
UTRA: Universe Token Reusability Attack and Verifiable
Delegatable Order-Revealing Encryption

Jaehwan Park*

University of Tennessee, Knoxville

jpark127@utk.edu

Hyeonbum Lee*

Hanyang University, Seoul

leehb3706@hanyang.ac.kr

Junbeom Hur

Korea University, Seoul

jbhur@isslab.korea.ac.kr

Jae Hong Seo**

Hanyang University, Seoul

jaehongseo@hanyang.ac.kr

Doowon Kim**

University of Tennessee, Knoxville

doowon@utk.edu

ABSTRACT
As dataset sizes continue to grow, users face increasing difficul-

ties in performing processing tasks on their local machines. From

this, privacy concerns about data leakage have led data owners to

upload encrypted data and utilize secure range queries to cloud

servers. To address these challenges, order-revealing encryption

(ORE) has emerged as a promising solution for large numerical

datasets. Building on this, delegatable order-revealing encryption

(DORE) was introduced, allowing operations between encrypted

datasets with different secret keys in multi-client ORE environ-

ments. DORE operates through authorization tokens issued by the

data owner. However, security concerns had arisen about unau-

thorized users exploiting data without permission, leading to the

development of a secure order-revealing encryption scheme (SE-

DORE). These attacks can result in unauthorized data access and

significant financial losses in modern cloud service providers (CSPs)

utilizing pay-per-query systems. In addition, efficient delegatable

order-revealing encryption (EDORE), which improves speed and

storage compared to SEDORE with identical security levels, was

also introduced.

Although both SEDORE and EDORE were designed to be ro-

bust against these attacks, we have identified that they still retain

the same vulnerabilities within the same threat model. To address

these issues, we propose Verifiable Delegatable Order-Revealing

Encryption (VDORE), which protects against attacks by using the

Schnorr Signature Scheme to verify the validity of the token that

users send. We propose a precise definition and robust proof to im-

prove the unclear definition and insufficient proof regarding token

unforgeability in the SEDORE. Furthermore, the token generation

algorithm in VDORE provides about a 1.5× speed-up compared to

SEDORE.

1 INTRODUCTION
With the expansion of dataset sizes, users find it increasingly chal-

lenging to execute all processing tasks on their local computers.

Consequently, there is a growing demand for cloud services to ad-

dress these constraints [48, 49]. However, due to concerns regarding

information leakage [5, 24], the cloud service clients are resorting to

uploading encrypted data and sending secure range queries, which

can be created from users to the cloud server. These approaches

not only safeguard the dataset from potential adversaries but also

mitigate fundamental operations between the database and queries.

* Both authors contributed equally to this research.

** Both authors are co-corresponding authors.

To overcome these challenges, order-revealing encryption (ORE)

has been proposed for numerical data [7, 9, 10, 13, 18, 27, 29, 36, 40].

ORE is a method that reveals only the order by using a publicly

disclosed comparison function, without leaking any information

about the numerical datasets. For example, ORE takes two cipher-

texts as input and returns the order associated with the underly-

ing plaintexts. With the advancement of related techniques, ORE

methods tailored for multi-user scenarios have gradually emerged

[18, 27, 29, 40]. Furthermore, Li et al. [27] proposed an ORE primi-

tive called delegatable order-revealing encryption (DORE), which

allows appropriate operations even with different encryption keys.

DORE works by having data owners provide authorization tokens,

based on their secret keys, to users.

However, Hahn et al. [18] highlighted vulnerabilities within

DORE, demonstrating the potential for unauthorized users to forge

authorization tokens under a certain threat model. To address these

security concerns, they proposed secure order-revealing encryption

(SEDORE). From this attack, an authorized user (traitor) assists an

unauthorized user (attacker), in forging tokens to execute queries

on the database of the data owner illegally. These attacks cause

not only unauthorized data access but also financial problems for

the victims, as many modern cloud service providers (CSPs) [11,

31, 50] utilize pay-per-query services. Furthermore, in this attack,

the data owner is unable to identify the traitor, known as stealthy.

Furthermore, Xu et al. [47] introduced efficient delegatable order-

revealing encryption (EDORE), which enhances latency and storage

cost compared to SEDORE.

Unfortunately, despite the enhancement of SEDORE and EDORE

for practical and reasonable forgery attacks, we discover the same

vulnerability of DORE, SEDORE, and EDORE with the identical

threat model suggested by [18]. We name this vulnerability as uni-
verse token reusability. From this, even though the traitor provides

the attacker with more information in our attack scenario than in

SEDORE, it remains a highly threatening attack technique. Because

it never violates the practical threat model introduced by [18]. There-
fore, our attack scenario ensures that the victim does not know who

the traitor is, and the attacker cannot access the traitor’s database.

We provide a detailed explanation in Section 6 and 7. For these secu-

rity problems, we suggest a Verifiable Delegatable Order-Revealing
Encryption (VDORE) which prevents universe token reusability

attacks.

We develop VDORE in two main steps. Firstly, similar to SE-

DORE [18], VDORE maintains the original algorithms of DORE

[27] for setup, key generation, encryption, and test algorithms, with

1

Conference’17, July 2017, Washington, DC, USA Jaehwan Park*, Hyeonbum Lee*, Junbeom Hur, Jae Hong Seo**, and Doowon Kim**

a modified token generation algorithm to prevent attacks. This ap-

proach aims tominimize additional computational and storage costs

wherever possible. Secondly, VDORE introduces verification tech-

niques to mitigate attacks while ensuring that the token generation

time is shorter than that of SEDORE. To achieve this, we integrate

the Schnorr Signature Scheme [42] into the token generation algo-

rithm of DORE. As a result, the token generation process in VDORE

operates approximately 1.5 times faster than that of SEDORE. Fur-

thermore, we provide a clear definition and proof to resolve the

vague definition and proof of token unforgeability, which was a

limitation in Hahn et al. [18]’s work.

In summary, we make the following main contributions:

• We suggest the vulnerability of DORE, SEDORE, and EDORE,

universe token reusability, under the same threat model in [18].

This attack can result not only in illegal usage from unauthorized

users but also in significant economic damage to the victim.

• We propose a verifiable delegatable order-revealing encryption

(VDORE) technique that uses the Schnorr Signature Scheme [42]

to prevent unauthorized tokens. Additionally, this technique is

approximately 1.5× faster in token generation compared to SE-

DORE, while incurring no latency penalties with other algorithms

and providing enhanced security.

• Our VDORE not only achieves indistinguishability against order

chosen plaintext attack (IND-OCPA) but also guarantees token

unforgeability as suggested by [18]. Specifically, we formalize

token unforgeability for provable security and then we prove

that VDORE satisfies token unforgeability in Section 8.

• We not only conduct theoretical comparisons regarding compu-

tational cost and storage but also implement our technique and

previous methods to experimentally evaluate our approach. We

demonstrate that VDORE is sufficiently practical and feasible in

Section 9.

2 BACKGROUND
In this section, we provide the background for cross-database sys-

tems, order-revealing encryption (ORE), pay-per-query and the

related attack, and insider attacks.

2.1 Cross-database systems
In our system, similar to DORE [27] , SEDORE [18], and EDORE

[47], we consider a cross-database scenario. Illustrated in Figure

1, a cross-database system allows multiple users to upload their

encrypted databases onto the server, based on their raw data. If

users want to collaborate and share datasets, they can perform

relevant operations by sending queries to each other’s databases.

However, it is essential to note that not all users on the cloud server

can access all databases; only those users authorized by the database

owner can utilize specific databases. From this, the database owner

distributes authorization tokens to grant authorized users access. As

depicted in Figure 1, for example, User 1 has granted authorization

tokens to Users 2 and 3, while User 4 has not received authorization.

Consequently, Users 2 and 3 can utilize User 1’s dataset, while User

4 cannot.

User 3 User 4

User 2User 1

DB 1 DB 2

DB 3 DB 4

Authorization Token

Au
th

or
iz

at
io

n
To

ke
n

Query

Query

Q
uery

Figure 1: The description of cross-database systems. The
green line indicates a valid query, the red line indicates an
invalid query, and the yellow line indicates that it may or
may not operate based on the possession of an authorization
token, respectively.

2.2 Order-Revealing Encryption
With the increasing size of datasets and the growing user base due

to advancements in cloud services, the importance of security for

data has become prominent. As a result, there is a growing interest

in order-revealing encryption (ORE) for enhancing the utility of en-

crypted numerical data. Furthermore, a delegatable order-revealing

encryption scheme has been introduced in a multi-client environ-

ment. This scheme allows the data owner to grant authorization

tokens to other users, enabling them to perform operations on each

other’s databases based on different secret keys.

In Figure 2, We show the process of delegatable order-revealing

encryption and explain it as follows: 1) User A generates their secret

key using a key generation algorithm. 2) Afterward, they encrypt

their numerical data with the key and upload it to the cloud. 3) If

User A wishes to perform computations on User B’s dataset, they

obtain an authorization token from User B and then generate a

token related to their dataset using the token generation algorithm.

4) When the server receives the tokens, it compares the encrypted

data of User A and B with the tokens using a test algorithm. Finally,

it determines the orders.

The 𝑏𝑒𝑠𝑡 𝑎𝑑𝑣𝑎𝑛𝑡𝑎𝑔𝑒 of ORE is that users can retrieve the required

data from the server through operations on the ciphertext without

the need for decryption. Therefore, it applies to vast numerical data

requiring encryption. For example, sensitive information such as

records of HIV patients or grades, which servers or other entities

should not be aware of, can be stored in the cloud. Users can search

for the desired data without decryption.

2

UTRA: Universe Token Reusability Attack and Verifiable Delegatable Order-Revealing Encryption Conference’17, July 2017, Washington, DC, USA

2) Encryption

1) Key generation

Upload

3) Token generation

User A

4) Test

User B
Uses the tokens for test

Authorization token

Encrypted data
Cloud

Encrypted dataEncrypted data

Upload

Numerical data

Figure 2: The description of order-revealing encryption. The orange box indicates the operations executed by User A, whereas
the blue box represents the processes handled by the cloud.

2.3 Pay-per-query and the related attack
Modern cloud service providers (CSPs) such as Google Cloud [11],

Amazon Athena [31], and IBM Cloud [50] charge users based on a

pay-per-query model, which depends on the number of tokens sent

to the server. While this strategy provides users with cost flexibility,

unauthorized usage of the database can lead to significant economic

problems for the data owner. A similar real-life case to pay-per-

query attacks is the Methbot attack in 2016 [1]. The Methbot attack

involved using a bot network to generate a massive inventory of

advertisements, which were then displayed or clicked on adver-

tising platforms to generate revenue from advertisers through a

pay-per-click model. As a result, it caused significant financial

losses, resulting in an average payout of $13.04 per thousand faked

views. Therefore, proactive defense against pay-per-query attacks

needs to be researched as a necessity.

2.4 Insider attacks
There are many real attack examples caused by authorized insiders

[39]. In November 2021, a former employee at the South Georgia

Medical Center retrieved confidential data from the medical cen-

ter’s systems onto a USB drive without any apparent justification.

From this, the traitor stole Patient test results, names, and birth

dates. In April 2022, a former dissatisfied employee illicitly obtained

the personal data of users of the mobile payment service Cash App.

Following the termination on December 10, 2022, a former disgrun-

tled employee stole sensitive information from Cash App’s users,

including their full names, brokerage portfolio values, holdings, and

stock trading activity. These threats cause secondary harm to users

and leave over 66% highly vulnerable, while 63% of organizations

lack adequate measures to address them [43]. Therefore, we need

to build a secure scheme for potential authorized traitors.

3 PROBLEM STATEMENT
During active research onmulti-client environments in ORE, Li et al.

[27] introduced DORE, which enables ORE operations without com-

putational costs such as key distribution, by allowing authorized

users to exchange tokens without interaction. From this process,

Hahn et al. [18] proposed a new attack technique in which au-

thorized users, after receiving authorization tokens from the data

owner, collaborate with attackers to create new forged tokens. This

technique maintains stealthy characteristics, as the data owner

remains unaware of who the traitor is. To address such attacks, SE-

DOREwas introduced. Furthermore, EDORE [47] was introduced to

reduce the computational and storage costs compared to SEDORE.

Unfortunately, we discover that SEDORE and EDORE exhibit

the same vulnerability as DORE under the identical threat model

proposed by Hahn et al. [18]. To tackle the identified vulnerabil-

ities, we propose Verifiable Delegatable Order-Revealing Encryp-

tion (VDORE). It achieves enhanced privacy without making major

changes to the existing DORE algorithms and also provides faster

token generation compared to SEDORE. We will introduce the

threat model proposed by [18] in Section 6. Furthermore, we will

suggest the vulnerability called 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒 𝑡𝑜𝑘𝑒𝑛 𝑟𝑒𝑢𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑎𝑡𝑡𝑎𝑐𝑘

and our VDORE scheme in Section 7 and 8, respectively.

4 REVISIT DORE AND SEDORE
In this section, we introduce the basic notation and revisit DORE

and SEDORE.

4.1 Basic Notation
We first define some notations before revisiting the schemes. We

denote Z𝑝 as a prime field which isomorphic to integers mod 𝑝 .

Uniform sampling is denoted by

$←. For instance, 𝑎
$←Z𝑝 indicates

that 𝑎 is uniformly chosen from Z𝑝 .𝐻 and 𝐹 denote a cryptographic

hash function whose range will be specified from the context.

To describe bilinear group, we denote ⟨𝑝,G1,G2, 𝑔1, 𝑔2,G𝑇 , 𝑒⟩,
that stands for prime 𝑝 and cyclic groups G1,G2,G𝑇 of order 𝑝 ,

generators 𝑔1 ∈ G1 and 𝑔2 ∈ G2, and bilinear map 𝑒 : G1 × G2 →
G𝑇 , which is non-degenerate and computable function satisfies

𝑒 (𝑃𝑎, 𝐾𝑏) = 𝑒 (𝑃, 𝐾)𝑎𝑏 for all 𝑎, 𝑏 ∈ 𝑍𝑝 .

4.2 DORE, SEDORE, and EDORE Scheme
In this subsection, we scrutinize the DORE [27] and SEDORE [18].

SEDORE reuses key generation, encryption, and test algorithms

from DORE, excluding the token generation algorithm. DORE, in

3

Conference’17, July 2017, Washington, DC, USA Jaehwan Park*, Hyeonbum Lee*, Junbeom Hur, Jae Hong Seo**, and Doowon Kim**

turn, operates based on delegatable equality-revealing encoding

(DERE). Due to page limits, we introduce Delegatable Equality-

Revealing Encoding (DERE) methods to efficiently describe DORE

and SEDORE. It leverages DERE’s key generation, encryption, and

testing algorithms. Additionally, it encompasses two types of token

generation algorithms: type-1 for DORE and type-2 for SEDORE.

Definition 4.1 (DERE Scheme). DERE scheme consists of five al-

gorithms: (Setup, Keygen, Enc, Token, Test). Let 𝐻 : {0, 1}∗ → G1

and 𝐹 : {0, 1}∗→ G2 be cryptographic hash functions. The details

of it are as follows:

• pp ← DERE.Setup(1𝜆): This algorithm takes the security

parameter 1
𝜆
as input and returns the public parameter pp =

(⟨𝑝,G1,G2, 𝑔1, 𝑔2,G𝑇 , 𝑒⟩, 𝐻, 𝐹).
• (pk, sk) ← DERE.Keygen(pp) : This algorithm receives a

public parameter (pp) as input and returns a pair of public

key and secret key (pk, sk). From this, it uniformly chooses

𝑎, 𝑏
$←Z𝑝 and generates sk and the corresponding pk as be-

low:

pk = 𝑔𝑎
2
, sk = (𝑎, 𝑏)

We denote a key pair of user 𝑢 as (pk(𝑢) , sk(𝑢)) = (𝑔
𝑎 (𝑢)
2

,

(𝑎 (𝑢) , 𝑏 (𝑢))).
• ct← DERE.Enc(pp,𝑚, sk): This algorithm takes a message

𝑚 ∈ {0, 1}∗ and sk as input and returns a ciphertext ct. This

algorithm randomly picks 𝑟
$←Z𝑝 and computes 𝑐0 and 𝑐1 as

below:

𝑐0 =

(
𝑔𝑟𝑏
1
𝐻 (𝑚)

)𝑎
, 𝑐1 = 𝑔𝑟

1

After that, it returns ct = (𝑐0, 𝑐1). For user 𝑢, we rewrite 𝑐𝑡
as ct(𝑢) = (𝑐0(𝑢) , 𝑐

1

(𝑢)).
• tok(𝑣→𝑢) ← DERE.Token(pp, pk(𝑣) , sk(𝑢)): This algorithm
takes the public key pk(𝑣) = 𝑔

𝑎 (𝑣)
2

of user 𝑣 and the secret

key sk(𝑢) = (𝑎 (𝑢) , 𝑏 (𝑢)) of user 𝑢 and returns an authoriza-

tion token tok(𝑣→𝑢) . (𝑣 → 𝑢) from tok(𝑣→𝑢) means that the

user 𝑢 sends the authorization token to user 𝑣 and tok(𝑣→𝑢)
consists of 𝑡0(𝑣→𝑢) and 𝑡

1

(𝑣→𝑢) . Furthermore, as we discussed

earlier, we suggest type-1 and type-2 token generation algo-

rithms for DORE and SEDORE, respectively, as follows:

– Type-1 (DORE [27]):

𝑡0(𝑣→𝑢) = pk(𝑣) , 𝑡1(𝑣→𝑢) = pk
𝑎 (𝑢)𝑏 (𝑢)
(𝑣)

– Type-2 (SEDORE [18]):

𝑡0(𝑣→𝑢) = 𝐹
(
pk

𝑎 (𝑢)
(𝑣)

)𝑎−1(𝑢)
, 𝑡1(𝑣→𝑢) = 𝐹

(
pk

𝑎 (𝑣)
(𝑣)

)𝑏 (𝑣)
Finally, it returns tok(𝑣→𝑢) := (𝑡0(𝑣→𝑢) , 𝑡

1

(𝑣→𝑢)).
• 0\1← DERE.Test(pp, ct(𝑢) , ct(𝑣) , tok(𝑣→𝑢) , tok(𝑢→𝑣)): This
algorithm takes the ciphertexts from user 𝑣 and 𝑢, ct(𝑣) and
ct(𝑢) , and the tokens, tok(𝑣→𝑢) and tok(𝑢→𝑣) as input. After
that, it computes

𝑑0 =
𝑒 (𝑐0(𝑢) , 𝑡

0

(𝑣→𝑢))

𝑒 (𝑐1(𝑢) , 𝑡
1

(𝑣→𝑢))
, 𝑑1 =

𝑒 (𝑐0(𝑣) , 𝑡
0

(𝑢→𝑣))

𝑒 (𝑐1(𝑣) , 𝑡
1

(𝑢→𝑣))
.

Finally, it compares 𝑑0 and 𝑑1 and returns 1 if 𝑑0 = 𝑑1 and 0

otherwise.

Furthermore, we introduce EDORE in Appendix A.

5 SYSTEM MODEL
In this section, we introduce the system model for our VDORE

scheme. Same as SEDORE [18], our scheme also provides cross-

database environments with encrypted databases. There are three

entities in our system model as follows:

• The data owner: It encrypts data using its secret key and up-

loads it to the server. Then, it provides authorization tokens

to users authorized to access their own databases.

• The user: It can request an authorization token from the

data owner. If the user receives an authorization token from

the data owner, they can use it to perform computations

between their and the data owner’s databases.

• The server: It serves as a storage for encrypted data uploaded

by multiple data owners and performs operations on incom-

ing range queries from users.

Note that while we introduced separate entities for users and

data owners above, as shown in Figure 1, the entities uploading

data to the server can all become data owners. Moreover, entities

obtaining authorization tokens from different data owners can also

access other databases.

6 THREAT MODEL AND TOKEN FORGERY
ATTACK

In this section, we discuss the threat model and 𝑡𝑜𝑘𝑒𝑛 𝑓 𝑜𝑟𝑔𝑒𝑟𝑦

attack suggested by Hahn et al. [18]. They proposed two threat

models for data privacy violation and token forgeability as follows:

• Data privacy violation: The cloud server might attempt to

disclose the content of the stored data, along with trying to

acquire not only the ordering information and the index of

the first differing bit between the two ciphertexts but also to

recover the data.

• Token forgeability: The cloud server and unauthorized users

may attempt to access the victim’s database by creating

forged tokens.

From this, we focus on token forgeability. There are three entities
involved in forge token attacks: a victim (V) who is the owner

of the database, the authorized user (M) who may illegally aid

an unauthorized user (A) in creating forge tokens. Furthermore,

they assumed thatM never shares its secret key withA, asA can

exploit not only V’s database but also A’s database by creating

unintentional tokens fromM’s secret key. Lastly, this forge attack

is stealthy. Because the victim would never divulgeM’s credentials

(i.e., secret key) unless M is the only authorized user from V .

Furthermore, we consider attacks exploiting the access patterns

and/or the information from responses to range queries [15, 17,

25] similar to those described by Hahn et al. [18] and other ORE

schemes [13, 26, 27] to be beyond the scope of this study. Thus,

mitigating such threats can be achieved through access pattern

obfuscation [45] and volume-hiding [22] techniques, which are

unrelated to our current research focus.

We introduce the token forgery attack against DORE [27] sug-

gested by [18] as follows:

4

UTRA: Universe Token Reusability Attack and Verifiable Delegatable Order-Revealing Encryption Conference’17, July 2017, Washington, DC, USA

1) Authorization token 2) Token reusability 3) Unauthorized token

(M)(V) (A)

?M

Victim Traitor Attacker Victim’s DB

Figure 3: The description of universe token reusability. 1) the victim sends a token to the traitor. 2) the traitor passes a token to
the attacker that cannot be traced back to the victim. 3) the attacker creates a token that allows unauthorized access to the
victim’s database.

1. The victimV sends the authorization token tok(M→V) = (𝑔
𝑎 (M)
2

,

𝑔
𝑎 (M)𝑎 (V)𝑏 (V)
2

) toM.

2. Upon receiving the tokens,M computes 𝑡1(□→V) by using her/his
secret key and sends it to A as follows:

˜𝑡1 (□→V) = (𝑔
𝑎 (M)𝑎 (V)𝑏 (V)
2

)𝑎
−1
(M) = 𝑔

𝑎 (V)𝑏 (V)
2

3. And then, A returns tok(V→A) ←
DERE.Token(pk(V) , sk(A)). After that, it gets the unau-

thorized token tok(A→V) which consists of
˜𝑡0 (A→V) and

˜𝑡1 (A→V) as follows:

˜𝑡0 (A→V) = 𝑔
𝑎 (A)
2

,

˜𝑡1 (A→V) = (˜𝑡1 (□→V))𝑎 (A) = 𝑔
𝑎 (A)𝑎 (V)𝑏 (V)
2

4. Finally,A sends tok(A→V) and tok(V→A) to server and it runs
the DERE.Test.

7 UNIVERSE TOKEN REUSABILITY
In this section, we demonstrate the vulnerability of SEDORE with

the same threat model outlined in [18] by providing a concrete

attack. Before explaining the attack, we propose the notion of uni-

versal forged token in bilinear setting. A universal forged token

uft(V),ℎ2
is a forged token to accessV based on group element ℎ2.

Using uft(V),ℎ2
and ℎ2, any adversary can query to database ofV

without authorized token fromV . We define an universal forged

token as uft(V),ℎ2
= (ℎ

𝑎−1(V)
2

, ℎ
𝑏 (V)
2
) in our attack. We show the

overall description of the attack method in Figure 3 and introduce

it as follows:

1) The user V creates authorization token tok(M→V) by using

type-2 DERE.Token algorithm and sends it to userM as below:

tok(M→V) =
(
𝐹

(
pk

𝑎 (V)
(M)

)𝑎−1(V)
, 𝐹

(
pk

𝑎 (V)
(M)

)𝑏 (V))
2) AfterM receives it,M randomly picks 𝑟

$←Z𝑝 and sets a group

elementℎ2 = 𝐹 (pk
𝑎 (M)
(V))

𝑟
. And thenM computes a universal forged

token uft(V),ℎ2
as following:

uft(V),ℎ2
= tok𝑟(M→V)

=

((
𝐹 (pk𝑎 (V)(M))

𝑟
)𝑎−1(V)

,

(
𝐹 (pk𝑎 (V)(M))

𝑟
)𝑏 (V))

After then,M sends uft(V),ℎ2
and ℎ2 to A. Note thatM can com-

pute uft(V),ℎ2
by symmetric property pk

𝑎 (V)
(M) = 𝑔

𝑎V𝑎M
2

= pk
𝑎 (M)
(V) .

Since ℎ2 is randomized by 𝑟 , ℎ2 looks like uniform random in the

view ofA. And it is intractable to find a secret key ofM by the cryp-

tographic hash function 𝐹 . For this reason,M may help adversary

A without concern about leakingM’s secret.

3) WhenA receives uft(V),ℎ2
and ℎ2, she samples her secret key

sk(A) = (𝑎 (A) , 𝑏 (A))
$←Z2𝑝 and then computes the counterpart

forged token uft(A),ℎ2
as follows:

uft(A),ℎ2
= (ℎ

𝑎−1(A)
2

, ℎ
𝑏 (A)
2
)

For the query, A generates ct(A) ← DERE.Enc(pp,𝑚, sk(A)) us-
ing her secret key (𝑎 (A) , 𝑏 (A)) and then use a pair of forged tokens
uft(A),ℎ2

and uft(V),ℎ2
.

For a given message𝑚, let us denote the victim’s ciphertext as

ct(V) = ((𝑔
𝑏 (V)𝑟 (V)
1

𝐻 (𝑚))𝑎 (V) , 𝑔𝑟 (V)
1
). Thenwe can getDERE.Test(

ct(V) , ct(A) , uft(V),ℎ2
, uft(A),ℎ2

) = 1 by the following equations.

𝑑0 =
𝑒 (𝑐0(V) , uft

0

(V),ℎ2

)

𝑒 (𝑐1(V) , uft
1

(V),ℎ2

)
=
𝑒 ((𝑔𝑏 (V)𝑟 (V)

1
𝐻 (𝑚))𝑎 (V) , ℎ

𝑎−1(V)
2
)

𝑒 (𝑔𝑟 (V)
1

, ℎ
𝑏 (V)
2
)

=
𝑒 (𝑔𝑏 (V)𝑟 (V)

1
𝐻 (𝑚), ℎ2)

𝑒 (𝑔𝑏 (V)𝑟 (V)
1

, ℎ2)
= 𝑒 (𝐻 (𝑚), ℎ2)

𝑑1 =
𝑒 (𝑐0(A) , uft

0

(A),ℎ2

)

𝑒 (𝑐1(A) , uft
1

(A),ℎ2

)
=
𝑒 ((𝑔𝑏 (A)𝑟 (A)

1
𝐻 (𝑚))𝑎 (A) , ℎ

𝑎−1(A)
2
)

𝑒 (𝑔𝑟 (A)
1

, ℎ
𝑏 (A)
2
)

=
𝑒 (𝑔𝑏 (A)𝑟 (A)

1
𝐻 (𝑚), ℎ2)

𝑒 (𝑔𝑏 (A)𝑟 (A)
1

, ℎ2)
= 𝑒 (𝐻 (𝑚), ℎ2)

In other words, A can be identified equally between ct(V) and
ct(A) plaintexts by the Test algorithmwithout the authorized token.

The universal token reusability attack can also be applied to DORE

and efficient DORE in a similar way. We suggest the detailed attack

senario for efficient DORE in the Appendix A.

Limitation of SEDORE. Hahn et al. proposed SEDORE [18] to

prevent token forging attacks against colluding usersM and A.

Concretely, token generation algorithm in [18] uses a cryptographic

hash function. Using hash functions is helpful to prevent recon-

structing new valid token tok(A→V) from an authorized token.

However, a pair of valid tokens tok(A→V) and tok(V→A) is not
requirement for query toV’s database. Note that we give an attack

scenario using uft(V),ℎ2
and uft(A),ℎ2

, that are not valid token.

5

Conference’17, July 2017, Washington, DC, USA Jaehwan Park*, Hyeonbum Lee*, Junbeom Hur, Jae Hong Seo**, and Doowon Kim**

One of the main reasons is that the Test algorithm does not check

who generates tokens; tok(A→V) should not be generated except

V . For this reason, before running the test algorithm, the server

should check tokens whether they are forged or not.

8 VERIFIABLE DORE (VDORE)
In [27], the authors provided security proof for the DORE scheme

in the generic group model (GGM). Following the DORE construc-

tion, we give an augmented DORE scheme, called VDORE, whose

security is proven under GGM.

To provide token unforgeability, we introduce verifiable dele-

gatable equality-revealing encoding (VDERE) and verifiable del-

egatable order-revealing encryption (VDORE). Both VDERE and

VDORE schemes additionally contain a token verification algorithm,

which ensures that the token tok(𝑢→𝑣) is generated exclusively by

the user 𝑣 .

Therefore, before introducing our new VDORE, we provide se-

curity definitions and basic cryptographic tools to construct it.

8.1 Security Definitions
Definition 8.1 (DL Assumption). Let G be a group generation

algorithm that outputs cyclic group G with prime order 𝑝 ∈ Z𝑝 and

generator 𝑔 ∈ G. We say that G satisfies the discrete logarithm (DL)

assumption if, for any PPT adversary A, the following inequality

holds:

Pr

[
𝑔𝑥 = ℎ

����� (𝑝,𝑔,G) ← G(1𝜆), ℎ $← G;
𝑥 ← A(𝑝,𝑔, ℎ,G)

]
≤ negl(𝜆)

Definition 8.2 (EUF-CMA). Let Sig = (Setup,Keygen, Sign,
Vfy) be a signature scheme. We say that Sig is Existential Unforge-

ability under Chosen Message Attack (EUF-CMA) if for any PPTA,

theA’s advantage AdvEUF−CMA [A, Sig] to the game in Figure 4 is

negl(𝜆).

Signature Forge game
A(1𝜆) → (𝑚∗, 𝜎∗)
(1) Setting Phase: C𝑠𝑖𝑔 runs setup algorithm pp𝑠𝑖𝑔 ←

Setup(1𝜆) and key generation algorithm (vk𝑠𝑖𝑔, sk𝑠𝑖𝑔) ←
Keygen(pp𝑠𝑖𝑔). And then sends (pp𝑠𝑖𝑔, vk𝑠𝑖𝑔) to A.

(2) Query Phase: A sends a query to C with chosen message

𝑚. Then, C generates signature 𝜎𝑚 ← Sign(pp𝑠𝑖𝑔, sk𝑠𝑖𝑔,𝑚)
and return it to A. Additionally, C adds𝑚 in queried mes-

sage setM. The number of queries is at most polynomially

large at 𝜆.

(3) Challenge Phase: A outputs a message𝑚∗ with forging

signature 𝜎𝑚∗ . TheA wins if Vfy(pp𝑠𝑖𝑔, vk𝑠𝑖𝑔,𝑚∗, 𝜎𝑚∗) = 1

and𝑚∗ ∉M.

Figure 4: EUF-CMA Game

8.2 Cryptographic Tools
8.2.1 Schnorr Signature Scheme [42]. To achieve token unforge-

ability, we adopt a digital signature scheme based on a discrete

logarithm setting, the Schnorr signature scheme, which is used

to construct ECDSA. Schnorr signature SSig consists of four algo-
rithms SSig = (Setup, Keygen, Sign, Verify) as follows:
• pp𝑠𝑖𝑔 ← SSig.Setup(𝜆): This algorithm takes the security pa-

rameter 𝜆 as input and returns the public parameter pp𝑠𝑖𝑔 =

(⟨𝑝,G, 𝑔⟩,𝑇). 𝑝 is a prime order of group G and 𝑔 is a gener-

ator of G. 𝑇 : {0, 1}∗ → Z𝑝 is a hash function.

• (vk𝑠𝑖𝑔, sk𝑠𝑖𝑔) ← SSig.Keygen(pp𝑠𝑖𝑔): It takes a public pa-

rameter as input and picks random 𝑎
$←Z𝑝 . And then, it re-

turns a key tuple of signing key sk𝑠𝑖𝑔 = 𝑎 and verifying key

vk𝑠𝑖𝑔 = 𝐴 = 𝑔𝑎 .

• 𝜎 ← SSig.Sign(pp𝑠𝑖𝑔, sk𝑠𝑖𝑔,𝑚): It takes public parameter

pp𝑠𝑖𝑔 , signing key sk𝑠𝑖𝑔 = 𝑎 and message𝑚 ∈ {0, 1}∗. The
signing process is as follows:

(1) Picks random 𝑟
$←Z𝑝 and compute 𝑅 ← 𝑔𝑟

(2) Compute 𝑐 ← 𝑇 (𝑅 ∥ 𝑚)
(3) Compute 𝑠 ← 𝑟 + 𝑐𝑎
And then, it returns 𝜎 = (𝑅, 𝑠) ∈ G × Z𝑝
• 0\1← SSig.Verify(pp𝑠𝑖𝑔, vk𝑠𝑖𝑔,𝑚, 𝜎): It takes public param-

eter pp𝑠𝑖𝑔 , the verifying key vk𝑠𝑖𝑔 = 𝐴, message𝑚, and sig-

nature 𝜎 = (𝑅, 𝑠). If 𝑔𝑠 = 𝑅 ·𝐴𝑇 (𝑅 ∥𝑚) it returns 1; otherwise,
it returns 0.

Theorem 8.3 (Schnorr Signature [37]). If 𝑇 is modeled as a
random oracle, the Schnorr signature scheme SSig is existentially
unforgeable under chosen-message attacks (EUF-CMA) under discrete
logarithm (DL) assumption.

8.2.2 Generic Group Model. A generic group model (GGM) is an

idealized model for a group whose operations are carried out by

making oracle queries [32, 44]. The GGM is designed to capture

the behavior of general algorithms that operate independently of

any particular group descriptions. Specifically, we consider the

bilinear GGM, which additionally simulates a bilinear map 𝑒 : G1 ×
G2 → G𝑇 as proposed in [21]. The bilinear GGM is defined by the

following:

Definition 8.4 (Bilinear Generic Group Algorithm [21, 44]). A bi-

linear generic group algorithm A is an algorithm that can access

bilinear generic group oracle O𝐵𝐿 to treat group operation. The

bilinear generic group oracle runs as follows in Figure 5.

8.3 VDERE
Before introducing the VDORE scheme, we define the VDERE

scheme based on the DERE scheme in [27] with a token verifi-

cation algorithm. VDERE scheme consists of six algorithms (Setup,
Keygen, Enc, Token, Test, Vfy). We describe the algorithms as fol-

lows:

• pp← VDERE.Setup(1𝜆): It takes a security parameter 1
𝜆
as

input and returns a public parameter pp.
• (pk, vk, sk) ← VDERE.Keygen(pp): It takes a public parame-

ter as input and returns a key tuple of public key, verification

key, and secret key, (pk, vk, sk). The verification key is used

to verify the validity of tokens. Both pk and vk may be man-

aged publicly, but sk should be managed privately.

6

UTRA: Universe Token Reusability Attack and Verifiable Delegatable Order-Revealing Encryption Conference’17, July 2017, Washington, DC, USA

Generic Group Oracle O𝐵𝐿
• Query format: two indices with op-type (𝑖, 𝑗, op) ∈ Z𝑝 ×
Z𝑝 × {×1,×2,×𝑇 , 𝑒}.
• Output: a bitstring 𝑠 ∈ {0, 1}∗.
• Encoding List: L := {(𝑖, type), 𝑠 ∈ Z𝑝 × {1, 2,𝑇 } × {0, 1}∗},
the O manages the list L locally.

• Group Operation: If O takes a query (𝑖, 𝑗,×type) for type ∈
{1, 2,𝑇 }, then O follows the process.

(1) If the index-type tuple (𝑖 + 𝑗, type) belongs to the list L,
then outputs (𝑖 + 𝑗, type) corresponding string 𝑠 where

(𝑖 + 𝑗, type, 𝑠) ∈ L
(2) Else, sample 𝑠

$←{0, 1}∗ until (∗, ∗, 𝑠) ∉ L
(3) Output 𝑠 and adds (𝑖 + 𝑗, type, 𝑠) to the list L
• Bilinear Map: If O takes a query (𝑖, 𝑗, 𝑒), then O follows the

process.

(1) If the index-type tuple (𝑖 𝑗,𝑇) belongs to the list L, then
outputs (𝑖 𝑗,𝑇) corresponding string 𝑠 where (𝑖 𝑗,𝑇 , 𝑠) ∈ L

(2) Else, sample 𝑠
$←{0, 1}∗ until (∗, ∗, 𝑠) ∉ L

(3) Output 𝑠 and adds (𝑖 𝑗,𝑇 , 𝑠) to the list L

Figure 5: Bilinear Generic Group Oracle

• ct(𝑢) ← VDERE.Enc(pp,𝑚 (𝑢) , sk(𝑢)): It takes numerical

data𝑚 (𝑢) and secret key sk(𝑢) for user 𝑢 and returns cipher-

text ct(𝑢) for 𝑢.
• tok(𝑣→𝑢) ← VDERE.Token(pp, pk(𝑣) , sk(𝑢)): This algorithm
takes the 𝑣 ’s public key pk(𝑣)and the 𝑢’s secret key sk(𝑢) , as
input and returns token tok(𝑣→𝑢) authorized by 𝑢.

• 0\1← VDERE.Test(pp, ct(𝑢) , ct(𝑣) , tok(𝑣→𝑢) , tok(𝑢→𝑣)): It
takes the two ciphertext ct(𝑢) and ct(𝑣) , and two tokens

tok(𝑣→𝑢) and tok(𝑢→𝑣) as input and returns 1(accept) or

0(reject). If the plaintext of ct(𝑢) is equal to those of ct(𝑣) , it
returns 1; otherwise, it returns 0.

• 0\1← VDERE.Vfy(pp, vk(𝑢) , vk(𝑣) , tok(𝑣→𝑢) , tok(𝑢→𝑣)): It
takes the two verification keys vk(𝑢) and vk(𝑣) , and two to-

kens tok(𝑣→𝑢) and tok(𝑢→𝑣) as input. If both tokens tok(𝑣→𝑢)
and tok(𝑢→𝑣) go through verification, it returns 1 (accept);

otherwise, it returns 0 (reject).

To ensure a secure VDERE scheme, we consider three properties:

correctness, data privacy, and token unforgeability.

Correctness. The correctness of VDERE ensures that the test algo-
rithm accurately discerns the sequence of two ciphertexts provided

by two mutually authenticated users. Let (𝑚 (𝑢) ,𝑚 (𝑣)) be a pair

of messages, (pk(𝑢) , vk(𝑢) , sk(𝑢)), (pk(𝑣) , vk(𝑣) , sk(𝑣)) be a pair of
keys generated by Keygen algorithm, and ct(𝑢) , ct(𝑣) be a cipher-
text of𝑚 (𝑢) and𝑚 (𝑣) with key sk(𝑢) and sk(𝑣) respectively. We say

VDERE scheme is correct if for any pair of messages (𝑚 (𝑢) ,𝑚 (𝑣))
and keys (pk(𝑢) , vk(𝑢) , sk(𝑢)), (pk(𝑣) , vk(𝑣) , sk(𝑣)), the following
holds:

• Vfy(vk(𝑢) , vk(𝑣) , tok(𝑣→𝑢) , tok(𝑢→𝑣)) = 1

• Test(pp, ct(𝑢) , ct(𝑣) , tok(𝑣→𝑢) , tok(𝑢→𝑣)) = 𝑟𝑒𝑠
– If𝑚 (𝑢) =𝑚 (𝑣) , then 𝑟𝑒𝑠 = 1

– Otherwise, 𝑟𝑒𝑠 = 0

Token Forging game
A(1𝜆) → (˜vk(A) , ˜tok(C→A) , ˜tok(A→C))
(1) Setting Phase: C runs setup algorithm pp ← Setup(1𝜆)

and key generation algorithm (sk(C) , vk(C) , pk(C)) ←
Keygen(pp). And then sends (pp, vk(C) , pk(C)) to A.

(2) Query Phase: A can query to C:
(a) Key Query: A sends a query with index 𝑖 . If

(𝑖, pk(𝑖) , vk(𝑖)) ∈ 𝑆key, then output (𝑖, pk(𝑖) , vk(𝑖)). Oth-
erwise, it runs (sk, pk, tk) ← Keygen(pp). And it returns

(pk, tk) and adds the tuple (𝑖, pk, tk) to key query set 𝑆key
(b) Token Query: If A sends a query with keys pk(A) ,
C generates an authorized token tok(A→C) ←
Token(pp, pk(A) , sk(C)) and then sends tok(A→C) to
A and adds tok(A→C) to token query set 𝑆tok.

The number of queries is at most polynomially large at 𝜆.

(3) Challenge Phase: A outputs a verification key and a

pair of tokens (˜vk(A) , ˜tok(C→A) , ˜tok(A→C)). TheA wins

if Vfy(pp, vk(C) , ˜vk(A) , ˜tok(A→C) , ˜tok(C→A)) = 1 and

˜tok(A→C) ∉ 𝑆tok.

Figure 6: Token forging Game

Data Privacy. The data privacy of VDERE ensures that the ci-

phertexts ct generated by the Enc algorithm do not leak information

except order information. In other words, the Test algorithm only

gives order information between queried ciphertexts. We say that

VDERE scheme provides data privacy if Enc algorithm satisfies

indistinguishability of encodings under authority delegation and

distinct chosen-plaintext attack (IND-AD-DCPA) [27].

Token Unforgeability. To prevent the token forging attack, we

provide a Vfy algorithm. Vfy algorithm should detect forged tokens.

To give a provable security, we propose a new definition of token

unforgeability. First, we construct a token forging game to give

a game-based security. We describe the roles of adversary and

challenger in Figure 6.

Especially, in the GGM, A only gets public key pk(𝑖) ∈ G2 from

the key query, and cannot generate the public key itself. In this

case, C roles GGM oracle for the key generation.

Let define theA’s advantage to the token forging gameAdvTF [A,
VDERE], which is a probability thatA wins the token forging game

under the VDERE scheme.

Definition 8.5 (Token Unforgeability). Let (Setup, Keygen, Enc,
Token ,Test, Vfy) be a VDERE (or VDORE) scheme. We say that

VDERE (orVDORE) is token unforgeability if for any PPT adversary

A against token forging game in Figure 6, the A’s advantage to

the game AdvTF [A,VDERE] (or AdvTF [A,VDORE]) is less than
negl(𝜆).

Token forging game and attack scenario. We construct an at-

tack game for forging tokens in the above paragraph. The key

(pk(C) , vk(C)) which C sends represents the key ofV . Note that

other users can know a public key pk(V) and verification key

vk(V) ofV . After that, we allow A to send two types of queries:

7

Conference’17, July 2017, Washington, DC, USA Jaehwan Park*, Hyeonbum Lee*, Junbeom Hur, Jae Hong Seo**, and Doowon Kim**

key query and token query. From the queries, A can get several

keys and tokens, which stands for public/verification keys and to-

kens from other users colluding with A. The purpose of A is to

find a pair of tokens, which goes through the verification algorithm

Vfy. The hardness of finding a pair of tokens means those of forging

tokens, so our token unforgeability implies security against token

forgery attacks. We describe the token forging game in Figure 6.

VDERE based on Bilinear Setting. In this paragraph, we introduce

our novel VDERE schemes based on bilinear setting. Based on the

DERE scheme in [27], we adopt Schnorr’s signature scheme and

construct our novel token verifier algorithm.

Let 𝐻 : {0, 1}∗ → G1 and 𝑇 : {0, 1}∗ → Z𝑝 be a hash functions.

Our VDERE scheme applies the Schnorr signature scheme as a

subroutine. We describe our VDERE scheme in Figure 7. We use the

frame-box symbol to emphasize additional parts compared with

the original DERE [27].

Theorem 8.6. Assuming𝐻 and𝑇 are modeled as a random oracle.
Then, pairing-based VDERE in Figure 7 satisfies the correctness, data
privacy, and token unforgeability under DL assumption with a generic
group model.

Proof. (Correctness) The correctness of VDERE holds in the sim-

ilar way of [18, 27]. Concretely, for a valid token and ciphertext, the

intermediate value 𝑑0 and 𝑑1 of Test should be equal by the bilin-

earility of the pairing operation. Additionally, from the correctness

of the Schnorr signature, Vfy should be output 1 so that VDERE
satisfies correctness.

(Data privacy) Since our underlying encryption algorithm is the

same as DERE [27] and DERE achieves IND-AD-DCPA under a

generic group model with random oracle 𝐻 , our VDERE scheme

provides data privacy due to achieving IND-AD-DCPA. Therefore,

the VDERE scheme guarantees that the ciphertext does not leak

any information without the equality test.

(Token Unforgeability) Because the Vfy algorithm contains sign

verification, VDERE satisfies token unforgeability by EUF-CMA of

Schnorr signature scheme, which holds under DL assumption with

random oracle 𝑇 .

To complete the proof, we construct an EUF-CMA adversary B
using the token forgeability adversary A. To simulate the token

query of A, we should restrict A not to get the public key locally.

Since the public keys consist of group elements and the adversary

does not get the group element itself in GGM, we ensure A does

not get arbitrary token tok(𝑖→C) without corresponding key query
for pk(𝑖) . Therefore, we claim that VDERE satisfies token unforge-

ability if the underlying signature scheme satisfies EUF-CMA.

Let A and B be adversaries against the token forging game

(Figure 6) and EUF-CMA game (Figure 4) respectively. Now we

construct B which exploits A. Note that B roles challenger in

token forging game against A. Additionally, we restrict A should

send key query to get a public key, which is reasonable under GGM.

Specifically, we consider the bilinear GGM model to access O𝐵𝐿 in

Figure 5.

Simulation C against A. As we mentioned, B should simulate

challenger C for the token forging game in Figure 6. We describe

how to simulate C in Figure 8.

• pp ← VDERE.Setup(1𝜆): This algorithm takes the secu-

rity parameter 1
𝜆
as input and returns the public param-

eter pp = (⟨𝑝,G1,G2, 𝑔1, 𝑔2,G𝑇 , 𝑒⟩, 𝐻,𝑇). Specially, we set

pp𝑠𝑖𝑔 := (⟨𝑝,G1, 𝑔1⟩,𝑇).
• (pk, vk , sk) ← VDERE.Keygen(pp): This algorithm takes

the public parameter pp as input and randomly chooses

𝑎, 𝑏
$←Z𝑝 . After that, it returns a tuple of keys as sk = (𝑎, 𝑏),

pk = 𝑔𝑎
2
, and vk = 𝑔𝑏

1
. Additionally, it sets signature keys as

sk𝑠𝑖𝑔 := 𝑏, and vk𝑠𝑖𝑔 := vk.
• ct ← VDERE.Enc(pp,𝑚, sk): This algorithm takes a public

parameter pp, a message𝑚 ∈ {0, 1}∗, and sk = (𝑎, 𝑏) ∈ Z2𝑝 as

input and randomly picks 𝑟
$←Z𝑝 and computes 𝑐0 and 𝑐1 as

below:

𝑐0 =

(
𝑔𝑟𝑏
1
𝐻 (𝑚)

)𝑎
, 𝑐1 = 𝑔𝑟

1
.

Finally, it returns 𝑐𝑡 = (𝑐0, 𝑐1).

• tok(𝑢→𝑣) ← VDERE.Token(pp, pk(𝑢) , sk(𝑣)): This algorithm
takes the public key pk(𝑢) ∈ G2 of 𝑢 and the secret key

sk(𝑣) = (𝑎 (𝑣) , 𝑏 (𝑣)) ∈ Z2𝑝 of 𝑣 as input and returns the token

tok(𝑢→𝑣) = (𝑡0(𝑢→𝑣) , 𝑡
1

(𝑢→𝑣) , 𝜎𝑣) as follows:

𝑡0(𝑢→𝑣) = pk(𝑢) , 𝑡1(𝑢→𝑣) = pk
𝑎 (𝑣)𝑏 (𝑣)
(𝑢)

𝜎𝑣 ← SSig.Sign(pp𝑠𝑖𝑔, sk𝑠𝑖𝑔,(𝑣) , (𝑡0(𝑢→𝑣) , 𝑡
1

(𝑢→𝑣)))

• 0\1← VDERE.Test(pp, ct(𝑢) , ct(𝑣) , tok(𝑣→𝑢) , tok(𝑢→𝑣)):
This algorithm takes the two ciphertexts and tokens for 𝑢

and 𝑣 and computes

𝑑0 =

𝑒

(
𝑐0(𝑢) , 𝑡

0

(𝑣→𝑢)

)
𝑒

(
𝑐1(𝑢) , 𝑡

1

(𝑣→𝑢)

) , 𝑑1 =

𝑒

(
𝑐0(𝑣) , 𝑡

0

(𝑢→𝑣)

)
𝑒

(
𝑐1(𝑣) , 𝑡

1

(𝑢→𝑣)

)
Finally, it compares 𝑑0 and 𝑑1, and if 𝑑0 = 𝑑1, it returns 1 and

0 otherwise.

• 0\1 ← VDERE.Vfy(pp, vk(𝑢) , vk(𝑣) , tok(𝑣→𝑢) , tok(𝑢→𝑣)):
This algorithm takes a public parameter pp, a pair of ver-

ification keys vk(𝑢) , vk(𝑣) and tokens tok(𝑢→𝑣) , tok(𝑣→𝑢) . It
parses tok(𝑢→𝑣) and tok(𝑣→𝑢) to ((𝑡0(𝑢→𝑣) , 𝑡

1

(𝑢→𝑣)), 𝜎𝑣) and
((𝑡0(𝑣→𝑢) , 𝑡

1

(𝑣→𝑢)), 𝜎𝑢) respectively. And then, it checks the

following:

(1) 1 = SSig.Vfy(pp𝑠𝑖𝑔, vk(𝑣) , (𝑡0(𝑢→𝑣) , 𝑡
1

(𝑢→𝑣)), 𝜎𝑣)
(2) 1 = SSig.Vfy(pp𝑠𝑖𝑔, vk(𝑢) , (𝑡0(𝑣→𝑢) , 𝑡

1

(𝑣→𝑢)), 𝜎𝑢)

Figure 7: Pairing based VDERE Scheme

In the setting phase, B generates pk(B) using generic group

oracle O𝐵𝐿 in Figure 5. And then, sends verificatino key vk(B) =
vk𝑠𝑖𝑔 received by C𝑠𝑖𝑔 and public key pk(B) of B to A.

In the key query phase, B simulates C using O𝐵𝐿 . Concretely,
B runs Keygen with accessing O𝐵𝐿 .

8

UTRA: Universe Token Reusability Attack and Verifiable Delegatable Order-Revealing Encryption Conference’17, July 2017, Washington, DC, USA

BA (1𝜆) → (�̃�, �̃�)
(1) Setting Phase: C𝑠𝑖𝑔 runs setup algorithm pp𝑠𝑖𝑔 = pp𝑠𝑖𝑔 :=

(⟨𝑝, [G1, 𝑔1]O𝐵𝐿 ⟩,𝑇) ← Setup(1𝜆) and key generation al-

gorithm (vk𝑠𝑖𝑔, sk𝑠𝑖𝑔) ← Keygen(pp𝑠𝑖𝑔). And then sends

(pp𝑠𝑖𝑔, vk𝑠𝑖𝑔) to B.
(2) Simulation C against A: B roles token forging game

challenger C against A.

(a) Setting Phase: B construct pp =

(⟨𝑝, [G1,G2, 𝑔1, 𝑔2,G𝑇 , 𝑒]O𝐵𝐿 ⟩, 𝐻,𝑇) using pp𝑠𝑖𝑔 .

And then B samples 𝑎 (B)
$←Z𝑝 and access generic group

oracle O𝐵𝐿 to get a public key pk(B) ← O𝐵𝐿 (𝑎 (B) , 0,×2).
And then B sends (pp, vk(B) = vk𝑠𝑖𝑔, pk(B)) to A.

(b) Key Query: If A sends key query with index 𝑖 to B,
then B follows the role of challenger in Figure 6. If

(𝑖, pk(𝑖) , vk(𝑖)) ∈ 𝑆key, then output (𝑖, pk(𝑖) , vk(𝑖)). Oth-
erwise, it runs (sk, pk, tk) ← KeygenO𝐵𝐿 (pp). And it re-

turns (pk, tk) and adds the tuple (𝑖, pk, tk) to key query

set 𝑆key
(c) Token Query: If A sends token query with pk(A) ,

then B finds 𝑎 (A) from the key query set 𝑆key. And

then B access generic group oracle O𝐵𝐿 to get random

string 𝑡1(A→B) ← O𝐵𝐿 (𝑎 (A)𝑎 (B) , 0,×2). After then,

B sends signature query (𝑡0(A→B) := pk(A) , 𝑡
1

(A→B))
to C𝑠𝑖𝑔 and gets a signature 𝜎B . Finally, B responses

tok(A→B) = (𝑡0(A→B) , 𝑡
1

(A→B) , 𝜎B) to A
(d) Receive Forged Token: B recieves forged token

(˜vk(A) , ˜tok(B→A) , ˜tok(A→B)) from A.

(3) Challenge Phase: B answers
˜tok(A→B) =(

(˜𝑡0(A→B) ,
˜𝑡1(A→B)), ˜𝜎B

)
= (�̃�, �̃�) to C𝑠𝑖𝑔 .

Figure 8: Construct B using A

In the token query phase, by our premise, B already knows an

exponent 𝑎 (A) of token queried public key pk(A) , which should be-

long to the key query set 𝑆key. Then,B can generates (𝑡0(A→B) , 𝑡
1

(A→B))
= (pk(A) , pk

𝑎 (B)
A = 𝑔

𝑎 (A)𝑎 (B)
2

) with accessing O𝐵𝐿 . After then, B
gets signature 𝜎B from signature query to C𝑠𝑖𝑔 . Therefore B can

response the token query by getting tok(A→C) from O𝐵𝐿 .
Finally, B receives the forged token from A and then uses it to

win the EUF-CMA game (Figure 4).

In the simulation process, B does not fail to respond to the A’s

queries, and the responses follow the same distribution as in the

real game. This means that, from the adversary’s perspective, the

real game in Figure 6 is indistinguishable from the simulated game

by B in Figure 8.

Probability Analysis. If A succeeds to forge the token, then

the signature parts �̃�B should be valid signature for the message

�̃� = (˜𝑡0(A→B) ,
˜𝑡1(A→B)). That means, B can succeed in the forg-

ing signature of adaptively chosen message �̃�. Then, we get the

following inequality.

AdvTF [A,VDERE] ≤ AdvEUF−CMA [B, SSig]

where AdvTF [A,VDERE] isA’s advantage to the token forging

game (Figure 6) and AdvEUF−CMA [B, SSig] is B’s advantage to the

EUF-CMA game Figure 4 under the security parameter 𝜆.

By Theorem 8.3, AdvEUF−CMA [B, SSig] is at most negligible to

𝜆. Then, we can claim that AdvTF [A,VDERE] < negl(𝜆). Thus, we
can conclude that VDERE satisfies token unforgeability. □

8.4 VDORE
In this subsection, we show the process of VDORE for user𝑢 who is

the data owner, and user 𝑣 . VDORE is equivalent to VDERE except

test algorithm. The test algorithm outputs an order result between

two ciphertexts. VDORE consists of six algorithms as follows:

• pp ← VDORE.Setup(1𝜆): It takes a security parameter 1
𝜆

as input and returns a public parameter pp.
• (pk, tk, sk) ← VDORE.Keygen(pp): It takes a public parame-

ter as input and returns a key tuple of public key, verification

key, and secret key, (pk, tk, sk). The verification key is used

to verify the validity of tokens.

• ct(𝑢) ← VDORE.Enc(pp,𝑚 (𝑢) , sk(𝑢)): It takes numerical

data𝑚 (𝑢) and secret key sk(𝑢) for user 𝑢 and returns cipher-

text ct(𝑢) for 𝑢.
• tok(𝑣→𝑢) ← VDORE.Token(pp, pk(𝑣) , vk(𝑣) , sk(𝑢)): This
algorithm takes the 𝑣 ’s public key pk(𝑣) and verification

key vk(𝑣) , and the 𝑢’s secret key sk(𝑢) , as input and returns

token tok(𝑢→𝑣) authorized by 𝑢.

• 𝑟𝑒𝑠 ← VDORE.Test(pp, ct(𝑢) , ct(𝑣) , tok(𝑣→𝑢) , tok(𝑢→𝑣)): It
takes the two ciphertext ct(𝑢) and ct(𝑣) , and two tokens

tok(𝑣→𝑢) and tok(𝑢→𝑣) as input. If the𝑢’s plaintext is larger
than that of 𝑣 , it returns 1; else if the plaintext of 𝑣 is larger

than that of 𝑢, it returns −1; otherwise, it returns 0.
• 0\1 ← VDORE.Vfy(pp, vk(𝑢) , vk(𝑣) , tok(𝑣→𝑢) , tok(𝑢→𝑣)):
It takes the two verification key vk(𝑢) and vk(𝑣) , and two to-
kens tok(𝑣→𝑢) and tok(𝑢→𝑣) as input. If both tokens tok(𝑣→𝑢)
and tok(𝑢→𝑣) go through verification, it returns 1; otherwise,
it returns 0.

Correctness. The correctness ofVDORE ensures that the test algo-
rithm accurately discerns the sequence of two ciphertexts provided

by two mutually authenticated users. Let (𝑚 (𝑢) ,𝑚 (𝑣)) be a pair

of messages, (pk(𝑢) , vk(𝑢) , sk(𝑢)), (pk(𝑣) , vk(𝑣) , sk(𝑣)) be a pair of
keys generated by Keygen algorithm, and ct(𝑢) , ct(𝑣) be a cipher-
text of𝑚 (𝑢) and𝑚 (𝑣) with key sk(𝑢) and sk(𝑣) respectively. We say

VDORE scheme is correct if for any pair of messages (𝑚 (𝑢) ,𝑚 (𝑣))
and keys (pk(𝑢) , vk(𝑢) , sk(𝑢)), (pk(𝑣) , vk(𝑣) , sk(𝑣)), the following
holds:

• Vfy(pp, vk(𝑢) , vk(𝑣) , tok(𝑣→𝑢) , tok(𝑢→𝑣)) = 1

• Test(pp, ct(𝑢) , ct(𝑣) , tok(𝑣→𝑢) , tok(𝑢→𝑣)) = 𝑟𝑒𝑠
– If𝑚 (𝑢) > 𝑚 (𝑣) , then 𝑟𝑒𝑠 = 1

– If𝑚 (𝑢) < 𝑚 (𝑣) , then 𝑟𝑒𝑠 = −1
– Otherwise, 𝑟𝑒𝑠 = 0

Data Privacy. The data privacy of VDORE ensures that the ci-

phertexts ct generated by Enc algorithm do not leak information

9

Conference’17, July 2017, Washington, DC, USA Jaehwan Park*, Hyeonbum Lee*, Junbeom Hur, Jae Hong Seo**, and Doowon Kim**

except order. VDORE provides data privacy if Enc algorithm satis-

fies indistinguishability under an ordered chosen plaintext attack

(IND-OCPA) [27].

Token Unforgeability. The verifier algorithm of VDORE is identi-

cal to VDERE so that the security definition of VDORE is equivalent
to those of VDERE.

Construct VDORE using VDERE. Following the construction of

DORE from DERE [18, 27], we first construct VDERE scheme and

then convert VDORE from it. The Setup, Keygen, Token, and Vfy
algorithms of VDORE follows those of VDERE in Figure 7. The Enc
is defined by bit-wise VDERE.Enc encryption and Test is defined
by iterative running of VDERE.Test.

• ct ← VDORE.Enc(pp,𝑚, sk): This algorithm takes a mes-

sage𝑚 ∈ {0, 1}∗ and sk as input and returns a ciphertext ct
as follows:

𝜖 (𝑚𝑖 , 𝑎) = (𝑖,𝑚1𝑚2 . . .𝑚𝑖 | |0𝑛−𝑖 , 𝑎),

where 𝑎 ∈ {0, 1, 2}. The algorithm encrypts 𝜖 (𝑚𝑖 , 𝑎) using
bitwise encoding in the following manner.

If𝑚𝑖 = 0, it computes ciphertexts ct[𝑖] = (ct[𝑖, 0], ct[𝑖, 1]) as
follows:

ct[𝑖, 0] = VDERE.Enc(pp, 𝜖 (𝑚𝑖 , 0), sk),
ct[𝑖, 1] = VDERE.Enc(pp, 𝜖 (𝑚𝑖 , 1), sk) .

Else if𝑚𝑖 = 1, it computes ciphertexts ct[𝑖] = (ct[𝑖, 0], ct[𝑖, 1])
as follows:

ct[𝑖, 0] = VDERE.Enc(pp, 𝜖 (𝑚𝑖 , 1), sk),
ct[𝑖, 1] = VDERE.Enc(pp, 𝜖 (𝑚𝑖 , 2), sk) .

Finally, this algorithm returns ct = (ct[1], . . . ct[𝑛]).
• 𝑟𝑒𝑠 ← VDORE.Test(pp, ct(𝑢) , ct(𝑣) , tok(𝑣→𝑢) , tok(𝑢→𝑣)): T
his algorithm takes ct(𝑢) , ct(𝑣) , tok(𝑣→𝑢) , tok(𝑢→𝑣) as input.
Test algorithm runs VDERE.Test iteratively. For 𝑖 = 1 to 𝑛,

the algorithm follows it:

(1) If 𝑖 = 𝑛 + 1, then return 0

(2) Else if 𝑟𝑒𝑠𝑖𝑢 = 1 , then returns 1

(3) Else if 𝑟𝑒𝑠𝑖𝑣 = 1, then return −1
(4) Else 𝑖 ← 𝑖 + 1
, where 𝑟𝑒𝑠𝑖𝑢 and 𝑟𝑒𝑠𝑖𝑣 are VDERE.Test results of (ct(𝑢) [𝑖, 0],
ct(𝑣) [𝑖, 1]) and (ct(𝑢) [𝑖, 1], ct(𝑣) [𝑖, 0]) respectively.

Theorem 8.7. Assuming H and T are modeled as a random oracle.
Then the above VDORE satisfies the correctness, data privacy, and
token unforgeability under DL assumption with a generic groupmodel.

Proof. The security properties: correctness, data privacy, and

token unforgeability are inherited from the underlying VDERE
scheme. By Theorem 8.6, VDORE also satisfies these properties.

(Correctness) Since VDORE.Test consists of several VDERE.Test al-
gorithms, and our base VDERE scheme in Figure 7 satisfies correct-

ness, it follows that VDORE satisfies correctness as well.

(Data Privacy) Regarding data privacy, as demonstrated in Sec-

tion 8.3, our VDERE scheme achieves IND-AD-DCPA security. Since

the DORE scheme, based on an IND-AD-DCPA secure DERE, satis-

fies indistinguishability under IND-OCPA [27], our VDORE is also

IND-OCPA secure. Therefore, VDORE achieves data privacy.

Table 1: Security feature comparison.

DORE [27] SEDORE [18] VDORE

Data privacy ✓ ✓ ✓
Token unforgeability × × ✓

✓ indicates satisfaction of security features.

× indicates dissatisfaction of security features.

(Token Unforgeability) For token unforgeability, theVfy algorithm of

VDORE is identical to VDERE. That means, to show token unforge-

ability of VDORE is equivalent with those of VDERE. Therefore, by
Theorem 8.6, token unforgeability holds on VDORE. □

Security Comparison. In Table 1, we show the security feature

comparison for three ORE methods, DORE [27], SEDORE [18], and

our VDORE. As shown in the table, our VDORE only features token

unforgeability. We showed this in Theorem 8.7.

9 EXPERIMENT
In this section, we present evaluations of our proposed VDORE

scheme compared to DORE and SEDORE, which serve as bench-

marks.

9.1 Experiment environments
We implement our VDORE and previous schemes in C language

with a Linux desktop with a 5.20 GHz Intel i9-12900K CPU and

64GB RAM. Furthermore, We use the OpenSSL library for the hash

function, the pairing-based cryptography library written in C for

bilinear maps with MNT224 curve [30], and the GMP library for

large integer arithmetic.

9.2 Dataset
We utilize the dataset [46] published by the United Nations, which

provides an estimate of the total population (both sexes combined)

in five-year age groups for our experiment. However, the range

of data for the distribution of the population is limited, we also

incorporate the volume data of real stock from FAANG companies

[33]. We conduct experiments by extracting 5,000 data from each

dataset.

When 5,000 samples are randomly drawn from the stock vol-

ume dataset, the largest number obtained is 3,372,969,600, which

requires 32 bits to represent in binary. Therefore, experiments using

8, 16, and 24 bits are conducted using the age distribution dataset,

while experiments using 32, 48, and 64 bits are conducted using the

stock dataset. Additionally, after randomly shuffling the extracted

5000 samples, we created two datasets, which were then utilized to

experiment with the test algorithm.

9.3 Performance
We evaluate our proposed scheme VDORE along with existing

schemes DORE and SEDORE across six categories: ciphertext size,

encryption time, token generation time, test algorithm time, and

verification time.

10

UTRA: Universe Token Reusability Attack and Verifiable Delegatable Order-Revealing Encryption Conference’17, July 2017, Washington, DC, USA

8 16 24 32 48 64
Bit length

0

50

100

150

200

En
cr

yp
tio

n
tim

e
(m

ili
se

co
nd

s) DORE
SEDORE
Our ORE

(a) Encryption time

8 16 24 32 48 64
Bit length

0

1,000

2,000

3,000

4,000

5,000

6,000

St
or

ag
e

co
st

 (b
yt

es
)

DORE
SEDORE
Our ORE

(b) Ciphertext storage cost

10 100 1,000 10,000 100,000
user

50

100

150

200

250

300

To
ke

n
ge

ne
ra

tio
n

tim
e

(s
ec

on
ds

) DORE
SEDORE
Our ORE

(c) Token generation time

8 16 24 32 48 64
Bit length

100

101

102

103

Te
st

 ti
m

e
(m

ili
se

co
nd

s)

DORE with Worst
SEDORE with Worst
Our ORE with Worst
DORE with Best
SEDORE with Best
Our ORE with Best

(d) Test time (Best & Worst scenarios)

8 16 24 32 48 64
Bit length

100

101

102

103

Te
st

 ti
m

e
(m

ili
se

co
nd

s)

DORE
SEDORE
Our ORE

(e) Test time (Normal)

101 102 103 104 105 G I A
users

0
79

144
217

1,247

Ve
rif

ica
tio

n
tim

e
(s

ec
on

ds
)

(f) Verification time

Figure 9: The overall performance graphs for DORE, SEDORE, and our VDORE. In Figure 9f’s x-axis, “G” indicates Google, “I”
indicates IBM, and “A” indicates Amazon, respectively.

Table 2: A comparative analysis for 𝑛-bit comparison

elements # group/pairings

(Encryption) (Token) (Encryption) (Token) (Test) (Verification)

DORE [27] 4𝑛 |G1 | 2|G2 | 6𝑛𝐸G1
𝐸G2

4𝑛𝑃G𝑇
+ 4𝑛𝑃G𝑇

×
SEDORE [18] 4𝑛 |G1 | 2|G2 | 6𝑛𝐸G1

3𝐸G2
4𝑛𝑃G𝑇

+ 4𝑛𝑃G𝑇
×

VDORE (Ours) 4𝑛 |G1 | 1|G1 | + 2|G2 | + 1|Z𝑝 | 6𝑛𝐸G1
𝐸G1
+ 𝐸G2

4𝑛𝑃G𝑇
+ 4𝑛𝑃G𝑇

4𝐸G1

× indicates the Verification algorithm is not available.

Comparative analysis. Before experimentally comparing each

scheme, we show a theoretical cost analysis for each algorithm

based on one bit. In Table 2, we suggest an analysis of storage cost

and computational cost, where the left side (group elements) repre-

sents storage cost, and the right side (group/pairings) represents

computational cost. Furthermore, |G1 | and |G2 | denote the sizes
of G1 and G1, respectively, while 𝐸G1

, 𝐸G2
, and 𝐸G𝑇

represent the

computational overhead for exponential operation for G1, G2, and

G𝑇 , respectively.

When generating tokens, our scheme consumes more storage

compared to DORE and SEDORE. Because tokens in VDORE con-

tain the Schnorr signature, which contains one G1 element and

one Z𝑝 element. However, since the token is not held by the data

owner but is distributed to the client, it is considered an acceptable

issue. When generating tokens, DORE assumes minimal overhead

as it directly utilizes other users’ public keys, whereas SEDORE

and VDORE compute additional operations. DORE only needs

one G2-exponentiation for generating 𝑡1(𝑣→𝑢) , in contrast SEDORE

needs three G2-exponentiation for generating 𝑡0(𝑣→𝑢) and 𝑡
1

(𝑣→𝑢) .
In VDORE, the token can be generated only one G2-exponentiation

for generating 𝑡1(𝑣→𝑢) and one G1-exponentiation for generating

signature 𝜎𝑢 . In conclusion, VDORE is about 2 times slower than

DORE but 1.5 times faster than SEDORE. However, only VDORE

provides token unforgeability.

11

Conference’17, July 2017, Washington, DC, USA Jaehwan Park*, Hyeonbum Lee*, Junbeom Hur, Jae Hong Seo**, and Doowon Kim**

Encryption time & Ciphertext size. In Figure 9a and 9b, we show

the evaluation of encryption time and ciphertext storage for three

ORE schemes. The x-axis of the graph represents the length of plain-

texts, while the y-axis represents the time in mili seconds taken

for encryption and the storage in bytes for ciphertext storage. As

mentioned earlier in the comparative analysis, DORE, SEDORE, and

VDORE all use the same encryption algorithm, resulting in identical

encryption times and ciphertext sizes. Therefore, our method en-

sures enhanced privacy for the ciphertext without any degradation

in latency.

Token generation time. This paragraph introduces the results

related to the token generation time. We compare the generation

time required for data owners to provide authorization tokens to

different users. We conduct experiments assuming the data owner

provides tokens to 10, 100, 1,000, 10,000, and 100,000 users, and the

relevant results are shown in Figure 9c. Regarding token generation,

SEDORE takes three times longer than DORE’s token generation

algorithm due to the additional 2 group operations on G2. Further-

more, we observe that our VDORE method is approximately 1.5

times faster than the existing SEDORE method. This is because

VDORE requires one fewer group operations, and the remaining

field operations do not significantly impact latency compared to

group operations. Therefore, our method not only offers enhanced

security compared to SEDORE but is also more efficient in token

generation time.

Test algorithm time. To evaluate the test algorithm, we conduct

two separate experiments. The first focuses on the best and worst-

case scenarios, while the second utilizes the dataset mentioned

earlier for overall computations. In the first experiment, the best-

case scenario involved comparing two plaintexts where the most

significant bit (MSB) differed. For instance, comparing 1 · · ·𝑏6𝑏7 (2)
and 0 · · ·𝑏′

6
𝑏′
7 (2) in an 8-bit scenario. Therefore, we compare values

for this experiment where only the MSB of each bit length is set

to 1 and 0. On the other hand, the worst-case scenario involves

comparing two identical plaintexts.

In Figure 9d, we show the evaluation of the test algorithm for the

best and worst scenarios. The light-colored graphs represent results

for the worst-case scenario, while the dark-colored ones depict the

best-case scenario. In the best-case scenario, regardless of the bit

length, each has a fixed cost of about 1 second. In the worst-case

scenario, three ORE schemes take approximately 19 seconds and

158 seconds for 8-bit and 64-bit operations, respectively. In Figure

9e, we show that the computational time falls within the range of

Figure 9d. Additionally, the computational time increases as the

bit size ranges from 8 to 24 bits and from 32 to 64 bits in the test

algorithm. This is because the padding increases with the increase

in bit size, leading to higher computational costs. Moreover, it can

be observed that the computational time at 32 bits is faster than

that at 16 and 24 bits. This is attributed to the division of the dataset

during our experiments, and the order is determined closer to the

most significant bit (MSB) in the dataset used at 32 bits.

Verification time. In this paragraph, we present the results of

experiments on the verification algorithm. We conduct experiments

based on the assumption that the number of users who need to

perform token verification in the test operation is 10, 100, 1,000,

10,000, and 100,000. After that, to apply the experiments to a more

realistic scenario, we also perform experiments on the number of

employees at CSPs companies introduced in Section 2 with the

assumption of issuing authorization tokens to employees within

the company. Therefore, we conduct experiments on Google with

182,502 employees [3], Amazon with 1,608,000 employees [2], and

IBM with 282,200 employees [4].

In Figure 9f, it is observed that the verification could be con-

ducted within almost 0 to 79 seconds for users ranging from the

10th to the 100,000th. When applying to real companies, Google,

IBM, and Amazon, it takes around 144 seconds, 217 seconds, and

1,247 seconds (about 20.8 mins), respectively. Although it took ap-

proximately 1,247 seconds for Amazon, our proposed technique

proves to be highly practical while ensuring enhanced security, as

the average time per person was only about 0.77 milliseconds.

10 RELATEDWORKS
The concept of order-preserving encryption (OPE) was initially

introduced by Agrawal et al. [6]. Subsequently, Boldyreva et al. [8]

introduced the notion of “best possible” security, referred to as indis-

tinguishability under ordered chosen-plaintext attack (IND-OCPA).

This property ensures that two ciphertexts reveal no information

about plaintexts other than their order. However, Boldyreva also

pointed out that achieving this ideal security is not feasible for

stateless and immutable OPE schemes. To address this, Popa et al.

[38] proposed the first IND-OCPA OPE scheme, which employs

stateful and interactive techniques utilizing the B-tree structure.

Additionally, Kerschbaum et al. [23] introduced Frequency-hiding

OPE (FH-OPE), which conceals the frequency information of plain-

texts to thwart various inference attacks [12, 28, 34]. Nevertheless,

FH-OPE does not offer complete protection against such attacks

which results in significant data overhead.

Order-revealing encryption (ORE) is a technique that encrypts

numerical data without preserving the order of the plaintext, al-

lowing the comparison of two ciphertexts using a public function

to determine their order. The concept of ORE was first introduced

by Boneh et al. [9], implemented using multilinear maps [41]. To

improve efficiency, Chenette et al. [13] suggested a practical ORE

scheme. Nonetheless, this scheme leaks the most significant differ-

ent bit (msdb) and thus lacks sufficient security guarantees. Subse-

quently, Lewi et al. [26] proposed an enhanced ORE scheme that

only leaks the most significant different block. After that, Cash

et al. [10] introduced parameter-hiding ORE (pORE) with proba-

bilistic characteristics for the single-user scenario, revealing only

the equality pattern of msdb. Peng et al. [36] suggested the ORE

primitive which reduces the computation cost that that of pORE

with the same security level.

Following this, Lv et al. [29] suggested m-ORE, which reduces

computational overhead from 𝑂 (𝑛2) pairings in [10] to 𝑂 (𝑛) pair-
ings for the comparison stage and supports multi-user environ-

ments. After that, Qiao et al. [40] introduced the vulnerability that

uses the stealthy property in m-ORE and suggested om-ORE as

a countermeasure. Park et al. [35] also identified vulnerabilities

in m-ORE when the attacker has a secret key and can eavesdrop

on other clients’ queries. From this, they proposed msq-ORE as a

countermeasure. Furthermore, existing ORE techniques operated

12

UTRA: Universe Token Reusability Attack and Verifiable Delegatable Order-Revealing Encryption Conference’17, July 2017, Washington, DC, USA

by distributing keys in a multi-user environment, which exhibited

weaknesses from a practical standpoint. To address this, Li et al. [27]

proposed Delegatable ORE (DORE), enabling functionality even

with data encrypted using different keys, provided authorization

tokens are utilized.

However, Hahn et al. [18] presented a rational attack model

for DORE and threatening forged token attacks, leading to the

proposal of SEDORE to counteract such attacks. Unfortunately, we

discover the same vulnerability in SEDORE by applying the threat

model presented in Hahn et al. [18], and as a countermeasure, we

introduce VDORE in the paper. Unfortunately, the various attacks

[14, 16, 19, 20] suggested that even in ideal ORE schemes, significant

information can be leaked despite only revealing the order. However,

these attack techniques rely on the assumption that the adversary

has prior knowledge of the distribution of the database. Therefore,

in this paper, we do not consider those attacks.

11 CONCLUSION
In our paper, we demonstrate the vulnerability of DORE and SE-

DORE within the same threat model suggested by [18]. Our attack

technique, while providing additional information beyond the pre-

viously outlined attack process, remains a menacing and practical

threat without violating the attack model presented in [18]. Thus,

to address these security concerns, we propose Verifiable Delegat-

able Order-Revealing Encryption (VDORE), which ensures security

against universe token reusability attacks by utilizing the Schnorr

signature scheme. Additionally, we provide a formalized definition

and proof to address the unclear definition and proof of token un-

forgeability in previous work. Furthermore, our scheme offers a

faster token generation algorithm compared to that of SEDORE.

REFERENCES
[1] 2016. Biggest Ad Fraud. https://www.forbes.com/sites/thomasbrewster/

2016/12/20/methbot-biggest-ad-fraud-busted/?sh=1605441b4899.

[2] 2023. Amazon Employee. https://explodingtopics.com/blog/amazon-employees.

[3] 2024. Google Employee. https://seo.ai/blog/how-many-people-work-at-google.

[4] 2024. IBM Employee. https://stockanalysis.com/stocks/ibm/employees/.

[5] Rashmi Agrawal, Leo De Castro, Chiraag Juvekar, Anantha Chandrakasan, Vinod

Vaikuntanathan, and Ajay Joshi. 2023. Mad: Memory-aware design techniques

for accelerating fully homomorphic encryption. In Proceedings of the 56th Annual
IEEE/ACM International Symposium on Microarchitecture. 685–697.

[6] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. 2004.

Order preserving encryption for numeric data. In Proceedings of the 2004 ACM
SIGMOD international conference on Management of data. 563–574.

[7] Robin Berger, Felix Dörre, and Alexander Koch. 2024. Two-Party Decision Tree

Training from Updatable Order-Revealing Encryption. In International Conference
on Applied Cryptography and Network Security. Springer, 288–317.

[8] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’neill. 2009.

Order-preserving symmetric encryption. In Advances in Cryptology-EUROCRYPT
2009: 28th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Cologne, Germany, April 26-30, 2009. Proceedings 28.
Springer, 224–241.

[9] Dan Boneh, Kevin Lewi, Mariana Raykova, Amit Sahai, Mark Zhandry, and

Joe Zimmerman. 2015. Semantically secure order-revealing encryption: Multi-

input functional encryption without obfuscation. In Advances in Cryptology-
EUROCRYPT 2015: 34th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings,
Part II. Springer, 563–594.

[10] David Cash, Feng-Hao Liu, Adam O’Neill, Mark Zhandry, and Cong Zhang.

2018. Parameter-hiding order revealing encryption. In Advances in Cryptology–
ASIACRYPT 2018: 24th International Conference on the Theory and Application
of Cryptology and Information Security, Brisbane, QLD, Australia, December 2–6,
2018, Proceedings, Part I 24. Springer, 181–210.

[11] Stéphanie Challita, Faiez Zalila, Christophe Gourdin, and Philippe Merle. 2018.

A precise model for google cloud platform. In 2018 IEEE international conference

on cloud engineering (IC2E). IEEE, 177–183.
[12] Xiao Chen, Chaoran Li, Derui Wang, Sheng Wen, Jun Zhang, Surya Nepal, Yang

Xiang, and Kui Ren. 2019. Android HIV: A study of repackaging malware for

evading machine-learning detection. IEEE Transactions on Information Forensics
and Security 15 (2019), 987–1001.

[13] Nathan Chenette, Kevin Lewi, Stephen A Weis, and David J Wu. 2016. Practical

order-revealing encryption with limited leakage. In Fast Software Encryption:
23rd International Conference, FSE 2016, Bochum, Germany, March 20-23, 2016,
Revised Selected Papers 23. Springer, 474–493.

[14] F Betül Durak, Thomas M DuBuisson, and David Cash. 2016. What else is

revealed by order-revealing encryption?. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. 1155–1166.

[15] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G Paterson. 2018.

Pump up the volume: Practical database reconstruction from volume leakage on

range queries. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security. 315–331.

[16] Paul Grubbs, Kevin Sekniqi, Vincent Bindschaedler, Muhammad Naveed, and

Thomas Ristenpart. 2017. Leakage-abuse attacks against order-revealing encryp-

tion. In 2017 IEEE symposium on security and privacy (SP). IEEE, 655–672.
[17] Zichen Gui, Oliver Johnson, and Bogdan Warinschi. 2019. Encrypted databases:

New volume attacks against range queries. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security. 361–378.

[18] Changhee Hahn and Junbeom Hur. 2022. Delegatable Order-Revealing Encryp-

tion for Reliable Cross-Database Query. IEEE Transactions on Services Computing
(2022).

[19] Bijit Hore, Sharad Mehrotra, Mustafa Canim, and Murat Kantarcioglu. 2012.

Secure multidimensional range queries over outsourced data. The VLDB Journal
21 (2012), 333–358.

[20] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2012. Access

pattern disclosure on searchable encryption: ramification, attack and mitigation..

In Ndss, Vol. 20. Citeseer, 12.
[21] Tibor Jager and Andy Rupp. 2010. The semi-generic group model and appli-

cations to pairing-based cryptography. In Advances in Cryptology-ASIACRYPT
2010: 16th International Conference on the Theory and Application of Cryptology
and Information Security, Singapore, December 5-9, 2010. Proceedings 16. Springer,
539–556.

[22] Seny Kamara and Tarik Moataz. 2019. Computationally volume-hiding structured

encryption. In Advances in Cryptology–EUROCRYPT 2019: 38th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Darmstadt, Germany, May 19–23, 2019, Proceedings, Part II 38. Springer, 183–213.

[23] Florian Kerschbaum. 2015. Frequency-hiding order-preserving encryption. In

Proceedings of the 22nd ACM SIGSACConference on Computer and Communications
Security. 656–667.

[24] SO Kuyoro, F Ibikunle, and O Awodele. 2011. Cloud computing security issues

and challenges. International Journal of Computer Networks (IJCN) 3, 5 (2011),
247–255.

[25] Marie-Sarah Lacharité, Brice Minaud, and Kenneth G Paterson. 2018. Improved

reconstruction attacks on encrypted data using range query leakage. In 2018 IEEE
Symposium on Security and Privacy (SP). IEEE, 297–314.

[26] Kevin Lewi andDavid JWu. 2016. Order-revealing encryption: New constructions,

applications, and lower bounds. In Proceedings of the 2016 ACM SIGSACConference
on Computer and Communications Security. 1167–1178.

[27] Yuan Li, Hongbing Wang, and Yunlei Zhao. 2019. Delegatable order-revealing

encryption. In Proceedings of the 2019 ACM Asia Conference on Computer and
Communications Security. 134–147.

[28] Guanjun Lin, Sheng Wen, Qing-Long Han, Jun Zhang, and Yang Xiang. 2020.

Software vulnerability detection using deep neural networks: a survey. Proc. IEEE
108, 10 (2020), 1825–1848.

[29] Chunyang Lv, Jianfeng Wang, Shi-Feng Sun, Yunling Wang, Saiyu Qi, and Xi-

aofeng Chen. 2021. Efficient Multi-client Order-Revealing Encryption and Its

Applications. In Computer Security–ESORICS 2021: 26th European Symposium on
Research in Computer Security, Darmstadt, Germany, October 4–8, 2021, Proceedings,
Part II 26. Springer, 44–63.

[30] Ben Lynn. 2006. Pairing-based cryptography library.

https://crypto.stanford.edu/pbc/.

[31] Sajee Mathew and J Varia. 2014. Overview of amazon web services. Amazon
Whitepapers 105, 1 (2014), 22.

[32] Ueli Maurer. 2005. Abstract models of computation in cryptography. In Cryptog-
raphy and Coding: 10th IMA International Conference, Cirencester, UK, December
19-21, 2005. Proceedings 10. Springer, 1–12.

[33] AAYUSH MISHRA. 2020. FAANG- Complete Stock Data. https://www.kaggle

.com/datasets/aayushmishra1512/faang-complete-stock-data. (Accessed on

05/30/2024).

[34] Muhammad Naveed, Seny Kamara, and Charles VWright. 2015. Inference attacks

on property-preserving encrypted databases. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. 644–655.

[35] Jae Hwan Park, Zeinab Rezaeifar, and Changhee Hahn. 2024. Securing multi-

client range queries over encrypted data. Cluster Computing (2024), 1–14.

13

https://www.kaggle.com/datasets/aayushmishra1512/faang-complete-stock-data
https://www.kaggle.com/datasets/aayushmishra1512/faang-complete-stock-data

Conference’17, July 2017, Washington, DC, USA Jaehwan Park*, Hyeonbum Lee*, Junbeom Hur, Jae Hong Seo**, and Doowon Kim**

[36] Cong Peng, Rongmao Chen, Yi Wang, Debiao He, and Xinyi Huang. 2024.

Parameter-Hiding Order-Revealing Encryption Without Pairings. In IACR Inter-
national Conference on Public-Key Cryptography. Springer, 227–256.

[37] David Pointcheval and Jacques Stern. 2000. Security arguments for digital signa-

tures and blind signatures. Journal of cryptology 13 (2000), 361–396.

[38] Raluca Ada Popa, Frank H Li, and Nickolai Zeldovich. 2013. An ideal-security

protocol for order-preserving encoding. In 2013 IEEE Symposium on Security and
Privacy. IEEE, 463–477.

[39] Liudmyla Pryimenko. 2024. 7 Examples of Real-Life Data Breaches Caused

by Insider Threats. https://www.ekransystem.com/en/blog/real-life-examples-

insider-threat-caused-breaches.

[40] Hongyi Qiao, Cong Peng, Qi Feng, Min Luo, and Debiao He. 2024. Ciphertext

Range Query Scheme Against Agent Transfer and Permission Extension Attacks

for Cloud Computing. IEEE Internet of Things Journal (2024).
[41] Daniel S Roche, Daniel Apon, Seung Geol Choi, and Arkady Yerukhimovich. 2016.

POPE: Partial order preserving encoding. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. 1131–1142.

[42] Claus-Peter Schnorr. 1990. Efficient identification and signatures for smart cards.

In Advances in Cryptology—CRYPTO’89 Proceedings 9. Springer, 239–252.
[43] Holger Schulze. 2021. cybersecurity-insiders.com/wp-

content/uploads/2021/06/2021-Insider-Threat-Report-Gurucul-Final-

dd8f5a75.pdf. https://www.cybersecurity- insiders.com/wp- content/

uploads/2021/06/2021-Insider-Threat-Report-Gurucul-Final-dd8f5a75.pdf.

(Accessed on 05/30/2024).

[44] Victor Shoup. 1997. Lower bounds for discrete logarithms and related problems. In

Advances in Cryptology—EUROCRYPT’97: International Conference on the Theory
and Application of Cryptographic Techniques Konstanz, Germany, May 11–15, 1997
Proceedings 16. Springer, 256–266.

[45] Emil Stefanov, Marten van Dijk, Elaine Shi, T-H Hubert Chan, Christopher

Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas. 2018. Path ORAM:

an extremely simple oblivious RAM protocol. Journal of the ACM (JACM) 65, 4
(2018), 1–26.

[46] U.Nations. 2022. World Population Prospects - Population Division - United

Nations. https://population.un.org/wpp/. (Accessed on 05/30/2024).

[47] Jingru Xu, Cong Peng, Rui Li, Jintao Fu, and Min Luo. 2024. An Efficient Delegat-

able Order-Revealing Encryption Scheme for Multi-User Range Queries. IEEE
Transactions on Cloud Computing (2024).

[48] Yinghui Zhang, Robert H Deng, Shengmin Xu, Jianfei Sun, Qi Li, and Dong Zheng.

2020. Attribute-based encryption for cloud computing access control: A survey.

ACM Computing Surveys (CSUR) 53, 4 (2020), 1–41.
[49] Yongmin Zhang, Xiaolong Lan, Ju Ren, and Lin Cai. 2020. Efficient comput-

ing resource sharing for mobile edge-cloud computing networks. IEEE/ACM
Transactions on Networking 28, 3 (2020), 1227–1240.

[50] Jinzy Zhu, Xing Fang, Zhe Guo, Meng Hua Niu, Fan Cao, Shuang Yue, and Qin Yu

Liu. 2009. IBM cloud computing powering a smarter planet. In Cloud Computing:
First International Conference, CloudCom 2009, Beijing, China, December 1-4, 2009.
Proceedings 1. Springer, 621–625.

A UTRA FOR EFFICIENT DORE
In this section, we show how to adapt our UTRAmethod to Efficient

DORE [47].

Firstly, we scrutinize the Efficient DORE. For this, we show the

efficient DERE (EDERE) suggested by [47].

Efficient DERE. . It consists of five algorithms, EDERE.Setup,

EDERE.Keygen, EDERE.Enc, EDERE.Tok, and EDERE.Test as below:

• pp← EDERE.Setup(1𝜆): It takes the security parameter 1
𝜆

as input and returns the public parameter pp = (⟨𝑝,G1,G2,

𝑔1, 𝑔2,G𝑇 , 𝑒⟩, 𝐻, 𝐹).
• (pk, sk) ← EDERE.Keygen(pp) : This algorithm receives a

public parameter (pp) as input and returns a pair of public

key and secret key (pk, sk). From this, it uniformly chooses

𝑎, 𝑏, 𝜉
$←Z𝑝 and generates sk and the corresponding pk as

below:

pk = 𝑔𝑎
2
, sk = (𝑎, 𝑏, 𝜉)

We denote a key pair of user 𝑢 as (pk(𝑢) , sk(𝑢)) = (𝑔
𝑎 (𝑢)
2

,

(𝑎 (𝑢) , 𝑏 (𝑢) , 𝜉 (𝑢))).

• ct← EDERE.Enc(pp,𝑚, sk): This algorithm takes a message

𝑚 ∈ {0, 1}∗ and sk as input and returns a ciphertext ct. This

algorithm randomly picks 𝑟, 𝜂
$←Z𝑝 and computes 𝑐1, 𝑐2, and

𝑐3 as below:

𝑐1 = 𝑟 − 𝜉𝜂, 𝑐2 = 𝜂, 𝑐3 = 𝐻 (𝑚) (𝑏𝑟)
−1

After that, it returns ct = (𝑐0, 𝑐1, 𝑐2). For user 𝑢, we rewrite
𝑐𝑡 as ct(𝑢) = (𝑐0(𝑢) , 𝑐

1

(𝑢) , 𝑐
2

(𝑢)).
• tok(𝑣→𝑢) ← EDERE.Token(pp, pk(𝑣) , sk(𝑢)): This algorithm
takes the public key pk(𝑣) = 𝑔

𝑎 (𝑣)
2

of user 𝑣 and the secret

key sk(𝑢) = (𝑎 (𝑢) , 𝑏 (𝑢) , 𝜉 (𝑢)) of user 𝑢 and returns an autho-

rization token tok(𝑣→𝑢) . tok(𝑣→𝑢) consists of 𝑡
1

(𝑣→𝑢) and

𝑡2(𝑣→𝑢) .

𝑡1(𝑣→𝑢) = 𝐹 (pk
𝑎 (𝑢)
(𝑣))

𝑏 (𝑢) , 𝑡2(𝑣→𝑢) = 𝐹 (pk
𝑎 (𝑢)
(𝑣))

𝑏 (𝑢)𝜉 (𝑢)

Finally, it returns tok(𝑣→𝑢) := (𝑡1(𝑣→𝑢) , 𝑡
2

(𝑣→𝑢)).
• 0\1 ← EDERE.Test(ct(𝑢) , ct(𝑣) , tok(𝑣→𝑢) , tok(𝑢→𝑣)): This
algorithm takes the ciphertexts from user 𝑣 and 𝑢, ct(𝑣) and
ct(𝑢) , and the tokens, tok(𝑣→𝑢) and tok(𝑢→𝑣) as input. After
that, it computes

𝑑0 = 𝑒

(
2∏

𝑘=1

(𝑡𝑘(𝑣→𝑢))
𝑐𝑘(𝑢) , 𝑐3(𝑢)

)
.

𝑑1 = 𝑒

(
2∏

𝑘=1

(𝑡𝑘(𝑢→𝑣))
𝑐𝑘(𝑣) , 𝑐3(𝑣)

)
.

Finally, it compares 𝑑0 and 𝑑1 and returns 1 if 𝑑0 = 𝑑1 and 0

otherwise.

UTRA for EDERE. To demonstrate how EDORE is vulnerable to

UTRA attacks, we use EDERE to illustrate this. The scenario is as

follows:

1) The user V creates authorization token tok(M→V) by using

EDERE.Token algorithm and sends it to userM as below:

tok(M→V) =
(
𝐹 (pk𝑎 (V)(M))

𝑏 (V) , 𝐹 (pk𝑎 (V)(M))
𝑏 (V)𝜉 (V)

)
2) AfterM receives it,M randomly picks 𝑟

$←Z𝑝 and sets a group

elementℎ2 = 𝐹 (pk
𝑎 (M)
(V))

𝑟
. And thenM computes a universal forged

token uft(V),ℎ2
as following:

uft(V),ℎ2
= tok𝑟(M→V)

=

((
𝐹 (pk𝑎 (V)(M))

𝑟
)𝑏 (V)

,

(
𝐹 (pk𝑎 (V)(M))

𝑟
)𝑏 (V)𝜉 (V))

After then,M sends uft(V),ℎ2
and ℎ2 to A. Note thatM can com-

pute uft(V),ℎ2
by symmetric property pk

𝑎 (V)
(M) = 𝑔

𝑎V𝑎M
2

= pk
𝑎 (M)
(V) .

Since ℎ2 is randomized by 𝑟 , ℎ2 looks like uniform random in the

view ofA. And it is intractable to find a secret key ofM by the cryp-

tographic hash function 𝐹 . For this reason,M may help adversary

A without concern about leakingM’s secret.

14

https://www.cybersecurity-insiders.com/wp-content/uploads/2021/06/2021-Insider-Threat-Report-Gurucul-Final-dd8f5a75.pdf
https://www.cybersecurity-insiders.com/wp-content/uploads/2021/06/2021-Insider-Threat-Report-Gurucul-Final-dd8f5a75.pdf
https://population.un.org/wpp/

UTRA: Universe Token Reusability Attack and Verifiable Delegatable Order-Revealing Encryption Conference’17, July 2017, Washington, DC, USA

3) WhenA receives uft(V),ℎ2
and ℎ2, she samples her secret key

sk(A) = (𝑎 (A) , 𝑏 (A) , 𝜉 (A))
$←Z3𝑝 and then computes the counter-

part forged token uft(A),ℎ2
as follows:

uft(A),ℎ2
= (ℎ𝑏 (A)

2
, ℎ

𝑏 (A)𝜉 (A)
2

)
For the query, A generates ct(A) ← EDERE.Enc(𝑚, sk(A)) using
her secret key (𝑎 (A) , 𝑏 (A) , 𝜉 (A)) and then use a pair of forged

tokens uft(A),ℎ2
and uft(V),ℎ2

.

For a given message 𝑚, let us denote the victim’s ciphertext

as ct(V) = (𝑟 (V) − 𝜉 (V)𝜂 (V) , 𝜂 (V) , 𝐻 (𝑚) (𝑏 (V)𝑟 (V))
−1). Then we

can get DERE.Test(ct(V) , ct(A) , uft(V),ℎ2
, uft(A),ℎ2

) = 1 by the

following equations.

𝑑0 = 𝑒

(
2∏

𝑘=1

(uft𝑘(V),ℎ2

)𝑐
𝑘
(V) , 𝑐3(V)

)
= 𝑒 (ℎ𝑏 (V) (𝑟 (V)−𝜉 (V)𝜂 (V))

2
· ℎ𝑏 (V)𝜉 (V)𝜂 (V)

2
, 𝐻 (𝑚) (𝑏 (V)𝑟 (V))

−1
)

= 𝑒 (ℎ𝑏 (V)𝑟 (V)
2

, 𝐻 (𝑚) (𝑏 (V)𝑟 (V))
−1
) = 𝑒 (ℎ2, 𝐻 (𝑚)) .

𝑑1 = 𝑒

(
2∏

𝑘=1

(uft𝑘(A),ℎ2

)𝑐
𝑘
(A) , 𝑐3(A)

)
= 𝑒 (ℎ𝑏 (A) (𝑟 (A)−𝜉 (A)𝜂 (A))

2
· ℎ𝑏 (A)𝜉 (A)𝜂 (A)

2
, 𝐻 (𝑚) (𝑏 (A)𝑟 (A))

−1
)

= 𝑒 (ℎ𝑏 (A)𝑟 (A)
2

, 𝐻 (𝑚) (𝑏 (A)𝑟 (A))
−1
) = 𝑒 (ℎ2, 𝐻 (𝑚)) .

15

	Abstract
	1 Introduction
	2 Background
	2.1 Cross-database systems
	2.2 Order-Revealing Encryption
	2.3 Pay-per-query and the related attack
	2.4 Insider attacks

	3 Problem Statement
	4 Revisit DORE and SEDORE
	4.1 Basic Notation
	4.2 DORE, SEDORE, and EDORE Scheme

	5 System model
	6 Threat Model and token forgery attack
	7 Universe Token Reusability
	8 Verifiable DORE (VDORE)
	8.1 Security Definitions
	8.2 Cryptographic Tools
	8.3 VDERE
	8.4 VDORE

	9 Experiment
	9.1 Experiment environments
	9.2 Dataset
	9.3 Performance

	10 Related Works
	11 Conclusion
	References
	A UTRA for efficient DORE

