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Abstract. Quantum computing has attracted substantial attention from researchers
across various fields. In case of the symmetric key cryptography, the main problem
is posed by the application of Grover’s search. In this work, we focus on quantum
analysis of the lightweight block cipher LED.
This paper proposes an optimized quantum circuit for LED, minimizing the required
number of qubits, quantum gates, and circuit depth. Furthermore, we conduct
Grover’s attack and Search with Two Oracles (STO) attack on the proposed LED
cipher, estimating the quantum resources required for the corresponding attack oracles.
The STO attack outperforms the usual Grover’s search when the state size is less
than the key size. Beyond analyzing the cipher itself (i.e., the ECB mode), this work
also evaluates the effectiveness of quantum attacks on LED across different modes of
operation.
Keywords: Grover’s Search · Search with Two Oracles · LED Block Cipher · Modes
of Operation · Quantum Circuits · Quantum Cryptography

1 Introduction
The Internet of Things (IoT) is revolutionizing the way devices communicate and operate
through interconnected devices, resulting in a large number of applications across a variety
of domains [CXL+14, LL15]. Nonetheless, IoT security remains a significant concern due
to the large number of devices and their limited resources. Lightweight cryptography aims
to address these limitations, ensuring secure communication while maintaining efficiency
in terms of power, speed, and hardware resources. However, with the development of
quantum computing, quantum attacks such as Grover’s algorithm pose substantial risks to
encryption systems, thereby significantly impacting the security of lightweight cryptography
in the quantum computing era.

Therefore, it is crucial to explore and analyze lightweight ciphers in the context of
quantum attacks. Several relevant studies have already been conducted [JSK+21, JCKS20],
focusing on lightweight block ciphers such as PRESENT, GIFT, and SPECK. Moreover, we
have seen recent improvements on the attack on AES, namely [LPZW23, SF24, JBS+22].

Among various lightweight block ciphers, the LED cipher stands out due to its compact
hardware design and minimal silicon footprint. Given these properties, this paper focuses
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on the quantum implementation and quantum attack of the LED cipher. Specifically, we
propose an efficient quantum circuit for the LED cipher, minimizing the required qubits,
quantum gates, and circuit depth. Furthermore, we perform Grover’s attack and Search
with Two Oracles (STO) attack on the proposed quantum LED cipher and estimate the
quantum resources required for these attack oracles. This work also addresses several issues
found in the quantum LED cipher proposed by Song et al. [SJS+23]. By comparing it with
the corrected version of their implementation, it is evident that our design provides a more
comprehensive and efficient solution. Additionally, this paper also addresses modes of
operation in the context of quantum attack. In classical cryptography, modes of operation
such as ECB, CBC, OFB, and CFB have been widely discussed and standardized since
their introduction in FIPS 81 back in 1981. However, in quantum cryptography, while
quantum attacks on block ciphers have been extensively explored, modes of operation have
not been considered thus far. To fill this critical gap, this work proposes frameworks for
ECB, CBC, and CFB modes based on the quantum LED cipher. Furthermore, we provide
a thorough analysis of the quantum attack costs associated with these different modes of
operation.

Contributions & Novelty
In brief, our contributions are detailed as follows1:

• Efficient Quantum Circuit for LED Block Cipher and Resource Estimates.
We present a novel approach to implementing the LED block cipher as a quantum
circuit. The proposed approach optimizes the quantum circuit of the LED cipher by
exploring efficient subcircuit structures, thereby enhancing the overall efficiency.
We evaluate the performance of our design using the ProjectQ framework [SHT16].
Our analysis includes a detailed comparison of the required quantum resources, such
as qubits and circuit depth, with respect to other block cipher implementations in
the literature. Compared to previous works, our implementation achieves a more
efficient quantum circuit for the LED cipher.

• Quantum Cost Estimation of One Oracle (Grover’s) and Two Oracles
(STO) Attack. In this work, Grover’s attack (that employs one quantum oracle)
complexity is reported for LED. Moreover, as referenced in [KLL15, DP20], we
also investigate the requirement and the impact of the STO attack, which is an
improvement over Grover’s attack when the state size is less than the key size for
a block cipher (and more complex as it employs two quantum oracles). For both
types of attacks, we estimate the quantum resource requirements and provide a
comprehensive evaluation of their efficiency.

• Modes of Operation for Block Ciphers in Quantum. This work explores the
modes of operation in quantum attacks, proposing frameworks for ECB, CBC and
CFB modes based on the proposed quantum LED cipher. Besides, it also provides a
thorough analysis of Grover’s attack’s effectiveness across these modes.

2 Background
2.1 LED Block Cipher
In 2011, Guo et al. [GPPR11] introduced the LED block cipher, well-suited for efficient
encryption/decryption in resource-constrained environments. LED operates on 64-bit
blocks and supports key sizes of 64 and 128 bits. The cipher employs 32 rounds for the

1The source-codes will be provided with a future version of this paper.
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64-bit key version and 48 rounds for the 128-bit key version. Specifically, before the first
round, the LED cipher performs an initial AddRoundKey operation. Subsequently, the
AddRoundKey operation is executed every four rounds. Each round consists of four steps
performed sequentially: AddConstants, SubCells, ShiftRows and MixColumns. Besides, it
is necessary to highlight that performing one MixColumnsSerial requires executing four
MixColumn operations. An overview of the LED encryption process is shown in Figure 1,
with a detailed discussion of each component as follows.
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(b) LED-128.

Figure 1: Schematics for LED block cipher.

• KeySchedule and AddRoundKey. LED employs a straightforward key schedule.
For LED-64, the same 64-bit user key K is used directly in each round. While for
LED-128, the 128-bit user key is divided into two subkeys (K = K0||K1), where the
key in each round is alternately set to equal the left part K0 and the right part K1
of K. Each 64-bit round key is Exclusive-OR-ed with 64-bit state.

• AddConstants. The round constants are detailed in Table 1, which presents the con-
stants (rc5, rc4, rc3, rc2, rc1, rc0) encoded as byte values for each round. Paticularly,
rc0 represents the least significant bit.

• SubCells. The LED cipher reuses the S-box (C56B90AD3EF84712) from the
PRESENT block cipher [BKL+07].
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Table 1: Round constants used in LED.
Rounds Constants
1 − 24 01, 03, 07, 0F, 1F, 3E, 3D, 3B, 37, 2F, 1E, 3C, 39, 33, 27, 0E, 1D, 3A, 35, 2B, 16, 2C, 18, 30
25 − 48 21, 02, 05, 0B, 17, 2E, 1C, 38, 31, 23, 06, 0D, 1B, 36, 2D, 1A, 34, 29, 12, 24, 08, 11, 22, 04

• ShiftRows. This operation involves cyclically left shifting the bytes in i − th row
of the state array by i cell positions. Specifically, the 0th row remains unchanged,
while the 1st row is shifted left by 4 bits, the 2nd row is shifted left by 8 bits, and
the 3rd row is shifted left by 12 bits.

• MixColumns. This operation processes each column of the state array as a column
vector, which is then replaced by a new vector obtained by post-multiplying it by the
matrix M (the MixColumns matrix). This matrix is actually obtained by another
matrix, A (the MixColumnsSerial matrix), by raising it to the fourth power. Both
are defined over GF(24)/x4 + x + 1 and are given by:

M =


4 1 2 2
8 6 5 6
B E A 9
2 2 F B

 A =


0 1 0 0
0 0 1 0
0 0 0 1
4 1 2 2


Note that M = A4 and is MDS2. The authors recommended to implement M by
successively applying the circuit of A four times for low resource utilization.

In brief, the prudent design of LED strikes a balance between security and resource
efficiency, making this cipher particularly well-suited for IoT devices and other applications
with strict resource constraints.

2.2 Quantum Gates
Shown in Figure 2, the 4 quantum gates play crucial roles in the implementation. That
said, we may like to decompose the AND operations, see [CBC23, Section II] or [BJ24] for
more details.

|x⟩ |¬x⟩

(a) X Gate

|x⟩ • |x⟩

|y⟩ |x ⊕ y⟩
(b) CNOT Gate

|x⟩ • |x⟩

|y⟩ • |y⟩

|z⟩ |z ⊕ x · y⟩
(c) Toffoli Gate

|x⟩ × |y⟩

|y⟩ × |x⟩

(d) Swap Gate

Figure 2: Common quantum gates.

• X Gate. This quantum gate performs a bit-flip operation, inverting the state of a
qubit from |x⟩ to |¬x⟩ and vice versa.

2Also, one may note that A = M64.
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• CNOT Gate. This gate is a two-qubit gate that flips the state of the target qubit
if the control qubit is in the state |1⟩.

• Toffoli Gate. This operation, also known as the controlled-controlled-NOT (CC-
NOT) gate, flips the state of the target qubit only when both control qubits are
in the state |1⟩. It is noteworthy that this quantum gate can be decomposed into
basic quantum gates such as X, CNOT, H, and T gates [AMM+13] in various
ways. Consequently, the implementation cost depends on the specific decomposition
method.

• SWAP Gate. This is a two-qubit gate that exchanges the states of two qubits. As
illustrated in Figure 2(d), the operation SWAP(x, y) results in (y, x).

2.3 Grover’s Attack
In quantum cryptography, Grover’s attack can be utilized to perform a quantum key
search, significantly reducing the time complexity of finding the correct encryption key.
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Figure 3: Quantum oracles for Grover’s algorithm.

Before delving into Grover’s attack, it is essential to first understand Grover’s algorithm.
This famous quantum algorithm provides a quadratic speedup over classical algorithms for
unstructured search problem. Specifically, Grover’s algorithm can locate the solution to
a problem within an unsorted database of N items using approximately O(

√
N) queries,

compared to the O(N) queries required by classical brute-force method.
Grover’s attack is based on the principles of Grover’s algorithm. Figure 3 illustrates the

quantum oracles used in this attack, demonstrating how it directly borrows and adapts the
structure of Grover’s algorithm to achieve its key search objective. Specifically, this attack
begins by applying Hadamard gates to the key qubits, which creates superposition states.
Next, the specific encryption quantum circuit uses these states to encrypt the plaintext. If
the generated ciphertext matches the known ciphertext, this oracle then inverts the sign of
the corresponding key state. Following this, the diffusion operator is applied to amplify
the amplitude of the potential solution key. The combination of the oracle and diffusion
operator is repeated multiple times to further enhance the amplitude of the correct key.
Finally, measuring the key qubits reveals the most probable solution.
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2.4 Improvement over Grover: Search with Two Oracles
In this subsection, we introduce the Search with Two Oracles (STO) attack as an enhance-
ment of Grover’s algorithm.

Initially proposed by Kimmel et al. [KLL15], the STO attack is able to reduce the
overall cost of quantum search procedures compared to directly applying the Grover’s
algorithm. This attack utilizes two quantum oracles: the first oracle, Oγ , is relatively
inexpensive and marks both the M target items and a number of false positives; the second,
Oχ, is more expensive but accurately identifies the M target items. Particularly, Oχ is
identical to the one used in Grover’s algorithm. For STO attack, the number of queries
required remains O(

√
2k/M) as that for the Grover’s attack, where k denotes the key size.

In brief, this attack enhances the overall efficiency by balancing the costs of Oγ and Oχ

with the number of false positives. By carefully designing these oracles and managing their
associated costs, the search process can be significantly optimized.

The STO attack we implement in this paper follows a similar methodology to that
described in Reference [DP20]. In particular, our construction of the oracle Oχ employs a
serial-oracle design pattern, as suggested in the same reference.

In subsequent content, we provide a thorough analysis of the quantum resources required
for the proposed STO attack on LED cipher.

3 Efficient Quantum Implementation of LED Cipher
In this section, we present an efficient quantum implementation of the LED cipher, focusing
on minimizing the overall cost. This cipher consists of several submodules, which are
arranged into multiple rounds of encryption. Accordingly, we will detail the efficient
implementations for the five key submodules of quantum LED cipher in the subsequent
subsections.

3.1 AddRoundKey
The quantum AddRoundKey operation is implemented using only CNOT gates, resulting
in a circuit with a depth of one. This straightforward operation is simpler than other
components like the S-box and MixColumn, as it follows a generic implementation method.
Specifically, in the LED cipher, a 64-qubit round key is XORed with the intermediate
state using 64 CNOT gates, as illustrated in ProjectQ Code 3.1.

Code 3.1: AddRoundKey of quantum LED implementation

1 def KeyAddition(eng, state, key):
2 for i in range(64):
3 CNOT | (key[i], state[i])

3.2 AddConstants
Similar to the AddRoundKey operation, the quantum AddConstants operation is also
based on a generic method. Since the round constant in the LED cipher is a fixed value,
as detailed in Table 1, this quantum implementation only involves applying X gates to the
state qubits where the corresponding bits in the round constant are set to 1. The specific
ProjectQ implementation details are provided in Code 3.2.
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Code 3.2: AddConstants of quantum LED implementation.

1 def Round_constant_XOR(eng, state, round_constant):
2 for i in range(64):
3 if (round_constant >> i & 1):
4 X | state[i]

3.3 SubCells
The SubCells operation applies a non-linear substitution using Sbox. As mentioned in
Section 2.1, the LED cipher reuses the same Sbox as PRESENT [BKL+07]. The coordinate
functions of this Sbox are:

y0 = x0 ⊕ x1x2 ⊕ x2 ⊕ x3

y1 = x0x1x2 ⊕ x0x1x3 ⊕ x0x2x3 ⊕ x1x3 ⊕ x1 ⊕ x2x3 ⊕ x3

y2 = x0x1x3 ⊕ x0x1 ⊕ x0x2x3 ⊕ x0x3 ⊕ x1x3 ⊕ x2 ⊕ x3 ⊕ 1
y3 = x0x1x2 ⊕ x0x1x3 ⊕ x0x2x3 ⊕ x0 ⊕ x1x2 ⊕ x1 ⊕ x3 ⊕ 1

For the quantum implementation, the design of an efficient quantum Sbox is crucial, as it
directly impacts the performance of this operation. Given the inherent complexity and the
numerous possible approaches for implementing a quantum LED Sbox, we have explored a
range of strategies to identify the most efficient design. These strategies are outlined in
detail below.

• Naïve. This approach directly utilizes the Sbox coordinate functions to design the
quantum circuit. While straightforward, this method does not optimize for quantum
resources, resulting in higher quantum costs.

• LIGHTER-R. LIGHTER-R [DBSC19] is a tool designed for implementing S-boxes
using reversible logic libraries, specifically targeted for 4-bit S-boxes. Using this tool,
we generated a quantum implementation of the LED Sbox, which is illustrated in
Figure 4(b).

• DORCIS. DORCIS [CBC23] is a tool that optimizes quantum implementations
for arbitrary 3- and 4-bit S-boxes, extending the capabilities of the LIGHTER-R.
Unlike LIGHTER-R, which only handles 4-bit S-boxes and operates at a top level
using Toffoli gates, DORCIS incorporates quantum decomposition with Clifford and
T gates, optimizing both quantum depth and T-depth. In this paper, we employed
DORCIS to generate a quantum implementation of the LED S-box, as shown in
Figure 4(c).

• Sbox α. In the paper [CHM11], Courtois et al. optimized various small digital
circuits, including LED S-box. It is shown in Figure 4(d).

• Sbox β. In 2024, Feng et al. [FWZ+24] proposed optimized implementations of
lightweight cryptographic S-boxes using SAT solvers, which significantly enhance the
overall cryptographic performance. Here, we implement their optimized LED S-box
into quantum circuit, as shown in Figure 4(e).

• Sbox γ. In the paper by Cai et al. [CGL22], a quantum S-box for the LED cipher
is proposed that utilizes 5 qubits (i.e., 1 ancilla/garbage qubit). This design is
illustrated in Figure 4(f).
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|x0⟩ • • • • • • |x0⟩
|x1⟩ • • • • • • • • • • |x1⟩
|x2⟩ • • • • • • • • |x2⟩
|x3⟩ • • • • • • • • • |x3⟩
|0⟩ • • • • • • • • |y0⟩
|0⟩ • |y1⟩
|0⟩ • |y2⟩
|0⟩ |y3⟩

(a) Naïve.

|x0⟩ • • |y0⟩
|x1⟩ • • • • |y3⟩
|x2⟩ • • • • |y1⟩
|x3⟩ • • • |y2⟩

(b) LIGHTER-R [DBSC19].

|x2⟩ • • • • |y3⟩
|x3⟩ • • • |y2⟩
|x1⟩ • • • • |y1⟩
|x0⟩ • • |y0⟩

(c) DORCIS [CBC23].

|x0⟩ • • • |x0⟩
|x1⟩ • • • • • |x1⟩
|x2⟩ • • • • • |x2⟩
|x3⟩ • |x3⟩
|0⟩ • • |y0⟩
|0⟩ • |y1⟩
|0⟩ • • |y2⟩
|0⟩ • • • |y3⟩

(d) Sbox α [CHM11].

|x0⟩ • • • • |x0⟩
|x1⟩ • • • • |x1⟩
|x2⟩ • • • • • • • • |x2⟩
|x3⟩ • • • • |x3⟩
|0⟩ • |y0⟩
|0⟩ • |y1⟩
|0⟩ |y2⟩
|0⟩ • • |y3⟩

(e) Sbox β [FWZ+24].

|x3⟩ • • • • • • • • • |y3⟩
|x2⟩ • • • • • • • • • • • |y2⟩
|x1⟩ • • • • • • • • |y1⟩
|x0⟩ • • • • • • • • • • • |y0⟩
|0⟩ • • • • |0⟩

(f) Sbox γ [CGL22].

|x3⟩ • • • • |y3⟩
|x2⟩ • • • |y2⟩
|x1⟩ • • • • |y1⟩
|x0⟩ • • |y0⟩

(g) Sbox δ [CLF+24]

Figure 4: Quantum implementations of LED Sbox.

• Sbox δ. In 2024, Chen et al. [CLF+24] proposed a SAT-based model that optimizes
quantum circuits incorporating three metrics. Based on this model, we designed a
more compact quantum circuit for LED Sbox, as illustrated in Figure 4(g).

In Table 2, the quantum costs associated with each approach are presented. Here
“1qClifford” refers to the Clifford gate operating on a single qubit, such as the Hadamard, X
or S gates. It can be seen that both the Sbox γ by Chen et al. and the DORCIS-generated
Sbox exhibit the highest efficiency, with a circuit depth of 8 and a Toffoli depth of 4. Since
the two designs are very similar, either one could be chosen. In this paper, we decided to
use the DORCIS-generated implementation for our quantum S-box.

3.4 ShiftRows
The ShiftRows operation, which performs circular shifts, can be implemented using quantum
swap gates, also known as “physical swap” approach. Alternatively, this operation can be
achieved using the “logical swap” approach, which involves rearranging the indices of the
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Table 2: Quantum resource requirement for LED SBox.
Method #1qCliff #CNOT #Toffoli #T #Qubits Circuit

depth
Toffoli
depth

Naïve (Figure 4(a)) 2 13 15 105 8 27 14
LIGHTER-R [DBSC19] (Figure 4(b)) 2 5 4 28 4 9 4
DORCIS [CBC23] (Figure 4(c))⋆ 2 5 4 28 4 8 4
Sbox α [CHM11] (Figure 4(d)) 12 12 5 35 8 16 5
Sbox β [FWZ+24] (Figure 4(e)) 6 16 4 28 8 19 4
Sbox γ [CGL22] (Figure 4(f)) 7 5 19 133 5 24 19
Sbox δ [CLF+24] (Figure 4(g)) 2 5 4 28 4 8 4

⋆: Used in this work

qubits logically without employing additional quantum swap gates. As one can see, the
second approach is more resource-efficient, as it avoids the requirement for extra quantum
resources. Therefore, in this work, we adopt the “logical swap” approach. Details of the
implementation are provided in Code 3.3.

Code 3.3: ShiftRows of quantum LED implementation.

1 def ShiftRows(eng, state):
2 new_state = []
3 # 1st row--left rotate 4 places
4 new_state[0:4] = state[4:8]
5 new_state[4:8] = state[8:12]
6 new_state[8:12] = state[12:16]
7 new_state[12:16] = state[0:4]
8 # 2nd row--left rotate 8 places
9 new_state[16:20] = state[24:28]

10 new_state[20:24] = state[28:32]

11 new_state[24:28] = state[16:20]
12 new_state[28:32] = state[20:24]
13 # 3rd row--left rotate 12 places
14 new_state[32:36] = state[44:48]
15 new_state[36:40] = state[32:36]
16 new_state[40:44] = state[36:40]
17 new_state[44:48] = state[40:44]
18 # 0th row--left rotate 0 place
19 new_state[48:64] = state[48:64]
20 return new_state

3.5 MixColumn
Based on the specification of LED (see Section 2.1), the MixColumnsSerial matrix (A) and
the MixColumns (M) matrix can be given in binary as follows:

M =



0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0
1 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0
1 1 0 0 0 0 1 0 1 0 0 1 1 0 0 1
0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0
1 0 0 1 0 1 1 0 1 0 1 0 0 1 1 0
1 1 0 0 1 0 1 1 1 1 0 1 1 0 1 1
0 1 1 0 0 1 0 1 1 1 1 0 0 1 0 1
0 0 1 0 1 1 0 0 0 1 0 1 1 1 0 0
0 1 0 1 1 1 1 1 1 1 0 1 0 0 0 1
1 0 1 0 0 1 1 1 1 1 1 0 1 0 0 0
1 1 0 1 0 0 1 1 1 1 1 1 0 1 0 0
1 0 1 1 1 1 1 0 1 0 1 0 0 0 1 1
0 1 0 0 0 1 0 0 0 1 1 1 0 1 0 1
0 0 1 0 0 0 1 0 0 0 1 1 1 0 1 0
1 0 0 1 1 0 0 1 0 0 0 1 1 1 0 1
1 0 0 0 1 0 0 0 1 1 1 1 1 0 1 1



A =



0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0
1 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0
1 1 0 0 0 0 1 0 1 0 0 1 1 0 0 1
0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0


Here, we explore several methods to determine the most efficient design, which are

summarized as follows:

• Naïve (Out-of-place). The naïve approach involves using ancilla qubits to compute
the new state of a qubit while preserving its previous state in a backup qubit, which is
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essential for the calculation of new state of two other qubits. Following this approach,
Song et al. [SJS+23] proposed the naïve implementation of the MixColumn operation
in the quantum LED cipher. As shown in Table 3, this implementation requires 32
qubits and 108 CNOT gates, with a quantum depth of 10.

• PLU Factorization. PLU factorization decomposes a given binary matrix into a
permutation matrix, a lower triangular matrix, and an upper triangular matrix. This
factorization can also be applied to achieve an efficient in-place quantum implemen-
tation for MixColumn operation. By following the method detailed in [vH19], we use
Sage3 to obtain an in-place quantum implementation through PLU factorization.

• Gauss-Jordan Elimination. Gauss-Jordan elimination is used to factorize any
binary matrix through elementary operations, which correspond to CNOT and SWAP
gates in quantum circuits. By applying this method, we achieve an in-place quantum
implementation that utilizes 16 qubits with 103 CNOT gates and 8 SWAP gates,
with a quantum depth of 52.

• XZLBZ. The XZLBZ algorithm [XZL+20] offered an innovative approach for the
in-place quantum implementation of binary matrices. At that time, it was the first
tool to efficiently implement a given linear layer. The most notable result from this
paper was to find an in-place implementation of the AES MixColumn with 92 CNOT
gates and 30 quantum depth (although they did not optimize for quantum depth).
Note that a revision of this algorithm was reported in [BCC+24].

• YWSZZ. This is a very recent paper [YWS+24] where the authors managed to find
an in-place implementation of the AES MixColumn matrix with 91 CNOT gates
and (13 classical depth, 35 quantum depth). This is where the record stands till
date, to the best of our knowledge. In our case though, it turns out that XZLBZ
(44) outperforms YWSZZ (47) in terms of CNOT gates.

Table 3: Quantum resource requirement for LED MixColumns.
Method #CNOT #SWAP Circuit depth

Out-of-place (32 qubits)
Naïve (used in [SJS+23]) 108 0 10

In-place (16 qubits)
PLU 103 8 62
Gauss-Jordan 103 8 52
XZLBZ [XZL+20] 45 16 19
XZLBZ [XZL+20]∗ 44 16 16
Modified XZLBZ [BCC+24] 50 14 17
Modified XZLBZ [BCC+24] 46 12 20
YWSZZ [YWS+24] 47 16 10

∗: Used in this work

As shown in Table 3, we summarize the quantum costs for the various approaches
discussed before. One may note that, the XZLBZ implementation demonstrates the highest
efficiency, achieving 44 CNOT gates with 16 qubits and a circuit depth of 16. Hence, we
chose this implementation as our quantum MixColumn.

The matrix A requires 14 CNOT gates in the optimal in-place implementation. This
was found using the MILP tool of [BKD21]. Thus, it would require 4 × 14 = 52 CNOT
gates to implement M by using this matrix, and hence were not considered here. Using

3https://doc.sagemath.org/html/en/reference/matrices/sage/matrix/matrix2.html

https://doc.sagemath.org/html/en/reference/matrices/sage/matrix/matrix2.html
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the same tool, we also found that the minimum number of CNOT gates that are required
to implement M in-place is at least 154.

3.6 Architecture
Using the presented modules AddConstants, SubCells, ShiftRows, and MixColumns, we
construct the architecture for the LED quantum circuit. Even at the architectural level,
the in-place design is implemented, where the ciphertext is computed directly on the input
qubits (i.e., plaintext) without allocating additional qubits.

Figure 5 shows the in-place architecture of the LED quantum circuit (here AC, SC, SR,
and MC represent AddConstants, SubCells, ShiftRows, and MixColumns, respectively).
The only differences between LED-64 and LED-128 are the number of steps (s) and the
AddRoundKey operation, neither of which affects the overall architecture. Thus, the
in-place architecture shown in Figure 5 applies equally to both the LED-64 and LED-128
quantum circuits (s = 8 and s = 12, respectively).

Step 1 . . . Step s

|K⟩ • • . . . • |K⟩

|P ⟩ AC SC SR MC . . . AC SC SR MC |C⟩

×4 ×4
︸ ︷︷ ︸ ︸ ︷︷ ︸

Figure 5: In-place architecture of LED quantum circuit.

4 Consideration for Modes of Operation
In classical cryptography, modes of operation were introduced to enhance security when
using block ciphers to encrypt long messages. However, in the field of quantum cryptography,
this topic has not received much attention. To address this gap, this work proposes several
frameworks for modes of operation based on the quantum LED circuit discussed in
Section 3. In this work, we focus on three widely utilized modes of operation: Electronic
Codebook (ECB), Cipher Block Chaining (CBC), and Cipher Feedback (CFB). The
detailed construction methods for these modes are illustrated in Figure 7.

One may note from [Bak21, Chapter 2.2.2] that the block cipher modes can be thought
of as belonging from one of the two categories, non-symmetric and symmetric (see Figure
6). In the non-symmetric modes, both the sender and the recipient use two operations (one
being the inverse of the other); whereas in symmetric modes, they use the same operation.
In this paper, we take the representative modes; ECB and CBC from the non-symmetric
category; and CFB from the symmetric category (analysis about the other modes, like
OFB or CTR, will be similar to that of the CFB mode).

The following subsections will provide detailed implementations of the quantum frame-
works for ECB, CBC, and CFB modes. For clarity and conciseness, the simplified
representation of the proposed quantum LED implementation, as shown in Figure 8, will
be utilized throughout the remaining part of this section.

4The program took a long time since it searched for an implementation with 15 CNOT gates, yet there
was no outcome.
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Figure 6: Two types of block cipher modes.
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Figure 7: Typical modes of operations considered in this work
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|K⟩ • |K⟩

|P ⟩ LED |C⟩

Figure 8: Simplified representation of LED in quantum

|K⟩ • • • • |K⟩
|P0⟩ LED |C0⟩
|P1⟩ LED |C1⟩
|P2⟩ LED |C2⟩
... . . . ...

|Pn−1⟩ . . . |Cn−1⟩
|Pn⟩ . . . LED |Cn⟩

Figure 9: Framework for ECB Mode based on the proposed quantum LED.

4.1 Electronic Codebook Mode (ECB)
As shown in Figure 7(a), in ECB mode, each plaintext block is independently encrypted
using the same block cipher, resulting in a corresponding ciphertext block. This mode
is straightforward, as it directly applies the quantum cipher to each block without any
interdependencies between them. However, the absence of inter-block dependencies in
ECB can make it very vulnerable to various attacks.

The quantum framework for ECB mode is depicted in Figure 9, where each plaintext
block is processed independently using the quantum LED circuit. In this diagram, K
denotes the key, P denotes plaintext, and C denotes ciphertext.

4.2 Cipher Block Chaining Mode (CBC)
In CBC mode, interdependencies between plaintext blocks are established by XORing
each plaintext block with the ciphertext of the previous block before encryption. For the
first plaintext block, the XOR operation is performed with an initialization vector (IV),
which is typically a random or pseudorandom value. This chaining mechanism ensures
that identical plaintext blocks produce different ciphertexts, thereby enhancing security
compared to ECB mode.

The quantum framework for CBC mode is shown in Figure 10, illustrating the process
of XORing each plaintext block with the previous ciphertext block, followed by encryption
using the quantum LED cipher. Here, IV denotes initialization vector.

4.3 Cipher Feedback Mode (CFB)
The CFB mode operates similarly to a stream cipher, converting a block cipher into a
stream cipher. Particularly, this mode is suitable for real-time data encryption by allowing
for the partial encryption of data streams. In CFB, the previous ciphertext block is
encrypted using the block cipher, and the resulting output is then XORed with the current
plaintext block to generate the new ciphertext block.

The quantum framework for implementing CFB mode is provided in Figure 11, where
the feedback mechanism and sequential encryption process are illustrated. Although the
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|K⟩ • • • • |K⟩
|IV ⟩ • |IV ⟩
|P0⟩ LED • |C0⟩
|P1⟩ LED • |C1⟩
|P2⟩ LED |C2⟩
... . . . ...

|Pn−1⟩ . . . • |Cn−1⟩
|Pn⟩ . . . LED |Cn⟩

Figure 10: Framework for CBC Mode based on the proposed quantum LED.

|K⟩ • • • |K⟩
|IV ⟩ LED • |IV ⟩
|P0⟩ • |C0⟩

|0⟩ LED • |0⟩
|P1⟩ |C1⟩

... . . . ...
|Pn−1⟩ . . . • |Cn−1⟩

|0⟩ . . . LED • |0⟩
|Pn⟩ . . . |Cn⟩

Figure 11: Framework for CFB Mode based on the proposed quantum LED.

proposed framework generates garbage qubits, all of them will be cleaned to |0⟩ through
the subsequent uncomputation step in Grover’s attack.

In this section, we have proposed frameworks for ECB, CBC, and CFB modes based
on our quantum LED implementations. Subsequently, Grover’s attack estimation will be
performed on the LED cipher under these proposed modes of operation frameworks to
evaluate their effectiveness.

5 Results & Discussions

In this section, we conduct a thorough analysis of all the experimental results. To begin
with, the issues in the previous quantum LED implementation proposed by Song et
al. [SJS+23] are revised, thereby establishing a more accurate benchmark for subsequent
comparisons. Following this, we compare the quantum resources required to implement
the LED cipher with those needed for other block ciphers. Besides, this work provides
the quantum attack resources based on the proposed quantum LED implementations,
including Grover’s attack oracles and STO attack oracles. At the end of this section, the
effectiveness of Grover’s attack oracles on various quantum modes of operation are carefully
estimated, with the proposed quantum LED cipher serving as the underlying block cipher.
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5.1 Revision of Previous Quantum LED Implementations
In the previous work [SJS+23], Song et al. also proposed a quantum implementation of
the LED cipher. However, this work contains an issue in estimating the required number
of qubits for the quantum implementation of LED cipher. In this subsection, we analyze
the issue and provide a correction to ensure a more accurate comparison in subsequent
content.

As shown in Table 3, the authors proposed an out-of-place naïve MixColumn. To
perform one MixColumnsSerial, four MixColumn operations are required, with each
MixColumn requiring 16 newly allocated output qubits, totaling 64 qubits for a single
MixColumnsSerial. Since LED-64 consists of 32 rounds, each applying one MixColumnsSe-
rial, 2048 qubits (32 rounds × 64) should be allocated for their implementation. However,
their paper reports that only 142 qubits are required for the quantum LED-64 imple-
mentation without using any special techniques. This discrepancy arises from an issue
in their MixColumnsSerial and naïve MixColumn implementation. To address this, we
correctly allocate the output qubits for the naïve MixColumn and MixColumnsSerial in
their implementation.

Table 4: Revised benchmark for the quantum implementation of LED-64
Quantum Circuit #Qubits #Toffoli #CNOT #X Circuit depth
LED-64 [SJS+23] 142 2048 19008 1438 810

LED-64 [SJS+23] (Revised) 2176 2048 19008 1438 1147

In Table 4, we report the corrected quantum resource requirements for their LED-64
quantum circuit. In Song et al.’s paper [SJS+23], all submodules of the quantum LED cipher
are implemented without ancilla qubits, except for MixColumnsSerial. Consequently, the
revised benchmark includes an additional 2048 qubits from the corrected MixColumnsSerial,
bringing the total to 2176 qubits when combined with the initial 128 qubits allocated for
plaintext (64 qubits) and key (64 qubits). Furthermore, the circuit depth is revised from
810 to 1147.

5.2 Experiment 1: Cost Analysis for LED in Quantum
In this subsection, we present a detailed cost analysis of the proposed quantum imple-
mentations of LED cipher. Specifically, the comparison details between our designs and
various implementations of quantum lightweight block ciphers from previous researches
are provided in Table 5.

Table 5: Quantum rexesource requirements for LED and other lightweight block ciphers.
Quantum Circuit #Qubits #Toffoli #CNOT #X Circuit depth

LED-64 (This work) 128 2048 8768 1158 753
LED-128 (This work) 192 3072 13120 1734 1127

LED-64 (Corrected) [SJS+23] 2176 2048 19008 1438 1147
PRESENT-64/80 [JSK+21] 144 2108 4683 1118 311
PRESENT-64/128 [JSK+21] 192 2232 4838 1164 311

GIFT-64/128 [JSK+21] 192 1792 1792 3261 308
GIFT-128/128 [JSK+21] 256 6144 6144 10,953 528
SIMON-64/128 [AMM20] 192 1408 7396 1216 2643
SIMON-128/128 [AMM20] 256 4352 17,152 4224 8427
SPECK-64/128 [JCK+20] 193 3286 9238 57 -
SPECK-128/128 [JCK+20] 257 7942 22,086 75 -
CHAM-64/128 [JCK+20] 196 2400 12,285 240 -
CHAM-128/128 [JCK+20] 268 4960 26,885 240 -
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• Our Work vs. Previous Quantum LED Design. The proposed quantum LED-
64 design in this work significantly outperforms the corrected LED-64 implementation
discussed in Section 5.1, which represents the only previous quantum implementation
of the LED cipher. Specifically, it requires fewer qubits, with a total of 128 compared
to 2176 in the previous implementation, representing a reduction of approximately
94%. In terms of gate count, both designs use the same number of Toffoli gates,
totaling 2048. However, our design shows clear advancements in other gate costs.
Specifically, it utilizes fewer CNOT gates, with 8768 compared to 19008 in the
previous implementation, resulting in a reduction of approximately 53.9%. Similarly,
our design requires fewer X gates, with 1158 compared to 1438, which corresponds
to a reduction of around 19.5%. Regarding circuit depth, our design has a depth of
753, whereas the previous implementation has a depth of 1147. This represents a
reduction of approximately 34.4%, highlighting a significant improvement in time
efficiency for our proposed design.

• Our Work vs. Other Quantum Analysis Lightweight Block Ciphers. Our
quantum LED designs demonstrate significant advantages in efficiency when compared
to other quantum lightweight block cipher implementations. For qubits, our quantum
LED-64 and LED-128 designs utilize 128 and 192 qubits, respectively. Compared to all
the other lightweight block ciphers mentioned in this section, our designs achieve the
lowest qubit requirements. Compared to other quantum block ciphers, our proposed
quantum LED designs exhibit competitive gate efficiency. For the most resource-
intensive quantum gate, the Toffoli gate, both LED-64 and LED-128 maintain a
relatively low count, comparable to quantum PRESENT implementations [JSK+21].
Additionally, our designs show comparable efficiency in CNOT and X gates, requiring
fewer resources than ciphers such as SIMON [AMM20] and GIFT [JSK+21]. In
terms of circuit depth, our designs exhibit a relatively high cost compared to other
work, ranking just below the quantum Simon designs reported in [AMM20]. While
our designs maintain competitive performance, there is still room for optimization in
circuit depth.

In brief, our LED-64 and LED-128 quantum implementations demonstrate the lowest
qubit requirements when compared to previous quantum block cipher implementations,
while also achieving competitive gate cost and circuit depth.

5.3 Experiment 2: Grover’s Attack on LED
This experiment focuses on estimating the quantum resources necessary for executing
Grover’s attack on the proposed LED ciphers. This process begins with a critical
step—accurately estimating the quantum LED implementations. Specifically, the quan-
tum LED-64 and LED-128 are implemented according to the methodology outlined in
Section 3, followed by the decomposition of all involved Toffoli gates into Clifford and
T gates to ensure precise resource estimation. Among various decomposition methods
available [AMM+13, Sel13, HLZ+17], this paper adopts the approach introduced in Ref-
erence [AMM+13]. As shown in Figure 12, this method utilizes 8 Clifford and 7 T
gates, resulting in a T-depth of 4 and a total depth of 8 for each Toffoli gate. Based on
this specific decomposition strategy, we outlined the quantum resources required for the
proposed LED implementations in Table 6.

In Tables 6 and 7 TD/Td-M and FD-M represent the trade-off performance of
quantum circuits by being the product of the Toffoli/T depth and qubit count, and the
full depth and qubit count, respectively. Additionally, we report the metrics TD2/Td2-M
and FD2-M , which are major trade-off metrics for parallelization in Grover’s search5,

5Grover’s key search demands extreme circuit depth due to the large number of iterations. Under the
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|x⟩ T† T T† T |x⟩

|y⟩ T† • • • • |y⟩

|z⟩ H • T • T† H |z ⊕ x · y⟩

Figure 12: Decomposition for Toffoli gate (T-depth 4, full depth 8)

emphasizing the importance of depth.

Table 6: Decomposed resource requirements for proposed quantum LED implementations.
Circuit #CNOT #1qCliff #T Toffoli #Qubit Full depth

TD-M FD-M TD2-M FD2-M
depth (TD) (M) (FD)

LED-64 20032 5254 14336 128 128 1649 1.00 · 214 1.61 · 217 1.00 · 221 1.3 · 228

LED-128 30016 7878 21504 192 192 2471 1.13 · 215 1.81 · 218 1.69 · 222 1.09 · 230

Based on the quantum cost of the proposed LED implementations, the corresponding
Grover attack cost can be directly estimated. As detailed in Section 2.3, recovering a k-bit
key for a cipher using Grover’s algorithm requires approximately

√
2k iterations of both

the Grover oracle and the diffusion operator. Moreover, reference [BBHT98] provides a
precise analysis, indicating that the optimal number of iterations is ⌊ π

4

√
2k⌋. In this work,

we adopt this estimate for our cost calculations.
Furthermore, we employed a widely used method [GLRS16, JNRV20] to simplify our

analysis. Particularly, we disregard the diffusion operator from the cost estimation due to
its minimal contribution. Consequently, the focus of Experiment 2 remains solely on the
cost of the oracle, ensuring an accurate and efficient estimation process.

Next, we delve into the quantum resource analysis for Grover’s attack oracle. This
oracle consists of several components: the LED quantum circuit for encryption, an n-
controlled NOT gate (where n represents the ciphertext size) for comparing the ciphertext
with a known value, and the reverse operation of the previously executed LED quantum
circuit for each subsequent iteration. It is crucial to emphasize the decomposition of the
n-controlled NOT gate. Based on the approach outlined in Reference [WR14], this gate is
estimated to require (32 · n − 64) T gates.

Overall, the estimated costs for Grover’s attack oracles on LED are summarized in
Table 7. The total cost required is approximated as ⌊ π

4

√
2k⌋×(Table 6 × 2) + ⌊ π

4

√
2k⌋ ×

(32 · n − 64) T gates. Since the iterations are executed sequentially, the number of qubits
required remains consistent with the values presented in Table 6, with only one additional
decision qubit required for ciphertext comparison.

Table 7: Quantum resource requirements for Grover’s attack on LED.

Cipher
#Gate Full depth T -depth #Qubit

G-FD FD-M Td-M FD2-M Td2-M
(G) (FD) (Td) (M)

LED-64 1.99 · 247 1.27 · 243 1.57 · 241 1.01 · 27 1.26 · 291 1.28 · 250 1.58 · 248 1.61 · 293 1.24 · 290

LED-128 1.47 · 281 1.90 · 275 1.18 · 274 1.00 · 28 1.39 · 2157 1.90 · 283 1.18 · 282 1.80 · 2159 1.39 · 2156

constraint of circuit depth (such as the MAXDEPTH parameter introduced by NIST [NIS16, NIS22]),
parallelization of Grover’s search is required to reduce the circuit depth, but its performance is poor. As
a result, the product of the squared depth and qubit count serves as the trade-off metric in Grover’s
parallelization. See Section 5.3 for more details.
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NIST Post-Quantum Security Levels

To assess the security of a cipher against quantum attacks, NIST [NIS16, NIS22] has
defined security bounds for various levels:

• Level 1: The resource requirements for an attack are comparable to those for breaking
AES-128: 2170 (stated) → 2157 (state-of-the-art [JBS+22]).

• Level 3: The resource requirements for an attack are comparable to those for breaking
AES-192: 2233 (stated) → 2221 (state-of-the-art [JBS+22]).

• Level 5: The resource requirements for an attack are comparable to those for breaking
AES-256: 2298 (stated) → 2285 (state-of-the-art [JBS+22]).

Based on the cost estimates for Grover’s key search against AES variants as presented
by Grassl et al. [GLRS16], NIST determined the quantum attack complexities for Levels
1, 3 and 5 (corresponding to different AES variants) as 2170, 2233 and 2298, respectively
(calculated as total gates multiplied by the depth of Grover’s search). It is important to
highlight that NIST’s complexity estimates in [NIS16] are derived from research results
published in PQCrypto’16 [GLRS16]. Since that time, quantum circuits for AES have
undergone continuous optimization, resulting in a significant decrease in the cost of attacks
in recent years [JNRV20, ZWS+20, JBS+22, HS22].

NIST also acknowledges that the attack complexities based on these levels are relative,
given the ongoing optimizations in quantum circuits for AES (see [NIS16, Page 17]).
Therefore, if a more efficient attack is proposed, the benchmarks may need to be updated.

Recently, NIST revised the security bounds for AES [NIS22] following the findings
presented at Eurocrypt 2020 [JNRV20]. In [JNRV20], the quantum attack costs for AES-
128, -192 and -256 were significantly reduced to 2157, 2221 and 2285, respectively; aligning
with the updated values in [NIS22].

It is worth noting that the newly updated costs have an issue, as the estimation in
[JNRV20] was found to be incorrect (the corrected estimation is in [JNRV19]). However,
the updated costs presented in [NIS22] are also achievable in [JBS+22] through their
optimized quantum circuits for AES (see Table 8). Thus, we still use the security bounds
from [NIS22] to assess the post-quantum security of LED.

In Table 8, the evaluation of post-quantum security levels for LED-64 and LED-128 is
presented. As expected, LED-64 cannot achieve the required security level due to its 64-bit
key length. However, LED-128 offers the same level of difficulty as breaking AES-128 using
Grover’s key search algorithm, thereby achieving the Level-1 post-quantum security.

Table 8: Comparison of the Grover’s key search costs.
Post-quantum NIST’16 [NIS16] NIST’22 [NIS22] Jang et al. Table 7 (G-FD)

Security (based on [GLRS16]) (based on [JNRV20]) [JBS+22] LED-64 LED-128
Level-1 (AES-128) 2170 2157 2156

Not achieved
(291)

Level 1
(2157)

Level-3 (AES-192) 2233 2221 2221

Level-5 (AES-256) 2298 2285 2286

5.4 Experiment 3: STO Attack on Quantum LED
In this experiment, we present a detailed analysis of the STO attack on the proposed
quantum LED design, with associated quantum costs outlined in Table 9.

• STO Attack on Quantum LED-64. The STO attack does not offer significant
advantages over the Grover’s oracle for attacking the LED-64 cipher. The parameter
r is calculated as r = ⌈k/n⌉, where k is the key size and n is the state size. A quantum
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Table 9: Quantum resource requirements for one oracle (Grover) and two oracles (STO)
attacks on LED.

Cipher
#Gate Full depth T -depth #Qubit

G-FD FD-M Td-M FD2-M Td2-M
(G) (FD) (Td) (M)

LED-64 (Grover) 1.99 · 247 1.27 · 243 1.57 · 241 1.01 · 27 1.26 · 291 1.28 · 250 1.58 · 248 1.61 · 293 1.24 · 290

LED-64 (STO) 1.99 · 247 1.27 · 243 1.57 · 241 1.01 · 27 1.26 · 291 1.28 · 250 1.58 · 248 1.61 · 293 1.24 · 290

LED-128 (Grover) 1.47 · 281 1.90 · 275 1.18 · 274 1.00 · 28 1.39 · 2157 1.90 · 283 1.18 · 282 1.80 · 2159 1.39 · 2156

LED-128 (STO) 1.03 · 281 1.33 · 276 1.65 · 274 1.51 · 27 1.36 · 2157 1.99 · 283 1.24 · 282 1.32 · 2160 1.02 · 2157

attack on a block cipher requires at least r pairs of plaintext and corresponding
ciphertext, where k denotes the key size and n denotes the block size. For LED-64,
with both the block size and key size set to 64 bits, the required r is only 1. Hence,
the Grover’s attack oracle remains equally efficient when compared to the cheap
oracle Oγ in STO attack. In brief, the STO attack does not provide a substantial
advantage over Grover’s attack oracle for the LED-64 cipher.

• STO Attack on Quantum LED-128. The STO attack offers significant improve-
ment over Grover’s attack for the LED-128 cipher. For LED-128, with a key size of
128 bits and a block size of 64 bits, the required number of rounds r is 2. Hence, the
STO attack benefits from the cheap oracle Oγ , which is much more efficent compared
to the corresponding Grover’s oracle. While the STO attack requires a higher depth,
it compensates by reducing the number of gates and qubits involved. This efficiency
in terms of gate count and qubit cost highlights the advantages of the STO approach
over Grover’s attack for LED-128.

Overall, we have successfully implemented the STO attack on the proposed quantum
LED ciphers, resulting in improved efficiency compared to Grover’s attack. Although the
STO attack does not offer significant advantages for LED-64, it is clear that for LED-128,
STO attack oracle requires fewer gates and qubits, though with an increase in circuit depth.
Moreover, the product of Gate and Full depth (G-FD) decreases, further highlighting the
benefits of the STO approach in attacking LED-128.

5.5 Experiment 4: Grover’s Attack on LED across Various Modes
of Operation

In the last experiment, we perform Grover’s attack on the proposed quantum LED cipher
across multiple modes of operation, namely ECB, CBC and CFB.

Before estimating the resources required for Grover’s attack, we first analyze the
quantum costs associated with the different modes of operation frameworks discussed in
Section 4. According to these frameworks, Table 10 provides the detailed quantum resource
requirements for η-block quantum LED encryption across different modes of operation,
showing how the cost of each quantum framework varies with block size η.

Table 10: Quantum resource requirements for LED under modes of operation with η
blocks.

Quantum Circuit #Qubits #Toffoli #CNOT #X Circuit depth
LED-64 (ECB) 64 + 64η 2048η 8768η 1158η 753η
LED-128 (ECB) 128 + 64η 3072η 13120η 1734η 1127η
LED-64 (CBC) 128 + 64η 2048η 8832η 1158η 754η
LED-128 (CBC) 192 + 64η 3072η 13184η 1734η 1128η
LED-64 (CFB) 64 + 128η 2048η 8896η − 64 1158η 755η − 1
LED-128 (CFB) 128 + 128η 3072η 13248η − 64 1734η 1129η − 1
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However, regardless of the mode of operation used, Grover’s attack only needs to be
applied to the first block of the cipher. This is because all blocks within a specific mode
generally share the same key. Consequently, as shown in Table 11, the cost estimation for
the quantum attack exhibits only minor differences across different modes of operation.

Table 11: Quantum Resource Requirements for Grover’s Attack on LED across various
modes of operations.

Cipher
#Gate Full depth T -depth #Qubit

G-FD FD-M Td-M FD2-M Td2-M
(G) (FD) (Td) (M)

LED-64 (ECB) 1.99 · 247 1.27 · 243 1.57 · 241 1.01 · 27 1.26 · 291 1.28 · 250 1.58 · 248 1.61 · 293 1.24 · 290

LED-128 (ECB) 1.47 · 281 1.90 · 275 1.18 · 274 1.00 · 28 1.39 · 2157 1.90 · 283 1.18 · 282 1.80 · 2159 1.39 · 2156

LED-64 (CBC) 1.99 · 247 1.27 · 243 1.57 · 241 1.51 · 27 1.26 · 291 1.91 · 250 1.18 · 249 1.20 · 294 1.85 · 290

LED-128 (CBC) 1.47 · 281 1.90 · 275 1.18 · 274 1.25 · 28 1.39 · 2157 1.19 · 284 1.475 · 282 1.13 · 2160 1.74 · 2156

LED-64 (CFB) 1.99 · 247 1.27 · 243 1.57 · 241 1.51 · 27 1.26 · 291 1.91 · 250 1.18 · 249 1.20 · 294 1.85 · 290

LED-128 (CFB) 1.47 · 281 1.90 · 275 1.18 · 274 1.25 · 28 1.39 · 2157 1.19 · 284 1.475 · 282 1.13 · 2160 1.74 · 2156

In brief, the cost of Grover’s attack depends solely on the first block, and the quantum
resource requirements for this block vary only slightly between ECB, CBC and CFB.
Therefore, there is minimal variation in the overall cost of Grover’s attack across different
modes of operation.

6 Conclusion
In this work, we have designed efficient quantum implementation of the variants of
LED block cipher (LED-64 and LED-128). By optimizing the quantum circuits through
minimization of qubits, quantum gates, and circuit depth, we were able to estimate the least
quantum resources required for executing the Grover’s attack and the STO attack (which
is more difficult than Grover’s, but offers quantum advantage for LED-128). Furthermore,
we have successfully implemented ECB, CBC and CFB modes for quantum LED; this
kind of analysis was not done in the past, to best of our knowledge.

A Per-Step Benchmarks
We present the per-step (4 rounds) resource benchmarks for our quantum circuits of
LED-64 and LED-128 in Tables 12 and 13, respectively. Note that the initial key XOR is
excluded from Tables 12 and 13.

Table 12: Quantum resources required per step (4 rounds) for LED-64.
Step #CNOT #NOT #Toffoli Toffoli depth (TD) Circuit depth

1 1088 136 256 16 96
2 1088 148 256 16 96
3 1088 152 256 16 96
4 1088 146 256 16 96
5 1088 144 256 16 96
6 1088 148 256 16 95
7 1088 136 256 16 95
8 1088 148 256 16 96
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Table 13: Quantum resources required per step (4 rounds) for LED-128.
Step #CNOT #NOT #Toffoli Toffoli depth (TD) Circuit depth

1 1088 136 256 16 95
2 1088 148 256 16 96
3 1088 152 256 16 96
4 1088 146 256 16 96
5 1088 144 256 16 96
6 1088 148 256 16 95
7 1088 136 256 16 95
8 1088 148 256 16 96
9 1088 142 256 16 96
10 1088 146 256 16 96
11 1088 148 256 16 96
12 1088 140 256 16 95

References
[AMM+13] Matthew Amy, Dmitri Maslov, Michele Mosca, Martin Roetteler, and Martin

Roetteler. A meet-in-the-middle algorithm for fast synthesis of depth-optimal
quantum circuits. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 32(6):818–830, Jun 2013. URL: http://dx.doi.org/10.11
09/TCAD.2013.2244643. 5, 16

[AMM20] Ravi Anand, Arpita Maitra, and Sourav Mukhopadhyay. Grover on simon.
Quantum Information Processing, 19(9), September 2020. URL: http://dx.doi
.org/10.1007/s11128-020-02844-w, doi:10.1007/s11128-020-02844-w. 15,
16

[Bak21] Anubhab Baksi. Classical and Physical Security of Symmetric Key Crypto-
graphic Algorithms. PhD thesis, School of Computer Science & Engineering,
Nanyang Technological University, Singapore, 2021. https://dr.ntu.edu.sg/ha
ndle/10356/152003. 11

[BBHT98] Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp. Tight bounds
on quantum searching. Fortschritte der Physik, 46(4-5):493–505, Jun 1998.
URL: http://dx.doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<493::
AID-PROP493>3.0.CO;2-P, doi:10.1002/(sici)1521-3978(199806)46:
4/5<493::aid-prop493>3.0.co;2-p. 17

[BCC+24] Anubhab Baksi, Sumanta Chakraborty, Anupam Chattopadhyay, Matthew
Chun, SK Hafizul Islam, Kyungbae Jang, Hyunji Kim, Yujin Oh, Soham
Roy, Hwajeong Seo, and Siyi Wang. Quantum implementation of linear and
non-linear layers. IEEE International System-on-Chip Conference (SOCC),
2024. 10

[BJ24] Anubhab Baksi and Kyungbae Jang. Quantum Computing Fundamental and
Cryptographic Perspective, pages 7–20. Springer Nature Singapore, Singapore,
2024. doi:10.1007/978-981-97-0025-7_2. 4

[BKD21] Anubhab Baksi, Banashri Karmakar, and Vishnu Asutosh Dasu. POSTER:
optimizing device implementation of linear layers with automated tools. In
Applied Cryptography and Network Security Workshops - ACNS 2021 Satellite
Workshops, Kamakura, Japan, June 21-24, 2021, Proceedings, volume 12809

http://dx.doi.org/10.1109/TCAD.2013.2244643
http://dx.doi.org/10.1109/TCAD.2013.2244643
http://dx.doi.org/10.1007/s11128-020-02844-w
http://dx.doi.org/10.1007/s11128-020-02844-w
https://doi.org/10.1007/s11128-020-02844-w
https://dr.ntu.edu.sg/handle/10356/152003
https://dr.ntu.edu.sg/handle/10356/152003
http://dx.doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P
http://dx.doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P
https://doi.org/10.1002/(sici)1521-3978(199806)46:4/5<493::aid-prop493>3.0.co;2-p
https://doi.org/10.1002/(sici)1521-3978(199806)46:4/5<493::aid-prop493>3.0.co;2-p
https://doi.org/10.1007/978-981-97-0025-7_2


22 New Results in Quantum Analysis of LED: Featuring One and Two Oracle Attacks

of Lecture Notes in Computer Science, pages 500–504. Springer, 2021. doi:
10.1007/978-3-030-81645-2\_30. 10

[BKL+07] Andrey Bogdanov, Lars R Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew JB Robshaw, Yannick Seurin, and Charlotte Vikkelsoe.
PRESENT: An ultra-lightweight block cipher. In CHES, volume 4727, pages
450–466. Springer, 2007. 3, 7

[CBC23] Matthew Chun, Anubhab Baksi, and Anupam Chattopadhyay. Dorcis: Depth
optimized quantum implementation of substitution boxes. Cryptology ePrint
Archive, Paper 2023/286, 2023. https://eprint.iacr.org/2023/286. URL:
https://eprint.iacr.org/2023/286. 4, 7, 8, 9

[CGL22] BinBin Cai, Fei Gao, and Gregor Leander. Quantum attacks on two-round
even-mansour. Frontiers in Physics, 10:1028014, 2022. 7, 8, 9

[CHM11] Nicolas T. Courtois, Daniel Hulme, and Theodosis Mourouzis. Solving circuit
optimisation problems in cryptography and cryptanalysis. Cryptology ePrint
Archive, Paper 2011/475, 2011. https://eprint.iacr.org/2011/475. URL:
https://eprint.iacr.org/2011/475. 7, 8, 9

[CLF+24] Jingwen Chen, Qun Liu, Yanhong Fan, Lixuan Wu, Boyun Li, and Meiqin
Wang. New SAT-based model for quantum circuit decision problem: Searching
for low-cost quantum implementation. IACR Communications in Cryptology,
1(1), 2024. doi:10.62056/anmmp-4c2h. 8, 9

[CXL+14] Shanzhi Chen, Hui Xu, Dake Liu, Bo Hu, and Hucheng Wang. A vision of
iot: Applications, challenges, and opportunities with china perspective. IEEE
Internet of Things journal, 1(4):349–359, 2014. 1

[DBSC19] Vishnu Asutosh Dasu, Anubhab Baksi, Sumanta Sarkar, and Anupam Chat-
topadhyay. Lighter-r: Optimized reversible circuit implementation for sboxes.
2019 32nd IEEE International System-on-Chip Conference (SOCC), pages
260–265, 2019. URL: https://api.semanticscholar.org/CorpusID:218564036. 7,
8, 9

[DP20] James H Davenport and Benjamin Pring. Improvements to quantum search
techniques for block-ciphers, with applications to aes. In International Con-
ference on Selected Areas in Cryptography, pages 360–384. Springer, 2020. 2,
6

[FWZ+24] Jingya Feng, Yongzhuang Wei, Fengrong Zhang, Enes Pasalic, and Yu Zhou.
Novel optimized implementations of lightweight cryptographic s-boxes via
sat solvers. IEEE Transactions on Circuits and Systems I: Regular Papers,
71(1):334–347, 2024. doi:10.1109/TCSI.2023.3325559. 7, 8, 9

[GLRS16] Markus Grassl, Brandon Langenberg, Martin Roetteler, and Rainer Stein-
wandt. Applying Grover’s algorithm to AES: Quantum resource estimates.
In Tsuyoshi Takagi, editor, Post-Quantum Cryptography, pages 29–43, Cham,
2016. Springer International Publishing. 17, 18

[GPPR11] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matt Robshaw. The led
block cipher. In Cryptographic Hardware and Embedded Systems–CHES 2011:
13th International Workshop, Nara, Japan, September 28–October 1, 2011.
Proceedings 13, pages 326–341. Springer, 2011. 2

https://doi.org/10.1007/978-3-030-81645-2_30
https://doi.org/10.1007/978-3-030-81645-2_30
https://eprint.iacr.org/2023/286
https://eprint.iacr.org/2023/286
https://eprint.iacr.org/2011/475
https://eprint.iacr.org/2011/475
https://doi.org/10.62056/anmmp-4c2h
https://api.semanticscholar.org/CorpusID:218564036
https://doi.org/10.1109/TCSI.2023.3325559


Wang et al. 23

[HLZ+17] Yong He, Ming-Xing Luo, E Zhang, Hong-Ke Wang, and Xiao-Feng Wang.
Decompositions of n-qubit toffoli gates with linear circuit complexity. Interna-
tional Journal of Theoretical Physics, 56(7):2350–2361, 2017. 16

[HS22] Zhenyu Huang and Siwei Sun. Synthesizing quantum circuits of aes with lower
t-depth and less qubits. Cryptology ePrint Archive, Report 2022/620, 2022.
https://eprint.iacr.org/2022/620. 18

[JBS+22] Kyungbae Jang, Anubhab Baksi, Gyeongju Song, Hyunji Kim, Hwajeong Seo,
and Anupam Chattopadhyay. Quantum analysis of aes. Cryptology ePrint
Archive, Paper 2022/683, 2022. https://eprint.iacr.org/2022/683. 1, 18

[JCK+20] Kyoungbae Jang, Seungju Choi, Hyeokdong Kwon, Hyunji Kim, Jaehoon
Park, and Hwajeong Seo. Grover on korean block ciphers. Applied Sciences,
10(18), 2020. URL: https://www.mdpi.com/2076-3417/10/18/6407, doi:
10.3390/app10186407. 15

[JCKS20] Kyungbae Jang, Seungjoo Choi, Hyeokdong Kwon, and Hwajeong Seo. Grover
on SPECK: Quantum resource estimates. Cryptology ePrint Archive, Report
2020/640, 2020. https://eprint.iacr.org/2020/640. 1

[JNRV19] Samuel Jaques, Michael Naehrig, Martin Roetteler, and Fernando Virdia.
Implementing grover oracles for quantum key search on aes and lowmc, 2019.
URL: https://arxiv.org/abs/1910.01700, arXiv:1910.01700. 18

[JNRV20] Samuel Jaques, Michael Naehrig, Martin Roetteler, and Fernando Vir-
dia. Implementing grover oracles for quantum key search on AES and
lowmc. In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptol-
ogy - EUROCRYPT 2020, Zagreb, Croatia, May 10-14, Part II, volume
12106 of Lecture Notes in Computer Science, pages 280–310. Springer, 2020.
doi:10.1007/978-3-030-45724-2\_10. 17, 18

[JSK+21] Kyungbae Jang, Gyeongju Song, Hyunjun Kim, Hyeokdong Kwon, and Hwa-
jeong Seo. Efficient implementation of present and gift on quantum computers.
Applied Sciences, 11:4776, 05 2021. doi:10.3390/app11114776. 1, 15, 16

[KLL15] Shelby Kimmel, Cedric Yen-Yu Lin, and Han-Hsuan Lin. Oracles with costs.
Communication and Cryptography, TQC, 2015. 2, 6

[LL15] In Lee and Kyoochun Lee. The internet of things (iot): Applications, invest-
ments, and challenges for enterprises. Business horizons, 58(4):431–440, 2015.
1

[LPZW23] Qun Liu, Bart Preneel, Zheng Zhao, and Meiqin Wang. Improved quantum
circuits for AES: Reducing the depth and the number of qubits. Cryptology
ePrint Archive, Paper 2023/1417, 2023. URL: https://eprint.iacr.org/2023/1
417. 1

[NIS16] NIST. Submission requirements and evaluation criteria for the post-quantum
cryptography standardization process, 2016. https://csrc.nist.gov/CSRC/med
ia/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-fin
al-dec-2016.pdf. 17, 18

[NIS22] NIST. Call for additional digital signature schemes for the post-quantum
cryptography standardization process, 2022. https://csrc.nist.gov/csrc/media
/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf. 17,
18

https://eprint.iacr.org/2022/620
https://eprint.iacr.org/2022/683
https://www.mdpi.com/2076-3417/10/18/6407
https://doi.org/10.3390/app10186407
https://doi.org/10.3390/app10186407
https://eprint.iacr.org/2020/640
https://arxiv.org/abs/1910.01700
https://arxiv.org/abs/1910.01700
https://doi.org/10.1007/978-3-030-45724-2_10
https://doi.org/10.3390/app11114776
https://eprint.iacr.org/2023/1417
https://eprint.iacr.org/2023/1417
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf


24 New Results in Quantum Analysis of LED: Featuring One and Two Oracle Attacks

[Sel13] Peter Selinger. Quantum circuits of t-depth one. Physical Review A,
87(4):042302, 2013. 16

[SF24] Haotian Shi and Xiutao Feng. Quantum circuits of AES with a low-depth
linear layer and a new structure. Cryptology ePrint Archive, Paper 2024/381,
2024. URL: https://eprint.iacr.org/2024/381. 1

[SHT16] Damian Steiger, Thomas Häner, and Matthias Troyer. Projectq: An open
source software framework for quantum computing. Quantum, 2, 12 2016.
doi:10.22331/q-2018-01-31-49. 2

[SJS+23] Min-ho Song, Kyung-bae Jang, Gyeong-ju Song, Won-woong Kim, and Hwa-
Jeong Seo. Quantum circuit implementation of the led block cipher with
compact qubit. Journal of the Korea Institute of Information Security &
Cryptology, 33(3):383–389, 2023. 2, 10, 14, 15

[vH19] Iggy van Hoof. Space-efficient quantum multiplication of polynomials for
binary finite fields with sub-quadratic toffoli gate count. arXiv preprint
arXiv:1910.02849, 2019. 10

[WR14] Nathan Wiebe and Martin Roetteler. Quantum arithmetic and numerical
analysis using repeat-until-success circuits. arXiv preprint arXiv:1406.2040,
2014. 17

[XZL+20] Zejun Xiang, Xiangyong Zeng, Da Lin, Zhenzhen Bao, and Shasha Zhang.
Optimizing implementations of linear layers. IACR Transactions on Symmetric
Cryptology, 2020. 10

[YWS+24] Yufei Yuan, Wenling Wu, Tairong Shi, Lei Zhang, and Yu Zhang. A framework
to improve the implementations of linear layers. IACR Transactions on
Symmetric Cryptology, 2024(2):322–347, June 2024. URL: https://tosc.iacr.or
g/index.php/ToSC/article/view/11633. 10

[ZWS+20] Jian Zou, Zihao Wei, Siwei Sun, Ximeng Liu, and Wenling Wu. Quantum
circuit implementations of AES with fewer qubits. In Shiho Moriai and
Huaxiong Wang, editors, Advances in Cryptology – ASIACRYPT 2020, pages
697–726, Cham, 2020. Springer International Publishing. 18

https://eprint.iacr.org/2024/381
https://doi.org/10.22331/q-2018-01-31-49
https://tosc.iacr.org/index.php/ToSC/article/view/11633
https://tosc.iacr.org/index.php/ToSC/article/view/11633

	Introduction 
	Background
	LED Block Cipher  
	Quantum Gates 
	Grover's Attack
	Improvement over Grover: Search with Two Oracles

	Efficient Quantum Implementation of LED Cipher 
	AddRoundKey
	AddConstants 
	SubCells 
	ShiftRows 
	MixColumn
	Architecture

	Consideration for Modes of Operation  
	Electronic Codebook Mode (ECB)
	Cipher Block Chaining Mode (CBC)
	Cipher Feedback Mode (CFB)

	Results & Discussions
	Revision of Previous Quantum LED Implementations
	Experiment 1: Cost Analysis for LED in Quantum
	Experiment 2: Grover’s Attack on LED
	Experiment 3: STO Attack on Quantum LED 
	Experiment 4: Grover’s Attack on LED across Various Modes of Operation

	Conclusion
	Per-Step Benchmarks
	References

