
Bounded CCA Secure Proxy Re-encryption
Based on Kyber

Shingo Sato1 and Junji Shikata1,2

1 Institute of Advanced Sciences, Yokohama National University, Yokohama, Japan
2 Graduate School of Environment and Information Sciences,

Yokohama National University, Yokohama, Japan
sato-shingo-zk@ynu.ac.jp,shikata-junji-rb@ynu.ac.jp

Abstract. Proxy re-encryption (PRE) allows semi-honest party (called
proxy) to convert a ciphertext under a public key into a ciphertext
under another public key. Due to this functionality, there are various
applications such as encrypted email forwarding, key escrow, and se-
curing distributed file systems. Meanwhile, post-quantum cryptography
(PQC) is one of the most important research areas because develop-
ment of quantum computers has been advanced recently. In particular,
there are many researches on public key encryption (PKE) algorithms
selected/submitted in the NIST (National Institute of Standards and
Technology) PQC standardization. However, there is no post-quantum
PRE scheme secure against adaptive chosen ciphertext attacks (denoted
by CCA security) while many (post-quantum) PRE schemes have been
proposed so far. In this paper, we propose a bounded CCA secure PRE
scheme based on CRYSTALS-Kyber which is a selected algorithm in the
NIST PQC competition. To this end, we present generic constructions of
bounded CCA secure PRE. Our generic constructions start from PRE
secure against chosen plaintext attacks (denoted by CPA security). In
order to instantiate our generic constructions, we present a CPA secure
PRE scheme based on CRYSTALS-Kyber.

1 Introduction

1.1 Background

The notion of proxy re-encryption (PRE) was introduced in [4], and PRE is
public key encryption (PKE) which allows a semi-honest party (called a proxy)
to convert an encryption of a message under a public key into an encryption
of the same message under another public key. That is, a party Alice with a
public-secret key-pairs (pkA, skA) can generate a re-encryption key rkA,B con-
verting a ciphertext under pkA into a ciphertext under the public key pkB of
another party Bob and give rkA,B to a proxy. Then, this proxy can transform
ciphertexts under pkA into ciphertexts under pkB , without knowing secret infor-
mation such as messages and secret keys. Security of PRE ensures confidentiality
of messages even though the adversary has several re-encryption keys. Due to
the functionality of PRE, there are various applications such as encrypted email

2 S. Sato

forwarding [4], key escrow [17], securing distributed file systems [2], and more.
In particular, in the case where a ciphertext under a legacy parameter may not
be able to ensure a concrete security (such as 128-bit security) in the future,
because of advancement of cryptanalysis against cryptosystems, it is desirable
to convert such a ciphertext into a ciphertext under a new parameter so that
this one can guarantee the objective security in the future. Hence, we focus on
constructing such a PRE scheme.
Post-quantum cryptography. Post-quantum cryptography (PQC) is one of
the most active research areas. Development of cryptosystems resistant to at-
tacks using quantum computers has been required due to recent advancement
of quantum computers. In particular, PKE algorithms selected/submitted in
the NIST (national institute of standards and technology) PQC competition
will be widespread. Hence, there are a lot of works related to these NIST PQC
candidates (e.g., [?, 13, 16, 18, 22]). In particular, it is reasonable to focus on
CRYSTALS-Kyber (Kyber, for short) which is a key encapsulation mechanism
(KEM) scheme selected in the NIST PQC competition, and we provide Kyber-
based cryptosystems with advanced functionalities.
Related Work. Blaze, Bleumer, and Strauss introduced the notion of PRE
and proposed a PRE scheme based on the DDH assumption [4]. This scheme
is bidirectional, multi-hop, and secure against chosen plaintext attacks (denoted
by CPA security). Ateniese, Fu, Green, and Hohenberger presented the first
unidirectional PRE scheme with bilinear maps, and this scheme supports only
single-hop re-encryption [3]. Canetti and Hohenberger gave the formalization of
security against chosenc ciphertext attacks (denoted by CCA security) for PRE
and presented a bidirectional multi-hop PRE scheme with CCA security under
the random oracle model [7]. Phong et al. proposed a lattice-based unidirectional
PRE scheme with security against (adaptive) chosen ciphertext attacks (denoted
by CCA security or CCA2 security) [19]. Polyakov et al. presented practical
unidirectional PRE schemes [20]. In [8], Cohen introduced the notion of security
against honest re-encryption attacks (denoted by HRA security) and showed that
one of the PRE schemes of [20] is insecure in the HRA security model. Davidon et
al. modified the HRA insecure PRE scheme so that this modified scheme satisfies
both HRA security and post-compromize security [10]. Fan and Liu gave tag-
based PRE schemes based on the LWE assumption and these achieve security
against non-adaptive chosen ciphertext attacks (denoted by CCA1 security) [14].

1.2 Contribution

Our goal is to propose a post-quantum PRE scheme with a variant of CCA secu-
rity. To this end, we propose generic constructions of bounded CCA secure PRE.
One is a generic construction starting from any CPA secure PRE scheme and
strongly unforgeable one-time signature scheme. The other one is constructed
from any CPA secure PRE with an additional property, and its ciphertexts are
more compact, compared to the first one. Moreover, we present a PRE scheme
converting Kyber’s ciphertexts so that we can instantiate our second construc-
tion. Details on our contribution are as follows:

Bounded CCA Secure Proxy Re-encryption Based on Kyber 3

– We formalize a notion of bounded CCA security of PRE so that we present
generic constructions of single-hop unidirectional PRE with such security. In
the security model of bounded CCA security, the adversary is allowed to issue
limited numbers of queries to the decryption or reencryption oracles in its
security game. Although this security notion is weaker than the existing CCA
security notion [7], bounded CCA security is practical, and we can construct
bounded CCA secure PRE by using CPA secure PRE. In particular, there is
no post-quantum PRE scheme with CCA security introduced in [7]. Hence,
it is important to consider our formalized security notion and give a PRE
scheme with such security.

– We propose two generic construction of single-hop unidirectional PRE. the
first one is constructed from any single-hop unidirectional PRE scheme with
CPA security and any strongly unforgeable one-time signature scheme. This
scheme is based on the CHK transformation [5] and the bounded-collusion
identity-based encryption scheme [11] constructed from any CPA secure
PKE. However, it is not straightforward to construct such a scheme so that
this one can ensure re-encryption.

– The building blocks of our second scheme are the same as those of the first
one except that the underlying PRE is required to be key homomorphism.
This required property for PRE is introduced in this paper and similar to
the key homomorphism of PKE [15, 21]. By employing such a CPA secure
PRE, the ciphertext-size of the second scheme is smaller than that of the
first one.

– In order to give a post-quantum instantiation of our generic constructions,
we preset a Kyber-based single-hop unidirectional PRE scheme with CPA
security and key homomorphism. This scheme can convert Kyber ciphertexts
into other ciphertexts, and we can apply our second generic construction
with bounded CCA security to this CPA secure scheme. We have chosen
Kyber since this will be used widely as a selected algorithm in the NIST
PQC competition. Hence, giving this instantiation is meaningful.

2 Preliminaries

Throughout this paper, we use the following notation: For a positive integer n,
let [n] := {1, . . . , n}. For n values x1, . . . , xn and a subset I ⊆ [n], let (xi)i∈I
be a sequence and {xi}i∈I be a set of values whose indexes are included in I.
For a value v, let |v| be the bit-length of v. If a function f : N → R satisfies
f(λ) = o(λ−c) for any constant c > 0 and sufficiently large λ ∈ N, then f is
said to be negligible in λ and denoted by f(λ) ≤ negl(λ). A probability is an
overwhelming probability if it is at least 1− negl(λ). “Probabilistic polynomial-
time” is abbreviated as PPT. For a positive integer λ, let poly(λ) be a universal
polynomial of λ. For a probabilistic algorithm A, y ← A(x; r) means that A on
input x outputs y by using randomness r.
Rings and distributions. Let R := Z[X]/(Xn+1) and Rq := Zq[X]/(Xn+1),
where n = 2n

′
such that Xn + 1 is the 2n

′−1-th cyclotomic polynomial. For a

4 S. Sato

set S, s $← S means that an element s ∈ S is chosen uniformly at random.
For a probability distribution D, d ← D denotes that d is drawn from the
distribution D. Following [6], we describe the definition of the central binomial
distribution Bη for a positive integer η, as follows: Bη chooses {(ai, bi)}i∈[η]

$←
({0, 1}× {0, 1})η and outputs

∑η
i=1(ai− bi). Here v ← βη denotes that v ∈ R is

drawn from a distribution βη where each of its coefficients is chosen according to
Bη. In the same way as this, v ← βk

η means that a k-dimensional vector v ∈ Rk

is chosen from βk
η .

Furthermore, we describe definitions of cryptographic primitives and compu-
tational assumptions.

2.1 Proxy Re-encryption

In this section, we describe the syntax, security definitions, and several properties
of (single-hop) unidirectional proxy re-encryption (PRE).

Following [1], we describe the syntax of (single-hop) unidirectional proxy
re-encryption (PRE), as follows:

Definition 1 (Unidirectional PRE). For a security parameter λ, let M =
M(λ) be a message space. A (single-hop) unidirectional PRE scheme consists of
six polynomial-time algorithms (Setup,KeyGen,Enc,Dec,ReKeyGen,ReEnc):

– Setup(1λ) → pp: The randomized algorithm Setup takes as input a security
parameter 1λ and outputs a public parameter pp.

– KeyGen(pp) → (pk, sk): The randomized algorithm KeyGen takes as input a
public parameter pp and outputs a public key pk and a secret key sk. Here,
both pk and sk implicitly include the public parameter pp.

– Enc(pk,m) → ct: The randomized algorithm Enc takes as input a pubic key
pk and a message m ∈M, and outputs a ciphertext ct.

– Dec(sk, ct)→ m/⊥: The deterministic algorithm Dec takes as input a secret
key sk and a ciphertext ct, and outputs a message m or the rejection symbol
⊥.

– ReKeyGen(ski, pkj) → rki→j: The randomized or deterministic algorithm
takes as input a secrete key ski and a public key pkj, and outputs a re-
encryption key rki→j.

– ReEnc(rki→j , cti) → ctj: The randomized algorithm ReEnc takes as input a
re-encryption key rki→j and a ciphertext cti, and outputs a new ciphertext
ctj.

For simplicity, we suppose that a public parameter pp is implicitly contained
in the inputs of the algorithms Enc,Dec,ReKeyGen,ReEnc.

Definition 2 (Correctness). A single-hop unidirectional PRE scheme (Setup,
KeyGen,Enc,Dec,ReKeyGen,ReEnc) is said to be correct if for every pp← Setup(1λ)
and every m←M, the following holds:

Bounded CCA Secure Proxy Re-encryption Based on Kyber 5

Encryption Correctness. For every (pk, sk) ← KeyGen(pp) and every m ∈
M, it holds that Dec(sk, ct)) = m with overwhelming probability, where ct←
Enc(pk,m).

Re-encryption Correctness. For every (pki, ski)← KeyGen(pp), (pkj , skj)←
KeyGen(pp), and every rki→j ← ReKeyGen(ski, pkj), it holds that Dec(skj , ctj) =
m with overwhelming probability, where ctj ← ReEnc(rki→j , cti) and cti ←
Enc(pki,m).

In order to describe security definitions of PRE, we describe derivatives of
single-hop unidirectional PRE ciphertexts by following [7]:

Definition 3 (Derivatives of single-hop PRE ciphertexts [7]). Suppose
that the challenge ciphertext ct∗ and the corresponding index i∗ are defined in a
security game of PRE. Derivative of (i∗, ct∗) are defined as follows:

– (i∗, ct∗) is a derivative of itself.
– If the adversary against Πpre has queried the re-encryption oracle O.ReEnc

on input (i, i′, cti) and obtained the response cti′ , then (i′, cti′) is a derivative
of (i, cti).

– If the adversary against Πpre has queried the re-encryption key generation or-
acle O.ReKeyGen on input (i, i′), and Dec(pki′ , cti′) ∈ {m∗

0,m
∗
1}, then (i′, cti′)

is a derivative of (i, cti).

Following [7], we describe definitions of oracles in security games of PRE, as
follows:

Definition 4. An adversary against a PRE scheme (Setup,KeyGen,Enc,Dec,
ReKeyGen,ReEnc) is given access to the following oracles in a security game of
PRE:

– Key Generation Oracle O.KeyGen(n,UCorrupt): Given a key generation query
(n,UCorrupt) such that n is a positive integer and UCorrupt is a subset of [n],
the oracle O.KeyGen computes (pki, ski)← KeyGen(pp) for every i ∈ [n] and
returns ({pki}i∈[n], {ski}i∈UCorrupt

).
– Re-Encryption Key Generation Oracle O.ReKeyGen(i, j): Given a re-encryption

key generation query (i, j) ∈ [n] × [n], the oracle O.ReKeyGen returns ⊥ if
i ∈ UHonest and j ∈ UCorrupt, and returns rki→j ← ReKeyGen(ski, pkj) other-
wise.

– Challenge Oracle O.Challengeb(i,m
∗
0,m

∗
1): Given a challenge query (i,m∗

0,m
∗
1)

(where i ∈ [n] and (m0,m1) ∈ M × M), the oracle O.Challengeb with
b ∈ {0, 1} returns ⊥ if i ∈ UCorrupt or |m∗

0| ̸= |m∗
1|, and returns ct∗ ←

Enc(pki,m
∗
b) otherwise.

– Decryption Oracle O.Dec(i, cti): Given a decryption query (i, cti), the ora-
cle O.Dec returns ⊥ if (i, cti) is a derivative of (i∗, cti∗), otherwise returns
Dec(ski, cti).

– Re-Encryption Oracle O.ReEnc(i, j, cti): Given a re-encryption query (i, j, cti),
the oracle O.ReEnc returns ⊥ if j ∈ UCorrupt and (i, cti) is a derivative of
(i∗, ct∗), and returns ctj ← ReEnc(rki→j , cti) otherwise.

6 S. Sato

Following [1], we describe the definitions of security against chosen plaintext
attacks (denoted by CPA security).

Definition 5 (CPA security). A PRE scheme Πpre = (Setup,KeyGen,Enc,Dec,
ReKeyGen,ReEnc) is CPA secure if for any PPT adversary A = (A0,A1,A2)

against Πpre, its advantage Advcpa
Πpre,A(λ) :=

∣∣∣Pr[Exptcpa
Πpre,A(λ) = 1]− 1/2

∣∣∣ is neg-
ligible in λ, where the experiment Exptcpa

Πpre,A(λ) is defined as follows:

Exptcpa
Πpre,A(λ) :

Generate pp← Setup(1λ);
(n,UCorrupt, state0)← A0(λ, pp);
Run ({pki}i∈[n], {ski}i∈UCorrupt

)← O.KeyGen(n,UCorrupt);
(i∗,m∗

0,m
∗
1, state1)← A

O.ReKeyGen
1 (state0, {pki}i∈[n], {ski}i∈UCorrupt

);

Sample b $← {0.1} and run ct∗ ← O.Challengeb(i
∗,m∗

0,m
∗
1);

b′ ← AO.ReKeyGen
2 (state1, ct

∗);
Return 1 if b = b′; otherwise, return 0,

where state0 and state1 are state information.

As a new security notion of PRE, we formalize a bounded variant of security
against chosen ciphertext attacks (denoted by bounded CCA security) by following
[7, 9].

Definition 6 (Bounded CCA security). Let td, tr be positive integers. A PRE
scheme Πpre = (Setup,KeyGen,Enc,Dec,ReKeyGen,ReEnc) is (td, tr)-CCA se-
cure if for any PPT adversary A = (A0,A1,A2) against Πpre, its advantage
Advcca

Πpre,A(λ) :=
∣∣∣Pr[ExptccaΠpre,A(λ) = 1]− 1/2

∣∣∣ is negligible in λ, where the exper-
iment ExptccaΠpre,A(λ) is defined as follows:

ExptccaΠpre,A(λ) :

Generate pp← Setup(1λ);
(n,UCorrupt, state0)← A0(λ, pp);
Run ({pki}i∈[n], {ski}i∈UCorrupt

)← O.KeyGen(n,UCorrupt);
(i∗,m∗

0,m
∗
1, state1)← A

O.Dec,O.ReKeyGen,O.ReEnc
1 (state0, {pki}i∈[n], {ski}i∈UCorrupt

);

Sample b $← {0.1};
Run ct∗ ← O.Challengeb(i

∗,m∗
0,m

∗
1);

b′ ← AO.Dec,O.ReKeyGen,O.ReEnc
2 (state1, ct

∗);
Return 1 if b = b′; otherwise, return 0,

where A is allowed to quries at most td queries to O.Dec and at most tr queries
to O.ReEnc, and (state0, state1) is state information.

Special Properties. As a new property of PRE, we formalize re-encryption key
homomorphism. This property is inspired by the secret-to-public key homomor-
phism defined in [15,21].

Bounded CCA Secure Proxy Re-encryption Based on Kyber 7

Definition 7 (Re-encryption key homomorphism). Let Πpre = (Setup,
KeyGen,Enc,Dec,ReKeyGen,ReEnc) be a PRE scheme with the secret key space
Ksk = Ksk(λ), the public key space Kpk = Kpk(λ), and the re-encryption key
space Krk = Krk(λ) for a security parameter λ and a public parameter pp ←
Setup(1λ). The PRE scheme Πpre is said to be re-encryption key homomorphic
if there exist the following map µ : Ksk → Kpk and polynomial-time algorithms
(HReKeyGen,ReKeyEval) with positive integers u = poly(λ), v = poly(λ) (where
u ≥ v):
– Every (pk, sk) generated by KeyGen satisfies pk = µ(sk);
– µ is a homomorphism: i.e., for all sk, sk′ ∈ Ksk, it holds that µ(sk + sk′) =
µ(sk) · µ(sk′);

– HReKeyGen((skA,i)i∈[u], (pkB,i)i∈[u]) → (rk
(i→j)
A→B)i∈[u],j∈[u]: The randomized

algorithm HReKeyGen takes as input u secret keys (skA,i)i∈[u] and u public
keys (pkB,i)i∈[u], and outputs u re-encryption keys (rk

(i→j)
A→B)i∈[u],j∈[u].

– ReKeyEval((rk
(ai→bi)
A→B)i∈[v]) → rkA→B: The deterministic or randomized al-

gorithm ReKeyEval takes as input v re-encryption keys (rk
(ai→bi)
A→B)i∈[v] (for

all distinct a1, . . . , av ∈ [u] and all distinct b1, . . . , bv ∈ [u]) and outputs a
new re-encryption key rkA→B.

– For every pp ← Setup(λ), every {(pkA,i, skA,i) ← KeyGen(pp)}i∈[u], every
{(pkB,i, skB,i)← KeyGen(pp)}i∈[u], every (rk

(i→j)
A→B)i∈[u],j∈[u] ← HReKeyGen((skA,i)i∈[u],

(pkB,i)i∈[u]), every rkA→B ← ReKeyEval((rk
(ai→bi)
A→B)i∈[v]) (for all a1, . . . , av, b1,

. . . , bv ∈ [u]), and every m ∈ M, it holds that Dec(skB , ctB) = m with over-
whelming probability, where pkA = µ(pkA,a1

, . . . , pkA,av
), skB = µ(skB,b1 , . . . ,

skB,bv), ctA ← Enc(pkA,m), and ctB ← ReEnc(rkA→B , ctA).

As a new security notion of PRE, we introduce security against chosen plain-
text attacks with key homomorphism (denoted by KH-CPA security) and formal-
ize this security notion, as follows:

Definition 8 (KH-CPA security). A PRE scheme Πpre = (Setup,KeyGen,Enc,
Dec,ReKeyGen,ReEnc,HReKeyGen) with key homomorphism is KH-CPA secure if
for any PPT adversary A = (A0,A1,A2) against Πpre, its advantage Advkh-cpa

Πpre,A (λ) :=∣∣∣Pr[Exptkh-cpa
Πpre,A (λ) = 1]− 1/2

∣∣∣ is negligible in λ, where the experiment Exptkh-cpa
Πpre,A (λ)

is defined as follows:

Exptkh-cpa
Πpre,A (λ) :

Generate pp← Setup(1λ)
(n,UCorrupt, state0)← A0(λ, pp)

Run ({pki,j}i∈[n],j∈[u], {ski,j}i∈UCorrupt,j∈[u])← ̂O.KeyGen(n,UCorrupt)
(i∗,m∗

0,m
∗
1, state1)← A

O.HReKeyGen
1 (state0, {pki}i∈[n], {ski}i∈UCorrupt

)

Sample b $← {0.1} and run ct∗ ← O.Challengeb(i
∗,m∗

0,m
∗
1)

b′ ← AO.HReKeyGen
2 (state1, ct

∗)
Return 1 if b = b′; otherwise, return 0

,

where

8 S. Sato

– the key-generation oracle ̂O.KeyGen given a key-generation query (n,UCorrupt)
computes (pki,j , ski,j) ← KeyGen(pp) for every (i, j) ∈ [n] × [u] and returns
({pki,j}i∈[n],j∈[u], {ski,j}i∈UCorrupt,j∈[u]); and

– the homomorphic re-encryption key generation oracle O.HReKeyGen given a
homomorphic re-encryption key query (A,B) ∈ [n] × [n] returns ⊥ if A ∈
UHonest∧B ∈ UCorrupt holds, and returns (rk(i→j)

A→B)i∈[u],j∈[u] ← HReKeyGen((skA,i)i∈[u],
(pkB,i)i∈[u]) otherwise.

2.2 One-Time Signatures

We describe the syntax and a security definition of one-time signatures (OTSs).

Definition 9 (One-time signatures). For a security parameter λ, let M =
M(λ) be a message space. A one-time signature (OTS) scheme consists of three
polynomial-time algorithms (KeyGen,Sign,Vrfy):

– KeyGen(1λ) → (vk, sigk): The randomized algorithm KeyGen takes as input
a security parameter 1λ and outputs a verification key vk and a signing key
sigk.

– Sign(sigk,m) → sig: The randomized or deterministic algorithm Sign takes
as input a signing key sigk and a message m ∈ M, and outputs a signature
sig.

– Vrfy(vk,m, sig) → ⊤/⊥: The deterministic algorithm Vrfy takes as input a
verification key vk, a message m ∈M, and a signature sig, and it outputs ⊤
(accept) or ⊥ (reject).

An OTS scheme is required to satisfy correctness, as follows:

Definition 10 (Correctness). An OTS scheme (KeyGen,Sign,Vrfy) is said to
be correct if for every (vk, sigk) ← KeyGen(1λ) and every m ∈ M, it holds that
Vrfy(vk,m, sig) = ⊤ with overwhelming probability, where sig← Sign(sigk,m).

As a security notion of OTSs, we describe the definition of strong unforge-
ability, as follows:

Definition 11 (Strong unforgeability). An OTS scheme Πots = (KeyGen,
Sign,Vrfy) is strongly unforgeable if for any PPT adversary against Πots, its ad-
vantage Advsuf-ot

Πots,A(λ) = Pr[A wins] is negligible in λ, where [A wins] is the event
that A wins in the following security game between a challenger and A:

Setup. The challenger generates (vk, sigk)← KeyGen(1λ), sets L ← ∅, and gives
vk to A.

Queries. A is allowed to access the signing oracle O.Sign once, where O.Sign
on input a signing query m ∈ M returns ⊥ if L ≠ ∅; otherwise it returns
sig← Sign(sigk,m) and sets L ← L ∪ {(m, sig)}.

Finalize. A outputs a forgery (m∗, sig∗). A wins if it holds that (m∗, sig∗) /∈ L
and Vrfy(vk,m∗, sig∗) = ⊤.

Bounded CCA Secure Proxy Re-encryption Based on Kyber 9

2.3 All-or-Nothing Transform

An all-or-nothing transform (AONT) splits a message X into v secret shares
x1, . . . , xv and a public share z and recovers X from the shares (x1, . . . , xv, z).

We describe the definition of AONTs, as follows:

Definition 12 (AONT). An efficient randomized algorithm Trans is (µ, µ̄, v)-
AONT if the following conditions hold:

1. Given X ∈ {0, 1}µ, Trans outputs v+ 1 blocks (x1, . . . , xv, z) ∈ ({0, 1}µ̄)v+1,
where for i ∈ [v], xi is a secret share, and z is a public share.

2. There exists an efficient inverse function Inverse which, on input (x1, . . . , xv, z) ∈
({0, 1}µ̄)v+1, outputs X ∈ {0, 1}µ.

3. For any PPT algorithm A against Trans, its advantage

Advind
Trans,A(λ) :=

∣∣∣∣Pr [b = b′ | b $← {0, 1}; b′ ← AO.LR(1λ)
]
− 1

2

∣∣∣∣
is negligible in λ, where O.LR is the left-or-right oracle which, on input (j,X0, X1) ∈
[v]× ({0, 1}µ)2, returns (x1, . . . , xj−1, xj+1, . . . , xv, z).

2.4 Module-Learning with Errors (Module-LWE)

Following [6], we describe the definition of the Hermite normal form (HNF)
variant of the MLWE assumption, as follows:

Definition 13 (Module-LWE). For a security parameter λ, let n = n(λ), k =
k(λ), η = η(λ) denote positive integers. The module-LWE problem is to distin-
guish between uniform samples (ai, bi) ∈ Rk

q × Rq from m samples (ai, bi) ∈
Rk

q × Rq for i ∈ [m], where ai
$← Rk

q , s
$← βk

η , and ei
$← βη are samples

(uniformly) at random, and bi = aT
i s+ ei.

The module-LWE assumption MLWEm,k,η holds if for any PPT algorithm A
solving the module-LWE problem, its advantage

Advmlwe
m,k,η(A) :=

∣∣∣∣∣Pr
[
b′ = 1

∣∣∣∣∣ A
$← Rm×k

q ; (s, e)← βk
η × βm

η ;
b = As+ e; b′ ← A(A, b)

]
−Pr

[
b′ = 1

∣∣∣ A
$← Rm×k

q ; b
$← Rm

q ; b′ ← A(A, b)
]∣∣∣

is negligible in λ.

2.5 Disjunct Matrices

We describe the definition of disjunct matrices, as follows:

Definition 14 (Disjunct matrices). Let n̄, u be positive integers. A binary
matrix M = (mi,j) ∈ {0, 1}u×n̄ is t-disjunct if for every distinct s1, . . . , st ∈ [n̄]
and every j ∈ [n̄]\{s1, . . . , st}, there exists a row q ∈ [u] such that mq,j = 1 and
∀j′ ∈ {s1, . . . , st}, mq,j′ = 0.

The number of tests required in combinatorial non-adaptive group testing using
t-disjunct matrices is bounded by u = O(t2 log n) (e.g., see [12]).

10 S. Sato

3 Bounded CCA secure PRE from CPA secure PRE

In this section, we propose a generic construction of bounded CCA secure PRE,
which starts from any CPA secure PRE and strongly OTS, and then give a
security proof for this construction.

3.1 Generic Construction

Our construction is based on a generic construction [21] of bounded CCA secure
PKE. Additionally, we utilize the re-encryption functionality and CPA security
of the underlying PRE in order to achieve both re-encryption functionality and
bounded CCA security.

In order to construct the proposed PRE scheme, we use the following building
blocks:

– A (CPA secure) PRE scheme Π′
pre = (Π′

pre.Setup,Π
′
pre.KeyGen,Π

′
pre.Enc,Π

′
pre.Dec,

Π′
pre.ReKeyGen,Π

′
pre.ReEnc) with the message space MΠ′

pre
= {0, 1}µ̄, where

µ̄ = µ̄(λ) is a positive integer for a security parameter λ;
– An OTS scheme Πots = (Πots.KeyGen,Πots.Sign,Πots.Vrfy);
– A (µ, µ̄, v)-AONT Trans with an efficient inverse function Inverse, where µ =
µ(λ) and v = v(λ) are positive integers for a security parameter λ.

The proposed PRE scheme Πpre = (Setup,KeyGen,Enc,Dec,ReKeyGen,ReEnc)
is constructed as follows:

– Setup(1λ)→ pp:
• Generate pp′ ← Π′

pre.Setup(pp).
• Let µ = µ(λ), µ̄ = µ̄(λ), and v = v(λ) be positive integers.
• Let M = {0, 1}µ be the message space.
• Let n̄ = n̄(λ), u = u(λ) be positive integers, and let [n̄] be the verification

key-space of Πots
3.

• Let M = (mi,j) ∈ {0, 1}u×n̄ be a t-disjunct matrix, where the hamming
weight of each column vector is v.

Output pp = (pp′, µ, µ̄, v, n̄, u,M).
– KeyGen(pp)→ (pk, sk): Parse pp = (pp′, µ, µ̄, v, n̄, u,M) and generate (pk′i, sk

′
i)←

Π′
pre.KeyGen(pp

′) for i ∈ [u]. Output pk = (pk′i)i∈[u] and sk = (sk′i)i∈[u].
– Enc(pk,m)→ ct:

1. Parse pk = (pk′i)i∈[u].
2. Generate (vk, sigk)← Πots.KeyGen(1

λ).
3. Compute (x1, . . . , xv, z)← Trans(m).
4. Compute {σ1, . . . , σv} ← ϕM (vk), where all σ1, . . . , σv ∈ [u] are distinct.
5. Compute ct′i ← Π′

pre.Enc(pkσi
, xi) for every i ∈ [v].

6. Compute sig← Πots.Sign(sigk, (ct
′
1 ∥ · · · ∥ ct′v ∥ z)).

3By using a collision resistant hash function, we can compress the size of the ver-
ification keys of Πots into the space [n̄], so that we can employ a group testing-based
methodology without using exponential-sized matrices.

Bounded CCA Secure Proxy Re-encryption Based on Kyber 11

7. Output ct = (vk, (ct′i)i∈[v], z, sig).
– Dec(sk, ct)→ m/⊥:

1. Parse sk = (sk′i)i∈[u] and ct = (vk, (ct′i)i∈[v], z, sig).
2. Output ⊥ if Πots.Vrfy(vk, (ct

′
1 ∥ · · · ∥ ct′v ∥ z), sig) = ⊥.

3. Compute {σ1, . . . , σv} ← ϕM (vk).
4. Compute x′i ← Π′

pre.Dec(sk
′
σi
, ct′i) for every i ∈ [v].

5. Output m′ ← Inverse(x′1, . . . , x
′
v, z) if x′i ̸= ⊥ holds for every i ∈ [v];

otherwise, output ⊥.
– ReKeyGen(skA, pkB)→ rkA→B :

1. Parse skA = (sk′A,i)i∈[u] and pkB = (pk′B,i)i∈[u].

2. For every i ∈ [u] and j ∈ [u], compute rk(i→j)
A→B ← Π′

pre.ReKeyGen(sk
′
A,i, pk

′
B,j).

3. Output rkA→B = (rk
(i→j)
A→B)i∈[u],j∈[u].

– ReEnc(rkA→B , ctA)→ ctB :
1. Parse rkA→B = (rk

(i→j)
A→B)i∈[u],j∈[u] and ctA = (vkA, (ct

′
A,i)i∈[v], z, sigA).

2. Output ⊥ if Πots.Vrfy(vkA, (ct
′
A,i)i∈[v], sigA) = ⊥.

3. Generate (vkB , sigkB)← Πots.KeyGen(1
λ).

4. Compute {σ(A)
1 , . . . , σ

(A)
v } ← ϕM (vkA) and {σ(B)

1 , . . . , σ
(B)
v } ← ϕM (vkB).

5. For i ∈ [v], compute ct′B,i ← Π′
pre.ReEnc(rk

(σ
(A)
i →σ

(B)
i)

A→B , ct′A,i).
6. Compute sigB ← Πots.Sign(sigkB , (ct

′
B,1 ∥ · · · ∥ ct′B,v ∥ z)).

7. Output ctB = (vkB , (ct
′
B,i)i∈[v], z, sigB).

Proposition 1 (Correctness of Πpre). If the PRE scheme Π′
pre and the OTS

scheme Πots are correct, then the resulting PRE scheme Πpre is also correct.

It is clear that Πpre is correct due to the correctness of Π′
pre and Πots, and a

property of AONT Trans. Thus, we omit the proof of the correctness of Πpre.

3.2 Security Proof

The following theorem shows the bounded CCA security (i.e., (t, t)-CCA security)
of the proposed scheme Πpre:

Theorem 1 (Security of Πpre). Suppose that the matrix M ∈ {0, 1}u×n̄ is a
t-disjunct matrix, and nh is the number of honest users in the (t, t)-CPA game. If
the PRE scheme Π′

pre is CPA secure, the OTS scheme Πots is strongly unforgeable,
and the algorithm Trans is (µ, µ̄, v)-AONT, then the resulting PRE scheme Πpre

is (t, t)-CCA secure.
Concretely, if there exists a PPT algorithm A against the (t, t)-CCA secure

PRE Πpre, then there exist PPT adversaries B1 against the CPA secure PRE
Π′

pre, F against the strongly unforgeable OTS Πots, and B2 against (µ, µ̄, v)-AONT
Trans such that

Advcca
Πpre,A(λ) ≤ nhu · Adv

cpa
B1,Π′

pre
(λ) + Advsuf

Πots,F (λ) + nhu · Advind
B2,AONT(λ).

12 S. Sato

Proof. Let A be a PPT adversary against the PRE scheme Πpre. Let i∗ ∈ [n]
be the user which A submits to the challenge oracle O.Challenge and let ct∗ =
(vk∗, (ct′∗k)k∈[v], z

∗, sig∗) denote the challenge ciphertext under pki∗ . Queries is-
sued to the decryption oracle O.Dec and the re-encryption oracle O.ReEnc are
denoted by decryption queries and re-encryption queries, respectively.

For each i ∈ {0, 1}, we consider a security game Gamei and define Wi as the
event that the experiment in Gamei outputs 1, in order to prove Theorem 1.
Game0: The same game as the (t, t)-CCA security game. Then, we have Advcca

Πpre,A(λ) =
|Pr[W0]− 1/2|.

Game1: The same game as Game0 except for the following procedure of the
decryption oracle O.Dec and the re-encryption oracle O.ReEnc: For a decryption
or re-encryption query on cti = (vki, (ct

′
i,j)j∈[v], zi, sigi), the oracle O.Dec or

O.ReEnc checks whether it holds that vki = vk∗, cti ̸= ct∗, and Πots.Vrfy(vki,
(ct′i,1∥ · · · ∥ct′i,v∥zi), sigi) = ⊤. If so, the experiment aborts; otherwise, O.Dec
computes m′ ← Dec(ski, cti) and returns m′ ∈M∪ {⊥}.

Let Bad be the event that A issues a decryption or re-encryption query on cti
such that vki = vk∗, cti ̸= ct∗, and Πots.Vrfy(vki, (ct

′
i,1∥ · · · ∥ct′i,v∥zi), sigi)) = ⊤.

Then, Game0 and Game1 are identical unless Bad occurs. Hence, we bound the
probability that Bad occurs. In order to estimate this upper bound, we construct
a PPT algorithm F breaking the strongly unforgeable OTS scheme Πots. On
input a verification key vk∗ of Πots, F generates pp ← Setup(1λ) and gives pp
to A. When A submits (n,UCorrupt), F generates (pki, ski) ← KeyGen(pp) for
every i ∈ [n] and returns ({pki}i∈[n], {ski}i∈UCorrupt

). By using these generated
key-pairs, F simulates the oracle O.ReKeyGen. Additionally, the oracle O.Dec
(resp., O.ReEnc) is simulated as follows: For a decryption query (i, cti) (resp.,
(i, j, cti)) (where cti = (vki, (ct

′
i,j)j∈[v], zi, sigi)), F aborts and outputs a forgery

((ct′i,1∥ · · · ∥ct′i,v∥zi), sigi) in the strong unforgeability game of Πots, if it holds
that vki = vk∗, cti ̸= ct∗, and Πots.Vrfy(vki, (ct

′
i,1∥ · · · ∥ct′i,v∥zi), sigi)) = ⊤ (i.e.,

Bad occurs); otherwise, the algorithm computes m′ ← Dec(ski, cti) and returns
m′ ∈M∪ {⊥} (resp., computes ctj ← ReEnc(rki→j , cti) and returns ctj).

Furthermore, when A submits a challenge (i∗,m∗
0,m

∗
1), F chooses b $← {0, 1}

computes ((ct′∗i)i∈[v], z
∗) by following the procedure of Enc(pki∗ ,m∗

b). Then, this
algorithm issues (ct′∗1 ∥ · · · ∥ct′∗v ∥z∗) to the signing oracle in the strong unforge-
ability game and obtains sig∗. And then, F returns the challenge ciphertext
ct∗ = (vk∗, (ct′∗i)i∈[v], z

∗, sig∗). Finally, when A outputs b′ ∈ {0, 1} and Bad has
not occurred, F halts and outputs 0.

We analyze the algorithm F against Πots. It is clear that the output of F is
a valid forgery in the strong unforgeability game if Bad occurs. Unless this event
happens, F completely simulates the oracles in the (t, t)-CCA game by using all
key-pairs. Hence, the probability Pr[Bad] is at most the advantage Advsuf

Πots,F (λ)

of F , and we have |Pr[W0]− Pr[W1]| ≤ Advsuf
Πots,F (λ).

In order to bound the winning probability of A in Game1, we consider the
following experiment B: At the beginning of the (t, t)-CCA game, B gives pp←
Setup(1λ) to A and simulates ({pki}i∈[n], {ski}i∈UCorrupt

)← O.KeyGen(n,UCorrupt).

Bounded CCA Secure Proxy Re-encryption Based on Kyber 13

And then, B generates (vk∗, sigk∗)← Πots.KeyGen(1
λ), chooses indices i∗ $← [nh],

j∗
$← ϕM (vk∗) (where nh is the number of honest users), and simulates the

environment of A except for the following: The experiment aborts and outputs
a random bit if A issues

– a decryption or re-encryption query on (i∗, (vki∗ , (ct
′
i∗,k)k∈[v], zi∗ , σi∗)) such

that j∗ ∈ ϕM (vki∗); or
– a challenge query (i′,m∗

0,m
∗
1) such that i∗ ̸= i′.

Finally, when A outputs the guessing bit b′ ∈ {0, 1}, B also outputs b′.
For the event WB that B outputs b′ such that b = b′, we estimate the prob-

ability Pr[WB]. Let Abort be the event that B aborts in the simulation of the
decryption or re-encryption oracle. Notice that Pr[WB | Abort] = 1/2. Due to
the t-disjunctness of M , it holds that Pr[¬Abort] ≥ 1/(nhu). Then, we have

Pr[WB] = Pr[WB ∧ Abort] + Pr[WB ∧ ¬Abort]
= Pr[Abort] · Pr[WB | Abort] + Pr[¬Abort] · Pr[WB | ¬Abort]

≥ 1

2

(
1− 1

nhu

)
+

1

nhu
· Pr[WB | ¬Abort]

=
1

2
+

1

nhu

(
Pr[WB | ¬Abort]−

1

2

)
.

The A’s advantage εA in Game1 is equivalent to |Pr[WB | ¬Abort]− 1/2|.
Hence, the B’s advantage εB = |Pr[WB]− 1/2| is at least εA/(nhu). Here, let
ϕM (vk∗) := {σ∗

1 , . . . , σ
∗
v} and σ∗

k∗ := j∗ (where σ∗
1 , . . . , σ

∗
v ∈ [u] and k∗ ∈ [v]).

In order to bound εB, we change the environment of A. In this modified en-
vironment, the j∗-th share x∗j∗ generated by Trans is replaced with the all-zero
string 0|x

∗
j∗ |, when producing the challenge ciphertext. The probability Pr[WB] is

defined as p(0), and the probability that WB occurs in the modified environment
is defined as p(1). Then we have εB ≤ |p(0) − p(1)|+ |p(1) − 1/2|.

In order to bound |p(0) − p(1)|, we construct a PPT algorithm B1 against
the CPA security of Π′

pre, as follows: On input the public parameter pp′ in
the CPA game, B1 generates pp by following the algorithm Setup and gives
pp to A. When A submits the key generation query (n,UCorrupt), B1 generates

(vk∗, sigk∗) ← Πots.KeyGen(1
λ), chooses i∗ $← [n], j∗

$← ϕM (vk∗), and obtains
({pk′i,j}(i,j)∈[n]×[u], {sk′i,j}(i,j)∈[n]×[u]\{(i∗,j∗)}) by querying the key generation or-
acle in the CPA game. Here, for simplicity, we suppose that (i, j) ∈ [n]× [u] rep-
resents a user in the CPA game and let UHonest = [n]\UCorrupt denote the set of
honest users in the (t, t)-CCA game. Then B1 returns ({pki}i∈[n], {ski}i∈UCorrupt

),
where let pki := (pk′i,j)j∈[u] for every i ∈ [n], let ski := (sk′i,j)j∈[u] for every
i ∈ [n]\{i∗}, and let ski∗ := (sk′i∗,j)j∈[u]\{j∗}. Furthermore, this algorithm simu-
lates the oracles O.ReKeyGen, O.ReEnc, O.Dec, O.Challengeb, as follows:

– O.ReKeyGen(A,B): If A ∈ UHonest ∧ B ∈ UCorrupt holds, B1 returns ⊥; other-
wise it does the following:

14 S. Sato

• Case (A = i∗): Obtain rk
(j∗→j)
i∗→B by issuing ((i∗, j∗), (B, j)) to the re-

encryption key generation oracle in the CPA game, for every j ∈ [u]. For
every i ∈ [u]\{j∗} and every j ∈ [u], compute rk(i→j)

A→B ← Π′
pre.ReKeyGen(sk

′
i∗,i,

pk′B,j).
• Case (A ̸= i∗): Compute rk

(i→j)
A→B ← Π′

pre.ReKeyGen(sk
′
A,i, pk

′
B,j) for every

i ∈ [u] and every j ∈ [u].
Finally, B1 returns rkA→B = (rk

(i→j)
A→B)i∈[u],j∈[u].

– O.Dec(A, ctA). B1 parses ctA = (vkA, (ct
′
A,i)i∈[v], z, sigA) and does the follow-

ing:
1. Return ⊥ if (A, ctA) is a derivative of (i∗, ct∗).
2. Abort and output a random bit if A = i∗ ∧ j∗ ∈ ϕM (vkA) holds.
3. Returns ⊥ if it holds that vkA = vki∗ , ctA ̸= ct∗ and Πots.Vrfy(vkA,

(ct′A,1∥ · · · ∥ct′A,v∥z), sigA) = ⊤.
4. Return ⊥ if Πots.Vrfy(vkA, (ct

′
A,1∥ · · · ∥ct′A,v∥z), sigA) = ⊥ holds.

5. Compute x′i ← Π′
pre.Dec(sk

′
A,i, ct

′
A,i) for every i ∈ [v],.

6. Return m′ ← Inverse(x′1, . . . , x
′
v, z) if x′i ̸= ⊥ holds for every i ∈ [v];

otherwise return ⊥.
– O.ReEnc(A,B, ctA). B1 parses ctA = (vkA, (ct

′
A,i)i∈[v], z, sigA) and does the

following:
1. Return ⊥ if j ∈ UCorrupt holds and (A, ctA) is a derivative of (i∗, ct∗).
2. Abort and output a random bit if A = i∗ ∧ j∗ ∈ ϕM (vkA) holds.
3. Returns ⊥ if it holds that vkA = vki∗ , ctA ̸= ct∗ and Πots.Vrfy(vkA,

(ct′A,1∥ · · · ∥ct′A,v∥z), sigA) = ⊤.
4. Return ⊥ if Πots.Vrfy(vkA, (ct

′
A,1∥ · · · ∥ct′A,v∥z), sigA) = ⊥ holds.

5. Generate (vkB , sigkB)← Πots.KeyGen(1
λ).

6. For every i ∈ [u] and j ∈ [u], compute rk(i→j)
A→B ← Π′

pre.ReKeyGen(sk
′
A,i, pk

′
B,j).

7. Let {σ(A)
1 , . . . , σ

(A)
v } ← ϕM (vkA) and {σ(B)

1 , . . . , σ
(B)
v } ← ϕM (vkB).

8. Compute ct′B,i ← Π′
pre.ReEnc(rk

(σ
(A)
i →σ

(B)
i)

A→B , ct′A,i) for every i ∈ [v].
9. Compute sigB ← Πots.Sign(sigkB , (ct

′
B,1∥ · · · ∥ct′B,v∥z)).

10. Return ctB = (vkB , (ct
′
B,i)i∈[v], z, sigB).

– O.Challengeb(i
′,m∗

0,m
∗
1). B1 does the following:

1. Abort and output a random bit if i∗ ̸= i′.
2. Let {σ∗

1 , . . . , σ
∗
v} ← ϕM (vk∗).

3. Compute (x∗1, . . . , x
∗
v, z

∗)← Trans(m∗
b).

4. Obtain ct′∗j∗ by submitting (x∗j∗ , 0
µ̄) to the CPA game.

5. For every j ∈ [v]\{j∗}, then compute ct′∗j ← Π′
pre.Enc(pk

′
σ∗
j
, x∗j).

6. Compute sig∗ ← Πots.Sign(sigk
∗, (ct′∗1 ∥ · · · ∥ct′∗v ∥z∗)).

7. Return ct∗ = (vk∗, (ct′∗i)i∈[v], z
∗, sig∗).

When A finally outputs the guessing bit b′ ∈ {0, 1}, B1 outputs 1 if b = b′;
otherwise, it outputs 0.

We analyze the algorithm B1. Unless A issues a decryption query or re-
encryption query on (A, (vkA, (ct

′
A,i)i∈[v], zA, sigA)) such that A = i∗ ∧ j∗ ∈

ϕM (vkA), B1 can simulate the oracles O.Dec and O.ReEnc. The t-disjunct property

Bounded CCA Secure Proxy Re-encryption Based on Kyber 15

of M ensures that A cannot issue such a query. Additionally, B1 wins the CPA
game by employing A’s output, in the straightforward way. Hence, we have∣∣p(0) − p(1)∣∣ ≤ Advcpa

Π′
pre,B1

(λ).
In order to bound the winning probability in the modified environment (i.e.,

|p(1) − 1/2|), we construct a PPT algorithm B2 against (µ, µ̄, v)-AONT Trans.
By using A, we construct B2 given the oracle O.LR in the game of Trans: At the
beginning of the (t, t)-CCA game, B2 gives pp← Setup(1λ) to A. When A issues
(n,UCorrupt), B2 generates (vk∗, sigk∗)← Πots.KeyGen(1

λ), chooses i∗ $← [n], j∗
$←

ϕM (vk∗), and generates all key-pairs (pki, ski)← KeyGen(pp) for all users i ∈ [n].
And then, B2 simulates the oracles O.ReKeyGen, O.ReEnc, O.Dec by using the gen-
erated key-pairs. Furthermore, B2 simulates O.Challengeb(i

′,m∗
0,m

∗
1) as follows:

1. Abort and output a random bit if i∗ = i′.
2. Obtain ((x∗i)i∈[v]\{j∗}, z

∗) by issuing (m∗
b , 0

µ) to the given oracle O.LR.
3. Compute ct′∗i ← Π′

pre.Enc(pkσ∗
i
, x∗i) for every i ∈ [v], where {σ∗

1 , . . . , σ
∗
v} =

ϕM (vk∗).
4. Compute sig∗ ← Πots.Sign(sigk

∗, (ct′∗1 ∥ · · · ∥ ct′∗v ∥ z∗)).
5. Return ct∗ = (vk∗, (ct′∗i)i∈[v], z

∗, sig∗).

When A outputs the guessing bit b′ ∈ {0, 1}, B2 also outputs b′.
B2 simulates the oracles O.KeyGen, O.ReKeyGen, O.ReEnc, O.Dec completely since

it has the key-pairs of all users. The oracle O.Challenge is also simulated cor-
rectly since B2 can generate the challenge ciphertext without knowledge of x∗j∗ .
Hence, the B2’ advantage Advind

Trans,B2
(λ) is at least

∣∣p(1) − 1/2
∣∣. Therefore, we

have Advcpa
Π′

pre,B1
(λ) + Advind

Trans,B2
(λ) ≥ εA/(nhu). From the discussion above, we

obtain

Advcca
Πpre,A(λ) ≤ nhu · Adv

cpa
B1,Π′

pre
(λ) + nhu · Advind

AONT,B2
(λ) + Advsuf

Πots,F (λ).

and complete the proof.

4 Bounded CCA secure PRE with Compact Ciphertexts

In this section, we present a generic construction with compact ciphertexts,
which starts from any CPA secure PRE with key homomorphism and any strongly
unforgeable OTS.

4.1 Construction

We provide a bounded CCA secure PRE scheme with compact ciphertexts. This
scheme is based on our generic construction in Section 3.1 and constructed from
any CPA secure PRE with key-homomorphism (Definition 7).

In the proposed scheme, we employ the following (cryptographic) primitives:

– A (CPA secure) PRE scheme Π′
pre = (Π′

pre.Setup,Π
′
pre.KeyGen,Π

′
pre.Enc,Π

′
pre.Dec,

Π′
pre.ReKeyGen,Π

′
pre.ReEnc) with key homomorphism (i.e., there exist PPT al-

gorithms Π′
pre.HReKeyGen,Π

′
pre.ReKeyEval);

16 S. Sato

– A one-time signature scheme Πots = (Πots.KeyGen,Πots.Sign,Πots.Vrfy).

The proposed PRE scheme Πkh
pre = (Setup,KeyGen,Enc,Dec,ReKeyGen,ReEnc) is

constructed as follows:

– Setup(1λ)→ pp:
• Generate pp′ ← Π′

pre.Setup(pp).
• Let M =M(λ) be the message space, which is the same as that space

of Π′
pre.

• Let n̄ = n̄(λ), u = u(λ) be positive integers, and let [n] be the verification
key-space of Πots.

• Let M = (mi,j) ∈ {0, 1}u×n̄ be a t-disjunct matrix.
Output pp = (pp′, n̄, u,M).

– KeyGen(pp) → (pk, sk): Parse pp = (pp′, n̄, u,M) and generate (pk′i, sk
′
i) ←

Π′
pre.KeyGen(pp

′) for i ∈ [u]. Output pk = (pk′i)i∈[u] and sk = (sk′i)i∈[u].
– Enc(pk,m)→ ct:

1. Parse pk = (pk′i)i∈[n].
2. Generate (vk, sigk)← Πots.KeyGen(1

λ).
3. Compute {σ1, . . . , σv} ← ϕM (vk), where all σ1, . . . , σv ∈ [u] are distinct.
4. Compute pkvk ←

∏
i∈[v] pk

′
σi

.
5. Compute ct′ ← Π′

pre.Enc(pkvk,m).
6. Compute sig← Πots.Sign(sigk, ct

′).
7. Output ct = (vk, ct′, sig).

– Dec(sk, ct)→ m/⊥:
1. Parse sk = (sk′i)i∈[n] and ct = (vk, ct′, sig).
2. Output ⊥ if Πots.Vrfy(vk, ct

′, sig) = ⊥.
3. Compute skvk ←

∏
i∈[v] sk

′
σi

, where {σ1, . . . , σv} ← ϕM (vk).
4. Output m′ ← Π′

pre.Dec(skvk, ct
′).

– ReKeyGen(skA, pkB)→ rkA→B :
1. Parse skA = (sk′A,i)i∈[u] and pkB = (pk′B,i)i∈[u].
2. Compute (rk(i→j)

A→B)i∈[u],j∈[u] ← Π′
pre.HReKeyGen((sk

′
A,i)i∈[u], (pk

′
B,j)j∈[u]).

3. Output rkA→B = (rk
(i→j)
A→B)i∈[u],j∈[u].

– ReEnc(rkA→B , ctA)→ ctB :
1. Parse rk = (rk

(i→j)
A→B)i∈[u],j∈[u] and ctA = (vkA, ct

′
A, sigA).

2. Output ⊥ if Πots.Vrfy(vkA, ct
′
A, sigA) = ⊤ holds.

3. Generate (vkB , sigkB)← Πots.KeyGen(1
λ).

4. Compute {σ(A)
1 , . . . , σ

(A)
v } ← ϕM (vkA) and {σ(B)

1 , . . . , σ
(B)
v } ← ϕM (vkB).

5. Compute rkvkA→vkB ← ReKeyEval((rk
(σ

(A)
i →σ

(B)
i)

A→B)i∈[v]).
6. Compute ct′B ← Π′

pre.ReEnc(rkvkA→vkB , ct
′
A).

7. Compute sigB ← Πots.Sign(sigkB , ct
′
B).

8. Output ctB = (vkB , ct
′
B , sigB).

Due to the correctness of Π′
pre,Πots and the key homomorphism of Π′

pre, the
correctness of Πkh

pre holds, as follows:

Proposition 2 (Correctness of Πpre). If the PRE scheme Π′
pre is correct and

key homomorphism, and the OTS scheme Πots is strongly unforgeable, then the
resulting scheme Πkh

pre is correct.

Bounded CCA Secure Proxy Re-encryption Based on Kyber 17

4.2 Security Proof

The following theorem shows the bounded CCA security of Πkh
pre:

Theorem 2 (Security of Πpre). Suppose that the matrix M ∈ {0, 1}u×n is
a t-disjunct matrix and nh is a number of honest users in (t, t)-CCA game. If
the PRE scheme Πpre is KH-CPA secure, and the OTS scheme Πots is strongly
unforgeable, then the resulting PRE scheme Πkh

pre is (t, t)-CCA secure.
Concretely, if there exists a PPT algorithm A against a (t, t)-CCA secure PRE

scheme Πkh
pre, then there exists a PPT algorithm B against a KH-CPA secure PRE

scheme Π′
pre and a PPT algorithm F against strongly unforgeable OTS scheme

Πots, such that

Advcca
Πkh

pre,A(λ) ≤ nhu · Adv
kh-cpa
Π′

pre,B
(λ) + Advsuf

Πots,F (λ).

Proof. Let A be a PPT adversary against the PRE scheme Πkh
pre. For a user

i∗ ∈ [n] submitted to the challenge oracle O.Challenge, let ct∗ = (vk∗, ct′∗, sig∗)
denote the challenge ciphertext under pki∗ .

In order to prove Theorem 2, we consider security games Game0,Game1. For
i ∈ {0, 1}, let Wi be the event that the experiment in Gamei outputs 1.
Game0: The same game as (t, t)-CCA security game. Then, we have Advcca

Πpre,A(λ) =
|Pr[W0]− 1/2|.
Game1: The same game as Game0 except for the following procedures of the
decryption oracle O.Dec and the re-encryption oracle O.ReEnc: At the beginning
of the game, the experiment generates (vk∗, sigk∗) ← Πots.KeyGen(1

λ). For a
decryption query (i, cti) (resp. a re-encryption query (i, j, cti)) (where cti =
(vki, ct

′
i, sigi)), the experiment checks whether it holds that vki = vk∗, cti ̸=

ct∗, and Πots.Vrfy(vki, ct
′
i, sigi) = ⊤. If so, this experiment aborts; otherwise, it

returns the result of O.Dec(i, cti) (resp., O.ReEnc(i, j, cti)).
Let Bad be the event that A issues a decryption or re-encryption query

on cti = (vki, ct
′
i, sigi) such that vki = vk∗, cti ̸= ct∗, and Πots.Vrfy(vki, ct

′
i,

sigi) = ⊤. Then, Game0 and Game1 are identical unless Bad occurs. Hence, we
construct a PPT algorithm F breaking the strongly unforgeable OTS scheme Πots

so that we bound the probability Pr[Bad]. On input a verification key vk∗ of Πots,
F generates pp← Setup(1λ) and gives pp to A. Given (n,UCorrupt), F generates
(pki, ski)← KeyGen(pp) for every i ∈ [n], and returns ({pki}i∈[n], {ski}i∈UCorrupt

).
By using the generated key-pairs, this algorithm simulates the oracles O.ReKeyGen,
O.Dec, and O.ReEnc except for the following: For a decryption query (i.e., a re-
encryption query) on cti = (vki, ct

′
i, sigi), F aborts and outputs (ct′i, sigi) as a

forgery in the strong unforgeability game, if it holds that vki = vk∗, cti ̸= ct∗, and
Πots.Vrfy(vki, ct

′
i, sigi) = ⊤ (i.e., Bad occurs); otherwise, this algorithm checks

whether (i, cti) is a derivative of the challenge ciphertext (i∗, ct∗) if (i∗, ct∗)
is defined. If so, it returns ⊥. Otherwise it returns m′ ← Dec(ski, cti) (resp.,
ctj ← ReEnc(rki→j , cti)).

Additionally, when A submits (i∗,m∗
0,m

∗
1), F chooses b $← {0, 1} and com-

putes ct′∗ by following the procedure of Enc(pki∗ ,m∗
b). Then, this algorithm issues

18 S. Sato

ct′∗ to the signing oracle O.Sign in the strong unforgeability game and obtains
sig∗. F returns the challenge ciphertext ct∗i∗ = (vk∗, ct′∗, sig∗). Finally, when A
outputs b′ ∈ {0, 1} and Bad has not occurred, F halts and aborts.

It is clear that the output of F is a valid forgery in the strong unforgeability
game if Bad occurs. Additionally, F completely simulates the oracles in the (t, t)-
CCA game since it has all key-pairs. Hence, the probability Pr[Bad] is at most
the advantage Advsuf

Πots,F (λ) of F , and we have |Pr[W0]− Pr[W1]| ≤ Advsuf
Πots,F (λ).

In order to bound the winning probability of A in Game1, we construct
a PPT algorithm B against the KH-CPA security of Π′

pre, as follows: On in-
put pp′ in the CPA game, B generates (vk∗, sigk∗) ← KeyGen(1λ), sets pp =
(pp′, n̄, u,M), and gives pp to A. When A submits the key generation query
(n,UCorrupt), B chooses i∗ $← [nh], j

∗ $← ϕM (vk∗), and obtains ({pk′i,j}i∈[n],j∈[u],

{sk′i,j}i∈[n]\{i∗},j∈[u]\{j∗}) by querying the key generation oracle in the KH-CPA
game. Here, for simplicity, we suppose that (i, j) ∈ [n] × [u] represents a user-
index in the KH-CPA game and let UHonest := [n]\UCorrupt. Then B sets pk′i∗,j∗ :=

pk′i∗,j∗ ·
(∑

j∈ϕM (vk∗)∧j ̸=j∗ pk
′−1
i∗,j

)
and returns ({pki}i∈[n], {ski}i∈UCorrupt

), where
let pki := (pki,j)j∈[u] for every i ∈ [n], let ski := (ski,j)i∈[u] for every i ∈
[n]\{i∗}, and let ski∗ := (ski∗,j)j∈[u]\{j∗}. Additionally, B simulates the oracles
O.ReKeyGen, O.ReEnc, O.Dec, O.Challengeb, as follows:

– O.ReKeyGen(A,B): B checks whether A ∈ UHonest ∧B ∈ UCorrupt holds. If so,
this algorithms returns ⊥; otherwise, it obtains (rk

(i→j)
A→B)i∈[u],j∈[u] by issu-

ing (A,B) to the homomorphic re-encryption key generation oracle in the
KH-CPA game, and returns rkA→B = (rk

(i→j)
A→B)i∈[u],j∈[u].

– O.ReEnc(A,B, ctA): For ctA = (vkA, ct
′
A, sigA), B returns ⊥ if B ∈ UCorrupt

holds and ctA is its derivative of the challenge ciphertext. Otherwise, this
algorithm does the following:
1. If (A,B) is not queried to O.ReKeyGen, compute (rk

(i→j)
A→B)i∈[u],j∈[u] ←

HReKeyGen((skA,i)i∈[u], (pkB,j)j∈[u]).
2. Abort and output a random bit if A = i∗ ∧ j∗ ∈ ϕM (vkA) holds.
3. Return⊥ if it holds that vkA = vk∗, ctA = ct∗, and Πots.Vrfy(vkA, ct

′
A, sigA) =

⊤.
4. Return ⊥ if Πots.Vrfy(vkA, ct

′
A, sigA) = ⊥.

5. Generate (vkB , sigkB)← Πots.KeyGen(1
λ).

6. Compute {σ1, . . . , σv} ← ϕM (vkB).
7. If A = i∗ j∗ ∈ {σ1, . . . , σv}, then abort and output a random bit. Oth-

erwise, compute rkvkA→vkB ←
∑

i∈[v] rk
(σ

(A)
i →σ

(B)
i)

A→B .
8. Compute ct′B ← ReEnc(rkvkA→vkB , ct

′
A).

9. Compute sigB ← Πots.Sign(sigkB , ct
′
B).

10. Return ctB = (vkB , ct
′
B , sigB).

– O.Dec(A, ctA): For ctA = (vkA, ct
′
A, sigA), B returns ⊥ if the challenge ci-

phertext is defined and ctA is its derivative. Otherwise, this algorithm does
the following:
1. Abort and output a random bit if A = i∗ ∧ j∗ ∈ ϕM (vkA) holds.

Bounded CCA Secure Proxy Re-encryption Based on Kyber 19

2. Return⊥ if it holds that vkA = vk∗, ctA = ct∗, and Πots.Vrfy(vkA, ct
′
A, sigA) =

⊤.
3. If Πots.Vrfy(vkA, ct

′
A, sigA) = ⊥, return ⊥.

4. Compute skvk ←
∑

i∈[v] sk
′
σi

, where {σ1, . . . , σv} = ϕMA
(vkA).

5. Return m′ ← Π′
pre.Dec(skvk, ct

′
A).

– O.Challenge(i′,m∗
0,m

∗
1): B does the following:

1. Abort and output a random bit if i∗ ̸= i′ holds.
2. Obtain the ciphertext ct′∗ by issuing ((i∗, j∗),m∗

0,m
∗
1) to the challenge

oracle in the KH-CPA game.
3. Compute sig∗ ← Πots.Sign(sigki∗ , ct

′∗).
4. Return ct∗i∗ = (vk∗, ct′∗, sig∗).

Finally, when A outputs b′ ∈ {0, 1}, B also outputs b′.
We analyze the algorithm B. B simulates the environment of A unless B

aborts in the simulation of the oracles O.ReEnc, O.Dec, O.Challengeb. To estimate
the winning probability of B, we define Abort as the event that this algorithm
aborts in the simulation above. Additionally, let WB denote the event that B
outputs a bit b′ ∈ {0, 1} such that b = b′. Then, Pr[WB | Abort] = 1/2 and
Pr[¬Abort] ≥ 1/(nhu) hold. Hence, we have

Pr[WB] = Pr[WB ∧ Abort] + Pr[WB ∧ ¬Abort]
= Pr[Abort] · Pr[WB | Abort] + Pr[¬Abort] · Pr[WB | ¬Abort]

≥ 1

2

(
1− 1

nhu

)
+

1

nhu
· Pr[WB | ¬Abort]

=
1

2
+

1

nhu

(
Pr[WB | ¬Abort]−

1

2

)
.

Since the A’s advantage εA in Game1 is equivalent to
∣∣Pr[WB | ¬Abort]− 1

2

∣∣, the
B’s advantage εB = |Pr[WB]− 1/2| is at least εA/(nhu).

From the above discussion, we obtain

Advcca
Πpre,A(λ) ≤ nhu · Adv

kh-cpa
Π′

pre,B
(λ) + Advsuf

Πots,F (λ),

and complete the proof. ⊓⊔

5 Kyber-based PRE with Key Homomorphism

In order to instantiate our generic construction with compact ciphertexts, we
give a Kyber-based PRE scheme ΠKyber

pre with key homomorphism and prove that
ΠKyber

pre is KH-CPA secure. Concretely, the algorithms Setup,KeyGen,Enc,Dec of
ΠKyber

pre are the same as those of Kyber [6], and then we add the algorithms
ReKeyGen,ReEnc,HReKeyGen,ReKeyEval in order to guarantee the re-encryption
functionality of PRE.

To describe this PRE scheme, we employ the following functions:

– The compression functions used in Kyber [6]:

20 S. Sato

• Compressq: For x ∈ Zq and d ∈ Z, the compression function Compressq
with a parameter q ∈ Z is defined as Compressq(x) := ⌈(2d/q) · x⌋
mod 2d.

• Decompressq: For x ∈ Zq and d ∈ Z, the compression function Decompressq
with a parameter q ∈ Z is defined as Decompressq(x) := ⌈(q/2d) · x⌋.

– The bit-decomposition algorithm BitDecomp given a vector x ∈ ZN
q decom-

poses x into its bit representation.
– The powers-of-two algorithm Powersof2 with ℓ = ⌈log q⌉, on input a (column)

vector s ∈ ZN
q , outputs (1, 2, . . . , 2ℓ)⊤ ⊗ s = (s, 2s, . . . , 2ℓ−1s) ∈ ZNℓ

q , where
⊗ is the standard tensor product.

We describe the PRE scheme ΠKyber
pre = (Setup,KeyGen,Enc,Dec,ReKeyGen,

ReEnc) with (HReKeyGen,ReKeyEval), as follows:

– Setup(1λ)→ pp:
• Let M = {0, 1}µ be the message space, where µ = µ(λ) is a positive

integer.
• For N = 256 and a prime q, R and Rq are defined as R := Z[X]/(XN+1)

and Rq := Zq[X]/(XN + 1), respectively, where N = 2N
′−1 such that

XN + 1 is the 2N
′
-th cyclotomic polynomial (e.g., N ′ = 9).

• Let ℓ := ⌈log q⌉.
• For some positive integer η, βη is a distribution where each coefficient of

a sample is generated from Bη.
• Let k, dt, du, dv be positive integers.
• Sample A

$← Rk×k
q .

Output pp = (λ, µ,N,N ′, q, ℓ, η, k, dt, du, dv,A).
– KeyGen(pp)→ (pk, sk):

1. Sample (s, ŝ)← βk
η × βk

η and (e, ê)← βk
η × βk

η .
2. Compute t← Compressq(As+ e, dt) and t̂← Compressq(Aŝ+ ê, dt).
3. Output pk = (t, t̂) and sk = (s, ŝ).

– Enc(pk,m)→ ct:
1. Parse pk = (t, t̂).
2. Compute t← Decompress(t, dt).
3. Sample (r, e1, e2)← βk

η × βk
η × βη.

4. Compute u← Compressq(A
⊤r + e⊤1 , du).

5. Compute v ← Compressq(t
⊤r + e2 + ⌈ q2⌋ ·m, dv).

6. Output ct = (u, v).
– Dec(sk, ct)→ m:

1. Parse sk = (s, ŝ) and ct = (u, v).
2. Compute u← Decompressq(u, du) and v ← Decompressq(v, dv).
3. Output m← Compressq(v − s⊤u, 1).

– ReKeyGen(skA, pkB)→ rkA→B :
1. Parse skA = (sA, ŝA) and pkB = (tB , t̂B).
2. Compute t̂B ← Decompressq(t̂B , dt).
3. Choose RA→B,1,RA→B,2 ← βk×kℓ

η and rA→B,3 ← βk
η .

Bounded CCA Secure Proxy Re-encryption Based on Kyber 21

4. Compute UA→B ← A⊤RA→B,1 +RA→B,2 ∈ Rk×kℓ
q .

5. Compute vA→B ← t̂⊤BRA→B,1 + r⊤A→B,3 − Powersof2(s⊤A) ∈ Rkℓ
q .

6. Output rkA→B = (UA→B ,vA→B).
– ReEnc(rkA→B , ctA)→ ctB :

1. Parse rkA→B = (UA→B ,vA→B) and ctA = (uA, vA).
2. Compute uA ← Decompressq(uA, du) and vA ← Decompressq(vA, dv).
3. Compute uB ← UA→B ·BitDecomp(uA) and vB ← vA+v⊤

A→B ·BitDecomp(uA).
4. Compute uB ← Compressq(uB , du) and vB ← Compressq(vB , dv).
5. Output ctB = (uB , vB).

– HReKeyGen((skA,i)i∈[u], (pkB,i)i∈[u])→ (rk
(i→j)
A→B)i∈[u],j∈[u]:

1. Parse skA,i = (sA,i, ŝA,i) and pkB = (tB,i, t̂B,i) for every i ∈ [u].
2. Compute t̂Bi ← Decompressq(t̂Bi , dt) for every i ∈ [u].
3. Choose RA→B,1,RA→B,2 ← βk×kℓ

η .
4. Choose rA→B,i ← βk×1

η for every i ∈ [u].
5. Compute UA→B ← A⊤RA→B,1 +RA→B,2.
6. Compute v

(i→j)
A→B ← t̂⊤B,jRA→B,1 + r

(i→j)
A→B − Powersof2(s⊤A,i) for every

i ∈ [u] and every j ∈ [u].
7. Output (rk

(i→j)
A→B)i∈[u],j∈[u], where rk

(i→j)
A→B = (UA→B ,v

(i→j)
A→B).

– ReKeyEval((rk
(ai→bi)
A→B)i∈[v])→ rkA→B :

1. Parse rkAi→Bi
= (UA→B ,vAi→Bi

) for every i ∈ [u].
2. Compute vA→B ←

∑
i∈[v] v

(ai→bi)
A→B ∈ Rk

q .
3. Output rkA→B = (UA→B ,vA→B).

Propositions 3 and 4 show the correctness and key-homomorphism of ΠKyber
pre ,

respectively. Here, the proof of Proposition 3 is appeared in Appendix A.1.

Proposition 3 (Correctness). Let pp = (λ, µ,N,N ′, q, ℓ, η, k, dt, du, dv,A) be
a public parameter determined by running Setup(1λ) and let A,B be distinct
users. Then, the key-pairs of these users and a ciphertext under the A ’s public
key are defined as follows:

– Let (pkA, skA) = ((tA, t̂A), (sA, ŝA)) and (pkB , skB) = ((tB , t̂B), (sB , ŝB))
be key-pairs of the users A and B, respectively, where ti = Compressq(Asi+

ei, dt) and t̂i = Compressq(Aŝi + êi, dt) for i ∈ {A,B};
– Let ctA = (uA, vA) be a ciphertext generated by running Enc(pkA,m) for an

arbitrary message m ∈ M, where pkA =
∑

i∈[v] tai
, u = Compressq(A

⊤r +

e⊤1 , du), and v = Compressq(t
⊤r + e2 + ⌈ q2⌋ ·m, dv).

Let ct,A, ct,B ← ψk
dt

, cu ← ψk
du

, cv ← ψdv
be distributed according to the follow-

ing distribution ψk
d over R:

1. Choose y ← Rk uniformly at random.
2. Return (y − Decompressq(Compressq(y, d), d))mod± q.

22 S. Sato

Denote

w := e⊤Ar + e2 + cv,A − s⊤AeA,1 − s⊤Acu,A;

ŵ := w + (e2,B + (ê⊤B + c⊤t,B)BitDecomp(uA)

+ r⊤A→B,3 · BitDecomp(uA)− ŝ⊤BRA→B,2 · BitDecomp(uA)− ŝ⊤Bcu,B ;

δ := Pr [∥ŵ∥∞ ≥ q/4] .

Then, ΠKyber
pre is correct with probability δ.

Proposition 4. Let pp = (λ, µ,N,N ′, q, ℓ, η, k, dt, du, dv,A) be a public param-
eter determined by running Setup(1λ), and let A = {a1, . . . , av} ⊆ [u] and
B = {b1, . . . , bv} ⊆ [u] be two sets of distinct users. Then, the key-pairs of
these users and a ciphertext are defined as follows:

– For each i ∈ [v], let (pkA,ai
, skA,ai

) = ((tA,ai
, t̂A,ai

), (sA,ai
, ŝA,ai

)) (resp.
(pkB,bi , skB,bi) = ((tB,bi , t̂B,bi), (sB,bi , ŝB,bi))) be the key-pair of the user
(A, ai) (resp. the user (B, bi)), where tA,ai

= Compressq(AsA,ai
+ eA,ai

, dt)

and t̂B,bi = Compressq(AŝB,bi + êB,bi , dt);
– Let ctA = (uA, vA) be a ciphertext generated by running Enc(pkA,m) for an

arbitrary message m ∈M, where pkA =
∑

i∈[v] tai
, uA = Compressq(A

⊤r+

e⊤1 , du) and vA = Compressq(t
⊤
Ar + e2 + ⌈ q2⌋ ·m, dv).

Let ct,A, ct,B ← ψk
dt

, cu ← ψk
du

, cv ← ψdv
be distributed according to the follow-

ing distribution ψk
d over R:

1. Choose y ← Rk uniformly at random.
2. Return (y − Decompressq(Compressq(y, d), d))mod± q.

Let (UA→B ,v
(i→j)
A→B)i∈[u],j∈[u] ← HReKeyGen((skA,i)i∈[u], (pkB,i)j∈[u]) and (UA→B ,

vA→B)← ReKeyEval((rk
(ai→bi)
A→B)i∈[v]).

Denote

w :=

∑
i∈[v]

r
(ai→bi)⊤
A→B,3

BitDecomp(uA) +

∑
i∈[v]

êbi +
∑
i∈[v]

ĉt,bi

⊤

RA→B,1 + ĉdv

− ŝ⊤BRA→B,2 · BitDecomp(uA) + ŝ⊤B ·

∑
i∈[v]

ĉt,bi

 ; and

δ := Pr [∥w∥∞ ≥ q/4]

for ĉdu
← ψdu

and ĉt,bi ← ψdt
(i ∈ [v]), where let ŝB :=

∑
i∈[v] ŝbi , let

ĉt,B :=
∑

i∈[v] ĉt,bi and for every i ∈ [v], r
(ai→bi)
A→B,3 is generated when running

HReKeyGen((ski)i∈[u], (pki)j∈[u]).
Then, the PRE scheme ΠKyber

pre satisfies re-encryption key homomorphic with
probability δ.

Bounded CCA Secure Proxy Re-encryption Based on Kyber 23

Proof. We consider an arbitrary message m ∈M throughout the proof of Theo-
rem 4. Recall that pp = (λ, µ,N,N ′, q, ℓ, η, k, dt, du, dv,A) is a public param-
eter determined by running Setup(1λ), and let A = {a1, . . . , av} ⊆ [u] and
B = {b1, . . . , bv} ⊆ [u] be two sets of distinct users. For each i ∈ [v], let
(pkA,ai

, skA,ai
) = ((tA,ai

, t̂A,ai
), (sA,ai

, ŝA,ai
)) (resp. (pkB,bi , skB,bi) = ((tB,bi ,

t̂B,bi), (sB,bi , ŝB,bi))) be the key-pair of the user (A, ai) (resp. the user (B, bi)),
where tA,ai

= Compressq(AsA,ai
+ ei, dt) and t̂B,bi = Compressq(AŝB,bi +

êB,bi , dt).
For every i ∈ [v], the values of tA,ai and t̂B,bi is

tA,ai = Decompressq(Compress(AsA,ai + eA,ai , dt), dt)

= AsA,ai + eA,ai + ct,ai ;

t̂B,bi = Decompressq(Compress(A⊤ŝB,bi + êB,bi , dt), dt)

= AŝB,bi + êB,bi + ĉt,bi

for some (ct,ai , ĉt,bi) ∈ Rk ×Rk.
Let A := {ai}i∈[v] and B := {bi}i∈[v]. Then we define public keys pkA, pkB ,

as follows:

pkA :=
∑
i∈[v]

tai
= A

∑
i∈[v]

sai
+

∑
i∈[v]

eai
+

∑
i∈[v]

ct,ai
= AsA + eA + ct,A;

pkB :=
∑
i∈[v]

t̂bi = A
∑
i∈[v]

ŝbi +
∑
i∈[v]

êbi +
∑
i∈[v]

ĉt,bi = AŝB + êB + ĉt,B ,

where

– let sA :=
∑

i∈[v] sai
, eA :=

∑
i∈[v] eai

, and ct,A :=
∑

i∈[v] ct,ai
;

– let ŝB :=
∑

i∈[v] ŝbi , êB :=
∑

i∈[v] êbi , and ĉt,B :=
∑

i∈[v] ĉt,bi .

Let ctA = (uA, vA) be an encryption of m, under pkA (i.e., (uA, vA) ←
Enc(pkA,m)). The values of uA and vA are

uA = Decompressq(Compressq(A
⊤r + e1, du), du)

= A⊤r + e1 + cu; and

vA = Decompressq(Compressq((pkA)
⊤r + e2 + ⌈q/2⌋ ·m, dv), dv)

= (AsA + eA + ct,A)
⊤r + e2 + ⌈q/2⌋ ·m+ cv

= (AsA + eA)
⊤r + e2 + ⌈q/2⌋ ·m+ cv + c⊤t,Ar

for some (cu, cv) ∈ Rk ×R.
Let (rk

(i→j)
A→B)i∈[u],j∈[u] ← HReKeyGen((skA,i)i∈[u], (pkB,i)i∈[u]). For every i ∈

[u] and every j ∈ [u], the value of the re-encryption key rk
(i→j)
A→B = (UA→B ,v

(i→j)
A→B)

is

UA→B = A⊤RA→B,1 +RA→B,2;

v
(i→j)
A→B = t̂⊤B,jRA→B,1 + r

(i→j)⊤
A→B,3 − Powersof2(s⊤A,i).

24 S. Sato

Then, the homomorphicly evaluated value vA→B generated by running (UA→B ,uA→B)←
ReKeyEval((rk

(ai→bi)
A→B)i∈[v]) is

vA→B :=
∑
i∈[v]

v
(ai→bi)
A→B =

∑
i∈[v]

t̂⊤B,biRA→B,1 +
∑
i∈[v]

r
(ai→bi)⊤
A→B,3 −

∑
i∈[v]

Powersof2(s⊤A,ai
).

Let ctB = (uB , vB) be a re-encrypted ciphertext generated by using the
re-encryption key (UA→B ,vA→B), and the value of (uB , vB) is

uB = (A⊤RA→B,1 +RA→B,2) · BitDecomp(uA);

vB = vA +

∑
i∈[v]

t̂⊤B,biRA→B,1 +
∑
i∈[v]

r
(ai→bi)⊤
A→B,3 −

∑
i∈[v]

Powersof2(s⊤A,ai
)

BitDecomp(uA)

= vA −
∑
i∈[v]

s⊤A,ai
uA +

∑
i∈[v]

t̂⊤B,biRA→B,1 +
∑
i∈[v]

r
(ai→bi)⊤
A→B,3

BitDecomp(uA)

= vA − s⊤AuA +

(AŝB + êB + ĉt,B)
⊤RA→B,1 +

∑
i∈[v]

r
(ai→bi)⊤
A→B,3

BitDecomp(uA)

= vA − s⊤AuA

+ ŝ⊤BA
⊤RA→B,1 +

∑
i∈[v]

r
(ai→bi)⊤
A→B,3

BitDecomp(uA) + (êB + ĉt,B)
⊤RA→B,1.

Then, the decompressed values of uB and vB are

uB = Decompressq(Compressq(uA, du), du)

= A⊤RA→B,1 · BitDecomp(uA) +RA→B,2 · BitDecomp(uA) + ĉdu
;

vB = Decompressq(Compressq(vA, dv), dv)

= vA − s⊤AuA

+ ŝ⊤BA
⊤RA→B,1 +

∑
i∈[v]

r
(ai→bi)⊤
A→B,3

BitDecomp(uA) + (êB + ĉt,B)
⊤RA→B,1 + ĉdv

Bounded CCA Secure Proxy Re-encryption Based on Kyber 25

for some (ĉdu
, ĉdv

) ∈ Rk ×R. Hence, we have

vA − ŝ⊤BuB

= vA − s⊤AuA

+ ŝ⊤BA
⊤RA→B,1 +

∑
i∈[v]

r
(ai→bi)⊤
A→B,3

BitDecomp(uA) + (êB + ĉt,B)
⊤RA→B,1 + ĉdv

− ŝ⊤B
(
A⊤RA→B,1 · BitDecomp(uA) +RA→B,2 · BitDecomp(uA) + ĉdu

)
= vA − s⊤AuA +

∑
i∈[v]

r
(ai→bi)⊤
A→B,3

BitDecomp(uA) + (êB + ĉt,B)
⊤RA→B,1 + ĉdv

− ŝ⊤BRA→B,2 · BitDecomp(uA) + ŝ⊤B ĉdu
.

The error-term w of vB − ŝ⊤BuB is defined as

w :=

∑
i∈[v]

r
(ai→bi)⊤
A→B,3

BitDecomp(uA) + (êB + ĉt,B)
⊤RA→B,1 + ĉdv

− ŝ⊤BRA→B,2 · BitDecomp(uA) + ŝ⊤B ĉdu
.

Additionally, let m′ := Compressq(vA − ŝ⊤BuB , 1). Then it holds that⌈q
4

⌋
≥

∥∥∥vB − ŝ⊤BuB −
⌈q
2

⌋
·m′

∥∥∥
∞

=
∥∥∥w +

⌈q
2

⌋
·m−

⌈q
2

⌋
·m′

∥∥∥
∞
.

Due to the fact that ∥w∥∞ < ⌈q/4⌋, it holds that∥∥∥⌈q
2

⌋
(m−m′)

∥∥∥
∞
< 2

⌈q
4

⌋
,

and this indicates m = m′. The proof is completed. ⊓⊔

Theorem 3. If the MLWEk+1,kℓ,η assumption holds, the proposed PRE scheme
ΠKyber

pre is KH-CPA secure.
Concretely, suppose that n is the total number of users, nh is the number of

honest users, qrk is the maximum number of queries issued to the re-encryption
key generation oracle, and u is the number of key-pairs given to a user. If there
exists a PPT adversary A against the KH-CPA security of ΠKyber

pre , then there
exists a PPT algorithm B against the MLWEk+1,kℓ,η problem, such that

Advkh-cpa
ΠKyber

pre ,A
(λ) ≤ nh(qrkku+ 2u+ 1) · Advmlwe

k+1,kℓ,η(B).

The proof of Theorem 3 is appeared in Appendix A.2.

Acknowledgements. This research was conducted under a contract of “Re-
search and development on new generation cryptography for secure wireless
communication services” among “Research and Development for Expansion of
Radio Wave Resources (JPJ000254)”, which was supported by the Ministry of
Internal Affairs and Communications, Japan.

26 S. Sato

References

1. G. Ateniese, K. Benson, and S. Hohenberger. Key-private proxy re-encryption.
In CT-RSA, volume 5473 of Lecture Notes in Computer Science, pages 279–294.
Springer, 2009.

2. G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Improved proxy re-encryption
schemes with applications to secure distributed storage. In NDSS. The Internet
Society, 2005.

3. G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Trans. Inf. Syst.
Secur., 9(1):1–30, 2006.

4. M. Blaze, G. Bleumer, and M. Strauss. Divertible protocols and atomic proxy
cryptography. In EUROCRYPT, volume 1403 of LNCS, pages 127–144. Springer,
1998.

5. D. Boneh, R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from
identity-based encryption. SIAM J. Comput., 36(5):1301–1328, 2007.

6. J. W. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, and D. Stehlé. CRYSTALS - kyber: a cca-secure module-lattice-based
KEM. IACR Cryptol. ePrint Arch., page 634, 2017.

7. R. Canetti and S. Hohenberger. Chosen-ciphertext secure proxy re-encryption. In
CCS, pages 185–194. ACM, 2007.

8. A. Cohen. What about bob? the inadequacy of CPA security for proxy reencryp-
tion. In Public Key Cryptography (2), volume 11443 of LNCS, pages 287–316.
Springer, 2019.

9. R. Cramer, G. Hanaoka, D. Hofheinz, H. Imai, E. Kiltz, R. Pass, A. Shelat, and
V. Vaikuntanathan. Bounded cca2-secure encryption. In ASIACRYPT, volume
4833 of Lecture Notes in Computer Science, pages 502–518. Springer, 2007.

10. A. Davidson, A. Deo, E. Lee, and K. Martin. Strong post-compromise secure proxy
re-encryption. In ACISP, volume 11547 of LNCS, pages 58–77. Springer, 2019.

11. Y. Dodis, J. Katz, S. Xu, and M. Yung. Key-insulated public key cryptosystems. In
EUROCRYPT, volume 2332 of Lecture Notes in Computer Science, pages 65–82.
Springer, 2002.

12. D.-Z. Du and F. K. Hwang. Combinatorial Group Testing and Its Applications (2nd
Edition), volume 12 of Series on Applied Mathematics. World Scientific, 2000.

13. J. Duman, K. Hövelmanns, E. Kiltz, V. Lyubashevsky, and G. Seiler. Faster lattice-
based kems via a generic fujisaki-okamoto transform using prefix hashing. In CCS,
pages 2722–2737. ACM, 2021.

14. X. Fan and F. Liu. Proxy re-encryption and re-signatures from lattices. In ACNS,
volume 11464 of LNCS, pages 363–382. Springer, 2019.

15. S. Goldwasser, A. B. Lewko, and D. A. Wilson. Bounded-collusion IBE from key
homomorphism. In TCC, volume 7194 of Lecture Notes in Computer Science, pages
564–581. Springer, 2012.

16. P. Grubbs, V. Maram, and K. G. Paterson. Anonymous, robust post-quantum
public key encryption. In EUROCRYPT (3), volume 13277 of LNCS, pages 402–
432. Springer, 2022.

17. A. Ivan and Y. Dodis. Proxy cryptography revisited. In NDSS. The Internet
Society, 2003.

18. V. Maram and K. Xagawa. Post-quantum anonymity of kyber. In Public Key
Cryptography (1), volume 13940 of LNCS, pages 3–35. Springer, 2023.

Bounded CCA Secure Proxy Re-encryption Based on Kyber 27

19. L. T. Phong, L. Wang, Y. Aono, M. H. Nguyen, and X. Boyen. Proxy re-encryption
schemes with key privacy from LWE. IACR Cryptol. ePrint Arch., page 327, 2016.

20. Y. Polyakov, K. Rohloff, G. Sahu, and V. Vaikuntanathan. Fast proxy re-
encryption for publish/subscribe systems. ACM Trans. Priv. Secur., 20(4):14:1–
14:31, 2017.

21. S. Tessaro and D. A. Wilson. Bounded-collusion identity-based encryption from
semantically-secure public-key encryption: Generic constructions with short cipher-
texts. In Public Key Cryptography, volume 8383 of LNCS, pages 257–274. Springer,
2014.

22. K. Xagawa. Anonymity of NIST PQC round 3 kems. In EUROCRYPT (3), volume
13277 of Lecture Notes in Computer Science, pages 551–581. Springer, 2022.

A Omitted Proofs

A.1 Proof of Proposition 3

We consider an arbitrary message m ∈M when showing the encryption-correctness
and re-encryption-correctness of ΠKyber

pre . Recall that pp = (λ, µ,N,N ′, q, ℓ, η, k, dt,

du, dv,A) is a public parameter determined by running Setup(1λ) and let A,B
be two distinct users. Then, these users’ key-pairs and an encryption of m are
defined as follows:

– (pkA, skA) = ((tA, t̂A), (sA, ŝA)) and (pkB , skB) = ((tB , t̂B), (sB , ŝB)) are
key-pairs of the users A and B, respectively, where t = Compressq(Asi +

ei, dt) and t̂ = Compressq(Aŝi + êi, dt) for i ∈ {A,B}; and
– ctA = (uA, vA) is a ciphertext generated by running Enc(pkA,m), where

u = Compressq(A
⊤r + e⊤1 , du) and v = Compressq(t

⊤r + e2 + ⌈ q2⌋ ·m, dv).

First we show the encryption-correctness of ΠKyber
pre . Then, the public value tA

is represented as

tA = Decompressq(Compressq(AsA + eA, dt), dt)

= AsA + eA + ct,A

for some value ct,A ∈ Rk.
Additionally, the value uA of the ciphertext ctA = (uA, vA) under pkA is

uA = Decompressq(Compressq(A
⊤
ArA + eA,1, du), du)

= A⊤r + e1 + cu,A,

for some cu,A ∈ Rk. And the value vA is

vA = Decompressq(Compressq(t
⊤
Ar + e2 +

⌈q
2

⌋
·m, dv), dv)

= t⊤Ar + e2 + cv,A +
⌈q
2

⌋
·m

= (AsA + eA + ct,A)
⊤r + e2 + cv,A +

⌈q
2

⌋
·m

= (AsA + eA)
⊤r + e2 + cv,A +

⌈q
2

⌋
·m+ c⊤t,Ar,

28 S. Sato

for some cv,A ∈ R.
Then, we have

vA − s⊤AuA = (AsA + eA)
⊤rA + eA,2 + cv,A +

⌈q
2

⌋
·m+ c⊤t,ArA

− s⊤A(A
⊤rA + eA,1 + cu,A)

=
⌈q
2

⌋
·m+ e⊤ArA + eA,2 + cv,A − s⊤AeA,1 − s⊤Acu,A.

Let w := e⊤ArA + eA,2 + cv,A − s⊤AeA,1 − s⊤Acu,A.
We define m′ = Compressq(vA − s⊤AuA, 1) and see that⌈q

4

⌋
≥

∥∥∥vA − s⊤AuA −
⌈q
2

⌋
·m′

∥∥∥
∞

=
∥∥∥w +

⌈q
2

⌋
·m−

⌈q
2

⌋
·m′

∥∥∥
∞
.

Due to the triangle inequality and the fact that ∥w∥∞ < ⌈q/4⌋, it holds that∥∥∥⌈q
2

⌋
· (m−m′)

∥∥∥
∞
< 2

⌈q
4

⌋
This implies m = m′, and the proof of the encryption-correctness is completed.

Next, we show the re-encryption-correctness of ΠKyber
pre . For convenience, we

also employ the above value of (tA,uA, vA). A re-encryption key rkA→B =
(UA→B ,vA→B) generated by running ReKeyGen(skA, pkB) is represented as fol-
lows:

UA→B = A⊤RA→B,1 +RA→B,2 ∈ Rk×kw
q ,

v⊤
A→B = t̂⊤BRA→B,1 + r⊤A→B,3 − Powersof2(s⊤A).

Additionally, a re-encryption ctB = (uB , vB) is generated by using the value of
(UA→B ,vA→B), as follows:

uB =
(
A⊤

BRA→B,1 +RA→B,2

)
· BitDecomp(uA),

vB = vA + (t̂⊤BRA→B,1 + r⊤A→B,3 − Powersof2(s⊤A)) · BitDecomp(uA).

Moreover, the decompressed value of (uB , vB) is

uB = Decompressq(Compressq(uB , du))

= A⊤RA→B,1 · BitDecomp(uA) +RA→B,2 · BitDecomp(uA) + cu,B ,

vB = Decompressq(Compressq(vB , du))

= vA + (t̂⊤BRA→B,1 + r⊤A→B,3 − Powersof2(s⊤A)) · BitDecomp(uA) + cv,B

= (vA − s⊤AuA) + t̂⊤BRA→B,1 · BitDecomp(uA) + r⊤A→B,3 · BitDecomp(uA) + cv,B ,

for some (cu,B , cv,B) ∈ Rk ×R. Additionally, the public value t̂B is

t̂B = Decompressq(Compressq(AŝB + êB , dt), dt)

= AŝB + êB + ct,B

Bounded CCA Secure Proxy Re-encryption Based on Kyber 29

for some ct,B ∈ Rk. Hence, we have

vB − ŝ⊤BuB = (vA − s⊤AuA) + t̂⊤BRA→B,1 · BitDecomp(uA) + r⊤A→B,3 · BitDecomp(uA) + cv,B

− ŝ⊤B(A
⊤RA→B,1 · BitDecomp(uA) +RA→B,2 · BitDecomp(uA) + cu,B)

=
(
w +

⌈qB
2

⌋
m
)
+ (t̂⊤BRA→B,1 − (AŝB)

⊤RA→B,1)BitDecomp(uA)

+ r⊤A→B,3 · BitDecomp(uA)− ŝ⊤BRA→B,2 · BitDecomp(uA)− ŝ⊤Bcu,B

=
(
w +

⌈qB
2

⌋
m
)
+ (ê⊤B + c⊤t,B)BitDecomp(uA)

+ r⊤A→B,3 · BitDecomp(uA)− ŝ⊤BRA→B,2 · BitDecomp(uA)− ŝ⊤Bcu,B .

The error-term ŵ of (vB − ŝ⊤BuB) is defined as

ŵ := w + (e2,B + (ê⊤B + c⊤t,B)BitDecomp(uA)

+ r⊤A→B,3 · BitDecomp(uA)− ŝ⊤BRA→B,2 · BitDecomp(uA)− ŝ⊤Bcu,B .

In addition, let m′ := Compressq(vB − ŝ⊤BuB , 1). Hence, if ∥ŵ∥∞ < ⌈q/4⌋, it
holds that⌈q

4

⌋
≥

∥∥∥vB − s⊤BuB −
⌈q
2

⌋
·m′

∥∥∥
∞

=
∥∥∥ŵ +

⌈q
2

⌋
·m−

⌈q
2

⌋
·m′

∥∥∥
∞
.

Due to the triangle inequality and the fact ∥ŵ∥∞ < ⌈q/4⌋, we obtain∥∥∥⌈q
2

⌋
· (m−m′)

∥∥∥
∞
< 2 ·

⌈q
4

⌋
.

This indicates m = m′. Therefore, the reencryption-correctness is shown.
From the discussion above, we complete the proof of the correctness of the

proposed PRE scheme ΠKyber
pre . ⊓⊔

A.2 Proof of Theorem 3

Let A denote a PPT adversary against the KH-CPA security of the PRE scheme
ΠKyber

pre . Let n (= nh + nc) be the total number of users whose key-pairs are
generated in the KH-CPA game, where nh and nc are the numbers of honest users
and corrupted users, respectively. Let qrk be the number of queries issued to the
O.ReKeyGen oracle. The challenge ciphertext under the public key of the user
i∗ ∈ [n] is denoted by ct∗ = (u∗, v∗). In order to prove Theorem 3, we consider
security games Game0, (Game

(κ)
1)κ∈[nh], (Game

(κ)
2)κ∈[nh], (Game

(κ)
3)κ∈[nh],Game4.

For i ∈ [3] and κ ∈ [n], let W (κ)
i be the events that the experiment in Game

(κ)
i

outputs 1. Let W0 and W4 denote the events that the experiment in Game0 and
Game4 output 1, respectively.
Game0: The original KH-CPA security game. Then, we have Advkh-cpa

Πpre,A (λ) =

|Pr[W0]− 1/2|.

30 S. Sato

Let Game
(0)
1 be the same game as Game0. Here, without loss of generality,

the index σκ ∈ UHonest of an honest user is denoted by κ = σκ for every κ ∈ [nh].
For every κ ∈ [nh], we consider a security game Game

(κ)
1 .

Game
(κ)
1 : The same game as Game

(κ−1)
1 except that, for every i ∈ [u], t̂κ,i =

Compressq(Aŝκ,i+êκ,i, dt) is replaced by a uniformly random t̂κ,i = Compressq(b̂κ,i, dt)

(where b̂κ,i ∈ Rk
q is chosen uniformly at random), when generating the public

key pkκ,i = (tκ,i, t̂κ,i) of the honest user κ.

Assuming the existence of A, there exists a PPT algorithm B(κ)1 against the
MLWEk,k,η problem, because the secret value ŝκ,i is not necessary to simulate the
environments of A in both Game

(κ−1)
1 and Game

(κ)
1 . By using A’s output, B(κ)1

can distinguish between a MLWEk,k,η sample and a uniformly random one, in the
straightforward way. Hence, we have

∣∣∣Pr[W (κ−1)
1]− Pr[W

(κ)
1]

∣∣∣ ≤ u·Advmlwe
k,k,η(B

(κ)
1)

for every κ ∈ [nh], due to the union bound on i ∈ [u].

Here, we define Game
(0)
2 as the same game as Game

(nh)
1 , and consider the

security game Game
(κ)
2 for every κ ∈ UHonest.

Game
(κ)
2 . The same game as Game

(κ−1)
2 except that, on input a query (A, κ),

the oracle O.HReKeyGen generates a uniformly random UA→B ∈ Rk×kℓ
q and a

uniformly random v
(i→j)
A→B ∈ Rkℓ

q for every i ∈ [u] and j ∈ [u], instead of UA→B ←
A⊤RA→B,1 +RA→B,2 and v

(i→j)
A→B ← t̂⊤B,jRA→B,1 + rA→B,i − Powersof2(s⊤A,i).

For each m ∈ [k + 1], there exists a PPT algorithm B(m,κ)
2 distinguishing

whether them-th row of [UA→B∥v(1→1)
A→B ∥ · · · ∥v

(u→u)
A→B] is an MLWE1,kℓ,η sample or

uniformly random sample. Namely, there exists a PPT algorithm B(m,κ)
2 solving

the MLWE1,kℓ,η problem, by using A. In addition, the total number of queries is-
sued to the O.ReKeyGen oracle is at most qrk. Hence, we have

∣∣∣Pr[W (κ−1)
2]− Pr[W

(κ)
2]

∣∣∣ ≤
u · k · qrknh · Advmlwe

k,kℓ,η(B
(κ)
2) by letting B(κ)2 be the PPT algorithm against the

MLWE1,kℓ,η assumption, such that Advmlwe
1,kℓ,η(B

(m,κ)
2) ≤ Advmlwe

k,kℓ,η(B
(κ)
2) for all

m ∈ [k + 1].

Here, let Game
(0)
3 be the same game as Game

(nh)
2 , and we define the security

game Game
(κ)
3 for every κ ∈ UHonest.

Game
(κ)
3 . The same game as Game

(κ−1)
3 except that, for every i ∈ [u], tκ,i =

Compressq(A
⊤sκ,i+eκ,i, dt) is replaced by a uniformly random tκ,i = Compressq(bκ,i, dt)

(where bκ,i ∈ Rk
q is chosen uniformly at random), when generating the public

key pkκ,i = (tκ,i, t̂κ,i) of the honest user κ ∈ UHonest.

There exists a PPT algorithm B(κ)3 against the MLWEk,k,η problem. Since sκ,i
is not used in both Game

(κ−1)
3 and Game

(κ)
3 , it is possible to simulate the views of

A in the two games and construct B(κ)3 . Hence, we have
∣∣∣Pr[W (κ−1)

3]− Pr[W
(κ)
3]

∣∣∣ ≤
Advmlwe

k,k,η(B
(κ)
3), due to the union bound on i ∈ [u].

Bounded CCA Secure Proxy Re-encryption Based on Kyber 31

Game4. The same game as Game
(nh)
3 except that the challenge ciphertext ct∗ =

(u∗, v∗)← Enc(pki∗ ,m
∗
b) is replaced by a uniformly random (u∗, v∗)

$← Rk
q ×Rq.

Since the secret key (sκ,i, ŝκ,i) for every κ ∈ [nh] and i ∈ [u] is not used in
both Game

(nh)
3 and Game4, it is possible to simulate the environments of A in

these games and construct a PPT algorithm B(i
∗)

4 against the MLWEk,k,η prob-
lem. Hence, we have

∣∣∣Pr[W (nh)
3]− Pr[W4]

∣∣∣ ≤ nh ·Advmlwe
k+1,k,η(B

(i∗)
4). Furthermore,

Pr[W4] = 1/2 holds since A’s view is independent of b ∈ {0, 1} in Game4.
From the discussion above, we obtain

Advkh-cpa
ΠKyber

pre ,A
(λ) ≤

3∑
i=1

nh∑
κ=1

∣∣∣Pr[W (κ−1)
i]− Pr[W

(κ)
i]

∣∣∣
+
∣∣∣Pr[W (nh)

3]− Pr[W4]
∣∣∣+ ∣∣∣∣Pr[W4]−

1

2

∣∣∣∣
≤ nh(qrkku+ 2u+ 1) · Advmlwe

k+1,kℓ,η(B),

where B is a PPT algorithm against the MLWEk+1,kℓ,η problem, such that it
holds that Advmlwe

k+1,kℓ,η(B
(L)
i) < Advmlwe

k+1,kℓ,η(B) for all i ∈ [4] and all L ∈ UHonest.
This completes the proof. ⊓⊔

	Bounded CCA Secure Proxy Re-encryption Based on Kyber

