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3 Shutter Network

Abstract. With the emergence of DeFi, attacks based on re-ordering transactions have become an es-
sential problem for public blockchains. Such attacks include front-running or sandwiching transactions,
where the adversary places transactions at a particular place within a block to influence a financial
asset’s market price. In the Ethereum space, the value extracted by such attacks is often referred to
as miner/maximal extractable value (MEV), which to date is estimated to have reached a value of
more than USD 1.3B. A promising approach to protect against MEV is to hide the transaction data so
block proposers cannot choose the order in which transactions are executed based on the transactions’
content. This paper describes the cryptographic protocol underlying the Shutter network. Shutter has
been available as an open-source project since the end of 2021 and has been running in production
since Oct. 2022.

1 Introduction

Public blockchains like Ethereum [28] process and store transaction data in a decentralized and
transparent way, providing users with open access to financial services. However, in 2020, Daian
et al. [10] showed that the public availability of transaction data in public blockchains poses a
significant privacy concern for users, which they coined by the termminer extractable value (MEV)4.
Essentially, MEV describes the value that a block proposer can extract from a batch of transactions
by re-ordering the batch or by inserting/removing certain transactions. For instance, a well known
MEV attack is front-running, where a block proposer sees a user’s intent to buy an asset and then
places its own buy order just before the user’s transaction to take advantage of the price movement
caused by the user’s transaction. As a consequence the block proposer makes a risk-free profit at
the expense of the user.

Countermeasures Against MEV Attacks. In the literature, two main types of countermeasures
against MEV attacks have been proposed [29]. The first class of countermeasures tries to “democ-
ratize” MEV by ensuring all block proposers have the same capability of extracting MEV [22].
Essentially, this guarantees that MEV becomes an additional fee paid by the users to the proposers
to ensure the system’s overall stability. A second approach is ensuring that proposers have limited
control over the order of transactions. This can be done using time-based order fairness, where the
consensus algorithm ensures that transactions are processed in the order they are received [21].
Unfortunately, some impossibility results to what extent such time-based order fairness can be
guaranteed have been shown [21]. Moreover, such schemes are typically incompatible with the ex-
isting blockchain ecosystems as they require significant changes to how the consensus is done. An
alternative approach to limit the control of block proposers is to hide the transaction content such

4 The term was later changed to maximal extractable value.



that block proposers have to decide on an order without knowing the transaction content. There are
multiple cryptographic techniques to achieve such content-agnostic ordering. This includes tech-
niques such as multiparty computation (MPC), where the processing of transactions is run by a
committee of servers via MPC [5]. Another popular approach is to rely on a commit-and-reveal
approach (e.g., see [29] for an overview). The commit-and-reveal approach works in two phases. In
the first phase, users commit to their transactions, where the content of the transaction is hidden
inside the commitment. Once the transaction order is fixed, the content of the transaction gets
revealed, which allows the system to execute the transactions.

The commit-and-reveal approach can be instantiated using various cryptographic techniques.
The two most popular are timed cryptography (e.g., leveraging time-lock encryption) [16], and
threshold cryptography. Timed-cryptography-based systems do not rely on an honest majority as-
sumption but require the maintainers of the system to execute some heavy computation. Threshold
cryptography, on the other hand, requires that a majority of the system’s maintainers are honest.
On the positive side, however, it relies on more standard cryptographic techniques and thus can
be much more efficient. Moreover, it eliminates practical issues such as estimating the exact com-
plexity of solving the time-lock puzzle. The Shutter network that we present in this paper leverages
threshold cryptography. In the following, we will give a high-level overview of the underlying cryp-
tography of Shutter. We emphasize that the rest of this document is not intended as a full academic
paper but to disseminate to the community the main cryptographic ideas behind Shutter. There
have recently been several proposals that leverage similar ideas to what is currently implemented
by Shutter [4, 12, 23]. As in Shutter, these works rely on identity-based encryption to decrypt trans-
actions “as a bundle”. In addition, they offer a more detailed security analysis of the techniques
used in this paper.

1.1 Applications of the Shutter protocol

The Shutter system was originally designed to protect against MEV attacks on public blockchains
and is already used for that purpose on the Gnosis Chain 5. We write more about concrete, practical
settings in this case in Section 4.3. However, it can also be used for other purposes. In fact, it is
already used for shielded voting for DAOs: In an election, votes must typically remain private. With
Shutter shielded voting, the content of a vote remains private. Currently, Shutter is already live on
the Snapshot6 voting platform. We believe that also other applications can benefit from Shutter.
One example is decryption based on condition, where users may encrypt messages that are revealed
only when a certain condition is met (e.g., after some time has passed or when a certain event has
happened). Another example is censorship protection on Layers 1 and 2: When transaction content
is encrypted, miners cannot censor certain transactions (and can also not be forced to do so).

2 High-level idea of the Shutter protocol

The general idea of Shutter is that the system users encrypt the content of their transactions,
and the encrypted transactions are decrypted all at once. The protocol involves a set of users
{U1, . . . ,Uu}, and a set of so-called keypers {K1, . . . ,Kn}. Moreover, the parties have access to a
public ledger L, which supports smart contracts, e.g., Ethereum. We assume that a majority of the

5 https://docs.gnosischain.com/shutterized-gc/
6 https://snapshot.mirror.xyz/yGz91njKbw-sXsnAT6RkoMzPwvuddZritz37h1OWO8o
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keypers are honest. The protocol starts with a setup phase when system parameters are generated
in a distributed way by the keypers. These parameters consist of a master public key mpk (posted
on the ledger) and the master secret key msk that is never revealed to any protocol participant.
The master key msk exists in the system in an implicit way only: it is shared (see Sec. 3.3 for an
introduction to secret sharing) between all the keypers (the share of each keyper Kj is denoted as
mskj), see also Fig. 1.

Fig. 1. Setup.

Then, the protocol runs in eons (indexed by numbers i := 1, 2, . . .). In each eon i the users
encrypt their transactions for this eon. To simplify the description, we assume that each user U has
only one transaction T in each eon; the generalization to a larger number of transactions is straight-
forward. This encryption requires only local computation, taking as input mpk and the eon index i
(no interaction with other parties is needed). Each encrypted transaction C := Post(mpk, T, i) is
posted on the ledger. This is depicted in Fig. 2.

The encrypted transactions of the users are publicly opened on the ledger at the end of each
eon. This process involves the keypers and the ledger. By “publicly opened” we mean that the
information on the ledger suffices to decrypt T in an efficient way (using hashing only). More
precisely, for each encrypted transaction C, the keypers publish on the ledger a short information σ
(where typically |σ| ≪ |C|) such that later T (corresponding to C) can be quickly computed (using
a function denoted Read) from (C, σ). This is done in order to minimize the amount of information
sent to the ledger (an alternative approach would be to require that each decrypted transaction
appears on the ledger in plaintext, but this can be costly for longer transactions). Technically, the

Fig. 2. Posting encrypted transactions on the ledger.
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process of opening the transactions consists of (a) the keypers jointly (and interactively) computing
the ith eon’s secret key sk(i), (b) using sk(i) each keyper computes the σ value corresponding to
each C. The correct value σ is decided by keypers voting on the ledger. This is depicted on Fig. 2

Fig. 3. Public opening of a ciphertext C.

The Shutter protocol is constructed using ID-based threshold cryptography [6, 14, 17]. Thanks to
this, users do not need to interact with any other party while computing C (except for sending a
message to the ledger).

3 Technical details

This section contains the technical details of Shutter. We start with the specification of the protocol
properties (this is done in Sec. 3.1) and then describe the communication model (in Sec. 3.2). Sec. 3.3
contains cryptographic preliminaries. The actual construction is presented in Sec. 3.4.

3.1 Protocol specification

Let us now provide more details about the Shutter specification in addition to what was presented
in Sec. 2. When we say that in some algorithm, a party Pi outputs a private output, we mean that
this output is given only to Pi. If an algorithm’s output is publicly available, then we say it is a
public output. The protocol consists of the following algorithms:

Setup: A randomized algorithm DistrSetup executed jointly by all the keypers. We assume that it
takes as input a security parameter 1κ and the number of keypers n. The output of the DistrSetup
is as follows:

• public output: master public key mpk posted on the ledger, and
• private output of each keyper Ki: a secret key mski.

Posting transactions in eon i: A randomized algorithm Post(mpk, T, i) (where i ∈ Z>0 and T ∈
{0, 1}∗) is a transaction) executed by a user in eon i. As a result, an encrypted transaction T is
posted on the ledger. Denote this ciphertext with C.
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Opening the transactions in eon i: A deterministic algorithm Open executed jointly by all the
keypers. The algorithm looks at the ledger and for every C that appeared there in the previous
phase publishes σ – a string that together with C can be used to efficiently compute T that
corresponds to C using algorithm denoted “Read” as

T := Read(C, σ) (1)

We could simplify this procedure and just have σ = T (in which case “computing T from σ is
trivial: simply Read(C, σ) = σ.). The need for the above definition comes from the fact that this
will allow us to optimize the amount of data on the ledger.

We assume that these algorithms are executed in “phases”: first, in the setup phase, the keypers
execute the DistrSetup algorithm, then the eons are executed, each of them consisting of a posting
phase and opening phase. We assume that the phases do not overlap in time. In particular, in each
eon, the posting phase ends before the opening phase starts. We now have the following condition
that Shutter has to satisfy:

Correctness: Suppose an honest user Uj posted a transaction T in eon i resulting in the following
values appearing on the ledger: C (in the posting phase) and σ (in the opening phase). Then the
Read(C, σ) = T .

Additionally, we have the following security properties:

Secrecy: Each transaction T posted in eon i remains secret until the opening phase of this eon
starts (the only thing that leaks to the adversary is the length of T ).

Non-malleability: Suppose an honest user posted a transaction T in eon i. Then in this eon no
dishonest user can successfully post a transaction T ′ that is related in a non-trivial way to T . In
other words, each such T ′ is either independent of T , or it is equal to it (but, e.g., it cannot be
equal to T with all the bits flipped). Again, this does not apply to the length of T : we allow a
dishonest party to choose T ′ of length that is related to the length of T .

Commitment: Once a user posts a transaction T on the ledger, she cannot delete it or modify it.
It will be opened by the keypers regardless of Uj ’s willingness to help.

The non-malleability property is a bit subtle: note that we do allow the malicious parties to
“re-post” a transaction T of an honest party (in the same eon). This cannot be prevented since a
malicious party can always simply take C (that corresponds to T ) and post C ′ := C on the ledger.
Hence, the users have to take care to make such copying harmless. For example, a user Uj can add
her identifier “Uj” to a transaction and post (Uj , T ) (plus a counter, if we allow users to post more
than one transaction per eon). Note that the non-malleability propery implies that a malicious
user Uk (for k ̸= j) cannot take C (that decrypts to (Uj , T )) and “maul it” to some other C ′ that
decrypts to (Uk, T ).

An error in the implementation discovered by Choudhuri et al. [8]. As discovered by [8],
the initial implementation of Shutter was vulnerable to malleability attacks. This was because it did
not follow the description presented in this document due to a programming error. More precisely
the value of r computed in Eq. (2) (see page 7) was computed just by hashing σ (not (σ, T )). We
are very grateful to the authors of [8] for spotting it and notifying the Shutter programming team
and us according to the best practices of coordinated vulnerability disclosure.
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3.2 Communication between the parties

Before we proceed to the description of Shutter, let us present the details of the communication
model. The keypers are connected by pairwise secure channels. The keypers and the users have
access to the ledger (they can read and post transactions on it). We assume that the keypers can
run a broadcast protocol between themselves. Whenever we say that a keyper broadcasts some
value v to other keypers, it means that she initiates this broadcast protocol with his input v. We
assume that it is always clear who broadcasts a given message (i.e., it contains an identifier of the
keeper who sent it and is signed by her). In our implementation (see Sect. 4.4), we use Tendermint
(see https://tendermint.com) for broadcast.
Another technique that we use is voting on the main chain. Suppose each keyper locally computes
some value v as a deterministic function of the publicly-available data (i.e. data on the main chain
or data broadcast by the keypers). Then, the keypers can inform the blockchain about this value
by sending it to the contract and voting on it. For completeness, the voting procedure is described
in Fig. 4

The voting procedure

Let t be the maximal number of corrupt parties. A contract on the main chain has a function vote that takes two
parameters:

• vote id – a unique identifier of the particular voting procedure and
• a value v.

Each time a Ki calls vote with parameters (vote id, v) from a keyper Ki the function does the following:

1. If Ki already called vote with the same parameter vote id then this call is ignored.
2. Otherwise:

(a) If no keyper made a call with parameter (vote id, v) before: the contract stores (vote id, v) with a label
i := 1

(b) Otherwise (i.e. if vote(vote id, v) was called before by another keyper): the contract increases the label of
(vote id, v) by 1. If, as a result, this label exceeds t then this function changes this label to “agreed” and
ignores any further calls of vote with parameter vote id.

Fig. 4. The voting procedure

3.3 Preliminaries

In this paper, we use standard cryptographic notions like the random oracle model and signature
schemes (see, e.g., [20]). Below, we describe the main cryptographic tools we use in Shutter (bilinear
maps, identity-based encryption, and secret sharing).

Bilinear maps. We use the notation for bilinear maps from [6] (page 7), with the exception that
the elements P and Q that are paired come from two groups that can be different (denoted G1

and G2 respectively). Throughout this document, G1 and G2 are additive groups, i.e., its neutral
element is 0, its operation is “+”, and applying n times this operation to a group element P is
denoted as “n × P”. Furthermore, let GT be a multiplicative group, i.e., its neutral element is 1,
its operation is “·”, and applying n times this operation to a group element P is denoted as “Pn”.
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We assume that both groups have a prime order q. Moreover, we let ê be a bilinear map, i.e., it is
a poly-time computable function ê : G1 ×G2 → GT that satisfies the following conditions:

1. For all (P,Q) ∈ G1 ×G2 and all a, b ∈ Z we have that

ê(aP, bQ) = ê(P,Q)ab,

2. Map ê does not send all pairs (P,Q) to identity in GT .

We assume that the Bilinear Diffie-Hellman (BDH) problem is hard for (G1,G2,GT , ê) (see [6, 15]).
In our implementation (see Sect. 4.4), we instantiate these abstract objects with the ones proposed
in [7].

Identity-based encryption. To encrypt transactions, we use a CCA-secure scheme (instead of
a simpler CPA-secure one). This is because the encryption scheme that we use has to be non-
malleable [11], as otherwise, a malicious user could break the non-malleability of Shutter (i.e. post
a transaction T ′ that is a function of a transaction T posted by an honest user in the same eon,
see Sec. 3.1). Luckily, non-malleability is implied by CCA security (see, e.g., [2]).

Let κ be the security parameter. Let (Setup,Extract,Encrypt,Decrypt) an Identity-Based-Encry-
ption (IBE) scheme secure against an adaptive Chosen Ciphertext Attack (CCA) FullIdent from
[6] — see Def. 2.1 (in [6]) for the definition, and Sec. 4.2 (in [6]) for the construction. The only
difference between our construction and the one of [6] is that we assume that the identities are
elements of the set of natural numbers N (instead of binary strings). This small choice makes the
IBE scheme more compatible with our application.

In the sequel: H1 : N→ G1, H2 : {0, 1}∗ → {0, 1}κ, H3 : {0, 1}∗ → Zq and H4 : {0, 1}∗ → {0, 1}κ
are hash functions. Function H4 will be used as a pseudorandom function to encrypt transactions in
the “counter mode” (see below). This choice is due to the limitations of the programming language
Solidity used by Ethereum. The scheme is described below:

Setup: Generate a (master secret key, master public key) pair (msk,mpk) ∈ Z∗
q × G2 as follows:

take a random msk←$ Z∗
q and set mpk := msk× P .

Extract: For a party with identity i ∈ N let her private key be equal to skQ := msk×H1(i).

Encrypt: To encrypt transaction T to a party with identity Q, divide T into m blocks: T =
T1|| · · · ||Tm (where the length of each Ti is equal to the length of the output of a hash function
H4). Sample σ ←$ {0, 1}κ and let

r := H3(σ, T ). (2)

Then compute
C1 := r × P

and
C2 := σ ⊕H2 ((ê(Q,mpk))r) ,

and
C3 := (H4(σ||1)⊕ T1, . . . ,H4(σ||m)⊕ Tm)

(note that this is essentially the counter mode of encryption; see, e.g., [20]). Finally, define the
ciphertext as:

EncID(mpkQ, T ) := (C1, C2, C3),
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Decrypt: To decrypt a ciphertext (C1, C2, (C
1
3 , . . . C

m
3 )) with a secret key skQ do as follows. Reject

all ciphertexts that do not have a form

(C1, C2, C3) ∈ G2 × {0, 1}κ × ({0, 1}κ)∗ .

Then let

σ := C2 ⊕H2(ê(skQ, C1)), (3)

and

T := (C1
3 ⊕H4(σ||1))|| · · · ||Cm

3 ⊕H4(σ||m)) (4)

and

r := H3(σ, T ).

Reject the ciphertext if C1 ̸= r × P2. Otherwise output

DecID(skQ, (C1, C2, (C
1
3 , . . . C

m
3 ))) := T.

Distributed Boneh-Franklin encryption. We now outline the distributed Boneh-Franklin
identity-based encryption scheme, which was originally sketched in [6] (see “Distributed PKG” on
page 22) and then described in more detail in [18, 17]. For consistency with the rest of the paper,
we assume that the parties who run the protocol are also called keypers and denoted K1, . . . ,Kn.

We use Shamir’s (t, n)-threshold secret sharing scheme (share : Zq → Zn
q , reconstruct : Zt+1

q →
Zq) [26], in order to ensure that t+1 keypers are needed to reconstruct the master secret key msk,
and any set of at most t keypers has no information about msk. We assume that every keyper Ki

is assigned a unique point xi ∈ Zq \ {0} and let x0 := 0. Recall that in Shamir’s secret sharing,
a secret s is shared by selecting a random polynomial φ such that φ(0) = s, and each keyper Ki

holds φ(i). For completeness, the full description of Shamir’s secret sharing appears Appx. A.1.

The distributed Boneh-Franklin identity-based scheme is a pair (DistrSetup,DistrExtract,Encrypt,
Decrypt) of distributed algorithms, where DistrSetup is the distributed key generation algorithm,
and DistrExtract is the distributed key extraction algorithm, and Encrypt and Decrypt are as in the
standard Boneh-Franklin scheme (see Sect. 3.3). DistrSetup procedure takes no input. At its end,
each honest keyper Ki outputs a value mski ∈ Zq such that mski’s are a valid sharing of some secret
msk. In addition to this, a vector (mpk,mpk1, . . . ,mpkn) is made public, where

mpk := msk× P2

mpki := mski × P2 for i = 1, . . . , n.

In the construction of the DistrSetup procedure, we use the fact that Shamir’s secret sharing is
homomorphic (i.e. a sum of shares of some secrets s(1), . . . , s(n) yields sharing of s(1) + · · ·+ s(n))

More precisely, in this phase, the keypers use a distributed key generation protocol over Zq (see,
e.g., [17, 18]) that results in

• a master secret key msk ∈ Zq that is shared using the Shamir’s (t, n)-threshold scheme described
above (where t > n/2 is some threshold) with each Ki holding a share mski, and

• a master public key mpk = msk× P2 ∈ G2 that is posted on the ledger and a vector (mpk1, . . . ,
mpkn) that is known to all the keypers (we can think of each mpki as a “commitment” of Ki to
mski). There is a consensus among the keypers about the value of this vector.
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For the details, the reader may consult [6, 17, 18], or Fig. 12 in the appendix (see page 19). Below, we
sketch the main idea of this procedure. It uses a Feldman Verifiable Secret Sharing (VSS) protocol
denoted FeldmanVSS (see [13, 14]). For completeness, a full description of Feldman VSS is presented
in Fig. 11 in the appendix (page 18). This protocol allows a dealer D ∈ {K1, . . . ,Kn} to share a
secret value s ∈ Zq between all the other keypers. At the end, each keyper Ki learns a share si of
s. More precisely, we are guaranteed that there exists a polynomial φ of degree at most t such that
for each honest keyper, we have that si = φ(xi). Moreover, if the dealer is honest, then φ(0) = s.
In addition to this, a vector (π0, . . . , πn) is made public, were

π0 := s× P2

πi := si × P2 for i = 1, . . . , n.

Given these values, the keypers can reconstruct the shared secret s using Lagrange polynomial
interpolation. Moreover, VSS’s “verifiability” feature allows parties to check the consistency of the
shares using the vector (π0, . . . , πn).

Remark. We notice that Shutter currently relies on a simple DKG, whose performance can easily
be improved by relying on more advanced techniques (e.g., KZG commitment [19]).

3.4 The protocol

Setup. The parties run the DistrSetup protocol resulting in values mpki and mski (see above).

Posting transactions in eon i. In order to post a transaction T ∈ {0, 1}∗ in eon i a user Uj performs
a procedure Post(mpk, T, i) depicted on Fig. 5.

Opening the transactions in eon i. This phase is executed at the end of an eon by the keypers. It
proceeds as in Fig. 6.

Post(mpk, T, i)

1. Let (C1, C2, C3) := EncID(mpk, H1(i), T )
2. Post (C1, C2, C3) on the ledger.

Fig. 5. Posting an encrypted transaction T on the blockchain in eon i.

Reading T . As a result of the opening procedure for each (C1, C2, C3) that was posted during the
“encrypting transactions” phase, the corresponding σ value (see Eq. (4)) is posted on the ledger
(or it is decided that this ciphertext is invalid). Everybody can now decrypt T using the Read
algorithm defined in Fig. 7.
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Open(i)

3. Each keyper Kj proceeds as follows:

(a) Kj broadcasts to all the keypers a value Q
(i)
j := mskj ×H1(i).

(b) Kj waits to receive the “Q” values from the other keypers. For each such value

Q
(i)
k received from Kk the keyper Kj checks if it satisfies the following equation:

ê(Q
(i)
k , P2) = ê(H1(i),mpkk).

Kj stops waiting once she receives t+1 values (including her own) that satisfy the
above equation.
Assume that the first t + 1 values Q

(i)
j ’s that satisfied the above equation check

are Q
(i)
ℓ1
, . . . , Q

(i)
ℓt+1

. After receiving them each keyper Kj computes sk
(i)
j as

sk
(i)
j := λℓ1Q

(i)
ℓ1

+ . . .+ λℓt+1Q
(i)
ℓt+1

. (5)

(where the λj ’s are the Lagrange coefficients, see Sec. 3.4).
(c) Now, for each (C1, C2, C3) that was posted in this eon, the keyper Kj runs the

decryption procedure DecID(sk
(i)
j , (C1, C2, C3)) (see Sec. 3.3), and:

i. if the decryption procedure rejects this ciphertext, then send a vote “(C1, C2, C3)
is invalid” to the ledger,

ii. otherwise send a vote “the key corresponding to (C1, C2, C3) is σ” (where σ is
computed in Eq. (3))

(see Sec. 3.2 for the description of the voting procedure).

4. For each C1: once the vote is finished all the parties accept that k that obtained σ
votes is the valid decryption of C1 (or, if t+ 1 votes say that the ciphrtext is invalid,
then they accept that it is invalid).

Fig. 6. Opening the transactions from eon i.

Adding and removing keypers The basic protocol presented above can be extended to add or remove
the keypers. The simplest way to do it is to simply re-initialize the system parameters. This should
work as follows. First, the old set of keypers votes on the ledger if they want to add/remove some
keyper. If the vote passes (i.e., it gets the majority of votes), then DistrSetup is executed by an
updated set of keypers. Note that this can be “batched” to avoid performing the setup procedure
too often. More precisely, the set of keypers can be updated once a month (say), with keypers
removed/added simultaneously. Observe also that the new public key needs to be posted on the
ledger (and the users need to be aware of this fact to update mpk locally).

10



Read(σ,C3)

Let C1
3 , . . . , C

m
3 be the blocks of C3. Output

(C1
3 ⊕H4(σ||0))|| · · · ||Cm

3 ⊕H4(σ||m)).

Fig. 7. Reading transactions

Concrete instantiation

We must be careful about identifying concurrent protocol sessions and different eons. To this
end, in the real-life implementation, we require the following:

1. Each session of Shutter is parametrized by a unique identifier. Each message sent between
the parties or sent by the parties to the ledger is labeled with this identifier. Moreover, the
contract on the ledger knows this identifier. Messages are accepted as coming from a given
session only if they have the right identifier.

2. Additionally: each message sent or broadcast in eon i is labeled with i. Only the messages
with this label are accepted in a given eon.

3. When we say that Ki broadcasts a message to all the keypers this includes also Ki sending
a message to herself. Of course, this can be implemented completely locally.

4 Analysis

This section argues that the Shutter protocol from Sec. 3.4 satisfies the protocol specification. We
first start with arguing about correctness (in Sec. 4.1) and then about security (in Sec. 4.2).

4.1 Correctness

Correctness follows from the following facts.

Lemma 1. Consider an execution of DistrSetup. Let mpk,mpk1, . . . ,mpkn,msk1, . . . ,mskn be the
outputs of this execution. Let {Ka1 , . . . ,Kah} be the set of honest keypers (we have t+ 1 ≤ h ≤ n).
Then mska1 , . . . ,mskah are points on polynomial ϕ of degree at most t. Moreover

for every j it holds that mpkaj = mskaj × P2, (6)

and
mpk = msk× P2, (7)

where msk is the “implicit master secret key” msk, i.e.: msk := ϕ(0).

The above lemma will be proven in an extended version of this document. We also have the following
standard facts whose proofs appear in Appx. B.

Lemma 2. If Kj is honest then ê(Q
(i)
j , P2) = ê(H1(i),mpkj) holds.

Lemma 3. If a user U is honest, and at least t+1 keypers are honest, then the protocol never halts,
and the value of σ computed while calculating (C1, C2, C3) is equal to σ computed in the opening
phase of (C1, C2, C3).
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4.2 Security

Let us now sketch the security argument. Assume the BDH assumption holds. First of all, note that
by Theorem 5.1 of the extended (Eprint) version of [17], we get that our protocol, when viewed as
a threshold IBE protocol, is IND-ID-CCA-secure against any poly-time adversary that corrupts at
most t keypers. The only differences are as follows. Firstly, the identities of the parties are taken
from the set of natural numbers (not strings), but this is only a syntactic difference. Secondly,
the message T (denoted “M” in [17]) is computed as T := C3 ⊕ H4(σ), while we compute it as
T := (C1

3 ⊕ H4(σ||0))|| · · · ||Cm
3 ⊕ H4(σ||m)) (see Eq. (4)). This is ok, since a function H(σ) :=

H4(σ||0)|| · · · ||H4(σ||m) can be viewed as a random oracle, assuming that H4 is a random oracle.

This implies that the transactions remain secret until eon’s private key is reconstructed (this
proves the “secrecy” of our scheme). “Non-malleability” follows from the fact that every IND-ID-
CCA-secure scheme is non-malleable (see, e.g., [2]). Finally, “commitment” comes from the fact
that no user can change the ciphertext once it is posted on the ledger.

4.3 Applications

The Shutter protocol can be used in different settings (Setting A, B, and C, which we describe
below). In all cases, the keypers provide a public key, the users encrypt transactions for different
eons, the sequencer 7 collects encrypted transactions in batches, and the keypers publish eon secret
key shares once the batch for a certain eon is fixed.

Setting A: Traditional exchange In this setting, the sequencer is a stock exchange. Users are
traders, and trades are executed in the order of batches once the batch is decrypted. The users
are protected from front-running by an exchange or other traders.

Setting B: On-Chain sequencer Here, the sequencer is a smart contract. Users send on-chain
transactions with encrypted payload to the sequencer contract. The encrypted transactions are
first only scheduled for execution and the actual execution happens through another transaction
when the decryption key becomes available. Transactions are front-running protected from other
transactions passing through the sequencer (but not other on-chain transactions as they can
front-run the decryption transaction), so the DEX that only accepts transactions coming from
the sequencer is safe from frontrunners

Setting C: Layer 1 blockchain/sidechain/roll-up Here, the sequencer is the block production
mechanism of the chain itself. All transactions in the chain are front-running protected.

4.4 Implementation

To demonstrate the practicality of the protocol, we built a production-ready implementation of
Shutter in the on-chain setting. It is freely available as open source [25].

The code is written primarily in Go, with the exception of the smart contracts in Solidity and
an exemplary web interface in HTML and JavaScript. We instantiated the Shutter protocol using
optimal ate pairings on a 256-bit Barreto-Naehrig curve [24] using a library by Cloudflare [9].
Network messages are encoded using Go’s gob package [3] and signed using ECDSA signatures as
used in Ethereum [28].

7 In this section, we denote the entity that determines the execution order of transactions by the sequencer.
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The keyper nodes communicate with each other on a customized Tendermint [27] blockchain.
The chain enables keypers to achieve consensus over which messages have been received and which
have not. As a side-effect, this choice greatly reduces implementation complexity as the peer-to-peer
networking code can be reused. The keypers act as validators of the Tendermint chain, ensuring
their messages cannot be censored as long as at least 2⁄3 of them are honest. This introduces no
additional security assumptions if Shutter’s threshold parameter is chosen accordingly.

The implementation uses an Ethereum-compatible blockchain for transaction sequencing and
execution. We divide the sequence of blocks on this chain in eons of configurable length. To each
eon, an eon key pair is assigned and the keypers generate the corresponding decryption key once
the eon’s end block is reached.

During its life-cycle, Shutter transactions pass through three smart contracts deployed on the
underlying chain: The batcher contract, the executor contract, and the target contract. To send a
transaction, users first pick an eon and encrypt their payload with the corresponding encryption
key. They then send the ciphertext wrapped in a standard Ethereum transaction (including some
metadata) to the batcher contract. Here, its arrival is logged if the batch does not already exceed
a size limit and the corresponding eon has neither already ended nor is too far into the future.

Whenever an eon ends, the keypers will publish their share of the corresponding decryption key
on the Tendermint chain. They also listen for shares of their peers and, once they have acquired
enough of them, combine them to get the decryption key. They then decrypt all transactions that
have been submitted to the batcher contract for this eon, sign the result, and publish the signature
as a vote on the Tendermint chain. One keyper is selected to submit the decrypted transactions to
the executor contract for execution. If they are unavailable, they are replaced by the next in line
after a timeout, and so on.

The executor contract automatically passes the decrypted transactions to the target contract,
which stands for the actual application using the system (e.g., a decentralized exchange). It is at
liberty how to interpret the data, but in most cases will do some form of authentication as well as
replay protection.

In case a keyper submits a wrong result, they can be challenged to produce votes of their peers
showing that they acted on their behalf. If they are unable to, they can be punished by freezing a
deposit they were required to make earlier. This form of verifying signatures ”optimistically”, i.e.,
only in case of misbehavior, is more efficient than doing it in every single execution step and is an
acceptable security tradeoff in many settings.

Furthermore, in an ideal setup, the keypers would only have to provide key shares and not be
involved in the decryption process at all, leaving it entirely to the underlying blockchain. However,
currently the resulting high gas costs make this infeasible. Proposed changes to the Ethereum
Virtual Machine [1] will likely change this.

4.5 Evaluation

We deployed our implementation to the Ethereum Goerli testnet with 21 keypers that we hosted,
a threshold of 7, and an eon length of 10 blocks (2.5 minutes). A publicly available web interface
allows anyone to submit transactions. The system has been operational from April to August 2021.
It processed a total of 344 submitted transactions and generated about 100000 eon decryption keys.

There were brief periods of downtime due to maintenance, and on two occasions, keyper nodes
ran out of funds needed to pay transaction fees. After resupplying the nodes and a brief catch-up
period, the system returned to functioning normally. In addition to the public deployment, we
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performed a set of benchmarks in order to be able to quantify the performance of the protocol and
the implementation. The examined properties are the efficiency of the contracts as well as the key
generation protocol during both setup and operational phases.

Gas is the unit in which Ethereum-compatible blockchains measure the resources a transaction
consumes. It translates directly to the fee users have to pay; thus, applications have to be gas-
efficient to be practical. In our implementation of the Shutter protocol in the on-chain setting, gas
costs arise mostly in two places: The batcher contract when a user submits an encrypted transaction
and the executor contract when a keyper executes a batch of now decrypted transactions.

Fig. 8 shows the gas usage per transaction for batches of different size, assuming each transaction
has a size of 100 bytes. The cost of adding a transaction to a batch is constant at about 80000
units. The cost of executing a batch increases with the number of transactions in it, but does
so sublinearly so that the per-transaction cost quickly becomes negligible and the batching cost
dominates.
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Fig. 8. Gas usage of batching and execution for different batch sizes, assuming a constant transaction size of 100
bytes.

The network traffic during the setup phase is examined in Fig. 9. It grows quadratically with
the size of the keyper set. The contribution of by messages sent directly between nodes outweighs
the broadcast, but the difference becomes only significant for large networks. In total, the resulting
bandwidth requirements are reasonable even for consumer-grade network connections.

The last property of interest is the latency of eon key generation. The results are shown in Fig. 10.
Subsecond latencies with an average of ca. 0.4s are achieved, with no noticeable dependence on the
size of the keyper set, demonstrating the protocol’s scalability.
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A Background

In this section, for the sake of completeness, we provide some background on standard cryptographic
tools.

A.1 Shamir’s secret sharing

Shamir’s (t, n)-threshold secret sharing scheme over Zq is a pair of functions (share : Zq → Zn
q , reconstruct :

Zt+1
q → Zq) [26]. Function share : Zq → Zn

q is a function defined as:

share(x) := (y1, . . . , yn),

where
(y1, . . . , yn) := (φ(x1), . . . , φ(xn)) and φ is a random

polynomial of degree ≤ t such that φ(0) = x.
(8)

Function reconstruct takes as input a set {Kj1 , . . . ,Kjt+1} keypers (of size t + 1) and a sequence
(yj1 , . . . , yjt+1) (where each yj is defined in Eq. 8), and outputs x computed by interpolating the
polynomial φ in point 0. More precisely, we compute x as the following linear combination of the
yj ’s.

x = λ1y1 + · · ·λt+1yt+1, (9)

where the λj ’s are the Lagrange coefficients.

B Proofs of lemmas from the main body

Proof (Proof of Lemma 2). We have

ê(QId
j , P2) = ê(mskj ×H1(i), P2) (11)

= ê(H1(i),mskj × P2) (12)

= ê(H1(i),mpkj), (13)

where Eqs. (11) and (13) follow from the fact that Kj is honest, and in (12) we used the blinearity
of ê.
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FeldmanVSS(D, s)

1. The dealer D select a random polynomial φ(x) =
∑t

j=0 ci · x
j over Zq of degree at

most t such that φ(0) = s.
2. The dealer sends to each Ki ∈ {K1, . . . ,Kn} the value si := φ(xi) ∈ Zq.
3. The dealer broadcasts to all keypers the sequence

(γ0, . . . , γt) := (c0 × P2, . . . , ct × P2) ∈ Gt+1
2

(recall that P2 is the generator of G2).
If a correctly formatted sequence is not broadcast then each keyper decides that
D is corrupt and ends the protocol with private output 0 ∈ Zq and public output
(0, . . . , 0) ∈ Gn

2 . Otherwise proceed to the next step.
4. Every keyper calculates a sequence (π0, . . . , πn) ∈ Gn

2 where each πi is computed as

πi :=

t∑
j=0

(xj
i mod q)× γj

(recall that we assumed that x0 = 0)
5. For each Ki ∈ {K1, . . . ,Kn} execute the following in parallel

(a) Ki checks if

πi = si × P2.

If this check passes then Ki sets his private output si and public output to
(π0, . . . , πn). Normally this will be her output at the end of this protocol. However,
if the dealer is corrupt, this output can still change (see below), hence Ki does not
end the protocol yet.
If πi ̸= si×P2 (or if Ki did not receive correctly formatted messages from D) then
Ki broadcast an accusation against D to all the keypers (e.g. this can be a special
message (accuse, D)).

(b) D has to reply to this accusation by broadcasting to all the keypers the value si
(that she sent to Ki is Step 2).
We now do the following.

i. If D sends a correctly formatted value si such that πi = si × P2 then Ki sets
his private output to si and public output to (π0, . . . , πn).

ii. Otherwise each keyper Kj assumes that D is corrupt and ends the protocol with
private output 0 ∈ Zq and public output (0, . . . , 0) ∈ Gn

2 .

Fig. 11. Feldman Verifiable Secret Sharing procedure in which a dealer D ∈ {K1, . . . ,Kn} shares her secret s ∈ Zq.

Proof (Proof of Lemma 3). First, observe that by Lemma 2 we get that the protocol never halts. We
have that σ computed while calculating (C1, C2, C3) is equal to (ê(H1(i),mpk))r and σ computed
in the corresponding opening phase is equal to ê(sk(i), C1). Hence, what remains is to show the
following.

ê(sk(i), C1) = (ê(H1(i),mpk))r . (14)

We show Eq. (14) as follows (below, λi’s are Lagrange coefficients, see Sec. 3.4):

ê(sk(i), C1)

= ê(sk(i), r × P2) (15)

= ê(λ1 ×QId
ℓ1 + . . .+ λt+1 ×QId

ℓt+1
, r × P2) (16)

= ê(λ1 ×QId
ℓ1 , r × P2) · · · · · ê(λt+1 ×QId

ℓt+1
, (17)
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Distributed key generation Setup(1κ, n)

1. For each Kj ∈ {K1, . . . ,Kn} do the following in parallel:

(a) Choose s(k) ←$ Zq.
(b) Execute FeldmanVSS(Kk, s

(k)) (see Fig. 11, page 18). For each Ki ∈ {K1, . . . ,Kn}
let s

(k)
i be the private output of Ki and let (π

(k)
0 , . . . , π

(k)
n ) be the public output.

Note that we now have a quadratic number of variables, that can be depicted as
follows.

s
(1)
1

· · · s
(1)
j

· · · s
(1)
n π

(1)
0

· · · π
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j
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n
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1

· · · s
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s
(n)
1

· · · s
(n)
j

· · · s
(n)
n π

(n)
0

· · · π
(n)
j

· · · π
(n)
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K1 Kj Kn 0 j ncolumn’s label:

s(1)
VSS−−→

s(k)
VSS−−→

s(n) VSS−−→

K1:

Kk:

Kn:

private: public:

where each keyper Kj receives values that are in her “s” (yellow) column, and the “π”
(blue) values are public.

2. Once all the parallel executions above are finished, each Kj computes her private output
mskj of as

mskj := s
(1)
j + · · ·+ s

(n)
j mod q

(note that on the picture above this corresponds to summing the values in the Kj ’s
yellow column). The public output of each keyper is equal to (mpk1, . . . ,mpkn) ∈ Gn

2

and mpk ∈ G2, where each mpkj is computed as:

mpkj := π
(1)
j + · · ·+ π

(n)
j

(i.e.: it is the sum of the values in jth blue column), and mpk is calculated as:

mpk := π
(1)
0 + · · ·+ π

(n)
0 .

Fig. 12. Distributed Key Generation protocol. Above 1κ is the security parameter and n is the number of keypers.
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DistrExtract(Id) for a party PId where Id ∈ {0, 1}∗

Each keyper Kj proceeds as follows:

1. Kj sends to PId a value QId
j := mskj ×H1(i).

2. PId waits to receive the “Q” values from the other keypers. For each such value QId
k

received from Kk the party PId checks if it satisfies the following equation:

ê(QId
k , P2) = ê(H1(i),mpkk).

PId stops waiting once she receives t+ 1 values that satisfy the above equation.
Assume that the first t + 1 values QId

j ’s that satisfied the above equation check are
QId

ℓ1
, . . . , QId

ℓt+1
. After receiving them PId computes skIdj as

skIdj := λℓ1Q
Id
ℓ1 + . . .+ λℓt+1Q

Id
ℓt+1

. (10)

(where the λj ’s are the Lagrange coefficients).

Fig. 13. Extraction of a secret key for a party PId with identifier Id .

r × P2) (18)

= ê(λ1H1(i), r ×mpk1) · · · · · (19)

ê(λt+1H1(i), r ×mpkj) (20)

= ê(λ1H1(i), r ×msk1 × P2) · · · · · ê(λt+1H1(i), (21)

r ×mskt+1 × P2) (22)

= ê(msk1 × λ1 ×H1(i), r × P2) · · · · · (23)

ê(mskt+1 × λt+1 ×H1(i), r × P2) (24)

= ê((msk1 × λ1 + · · ·+mskt+1 × λt+1) (25)

H1(i), r × P2)) (26)

= ê(msk×H1(i), r × P2)) (27)

= (ê(H1(i),msk× P2)))
r (28)

= (ê(H1(i),mpk)))r , (29)

where we use bilinearity of ê in Eqs. (18), (24), (26), and (28). In Eq. (15) we used the fact that
C1 = rP2 (see Step 2 on Fig. 5). In Eq. (16) we used the formula from Eq. (5) for sk(i). In Eq. (20)
we used Lemma 2, and in (22) — the fact that mpkj = mskj × P2. Eq. (27) follows from the fact
that λi’s are Lagrange coefficients for this secret sharing scheme (cf. Eq. (9))). Finally Eq. (29)
follows from the fact that mpk = msk× P2 (see Lemma 1).
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