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Abstract. Private Set Intersection (PSI) is a cryptographic primitive
that allows two parties to obtain the intersection of their private input
sets while revealing nothing more than the intersection. PSI and its nu-
merous variants, which compute on the intersection of items and their
associated weights, have been widely studied. In this paper, we revisit the
problem of finding the best item in the intersection according to weight
sum introduced by Beauregard et al. (SCN ’22), which is a special variant
of PSI.
We present two new protocols that achieve the functionality. The first
protocol is based on Oblivious Pseudorandom Function (OPRF), ad-
ditively homomorphic encryption and symmetric-key encryption, while
the second one is based on Decisional Diffie-Hellman (DDH) assumption,
additively homomorphic encryption and symmetric-key encryption. Both
protocols are proven to be secure against semi-honest adversaries. Com-
pared with the original protocol proposed by Beauregard et al. (abbrevi-
ated as the FOCI protocol), which requires all weights in the input sets
to be polynomial in magnitude, our protocols remove this restriction.
We compare the performance of our protocols with the FOCI protocol
both theoretically and empirically. We find out that the performance of
FOCI protocol is primarily affected by the size of the intersection and the
values of elements’ weights in intersection when fixing set size, while the
performance of ours is independent of these two factors. In particular,
in the LAN setting, when the set sizes are n = 10000, intersection size
of n

2
, the weights of the elements are uniformly distributed as integers

from [0, n− 1], our DDH-based protocol has a similar run-time to the
FOCI protocol. However, when the weights of the elements belonging
to [0, 10n− 1] and [0, 100n− 1], our DDH-based protocol is between a
factor 2× and 5× faster than the FOCI protocol.

Keywords: secure multiparty computation · PSI · OPRF.

1 Introduction

Generic secure multiparty computation (MPC) allows multiple parties with pri-
vate inputs to collaborate with each other to evaluate any function on their
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inputs, while keeping their inputs unknown to others. Recent studies have ad-
vanced secure computation from theoretical foundations to practical applications
[3,10,16,22,26,36]. However, general MPC of many functions of interest carries
high cost for real-world applications, which prompts the researchers to design
practical protocols that are specialized for such functionalities. One of the most
widely studied topic is Private Set Intersection (PSI) functionality.

PSI allows two parties, each holding a private set of items, to compute the in-
tersection of sets without revealing any information about non-intersecting items.
PSI has many applications such as private contact discovery [8,12], privacy-
preserving location sharing [25], testing of fully sequenced human genomes [1],
and botnet detection [24]. For the past decade, PSI has been extensively studied
and has become truly practical with fast implementations [4,7,21,30,31,32,34,35].
However, PSI functionality only involves sets of items and cannot handle the po-
tentially existing weights associated with items.

A notable PSI variant that computes on the intersection of items and its
corresponding weights is called Private Intersection-Sum with Cardinality (PI-
Sum) [17,19,23]. Specifically, PI-Sum allows one party, called Alice, to input a
set of item-weight pairs {(xi, ui)}, while the other party, called Bob, inputs a
set of items {yj}. The functionality outputs the intersection sum

∑
i:xi=yj

ui

to Alice, which is actually the sum of weights ui whose corresponding item
xi belongs to the intersection {xi} ∩ {yj} of two item sets, and outputs the
cardinality |{xi} ∩ {yj}| of the intersection to Bob. Therefore, PI-Sum achieves
computation on weights of the intersection of two item-sets held by two parties,
in the case that only one party has associated weights of items.

Recently, Beauregard et al. [2] have considered an interesting variant of PSI,
the functionality of which is called “sampling the best item from the intersection,
according to a combined score” (detailed description of ideal functionality is
depicted in Fig. 7 in [2]). Let us denote this functionality as FIMWS (Item with
Maximal Weight Sum). In this new setting, two parties, say Alice and Bob,
have a set of item-weight pairs X = {(xi, ui)} and Y = {(yj , vj)} as input
respectively. For any item xi = yj in the intersection, the weight sum of the item
is defined as ui + vj . The functionality of FIMWS outputs all the weight sums of
the items in the intersection {xi}∩{yj} to Alice, while Bob receives one item in
the intersection with the highest weight sum.

Finding the best item according to a weight sum has been widely applied in
many real-world applications. For example, in a meeting scheduling application,
two parties Alice and Bob aim to arrange a meeting without revealing their
entire schedules to each other. They assign weights to each meeting time (namely
each item) based on their preferences, and they want to identify the item in the
intersection with the highest weight sum as the final meeting time. In a weighted
voting application, Alice and Bob aim to conduct weighted voting on candidates
(namely items) based on their preferences and ultimately select the winning
candidate who has the votes with the highest weight sum. However, they may
not want each other to know the weight of their votes for candidates other than
the winner candidate, which can be solved by the functionality mentioned above.
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Beauregard et al. [2] have proposed a protocol (abbreviated as FOCI) that
achieves the ideal functionality of FIMWS, based on DDH assumption with a
cyclic group G = ⟨g⟩ of order q. However, in the protocol execution, Alice ob-
tains a value of the form Dwi , where wi is the weight sum of an item in the
intersection, and needs to compute a discrete logarithm with base D to retrieve
the weight sum wi. The computation of discrete logarithm imposes a constraint
that all the weight sums have to be polynomial in magnitude. Such a limita-
tion might hinder the usability of the protocol in practice, especially when the
weights are of substantial magnitude, such as investment amounts or prices. For
instance, consider the application scenario where two parties, Alice and Bob, are
each evaluating a set of projects they are willing to invest in, with each project
having an associated investment amount (weight). They want to identify the
project with the highest combined investment between them, without reveal-
ing individual investment amounts. In this case, the weight sums (investment
amounts) may be very large, making discrete logarithm computations inefficient
and impractical. Moreover, as the implementation result of Beauregard et al.
[2]’s protocol is missing, we do not know how efficient their protocol is and if it
is applicable in practice. These naturally motivate us to explore protocols that
are based on more reasonable and standard assumptions, and also do not require
the constraint on input weights, so that the protocols can be fit for more ap-
plication scenarios. It is also valuable to implement and evaluate the efficiency
of the protocols via their communication and computation costs, which in turn
illustrate that they are truly practical.

1.1 Our Contributions

Our contributions are twofold. First, we revisit the problem of finding the best
item from the intersection according to a weight sum introduced by Beauregard
et al. [2], which is called “compute the item with maximal weight sum in set
intersection” (referred to the description of functionality FIMWS in Fig. 2) in
this paper. We present two novel protocols that achieve the ideal functional-
ity. The first protocol is based on OPRF, additively homomorphic encryption
(AHE) and symmetric-key encryption, while the second one is based on Deci-
sional Diffie-Hellman (DDH) assumption, additively homomorphic encryption
and symmetric-key encryption. Both protocols are secure against semi-honest
adversaries. Compared with the prior protocol by [2] which has the constraint
that all the weights in the input sets have to be polynomial in magnitude, both
of our protocols remove such restriction on weights.

Our second contribution is the implementation and evaluation of protocols.
We compare our protocols with the FOCI protocol both theoretically and em-
pirically. As Beauregard et al. [2] did not provide performance estimation for
their FOCI protocol, we implement it in C++ using the same language and
library, and run on the same hardware as ours. We find out that the perfor-
mance of FOCI protocol is primarily affected by the size of the intersection and
the values of elements’ weights in intersection when fixing set size n, while the
performance of our protocols is basically independent of these two factors. In
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particular, in the WAN setting with 1000 Mbps network bandwidth and the
set sizes are n = 10000, our best protocol requires an execution time of 10.08
seconds and involves 6.28 MiB of communication. In a LAN setting, when the
set sizes are n = 10000, intersection size of n

2 , the weights of the elements are
uniformly distributed as integers from [0, n− 1], our DDH-based protocol has
a similar run-time to FOCI protocol. However, when the weights of the ele-
ments belonging to [0, 10n− 1], our DDH-based protocol is around a factor 2
faster than FOCI protocol, and when the weights belonging to [0, 100n− 1], our
DDH-based protocol is up to 5 times faster than FOCI protocol.

1.2 Technical Overview

It is noted that the FOCI protocol proposed by [2] achieves the functionality
FIMWS under the DDH assumption, where Alice has to compute a discrete loga-
rithm to obtain the weight sums. This imposes a constraint that all weight sums
must be of polynomial magnitude. To eliminate this restriction on weight val-
ues, instead of encoding the associated weights in the exponents under the DH
paradigm, we adopt the AHE technique to encrypt the weight values directly.

The high-level idea of our OPRF-based protocol is as follows. Given two input
sets of n item-weight pairs, X = {(xi, ui)}i∈[n] for Alice and Y = {(yj , vj)}j∈[n]

for Bob, the two parties execute a multi-point OPRF protocol. Bob, as the
sender, obtains a PRF key k, while Alice, as the receiver, inputs all her items xi

and obtains the corresponding OPRF values Fk(xi). Then Alice, who holds the
public-secret key pair (pk, sk) of additively homomorphic encryption scheme,
encrypts both the OPRF values and their associated weights to obtain cipher-
texts {cti = (AEnc(pk, Fk(xi)),AEnc(pk, ui))}, which are sent to Bob in order.
On receiving the ciphertexts, Bob with public key pk homomorphically adds ran-
dom values ri, si to each ciphertext of item and weight respectively, and sends
the ciphertexts {ct′i = (AEnc(pk, Fk(xi) + ri),AEnc(pk, ui + si))} back to Alice
in a shuffled order π randomly chosen by Bob. Alice can decrypt the cipher-
texts to obtain the set of OPRF value and weight pairs with random masks
U = {(Fk(xi) + ri, ui + si)}, and it is clear that for each pair in set U , Alice
is incapable of relating it with its original item-weight pair, since Bob has done
the shuffle.

Next, for each input item yj held by Bob, Bob sends symmetric-key encryp-
tion ciphertexts −→aj = {Enc(Fk(yj)+ri, vj−si)}i∈[n] = {aj,i}i∈[n] to Alice, which
are the encryptions of the corresponding weight vj (with random masks) under
the keys that are OPRF values of item yj with all possible masks. It can be
observed that if yj is an item in the intersection, then there must exist some
(K,S) ∈ U and aj,i ∈ −→aj such that Dec(K, aj,i) ̸= ⊥, and the weight sum of
yj is exactly wj = Dec(K, aj,i) + S, since the random masks of the weights are
canceled out. Otherwise, the decryption will fail with overwhelming probability
for any (K,S) ∈ U and aj,i ∈ −→aj , and the weight sum of yj is defined as wj = ⊥
since yj does not belong to the intersection. Therefore, Alice is able to obtain
the weight sums (w1, ..., wn) and sends the index j∗ = argmaxjwj to Bob, who
finally outputs the item yj∗ with the maximal weight sum.
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One subtle issue is that the communication overhead for Bob is quadratic
in n, and the computation overhead for Alice is cubic in n. This is because, for
each of Bob’s input items yj , the vector −→aj that Bob sends to Alice consists of
n ciphertexts. To decrypt −→aj , Alice must iterate through n possible keys in set
U . The reason why −→aj must contain n ciphertexts is that Bob needs to account
for all possible random mask pairs to cover every possible intersection between
his items and Alice’s items, including the case where yj = xi.

Therefore, to reduce the overhead, we leverage the Cuckoo hashing technique
with ℓ hash functions h1, ..., hℓ on Alice’s input items, such that each bin contains
at most one item. Then Alice performs single-point OPRF with Bob for each bin,
where Bob as sender obtains the PRF key ki for i-th bin, while Alice as receiver
inputs the item x in i-th bin and learns the OPRF value Fki

(x). The key point is
that each random mask pair (ri, si) is now associated with bin’s index i, which
means that (ri, si) is the mask of (Fki(x), u), where x is the item in i-th bin with
weight u. For each of Bob’s items yj , all of its possible mask pairs are indexed
by {h1(yj), ..., hℓ(yj)} = Ij . Therefore, −→aj = {Enc(Fki

(yj) + ri, vj − si)}i∈Ij =
{aj,i}i∈Ij only needs to hold ℓ ciphertexts rather than n. (We omit the stash of
Cuckoo hashing here for simple description, which will be discussed in detail in
Sec. 3.2.)

Considering that the homomorphic operations of the underlying AHE proto-
cols are expensive, we propose the second protocol (i.e., our DDH-based protocol
in Sec. 3.3) to further reduce the overall cost. In contrast to our OPRF-based
protocol mentioned earlier, which utilizes AHE on items, the main idea of our
DDH-based protocol is to apply DH-based OPRF on items instead, while the
operations on weights remain the same. Specifically, both protocols apply AHE
on the associated weights.

1.3 Related Work

In this section, we discuss some works about computing on weights associated
with items in the intersection.

In [2], Beauregard et al. firstly develop protocols for privately finding one
common item (FOCI) from the intersection of two sets, which can be applied
to meeting scheduling. Their protocols differ in how that item is chosen — e.g.,
uniformly at random from the intersection; the “best” item in the intersection
according to one party’s ranking; or the “best” item in the intersection according
to the sum of both parties’ weights. They construct the corresponding protocols
and prove the security in the semi-honest model. Our focus is on the last sce-
nario, which is also the most general case among them. In this scenario, their
protocol needs to compute the discrete logarithm, so it only supports weights
of polynomial size. Additionally, they did not implement their protocols, so it is
difficult to judge the performance of their protocols.

In [19], Ion et al. discuss several Private Intersection-Sum (PI-Sum) with
Cardinality protocols, which can be applied to compute advertising conversion.
In PI-Sum, one party has a set of pairs of an identifier and an value {(xi, ui)},
while the other party has an identifier set yi. The goal is to compute the sum
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of values within the intersection of the two identifier sets (i.e.
∑

i:xi=yj
ui), to-

gether with the cardinality of the intersection (i.e. |{xi}∩{yj}|). They construct
protocols that rely on a Diffie-Hellman style double masking, Random Oblivi-
ous Transfer and encrypted Bloom filters, respectively. Then they implemented
the protocols and conducted detailed comparisons. In the case where both input
sizes are 10,000, their best protocol requires an execution time of 7.47 seconds
and involves 0.81 MB of communication.

In [9], Chida et al. study a functionality called inner product private join
and compute (inner product PJC), which can be applied to compute weighted
advertising conversion measurement. In inner product PJC, both parties have
a set of pairs of an identifier and an value (i.e. {(xi, ui)} and {(yi, vi)}). The
goal is to compute the inner product of values within the intersection of the two
identifier sets (i.e.

∑
(i,j):xi=yj

uivj), along with the cardinality of the intersec-
tion (i.e. |{xi} ∩ {yj}|). They construct a communication-efficient 4-round inner
product PJC protocol and implement it. In the case where both input sizes are
216, the protocol requires an execution time of 25.92 seconds and involves 17.2
MB of communication.

Another approach for computing functions on the weights in the intersection
is by using circuit PSI [33], which is a technique to use general two-party compu-
tation (garbled circuits [37] or the GMW protocol [18]) to compute any functions
on the intersection and the associated weights. But this approach significantly
increases the communication cost or the round complexity.

2 Preliminaries

In this section, we introduce the notation and primitives which will be used in
our protocol including oblivious PRF, the definition of symmetric-key encryption
and semi-honest security. The definitions of additively homomorphic encryption,
DDH assumption, and Cuckoo hash are provided in App. A.

2.1 Notation

Throughout the paper we use the following notation: We use κ and λ to denote
the computational and statistical security parameters, respectively. We use [n] to
denote the set {1, 2, . . . , n}. For some set S, the notation s

$← S means that s is
assigned a uniformly random element from S. By negl (κ) we denote a negligible
function, i.e., a function f such that f(κ) < 1/p(κ) holds for any polynomial
p(·) and sufficiently large κ.

2.2 Security Model

We consider the semi-honest security model in this paper, which guarantees that
a party can never learn any information about the other party’s input other than
its own output as long as it follows the protocol.
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Definition 1. Let Π be a two-party protocol computing f = (f1, f2) and ViewΠ
i (x, y)

be the view of Pi (the entire distribution that Pi can see), OutΠ(x, y) = (OutΠ1 (x, y),
OutΠ2 (x, y)) be the output of the protocol where x and y are inputs of P1 and P2,
respectively. We say Π has semi-honest security if there exist PPT simulators
S1, S2, and the following holds for all inputs x, y:(

ViewΠ
1 (x, y),OutΠ(x, y)

)
c
≈
(
S1

(
1λ, x, f1(x, y)

)
, f(x, y)

)
(
ViewΠ

2 (x, y),OutΠ(x, y)
)

c
≈
(
S2

(
1λ, y, f2(x, y)

)
, f(x, y)

)
2.3 Oblivious Pseudorandom Function (OPRF)

An oblivious pseudorandom function (OPRF) [15] is a protocol in which a sender
learns (or chooses) a random PRF seed k while the receiver learns fk(x), the
result of the PRF on a single input x chosen by the receiver. In this protocol,
sender learns nothing about the receiver’s input x. Furthermore, the evaluation
of the PRF fk on all other inputs remains pseudorandom in the view of receiver.
The ideal functionality FOPRF is defined in Fig. 1.

Inputs: sender inputs nothing; receiver holds an evaluation point x.
Outputs: sender outputs PRF key k; receiver outputs fk(x).

Fig. 1: Ideal functionality for OPRF FOPRF.

2.4 Symmetric-Key Encryption

We need a one-time, symmetric-key encryption scheme in which decryption fails
when an incorrect (independently random) key is used. Let K be the set of
keys and let M be the set of plaintexts. Specifically, we require the following
properties:

– Correctness: For all k ∈ K and m ∈M, it holds that

Pr [Dec(k,Enc(k,m)) = m] = 1.

– One-time security: For all m0,m1 ∈M, k0, k1
$← K and probabilistic polynomial-

time algorithms A, there is a negligible function negl such that

|Pr [A (Enc (k0,m0)) = 1]− Pr [A (Enc (k1,m1)) = 1]| ≤ neg(κ).

– Robust decryption: For all m ∈M, and k, k′
$← K, it holds that

Pr [Dec(k′,Enc(k,m)) ̸=⊥] ≤ neg(κ).
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3 Privately Compute the Item with Maximal Weight Sum
in Set Intersection: Functionality and Constructions

In this section, we give two new protocols based on new approaches. The func-
tionality that the protocols have realized is defined in Sec. 3.1. The protocol
based on OPRF and its security proof are shown in Sec. 3.2. The protocol based
on DDH assumption and its security proof are presented in Sec. 3.3.

3.1 The Functionality of Privately Compute the Item with Maximal
Weight Sum in Set Intersection

Here we provide the functionality of privately compute the item with maximal
weight sum in set intersection, which is to identify the common item with highest
weight sum. Here the common item’s weight sum refers to the sum of its weights
associated with the common item from both parties.

FIMWS

1. receive input X = {(x1, u1), ..., (xn, un)} from Alice and Y = {(y1, v1), ..., (yn, vn)}
from Bob. (xi ̸= xj and yi ̸= yj for i, j ∈ [n])

2. for j ∈ [n], if ∃(x, u) ∈ X with x = yj , then let wj = u+ vj ; else let wj = ⊥.
3. give w1, ..., wn to Alice.
4. set j∗ := argmaxjwj and give yj∗ to Bob.

Fig. 2: Ideal functionality for privately compute the item with maximal weight
sum in set intersection.

The ideal functionality for this variant of PSI is defined in Fig. 2. Specifically,
Alice as sender inputs a set X of item-weight pairs (xi, ui) in order, while Bob as
receiver inputs a set Y of item-weight pairs (yi, vi) in order. For each yj (j ∈ [n]),
if yj is in the intersection of item sets, i.e., there exists some (x, u) ∈ X such
that x = yj , then denote the weight sum of yj by wj = u+ vj ; otherwise, for yj
not in the intersection of item sets, let the corresponding weight sum be wj = ⊥.
Alice receives weight sums in the ordering of items in Y as (w1, ..., wn), and Bob
receives the item yj∗ with the maximal weight sum, where j∗ := argmaxjwj . It
is important to note that since the order of (w1, ..., wn) aligns with that of items
in Y , Alice will know which index the item with highest weight sum in Bob’s
set is located at. However, Alice cannot predict the correspondences between
(w1, ..., wn) and (x1, ..., xn).

In the special case where there are no common items, i.e., wj = ⊥ for all
j ∈ [n], we adopt the convention that the index of the maximal weight sum is
argmaxjwj = ⊥. Consequently, if j∗ = ⊥, the corresponding item yj∗ is also ⊥.

It can be observed that our ideal functionality shown in Fig. 2 is slightly
different from that of “finding the best item according to a combined score” (Fig.
7 in [2]). We revise the definition as we find out that their functionality does not
align with the FOCI protocol they proposed. Specifically, the functionality in [2]
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(step 2 in Fig. 7) indicates that the random ordering of set Y is not revealed to
Bob. However, in the FOCI protocol, Bob knows the order of Y as he does the
random permutation himself, and the order is crucial for him to finally obtain the
output yj∗ from the index j∗. To address the issue, we modify the functionality
such that the input sets of both Alice and Bob are denoted in order, which means
that Alice and Bob know the ordering of their input sets X and Y respectively.
In the FOCI protocol, Alice and Bob locally shuffle their input sets at the very
beginning, which results in sorted sets. These sorted sets are then used as inputs
for the subsequent steps of the protocol, which achieve our functionality FIMWS.

3.2 OPRF-based Protocol

In this section, we present a protocol based on OPRF that achieves the ideal
functionality of FIMWS described in Fig. 2.
An overview of protocol. Recall that Beauregard et al. [2] have proposed a
protocol with the same functionality, the key building block of which is called
“2-Blind-Exp subprotocol” (see in Fig. 8 of [2]). In fact, this subprotocol can be
abstracted as a shuffled OPRF based on the DDH assumption. The shuffling
step is crucial to ensure that the intersection remains hidden from Alice. Alice
is only allowed to learn the weight sum wj = ui + vj for common item xi = yj
without revealing the individual ui and vj , which can be achieved by blinding the
weights with masks associated to the corresponding items that can be canceled
out when the items are the same.

The main drawback of Beauregard et al.’s protocol [2] is that due to the DH
paradigm, the weight sums appears on the exponents of group elements which
Alice obtains by symmetric-key decryption, therefore, Alice needs to further
perform a discrete logarithm process to compute the weight sum.

To avoid the use of discrete logarithm that may cause restrictions on weights
or security problems, we replace the DH paradigm applying on both items and
weights with additively homomorphic encryption technique, which is inspired by
Ion et al. [19] to construct a variant of PSI protocol, i.e., private intersection-sum
with cardinality.
Our construction. Our protocol is built upon the following preliminaries: an
additively homomorphic encryption scheme (AGen, AEnc, ADec, ASum, ARefresh),
a symmetric-key encryption scheme (Enc, Dec), a single-point OPRF protocol
and Cuckoo hashing scheme. The detailed protocol is presented in Fig. 3.

Correctness of the protocol follows immediately from inspection, assuming
Cuckoo hashing fails with negligible probability and that the OPRF outputs
collide with negligible probability.

The security of our protocol follows from the security of the additively ho-
momorphic encryption scheme, the security properties of the single-point OPRF
protocol and the security properties of symmetric-key encryption.

We note that the single point OPRF as the main building block of the above
protocol can be substitute with a multi-point OPRF, which means after the
execution of a multi-point OPRF between Alice and Bob, Alice as a receiver
learns N + s PRF values Fk(xi). The whole protocol is the same except that all
the PRF keys for different bins will be the same.
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PROTOCOL:

Inputs: Alice has input set X = {(xi, ui)}i∈[n] and Bob has input set Y =
{(yj , vj)}j∈[n].

Setup: Alice generates an additively homomorphic encryption key-pair (pk, sk) and
sends public key pk to Bob. Alice and Bob choose Cuckoo hash table size N , stash
size s, and ℓ hash functions h1, ..., hℓ : {0, 1}∗ → [N ].

Protocol Steps:
1. Alice hashes her items {xi}i∈[n] using Cuckoo hashing. Alice fills in all empty

bins and the empty positions in the stash with a dummy item. Denote the
items in the Cuckoo hash table and the stash (including both dummy and real
values) by x1, ..., xN+s, where xN+1, ..., xN+s are items in the stash. Denote the
corresponding value of xi by ui for 1 ≤ i ≤ N + s, where the corresponding
value of a dummy item is taken randomly from the field. Alice aborts if the
hashing fails.

2. For 1 ≤ i ≤ N + s, Alice and Bob execute a single-point OPRF, where Bob
as a sender inputs nothing and learns an PRF key ki, while Alice as a receiver
inputs item xi and learns the PRF value Fki(xi).

3. For 1 ≤ i ≤ N + s, Alice does encryption as

cti =
(
ct1i , ct

2
i

)
= (AEnc (pk, Fki(xi)) ,AEnc(pk, ui)) ,

and sends {cti}i∈[N+s] to Bob.
4. For each 1 ≤ i ≤ N + s, Bob chooses random values ri and si from the input

domain of additively homomorphic encryption, and computes

ct
′
i = ARefresh

(
cti +

(
AEnc(pk, ri),AEnc(pk, si)

))
=

(
ARefresh

(
ct1i + AEnc(pk, ri)

)
,ARefresh(ct2i + AEnc(pk, si)

))
.

Bob sends to Alice the set of ct
′
i in shuffled order π.

5. Alice receives the set of ct
′
i in an unknown order, and uses its private key sk

to decrypt each component in all ct
′
i. Denote the set of decryption results of all

ct
′
i by

U =
{(

Fki(xi) + ri, ui + si
)}

i∈[N+s]
.

Denote the first and second components by

Z = {Fki(xi) + ri}i∈[N+s], W = {ui + si}i∈[N+s].

6. For 1 ≤ j ≤ n, Bob computes Ij = {hi(yj)}i∈[ℓ] ∪ {N + 1, ..., N + s} and does
the symmetric-key encryption as

−→aj = {Enc (Fki(yj) + ri, vj − si)}i∈Ij
= {aj,i}i∈Ij .

Then Bob sends {−→aj}j∈[n] with every ℓ+ s items in −→aj shuffled in order πj for
1 ≤ j ≤ n to Alice.

7. For 1 ≤ j ≤ n, Alice tries all items in set Z to decrypt the ciphertexts in −→aj . That
is, if there exists an aj,i ∈ −→aj and an (K,S) ∈ U such that Dec(K, aj,i) ̸= ⊥, then
let wj = Dec(K, aj,i)+S, else let wj = ⊥. Then Alice computes j∗ = argmaxjwj

and sends it to Bob.
Outputs: Alice outputs (w1, ..., wn) and Bob outputs yj∗ .

Fig. 3: ΠOPRF: the protocol based on single-point OPRF.
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Security Analysis. The protocol ΠOPRF in Fig. 3 securely realizes FIMWS in
the semi-honest model. The correctness is detailed beforehand. We then prove
the privacy by the following theorem.

Theorem 1. Assume that the additively homomorphic encryption scheme is
IND-CPA secure, the underlying OPRF protocol is secure in semi-honest model,
and the one-time, symmetric-key encryption scheme has robust decryption prop-
erty. Then there exist simulators SIMA, SIMB such that for security parameter
λ and inputs X = {(xi, ui)}i∈[n], Y = {(yi, vi)}i∈[n],

ViewΠOPRF
A ({(xi, ui)})i∈[n], {(yi, vi)})i∈[n])

c
≈ SIMA(1

λ, {(xi, ui)})i∈[n], (w1, ..., wn))

ViewΠOPRF
B ({(xi, ui)})i∈[n], {(yi, vi)})i∈[n])

c
≈ SIMB(1

λ, {(yi, vi)})i∈[n], yj∗)

where (w1, ..., wn) is the weight sums for the intersection and yj∗ is the item in
the intersection which has the maximum weight sum.

Proof. Security against corrupt Alice. We describe the simulator algorithm
SIMA in Algorithm 1.

Algorithm 1 The simulator for Alice in the OPRF-based Protocol

Input: (1λ, {(xi, ui)})i∈[n], (w1, ..., wn)) Output: SimView(Alice)
SIMA(1

λ, {(xi, ui)})i∈[n], (w1, ..., wn)):

1. Honestly simulate the Setup phase between Alice and Bob.
2. Honestly simulate steps 1-3 between Alice and Bob, receiving the set {cti =

(AEnc(pk, Fk(xi)),AEnc(pk, ui))}i∈[N+s] at the end of step 3.
3. In step 4, choose a set C∗ consisting of N + s random elements ci from the

input domain of additively homomorphic encryption, a set D∗ consisting of
N+s random elements di from the input domain of additively homomorphic
encryption. Compute the fresh encryptions to each ci and di under Alice’s
public key pk, and send ct

′

i = (AEnc(pk, ci),AEnc(pk, di)) to Alice.
4. Simulate step 5 for Alice honestly.
5. In step 6, choose the set {−→aj}j∈[n] = {aj,i}j∈[n],i∈[ℓ+s] such that each −→aj con-

tains exactly ℓ+s ciphertexts which are the encryptions of 0 under randomly
chosen keys Kj,i, that is aj,i = Enc(Kj,i, 0). For each 1 ≤ j ≤ n, if wj ̸=⊥,
then for a randomly chosen index tj ∈ [ℓ+ s], chose some clj randomly from
the set C∗ (each element in C∗ is used at most once) with the correspond-
ing indexed element dlj in set D∗, and replace aj,tj = Enc(Kj,tj , 0) with
Enc(clj , wj − dlj ). Send the set {−→aj}j∈[n] = {aj,i}j∈[n],i∈[ℓ+s] to Alice.

6. Simulate step 7 for Alice honestly.
7. Output the view of Alice in this interaction.

We argue that

ViewΠOPRF
A ({(xi, ui)})i∈[n], {(yi, vi)})i∈[n])

c
≈ SIMA(1

λ, {(xi, ui)})i∈[n], (w1, ..., wn))

using a multi-step hybrid argument, where each neighboring pair of hybrid dis-
tributions is computationally indistinguishable.
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Hyb0: The transcript corresponding to the view of Alice in a real execution of
the protocol.

Hyb1: The same as Hyb0, except in step 6, for all wj =⊥, Bob replaces the
ciphertexts {aj,i}i∈[ℓ+s] with fresh encryptions of 0 under the key {Fki

(yj)+
ri|i ∈ Ij}, that is {aj,i}i = {Enc(Fki

(yj) + ri, 0)|i ∈ Ij}.
Hyb1 and Hyb0 are indistinguishable by the one time security of symmetric-
key encryption and the pseudorandomness of non-retrieved items in OPRF.

Hyb2: The same as Hyb1, except in step 6, for all wj =⊥, Bob replaces the
ciphertexts {aj,i}i∈[ℓ+s] with fresh encryptions of 0 under randomly chosen
key Kj,i,that is aj,i = Enc(Kj,i, 0).
Hyb2 and Hyb1 are indistinguishable by the pseudorandomness of PRF val-
ues, and the one-time-pad property of randomness ri.

Hyb3 : The same as Hyb2, except in step 4, the first component of each ct
′

i

is replaced with an encryption of a uniformly random value ci, that is
ct

′

i = (AEnc(pk, ci),AEnc(pk, uπ−1(i) + sπ−1(i))), and in step 6, for each
wj ̸=⊥, for the corresponding element index tj , Bob replace the cipher-
texts {aj,i}i∈[ℓ+s]\{tj} with fresh encryptions of vj − s(i) under randomly
chosen key Kj,i, where s(i) = sh

π
−1
j

(i)
(yj) if i ∈ [ℓ], s(i) = sN−ℓ+π−1

j (i) if

i ∈ [ℓ + 1, ℓ + s], that is aj,i = Enc(Kj,i, vj − s(i)), and replace the cipher-
text aj,tj with fresh encryptions under the corresponding key clj , that is
aj,tj = Enc(clj , vj − s(tj)). (The correspondence of tj and clj means that clj
can successfully decrypts aj,tj , which holds that π−1(lj) = hπ−1

j (tj)
(yj) if

tj ∈ [ℓ], π−1(lj) = N − ℓ+ π−1
j (tj) if tj ∈ [ℓ+ 1, ℓ+ s].)

Hyb3 and Hyb2 are indistinguishable by the one-time-pad property of adding
the random value ri, the hiding property of additively homomorphic encryp-
tion scheme, and the pseudorandomness of PRF values.

Hyb4 : The same as Hyb3, except in step 4, the second component of each
ct

′

i is replaced with an encryption of a uniformly random value di, that
is ct

′

i = (AEnc(pk, ci),AEnc(pk, di)), and in step 6, for each wj ̸=⊥, for the
corresponding element index tj , Bob replace the ciphertexts {aj,i}i∈[ℓ+s]\{tj}
with fresh encryptions of 0 under key Kj,i, that is aj,i = Enc(Kj,i, 0), and
replace the ciphertext aj,tj with fresh encryptions of wj − dlj under the
corresponding key clj , that is aj,tj = Enc(clj , wj − dlj ).
Hyb4 and Hyb3 are indistinguishable by the one-time-pad property of adding
the random value si, the hiding property of additively homomorphic encryp-
tion scheme, and the one time security of symmetric key encryption.

Hyb5 : The view of Alice output by SIMA.
Hyb5 and Hyb4 are identically distributed.

Security against corrupt Bob. We observe that Bob’s view in the protocol
consists of the following:

1) A public key pk of additively homomorphic encryption (Setup).
2) Whether Alice aborts due to Cuckoo hashing failure (step 1).
3) The sender’s view in single-point OPRF executions (step 2).
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4) The sets {cti}i∈[N+s] of ciphertexts encrypted under Alice’s key pk (step
3).

5) An index j∗ corresponding to Bob’s output (step 7).
We describe the simulator algorithm SIMB in Algorithm 2.

Algorithm 2 The simulator for Bob in the OPRF-based Protocol

Input: (1λ, {(yi, vi)})i∈[n], yj∗) Output: SimView(Bob)
SIMB(1

λ, {(yi, vi)})i∈[n], yj∗):

1. Randomly choose a pair of homomorphic encryption keys (pk, sk) and sends
pk to Bob in setup phase.

2. Never abort in step 1.
3. In step 2, choose N + s random elements ti from the domain of input items,

and request ti to be receiver’s inputs in the single-point OPRF protocols,
with Bob plays the role of sender.

4. In step 3, send Bob {cti}i∈[N+s] to be fresh encryptions of 0, that is cti =
(AEnc(pk, 0),AEnc(pk, 0)).

5. Simulate step 4 and step 6 for Bob honestly.
6. In step 7, send j∗ corresponding to Bob’s output yj∗ to Bob.
7. Output the view of Bob in this interaction.

We argue that

ViewΠOPRF
B ({(xi, ui)})i∈[n], {(yi, vi)})i∈[n])

c
≈ SIMB(1

λ, {(yi, vi)})i∈[n], yj∗)

using a multi-step hybrid argument, where each neighboring pair of hybrid dis-
tributions is computationally indistinguishable.

Hyb0: The transcript corresponding to the view of Bob in a real execution of
the protocol.

Hyb1: The same as Hyb0, except in step 1, Alice never abort when executing
Cuckoo hashing.
Hyb1 and Hyb0 are indistinguishable by the property that Cuckoo hashing
fails with negligible probability.

Hyb2: The same as Hyb1, except in step 2, Alice replaces the inputs {xi}i∈[N+s]

for single-point OPRF protocols with N + s random elements {ti}i∈[N+s]

from the domain of input items.
Hyb2 and Hyb1 are indistinguishable by the security of single-point OPRF
protocol.

Hyb3: The same as Hyb2, except in step 3, Alice replaces the ciphertexts
{cti}i∈[N+s] with fresh encryptions of 0 under public key pk, that is cti =
(AEnc(pk, 0),AEnc(pk, 0)).
Hyb3 and Hyb2 are indistinguishable by the hiding property of additively
homomorphic encryption scheme.

Hyb4 : The view of Bob output by SIMB .
Hyb4 and Hyb3 are identically distributed.
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PROTOCOL:

Inputs: Alice has input set X = {(xi, ui)}i∈[n] and Bob has input set Y =
{(yj , vj)}j∈[n].

Setup: G =< g > is a cyclic group with prime order q and H : {0, 1}∗ → G is a hash
function. Alice generates an additively homomorphic encryption key-pair (pk, sk)
and sends the public key pk to Bob. Alice and Bob choose Cuckoo hash table size
N , stash size s, and ℓ hash functions h1, . . . , hℓ : {0, 1}∗ → [N ].

Protocol Steps:
1. Alice hashes her items {xi}i∈[n] using Cuckoo hashing. Alice fills in all empty

bins and the empty positions in the stash with a dummy item. Denote the
items in the Cuckoo hash table and the stash (including both dummy and real
values) by x1, . . . , xN+s, where xN+1, . . . , xN+s are items in the stash. Denote
the corresponding value of xi by ui for 1 ≤ i ≤ N + s, where the corresponding
value of a dummy item is taken randomly from the field. Alice aborts if the
hashing fails.

2. Alice randomly chooses a ∈ Zq and performs the encryption as

cti =
(
H(xi)

a,AEnc(pk, ui)
)
,

then sends {cti}i∈[N+s] to Bob.
3. For each 1 ≤ i ≤ N + s, Bob chooses random values ri from the input domain

of the additively homomorphic encryption and bi from Zq, and computes

ct
′
i =

(
H(xi)

a·bi ,ARefresh
(
AEnc(pk, ui) + AEnc(pk, ri)

))
.

Bob sends the set {ct
′
i} in shuffled order π to Alice.

4. Alice uses her private key sk to decrypt each component in all ct
′
i. She computes

Z = {(H(xi)
a·bi)

1
a }i∈[N+s] = {H(xi)

bi}i∈[N+s], W = {ui + ri}i∈[N+s].

Denote U = {(H(xi)
bi , ui + ri)}i∈[N+s].

5. For 1 ≤ j ≤ n, Bob computes Ij = {hi(yj)}i∈[ℓ] ∪ {N + 1, . . . , N + s} and
performs the symmetric-key encryption as

−→aj =
{

Enc
(
H(yj)

bi , vj − ri
)}

i∈Ij

= {aj,i}i∈Ij .

Then Bob sends {−→aj}j∈[n] with every ℓ+ s items in −→aj shuffled in order πj for
1 ≤ j ≤ n to Alice.

6. For 1 ≤ j ≤ n, Alice tries all items in set Z to decrypt the ciphertexts in −→aj . That
is, if there exists an aj,i ∈ −→aj and an (K,S) ∈ U such that Dec(K, aj,i) ̸= ⊥, then
let wj = Dec(K, aj,i)+S, else let wj = ⊥. Then Alice computes j∗ = argmaxjwj

and sends it to Bob.
Outputs: Alice outputs (w1, . . . , wn) and Bob outputs yj∗ .

Fig. 4: ΠDDH: the protocol based on DDH.
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3.3 DDH-based Protocol

In this section we present our DDH-based protocol that achieves the ideal func-
tionality of FIMWS described in Fig. 2.

An overview of protocol. In the aforementioned protocol, we applied addi-
tively homomorphic encryption on both items and weights. It can be observed
that the reason why computing the discrete logarithm is required in Beauregard
et al. [2]’s protocol is that the the DH paradigm is used for weights.

As the DH paradigm is more efficient than that of additively homomorphic
encryption, in our DDH-based protocol we use DH paradigm for items while
apply additively homomorphic encryption on weights to save cost as well as
avoid the requirement of discrete logarithm.

Our construction. Our protocol is built upon the following primitives: an ad-
ditively homomorphic encryption scheme (AGen, AEnc, ADec, ASum,ARefresh),
a symmetric-key encryption scheme (Enc, Dec) and DH-based key exchange. The
detailed protocol is presented in Fig. 4.

Correctness of the protocol follows immediately from inspection, assuming
Cuckoo hashing fails with negligible probability.

The security of our protocol follows from the hardness assumption of DDH,
the security of the additively homomorphic encryption scheme and the security
properties of symmetric-key encryption.

Security Analysis. The protocol ΠDDH in Fig. 4 securely realizes FIMWS in
the semi-honest model. The correctness is detailed beforehand. We state the
theorems for security below. The formal security proof appears in App. B.

Theorem 2. Assume that the additively homomorphic encryption scheme is
IND-CPA secure, the DDH assumption holds in G, the hash function H is mod-
eled as a random oracle, and the one-time, symmetric-key encryption scheme
has robust decryption property. Then there exist simulators SIMA, SIMB such
that for security parameter λ and inputs X = {(xi, ui)}i∈[n], Y = {(yi, vi)}i∈[n],

ViewΠDDH
A ({(xi, ui)})i∈[n], {(yi, vi)})i∈[n])

c
≈ SIMA(1

λ, {(xi, ui)})i∈[n], (w1, ..., wn))

ViewΠDDH
B ({(xi, ui)})i∈[n], {(yi, vi)})i∈[n])

c
≈ SIMB(1

λ, {(yi, vi)})i∈[n], yj∗)

where (w1, ..., wn) is the weight sums for the intersection and yj∗ is the item in
the intersection which has the maximum weight sum.

4 Extensions and Applications

In this section, we discuss some extensions of the functionality FIMWS which can
be used in many real-world applications. All of these extensions can be easily
achieved by modifying our protocols outlined in Sec. 3.
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Compute the Items with Large Weight Sums. Under the FIMWS func-
tionality, Bob only obtains the item with the maximal weight sum. However,
in some applications, Bob may wish to obtain all elements in the intersection
whose weight sum exceeds a certain threshold. For example, in some competi-
tions, there may be more than one final winner. A simple modification to the
final step of our protocol can achieve this functionality. Specifically, Alice sends
to Bob all indices in (w1, ..., wn) that exceed the given threshold, then Bob finds
the corresponding elements.

Compute the Items with Large Weight Differences. Similarly, in certain
applications, Bob may wish to identify all elements in the intersection whose
weight difference exceeds a specified threshold. For example, consider a scenario
where two reviewers are evaluating a job by scoring various metrics, with the
items they score potentially differing. If a metric is scored by both reviewers
and there is a significant difference in their scores, it needs to be submitted to
a higher-level supervisor for further evaluation. The two parties do not wish to
disclose any additional information. Our protocol is well-suited for this scenario.
By modifying Bob’s score vj to −vj in the protocol and running it, Alice will
obtain the weight differences for all elements in the intersection. She can then
send the indices of those elements whose weight difference exceeds the threshold
to Bob, who can identify the relevant elements and submit them to the higher-
level supervisor. It is important to note that, at this point, Alice will know the
weight differences for all intersecting elements but will not know which specific
elements correspond to those differences.

Compute the Items with Large Weight Products. In data analysis, some-
times both parties may wish to obtain the elements in the intersection with
weight product exceeds a certain threshold. For example, Alice owns a store and
holds information on the expenditure of individuals who shop there. Here, denote
xi as the consumer ID, and ui represents the amount spent by the consumer. On
the other hand, Bob is an advertising company and holds information on users
who have viewed the advertisements. Bob assigning weights to users based on the
duration of ad views. Here, denote yj as the ID of the user who viewed the ad,
and vj represents the reciprocal of the viewing time. They want to identify the
target audience with the best advertising effectiveness, meaning all users in the
intersection whose uivj (for any matching ID xi = yj) exceeds a certain thresh-
old. To achieve this functionality, we can map the additive group operations of
ui and vj in our protocol to the multiplicative group operations.

5 Implementation and Evaluation

In the following, we evaluate our protocols and FOCI proposed by [2]. We first
discuss their implementational features and compare them theoretically. We then
give an empirical performance comparison between the protocols for different
settings.
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5.1 Theoretical Evaluation

Asymptotic performance comparison with protocol by [2]. In Tab. 1 and Tab. 2,
we depict the asymptotic computation and communication complexity for the
party with the majority of the workload of our OPRF-based protocol and DDH-
based protocol, as well as the protocol by [2], in terms of counts of different types
of operations and different types of elements transferred.

Table 1: Computation complexities for protocols. “Exp.” is the number of group
exponentiations. “AHE” is the number of additively homomorphic encryption op-
erations, including encryptions, decryptions and additions. “Sym.” is the number
of symmetric-key operations, including encryptions and decryptions. Cuckoo(x)
denotes the computation cost of Cuckoo hashing for x items. OPRF(x) refers to
the computation cost of invoking OPRFs x times. “Dlog” refers to the computa-
tion cost of discrete logarithm. n is the size of input set, N is the size of Cuckoo
hash table, s is the size of stash, and ℓ is the number of hash functions.

Exp. AHE Sym. Misc. Dlog

ΠOPRF

(Sec. 3.2) - 8(N +s) n(ℓ+ s)+(N + s)n(ℓ+ s)
Cuckoo(n)+

OPRF(N + s)
-

ΠDDH

(Sec. 3.3)
3(N+s)+
n(ℓ+ s)

4(N +s) n(ℓ+ s) + (N + s)n(ℓ+ s) Cuckoo(n) -

FOCI [2] 10n - n(n+ 1) - |{xi} ∩ {yj}|

Based on the comparison we observe that ΠOPRF requires double additively
homomorphic encryption operations than ΠDDH. This is due to the use of DH-
based shuffled OPRF in ΠDDH instead of OT-based OPRF in ΠOPRF. We expect
that the DDH protocol will have best communication efficiency, while the most
computationally efficient protocol relies on the relative costs of exponentiation
and additively homomorphic operations, which we will investigate through our
experiments.

Comparing to the protocol in [2], our protocols use additively homomorphic
operations to compute weight sums instead of computationally expensive dis-
crete logarithms in [2]. However, our protocols require approximately (ℓ + s)
times more symmetric-key operations than [2]. (The commonly used Cuckoo
hash parameters are ℓ = 3 and s = 0).

We note that there is another approach for computing functions on the
weights in the intersection by using circuit PSI [33], which is to use general two-
party computation (garbled circuits [37] or the GMW protocol [18]) to compute
any functions on the intersection and the associated weights. Pinkas et al. [33]
constructed circuit PSI with associated payloads by leveraging batch (Oblivi-
ous Programmable Pseudo-Random Function) OPPRF and circuit with O(n)
input wires that computes pairwise comparisons and the target function asso-
ciated with payloads. Compared with the protocols specialized for functionality
FIMWS, this approach significantly increase the communication cost or the round
complexity. Therefore, we omit the comparison with circuit PSI protocol [33].
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Table 2: Communication complexities for protocols. “Group Elts.” is the num-
ber of group elements sent in the protocol. “AHE” is the number of additively
homomorphic encryption ciphertexts. “Sym.” is the number of symmetric-key
ciphertexts. OPRF(x) refers to the communication cost of invoking OPRFs x
times. n is the size of input set, N is the size of Cuckoo hash table, s is the size
of stash, and ℓ is the number of hash functions. Moreover, both of our protocols
have an index information j∗ to be transferred from Alice to Bob, so that Bob
can output the item with maximal weight sum in the intersection.

Group Elts. AHE Sym. Misc.

ΠOPRF (Sec. 3.2) - 4(N + s) n(ℓ+ s) OPRF(N + s) + logn

ΠDDH (Sec. 3.3) 2(N + s) 2(N + s) n(ℓ+ s) logn

FOCI [2] 4n+ 1 - n logn

5.2 Implementation Details

We implement3 our two protocols ΠOPRF and ΠDDH in C++ using [29]. The
computational statistical security parameter are κ = 128 and λ = 40. The pa-
rameters of Cuckoo Hash is selected according to [12], with three hash functions
ℓ = 3 and stash size s = 0. Once ℓ, s and the set size n are determined, the
number of bins N is calculated via the formula in [12] (ref. Appendix B). For
symmetric encryption, we uses AES and prefix 40 bits of zeros in the plaintext
to determine if decryption is successful. For OPRF, we use KKRT protocol from
[21]. For DDH, we use elliptic curve group “prime256v” from OpenSSL, which is
a widely used NIST elliptic curve with 256-bit group elements. We use Paillier
encryption scheme from pailliercryptolib with OpenMP disabled. We use the
same parameters as [19]. The implementation is single-threaded, but most com-
putations can be parallelized. Therefore, we expect that server setup time can
achieve approximately linear speedup when using multi-threading.

5.3 Benchmark

The experiments were run on a desktop computer with AMD 3950X CPU and
32GiB RAM. We considered localhost environment and simulated WAN network
settings with 80ms RTT and different bandwidths using the Linux tc command.

In Tab. 3, we have a detailed benchmark set size n ∈ {100, 1000, 10000, 100000}.
We can observe that the DDH-based protocol outperforms the OPRF-based pro-
tocol in all comparisons. Bandwidth does not have a very big impact on the run-
time, since the communication cost is relatively low. We note that the Paillier
encryption library we used does not have the Damgard-Jurik optimization [11]
as in [19], so our results could be further improved.

We show the communication and computation costs of our two protocols for
various input sizes and those with respect to each component operation in Tab. 4.
3 Our implementation is available at https://github.com/lzjluzijie/imws.

https://github.com/lzjluzijie/imws
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Table 3: Communication cost (in MiB) and running time (in seconds).

Protocol n Comm
Time

localhost 1000Mbps 100Mbps 10Mbps

ΠDDH

100 0.09 0.11 0.29 0.30 0.36

1000 0.62 0.76 1.62 1.64 1.99

10000 6.28 9.64 10.52 10.79 15.04

100000 63.46 273.37 274.13 279.41 327.48

ΠOPRF

100 0.17 0.15 0.68 0.69 0.80

1000 1.13 1.03 1.63 1.66 2.18

10000 11.29 11.83 13.06 13.25 17.20

100000 113.90 297.02 301.83 311.31 388.29

Table 4: Detailed communication cost (in MiB) and running time (in seconds).

Protocol n
Exp. OPRF AHE Sym. Total

Time Comm Time Comm Time Comm Time Comm Time Comm

ΠDDH

100 0.02 0.01 - - 0.07 0.07 0.00 0.01 0.11 0.09

1000 0.12 0.08 - - 0.50 0.52 0.02 0.04 0.76 0.62

10000 1.21 0.81 - - 5.04 5.01 1.76 0.46 9.64 6.28

100000 12.89 8.20 - - 51.75 50.68 196.24 4.58 273.37 63.46

ΠOPRF

100 - - 0.01 0.02 0.14 0.14 0.00 0.01 0.15 0.17

1000 - - 0.01 0.09 1.00 0.99 0.02 0.04 1.03 1.13

10000 - - 0.01 0.80 10.05 10.13 1.76 0.46 11.83 11.29

100000 - - 0.06 7.96 101.15 101.36 195.66 4.58 297.02 113.90

It shows that most of the cost in our protocols is taken by additive homomorphic
encryption. Although the time costs of exponentiation is much more than that of
OPRF, the additional AHE operations make ΠOPRF slower than ΠDDH. The total
times of our two protocols in the case of input size n = 100000 are significantly
higher, due to the quadratic comparisons in the last step.

5.4 Empirical Comparison

We empirically evaluate and compare the performance of our two protocols with
that of the FOCI protocol [2]. To provide a fair comparison, we implement the
FOCI protocol in C++ using [29], the same language and library as our protocol,
and run on the same hardware. We also used the same elliptic curve “prime256v1”
and the “baby-step giant-step” algorithm to compute discrete logarithm.

As discussed in Sec. 5.1, the theoretical analysis indicates that the perfor-
mance of the FOCI protocol varies significantly depending on various factors.
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Specifically, for a given set size n, the FOCI protocol’s performance is primarily
affected by the size of the intersection |X ∩ Y | and the values of weights of the
elements in intersection, since it needs to compute discrete logarithms on these
elements. In contrast, the performance of our protocols is basically independent
of these two factors (the size of the intersection and the values of weights). We
analyze the effect of these two parameters separately. In the following compari-
son, we fix the set size n. Let max denote the maximum weight of the elements,
with the weights of the elements uniformly distributed as integers between 0 and
max− 1.

Effects of Varying Intersection Sizes. In the following, we compare the
performance of our protocols with the FOCI protocol under different intersec-
tion sizes. To represent a real-world setting, we simulate a WAN setting with an
80ms RTT and 1000Mbps network bandwidth. We fix the sizes of both input
sets n = 10000, the maximum weight of elements max = 10n, and evaluate the
running time and communication cost of the FOCI and our protocols for differ-
ent intersection sizes {0, n

4 ,
n
2 ,

3n
4 , n}. The results are illustrated in Tab. 5. Since

the performance of our protocols are basically independent of the intersection
size, their results are not classified on |X ∩ Y | in the table. From Tab. 5, it can

Table 5: The comparison of running time and communication cost across proto-
cols for different intersection sizes. In all tests, the set size is n = 10000 and the
bandwidth is 1000Mbps.

Protocol |X ∩ Y | Time [s] Comm. [MiB]

ΠDDH - 10.08 6.28

ΠOPRF - 12.63 11.29

FOCI [2]

0 5.20 1.72
n
4

11.90 1.72
n
2

18.94 1.72
3n
4

25.67 1.72

n 32.99 1.72

be observed that as the intersection size increases, the running time of the FOCI
protocol grows approximately linearly. Due to the high computational cost of
calculating discrete logarithms, in the tested environment, when the intersec-
tion size is n

4 , the running time of our protocol is similar to that of the FOCI
protocol. However, when the intersection size exceeds n

4 , our protocols shows a
significant speed advantage over the FOCI protocol. It is worth noting that the
communication cost of the FOCI protocol is lower than that of our protocol,
making it more advantageous when network bandwidth is limited.
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Effects of Varying Maximum Weight. We compare the performance of
our protocols with the FOCI protocol under different maximum weights max of
the set elements. We fix the intersection size to be n

2 and evaluate the running
time of the FOCI and our protocols as max/n varies from 1 to 100, for n ∈
{100, 1000, 10000, 100000}, respectively. The results are depicted in Fig. 5.
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Fig. 5: FOCI protocol [2] vs Ours for different settings. To clarify, the x and y axis
has been scaled logarithmically rather than shown proportionally. All tests were
conducted in a LAN network, with the intersection size to be n

2 . The weights of
the elements were uniformly distributed as integers between 0 and max− 1.

From Fig. 5, we can observe that the run-time of FOCI protocol increases
significantly as max/n increases, while the run-time of our protocols are unaf-
fected. It is evident that our protocols has a more noticeable advantage when the
set size n is large, whereas the FOCI protocol outperforms ours when n is small.
Additionally, it can be observed that as n increases, the gap between the run-
ning times of our OPRF-based protocol and the DDH-based protocol gradually
decreases. The reason is that, in terms of computational cost, the DDH-based
protocol requires exponentiation, while the OPRF-based protocol uses OT ex-
tension to compute the OPRF, making it more advantageous when n is large.

6 Conclusion

We present two novel protocols that achieve the functionality called “privately
compute the item with maximal weight sum in set intersection”, which are based
on OPRF and DDH assumption respectively. Compared with the prior protocol
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proposed by Beauregard et al. [2] which has the constraint that all the weights in
the input sets have to be polynomial in magnitude, both of our protocols remove
such restriction on weights.

We compare the performance of our protocols with the FOCI protocol both
theoretically and empirically. We find out that the performance of FOCI protocol
is primarily affected by the size of the intersection and the values of elements’
weights in intersection when fixing set size, while the performance of ours is
basically independent of these two factors. Therefore, FOCI protocol is more
suitable for scenarios with small element weights and intersections, such as in
“meeting scheduling” applications. In contrast, our protocols are better suited for
scenarios with larger element weights or larger intersections, such as “weighted
voting” applications.
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A Preliminaries

A.1 Additively Homomorphic Encryption

Homomorphic encryption is a form of encryption that allows computations to
be performed on encrypted data without first having to decrypt it. An addi-
tively homomorphic encryption scheme consists of the following probabilistic
polynomial-time algorithms:

– AGen: Given a security parameter κ, AGen(κ) outputs a public-private key
pair (pk, sk), and specifies a message spaceM.

– AEnc: Given the public key pk and a plaintext message m ∈ M, one can
compute a ciphertext AEnc(pk,m), an encryption of m under pk.

– ADec: Given the secret key sk and a ciphertext AEnc(pk,m), ADec is to
recover a plaintext m.

– ASum: Given the public key pk and a set of ciphertexts {AEnc (pk,mi)} which
are the encryption of messages {mi}, one can homomorphically compute a
ciphertext which is the encryption of the sum of the underlying messages:

AEnc

(
pk,
∑
i

mi

)
= ASum ({AEnc (pk,mi)}i)

– ARefresh: One can randomize ciphertexts using a randomized procedure de-
noted as ARefresh.

The commonly used additively homomorphic encryption schemes include
Paillier encryption [28], Exponential ElGamal encryption [13] and Ring-LWE-
based encryption schemes [6,5,14]. We depend on the standard concept of CPA
security in encryption, which essentially implies that, without the private key
sk, encrypted messages are computationally indistinguishable from one another.
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A.2 Cuckoo Hash

A Cuckoo hash table [27] is a data structure supporting insertion and member-
ship tests. It addresses the issue of hash collisions of values of hash functions in
a table, with worst-case constant lookup time. It is parameterized by a number
of bins N , a stash size s, and by k randomly chosen hash functions. An empty
Cuckoo Hash Table has N empty bins. It works as follows:

– Insertion: When inserting an item x into the table, if any of the bins {hi(x)}ki=1

is empty, then x is placed in one of those bins. Otherwise, a bin in {hi(x)}ki=1

is randomly chosen, and the item in that bin is replaced with x. The evicted
item is then recursively inserted. If this process does not terminate after a
fixed set of iterations, then the final evicted element is placed in a special bin
called the stash. If the stash already contains s items, the insertion algorithm
fails.

– Lookup: To check if an item x is in the Cuckoo hash table, one checks each
of the bins in {hi(x)}ki=1 for the item.

It was shown in [20] that Cuckoo hashing of n elements into N = (1 + ε)n
bins with ε ∈ (0, 1) for any k ≥ 2(1 + ε)ln( 1ε ) and s ≥ 0 fails with probability
O(n1−c(s+1)), for a constant c > 0 and n 7→ ∞.

A.3 Decisional Diffie-Hellman Assumption

Definition 2. We say that the DDH problem is hard relative to G if for all
probabilistic polynomial-time algorithms A there is a negligible function negl such
that

|Pr [A (G, q, g, gx, gy, gz) = 1]− Pr [A (G, q, g, gx, gy, gxy) = 1]| ≤ neg(κ),

where in each case the probabilities are taken over the experiment in which G (1κ)
outputs (G, q, g), and then uniform x, y, z ∈ Zq are chosen.

In other words, the distributions (g, gx, gy, gxy) and (g, gx, gy, gz) are com-
putationally indistinguishable.

B Security Analysis for DDH-Based Protocol

We prove the security of our DDH-based protocol ΠDDH, presented in Fig. 4.

Theorem 2. Assume that the additively homomorphic encryption scheme is
IND-CPA secure, the DDH assumption holds in G, the hash function H is mod-
eled as a random oracle, and the one-time, symmetric-key encryption scheme
has robust decryption property. Then there exist simulators SIMA, SIMB such
that for security parameter λ and inputs X = {(xi, ui)}i∈[n], Y = {(yi, vi)}i∈[n],

ViewΠDDH
A ({(xi, ui)})i∈[n], {(yi, vi)})i∈[n])

c
≈ SIMA(1

λ, {(xi, ui)})i∈[n], (w1, ..., wn))
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ViewΠDDH
B ({(xi, ui)})i∈[n], {(yi, vi)})i∈[n])

c
≈ SIMB(1

λ, {(yi, vi)})i∈[n], yj∗)

where (w1, ..., wn) is the weight sums for the intersection and yj∗ is the item in
the intersection which has the maximum weight sum.

Proof. Security against corrupt Alice. We describe the simulator algorithm
SIMA in Algorithm 3.

Algorithm 3 The simulator for Alice in the DDH-based Protocol

Input: (1λ, {(xi, ui)})i∈[n], (w1, ..., wn)) Output: SimView(Alice)
SIMA(1

λ, {(xi, ui)})i∈[n], (w1, ..., wn)):

1. Honestly simulate the Setup phase between Alice and Bob.
2. Honestly simulate steps 1-2 between Alice and Bob, receiving the set {cti =

(H(xi)
a,AEnc(pk, ui))}i∈[N+s] at the end of step 2.

3. In step 3, choose a set C∗ consisting of N+s random elements ci from group
G, a set D∗ consisting of N+s random elements di from the input domain of
additively homomorphic encryption. Compute the exponentiations to each
ci with Alice’s Diffie-Hellman key a, and the fresh encryptions to each di
under Alice’s public key pk, then send ct

′

i = (cai ,AEnc(pk, di)) to Alice.
4. Simulate step 4 for Alice honestly.
5. In step 5, choose the set {−→aj}j∈[n] = {aj,i}j∈[n],i∈[ℓ+s] such that each −→aj con-

tains exactly ℓ+s ciphertexts which are the encryptions of 0 under randomly
chosen keys Kj,i from group G, that is aj,i = Enc(Kj,i, 0). For each 1 ≤ j ≤ n,
if wj ̸=⊥, then for a randomly chosen index tj ∈ [ℓ+ s], chose some clj ran-
domly from the set C∗ (each element in C∗ is used at most once) with the
corresponding indexed element dlj in set D∗, and replace aj,tj = Enc(Kj,tj , 0)
with Enc(clj , wj − dlj ). Send the set {−→aj}j∈[n] = {aj,i}j∈[n],i∈[ℓ+s] to Alice.

6. Simulate step 6 for Alice honestly.
7. Output the view of Alice in this interaction.

We argue that

ViewΠDDH
A ({(xi, ui)})i∈[n], {(yi, vi)})i∈[n])

c
≈ SIMA(1

λ, {(xi, ui)})i∈[n], (w1, ..., wn))

by hybrid.

Hyb0 : The transcript corresponding to the view of Alice in a real execution of
the protocol.

Hyb1 : The same as Hyb0, except in step 5, for all wj =⊥, Bob replaces the ci-
phertexts {aj,i}i∈[ℓ+s] with fresh encryptions of 0 under the key {H(yj)

bi |i ∈
Ij}, that is {aj,i}i = {Enc(H(yj)

bi , 0)|i ∈ Ij}.
Hyb1 and Hyb0 are indistinguishable by the one time security of symmetric-
key encryption.
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Hyb2 : The same as Hyb1, except in step 5, for all wj =⊥, Bob replaces the
ciphertexts {aj,i}i∈[ℓ+s] with fresh encryptions of 0 under randomly chosen
key Kj,i from group G,that is aj,i = Enc(Kj,i, 0).
Hyb2 and Hyb1 are indistinguishable by the Decisional Diffie-Hellman (DDH)
assumption of group G, and random oracle assumption on hash function H.

Hyb3 : The same as Hyb2, except in step 3, the first component of each ct
′

i is
replaced with an exponentiation of a uniformly random value ci from group G
under Alice’s DH key a, that is ct

′

i = (cai ,AEnc(pk, uπ−1(i)+ rπ−1(i))), and in
step 5, for each wj ̸=⊥, for the corresponding element index tj , Bob replace
the ciphertexts {aj,i}i∈[ℓ+s]\{tj} with fresh encryptions of vj − r(i) under
randomly chosen key Kj,i from group G, where r(i) = rh

π
−1
j

(i)
(yj) if i ∈ [ℓ],

r(i) = rN−ℓ+π−1
j (i) if i ∈ [ℓ+ 1, ℓ+ s], that is aj,i = Enc(Kj,i, vj − r(i)), and

replace the ciphertext aj,tj with fresh encryptions under the corresponding
key clj , that is aj,tj = Enc(clj , vj − r(tj)). (The correspondence of tj and clj
means that clj can successfully decrypts aj,tj , which holds that π−1(lj) =

hπ−1
j (tj)

(yj) if tj ∈ [ℓ], π−1(lj) = N − ℓ+ π−1
j (tj) if tj ∈ [ℓ+ 1, ℓ+ s].)

Hyb3 and Hyb2 are indistinguishable by the Decisional Diffie-Hellman (DDH)
assumption of group G, random oracle assumption on hash function H, and
the security of symmetric-key encryption on hiding keys.

Hyb4 : The same as Hyb3, except in step 3, the second component of each
ct

′

i is replaced with an encryption of a uniformly random value di, that is
ct

′

i = (cai ,AEnc(pk, di)), and in step 5, for each wj ̸=⊥, for the corresponding
element index tj , Bob replace the ciphertexts {aj,i}i∈[ℓ+s]\{tj} with fresh
encryptions of 0 under key Kj,i, that is aj,i = Enc(Kj,i, 0), and replace the
ciphertext aj,tj with fresh encryptions of wj − dlj under the corresponding
key clj , that is aj,tj = Enc(clj , wj − dlj ).
Hyb4 and Hyb3 are indistinguishable by the one-time-pad property of adding
the random value ri, the hiding property of additively homomorphic encryp-
tion scheme, and the one time security of symmetric key encryption.

Hyb5 : The view of Alice output by SIMA.
Hyb5 and Hyb4 are identically distributed.

Security against corrupt Bob.
We observe that Bob’s view in the protocol consists of the following:
1) A public key pk of additively homomorphic encryption (Setup).
2) Whether Alice aborts due to Cuckoo hashing failure (step 1).
3) The sets {cti}i∈[N+s] of ciphertexts encrypted under Alice’s Diffie-Hellman

key a and homomorphic encryption key pk (step 2).
4) An index j∗ corresponding to Bob’s output (step 6).
we describe the simulator algorithm SIMB in Algorithm 4.
We argue that

ViewΠDDH
B ({(xi, ui)})i∈[n], {(yi, vi)})i∈[n])

c
≈ SIMB(1

λ, {(yi, vi)})i∈[n], yj∗)

using a multi-step hybrid argument, where each neighboring pair of hybrid dis-
tributions is computationally indistinguishable.
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Algorithm 4 The simulator for Bob in the DDH-based Protocol

Input: (1λ, {(yi, vi)})i∈[n], yj∗) Output: SimView(Bob)
SIMB(1

λ, {(yi, vi)})i∈[n], yj∗):

1. Randomly choose a pair of homomorphic encryption keys (pk, sk) and sends
pk to Bob in setup phase.

2. Never abort in step 1.
3. In step 2, send Bob {cti}i∈[N+s] to be pairs of random elements gi from

group G and fresh encryptions of 0 under pk, that is cti = (gi,AEnc(pk, 0)).
4. Simulate step 3 and step 5 for Bob honestly.
5. In step 6, send j∗ corresponding to Bob’s output yj∗ to Bob.
6. Output the view of Bob in this interaction.

Hyb0: The transcript corresponding to the view of Bob in a real execution of
the protocol.

Hyb1: The same as Hyb0, except in step 1, Alice never abort when executing
Cuckoo hashing.
Hyb1 and Hyb0 are indistinguishable by the property that Cuckoo hashing
fails with negligible probability.

Hyb2: The same as Hyb2, except in step 2, Alice replaces the messages {cti}i∈[N+s]

with pairs of random elements gi from group G and fresh encryptions of 0
under public key pk, that is cti = (gi,AEnc(pk, 0)).
Hyb2 and Hyb1 are indistinguishable by the Diffie-Hellman assumption of
group G, random oracle assumption on hash function H, and the hiding
property of additively homomorphic encryption scheme.

Hyb3 : The view of Bob output by SIMB .
Hyb3 and Hyb2 are identically distributed.
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