊
1
p · (−r

⊺
0 · sk+ E)

⌉
σ1

.

Recall that (1/p) · r⊺0 follows the distribution D{ 1
p ·ctin,0}+Zn,σ0

and E/p fol-

lows the distribution D 1
pσflood

. Therefore, applying Lemma 2.2, assuming (1/σ2
0 +

(p∥sk∥/σflood)2)−1/2 ≥ ηε(Zn) for some ε < 1/2, the distribution of −(1/p) ·
r⊺0 · sk+E/p is at statistical distance at most 4ε from D√

(σ0∥s∥)2+(σflood/p)2
. The

smoothing condition is fulfilled, thanks to the assumptions on σ0 and σflood. By
definition of Gaussian rounding and thanks to the latter observation, we can
then apply Lemma 2.3. Assuming σ1 ≥ ηε(Z) for some ε < 1/2, we then obtain
that the distribution of e is within statistical distance 8ε of the discrete Gaus-
sian DZ,

√
(σ0∥s∥)2+(σflood/p)2+σ2

1

. The smoothing condition is fulfilled, thanks to

the assumption on σ1.
Define σe :=

√
(σ0∥s∥)2 + (σflood/p)2 + σ2

1 . Now that we have proven that e
is statistically close from DZ,σe

, the rest of the proof is similar to the simula-
tion proof for threshold PKE from [MS23], since ctdec is essentially a fresh PKE
ciphertext now. Recall that dN ∼ DZ,η. The pair (ct′dec,1, p

′
N ) precisely corre-

sponds to a sample for the yaLWE problem, for secret s. Thanks to the privacy
of Share, the adversary has no information about s (except the knowledge of ∥s∥
which is publicly available), even given sk1, . . . , skN−1, since the latter are iden-
tically distributed as sk′1, . . . , sk

′
N−1 where (sk′1, . . . , sk

′
N ) ← Share(0, N, qdec),

which are independent of s. Assuming that yaLWEn,qdec,σe,η,χs
holds, we ob-

tain that (ct′dec,1, p
′
N ) from Hyb1 is computationally indistinguishable from a

pair (ct′dec,1, p
′
N ) sampled as:

ctdec,1 ← U(Zqdec) and pN ← ctdec,1 + h ,
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with h← Dσh
where σh :=

√
(σ0∥s∥)2 + (σflood/p)2 + σ2

1 + η2.
Since σ0, σ1, p, σflood, ∥s∥ and η are public parameters, the latter distribution

is publicly sampleable and precisely corresponds to the distribution generated
by our simulator, i.e., to the distribution in Hyb2 (up to the terms known to
the adversary that we ignored above for simplicity).

We complete the proof of Lemma 5.3 by applying a hybrid argument on all
ciphertexts for which a decryption query is made. ⊓⊔

5.4 Open Problems

The construction can be extended to a t-out-of-N threshold FHE, by relying
on Shamir secret sharing or linear integer secret sharing [DT06]. However, we
do not know how to adapt the security analysis, in particular how to simulate
all N − t+1 partial decryptions that are not available to the adversary. We now
describe a way to partially circumvent this difficulty, by relying on N -out-of-
N threshold FHE. For each each subset S ⊆ [N ] of size t, compute a t-additive
secret sharing of sk. This leads to

(
N
t

)
independent additive secret sharings of sk.

Then, the partial key of each party Pi is the union of shares of the key for each
valid set S such that i ∈ S. This induces a significative blow-up, but for small
choices of t and N , the overhead is limited.

Similarly, while the scheme can be extended to the ring setting, extending
the analysis to rely on ring-LWE [SSTX09,LPR10] seems challenging. Most of the
proof extends to the ring setting, but there is one specific difficulty that arises:
revealing ∥s∥ is sufficient to obtain a simulator in the LWE case, it does not seem
to be no longer the case in the ring setting. Letting s ∈ R = Z[X]/(XN + 1)
denote the secret key (withN a power of 2), directly extending the analysis would
require to reveal the covariance ss̄ where s̄ denotes the polynomial s(X−1). It
may however be possible to extend the security analysis to the ring setting by
relying on the extension of ring-LWE proposed in [MS23, Section 5.3] (in the
context of threshold PKE).
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Damien Stehlé. HERMES: efficient ring packing using MLWE ciphertexts
and application to transciphering. In CRYPTO, 2023.

BCKS24. Youngjin Bae, Jung Hee Cheon, Jaehyung Kim, and Damien Stehlé. Boot-
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A Proof of Lemma 2.1

We believe tighter bounds exist in the literature but could not find one, so we
provide a simple proof for the claim from Lemma 2.1. Let σ > 0, c0, c1 ∈ Z.
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Assume that c0 ≥ c1. We have:

∆(DZ,c0,σ,DZ,c1,σ) =
1

2σ

∑
x∈Z

∣∣∣∣exp(−π(x− c0)2σ2

)
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)
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, 1√

2α
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−1√
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with the value
√
2α exp(−1/2), we have:
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∫ ∞
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t
√
α · exp ((t
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where the last equation follows from
∫∞
0
t exp(−t2)dt = 1/2. Finally, replacing

α by π/σ2, we obtain:

∆(DZ,c0,σ,DZ,c1,σ) ≤
2|c0 − c1|
2σρσ(Z)

+

√
2π|c0 − c1|2

2σ2ρσ(Z)
,

Hence, fixing c0, c1, we have ∆(DZ,c0,σ,DZ,c1,σ) = O
(
|c0−c1|
σ

)
when σ → ∞,

which concludes the proof of Lemma 2.1. ⊓⊔

B A One-More Round Protocol Based on Threshold
PKE

In this section, we describe a simpler but weaker protocol that relies on thresh-
old PKE and circuit-private (non-threshold) FHE. The protocol is not round-
optimal, as it requires one more round during which a party, called the transcryp-
tor, enables the transition from FHE to threshold PKE. While circuit-privacy is
easily obtained from (exponential) noise-flooding techniques, there are alterna-
tive constructions which allow to obtain more compact ciphertexts. This makes
this protocol a potentially interesting alternative to our double-flood-and-round
threshold FHE scheme. Note however that the protocol described in this section
is not a threshold FHE scheme properly speaking: it allows to perform threshold
computation in a private manner using a trusted server, but it requires an addi-
tional round for decryption (as well as secure channels between parties and the
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server performing the computation). Moreover, since we rely on threshold PKE
in black-box, this protocol extends to arbitrary access structures (as long as the
threshold PKE scheme supports them) and is not restricted to the N -out-of-N
setting.

We first recall the definition of circuit-privacy for (non-threshold) FHE.

Definition B.1 (Circuit-Privacy). An FHE scheme (KeyGen,Enc,Eval,Dec)
with message space M is said to be circuit-private if for any circuit C :Mℓ →
M, we have:

∆((pk, sk,Eval(ek,C, ct1, . . . , ctℓ)), (pk, sk,Enc(pk,C(µ1, . . . , µℓ)))) ≤ negl(λ) ,

where µi ∈M, cti ← Encpk(µi) for i ∈ [ℓ], and where (pk, sk)← KeyGen(1λ).

The protocol considers 3 types of parties: the users, who are interested in
performing a joint computation on their private data, a trusted server who per-
forms the homomorphic computation, and the transcryptor which is either a
semi-honest third-party or a user. It must participate in the protocol (in an N -
out-of-N scenario, this could be any party, but our scenario extends to arbitrary
access structures handled by the underlying threshold PKE, in which case some
parties might not participate; the transcryptor must always participate). The
protocol is as follows. For simplicity, we focus on the N -out-of-N case.

Let ThPKE = (ThKeyGen,ThEnc,ThPartDec,ThFinDec) denote a threshold
PKE scheme and FHE = (FhKeyGen,FhEnc,FhEval,FhDec) be a circuit-private
fully homomorphic encryption scheme. Consider N users who want to per-
form a threshold computation. These users share a threshold PKE secret key
tsk1, . . . , tskN corresponding to a threshold PKE public key tpk. A user partic-
ipating in the decryption or a third-party is designated as the transcryptor: it
generates a pair of FHE keys (fsk, fpk) and reveals fpk to all other parties (users
and server). We further assume that communication between parties and between
a party and the server is done via a secure channel using end-to-end encryption,
though we do not write this layer of encryption to ease the reading.

Our protocol is described in Figure 5. To simplify the description, we ignore
the layer of end-to-end encryption which is added on top of all communications.

Analysis of the protocol. We assume that the server and the transcryptor are
non-colluding (together, they have access to all data and can decrypt everything).
The server is trusted (it is semi-honest and uncorrupted).

The above protocol is not a threshold FHE scheme as per Definition 4.2, but
it allows to perform private joint computation using a trusted server. We choose
to keep this section slightly informal in order to avoid redefining formally the
protocol syntax as well as the security definition. We claim that the protocol
satisfies simulation security: any adversary which corrupts up to N − 1 parties
(and possibly the transcryptor) does not learn any viable information about
the N -th uncorrupted party’s secret data (its private input to the computation
and its partial decryption key). This is modeled by the existence of a simulator
as for threshold FHE. Specifically, assuming PN is the uncorrupted party, there

33



• Setup:
1. Parties P1, . . . , PN run the threshold PKE key generation protocol to compute

(tpk, tsk1, . . . , tskN )← ThKeyGen(1λ) so that Pi gets (tpk, tski) for i ∈ [N ];
2. The transcryptor generates (fpk, fsk) ← FhKeyGen(1λ) and broadcasts fpk to

the server and all parties. It keeps fsk for itself.
• Encrypt data to the server:

1. To send a data µi to the server, a user Pi computes fhcti ← FhEncfpk(µi) and
sends it to the server.

• Evaluation of C over encrypted data: To compute a circuit C on data
µ1, . . . , µℓ encrypted by users, the server evaluates ThEnctpk◦C homomorphically on
ciphertexts fhcti’s received from the users, where fhcti := FhEncfpk(µi) for i ∈ [ℓ].
The result is a ciphertext fhctres ← FhEval(ThEnctpk ◦ C, fhct1, . . . , fhctℓ) which
decrypts to ThEnctpk(C(µ1, . . . , µℓ).

• Decryption:
1. The server sends fhctres to the transcryptor;
2. The transcryptor decrypts it using fsk to recover a TPKE ciphertext tctres =

ThEnctpk(C(µ1, . . . , µℓ);
3. The transcryptor broadcasts tctres to all parties;
4. Party Pi computes and broadcasts pi ← ThPartDec(ski, tctres);
5. Parties combine partial decryptions to recover the result as

ThFinDec((pi)i∈[N ]).

Fig. 5. A 3-round protocol for private threshold computation

exists an efficient simulator Sim, which takes as inputs the result C(µ1, . . . , µℓ) of
the computation as well as the corrupted secret information (tsk1, . . . , tskN−1,
possibly fsk, etc.) and returns a tuple (fhctres, tctres, pN ) whose distribution is
computationally indistinguishable from that of (fhctres, tctres, pN ) in the honest
execution of the protocol.

Theorem B.2. Assuming ThPKE and FHE are correct, the above protocol is
correct. Furthermore, assuming ThPKE is simulation-secure and that FHE is
circuit-private, the above protocol is simulation-secure.

Proof. We argue about correctness of the protocol, as well as privacy of the data
with respect to the server, and privacy of the data with respect to corrupted
parties.

Correctness of the protocol. Correctness of the protocol immediately follows
from the correctness of the underlying FHE and ThPKE schemes.

Security of users data against the server. The server sees only FHE encryp-
tions of the users data. If the users communicate using end-to-end encryption
during the decryption protocol, the server does see anything else (and in partic-
ular, does not see tctres, the decryption of the FHE ciphertext it computed), and
then standard IND-CPA security of FHE (together with security of end-to-end
encryption) guarantees that it does not learn anything about the data.
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Security of users data against corrupted users. Let us now assume that
an adversary corrupts N − 1 parties. Wlog, let us assume it corrupts parties
P1, . . . , PN−1. Furthermore, let us assume that the adversary also corrupts the
transcryptor (that is, either it is one of the N − 1 corrupted parties, or it is
a third-party that is also corrupted). We aim to guarantee the security of the
data of the last uncorrupted party PN . Suppose parties P1, . . . , PN engage a
protocol to jointly compute C(µ1, . . . , µN ) where µi is provided by party Pi, for
i ∈ [N ]. The adversary sees the following information which depend on PN ’s
private information (tskN or µN ):

– The FHE ciphertext fhctres computed by the server and sent to the tran-
scryptor;

– Its FHE decryption tctres;
– The partial decryption pN of tctres computed by PN .
– Communication between party PN and the server, which is protected by

end-to-end encryption.

In addition, note that the adversary knows public parameters, as well as keys
tpk, fpk, fsk, tsk1, . . . , tskN−1 as well as µ1, . . . , µN−1. Our goal is to show that
the above information fhctres, tctres, pN and the private communication between
PN and the server can be simulated knowing only the result C(µ1, . . . , µN ) of
the computation.

We define a brief sequence of hybrid games. The communication between
party PN and the server being encrypted using end-to-end encryption, we can
ignore it (it can be simulated as a communication with only 0’s being encrypted
thanks to IND-CPA security of the end-to-end encryption). We focus on the rest
of the information available to the adversary, i.e. on the FHE ciphertext fhctres,
the TPKE ciphertext tctres, and its partial decryption pN by the uncorrupted
party PN .

Hyb0. This first distribution corresponds to the honest distribution in the above
protocol.

Hyb1. In this first hybrid, instead of computing fhctres by evaluating homomor-
phically ThEncpk ◦ C, the challenger computes it by first computing tctres ←
ThEncpk(C(µ1, . . . , µN ) (using the same randomness for ThEnc as in Hyb0) and
then encrypting fhctres ← FhEncfpk(tct). Thanks to the circuit-privacy of FHE,
the two hybrid games are statistically indistinguishable.

Hyb2. In this second hybrid, the challenger now relies on the threshold PKE
simulator SimThPKE to simulate tctres = ThEnctpk(C(µ1, . . . , µN )) together with
pN . That is, it now first samples

(tctres, pN )← SimThPKE(tpk, tsk1, . . . , tskN−1,C(µ1, . . . , µN )) ,

and then proceeds as before, except that it reveals the simulated partial de-
cryption pN instead of the honestly generated one. By definition of simulation
security of ThPKE, Hyb1 and Hyb2 are computationally indistinguishable.

This concludes the analysis, since the distribution sampled by the challenger
in Hyb2 is sampleable given the information known to the adversary. ⊓⊔
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Remark B.3 (On the need for circuit-privacy). Above, we gave a security anal-
ysis assuming the transcryptor is corrupted. The case where the transcryptor is
not corrupted is simpler since the adversary has strictly less information. No-
tably, it can be proven secure without assuming circuit-privacy: indeed, if the
transcryptor is not corrupted, the adversary never learns fhctres but only learns
tctres. Simulation security of ThPKE is then sufficient to prove simulation secu-
rity of the protocol. IND-CPA security of FHE is still needed to guarantee that
the server does not learn anything about the parties’ inputs. Note however that
without circuit-privacy, the transcryptor could learn information about the par-
ties’ inputs when decrypting fhctres as the decryption error could depend on the
underlying plaintexts.

C About Threshold FHE, IND-CPA-D Security,
Circuit-Privacy, and More

To conclude our work, in this section, we introduce an indistinguishability-based
security notion for Threshold FHE, which is implied by our simulation-based
notion. Then we discuss its links to IND-CPA-D security and some mild forms of
circuit-privacy.

C.1 Indistinguishability-Based Security for Threshold FHE

Below, we provide an indistinguishability-based security notion for threshold
FHE, termed Th-IND-CPA-security. Indistinguishability definitions for ThFHE
have been proposed in prior works (e.g., in [JRS17,BS23a,KS23]). Our definition
is similar in flavour though it is slightly more general. In particular, it is multi-
hop and adaptive.

Definition C.1 (Threshold-IND-CPA Security). We say that a threshold
FHE scheme ThFHE = (KeyGen,Enc,Eval,ServerDec,PartDec,FinDec) is QD-
Th-IND-CPA secure, if for all PPT adversaries A = (A0,A1) making at most QD
decryption queries, we have:∣∣∣Pr[A(ExpTh-IND-CPA

1 (1λ, 1N )) = 1]−Pr[A(ExpTh-IND-CPA
0 (1λ, 1N )) = 1]

∣∣∣≤negl(λ),
where the experiment is described in Figure 6.

Lemma C.2. Let ThFHE be a simulation-secure threshold FHE scheme. Then,
ThFHE is Th-IND-CPA secure.

Proof. For any Th-IND-CPA adversary, one can run it by replacing replies to its
decryption queries by simulated answers using the simulator for ThFHE. Then,
any adversary having non-negligible advantage contradicts simulation security
of ThFHE. ⊓⊔
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ExpTh-IND-CPA
b (1λ, 1N ):

1: (pk, ek, sk1, . . . , skN )← KeyGen(1λ, 1N )
2: ctr← 0, L← ∅
3: (S, st)← A0(pk) with S ⊂ [N ] and |S| < N ;
4: b← U({0, 1})
5: b′ ← AOEnc,OChallb,OEval,ODec

1 (pk, (ski)i∈S , st)
6: Return (b′ = b)

OEnc(µ):

1: ct← Enc(pk, µ)
2: ctr← ctr + 1
3: L[ctr]← (µ, µ, ct)
4: Return ct

OEval(C, (i1, . . . , iℓ)):

1: For j ∈ [ℓ]:
2: (µ0, µ1, ctj)← L[ij ]
3: ct← Eval(ek,C, ct1, . . . , ctℓ)
4: ctr← ctr + 1
5: µ0 ← C(µ0,1, . . . , µ0,ℓ)
6: µ1 ← C(µ1,1, . . . , µ1,ℓ)
7: L[ctr]← (µ0, µ1, ct)
8: Return ct

OChallb(µ0, µ1):

1: If |µ0| ̸= |µ1|:
2: Return ⊥
3: ct← Enc(pk, µb)
4: ctr← ctr + 1
5: L[ctr]← (µ0, µ1, ct)
6: Return ct

ODec(j):

1: If j > ctr:
2: Return ⊥
3: (µ0, µ1, ct)← L[j]
4: If µ0 ̸= µ1:
5: Return ⊥
6: ctdec ← ServerDec(pk, ct)
7: pk ← PartDec(skk, ctdec), for k ∈ [N ]
8: Return (ctdec, (pk)k∈[N ])

Fig. 6. QD-Th-IND-CPA security game for Threshold FHE.

C.2 About IND-CPA-D security

IND-CPA-D security was introduced in [LM21] as an extension of IND-CPA se-
curity in which the adversary can obtain decryption of honestly generated ci-
phertexts. While equivalent to IND-CPA security for perfectly correct schemes,
IND-CPA-D security is not as easily satisfied by approximate FHE schemes
(e.g., CKKS). Two recent works [CCP+24,CSB+24] also proved that statisti-
cal/perfect correctness is crucial even for non-approximate schemes (e.g., BGV,
B/FV, DM/CGGI), as attacks can be mounted when decryption failure proba-
bility is non-negligible.

We do not recall the definition of IND-CPA-D security, but simply observe
that it is identical to the definition of Th-IND-CPA-security for the specific case
of (1, 1)-threshold FHE, i.e. to the case where the secret key is not shared and
kept as a whole. One can simply define FHE.Dec(sk, ct) as:

FHE.Dec(sk, ct) = Combine(PartDec(sk,ServerDec(pk, ct))) ,
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where Combine is actually a void algorithm since the secret key is not shared, so
we can actually even write:

FHE.Dec(sk, ct) = PartDec(sk,ServerDec(pk, ct)) .

C.3 Relation with circuit-privacy

Our notion of Th-IND-CPA secure ThFHE (and therefore IND-CPA-D secure
FHE as well via the observation above) implies a form of (computational) cir-
cuit privacy. Let us first define our notion of (weak-indistinguishability-based)
circuit-privacy. For simplicity, we focus on non-threshold FHE (i.e. starting with
an IND-CPA-D secure FHE scheme or equivalently a (1, 1)-Th-IND-CPA secure
ThFHE scheme) but the definition and construction easily generalizes to thresh-
old FHE.

Definition C.3 (w-IND-CP Security). Let λ denote a security parameter.
We say that an FHE scheme FHE = (KeyGen,Enc,Eval,Dec) is w-IND-CP secure,
if for all PPT adversaries A making at most QD decryption queries, we have:∣∣∣Pr[A(Expw-IND-CP

1 (1λ)) = 1]− Pr[A(Expw-IND-CP
0 (1λ)) = 1]

∣∣∣ ≤ negl(λ)

where the experiment is described in Figure 7.

We talk about weak circuit-privacy as the adversary only gets access to a de-
cryption oracle, while for (strong) circuit-privacy, it is common to provide the
secret key (or the randomness used as input of KeyGen to generate it) to the
adversary (e.g., as in Definition B.1).

We now explain how to achieve this security notion. For simplicity, we con-
sider binary plaintexts. Denote ct1, . . . , ctℓ the ciphertexts on which one wants
to evaluate homomorphically a circuit C of size s. We denote by µ1, . . . , µℓ the
underlying bits of ct1, . . . , ctℓ. We proceed as follows:

1. Compute a binary representation (C1| · · · |Cs) ∈ {0, 1}s of C;
2. Encrypt all bits C1, . . . ,Cs as ctC,i ← Enc(pk,Ci) for i ∈ [s];
3. Compute ct← Eval(Us,ℓ, ctf,1, . . . , ctC,s, ct1, . . . , ctℓ), where Us,ℓ denotes the

universal circuit for circuits of size s with ℓ inputs, so that

Us,ℓ(C1, . . . ,Cs, µ1, . . . , µℓ) = C(µ1, . . . , µℓ) .

4. Return ct.

Correctness of the evaluation immediately follows from correctness of the FHE
scheme and by definition of universal circuits. For security, since the circuits
are now encrypted, Th-IND-CPA or IND-CPA-D security guarantees that, even
given access to decryption queries, it is computationnally hard to distinguish the
evaluation of any two circuits C0,C1 of the same size as long as C0(µ1, . . . , µℓ) =
C1(µ1, . . . , µℓ), since circuits of the same size are evaluated using the same uni-
versal circuit. Therefore, any Th-IND-CPA secure ThFHE (resp. IND-CPA-D se-
cure FHE) scheme induces a Threshold FHE (resp. FHE) scheme satisfying
w-IND-CP.

38



Expw-IND-CP
b (1λ, N, t):

1: (pk, sk)← KeyGen(1λ)
2: ctr← 0, L← []
3: b← U({0, 1})
4: b′ ← AOEnc,OEvalChallb,ODec(pk)
5: Return (b′ = b)

OEnc(µ):

1: ct← Enc(pk, µ)
2: ctr← ctr + 1
3: L[ctr]← (µ, µ, ct)
4: Return ct

OEvalChallb(C0,C1, (i1, . . . , iℓ))):

1: If |C0| ̸= |C1|:
2: Return ⊥
3: For j ∈ [ℓ]:
4: µ0,j ← L[ij ][0]
5: µ1,j ← L[ij ][1]
6: ctj ← L[ij ][2]
7: ct← Eval(pk,Cb, ct1, . . . , ctℓ)
8: ctr← ctr + 1
9: µ0 ← C0(µ0,1, . . . , µ0,ℓ)
10: µ1 ← C1(µ1,1, . . . , µ1,ℓ)
11: L[ctr]← (µ0, µ1, ct)
12: Return ct

ODec(j):

1: If j > ctr:
2: Return ⊥
3: µ0 ← L[j][0]
4: µ1 ← L[j][1]
5: ct← L[j][2]
6: If µ0 ̸= µ1:
7: Return ⊥
8: µ← Dec(pk, ct)
9: Return µ

Fig. 7. w-IND-CP security game.

C.4 About One-Way-CPA security vs IND-CPA security

In this last section, we explain that OW-CPA security for (standard) FHE does
not imply IND-CPA security in general, but does as soon as the scheme satisfies a
mild form of circuit-privacy. Again, as mentioned earlier, we emphasize that this
only holds for basic IND-CPA security. It seems very challenging to extend the
technique to security notions involving decryption queries, such as IND-CPA-D
security or threshold security. We do not remind the definition of OW-CPA nor
IND-CPA security.

Lemma C.4. There exists a OW-CPA FHE scheme which is not IND-CPA se-
cure.

Proof. Consider an IND-CPA secure FHE scheme with message space {0, 1}λ.
Then, consider the scheme FHE’ obtained by simply modifying the previous
scheme by changing the encryption algorithm such that Encpk(0

λ) returns 0.
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The resulting scheme is clearly not IND-CPA, since it is easy to distinguish an
encryption of 0λ from any other ciphertext. Yet, it remains OW-CPA since with
overwhelming probability, the challenge is not 0λ and IND-CPA security of the
original scheme guarantees OW-CPA security.

Moreover, the scheme is still fully homomorphic with the following modified
Eval′ algorithm. For addition, if neither of the input ciphertexts is 0, run Eval,
otherwise, addition ignores the zero ciphertext returns the other ciphertext. For
multiplication, if one of the input ciphertexts is 0, return 0. ⊓⊔

Now, assume we have a OW-CPA FHE scheme with message space {0, 1}ℓ
which satisfies circuit-privacy for the very specific family of functions Ci,µ(0),µ(1)

for i ∈ [ℓ] and µ(0), µ(1) ∈ {0, 1}ℓ which on input a message µ ∈ {0, 1}ℓ, returns
µ(µi) where µi denotes the i-th bit of µ. This is simply a MUX operation. Then
we have the following.

Theorem C.5. Assuming the above, this OW-CPA scheme is also IND-CPA se-
cure.

The proof relies on the splitting lemma, which we remind below.

Lemma C.6 (Splitting Lemma). Let A ⊆ X×Y such that Pr[(x, y) ∈ A] ≥ ε.
For any ε′ < ε, defining B as B = {(x, y) ∈ X × Y | Pry′←U(Y )[(x, y

′) ∈ A]} ≥
ε− ε′, then we have:

(i) Pr[B] ≥ ε′
(ii) ∀(x, y) ∈ B,Pry′ [(x, y′) ∈ A] ≥ ε− ε′
(iii) Pr[B |A] ≥ ε′/ε

Proof. Let A denote an adversary against the IND-CPA security of the scheme.
Then, we construct an adversary B against its OW-CPA security as follows.
B receives from its challenger an encryption ct∗ of a uniformly random µ∗ ∈

{0, 1}λ.
The main idea is to run A (several times) in order to recover each bit of

µ∗ by using µ∗i as the random bit for the IND-CPA challenger. Let us focus on
recovering the first bit of µ∗, denoted µ∗1.
B runs A. It first forwards it the public parameters (including the fixed public

key, if we are in the public key setting).
When A makes a challenge query (µ(0), µ(1)), B evaluates C1,µ(0),µ(1) homor-

phically on its challenge ciphertext ct∗ and forwards the resulting ciphertext to
A.

Due to the circuit-privacy of the scheme, B simulates perfectly the challenger.
When A halts with some prediction b′, B stores b′ as a prediction for µ∗1. If A’s
advantage is ε, the B’s guess is valid with probability ε.

The final ingredient to correctly predict the actual value of µ∗1 is to run A
several times until the guess is correct with high-probability. One subtlety is
that the key is fixed here, but the Splitting Lemma (Lemma C.6) guarantees
that, even with a fixed key, with probability 1/2 over the choice of the key, A is
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a distinguisher with advantage at least ε/2 which can be restarted many times.
Hence, if ε = 1/poly(λ), running A polynomially many times allows to recover
µ∗1 with overwhelming probability, and we can repeat the process for every other
bit of µ∗.

At the end of the process, B returns its guess for µ∗. ⊓⊔
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