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HI-CKKS: Is High-Throughput Neglected?
Reimagining CKKS Efficiency with Parallelism
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Abstract—The proliferation of data outsourcing and cloud
services has heightened privacy vulnerabilities. CKKS, among
the most prominent homomorphic encryption schemes, allows
computations on encrypted data, serving as a critical privacy
safeguard. However, performance remains a central bottleneck,
hindering widespread adoption. Existing optimization efforts
often prioritize latency reduction over throughput performance.
This paper presents HI-CKKS, a throughput-oriented High-
performance Implementation of CKKS homomorphic encryption,
addressing these challenges. Our HI-CKKS introduces a batch-
supporting asynchronous execution scheme, effectively mitigating
frequent data interactions and high waiting delays between hosts
and servers in service-oriented scenarios. We analyze the funda-
mental (I)NTT primitive, which is critical in CKKS, and develop
a hierarchical, hybrid high-throughput implementation. This
includes efficient arithmetic module instruction set implemen-
tations, unified kernel fusion, and hybrid memory optimization
strategies that significantly improve memory access efficiency and
the performance of (I)NTT operations. Additionally, we propose
a multi-dimensional parallel homomorphic multiplication scheme
aimed at maximizing throughput and enhancing the performance
of (I)NTT and homomorphic multiplication. In conclusion, our
implementation is deployed on the RTX 4090, where we conduct
a thorough throughput performance evaluation of HI-CKKS,
enabling us to pinpoint the most effective parallel parameter set-
tings. Compared to the CPU implementation, our system achieves
throughput increases of 175.08×, 191.27×, and 679.57× for NTT,
INTT, and HMult, respectively. And our throughput performance
still demonstrates a significant improvement, ranging from 1.54×
to 693.17× compared to the latest GPU-based works.

Index Terms—CKKS, Homomorphic Multiplication, Number
Theoretic Transform (NTT), Parallel Processing, GPU.

I. INTRODUCTION

AS information technology advances and digital trans-
formation accelerates, the collection, processing, and

sharing of data have become increasingly frequent. This not
only brings enhancements in convenience and efficiency but
also raises deep concerns about data privacy protection. In
service-oriented scenarios, enterprises and service providers
often need to handle a large amount of user data, including
identity information, contact details, and location data [1]. This
requires the implementation of effective privacy protection
measures to ensure the security of user information. Addition-
ally, service-oriented scenarios typically have high demands
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for concurrent performance [2], which places higher perfor-
mance requirements on privacy protection technologies. In this
context, privacy protection measures with high concurrency
capabilities are necessary.

Traditional solutions only ensure that data remains en-
crypted during storage and transmission, and must be de-
crypted before processing, posing a risk of privacy leakage.
Fully Homomorphic encryption (FHE), often hailed as the
“Holy Grail” of cryptography [3], offers a novel approach
to securing privacy: it allows application services to op-
erate directly on encrypted data, enabling computations on
encrypted messages without the need for decryption. Under
this paradigm, even if attackers successfully breach the de-
fense perimeter and infiltrate the system, they cannot access
the original critical data, fundamentally reducing the risk
of information leakage. Figure 1 shows the application of
a FHE scheme in service-oriented scenarios. Compared to
other privacy protection technologies such as federated learn-
ing [4], secure multi-party computation [5], and differential
privacy [6], privacy protection schemes based on FHE can
provide comprehensive security and privacy protection from
the data collection stage throughout the entire data lifecycle,
demonstrating broader application prospects. However, the
performance of data ciphertext computations is 105 to 107

times lower than that of plaintext computations [7], making
the huge performance overhead the main bottleneck restricting
the further development and application of homomorphic
encryption technology.

Fig. 1: FHE in Service-oriented Scenarios

In recent years, the rapid advancement of GPUs has intro-
duced new solutions to address the performance challenges
of FHE. In 2006, NVIDIA introduced the Single-Instruction
Multiple-Thread (SIMT) architecture in GPUs [8], featuring
thread-level parallelism where multiple independent threads
can execute the same instruction concurrently. This charac-
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teristic provides GPUs with exceptional parallel processing
ability and high throughput, thereby significantly accelerating
intensive cryptographic computations and optimizing crypto-
graphic performance. Research [9] indicates that asymmetric
cryptographic algorithms implemented on GPUs can achieve
performance improvements multiple times, even up to tenfold
greater than contemporary CPUs, ASICs, and FPGAs. Thus,
leveraging GPU characteristics to optimize the throughput
performance of the FHE algorithm has tremendous potential.

A. Related Works

Since the concept of FHE was first proposed [10] and im-
plemented [11], several representative computational schemes
have emerged, including BGV [12], BFV [13], and CKKS
[14]. The CKKS algorithm, in particular, has attracted at-
tention for its ability to handle floating-point operations in
encrypted data. However, its practical application is limited
due to its high complexity, extensive computational resource
and storage requirements, and the accumulation of noise. To
address these challenges, CPU-based open-source libraries
such as SEAL [15] and HElib [16] have been developed
to facilitate the engineering application of CKKS. Despite
these libraries performing well in terms of compatibility and
usability, their computational performance still falls short in
high concurrency service scenarios.

The development of GPUs and their extensive application
in the field of cryptography have opened new opportunities
for performance optimization of the CKKS algorithm. In
2016, Dai et al. [17] developed a homomorphic encryption
algorithm library called cuHE, based on polynomial rings,
which fully utilizes the extensive parallelism and high memory
bandwidth provided by CUDA GPUs. They employed methods
based on the Number Theoretic Transform (NTT) and the
Chinese Remainder Theorem (CRT) to construct arithmetic
functions capable of handling very large polynomial operands,
thereby achieving significant performance improvements. In
2021, Jung et al. [18] identified that the primary performance
bottleneck for the CKKS algorithm on GPUs was the high
demand for main memory bandwidth. They introduced a
memory-centric optimization strategy for the CKKS boot-
strapping process, achieving more than 100× improvement in
performance. This significant advancement has established a
crucial foundation for subsequent research in the area.

Shen et al. [19] proposed the CARM to implement CUDA-
accelerated homomorphic multiplication in heterogeneous IoT
systems, marking the first GPU-optimized implementation to
cover homomorphic multiplication operations for BGV, BFV,
and CKKS schemes. Fan et al. [20] proposed TensorFHE,
a GPGPU-based FHE acceleration scheme, utilizing Tensor
Cores Units (TCU) to enhance NTT operations. Fan et al.
[21] implemented a set of low and intermediate-level FHE
primitives based on three data precisions (INT32, INT64,
and FP64) to accelerate CKKS implementations on GPU
platforms. Yang et al. [22] proposed Phantom is the first
scheme to integrate BGV, BFV, and CKKS on a GPU platform.

However, these studies mainly focus on how to reduce the
computational latency of the CKKS algorithm, particularly

the homomorphic multiplication operations, often using more
GPU resources during computation to increase processing
speed. This results in prohibitively high costs for implementing
FHE-based privacy protection schemes in service scenarios
with significant concurrent computational demands.

B. Our Contributions
Service-oriented scenarios often involve the need for real-

time data processing at a large scale while ensuring data
privacy. This necessitates FHE algorithms with high con-
currency capabilities. FHE entail computationally intensive
tasks, involving numerous identical computational operations
on data. Leveraging the unique SIMT architecture of GPUs
can accelerate these computations. Current optimization based
on GPU efforts for FHE primarily concentrate on reducing
overall computation latency. However, there remains signifi-
cant potential for improvement in computational throughput
capability.

In this paper, we propose the HI-CKKS scheme, which is
optimized for high concurrency demand for FHE algorithms in
service-oriented scenarios on GPU hardware platform, aimed
at achieving optimal throughput performance. The main con-
tributions are as follows:
• Throughput-Oriented Architecture. To address the high

volume of concurrent data requests in service-oriented sce-
narios and reduce the latency and security risks associated
with data interactions, HI-CKKS designs a throughput-
oriented asynchronous computation framework. This frame-
work supports batch processing, leveraging the CPU to
handle precomputed parameters and integrate computational
tasks, while the GPU launches computation kernels to
execute high-throughput calculations. The GPU can concur-
rently process multiple homomorphic computation requests,
significantly reducing data transfer and waiting latency
between the host and server.

• Throughput-Oriented Optimization Strategies. HI-
CKKS proposes a throughput-oriented performance
optimization scheme that balances memory access
efficiency and parallelism to achieve optimal throughput
performance. We analyzed the performance bottlenecks of
NTT and homomorphic multiplication on the GPU and
designed a hierarchical and hybrid NTT implementation
along with multi-dimensional parallel optimizations for
homomorphic multiplication. These optimizations include
unified kernel fusion, hybrid memory access strategies, and
constant-time arithmetic instruction set implementations.
By reducing the latency caused by data access and fully
utilizing the limited hardware resources of the GPU, we
significantly improved the throughput performance of the
computations.

• Throughput-Oriented Peak Testing. HI-CKKS conducts
comprehensive performance testing with a focus on high
throughput, adjusting computational parameters to identify
the throughput peak and ultimately determining the optimal
parallel parameters. We compare our results with those
from CPU platforms and recent related works. Compared to
CPU implementations, the throughput of our NTT, INTT,
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and homomorphic multiplication increased by 175.08×,
191.27×, and 679.57×, respectively. Compared to the GPU
implementation, the improvements were 26.91×, 32.92×,
and 693.16×, respectively. And compared to current related
work, the increase in throughput ranged from 1.54× to
55.8×.

The rest of our paper is organized as follows. Section
II explains some preliminaries including CKKS, NTT and
GPU. Section III describes the proposed strategies for the
HI-CKKS implementation. Section IV performs our optimized
implementation and compares it with related works. Section
V concludes the paper.

II. PRELIMINARIES

In this section, we briefly introduce the fundamental con-
cepts and operational functions of the CKKS scheme. Fol-
lowing this, the key modules NTT in the scheme is explored.
Finally, we provide an introduction to GPU and its memory
architecture.

A. Notation

The security of CKKS is based on the hardness of the
Ring Learning with Errors (R-LWE) problem. Let Z and C be
sets of integers and complex numbers, where Zq represents
the finite ring {0, 1, ..., q − 1}, in which the arithmetic is
performed modulo q. Then, the ring Rq = Zq[x]/{xN + 1}
consists of degree N−1 polynomials with integer coefficients
in Zq , where N is a power of 2 and represent the degree
of the polynomial ring. A polynomial a(x) =

∑N−1
i=0 ai · xi

in Rq can also be represented as a vector over Zq , so that
a = [a0, a1, . . . , aN−1]. CKKS has the message space con-
sisting of N/2-dimensional complex vectors CN/2, plaintext
space Rq , and ciphertext space may expand to more than two
polynomials. λ and ∆ represent the security parameter and the
scaling factor, respectively.

B. CKKS

CKKS is a fully homomorphic encryption scheme that sup-
ports real number operations. Compared with BGV and BFV,
both of which are fully homomorphic encryption schemes that
support integer-exact computation, CKKS has a wider range of
applications, especially in the emerging computational fields
such as machine learning and artificial intelligence.

CKKS consists of KeyGen, Encode, Decode, Encrypt,
Decrypt, Add, Multiply, Relinearize and Rescale, which are
the basic homomorphism operations. Below we describe these
operations briefly, and the detailed introduction can be found
in the original CKKS article [14]:

• KeyGen: Based on the given security parameter λ, a
set of keys required for CKKS computation is gen-
erated, including the secret key (sk), public key (pk)
and evaluation key (evk). sk and pk are used for the
encryption and decryption, respectively, and evk is used
for homomorphic evaluation operations.

• Encode (Ecd): For a (N/2)-dimensional vector z ∈
CN/2, encoding it as a message m. The encoding proce-
dure keeps the precision by multiplying a scaling factor
∆.

• Decode (Dcd): It is the inverse operation of Ecd. For an
input polynomial m ∈ R, output the vector z.

• Encrypt (Enc): For a given plaintext m and a public key
pk, output a ciphertext c, where an encryption c of m is
generated as c = (v · pk+(m+ e0, e1) mod ql, in which
e0, e1 are two Gaussian-distributed vectors.

• Decrypt (Dec): For a ciphertext c at level l, output a
polynomial m′ for the secret key sk.

• Add: Add two input ciphertexts c0 and c1. For c0, c1 ∈
R2

ql
, the output ciphertext cAdd = (c0[0] + c1[0], c0[1] +

c1[1]) mod ql.
• Multiply (Mul): For a pair of ciphertexts (c0, c1) ∈
R2

ql
, output a ciphertext cmul ∈ R3

ql
, where cMul =

(c0[0]c1[0], c0[0]c1[1] + c0[1]c1[0], c0[1]c1[1]) mod ql.
• Relinearize (RL): Decrease the size of the ciphertext

back to 2 after multiplication, so that we always have
the same size ciphertext with the same decryption circuit.
Let cRl = ((c0, c1)+ ⌊P−1 · evk⌉) mod ql, where P is a
large auxiliary number used for basis conversion.

• Rescale (RS): Manage the noise and avoid noise overflow
after the multiplication. The rescale procedure reduces
the level l of the ciphertext, limiting the number of
further homomorphic operations that can be performed.
RS computes cRs = ⌊ ql′ql c⌉ mod ql−1.

The computational scheme of CKKS can be split into three
layers: the bottom arithmetic computation, the intermediate
computational primitive and the upper homomorphic compu-
tation layer. The bottom arithmetic layer contains operations
such as addition, subtraction, multiplication, division, displace-
ment, and reduction, the intermediate computational primitives
mainly include NTT and CRT, and the upper homomorphic
computation layer mainly includes the homomorphic com-
putation operations of CKKS. The complete computational
framework is shown in Figure 2.

C. Number Theoretic Transform
NTT is a special form of Discrete Fourier Transform (DFT)

in a finite integer field, which can be used to accelerate
multiplication operations and is widely applied in the field
of cryptography. Any vector a = [a0, a1, . . . , aN−1] which
has N elements in the polynomial domain can be trans-
formed to another vector ā = [ā0, ā1, . . . , āN−1] which also
has N elements in the NTT domain, converting polynomial
multiplication into element-wise multiplication of vectors in
NTT form. This reduces the computational complexity of
polynomial ring multiplication from O(N2) to O(NlogN).
The forward and inverse NTTs are defined as followed:

āi =

N−1∑
j=0

ajω
i×j mod q for i = 0, 1, . . . , N − 1 (1)

ai =
1

N

N−1∑
j=0

ājω
−i×j mod q for i = 0, 1, . . . , N − 1 (2)
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The NTT(Equation 1) and INTT (Equation 2) calculations
require the powers of a constant value ω ∈ Zq referred as
the twiddle factor.

D. NVIDIA GPU
A graphics processor Unit (GPU) is a piece of hardware

specifically designed to handle graphics and parallel comput-
ing tasks, initially widely used in the field of deep learning.
SIMT is a parallel computing architecture commonly used by
GPUs to improve computational efficiency by performing the
same operation on multiple data elements at the same time,
and has also been widely used in cryptographic computing
in recent years given this excellent data parallel processing
capability. Compute Unified Device Architecture (CUDA) is
a parallel computing architecture and programming model in-
troduced by NVIDIA. CUDA can be used to divide computing
tasks into multiple thread blocks and grids to achieve efficient
parallel computing.

According to the physical location of the memory, The
memory organization in CUDA can be divided into two
categories: on-chip memory and off-chip memory. Off-chip
memory has large capacity but high access latency, including
global memory, constant memory and texture memory; on-
chip memory includes registers and shared memory, with
fast access speed but small memory capacity. In order to
ensure the security of homomorphic computation, the schemes
usually need a large space to store plaintext and ciphertext
polynomials, so how to reasonably plan the memory resources
on GPUs to improve the performance of CKKS computation
is a major challenge.

III. METHODOLOGY

In this section, we present the implementation details and
optimization techniques of HI-CKKS. First, we propose an
asynchronous execution framework with batch processing sup-
port, aimed at reducing the latency caused by extensive data
interactions. Second, we design a throughput-oriented perfor-
mance optimization scheme, which includes a layered and
hybrid implementation of the Number Theoretic Transform
and multi-dimensional parallel homomorphic multiplication.
By balancing memory access efficiency and the scale of
parallelism, we achieve optimal throughput performance.

A. Throughput-Oriented Asynchronous Framework

In practical applications, the performance bottleneck of
utilizing GPUs lies in the significant overhead associated with
time and spatial dimensions. The traditional computational
workflow involves the CPU aggregating computation data and
transmitting it to the GPU upon generating a computational
demand from the application service. After the GPU completes
its calculations, the results are copied back to the CPU for
the next computation task. In this approach, the frequent data
transfers between the CPU and GPU introduce substantial
latency, while the CPU must also wait for the GPU to ex-
ecute calculations and copy data. This transmission delay and
resource redundancy can exponentially increase with rising
concurrency levels.

Additionally, we observe that typical applications refrain
from altering application parameters—such as security param-
eters, data size N , and modulus chain length—within certain
time intervals to ensure stability. This stability in application
parameters results in computational data exhibiting similar
characteristics, including data size and computational param-
eters that require processing during preprocessing. Based on
this, we propose a batch-processing CPU-GPU asynchronous
execution scheme to more effectively leverage GPU platforms
for enhancing the computational performance of CKKS ho-
momorphic multiplication, as illustrated in Figure 2.

In the asynchronous execution model we propose, tasks that
do not require high concurrency, such as the pre-calculation
of security parameters and rotation factors, are assigned to the
CPU platform. Meanwhile, computationally intensive tasks,
such as encoding and decoding, encryption and decryption,
and homomorphic operations like addition and multiplication,
are allocated to the GPU platform. In this asynchronous mode,
the CPU first sends pre-processed input data and static data
(such as security parameters and rotation factor matrices) to
the GPU. Subsequently, according to computational demands,
the CPU issues tasks and transfers data needing computation
to the GPU without waiting for computational synchronization
with the GPU. Once the computation data is transferred to the
GPU, it can carry out continuous homomorphic computations
without the need for repeated data transfers, thus better meet-
ing the practical application requirements.

Figure 3 illustrates the computational workflow of our
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framework during batch processing tasks, compared to tra-
ditional synchronous schemes. In our asynchronous approach,
after transmitting the data required for the first task to the
GPU, there is no need to wait for the GPU to complete its
computations; instead, the transmission of data required for
the second task can commence immediately. When tasks two
and three have data dependencies, the completion of task two
allows for the direct computation of task three without the
need to transfer intermediate results back and forth.

Memcpy_HostToDevice (M_h2d) Kernel (K) Memcpy_DeviceToHost (M_d2h)Single Compute

Synchronisation

Our Asynchronous Scheme

M_h2d 1 K 1 M_d2h 1 M_h2d 2 K 2 M_d2h 2 M_h2d 3 K 3 M_d2h 3

M_h2d 1 K 1 M_d2h 1

M_h2d 2 K 2

K 3 M_d2h 3

time

time

Performance improved!Performance improved!

Task 1 Task 2 Task 3

Fig. 3: Comparison of Workflows Between Asynchronous
and Synchronous Schemes

In the context of multi-node, large-scale, and high-
concurrency practical application demands, our proposed
batch-processing asynchronous execution scheme supports: 1)
the efficient execution of multiple homomorphic computation
requests from the host for the same set of input data. Once the
CPU completes the data transmission, multiple computation
requests can be sent to the GPU in succession, reducing the
frequency of data transfers and effectively mitigating the risk
of side-channel attacks; 2) the packaging of operations for
identical computation requests across multiple sets of input
data. By leveraging the unique SIMD architecture of GPUs,
we enhance data concurrency efficiency, significantly improv-
ing the computational performance of CKKS in real-world
application scenarios. This asynchronous computation model
substantially reduces both synchronization delays between the
CPU and GPU and the latency associated with extensive data
transfers.

B. Throughput-Oriented Hierarchical Hybrid NTT
In Figure 2, we present the layered architecture of the CKKS

computation scheme, where (I)NTT is a critical component.
The traditional multiplication of polynomials c(x) = a(x) ×
b(x), where a(x), b(x) ∈ Rq , can be performed like the
Equation 3:

c(x) =

n−1∑
i=0

n−1∑
j=0

ai × bj × xi+j mod ql (3)

Due to the quadratic computational complexity, using
(I)NTT can reduce the complexity of multiplication by trans-
forming polynomials from coefficient representation to point-
value representation.

c̄(x) = NTT (a(x))⊙NTT (b(x)) mod ql (4)

c(x) = INTT (c̄(x)) mod ql (5)

The multiplication in the NTT domain is described in
Equation 4 and Equation 5. For the NTT-based polynomial

multiplication operation, we have ā(x) = NTT (a(x)) and
b̄(x) = NTT (b(x)), after multiplication the result c̄(x) in the
NTT domain is obtained, and after INTT obtaine c(x).

As shown in Equation 1 and Equation 2, (I)NTT can be
decomposed into smaller computational units, which exhibit
significant data parallelism, making them highly suitable for
performance optimization using GPUs. Therefore, we first
analyze the implementation of NTT operations on the GPU,
as illustrated in Algorithm 1.

Algorithm 1 Native NTT Implementation on GPU

Input:
A polynomial a(x) ∈ Zq[x]/{xN + 1} in standard order
The modulus qi where 0 < i < l
The twiddle factor ω
The polynomial coefficient n

Output:
Polynomial ā(x) ∈ Zq[x]/{xN + 1} in bit-reversed order
Step (1): Perform NTT

1: layer ← 1
2: while layer ≤ logN do
3: Launch kernel kNTT, let thread number t ∈ [0, N/2]
4: gap← 1≪ (logN − layer)
5: rid← (1≪ (layer − 1)) + (t≫ (logN − layer)
6: index← ((t≫ (logN− layer)≪ (logN− layer))+

(t & (gap− 1))
7: for i = 0 to l do
8: 2q ← 2× qi
9: j ← (i≪ logN) + index

10: U ← aj
11: V ← aj+gap · ωrid ( mod qi)
12: if U > 2q then
13: U ← U − 2q
14: end if
15: aj ← U + V
16: aj+gap ← U + 2q − V
17: end for
18: layer ← layer + 1
19: end while

Step (2): Bound a(x) between [0, q]
20: Launch kernel kBound, let thread number t ∈ [0, N ]
21: for i = 0 to l do
22: 2q ← 2× qi
23: j ← i×N + t
24: if aj ≥ 2q then
25: aj ← aj − 2q
26: end if
27: if aj ≥ qi then
28: aj ← aj − qi
29: end if
30: end for

We observe that the NTT implementation comprises several
arithmetic operation modules, including addition (LINE 15-
16), multiplication (LINE 11), Barrett reduction (LINE 11),
and conditional subtraction (LINE 12-14, 24-19). These arith-
metic modules require numerous registers to store intermediate
variables during execution and also suffer from issues related
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to redundant machine instructions. Furthermore, we find that
the NTT operations require a total of logN + 1 kernels
and N

2 logN + N threads. As N increases, this computa-
tional overhead also escalates. Additionally, in traditional NTT
implementations, all data is directly read from and written
to global memory, presenting significant opportunities for
optimization.

Therefore, based on the characteristics of the GPU hardware
platform, we designed a layered and hybrid implementation of
the NTT. This approach includes replacing complex arithmetic
modules with constant-time PTX instruction sets, fusing a
large number of computation kernels, and employing opti-
mization strategies such as hybrid memory access utilizing
the unique memory architecture of GPUs. We conducted com-
prehensive experimental tests on these optimization strategies
to identify the balance point between access efficiency and
parallel dimensions in order to achieve maximum throughput
performance.

1) Constant-Time Instruction Implementation: The fun-
damental arithmetic modules used in the CKKS scheme in-
clude addition, multiplication, multiply-accumulate, Barrett
reduction, and conditional subtraction for modulus reduction.
We have implemented these arithmetic operations in constant
time using the CUDA PTX instruction set. This article presents
the inline function implementations for multiply-accumulate,
conditional subtraction, and Barrett reduction.

Multiply-accumulate. In the homomorphic multiplication
calculations of the CKKS scheme, it is necessary to perform
multiply-accumulate operations of the form

c1 = a0b1 + a1b0 a0, a1, b0, b1 ∈ [0, 264)

where c1 is the intermediate vector result of the multiplication
calculation, while a0, a1 and b0, b1 are two vectors represent-
ing the multipliers a, b respectively, both of which are 64-bit
operands.

In traditional 64-bit multiply-accumulate operations, eleven
64-bit registers are typically needed to store four 64-bit
multiplication operands, two 128-bit multiplication results, one
128-bit addition operand, and one rounding bit. The process
starts with two 64-bit multiplications, followed by a 128-bit
addition, requiring a total of 6 instructions. In our optimized
scheme, however, the 64-bit multiply-accumulate operation
can be completed in just 4 steps and 6 registers using the mad
and madc instructions to perform the high 64-bit multiply-
accumulate operations, with the carry flag implicitly stored in
the madc instruction.

asm volatile(
mul.lo.u64 %0, %2, %5;
mad.lo.cc.u64 %0, %4, %3, %0;

madc.hi.u64 %1, %2, %5, 0;
mad.hi.u64 %1, %4, %3, %1;

: "+l"(c[0]), "+l"(c[1])
: "l"(a0), "l"(b0), "l"(a1), "l"(b1)

);

Conditional Subtraction. In traditional conditional sub-
traction calculations, logical judgment instructions are com-

monly used to perform approximate subtraction to reduce the
operands to the range of [0, 2ql) and [0, ql), like

op =


op− 2ql if op > 2ql

op− ql if op > ql and op ≤ 2ql

op otherwise

where ql is the modulus and op is the input data. However,
GPUs are not adept at handling logical judgment instructions,
which can affect the efficiency of large-scale computations.
Therefore, we use addition, subtraction, bit shifting, and
simple instructions instead of logical judgment instructions to
implement conditional subtraction.

asm volatile(
sub.s64 %0, %2, %3;
shr.s64 %1, %0, 63;
and.b64 %1, %1, %3;
add.s64 %0, %0, %1;

: "+l"(result), "+l"(tmp)
: "l"(op), "l"(modulus)

);

Barrett Reduction. The Barrett reduction algorithm is
widely used in the CKKS scheme, primarily aimed at re-
placing complex large integer division operations with simpler
additions, subtractions, multiplications, and bit shifts, thereby
enhancing computational efficiency. We have adopted the fast
implementation method proposed by Shoup [23] to reduce
computational overhead. HI-CKKS provides optimized imple-
mentations for both 64-bit and 128-bit subtraction algorithms.
Below is an inline function example of Barrett reduction using
128-bit operands. During the Barrett reduction process, we
use a fixed parameter γ = ⌊ 2

i

ql
⌋ related to the modulus,

which is pre-calculated on the CPU and stored in the GPU
constant memory. This approach effectively reduces the usage
of registers and enhances memory efficiency. We denote the
lower bits of γ as ratio_0 and the upper bits as ratio_1.

asm volatile(
mul.hi.u64 %0, %1, %4;
mad.lo.cc.u64 %0, %1, %5, %0;

madc.hi.u64 %3, %1, %5, 0;
mad.lo.cc.u64 %0, %2, %4, %0;

madc.hi.u64 %3, %2, %4, %3;
mad.lo.u64 %3, %2, %5, %3;

mul.lo.u64 %3, %3, %6;
sub.u64 %3, %1, %3;

sub.s64 %3, %3, %6;
shr.s64 %0, %3, 63;
and.b64 %0, %0, %6;
add.s64 %3, %3, %0;

: "+l"(tmp), "+l"(op[0]), "+l"(op[1]),
"+l"(result)
: "l"(ratio_0), "l"(ratio_1),
"l"(modulus)

);
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2) Unified Kernel Fusion: According to Algorithm 1, we
observe that traditional NTT computation requires launch-
ing logN + 1 kernel functions to complete the operations,
including logN kNTT kernel functions (Lines 2–19) for
performing butterfly operations and 1 kBound kernel function
(Lines 20–30) for reduction operations. In total, this demands
N
2 logN + N thread resources. Meanwhile, due to the RNS

system, each operand has l corresponding modular operations
(where 0 < l < L), which increases global memory access by
a factor of l.

However, in practical applications with large computational
workloads, the frequent launches of logN + 1 kernels per
NTT operation and the 5

2 lN global memory accesses cannot
meet the high-throughput demands. Therefore, we performed
unified kernel fusion and hierarchical parallel optimization on
the (I) NTT computation kernels.

GMEM

reads

GMEM

writes

Kernel 1+2

GMEM

reads

GMEM

writes

Kernel 1

GMEM

reads

GMEM

writes

Kernel 2

time

Task 

1

Reg

reads/writes

Task 

2

Reg

reads/writes

Performance

improved!

Kernel launch overhead

Task 

1

Reg

reads/writes

Task 

2

Reg

reads/writes

Fig. 4: Illustration of Kernel Fusion: A Dual Kernel Example

We fused the logN +1 kernels into a single kernel compu-
tation function, launching N/2 threads to execute the (I) NTT
operation. Figure 4 illustrates the dual-kernel fusion scheme.
The fusion of kernel execution offers two major advantages.
On the one hand, it is well known that the kernel boot
process needs to be warmed up, and the boot latency is long
compared to the kernel computation execution time, kernel
fusion for (I)NTT can reduce the boot latency of logN + 1
kernels to 1, which greatly reduces the boot time. On the
other hand, the kernel execution process includes reads and
writes to global memory, which are more time-consuming
than those to other on-chip memory. Executing kernel fusion
can make more effective use of the memory resources on the
GPU, reduce global memory reads and writes, and reduce the
number of (2logN +2)× l operations to 2l operations, which
can effectively improve data reuse efficiency and computation
efficiency.

3) Hybrid Memory Access Optimization Strategy: The
CUDA GPU memory architecture is highly complex, with
significant differences in access efficiency between on-chip
and off-chip memory. The speed of accessing different types
of memory on the GPU can be ranked as follows: registers
> shared memory > constant memory > texture memory
> global memory. Traditional (I) NTT computation typically
only utilizes global memory. To fully exploit the unique
memory architecture of the GPU and improve memory access
efficiency, we designed a hierarchical and hybrid memory
access strategy. First, input and output data are stored in global

memory, while precomputed twiddle factors and other spatially
structured data are stored in texture memory. Precomputed
modulus values and other unchanging deterministic data are
stored in constant memory. During computation, registers and
shared memory are selectively used to store intermediate
variables.

We observed that for (I) NTT operations, overall perfor-
mance is optimal when data is parallelized by factors of 22

or 23. Based on this observation, we developed a hierarchical
NTT implementation using the aforementioned optimization
strategies. For example, in an NTT computation with 8
operands processed in parallel, the data order of the polyno-
mial a(x) alternates between standard order and bit-reversed
order during the naive NTT computation. In the process of
parallel optimization, sequentially reading operands does not
yield significant performance improvements. Therefore, we
assign each thread to compute two operands, aj and aj+gap,
to enhance performance.

If parallel optimization is performed by fetching numbers
sequentially, then N

8 threads will be launched, t ∈ [0, N
8 ], with

each thread fetching 8 operands

{ai | j ≤ i ≤ j + 3} ∪ {ai | j + gap ≤ i ≤ j + gap + 3}

where

index = (4t≫ (logN − layer)≪ (logN − layer))

+ (4t & (gap− 1))

where gap is the interval between operands that changes
according to the layer, and index is the offset of the operands a
under each modulus, t is the thread number. In this case, after
performing 4 × l butterfly transformations, each thread will
synchronize and exchange data with the global variable once,
as shown in Figure 5c. At this time, the number of threads
launched is reduced by 1

2N ·logN+ 7
8N compared to the naive

implementation, but the number of times threads synchronize
and the amount of interaction with global variables has not
significantly decreased.

If the characteristics of bit-reversed order are considered,
selecting 8 operands at intervals of gap = gap ≫ 2. The 8
operands selected by each thread are{

aj+ k
4 gap | k = 0, 1, 2, . . . , 7

}
where

index = 8× (gap≫ 2)× (
t

gap≫ 2
)) + (t % (gap≫ 2))

In this case, after each thread has fetched the operands and
performed 4 butterfly transformations for the layer level, it
can still perform butterfly transformations for layers layer+1
and layer + 2, reducing the interaction with global variables
by 4 times. That is, for a parallel dimension of 2m, where
1 ≤ m ≤ logN , fetching data once can perform butterfly
transformations for logm layers, reducing the interaction with
global variables by 2m−1 times.

We take the NTT implementation with N of 16 as an ex-
ample, and Figure 5 details our 16-point NTT implementation
after applying kernel fusion, parallelism and hybrid access
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(c) 16-point NTT implementation after parallelisation
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(a) Native 16-point NTT implementation
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(a) Native 16-point NTT implementation
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(b) 16-point NTT implementation with kernel fusion
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(b) 16-point NTT implementation with kernel fusion

Fig. 5: Illustration of 16-Point NTT with Hierarchical Hybrid Optimisation on GPU

optimisation. 5(a) is a native 16-point NTT implementation.
For an NTT with N of 16, it is necessary to perform logN
butterfly transformations, and logN kernels were launched
to perform each butterfly transformation, each accessing data
from global memory, resulting in a total of logN ×N/2 = 32
threads being activated and 4 global memory synchronizations
being performed. 5(b) is the 16-point NTT implementation
after applying kernel fusion, which starts 1 kernel to perform
4 butterfly transformations, saving 3 kernel startup latencies.
5(c) is the NTT implementation after implementing the parallel
strategy, we have chosen the case of a single thread processing
8 operands, where a total of 16/8 = 2 threads are required to
perform the computation for each butterfly transformation. At
the same time, due to the kernel fusion strategy, 8 operands can
be threaded to perform 3 consecutive butterfly transformations
without global memory accesses, which reduces the number
of required threads and global memory accesses. 5(d) shows
the 16-point NTT implementation after using the hybrid access
strategy. For NTT computation with N = 16, 16 operands can
be stored in the shared memory, and then the corresponding
8 parallel operands can be fetched from the shared memory
by the threads, and the global data synchronisation can be
achieved by performing only thread synchronisation within
the block after performing 3 butterfly transformations. Under
this access strategy, the global memory accesses are reduced
from 8 to 2, the number of global thread synchronisations is

reduced from 4 to 1, of which the in-block synchronisation is
performed twice, and the number of enabled threads is reduced
from 32 to 2, thereby effectively improving resource utiliza-
tion. When applied to larger values of N , the performance
improvement will be more significant.

C. Throughput-Oriented Multi-Dimensional Parallel HMult
We analyzed the implementation of homomorphic multi-

plication on the GPU, as shown in Algorithm 2. During the
computation, we first perform multiplication on two 64-bit
operands in the NTT domain, followed by Barrett reduction
on the 128-bit multiplication result. For multiplication with
parameter N , N threads are launched, where each thread per-
forms homomorphic multiplication on two ciphertext operands
for the corresponding modulus.

We designed a multi-dimensional parallel scheme and op-
timized memory by implementing a strategy for contiguous
memory copying to enhance the efficiency of the homomor-
phic multiplication.

1) Multi-Dimensional Parallel Processing: In this algo-
rithm, traditional homomorphic multiplication is first carried
out on two 64-bit operands, for two input polynomials c(x) =
(c0, c1) and c′(x) = (c′0, c

′
1) in the NTT domain, obtain the

multiplication result:

C̄ = (d0, d1, d2) = (c0 · c′0, c0 · c′1 + c′0 · c1, c1 · c′1)
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Algorithm 2 Baseline HMult Implementation on GPU

Input:
Two ciphertext vectors c(x) = (c0, c1), c

′(x) = (c′0, c
′
1)

The modulus qi where 0 < i < l
A precomputed number µ = ⌊ 2

64

qi
⌋ = 264 · µ1 + µ0

The polynomial coefficient N
Output:

Ciphertext vectors C̄ = (d0, d1, d2) = (c0 · c′0, c0 · c′1+ c′0 ·
c1, c1 · c′1)

1: for i = 0 to 3 do
2: m1 ← min(i, 1)
3: m2 ← min(i, 1)
4: m3 ← i−m2

5: step← m1 −m3 + 1
6: Launch kernel kHMult, let thread number t ∈ [0, N ]
7: for j = 0 to l do
8: for k = 0 to step do
9: o1 ← c(k×l+j)×N+t

10: o2 ← c′(j−k×l)×N+t

11: res← i×N × l + j ×N + t
Step (1): 64-bit Multiply

12: z0 ← o1 × o2
13: z1 ← (o1 × o2)≫ 64

Step (2): 128-bit Barrett Reduction
14: carry ← (z0 × µ0)≫ 64
15: t0 ← z0 × µ1

16: t1 ← (z0 × µ1)≫ 64
17: tmp← t0 + carry
18: if tmp < t0 then
19: tmp′ ← t1 + 1
20: else
21: tmp′ ← t1
22: end if
23: t0 ← z1 × µ0

24: t1 ← (z1 × µ0)≫ 64
25: tmp← z1 × µ1 + tmp′ + t1
26: tmp′ ← z0 − tmp× qi
27: C̄res ← C̄res + tmp′

28: if C̄res ≥ qi then
29: C̄res ← C̄res − qi
30: end if
31: end for
32: end for
33: end for

Then followed by Barrett reduction on the 128-bit multipli-
cation result C̄. For multiplication under the parameter N , N
threads are required to perform the pointwise multiplication of
two ciphertext polynomials, a process well-suited for parallel
optimization on the GPU.

Therefore, for an N -dimensional polynomial, we de-
signed computational schemes under multiple parallel dimen-
sions {N,N/2, N/4, . . . , 256}, where in each scheme, each
thread sequentially processes {1, 2, 4, . . . , N/256} ciphertext
operands.

After parallel optimization, for example, with each thread
processing 8 ciphertext operands, only N/8 threads are

launched, with each thread fetching 8 ciphertext operands
from two consecutive ciphertext polynomials, reducing thread
resource usage by a factor of 8. We conducted detailed
performance tests on these optimization schemes to determine
the optimal parallel dimension for maximizing throughput for
a given parameter N .

2) Sequential Memory Copy: During the parallel optimi-
sation of homomorphic multiplication, unlike NTT, the data
in homomorphic multiplication computations do not exhibit
strong interdependence, and parallel operation allows threads
to process multiple consecutive operands at the same time, so
we use uint4 to perform an efficient memory copy operation
in GPU.
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Fig. 6: Example of N/8-Dimensional Parallelism and
Memory Sequential Copy

In GPU, data is considered as one word with 4 bytes (32
bits), while in CKKS the operand data occupies 8 bytes,
which equals two words. uint4 is a data representation
in CUDA that represents a data structure containing four
unsigned integers (uint). As shown in Figure 6, when we use
uint4 for data copying, a single operation can actually handle
four uint elements, which equates to two 2 operands. This
method of data copying, in comparison to copying elements
individually, such as in a for loop, can reduce the number
of memory accesses and more efficiently utilize memory
bandwidth during computation. Additionally, using uint4
for continuous memory copying allows a single instruction
to process multiple pieces of data, reducing the number of
instructions per thread by 50%. Processing multiple contiguous
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data elements in a memory-aligned manner can reduce the total
number of memory transactions required, as it allows for larger
blocks of data to be processed at once on the GPU, rather than
handling individual pieces of data in multiple transactions.

In homomorphic multiplication with polynomial coefficient
N using contiguous memory copying, assuming that each
thread performs m multiplications after parallel optimization,
the number of thread launches can be reduced by N − N

m
times. Each thread reduces m times memory accesses, and
a complete homomorphic multiplication operation can reduce
memory accesses by a total of m× N

m = N times.

IV. PERFORMANCE EVALUATION

In this section, we implement a high-performance HI-CKKS
based on a GPU platform and select the optimal configuration
parameters through multiple rounds of testing. Finally, we
compare the peak results with the related work.

A. Experiment Setup
In order to test the performance of HI-CKKS, we imple-

mented it in the NVIDIA GeForce RTX 4090 environment.
The detailed hardware configuration of the test environment
and the corresponding platforms are summarised in Table I.
Our experiments are all implemented based on the SEAL
library. For all experiments, we compiled the programs using
gcc 9.4.0 for the CPU and CUDA 12.3 for the GPU imple-
mentation. The experiments measured throughput performance
in kop/s, representing thousands of transactions processed per
second.

TABLE I: The Platform Configuration of HI-CKKS

Platform Device

OS Linux Ubuntu 20.04.1, CUDA 12.4.0
CPU AMD Ryzen 5 5600G 64-bit, 6 cores, 1.4 GHz
GPU NVIDIA GeForce RTX 4090, 16384 cores, 2.52Ghz

Our proposed optimization scheme HI-CKKS supports im-
plementations across multiple values of N . In the experimental
section, we selected |N | = 213 as an example for comprehen-
sive testing to identify the performance peak.

B. Optimal Parallelism Parameter
Our performance optimisation scheme employs a parallel

strategy, so we performed a full range of throughput tests
on the parallel dimensions of NTT, INTT and homomorphic
multiplication in order to find the optimal parallel parameters
in the current test environment. For (I)NTT, we observed
different scenarios where a single computation handles {2,
4, 8, 16} operands, corresponding to the number of threads
used for a single computation being {4096, 2048, 1024, 512}.
Different thread configurations exist for the same number of
thread requirements, for example, under the 4096 parameter,
we can use (4, 1024) to start 4 blocks with 1024 threads in
each block, or we can use (8, 512) to start 8 blocks with
512 threads in each block. During the throughput test, we
randomly generate m sets of input data and transfer them to

the GPU. The value of m is determined by the number of
threads required for computation and the thread configuration,
ranging from [8, 256].

As we use the optimisation idea of kernel fusion, there
are dependencies between the data in multiple blocks during
the computation process, and data access conflicts may occur
in the parallel case resulting in computation errors. In the
traditional (I)NTT computation process, multiple kernel starts
will indirectly complete the global memory synchronisation.
We used grid.sync() to complete the global memory
synchronisation. To address the issue of intra-block data con-
flicts, we utilize the GPU’s intra-block thread synchronization
function, syncthreads().

In general, we believe that a larger parallel dimension
theoretically implies a larger throughput, as a single thread
performs more operations, more computations can be executed
in a single task, given the same total number of available
threads, based on the nature of GPU thread parallelism.
However, the experimental results in Figure 7 and Figure 8
demonstrate that while increasing the number of threads can
improve throughput to some extent, this improvement is not
entirely linear. For the same number of threads, in some cases,
the smaller number of threads required for computation has
better throughput, which is consistent with the theoretical
analysis. In some cases, a smaller number of threads has higher
latency and lower throughput performance, which may be due
to GPU computational resource constraints.

On the other hand, for the same number of threads required
for a computation, different thread-starting configurations can
present different performance. It is often assumed that maxing
out the number of threads maximises the use of resources on
the GPU, i.e. a local optimum point occurs when 1024 threads
are started per block. However, the actual test results show that
not all results show this property and some local optima do
not occur in this case. This may be due to the number of
registers and other resource constraints on the GPU, resulting
in starting 1024 threads with high latency and low throughput.
When the number of required threads becomes large or the
resource demand is small, the resource conflict may not be
obvious, allowing the full occupancy of threads to reach the
optimal point.

Finally, after experimental testing, we obtained the opti-
mal parallel parameters for NTT computation as using 2048
threads for a single computation, with threads starting as
(4, 512), which means starting 4 blocks with 512 threads
in each block. The optimal parallelism parameter for INTT
computation is a single computation using 1024 threads, with
a startup configuration of (1, 1024), which means that 1 block
computation is started and 1024 threads are started in each
block. At this point, the number of registers that can be used
by each thread is limited to 63 due to the limitation of the
total number of registers on the GPU. Figure 9 shows the
throughput test case for homomorphic multiplication, using
4096 threads to complete a single computation, with the
optimal parallel configuration when threads are started in the
(4, 1024) configuration.
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Fig. 7: Performance Results and Peak Behavior of NTT under Different Parallel Parameters and Dimensions
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Fig. 8: Performance Results and Peak Behavior of INTT under Different Parallel Parameters and Dimensions

TABLE II: Implementation Performance Comparison

Implementation Platform
Throughput (kop/s)

NTT INTT HMul

SEAL [15] AMD Ryzen 5 5600G 64-bit, 6 cores, 1.4 GHz 3.95 175.08× 4.29 191.27× 3.57 679.57×

Özcan et al. [24] NVIDIA RTX 3060Ti 67.11 10.31× 58.14 14.12× - -

Yang et al. [22] NVIDIA Tesla A100 80G PCIe GPU 49.60 13.95× 55.83 14.70× - -

TROY [25] NVIDIA GeForce RTX 4090, 16384 cores, 2.52Ghz 25.72 26.91× 24.93 32.92× 3.50 693.17×

Shen et al. [19] NVIDIA Tesla V100S PCIe 64.94 10.66× 60.98 13.46× 43.48 55.80×

Fan et al. [20] NVIDIA A100-SXM-40GB 449.97 1.54× 449.08 1.84× 275.64 8.80×

Our HI-CKKS NVIDIA GeForce RTX 4090, 16384 cores, 2.52Ghz 692.02 820.90 2426.08

C. (I)NTT and Homomorphic Multiplication

In this section, we evaluated the throughput performance of
HI-CKKS, comparing NTT, INTT, and homomorphic multipli-
cation implementations on CPU, GPU, and against the related
achievements, as shown in Table II. Throughput performance
is calculated based on the number of operations that can be
performed per second. In the case of |N | = 213, the baseline
implementation on the CPU is based on SEAL v4.1 [15].

Based on the optimal parallelism parameters derived above,
we tested the throughput performance of HI-CKKS. The opti-
mal peak throughput performance obtained in the experimental
environment is 692.09kop/s for NTT, 820.90kop/s for INTT,
and 2426.08kop/s for homomorphic multiplication operation.

Experimental results indicate that our NTT implementation
achieved a performance increase of 175.08× compared to
the CPU implementation. TROY [25], an open-source library
developed based on SEAL for GPUs, has increased its per-

formance by 26.91× compared to the GPU baseline, and its
throughput performance has improved by 1.54× to 13.95×
compared to other related work. The INTT implementation
saw a throughput performance increase of 191.27× com-
pared to the CPU, a 32.92× increase compared to the GPU
implementation, and an improvement of 1.84× to 14.70×
compared to other related work. The throughput performance
improvement for homomorphic multiplication was the most
significant, with an increase of 679.57× compared to the CPU
implementation, a 693.17× increase compared to the GPU
implementation, and an improvement of 8.80× to 55.80×
compared to other related work.

V. CONCLUSION

In this work, we propose HI-CKKS, a performance op-
timization scheme for CKKS homomorphic multiplication
on GPU platforms, aimed at achieving optimal throughput.
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Fig. 9: Performance Results and Peak Behavior of HMult under Different Parallel Parameters and Dimensions

We design an asynchronous execution scheme supporting
batch processing between the CPU and GPU, propose a
hierarchical hybrid NTT and a multi-dimensional parallel
optimization for homomorphic multiplication, and optimize
the underlying algorithms and middle layer primitives for
throughput improvement. Experimental results demonstrate
the effectiveness of our approach. In the future, we plan
to further leverage the hardware characteristics of GPUs to
optimize additional middle-layer primitives and homomorphic
operations of CKKS, aiming to improve the overall throughput
performance of the CKKS algorithm.
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