
SoK: Security of the Ascon Modes
Charlotte Lefevre and Bart Mennink

Digital Security Group, Radboud University, Nijmegen, The Netherlands
charlotte.lefevre@ru.nl, b.mennink@cs.ru.nl

Abstract. The Ascon authenticated encryption scheme and hash function of Dobraunig
et al. (Journal of Cryptology 2021) were recently selected as winner of the NIST
lightweight cryptography competition. The mode underlying Ascon authenticated
encryption (Ascon-AE) resembles ideas of SpongeWrap, but not quite, and various
works have investigated the generic security of Ascon-AE, all covering different attack
scenarios and with different bounds. This work systemizes knowledge on the mode
security of Ascon-AE, and fills gaps where needed. We consider six mainstream
security models, all in the multi-user setting: (i) nonce-respecting security, reflecting
on the existing bounds of Chakraborty et al. (ASIACRYPT 2023, ACISP 2024) and
Lefevre and Mennink (SAC 2024), (ii) nonce-misuse resistance, observing a non-fixable
flaw in the proof of Chakraborty et al. (ACISP 2024), (iii) nonce-misuse resilience,
delivering missing security analysis, (iv) leakage resilience, delivering a new security
analysis that supersedes the informal proof sketch (though in a different model) of
Guo et al. (ToSC 2020), (v) state-recovery security, expanding on the analysis of
Lefevre and Mennink, and (vi) release of unverified plaintext, also delivering missing
security analysis. We also match all bounds with tight attacks. As a bonus, we
systemize the knowledge on Ascon-Hash and Ascon-PRF (but there are no technical
novelties here).
Keywords: Ascon · lightweight cryptography · mode security · SoK

1 Introduction
For the last few decades, lightweight cryptography has been a dominant research do-
main in the field of symmetric cryptography. The field of lightweight cryptography
concentrates on the design of cryptographic schemes that would be efficient and secure
even if certain constraints on, e.g., area, power consumption, or latency are in place.
Perhaps one of the earliest proposal that fits this description is the NOEKEON block
cipher [DPVR00], dating back to 2000, but the field only started to gain traction a
few years later, with the introduction of explicitly lightweight branded block ciphers
HIGHT [HSH+06], PRESENT [BKL+07], and KATAN [CDK09] in the late 2000s. A large
body of lightweight (tweakable) block ciphers has been published since, including (but not
limited to) PRINCE [BCG+12], SIMON [BSS+13], SKINNY [BJK+16], GIFT [BPP+17],
QARMA [Ava17], and QARMAv2 [ABD+23].

The rise of lightweight cryptography happened together with the introduction of modern
permutation-based cryptography and cryptographic sponge functions in 2007 [BDPV07,
BDPV08,NIS07,Nat15]. In a nutshell, a sponge operates on top of a b-bit permutation
p and maintains a b-bit state that is split into a c-bit inner part and an r-bit outer
part. It then absorbs a plaintext P by injectively padding it into r-bit blocks and bitwise
adding those blocks to the outer part of the state, interleaved with an evaluation of p.
After the last plaintext block is absorbed, the sponge squeezes r bits at a time from the
outer part, again interleaved with evaluations of p. It was quickly acknowledged that
sponge functions are extremely well-suited for the design of lightweight cryptography.

mailto:charlotte.lefevre@ru.nl
mailto:b.mennink@cs.ru.nl

Indeed, the early lightweight hash functions QUARK [AHMN10], PHOTON [GPP11],
and SPONGENT [BKL+11] are, in fact, sponge functions. Likewise, the keyed sibling
of the sponge, the duplex [BDPV11a, DMV17], turned out to be very well-suited for
the design of lightweight authenticated encryption, and fundamental research as well
as the development of designs in this direction has been significantly boosted by two
competitions: the CAESAR competition for authenticated encryption design [CAE14]
and thereafter by the lightweight cryptography competition organized by the US National
Institute of Standards and Technology (NIST) [NIS19]. In the CAESAR competition,
there were 10 out of 57 submissions based on or inspired by the duplex, and eventually,
the Ascon authenticated encryption scheme [DEMS21,DEMS14] was selected as winner in
the category lightweight. In the NIST lightweight cryptography competition, 22 out of 57
submissions were duplex-inspired, and Ascon [DEMS21,DEMS19] was even selected as
overall winner. This means that Ascon will soon be standardized as the go-to authenticated
encryption scheme for authenticated encryption, with a draft of the standard already open
to public comments [SMKK24].

In a bit more detail, Ascon typically refers to the authenticated encryption scheme,
dubbed Ascon-AE in this work to avoid ambiguity. (Looking ahead, the upcoming
NIST standard also includes a hash function standard Ascon-Hash, a XOF Ascon-XOF,
and a customized XOF Ascon-CXOF, and another relevant scheme is a PRF called
Ascon-PRF [DEMS24], but we will come back to these later.) Ascon-AE is an authenticated
encryption scheme inspired by the duplex construction [BDPV11a,MRV15,DMV17], but
with some subtle differences. In a nutshell, Ascon-AE operates on two (b = 320)-bit
permutations, an outer permutation po and inner permutation pi, which differ in the
number of rounds and round constants. For a new authenticated encryption operation, it
initializes a 320-bit state with an initialization vector (encoding the specific instance), a
128-bit key, and a 128-bit nonce. Then, it permutes the state using the outer permutation
po, and compresses the key again into the state. Then, the scheme processes the associated
data by absorbing it block-by-block into the state, interleaved with evaluations of pi,
and encrypts the plaintext block-by-block by using part of the state as keystream and
subsequently absorbing the plaintext into the state, again interleaved with evaluations of pi.
Finally, the state is blinded once again with the key, a last evaluation of po is made and a
t-bit chunk of state is blinded a final time with the key before it is output as tag. We refer
to Section 2 for a detailed description of the Ascon-AE mode. Sometimes, when looking
at the construction generically, we discard the difference between the two permutations
and assume a single permutation p.

As mentioned, the upcoming NIST standard [SMKK24] also includes a hash function
standard Ascon-Hash, a XOF Ascon-XOF, and a customized XOF Ascon-CXOF. They
are fairly direct instantiations of the aforementioned sponge, operating on the 320-bit
permutation p. The difference between the hash function and the XOFs is that Ascon-Hash
only outputs fixed-length digests but Ascon-XOF/Ascon-CXOF accommodate for variable-
length digests. The difference between the two XOFs is that the customized XOF allows
for a customization string prepended to the plaintext. Refer to Section 8 for a specification
of Ascon-Hash, Ascon-XOF, and Ascon-CXOF. Another scheme worth mentioning is a
PRF called Ascon-PRF [DEMS24], of which the main goal is to authenticate the plaintext.
Ascon-PRF is basically a keyed sponge construction. It can be seen to operate the
Ascon-XOF function but initialized with an initialization vector and a 128-bit key, and
right before squeezing the tag, domain separation is applied by flipping a bit in the inner
part. A description of Ascon-PRF is given in Section 9.

1.1 Generic Security of Sponges and Duplexes
The sponge/duplex paradigms come with a decent security foundation. Indeed, soon after
the introduction of sponge functions [BDPV07], Bertoni et al. [BDPV08] proved that if

2

the permutation p is random, the construction is indifferentiable [MRH04,CDMP05] from
a random oracle up to a complexity 2c/2. This result, consequently [AMP10, Appendix A],
means that the sponge construction truncated to an output of n bits achieves collision
security up to complexity min{2c/2, 2n/2} and preimage and second preimage security up
to complexity min{2c/2, 2n}. In a separate work, Lefevre and Mennink [LM22] recently
improved the bound of preimage resistance to min{max{2c/2, 2n−r}, 2n}, therewith assuring
that all bounds on keyless hashing of the sponge are tight in the sense that they are matched
by attacks already specified in the original specification of sponge functions [BDPV07,
Section 5]. These tight results directly apply to the generic security of Ascon-Hash,
Ascon-XOF, and Ascon-CXOF (as we also outline in Section 8).

The indifferentiability result implies that one can also use the sponge in keyed appli-
cations, but dedicated analysis was performed to obtain more finegrained bounds. The
idea of keying the sponge was outlined in detail by Bertoni et al. [BDPV07,BDPV11b], a
construction currently known as the outer-keyed sponge. Chang et al. [CDH+12] suggested
to key the sponge in the inner part of the initial state, a construction currently known
as the inner-keyed sponge. The two constructions were analyzed in depth by Andreeva
et al. [ADMV15]. Naito and Yasuda improved the security bounds of these construc-
tions [NY16]. Mennink et al. [MRV15] formalized and analyzed the full-keyed sponge
(inspired by DonkeySponge [BDPV12]) that absorbs the plaintext over the full state. An
independent analysis, but for fixed-length outputs, was given by Gaži et al. [GPT15].
These analyses together gave a rather complete view of security of the sponge where
the state is initialized with the key, with one non-tight step in the outer-keyed sponge,
namely the bounding of an event that captures key prediction, and this gap was closed
by Mennink [Men18] in a dedicated analysis. An alternative version of the keyed sponge,
namely the version where one keys the state at the end, also appeared in the original
specification of Bertoni et al. [BDPV07] but was generalized and analyzed by Dobraunig
and Mennink [DM19b,DM20], who in addition proved leakage resilience of the construction.
Berendsen and Mennink [BM24] fine-tuned and improved the leakage resilience analysis.

The duplex construction [BDPV11a] got a separate detailed treatment. The security
of the original duplex was related to the indifferentiability of the sponge [BDPV11a], and
it was used for the description of SpongeWrap authenticated encryption. Mennink et
al. [MRV15] considered the full-keyed duplex, whose security was related to that of the
full-keyed sponge. Daemen et al. [DMV17] generalized the duplex to a more powerful
construction, and Dobraunig and Mennink [DM19a] subsequently proved leakage resilience
of the duplex. An excellent systemization of knowledge on the security of the duplex and
its implications is given by Mennink [Men23], who also proved security of Ascon-PRF
(we will elaborate on this in Section 9), and gave a detailed description of authenticated
encryption using a modern duplex variant, called MonkeySpongeWrap.

1.2 Generic Security of Ascon-AE Constructions
Given this state of affairs, it is tempting to state that the security of the Ascon-AE mode
immediately follows. Indeed, the Ascon-AE mode resembles SpongeWrap [BDPV11a]
or MonkeySpongeWrap [Men23], and those security results give some certainty that the
Ascon-AE mode is sound. Likewise, along with their security proof of NORX, Jovanovic
et al. [JLM14,JLM+19] mentioned that their proof can be generalized to the Ascon-AE
mode, though without proof. The main difference between those analyses and the mode of
Ascon-AE is the presence of the additional key blindings.

Thus, a dedicated analysis of the Ascon-AE mode, and particular the impact of these
key blindings, turned out to be necessary and relevant, and this has lead to multiple works
considering the security of the Ascon-AE mode. Chakraborty et al. [CDN23] performed a
single-user security analysis in the nonce-respecting setting [BN00], and independently,
Lefevre and Mennink [LM24] delivered a multi-user security analysis in both the nonce-

3

respecting and nonce-misuse setting [RS06]. Soon after their first work, Chakraborty
et al. [CDN24] also extended their proof to multi-user security and to the nonce-misuse
setting. On top of that, there is a “proof sketch” of Guo et al. [GPPS19b] (full version
of [GPPS20]) in the nonce-misuse resilience setting that guarantees security for fresh
nonces only [ADL17] and in the leakage resilience setting where the inner permutations
may leak side-channel information [DP08,PSV15]. Finally, Lefevre and Mennink [LM24]
also included a proof under state recovery, demonstrating that Ascon-AE still achieves
authenticity even if the adversary learns all internal states. It should be noted that all
these results are in the random permutation model, where the permutation p is assumed
to be a random permutation, or (in some of these results) the outer permutation and inner
permutation are both random and assumed to be independent.

1.3 A Decent Classification
From this overall state-of-the-art discussion, it can be concluded that the security analyses
of the Ascon-AE mode has wildgrown, with different results, different security models,
different attack settings, different proof techniques, and in fact also different levels of
accuracy. On top of that, most of these bounds are not matched with tightness attacks,
which means that we do not know if all the bounds are tight and can be improved. This is
a particularly relevant question in the area of lightweight cryptography, where schemes are
minimized and a too loose bound give a false sense of insecurity (as also already mentioned
in myriad earlier works [DM20,LNS18,JN20,DDNT23,LMP17,BM24]).

In this work, we give a complete and comprehensive overview of the levels of security
of the Ascon-AE mode in various security settings. We cover three flavors of conventional
security (in Section 4): nonce-respecting security [BN00], nonce-misuse resistance [RS06],
and nonce-misuse resilience [ADL17]. We subsequently cover three flavors of leaky security
(in Section 5): bounded leakage resilience in a leveled implementation setup [DP08,PSV15],
state-recovery security [LM24], and security under release of unverified plaintext [ABL+14].
For each of these security models, (i) we categorize the existing security lower and upper
bounds, (ii) we point out multiple flaws and issues in existing analyses, and (iii) we derive
new security bounds and generic attacks to complete the overview. A high-level overview
is given in Figure 1.

Most notably, apart from simply classifying existing results, the systemization makes
the following contributions:

• We develop new security proofs for nonce-misuse resilience, leakage resilience, and
release of unverified plaintext, as these were lacking;

• We also revisit earlier security proofs that were done under the assumption that the
outer and inner permutation of Ascon-AE were independent, and adapt them to the
single-permutation model;

• We point out a flaw in the nonce-misuse authenticity analysis of Chakraborty et
al. [CDN24];

• We give matching attacks for all security proofs.

All new security proofs are gathered together in Section 6, and all elaborate generic attacks
in Section 7.

As a bonus, we also comprehensibly discuss how existing literature covers the generic
security of Ascon-Hash and Ascon-PRF in Section 8 and Section 9, respectively. These
sections are not so surprising: the generic security Ascon-Hash follows from the results
given in the first paragraph of Section 1.1, and Mennink [Men23] gave a security proof of
Ascon-PRF. Finally, we conclude the work in Section 10, where we highlight models or
settings that we do not cover and give a further final discussion.

4

nonce-respecting security (Def. 2)
confidentiality (Thm. 1, Prop. 1)

(⋆)

authenticity (Thm. 1, Prop. 1)

(⋆)

⇐=

nonce-misuse resilience (Def. 4)
confidentiality (Thm. 3, Prop. 4)

(⋆) + MEN

2c

authenticity (Thm. 3, Prop. 4)

(⋆) + MEN

2c

⇐=

nonce-misuse resistance (Def. 3)
confidentiality (Prop. 2)

1

authenticity (Thm. 2, Prop. 3)

(⋆) + MEN

2c

⇐
⇒

leakage resilience, no leakage (Def. 6)
confidentiality (by equivalence)

(⋆) + MEN

2c

authenticity (by equivalence)

(⋆) + MEN

2c

⇐
=

core term (cf., Section 4.1.2)

(⋆) QD

2t
+ µN

2k
+ MEN

2b
+ N

2c

parameters
µ number of users
QE/ME encryption queries/complexity
QD/MD decryption queries/complexity
N permutation queries

leakage resilience, limited (Def. 6)
confidentiality (by implication)

(⋆) + MEN

2c
+ min

{
N2

2c
,

QEN

2k

}
authenticity (by implication)

(⋆) + MEN

2c
+ min

{
N2

2c
,

QEN

2k

}

RUP security (Def. 8)
confidentiality (Prop. 8)

1

authenticity (Thm. 6, Prop. 9)

(⋆) + MEN

2c

⇐
= c

=⇒ auth
⇐

=

leakage resilience, unlimited (Def. 6)
confidentiality (Thm. 4, Prop. 5)

(⋆) + MEN

2c
+ min

{
N2

2c
,

QEN

2k

}
authenticity (Thm. 4, Prop. 5)

(⋆) + MEN

2c
+ min

{
N2

2c
,

QEN

2k

}
⇐=

state-recovery security (Def. 7)
confidentiality (Prop. 6)

1

authenticity (Thm. 5, Prop. 7)

(⋆) + N2

2c

Figure 1: High-level overview of the considered security models and the corresponding
results. Intuitively, horizontal orientation represents the amount of nonce-misuse power
whereas vertical orientation represents the amount of additional leakage. All bounds are
simplified, they are expressed in big O notation, follow the assumptions made in Section 3.3,
and are tight. The conditional implication c=⇒ depends on the set of allowed leakage
functions but applies in our case (cf., Section 5.1). The implication auth⇐= only holds for
authenticity (cf., Lemma 2).

1.4 Outline
We first settle some basic notation in Section 1.5. The Ascon authenticated encryption
(Ascon-AE) mode is described in detail in Section 2. We describe the general attack
model, including a description of the adversarial resources and some notational conventions
in Section 3. Then, in Section 4 we discuss the conventional security models of nonce-
respecting security (Section 4.1), nonce-misuse resistance (Section 4.2), and nonce-misuse
resilience (Section 4.3). Then, we extend the analysis to security in leaky settings in
Section 5, covering leakage resilience (Section 5.1), state-recovery security (5.2), and release
of unverified plaintext (5.3). The security proofs are all gathered in Section 6 and the
generic attacks in Section 7. We then extend our discussion to Ascon-Hash/Ascon-(C)XOF
in Section 8 and to Ascon-PRF in Section 9. We conclude the work in Section 10.

1.5 Notation
Let a, b ∈ N such that a ≤ b. We denote Ja, bK = {a, . . . , b}. We furthermore denote by
{0, 1}b the set of b-bit strings, by {0, 1}∗ the set of arbitrarily long strings (including
the empty string ∅), by

(
{0, 1}b

)∗ the set of bit strings of length a multiple of b (again
including the empty string ∅), and by {0, 1}≤b =

⋃b
i=0{0, 1}i. We denote the set of all

5

b-bit permutations p : {0, 1}b → {0, 1}b by Perm (b).
We define by pads the padding function that gets as input a bit string X ∈ {0, 1}∗,

and that splits it into s-bit blocks, where the last block is of size between 0 and s− 1 bits.
The result is thus a tuple of blocks. We define by pad10∗

s (X) the padding function that
gets as input a bit string X ∈ {0, 1}∗, that pads it with a 1 and a sufficient number of 0s
so that the length becomes a multiple of s bits, and then it splits the resulting string into
s-bit blocks. Also here, the result is a tuple of blocks.

For a string or a tuple X, if a, b are such that 1 ≤ a < b ≤ |X|, then X[a : b] denotes
the substring or subtuple starting at position a and ending at position b. We write
X[a] = X[a : a] for brevity. We denote by ⌈X⌉a the leftmost a elements and by ⌊X⌋a the
rightmost a elements. For any two strings or tuples X, Y , we denote their concatenation
by X∥Y and if |X| = |Y | their bitwise exclusive or (XOR) by X ⊕ Y . In addition, if
c ≤ min{|X|, |Y |}, X

c= Y means that ⌊X⌋c = ⌊Y ⌋c.
If S is a set, we denote by ∄=x, y ∈ S the existence of two distinct elements in S.

Moreover, if S is finite, we denote by X
$←− S the uniform random drawing of X from S.

Assuming that a < b, the falling factorial of b of depth a is denoted by (b)a.

2 Ascon-AE Mode
The Ascon-AE mode [DEMS21,DEMS14,DEMS19] is a variant of SpongeWrap [BDPV11a],
with additional key blinding during the initialization and the finalization phases. Let
b, c, r, k, n, t ∈ N such that b = r + c, k + n ≤ b, t ≤ k, k ≤ c, and let p be a cryptographic
permutation over b bits. The Ascon-AE mode is an ensemble of two algorithms, encryption
Encp and decryption Decp. The encryption algorithm Encp takes as input a key K ∈
{0, 1}k, a nonce N ∈ {0, 1}n, associated data A ∈ {0, 1}∗, and a plaintext P ∈ {0, 1}∗. It
returns a ciphertext C ∈ {0, 1}∗ with |C| = |P |, and a tag T ∈ {0, 1}t. For simplicity of
notation, we will put the key as a subscript to Encp. Therefore, the encryption algorithm
based on the key K and permutation p is denoted as:

Encp
K : {0, 1}n × {0, 1}∗ × {0, 1}∗ −→ {0, 1}∗ × {0, 1}t ,

(N, A, P) −→ (C ∈ {0, 1}|P |, T) .

The decryption algorithm Decp takes as input a key K ∈ {0, 1}k (again put as a subscript),
a nonce N ∈ {0, 1}n, associated data A ∈ {0, 1}∗, a ciphertext C ∈ {0, 1}∗, and a tag
T ∈ {0, 1}t. It returns either the corresponding plaintext P ∈ {0, 1}∗ with |P | = |C| if
authentication with the tag succeeds, or a failure symbol ⊥. Therefore, the decryption
algorithm based on the key K and permutation p is denoted as:

Decp
K : {0, 1}n × {0, 1}∗ × {0, 1}∗ × {0, 1}t −→ {0, 1}∗ ∪ {⊥} ,

(N, A, C, T) −→ P ∈ {0, 1}|C| or ⊥ .

The encryption and decryption algorithms of Ascon-AE are described in Algorithm 1 and
illustrated in Figure 2. Here, IV ∈ {0, 1}b−k−n is a fixed initialization value encoding the
specific instance of Ascon-AE. The Ascon specification [DEMS19] specifies Ascon-AE to
always operate with nonce size n and tag size t equal to 128 bits. The basic variant, Ascon-
128, has a capacity c = 256 and rate r = 64, while the accelerated variant, Ascon-128a,
has a capacity c = 192 and rate r = 128, and both use a key size k = 128. The variant
Ascon-80pq differs from the basic variant Ascon-128 in the fact that the key is increased
to size k = 160. The NIST draft standard [SMKK24] specifies a single instance, namely
Ascon-AEAD128, which is based on Ascon-128a and shares the same parameters sizes (i.e.,
n, t, k, r, and c). On top of that, Ascon-AEAD128 supports two implementation options:

6

Algorithm 1 Ascon-AE mode
Encryption algorithm Enc
Input:
K ∈ {0, 1}k, N ∈ {0, 1}n,
A ∈ {0, 1}∗, P ∈ {0, 1}∗

Output:
C ∈ {0, 1}|P |, T ∈ {0, 1}t

=== Initialization ===
1: S ← p (IV ∥K∥N)⊕

(
0b−k∥K

)
=== Absorb A ===

2: if |A| ≥ 1
3: (A1, . . . , Au)← pad10∗

r (A)
4: for i = 1, . . . , u do
5: S ← p (S ⊕ (Ai∥0c))

=== Domain Separation ===
6: S ← S ⊕

(
0b−1∥1

)
=== Absorb P , Extract C ===

7: (P1, . . . , Pv)← pad10∗

r (P)
8: for i = 1, . . . , v − 1 do
9: S ← S ⊕ (Pi∥0c)

10: Ci ← ⌈S⌉r
11: S ← p(S)
12: S ← S ⊕ (Pv∥0c)
13: Cv ← ⌈S⌉|P | mod r

=== Finalization ===
14: S ← p

(
S ⊕

(
0r∥K∥0c−k

))
⊕
(
0b−k∥K

)
15: T ← ⌊S⌋t
16: return (C1∥ · · · ∥Cv, T)

Decryption algorithm Dec
Input:
K ∈ {0, 1}k, N ∈ {0, 1}n; A ∈ {0, 1}∗,
C ∈ {0, 1}∗, T ∈ {0, 1}t

Output:
Either P ∈ {0, 1}|C| or ⊥

=== Initialization ===
1: S ← p (IV ∥K∥N)⊕

(
0b−k∥K

)
=== Absorb A ===

2: if |A| ≥ 1
3: (A1, . . . , Au)← pad10∗

r (A)
4: for i = 1, . . . , u do
5: S ← p (S ⊕ (Ai∥0c))

=== Domain Separation ===
6: S ← S ⊕

(
0b−1∥1

)
=== Absorb C, Extract P ===

7: (C1, . . . , Cv)← pad10∗

r (C)
8: for i = 1, . . . , v − 1 do
9: Pi ← ⌈S⌉r ⊕ Ci

10: S ← Ci∥⌊S⌋c
11: S ← p (S)
12: Pv ← ⌈⌈S⌉r ⊕ Cv⌉|C| mod r

13: S ← S ⊕
(
Pv∥10b−1−|Pv|)

=== Finalization ===
14: S ← p

(
S ⊕

(
0r∥K∥0c−k

))
⊕
(
0b−k∥K

)
15: T ∗ ← ⌊S⌋t
16: if T ∗ = T return P1∥ · · · ∥Pv

17: else return ⊥

(i) truncating the tag to a size of up to t = 64 bits, and (ii) masking the nonce with an
additional 128-bit key.

We would like to remark that the Ascon-AE specification, in fact, operates on two
different permutations: an outer permutation po for the initialization and finalization and
an inner permutation pi for the inner evaluations. These permutations differ only in the
number of rounds and the round constants. In our work, we consider a simplified setting
where the permutations are identical. We remark that this is not the case for all earlier
security proofs of the Ascon-AE mode. For example, Chakraborty et al. [CDN23,CDN24]
assumed the two permutations to be identical whereas Guo et al. [GPPS19b] and Lefevre
and Mennink [LM22] assumed them to be independent. Because of this, we will also have
to redo/update some earlier proofs.

3 Adversarial Setup
We will consider the security of Ascon-AE in various attack models, but to describe these
models and the levels of security appropriately, we first have to define the concept of
adversaries and distinguishing advantages in Section 3.1 and certain conventions in notation
in Section 3.2. We then describe how we quantify adversaries in Section 3.3, and present a
useful mathematical result on multicollisions in Section 3.4.

7

p p

· · ·

· · ·

p p

· · ·

· · ·

p p

IV

K

N

\

b−k−n

\

k

\

n

0∗∥K

A1 Au

0∗∥1

P1 C1 Pv−1 Cv−1 Pv Cv

10∗

K∥0∗ 0∗∥K

T

⌊·⌋t

\

r

\

c

\

r

\

c

\

r

\

c

\

r

\

c

\

|Pv|

\

r−|Pv|

\

c

\

t

\

c

initialization associated data plaintext finalization

(a)

p p

· · ·

· · ·

p p

· · ·

· · ·

p p

IV

K

N

\

b−k−n

\

k

\

n

0∗∥K

A1 Au

0∗∥1

P1 C1 Pv−1 Cv−1 Pv Cv

10∗

K∥0∗ 0∗∥K

T

⌊·⌋t

\

r

\

c

\

r

\

c

\

r

\

c

\

r

\

c

\

|Cv|

\

r−|Cv|

\

c

\

t

\

c

initialization associated data ciphertext finalization

(b)

Figure 2: The Ascon-AE mode of operation in case of non-empty associated data: (a)
encryption Enc and (b) decryption Dec. Here, A is injectively padded as (A1, . . . , Au)←
pad10∗

r (A). For encryption, the plaintext P ∈ {0, 1}∗ is padded as (P1, . . . , Pv)← padr(P),
and for decryption the ciphertext C ∈ {0, 1}∗ is padded as (C1, . . . , Cv)← padr(C), noting
that we put the 10∗-padding explicit in the picture.

3.1 Adversaries and Distinguishing Advantages
An adversary A is an algorithm. It is given access to a collection of oracles O, which we
denote by A[O]. In our work, we consider two settings.

The first one is where A operates as distinguisher. In this case, O is in fact either of
two collections of oracles, W0 or W1, and A has to determine which one it communicates
with. At the end of its interaction, A outputs either 0 or 1, and we denote

∆A(W0 ; W1) = |Pr (A [W0]→ 1)−Pr (A [W1]→ 1)| .

The second one is where A is expected to mount a specific type of attack. In this case,
A knows the set of oracles it communicates with, and succeeds if it fulfills a task that is
made explicit in the security definition (in our AE definitions, this will be “mounting a
forgery”).

The collections of oracles in this work will always be composed of Ascon-AE algorithms,
i.e., Enc and Dec of Section 2 or their random equivalents (and the precise definition of
the oracles highly depends on the specific security model). As a matter of fact, we will
consider security of Ascon-AE in the multi-user setting, where the adversary has access to
µ instances of the construction. Finally, as we will only consider security in the random
permutation model, p

$←− Perm (b) will always be one of the oracles, to which A even has
forward and inverse access, which we denote by p±. This means that, typically, O would
be of the following form (in our security games, the number of construction oracles ranges
from 1 to 4):

O =
(
(O1,m,O2,m,O3,m,O4,m)µ

m=1 , p±) . (1)

8

3.2 Notational Conventions
Given that the oracles to whichA has access are encryption and decryption functionalities of
Ascon-AE, or their ideal equivalent, we will need to impose restrictions on nonce-repetition
or even query-repetition to avoid trivial attacks. These restrictions are depending on the
actual security model, but we will define shortcut notation for this, for any typical oracle
of the form (1):

• Oi,m ̸
N
↪→ Oj,m means that A cannot query oracle Oi,m with a certain nonce, and later

query Oj,m with the same nonce;

• Oi,m ̸
N
↪↪→ Oj,m means that A cannot query oracle Oi,m twice with a certain nonce,

and later query Oj,m with the same nonce;

• Oi,m ̸
∗

↪→ Oj,m means that A cannot query oracle Oi,m, and repeat this query to Oj,m.
The definition has slightly different meanings whenever the oracles are encryption or
decryption oracles: if Oi,m and Oj,m are both encryption or both decryption oracles,
the definition means that A cannot make the same query to both oracles; if one
of them is an encryption and one a decryption oracle, the definition means that A
cannot use the response of oracle Oi,m as input to oracle Oj,m.

We remark that we never impose anything on nonce-repetition or query-repetition among
different users, i.e., from user m to m′. We do make one general restriction, though, namely
that A never repeats the exact same query to an oracle. For the primitive access p± this
additionally means that A never makes an inverse query for an earlier forward query, or
vice versa.

3.3 Adversarial Resources
We always consider an information-theoretic distinguisher A. In terms of a collection of
oracles of the form (1), its resources are quantified as follows:

• The total number of queries to (O1,m,O2,m,O3,m,O4,m)µ
m=1 is denoted by Q, and

the total online complexity is denoted by M, which counts the number of “blocks”,
i.e., the minimal number of permutation evaluations that would be required by the
Ascon-AE mode to process the query. The quantities (Q,M) may be refined into
encryption complexities (QE ,ME), counting only encryption queries, and decryption
complexities (QD,MD), counting only decryption queries;1

• The total number of queries to p± is counted by the offline complexity N.

Without loss of generality, we assume that µ ≤ QE , since an oracle that the adversary
cannot query is of no use. As a rule of thumb, M≪ N, as M is limited by the use case in
which Ascon-AE is employed whereas N is limited by the wealth of the adversary (i.e., its
computing power). Also, we assume that MD ≤ME and QD ≤ QE . The reason behind
this assumption is that, in real-world protocols [GTW24], connections may be broken once
too many failed forgery attempts have been mounted.

Finally, when investigating tightness of bounds, we ignore constant factors and loga-
rithmic factors, and focus on the dominating terms in light of above assumptions on the
complexities. A bound is called “tight” if for each of the dominating terms, there is a
matching attack whenever the complexities are fixed so that these terms are close to 1.

1Looking ahead, there is one exception to this, namely in security under release of unverified plaintext
(Section 5.3), where the decryption functionality is split into an unverified decryption function and a
verification function. The notation will be refined there in an ad-hoc way.

9

3.4 Multicollisions
Central to the analysis of sponge-based keyed cryptographic functionalities is the concept
of multicollisions: security only holds under the condition that it is not too easy for an
attacker to obtain a multicollision on the outer r bits of the b-bit state of the sponge. There
exist two strategies in current sponge-based literature. One of them was first used in the
context of sponges by Jovanovic et al. [JLM14]: they use a simple Stirling approximation
to bound the event that a multicollision exceeds a value θ, and subsequently reason on
the mode’s security under the assumption that the multicollision is at most θ. Omitting
details, this results in the following strategy:

Pr (success) ≤ Pr (success |mult ≤ θ) + Pr (mult > θ) .

In a follow-up work, Jovanovic et al. [JLM+19] improved the multicollision bounding by
performing a case distinction depending on the values (r, c), thus improving the second
probability of this equation. Daemen et al. [DMV17] introduced the multicollision limit
function as a definition specifically tailored towards the sponge/duplex. In a bit more
detail, they observed that for a sponge-/duplex-based analysis, the left probability is often
of the form θN/2c, so by defining θ such that the right probability is of the form θ/2c, it
can be subsumed within the first term to get a joint term of the form θ(N + 1)/2c.

An alternative approach is to only compute the expected size of the maximum multicol-
lision, Ex (mult), and then bound using the following strategy:

Pr (success) =
∑

θ

Pr (success |mult = θ) Pr (mult = θ) .

The expectation on mult can then be used, observing that for a sponge-/duplex-based
analysis, the left probability is often linear in θ (e.g., of the form θN/2c as mentioned above).
Choi et al. [CLL19] used this approach for the PRF security of truncating a permutation.
Their bound is general (it does not consider different parameter settings). Lefevre and Men-
nink [LM24] slightly improved that bounding for their analysis of Ascon-AE. Chakraborty
et al. [CDN23] used the same approach for their security analysis of Ascon-AE, but with
a fine-tuned bounding that distinguishes different parameter setups. Their bounding
basically refines the bounding of Chakraborty et al. [CJN20]. Depending on the parameter
setting, one bound may be better than the other one, but the tightest upper bound applies.
We thus present both known bounds on the expected value of mult in Lemma 1.
Lemma 1 ([CJN20, CDN23, CLL19, LM24]). Let q, b, r ∈ N such that r < b and R =
2r. Suppose we uniformly select a set S of q distinct elements from {0, 1}b. Define
mucolr (S) = maxT ∈{0,1}r |{S ∈ S : ⌈S⌉r = T}|, and let mucol (q, R) = Ex (mucolr (S)).
We have

mucol (q, R) ≤

3 if 4 ≤ q ≤

√
R ,

4 log2(q)
log2(log2(q)) if

√
R < q ≤ R ,

5r⌈ q
rR⌉ if R < q ,

and mucol (q, R) ≤ 2q

R
+ 3 ln (R) + 4 .

Looking ahead, the bounds that include multicollisions will be presented in an abstract
form, i.e., using the term mucol (q, R). In our simplified discussions of these bounds, we
will ignore constant and logarithmic factors and use that mucol (q, R) = O

(
1 + q

R

)
.

We remark that above two approaches of multicollision bounding are incompatible
but in many cases, one can replace the other (and typically, the expectation approach is
tighter). Looking ahead, when we discuss Ascon-PRF in Section 9, we take the bound
from Mennink [Men23], which is based on Daemen et al. [DMV17] and thus uses the
former method. For sanity of this work, we in fact update that analysis to work with the
expectation approach.

10

4 Conventional Security of Ascon-AE
We start with the more conventional security notions for authenticated encryption and
what level of security the Ascon-AE mode achieves in these models: nonce-respecting
security in Section 4.1, nonce-misuse resistance in Section 4.2, and nonce-misuse resilience
in Section 4.3.

4.1 Nonce-Respecting Security
4.1.1 Security Model

The most conventional security model for nonce-based authenticated encryption is security
in the nonce-respecting setting. The first to formally study this notion were Bellare and
Namprempre [BN00,BN08], though in a left-or-right setting where the adversary receives
the encryption of either M0 or M1. Shrimpton [Shr04] introduced the notion of IND-CCA3
security, which at a high level gives the adversary access to either the encryption and
decryption functionality, or to a random oracle that always outputs random responses of
expected length and a ⊥-function that always returns the ⊥-sign. Here, the adversary is
never allowed to repeat nonces under encryption queries. The notion has reappeared in
literature under different terminologies (e.g., [NRS14] called it nAE security). We will
simply call it AE security, and adapt it to the multi-user setting in the random permutation
model where p

$←− Perm (b), similar to [LM24].

Definition 1. Consider the Ascon-AE mode of Section 2. Let ($m)µ
m=1 be a family of µ

independent random functions, p
$←− Perm (b), and K1, . . . , Kµ

$←− {0, 1}k. The AE security
of Ascon-AE against an adversary A is defined as

Advµ-ae
Ascon-AE (A) = ∆A

((
Encp

Km
, Decp

Km

)µ

m=1 , p± ; ($m,⊥)µ
m=1 , p±

)
,

where A is restricted as follows: O1,m ̸
N
↪→ O1,m and O1,m ̸

∗
↪→ O2,m.

The notion of AE security is related to plain confidentiality and authenticity of the
mode, as was also already demonstrated by Bellare and Namprempre [BN00,BN08]. In
fact, security proofs for authenticated encryption schemes can be derived directly under
the AE security model, as Chakraborty et al. [CDN23, CDN24] did for Ascon-AE, for
instance. However, looking ahead, Ascon-AE achieves authenticity but not confidentiality
in some of the models discussed in this work. Therefore, we consider confidentiality and
authenticity separately whenever possible.

Definition 2. Consider the Ascon-AE mode of Section 2. Let ($m)µ
m=1 be a family of µ

independent random functions, p
$←− Perm (b), and K1, . . . , Kµ

$←− {0, 1}k.

◦ The nonce-respecting confidentiality of Ascon-AE against an adversary A is defined as

Advµ-conf
Ascon-AE (A) = ∆A

((
Encp

Km

)µ

m=1 , p± ; ($m)µ
m=1 , p±

)
,

where A is restricted as follows: O1,m ̸
N
↪→ O1,m;

◦ The nonce-respecting authenticity of Ascon-AE against an adversary A is defined as

Advµ-auth
Ascon-AE (A) = Pr

(
A
[(

Encp
Km

, Decp
Km

)µ

m=1 , p±
]

forges
)

,

where A is restricted as follows: O1,m ̸
N
↪→ O1,m and O1,m ̸

∗
↪→ O2,m. Here, “forges” denotes

the event that A makes a query to one of the oracles Decp
Km

that does not return ⊥.

11

Note that authenticity can be equivalently stated as a distance:

∆A

((
Encp

Km
, Decp

Km

)µ

m=1 , p± ;
(
Encp

Km
,⊥
)µ

m=1 , p±
)

,

with the same conditions on nonce- and query-reuse. From this, we can easily conclude that
AE security implies confidentiality and authenticity. We repeat the inverse reduction as
given by Shrimpton [Shr04]. Let A be any adversary against the AE security of Ascon-AE.
Then, by the triangle inequality,

Advµ-ae
Ascon-AE (A) = ∆A

((
Encp

Km
, Decp

Km

)µ

m=1 , p± ; ($m,⊥)µ
m=1 , p±

)
≤ ∆A

((
Encp

Km
, Decp

Km

)µ

m=1 , p± ;
(
Encp

Km
,⊥
)µ

m=1 , p±
)

+ ∆A

((
Encp

Km
,⊥
)µ

m=1 , p± ; ($m,⊥)µ
m=1 , p±

)
≤ Advµ-auth

Ascon-AE (A′) + Advµ-conf
Ascon-AE (A′′) ,

for some adversaries A′ and A′′ with the same query complexities as A.

4.1.2 Overview

In 2014, Jovanovic et al. [JLM14,JLM+19] analyzed the security of the duplex-based mode
NORX [AJN14], providing bounds for both confidentiality and authenticity in the nonce-
respecting setting. They mentioned that their analysis can be generalized to Ascon-AE,
though without a proof. Lefevre and Mennink [LM24] made a dedicated analysis, recovered
the bounds claimed by Jovanovic et al., i.e., they proved (assuming that µ ≤M≪ N),

Advµ-ae
Ascon-AE (A) = O

(
QD

2t
+ µN

2k
+ N2

2b
+ MDN

2c

)
.

In an independent work, Chakraborty et al. [CDN23] derived a tighter bound in the single
user setting, and later [CDN24] extended it to the multi-user setting. We present their
result in Theorem 1, leaving the multicollision terms in an abstract form (cf., Section 3.4).

Theorem 1 ([CDN23,CDN24]). Let b, c, r, k, n, t ∈ N with b = r + c, k + n ≤ b, t ≤ k, and
k ≤ c. Let µ,N,ME ,MD, QE , QD ∈ N. Consider the Ascon-AE mode of Section 2 with
parameters b, c, r, k, n, t. Let A be an adversary with complexity (N, QE ,ME , QD,MD)
(see Section 3.3 for a detailed definition of complexity). We have

Advµ-ae
Ascon-AE (A) ≤ µ2

2k
+ 2QD

2t
+ M2

E

2b
+ MD (N + MD)

2b
+ mucol (ME , 2r) (MD + N)

2c

+ µ (N + M)
2k

+ mucol (QE , 2t) QD

2c
+ mucol (M + N, 2t) QD

2k

+ Q2
E + Q2

D + QEQD + (2QE + QD) (M + N)
2b

+ QD (M + N)
2c+t

+
mucol

(
QE , 2b−k

)
(M + N)

2k
.

Ignoring constant and logarithmic factors, and using that mucol (q, R) = O
(
1 + q

R

)
,

we obtain

Advµ-ae
Ascon-AE (A) = O

(
QD

2t
+ µ (µ + N + M)

2k
+ M (M + N)

2b
+ M + N

2c

)
.

12

Finally, using that µ ≤ M ≪ N and MD ≤ ME (cf., Section 3.3), we can simplify the
bound to

Advµ-ae
Ascon-AE (A) = O

(
QD

2t
+ µN

2k
+ MEN

2b
+ N

2c

)
. (⋆)

Throughout this work, we will refer to this term as the core term, noting that it
contributes to many of the bounds that will follow in the rest of this work. A notable
observation is that the term O

(
MDN

2c

)
is absent in (⋆). Indeed, in typical duplex-based

authenticated encryption schemes, where keys are only added to the initial state (such as
in MonkeySpongeWrap [Men23]), this term appears in the nonce-respecting bounds, along
with a tightness attack for certain parameter sets: Gilbert et al. [GBKR23] described
an attack tailored to precise values of N and MD such that MDN is above 2c, and the
note [Lef24] remarked that taking N ≈MD ≈ 2c/2 allows their attack to succeed with high
probability. For Ascon-AE, and in particular the bound of Theorem 1, this term is absent
due to the additional key blindings, that turn out to enhance conventional nonce-respecting
security.

The core bound (⋆) is tight, as we show in Proposition 1.

Proposition 1. Let b, c, r, k, n, t ∈ N with b = r +c, k +n ≤ b, t ≤ k, and k ≤ c. Consider
the Ascon-AE mode of Section 2 with parameters b, c, r, k, n, t. There exist adversaries A1
with QD ≈ 2t, A2 with N ≈ 2k/µ, and A3 with (ME + 2r)N ≈ 2b, such that

Advµ-ae
Ascon-AE (A1) , Advµ-ae

Ascon-AE (A2) , Advµ-ae
Ascon-AE (A3) ≈ 1 .

The proof of Proposition 1 is given in Section 7.1.

4.2 Nonce-Misuse Resistance
4.2.1 Security Model

The security model of Section 4.1 restricts the adversary to only use fresh nonces for
encryption queries. Rogaway and Shrimpton [RS06] proposed the notion of nonce-misuse
resistance, to capture settings where the adversary may have the power to reuse nonces.
As, throughout this work, we do not focus on a unified AE security definition but rather
on the separated notions of confidentiality and authenticity, we only extend Definition 2
to the nonce-misuse resistance setting. The generalization is straightforward: it mainly
consists of dropping the nonce-misuse restrictions.

Definition 3. Consider the Ascon-AE mode of Section 2. Let ($m)µ
m=1 be a family of µ

independent random functions, p
$←− Perm (b), and K1, . . . , Kµ

$←− {0, 1}k.

◦ The nonce-misuse resistance confidentiality of Ascon-AE against an adversary A is
defined as

Advµ-m-conf
Ascon-AE (A) = ∆A

((
Encp

Km

)µ

m=1 , p± ; ($m)µ
m=1 , p±

)
;

◦ The nonce-misuse resistance authenticity of Ascon-AE against an adversary A is defined
as

Advµ-m-auth
Ascon-AE (A) = Pr

(
A
[(

Encp
Km

, Decp
Km

)µ

m=1 , p±
]

forges
)

,

where A is restricted as follows: O1,m ̸
∗

↪→ O2,m. Here, “forges” denotes the event that A
makes a query to one of the oracles Decp

Km
that does not return ⊥.

13

This is the strongest possible attack setting with respect to nonce-reuse, and it is trivial
to observe that nonce-misuse security implies nonce-respecting security. We wish to remark
that one-pass schemes, i.e., authenticated encryption functions that make only one pass
over the data, are known to impossibly achieve nonce-misuse confidentiality in terms of
Definition 3, and this particularly applies to Ascon-AE as we demonstrate in Proposition 2
below.

Proposition 2. Consider the Ascon-AE mode of Section 2 with parameters b, c, r, k, n, t.
There exists an adversary A with QE = 2, such that

Advµ-m-conf
Ascon-AE (A) ≈ 1 .

Proof. Let P1, P2 ∈ {0, 1}r, N ∈ {0, 1}n, m ∈ J1, µK. Consider the following attack:

1. Make an encryption query with user m with input (N, ∅, P1), denote the ciphertext
by C1 ∈ {0, 1}r;

2. Make an encryption query with user m with input (N, ∅, P1∥P2), denote the ciphertext
by C ′

1∥C ′
2 where C ′

1, C ′
2 ∈ {0, 1}r;

3. If C1 = C ′
1 return 0, else 1.

In the real world, a repeated block will always output the same ciphertext block, while in
the ideal world, this happens with probability 1

2r . This term can be reduced further by
repeating the attack or by mounting the attack for longer encryption queries.

4.2.2 Overview

We now focus on authenticity. Lefevre and Mennink [LM24] derived a nonce-misuse
authenticity bound of the order

O
(

(⋆) + MEN

2c

)
.

Independently, Chakraborty et al. [CDN24] derived a tighter bound:

O
(

(⋆) + M2
E

2c

)
.

However, we identify a flaw in Chakraborty et al.’s analysis. In Proposition 3, we show that
there exists a forgery attack with a success probability of ≈ MEN

2c , which contradicts their
bound. The cause of this flaw is that the nonce-misuse resistance analysis of Chakraborty
et al. [CDN24] is a fairly direct extension of their nonce-respecting setting analysis [CDN23].
However, in this generalization, some unique aspects of nonce-misuse seem to have been
overlooked. In detail, in their proof, the bad event bad5 is used to compute the probability
that there exists a collision between permutation evaluations from encryption queries and
permutation evaluations from decryption or permutation queries. In the nonce-misuse
setting, the adversary can set the outer part of inner states during encryption queries to a
value of its choice, thus this event happens with a probability of form O

(
MEN

2c

)
, and not

O
(

MD+N
2c + ME(MD+N)

2b

)
as claimed in [CDN24].

Therefore, we consider the bound derived by Lefevre and Mennink. However, their
results hold in a model where the outer and inner permutations are assumed to be
independent, making it incompatible with the model that we consider (cf., the second
paragraph of Section 2). Moreover, two technical subtleties can be noted: (i) their result
only holds in the case where the tag size equals to the nonce size, and (ii) when inspecting
the bounds and manually separating the terms involving the tag from the ones involving

14

the initial state, an undesirable term of the form N
2b−t appears. Those two factors make the

bound less tight in instances of Ascon-AE that have large or small tag sizes. Addressing
point (i) is particularly important, as the NIST standard draft allows tags to be as short
as 64 bits [SMKK24].

For those reasons, we derive a bound addressing points (i) and (ii), which can be found
in Theorem 2.

Theorem 2 ([LM24], revisited). Let b, c, r, k, n, t ∈ N with b = r + c, k + n ≤ b, t ≤ k, and
k ≤ c. Let µ,N,ME ,MD, QE , QD ∈ N. Consider the Ascon-AE mode of Section 2 with
parameters b, c, r, k, n, t. Let A be an adversary with complexity (N, QE ,ME , QD,MD)
(see Section 3.3 for a detailed definition of complexity). We have

Advµ-m-auth
Ascon-AE (A) ≤ µ(µ− 1)

2k+1 + 2µ (M + N)
2k

+ 18M (M + N)
2c

+ 2QD

2t
.

The proof of Theorem 2 is given in Section 6.2.
Using that µ ≤ ME ≪ N and MD ≤ ME (cf., Section 3.3), we obtain bounds of the

order

Advµ-m-auth
Ascon-AE(A) = O

(
(⋆) + MEN

2c

)
. (2)

The bound (2) is tight. The attacks from Proposition 1 targeting (⋆) also apply here, and
below Proposition 3 matches the term MEN

2c .

Proposition 3. Let b, c, r, k, n, t ∈ N with b = r +c, k +n ≤ b, t ≤ k, and k ≤ c. Consider
the Ascon-AE mode of Section 2 with parameters b, c, r, k, n, t. There exists an adversary
A with MEN ≈ 2c, such that

Advµ-m-auth
Ascon-AE (A) ≈ 1 .

The proof of Proposition 3 is given in Section 7.2. Note, particularly, that this generic
attack breaks the bound of Chakraborty et al. [CDN24].

4.3 Nonce-Misuse Resilience
4.3.1 Security Model

In Section 4.2, we already mentioned that nonce-misuse resistance is the strongest possible
attack setting with respect to nonce-misuse, and one-pass schemes can never achieve confi-
dentiality in this setting. However, one may argue that such one-pass modes still achieve
some level of confidentiality, namely confidentiality up to common prefix. This idea was for-
malized under the notion of online authenticated encryption by Fleischmann et al. [FFL12],
and also used by notable authenticated encryption schemes like COPA [ABL+13]. However,
this notion has been heavily debated because nonce-misuse may still be devastating through
a trivial attack (and also because of different conceptual reasons) [HRRV15]. Although
Hoang et al. [HRRV15] do amend their criticism with an alternative notion for online
authenticated encryption security, we will not adopt this notion.

Instead, to define a middle-ground between nonce-respecting security (of Section 4.1)
and nonce-misuse resistance (of Section 4.2), we resort to the notion of nonce-misuse
resilience of Ashur et al. [ADL17]. At a high level, this notion covers that nonce-misuse
only affects encryptions under that nonce, and for new nonces, security is still guaranteed.
In a bit more detail, for confidentiality, the adversary gets encryption access in two ways:
through challenge and non-challenge queries, where challenge queries should always be for
new nonces and non-challenge queries may be for repeated nonces. For authenticity, the
adversary may repeat nonces for encryption, but if a nonce is reused, it may not be used
in a forgery attempt anymore.

15

Definition 4. Consider the Ascon-AE mode of Section 2. Let ($m)µ
m=1 be a family of µ

independent random functions, p
$←− Perm (b), and K1, . . . , Kµ

$←− {0, 1}k.

◦ The nonce-misuse resilience confidentiality of Ascon-AE against an adversary A is
defined as

Advµ-mr-conf
Ascon-AE (A) = ∆A

((
Encp

Km
, Encp

Km

)µ

m=1 , p± ;
(
Encp

Km
, $m

)µ

m=1 , p±
)

,

where A is restricted as follows: O1,m/O2,m ̸
N
↪→ O2,m, and O2,m ̸

N
↪→ O1,m;

◦ The nonce-misuse resilience authenticity of Ascon-AE against an adversary A is defined
as

Advµ-mr-auth
Ascon-AE (A) = Pr

(
A
[(

Encp
Km

, Decp
Km

)µ

m=1 , p±
]

forges
)

,

where A is restricted as follows: O1,m ̸
N
↪↪→ O2,m and O1,m ̸

∗
↪→ O2,m. Here, “forges” denotes

the event that A makes a query to one of the oracles Decp
Km

that does not return ⊥.

It is worth noting that nonce-misuse resilience is indeed situated in-between nonce-
respecting security and nonce-misuse resistance, or more technically, it implies nonce-
respecting security and it is itself implied by nonce-misuse resistance. This observation
will also be used below to argue nonce-misuse resilience of Ascon-AE.

4.3.2 Overview

Guo et al. [GPPS19b] considered nonce-misuse resilience of Ascon-AE under two models,
named muCCAmL1 (multi-user Chosen-Ciphertext Attack security with misuse-resilience
and Leakage), and muCIML2 (multi-user Ciphertext Integrity with Misuse-resistance and
Leakage). The bounds are in a leaky setting, therefore yielding lossy bounds if we are only
interested in nonce-misuse resilience. More importantly, as the authors admit, their results
are merely proof sketches. In additionally, as pointed out by Lefevre and Mennink [LM24],
their proofs contain several incomplete and incorrect steps.

Therefore, we derive our own nonce-misuse resilience security analysis, in Theorem 3.

Theorem 3. Let b, c, r, k, n, t ∈ N with b = r + c, k + n ≤ b, t ≤ k, and k ≤ c. Let
µ,N,ME ,MD, QE , QD ∈ N. Consider the Ascon-AE mode of Section 2 with parameters
b, c, r, k, n, t. Let Aconf be an adversary with complexity (N, QE ,ME), and Aauth with
complexity (N, QE ,ME , QD,MD) (see Section 3.3 for a detailed definition of complexity).
We have

Advµ-mr-conf
Ascon-AE

(
Aconf) ≤ µ(µ− 1)

2k+1 + 2µ (ME + N)
2k

+ 18ME (ME + N)
2c

,

Advµ-mr-auth
Ascon-AE

(
Aauth) ≤ µ(µ− 1)

2k+1 + 2µ (M + N)
2k

+ 18M (M + N)
2c

+ 2QD

2t
.

Here, the authenticity bound follows from our nonce-misuse resistance proof of Theo-
rem 2. The confidentiality proof of Theorem 3 is new and is given in Section 6.3.

Using that µ ≤ ME ≪ N and MD ≤ ME (cf., Section 3.3), we obtain bounds of the
order

Advµ-mr-conf
Ascon-AE

(
Aconf) = O

(
(⋆) + MEN

2c

)
, (3)

Advµ-mr-auth
Ascon-AE

(
Aauth) = O

(
(⋆) + MEN

2c

)
. (4)

16

In particular, nonce-misuse resilience confidentiality and authenticity have a bound of the
same order as authenticity in the nonce-misuse resistance setting.

The attacks from Proposition 1 targeting the core term (⋆) also apply here, and
Proposition 4 matches the term MEN

2c . However, the parametrization of N and ME is not
completely free here, as the attack requires N ≥ 2k−t. Considering the parameter sets of
the instances Ascon-128 and Ascon-128a (see Section 2), the dominating term in the bound
is µN

2k anyway. On the other hand, for the parameter sets of Ascon-80pq, the constraint
translates to N ≥ 232, which is more than reasonable. Therefore, the bounds (3) and (4)
are tight for meaningful parameter sets.

Proposition 4. Let b, c, r, k, n, t ∈ N with b = r +c, k +n ≤ b, t ≤ k, and k ≤ c. Consider
the Ascon-AE mode of Section 2 with parameters b, c, r, k, n, t. There exist two adversaries
Aconf and Aauth with MEN ≈ 2c and N ≥ 2k−t, such that

Advµ-mr-conf
Ascon-AE

(
Aconf) , Advµ-mr-auth

Ascon-AE
(
Aauth) ≈ 1 .

A proof of Proposition 4 can be found in Section 7.3.

5 Leakage Security of Ascon-AE
We will consider the security of the Ascon-AE mode in leaky settings, where the adversary
may learn some internal information during executions through some implementation
mistake or through side-channels. We start with leakage resilience in Section 5.1, followed
by state-recovery security in Section 5.2, and release of unverified plaintext in Section 5.3.

5.1 Leakage Resilience
5.1.1 Security Model

Authenticated encryption schemes are implemented on a wide variety of platforms, and par-
ticularly lightweight authenticated encryption schemes may be implemented in constrained
environments which may leak information. It thus makes sense to analyze the leakage
resilience of Ascon-AE. There exist various different models on how to model leakage
and how to model oracle access. In this work, we restrict our focus to leakage resilience
in the bounded leakage model, as set forth by Dziembowski and Pietrzak [DP08] and
adopted in various later works [Pie09,YSPY10,FPS12,SPY+10,DP10]. In this model, the
adversary gets access to a leak-free version of the construction which it has to distinguish
from random, exactly as in the models of Section 4, but in addition it gets access to a
leaky version of the scheme, which it may use to gather information. In this leaky version,
we assume a priori that every permutation evaluation p : X 7→ Y leaks certain information.
This leakage is captured through a leakage function L : {0, 1}b × {0, 1}b → {0, 1}λ for
some small value λ. For a function Fp on top of permutation p, we define [Fp]L to be an
evaluation of Fp that additionally leaks L(X, Y) for each evaluation p : X 7→ Y . We assume
non-adaptive leakage, where the leakage function is defined prior to the experiment and
stays fixed throughout [FPS12]. In detail, we define a set of permitted leakage functions
L = {L : {0, 1}b × {0, 1}b → {0, 1}λ} and expect security for any L ∈ L.

We finally remark that, in its natural form, Ascon-AE cannot achieve confidentiality
and integrity under leakage. The reason is that the leakage function L can be chosen in
such a way that, from the first evaluation of p, different portions of the key are leaked for
different choices of N (a similar attack is described in a bit more detail in Section 5.1.2).
To salvage this, we adopt the notion of leveled implementations as put forward by Pereira
et al. [PSV15], and that was also adopted in leakage resilience analyses of authenticated
encryption schemes [GPPS19a,BGP+20,GPPS20,GPPS19b]. In the concept of leveled

17

implementations, applied to our context, the outer permutations are strongly protected
and do not leak any information, whereas the inner permutations may leak.

In detail, we refine [Fp]L to be an evaluation of Fp that additionally leaks L(X, Y) for
each inner evaluation p : X 7→ Y . This, finally, leads us to the following model, which is
based on Barwell et al. [BMOS17] but with two differences: (i) we translate the model to
the random permutation model, and (ii) we do not generalize from conventional nonce-
respecting security (Section 4.1) but rather from nonce-misuse resilience (Section 4.3).

Definition 5. Consider the Ascon-AE mode of Section 2. Let ($m)µ
m=1 be a family of µ

independent random functions, p
$←− Perm (b), and K1, . . . , Kµ

$←− {0, 1}k. Let L be a set
of leakage functions. The leakage resilience AE-security of Ascon-AE against an adversary
A with respect to L is defined as

Advµ-lr-ae
Ascon-AE,L (A) = max

L∈L
∆A

(([
Encp

Km

]
L

, Encp
Km

,
[
Decp

Km

]
L

, Decp
Km

)µ

m=1
, p± ;

([
Encp

Km

]
L

, $m,
[
Decp

Km

]
L

,⊥
)µ

m=1
, p±

)
,

where A is restricted as follows: O2,m ̸
N
↪→ O1,m, O1,m/O2,m/O3,m ̸

N
↪→ O2,m, O2,m ̸

N
↪→ O3,m,

O1,m/O3,m ̸
N
↪→ O4,m, and O2,m ̸

∗
↪→ O4,m.

Just like in Section 4.1, it is more convenient to consider confidentiality and authenticity
separately.

Definition 6. Consider the Ascon-AE mode of Section 2. Let ($m)µ
m=1 be a family of µ

independent random functions, p
$←− Perm (b), and K1, . . . , Kµ

$←− {0, 1}k. Let L be a set
of leakage functions.

◦ The leakage resilience confidentiality of Ascon-AE against an adversary A with respect
to L is defined as

Advµ-lr-conf
Ascon-AE,L (A) = max

L∈L
∆A

(([
Encp

Km

]
L

, Encp
Km

,
[
Decp

Km

]
L

)µ

m=1
, p± ;([

Encp
Km

]
L

, $m,
[
Decp

Km

]
L

)µ

m=1
, p±

)
,

where A is restricted as follows: O2,m ̸
N
↪→ O1,m, O1,m/O2,m/O3,m ̸

N
↪→ O2,m, and O2,m ̸

N
↪→

O3,m;

◦ The leakage resilience authenticity of Ascon-AE against an adversary A with respect to
L is defined as

Advµ-lr-auth
Ascon-AE,L (A) = max

L∈L
Pr
(
A
[([

Encp
Km

]
L

, Encp
Km

,
[
Decp

Km

]
L

, Decp
Km

)µ

m=1
, p±

]
forges

)
,

where A is restricted as follows: O2,m ̸
N
↪→ O1,m, O1,m/O2,m/O3,m ̸

N
↪→ O2,m, O2,m ̸

N
↪→ O3,m,

O1,m/O3,m ̸
N
↪→ O4,m, and O2,m ̸

∗
↪→ O4,m.

We can again demonstrate that the notions are equivalent, using a similar reasoning as
in Section 4.1 (or, to be precise, using a similar reasoning as Ashur et al. [ADL17, Section

18

4.4]). In detail, let A be any adversary against the AE security of Ascon-AE. Then,

Advµ-lr-ae
Ascon-AE,L (A) = maxL∈L ∆A

(([
Encp

Km

]
L

, Encp
Km

,
[
Decp

Km

]
L

, Decp
Km

)µ

m=1
, p± ;

([
Encp

Km

]
L

, $m,
[
Decp

Km

]
L

,⊥
)µ

m=1
, p±

)

≤ maxL∈L ∆A

(([
Encp

Km

]
L

, Encp
Km

,
[
Decp

Km

]
L

, Decp
Km

)µ

m=1
, p± ;

([
Encp

Km

]
L

, Encp
Km

,
[
Decp

Km

]
L

,⊥
)µ

m=1
, p±

)

+ maxL∈L ∆A

(([
Encp

Km

]
L

, Encp
Km

,
[
Decp

Km

]
L

,⊥
)µ

m=1
, p± ;

([
Encp

Km

]
L

, $m,
[
Decp

Km

]
L

,⊥
)µ

m=1
, p±

)
≤Advµ-lr-auth

Ascon-AE,L (A′) + Advµ-lr-conf
Ascon-AE,L (A′′) ,

for some adversaries A′ and A′′ with the same query complexities as A.
Note that if we take the model of Definition 6 with no leakage, hence with λ = 0, the

definition is equivalent to nonce-misuse resilience, which was the starting point of our
model. Looking ahead, we may then consider the notion for arbitrary limited leakage (for
any λ) or the notion for unlimited leakage where λ = b. Clearly, leakage resilience with no
leakage is implied by leakage resilience with limited leakage, which is in turn implied by
leakage resilience with unlimited leakage.
Remark 1. In the bounded leakage model,2 that we adopt, each evaluation of p leaks λ
bits non-adaptively. This could be λ bits of the secret state. The intuition behind this
modeling is that it upper bounds the total amount of knowledge that an adversary can
obtain after repeated evaluations of that permutation. Showing that this assumption is
reasonable, is hard, and likely impossible as it is a rather loose bound [DMP22]. A model
that does slightly better would be hard-to-invert leakage, which requires that the leakage
has the property that, even under knowledge of the leakage, the secret state is hard to
guess [DKL09, FH15], but it is a bit harder to work with. A recent approach that got
closer to reality was simulatable leakage, where the adversary gets knowledge of either
actual leakage or simulated leakage [SPY13], but the instantiation of this approach was
demonstrated to be problematic [LMO+14]. Finally, one can opt to not bound leakage
after all, and leave a yet-to-be-determined leakage term in the bound [DMP22]. This term
is a function of all knowledge that is gained by the adversary, and actual side-channel
analysis is needed to accurately bound this term.3

Also for oracle modeling, different approaches exist. Our approach consists of giving
the adversary access to a leaky oracle and a leak-free challenge oracle, which it has to
distinguish from random. Intuitively, this model captures the idea that, even though the
adversary has obtained leakage in the past, new evaluations are still secure. This idea
somewhat aligns with the idea of nonce-misuse resilience, which is that even though the
adversary has misused nonces in the past, evaluations for new nonces are still secure. (It is
for this reason, that Definition 6 adopts the nonce restrictions from nonce-misuse resilience
of Definition 4.) A notable alternative approach is of the work of Guo et al. [GPPS19a],
that was also used to argue leakage resilience of TEDT [BGP+20] and the closely related

2The notion “bounded” is standard terminology and refers to the fact that there is a fixed λ. This is
subtly different from the terminology “limited” that we adopt in our analysis and that specifies whether
the bound λ is smaller or equal to b.

3Refer to Kalai and Reyzin [KR19] for a discussion on leakage models.

19

work TETSponge [GPPS20,GPPS19b] (they also claim results on Ascon-AE in this model).
This model structurally differs, at a high level, in the fact that also challenge queries leak,
but the security games are not described in a real-or-random setting (as this, presumably,
would require the disputable notion of simulatable leakage) but rather in the left-or-right
setting where the adversary receives the encryption of either M0 or M1. In our impression,
their model is incomparable to the model that we adopt above, and one model may better
capture certain use cases than another model.

5.1.2 Overview

The only analysis of Ascon-AE against leakage is by Guo et al. [GPPS20, GPPS19b].
However, their result is in a different, incomparable, model, as we explained in Remark 1.
Also, their proof lacks a certain level of accuracy as pointed out in Section 4.3. We thus set
out to derive new leakage resilience evidence for Ascon-AE, in the model of Definition 6.
However, in doing to, we remark that, even though the adversary cannot reuse nonces for
challenge queries, it can repeatedly use nonces for non-challenge queries. Because of this,
depending on the set of permitted leakage functions L, Ascon-AE achieves the same level
of leakage resilience under limited leakage as under unlimited leakage. Indeed, if leakage is
limited to only λ = 1 bit but any leakage function is allowed, the leakage function can be
defined to consider the first log2(b) bits and use that bit string as encoding of the bit it will
leak, and by making sufficient queries for the same nonce, the whole state gets eventually
leaked. We admit that this is a rather liberal and non-realistic leakage function, but will
still consider it for the sake of generality. We remark that specifically considering more
realistic leakage functions, for example those that leak the Hamming weight of the first
byte of the state, significantly adds to the complexity and would be a research problem on
its own [BM24,DMMS21].

Because of this, we restrict our focus to leakage resilience under unlimited leakage, and
derive nonce-misuse resilience authenticity and confidentiality in Theorem 4.

Theorem 4 (unlimited leakage). Let b, c, r, k, n, t ∈ N with b = r +c, k +n ≤ b, t ≤ k, and
k ≤ c. Let µ,N,ME ,MD, QE , QD ∈ N. Consider the Ascon-AE mode of Section 2 with
parameters b, c, r, k, n, t. Let L be the set of all leakage functions over Ascon-AE that do
not leak any information about the two extreme permutation calls during the initialization
and finalization phases. Let Aconf be an adversary with complexity (N, QE ,ME), and
Aauth with complexity (N, QE ,ME , QD,MD) (see Section 3.3 for a detailed definition of
complexity). We have

Advµ-lr-conf
Ascon-AE,L

(
Aconf) ≤ µ(µ− 1)

2k+1 + 2µ (N + M)
2k

+ 18M (M + N)
2c

+ min
{

14Q (N + M)
2k

,
4 (M + N)2

2c
+

6(N + M) ·mucol
(
M + N, 2c−k

)
2k

}
,

Advµ-lr-auth
Ascon-AE,L

(
Aauth) ≤ µ(µ− 1)

2k+1 + 2µ (N + M)
2k

+ 18M (M + N)
2c

+ 2QD

2t

+ min
{

14Q (N + M)
2k

,
4 (M + N)2

2c
+

6(N + M) ·mucol
(
M + N, 2c−k

)
2k

}
.

The proof of Theorem 4 is given in Section 6.4.
Using that µ ≤ ME ≪ N, MD ≤ ME , and QD ≤ QE (cf., Section 3.3), we obtain

20

bounds of the order

Advµ-lr-conf
Ascon-AE,L

(
Aconf) , = O

(
(⋆) + MEN

2c
+ min

{
N2

2c
,

QEN

2k

})
, (5)

Advµ-lr-auth
Ascon-AE,L

(
Aauth) = O

(
(⋆) + MEN

2c
+ min

{
N2

2c
,

QEN

2k

})
. (6)

The attacks from Propositions 1 and 4 targeting respectively the core term (⋆) and the
term MEN

2c also apply here, and Proposition 5 below matches the term min
{

N2

2c , QEN
2k

}
,

under the constraint N ≥ 2k−t, as in Proposition 4. Therefore, the bounds (5) and (6) are
tight for meaningful parameter sets.

Proposition 5. Let b, c, r, k, n, t ∈ N with b = r + c, k + n ≤ b, t ≤ k, and k ≤ c. Let
µ,N,ME ,MD, QE , QD ∈ N. Consider the Ascon-AE mode of Section 2 with parameters
b, c, r, k, n, t. Let L be the set of all leakage functions that do not leak any information
about the two extreme permutation calls. There exist two adversaries Aconf and Aauth with
N = max

{
2c/2, 2k/QE , 2k−t

}
such that

Advµ-lr-conf
Ascon-AE,L

(
Aconf) , Advµ-lr-auth

Ascon-AE,L
(
Aauth) ≈ 1 .

Here, the adversaries Aconf and Aauth make min
{

2k−c/2, QE

}
encryption queries.

The proof of Proposition 5 is given in Section 7.4.

5.2 State-Recovery Security
5.2.1 Security Model

The designers of Ascon claimed that, even if the adversary accidentally learns the internal
state of an evaluation of Ascon-AE, mounting forgeries or recovering the key is hard. To
investigate this notion and derive a proper security bound, Lefevre and Mennink [LM24]
formalized the notion of state-recovery authenticity in the context of Ascon-AE. Their
notion was inspired by that of permutation-based leakage resilient authenticity (basically,
authenticity of Definition 6), but stronger in the sense that they (i) considered unlimited
leakage by default and (ii) did not put any restrictions on nonce-misuse. As a consequence
of adjustment (ii), the security game does not have to distinguish between leaky and
non-leaky oracles, and the non-leaky ones can be dropped. We repeat their notion, below.
For completeness, we also include the logical state-recovery confidentiality variant as a
direct generalization of Definition 6 (but with the decryption oracle dropped as encryption
and decryption leakages give the same information in this case), which admittedly is moot
as Ascon-AE is insecure in this model.

Definition 7. Consider the Ascon-AE mode of Section 2. Let ($m)µ
m=1 be a family of

µ independent random functions, p
$←− Perm (b), and K1, . . . , Kµ

$←− {0, 1}k . Let L be
the leakage function that leaks all inner permutation calls, excluding the ones during the
initialization and finalization phase.

◦ The state-recovery confidentiality of Ascon-AE against an adversary A is defined as

Advµ-sr-conf
Ascon-AE (A) = ∆A

(([
Encp

Km

]
L

, Encp
Km

)µ

m=1
, p± ;

([
Encp

Km

]
L

, $m

)µ

m=1
, p±

)
,

where A is restricted as follows: O2,m ̸
∗

↪→ O1,m, and O1,m ̸
∗

↪→ O2,m;

21

◦ The state-recovery authenticity of Ascon-AE against an adversary A is defined as

Advµ-sr-auth
Ascon-AE (A) = Pr

(
A
[([

Encp
Km

]
L

,
[
Decp

Km

]
L

)µ

m=1
, p±

]
forges

)
,

where A is restricted as follows: O1,m ̸
∗

↪→ O2,m. Here, “forges” denotes the event that A
makes a query to one of the oracles Decp

Km
that does not return ⊥.

To see that state-recovery authenticity implies leakage resilience authenticity with
unlimited leakage, observe that any state-recovery adversary A′ can easily simulate the
oracles of a leakage resilience adversary A because A′ is free from any nonce repetition
restrictions. A similar observation applies to state-recovery confidentiality compared to
leakage resilience confidentiality, with the reminder that state-recovery confidentiality is
not achieved for Ascon-AE as we demonstrate in Proposition 6 below.

Proposition 6. Let b, c, r, k, n, t ∈ N with b = r +c, k +n ≤ b, t ≤ k, and k ≤ c. Consider
the Ascon-AE mode of Section 2 with parameters b, c, r, k, n, t. There exists an adversary
A with QE = 2, such that

Advµ-sr-conf
Ascon-AE (A) ≈ 1 .

Proof. As in the nonce-misuse confidentiality setting (i.e., Proposition 2), the adversary is
allowed to repeat nonces between the challenge encryption oracle and the non-challenge
encryption oracle, and this breaks security. Let P1, P2 ∈ {0, 1}r, N ∈ {0, 1}n, m ∈ J1, µK.
Consider the following attack:

1. Make an encryption query to oracle O1,m with input (N, ∅, P1). From the leaked
state S, one can recover the ciphertext, denoted by C ∈ {0, 1}r;

2. Make an encryption query to oracle O2,m with input (N, ∅, P1∥P2), denote the
leftmost r bits of the ciphertext by C ′ ∈ {0, 1}r;

3. If C = C ′ return 0, else 1.

In the real world, C will always be equal to C ′ while in the ideal world, this happens with
probability 1

2r . This term can be reduced further by repeating the attack or by mounting
the attack for longer encryption queries.

5.2.2 Overview

The bound derived by Lefevre and Mennink [LM24] is tight, and they presented a matching
attack, which we repeat in Proposition 7. However, similar issues as those in the nonce-
misuse authenticity setting (cf., Theorem 2) apply here, namely the fact that they assumed
the outer and inner permutations to be independent whereas we now assume identical
permutations. To address this, we revisit their result by adapting the proof on leakage
resilience from Theorem 4. The revisited result is presented in Theorem 5.

Theorem 5 ([LM24], revisited). Let b, c, r, k, n, t ∈ N with b = r + c, k + n ≤ b, t ≤ k, and
k ≤ c. Let µ,N,ME ,MD, QE , QD ∈ N. Consider the Ascon-AE mode of Section 2 with
parameters b, c, r, k, n, t. Let A be an adversary with complexity (N, QE ,ME , QD,MD)
(see Section 3.3 for a detailed definition of complexity). We have

Advµ-sr-auth
Ascon-AE (A) ≤ µ(µ− 1)

2k+1 + 2µ (N + M)
2k

+ 2QD

2t
+ 18M (M + N)

2c

+ 4 (M + N)2

2c
+

6(N + M) ·mucol
(
N + M, 2c−k

)
2k

.

22

The proof of Theorem 5 is given in Section 6.5.
Using that µ ≤ME ≪ N and MD ≤ME (cf., Section 3.3), we obtain a bound of the

order

Advµ-sr-auth
Ascon-AE

(
Aauth) = O

(
(⋆) + N2

2c

)
. (7)

The attacks from Proposition 1 targeting the core term (⋆) also apply here, and
Proposition 7 below matches the term N2

2c . Therefore, the bound (7) is tight.

Proposition 7 ([LM24]). Let b, c, r, k, n, t ∈ N with b = r + c, k + n ≤ b, t ≤ k, and k ≤ c.
Consider the Ascon-AE mode of Section 2 with parameters b, c, r, k, n, t. There exists an
adversary A with N ≈ 2c/2 such that

Advµ-sr-auth
Ascon-AE (A) ≈ 1 .

The proof of Proposition 7 is given in Section 7.5.

5.3 Release of Unverified Plaintext Security
5.3.1 Security Model

Another weakness in typical use cases of authenticated encryption is in applications
that (accidentally) release plaintext before the tag is verified. This may happen, for
example, in use cases where there is insufficient secure memory to store the message or
mistakes/incompletenesses in implementation occur (cf., Efail [PDM+18]). Andreeva et
al. [ABL+14] formalized the idea of security under release of unverified plaintext (RUP).
In this formalization, the authenticated decryption functionality Dec is separated into a
pure decryption functionality D that outputs the plaintext (without verification) and a
verification functionality V that verifies the authentication:

Dp
K : {0, 1}n × {0, 1}∗ × {0, 1}∗ × {0, 1}t −→ {0, 1}∗ ,

(N, A, C, T) −→ P ∈ {0, 1}|C| ,

Vp
K : {0, 1}n × {0, 1}∗ × {0, 1}∗ × {0, 1}t −→ {⊤,⊥} ,

(N, A, C, T) −→ ⊤ or ⊥ .

RUP confidentiality is covered by plaintext awareness, that considers a distinguisher that
has access to the encryption functionality, and either the (unverified) decryption or an
extractor Ext that has knowledge of earlier encryption queries and aims to simulate the
D functionality.4 Authenticity is covered by an adversary that gets access to encryption,
(unverified) decryption, and the verification function, and wins if it forges.

Definition 8. Consider the Ascon-AE mode of Section 2. Let ($m)µ
m=1 be a family of µ

independent random functions, p
$←− Perm (b), and K1, . . . , Kµ

$←− {0, 1}k.

◦ Let Ext = (Extm)µ
m=1 be a family of stateful algorithms. The RUP confidentiality (or,

plaintext awareness) of Ascon-AE against an adversary A with respect to Ext is defined
as

Advµ-rup-conf
Ascon-AE,Ext (A) = ∆A

((
Encp

Km
, Dp

Km

)µ

m=1 , p± ;
(
Encp

Km
, Extm

)µ

m=1 , p±
)

,

where Extm has access to the query history made by A to O1,m;
4This is called plaintext awareness 1 (PA1). Andreeva et al. [ABL+14] described the stronger setting of

PA2 where Ext has no knowledge of earlier encryption queries, but a scheme that is not PA1 secure is
also not PA2 secure.

23

◦ The RUP authenticity of Ascon-AE against an adversary A is defined as

Advµ-rup-auth
Ascon-AE (A) = Pr

(
A
[(

Encp
Km

, Dp
Km

, Vp
Km

)µ

m=1 , p±
]

forges
)

,

where A is restricted as follows: O1,m ̸
∗

↪→ O3,m. Here, “forges” denotes the event that A
makes a query to one of the oracles Vp

Km
that does not return ⊥.

In the resources (N, QE ,ME , QD,MD) of Section 3.3, the terms QD and MD now
additionally account for the queries made to the verification oracle V. We remark that
there have been follow-up works of Ashur et al. [ADL17] and Chang et al. [CDD+19] who
presented RUPAE and AERUP, respectively, with the aim to unify RUP security into one
definition. In our work, however, we restrict to considering separate confidentiality and
authenticity notions.

We remark that RUP authenticity is implied by state-recovery authenticity (cf., Defini-
tion 7). This implication, however, is not immediately clear, so we write it out in detail.
(In fact, this applies to any authenticated encryption scheme, but we write it out for
Ascon-AE as this is the scope of the work.)

Lemma 2. Consider the Ascon-AE mode of Section 2. Let p
$←− Perm (b) and K1, . . . , Kµ

$←−
{0, 1}k . Let A be a RUP authenticity adversary with complexity (N, QE ,ME , QD,MD).
There exists a state-recovery authenticity adversary A′ with complexity (N, QE ,ME , QD,MD),
such that

Advµ-rup-auth
Ascon-AE (A) ≤ Advµ-sr-auth

Ascon-AE (A′) .

Proof. Consider RUP authenticity adversary A that gets access to the following oracles:((
Encp

Km
, Dp

Km
, Vp

Km

)µ

m=1 , p±
)

.

It is restricted to O1,m ̸
∗

↪→ O3,m. We construct state-recovery adversary A′ that gets access
to the following oracles: (([

Encp
Km

]
L

,
[
Decp

Km

]
L

)µ

m=1
, p±

)
,

that is restricted to O1,m ̸
∗

↪→ O2,m, and that will use its oracles to simulate the oracles of
A. Note that A may repeat certain queries whereas A′ may not. To solve this, A′ will
maintain a database of its queries to the previous oracles. If A′ is about to repeat a query,
it will instead retrieve the result from the database. For the rest, adversary A′ operates as
follows:

• A makes an oracle query Encp
Km

(N, A, P): Adversary A′ relays the query to[
Encp

Km

]
L

to obtain (C, T) and all intermediate states. It discards the intermediate
states and relays (C, T) to A. It stores (N, A, P, C, T) in a database;

• A makes an oracle query Dp
Km

(N, A, C, T):

– If (N, A, C, T) corresponds to an earlier encryption query (note that A may
relay from its first to second oracle but A′ may not), there must be a unique P
such that (N, A, P, C, T) in A′s database. A′ replies with that plaintext P ;

– If (N, A, C, T) does not correspond to an earlier encryption query, A′ queries[
Decp

Km

]
L

on the same inputs, it reconstructs P from the state leakages, and
replies with P ;

24

• A makes an oracle query Vp
Km

(N, A, C, T): Adversary A′ queries
[
Decp

Km

]
L

on the same inputs. If the response is a valid plaintext, A′ replies with ⊤, otherwise
it replies with ⊥;

• A makes an oracle query p±: Adversary A′ simply relays the query to its own
permutation oracle p± and relays the response back.

If A mounts a forgery in any of its queries to Vp
Km

, then A′ also mounts a valid forgery.
This proves the claim.

It does not seem possible to reduce RUP confidentiality to state-recovery confidentiality.
There is some similarity, though: RUP confidentiality gives the adversary access to an
encryption oracle and a decryption oracle, whereas the state-recovery adversary gets access
to a leaky encryption oracle (which it can use to simulate the RUP encryption oracle)
and a challenge encryption oracle (which it can use to simulate the RUP decryption
oracle, noting that it can reuse nonces). However, the RUP adversary is allowed to
freely relay queries whereas the state-recovery adversary is not, and in fact upcoming
RUP confidentiality attack of Proposition 8 exploits this, and it cannot be turned into a
state-recovery confidentiality attack.

5.3.2 Overview

In their formalism of release of unverified plaintext, Andreeva et al. [ABL+14] also
demonstrated that nonce-based length-preserving (i.e., |C| = |P |) authenticated encryption
schemes cannot achieve PA1 security. We repeat their result in the context of Ascon-AE.

Proposition 8. Let b, c, r, k, n, t ∈ N with b = r +c, k +n ≤ b, t ≤ k, and k ≤ c. Consider
the Ascon-AE mode of Section 2 with parameters b, c, r, k, n, t. There exists an adversary
A with QE = 1 and QD = 1, such that

Advµ-rup-conf
Ascon-AE (A) ≈ 1 .

Proof. Let C ∈ {0, 1}r, N ∈ {0, 1}n, and m ∈ J1, µK. Consider the following attack:

1. Make a decryption query with user m with input (N, ∅, C), denote the plaintext by
P ∈ {0, 1}r;

2. Make an encryption query with user m with input (N, ∅, P), denote the ciphertext
by C ′ ∈ {0, 1}r;

3. If C = C ′ return 0, else 1.

In the real world, these are identical evaluations of Ascon-AE and C = C ′, whereas in the
ideal world, this only holds if Extm output the right plaintext P and this happens with
probability 1

2r . This term can be reduced further by repeating the attack or by mounting
the attack for a longer decryption query.

That said, Ascon-AE achieves authenticity under release of unverified plaintext. This
already follows from Theorem 5 and Lemma 2, but this bound is not tight and we derive a
better bound below.

Theorem 6. Let b, c, r, k, n, t ∈ N with b = r + c, k + n ≤ b, t ≤ k, and k ≤ c. Let
µ,N,ME ,MD, QE , QD ∈ N. Consider the Ascon-AE mode of Section 2 with parameters
b, c, r, k, n, t. Let A be an adversary with complexity (N, QE ,ME , QD,MD) (see Section 3.3
for a detailed definition of complexity). We have

Advµ-rup-auth
Ascon-AE (A) ≤ µ(µ− 1)

2k+1 + 2µ (M + N)
2k

+ 18M (M + N)
2c

+ 2QD

2t
.

25

The proof of Theorem 6 is given in Section 6.6.
Using that µ ≤ME ≪ N and MD ≤ME (cf., Section 3.3), we obtain a bound of the

order

Advµ-rup-auth
Ascon-AE (A) = O

(
(⋆) + MEN

2c

)
. (8)

In particular, RUP authenticity has a bound of the same order as that of nonce-misuse
resistance authenticity.

Since the adversary is more powerful in the RUP setting than in the nonce-misuse
resistance setting, the attack described in Proposition 3 applies. Therefore, the bound (8)
is tight, as we make explicit in Proposition 9.
Proposition 9. Let b, c, r, k, n, t ∈ N with b = r +c, k +n ≤ b, t ≤ k, and k ≤ c. Consider
the Ascon-AE mode of Section 2 with parameters b, c, r, k, n, t. There exists an adversary
A with MEN ≈ 2c, such that

Advµ-rup-auth
Ascon-AE (A) ≈ 1 .

6 Security Proofs for Ascon-AE
We include the security proofs of Theorems 2–6 here, in Sections 6.2–6.6, respectively. The
first proof, that of Section 6.2, is worked out in full detail as it lays the foundation for the
subsequent proofs. Before doing so, we introduce the H-coefficient technique in Section 6.1.

6.1 H-Coefficient Technique
We present below the H-Coefficient technique by Patarin [Pat91,Pat08], as modernized
by Chen and Steinberger [CS14]. Consider two collections of oracles WI and WR, and an
adversary A that aims to distinguish between WI and WR. We summarize the interaction
between A and the world in a transcript, which contains tuples of query-responses. Consider
a partition of all the transcripts attainable in WI as T = TGOOD ∪ TBAD. If there exist
ϵ1, ϵ2 ≥ 0 such that

∀τ ∈ TGOOD,
Pr (A [WR] generates τ)
Pr (A [WI] generates τ) ≥ 1− ϵ1 ,

and Pr (A [WI] generates τ ∈ TBAD) ≤ ϵ2 ,

then,

∆A(WI ,WR) ≤ ϵ1 + ϵ2 .

We will use the H-coefficient technique in all subsequent proofs.

6.2 Proof of Theorem 2
Let A be a nonce-misuse adversary that makes at most N permutation queries, QE

encryption queries of at most ME blocks, and QD decryption queries of at most MD blocks,
as in the theorem statement. Our goal is to upper bound Advµ-m-auth

Ascon (A). We will adopt a
distinguishing game approach, i.e., consider the distinguishing game version of authenticity,
where the challenge decryption oracle is replaced by ⊥. Therefore, the adversary interacts
either with the real world WR, which gives access to

[(
Encp

Km
, Decp

Km

)µ

m=1 , p±
]
, or with

the ideal world WI , which gives access to
[(

Encp
Km

,⊥
)µ

m=1 , p±
]
. Without loss of generality,

we assume in all subsequent proofs that the associated data and plaintext provided as
input to the construction oracles are already padded, and if not, the construction oracles
return ⊥.

26

Transcript Notation. We define notation for the transcript that can be obtained from the
adversarial interaction with the different oracles. The transcript, named τ , is an ordered
list of tuples. Each tuple bookkeeps a query made to an oracle, and its structure depends
on the type of query:

• A forward (resp., inverse) permutation query with input X and output Y generates
the transcript element (X, Y, fwd) (resp., (X, Y, inv));

• An encryption query with user m, input (N, A, P), and output (C, T) generates the
transcript element (E, m, N, A, P, C, T);

• A decryption query with user m, input (N, A, C, T), and output P̃ generates the
transcript element (D, m, N, A, C, T, P̃).

Paths Notation. In both worlds, the encryption queries generate intermediate states
through permutation evaluations; in the real world, decryption queries also produce interme-
diate states. In order to label these states properly, let us define some notation. Any element
(O, m, N, A, B,−,−) ∈ τ is associated to a path, denoted by path = (O, m, N, A, B, 1).
Here B is equal to the plaintext blocks if O = E, or the ciphertext blocks if O = D. The
last element is a bit; it equals 1 if the path is final, so that the final key blinding has
been applied to the last permutation call. From path, we define inductively subpaths. We
say that path′ = (O′, m′, N ′, A′, B′, f ′) is a parent of path = (O, m, N, A, B, f) whenever
(O′, m′, N ′) = (O, m, N), f ′ = 0, and

• either A′ = A, |B′| = |B| − 1, and B′ = B [1 : |B′|],

• or B′ = B = ∅, |A′| = |A| − 1, and A′ = A [1 : |A′|].

The only paths without parents are of the form (O, m, N, ∅, ∅, 0), while all other paths have
a unique parent. Note that either path and path′ are both encryption paths (i.e., their first
element is E), or both decryption paths (i.e., their first element is D). For convenience,
given a construction query, the set defined by the path path associated with this query,
along with all ancestors of path, is referred to as the set of paths generated by that query.
Denote by P the set of all paths which are generated by all queries. According to the
inductive definition above, the number of encryption paths is equal to ME , the number of
decryption paths is equal to MD, and |P| = ME + MD. To illustrate this, consider the
example encryption query made in Figure 3, with input (m, N, (A1, . . . , Au), (P1, . . . , Pv)).
The final path associated to this encryption query is called path4, which is a child of path3,
which is itself a grandX-child of path2 for some X ≥ 0, which is itself a grandX’-child of
path1 for some X ′ ≥ 0, which has itself no parent.

Intermediate States. We can now effectively label the intermediate states generated
by permutation evaluations from encryption queries, and in the real world additionally
from decryption queries. We define two dictionaries Sin and Sout, with labels either
in P in the real world, or in the set of encryption paths in the ideal world. Given
path = (O, m, N, A, B, f), Sin[path] (resp., Sout[path]) corresponds to the input (resp.,
output) of the permutation evaluation made when doing a construction query with user m,
nonce N , after having absorbed the associated data blocks A, and having processed the
blocks B (to clarify, if path is an encryption path, those blocks are considered as being
added to the outer part of the state, while if path is a decryption path, the blocks overwrite
the outer parts of the state). In particular, if path = (O, m, N, A, P, 1), then Sin[path] must
include the key addition, and if path = (O, m, N, ∅, ∅, 0), then Sin[path] = IV ∥Km∥N .
Figure 3 illustrates Sin[path] and Sout[path] given our example encryption query.

We will specify a procedure to generate mock intermediate states in the ideal world,
but before that we need to introduce further notation to pinpoint the existing relationships

27

p p

· · ·

· · ·

p p

· · ·

· · ·

p p

IV

K

N

\

b−k−n

\

k

\

n

0∗∥K

A1 Au

0∗∥1

P1 C1 Pv−1 Cv−1 Pv Cv

10∗

K∥0∗ 0∗∥K

T

⌊·⌋t

\

r

\

c

\

r

\

c

\

r

\

c

\

r

\

c

\

|Pv|

\

r−|Pv|

\

c

\

t

\

c

Sout[path1]Sin[path1] Sout[path2]Sin[path2] Sout[path3]Sin[path3] Sout[path4]Sin[path4]

Figure 3: Illustration of intermediate states in the real world of an
encryption query. Assuming that the key is the one of user num-
ber m, in our example we have path1 = (E, m, N, ∅, ∅, 0), path2 =
(E, m, N, (A1, . . . , Au), ∅, 0), path3 = (E, m, N, (A1, . . . , Au), (P1, . . . , Pv−1), 0), and
path4 = (E, m, N, (A1, . . . , Au), (P1, . . . , Pv), 1).

between two intermediate states in the real world. First, we say that a decryption path
path = (D, m, N, A, C, f) is superseded by an encryption path path′ = (E, m, N, A, P, f)
associated to an encryption query (E, m, N, A′, P ′, C ′, T) ∈ τ if |P | = |C| and C = C ′[1 :
|C|]. Intuitively, this means that path gets the exact same user, nonce, and ciphertexts as
an encryption path path′, so that their intermediate states Sin[path] and Sin[path′] (resp.,
Sout[path] and Sout[path′]) must be the same. Let PS be the set of decryption paths that
are superseded.

Moreover, given two paths pathP and pathC, Sout[pathP] and Sin[pathC] must be related
whenever pathP is a parent of pathC, through the addition of constants, key material, and
data blocks. We define the function XorState (pathP, pathC) ∈ {0, 1}b for any parent-child
pair (pathP, pathC) ∈ P2, which handles the inner parts as follows:

XorState ((O, m, N, A, B, f), (O, m, N, A′, B′, f ′)) ={
0b−k∥Km if A = B = ∅

0b otherwise

}
⊕
{

0b−11 if A = A′, B = ∅
0b otherwise

}
⊕
{

0r∥Km∥0c−k if f ′ = 1
0b otherwise

}
.

Therefore, we have

Sin[pathC] c= Sout[pathP]⊕XorState (pathP, pathC) .

Before moving on, we need one last piece of notation. Let path = (O, m, N, A, P, f) ∈ P .
We define the set ValidXor (path) of b-bit elements. This set captures all the possible
values for the inner part of Sin[path′], for all potential child / superseded paths path′ of
path. It is defined as:

ValidXor (path) =

{0b} if f = 1 ,{
0∗∥Km, (0∗∥Km)⊕ (0∗∥1) ,

(0∗∥Km)⊕ (0∗∥1)⊕
(
0r∥Km∥0c−k

)}
if A = P = ∅ ,{

0b, 0∗∥1, (0∗∥1)⊕
(
0r∥Km∥0c−k

)}
if A ̸= ∅, P = ∅ ,{

0b,
(
0r∥Km∥0c−k

)}
if P ̸= ∅ .

Looking ahead, ValidXor (path) will be useful for the probability computation of BADm
a

in a query-wise fashion. An important remark for this upcoming bad event analysis is that
|ValidXor (path)| ≤ 3 always holds.

Mock Intermediate States. Our approach will be to establish an extended transcript
that releases the intermediate states associated to all construction queries. Therefore, we

28

define a procedure to generate mock intermediate states in the ideal world, in other words
define Sin[path] and Sout[path] for any decryption path path ∈ P . Those states mimic the
structure of Ascon-AE by using the intermediate states generated by the prior encryption
queries, the user keys (Km)µ

m=1, as well as some fresh randomness. The sampling procedure,
taking place at the end of the interaction, operates as follows:

• Sample Sout[path], for all path = (D, m, N, A, C, f) as follows:

– If path is superseded by an encryption path path′, then Sout[path]← Sout[path′];

– Else, Sout[path] $←− {0, 1}b;

• Then, sample Sin[path], for all path = (D, m, N, A, C, f) as follows:

– If P = A = ∅, then necessarily f = 0 and Sin[(D, m, N, ∅, ∅, 0)]← IV ∥Km∥N ;

– Else, path has necessarily a decryption parent path path′. Then:

∗ If C ̸= ∅, let C̃ be the last block of C. Then:

Sin[path]← C̃∥⌊XorState (path′, path)⊕ Sout[path′]⌋c ;

∗ Else, let Ã be the last block of A. Then:

Sin[path]←
(
Ã∥0c

)
⊕XorState (path′, path)⊕ Sout[path′] .

All these states are generated after the interactive phase. However, some of them might
use randomness from the non-interactive phase (e.g., the Sin[(D, m, N, ∅, ∅, 0)]s are fixed
by the user key Km). This sampling procedure generates MD − |PS| b-bit random states.

Extended Transcript. Now that the dictionaries Sin and Sout are defined for all labels in
P in both worlds, we can define the extended transcript τ̃ built from τ by adding elements
as follows:

• All permutation queries (X, Y, d) are kept untouched;

• A construction query tuple (O, m, N, B,−) ∈ τ is followed by tuples of the form
(path, Sin[path], Sout[path]) for all paths generated by the aforementioned query. If a
path repeats due to the nonce-misuse setting, the repeating tuples are removed from
the transcript. Moreover, any decryption path that is superseded by an encryption
path is removed from the transcript;

• At the end of τ̃ , a tuple containing the keys (K1, . . . , Kµ) is added.

Summarizing, from τ̃ we can reconstruct the list of all permutation queries (X, Y, d), the
user’s keys, the two dictionaries Sin and Sout, and the sets P and PS. This extended
transcript is released at the end of the interaction, right before the distinguisher outputs
its decision bit.

29

Bad Events. We introduce the following bad events:

ColKm
a : ∄=m1, m2 ∈ J1, µK such that Km1 = Km2 ;

GueKm
a : ∃m ∈ J1, µK, (X, Y, d) ∈ τ̃ such that X[b− k − n + 1 : b− n] = Km, or
∃m ∈ J1, µK, path′ = (m′, N ′, A′, P ′, f ′) ∈ P \ PS

such that (A′∥P ′ ̸= ∅) and Sin[(path′)][b− k − n + 1 : b− n] = Km ;
ColSm

a : ∄=path = (m, N, A, P, 0), path′ = (m′, N ′, A′, P ′, 0) ∈ P \ PS ,

∃δ ∈ ValidXor (path) , δ′ ∈ ValidXor (path′)
such that Sout[path]⊕ δ

c= Sout[path′]⊕ δ′ ;
GueSm

a : ∃(X, Y, d) ∈ τ̃ , path = (O, m, N, A, P, f) ∈ P \ PS, δ ∈ ValidXor (path)

such that
(

f = 0 and X
c= Sout[path]⊕ δ

)
or Y = Sout[path] ;

Decm
a : ∃(D, m, N, A, C, T, P̃) ∈ τ̃ such that ⌊Sout[(D, m, N, A, C, 1)]⌋t ⊕ ⌊Km⌋t = T , or
∃path ∈ P superseding (D, m, N, A, C, 1) with ⌊Sout[path]⌋t ⊕ ⌊Km⌋t = T ;

BADm
a : ColKm

a ∨GueKm
a ∨ColSm

a ∨GueSm
a ∨Decm

a .

The sub-/superscript in the bad events indicates the proof setting, where “m” indicates
that we are in the nonce-misuse resistance setting and “a” that we focus on authenticity.
(Here, we remark that upcoming proofs extend over this main proof, and so do their bad
events.) ColKm

a pinpoints collisions between two user keys, GueKm
a corresponds to the

event that the adversary guesses a user key via a permutation query, or indirectly via a
construction query. ColSm

a refers to the event that two potential intermediate states collide
on their inner parts, and GueSm

a corresponds to the adversary guessing an intermediate
(or potential future intermediate) state. Finally, Decm

a corresponds to the event that a
decryption query is rejected, but the corresponding intermediate state returns the tag that
was guessed by the adversary. This covers two situations, as outlined in the bad event: (i)
a decryption query with a tag T is made, but the corresponding mock final state generated
at the end of the interaction matches the tag, and (ii) a decryption query with a tag T is
made, but later the corresponding encryption is made and returns the tag T .

Probability of Good Transcripts. As long as BADm
a is not set, there are no collisions

between intermediate states, and no overlap exists between the permutation evaluations
stemming from construction queries and those from permutation queries. Consequently, by
the design of the sampling procedure in the ideal world, the intermediate states generated
in the ideal world adhere to the structure of the mode Ascon-AE. Moreover, ¬BADm

a
guarantees that the real world rejects all decryption queries. Therefore, every good
transcript which is reachable in the real world is also reachable in the ideal world, and
vice-versa.

Let τ̃ be a transcript that does not set BADm
a . In the real world, this transcript might

not induce exactly N + ME + MD permutation calls, as the permutation evaluations from
encryption and decryption queries might overlap.5 Let ℓE(τ̃), ℓD(τ̃) be such that, in the
real world, the encryption (resp., decryption) queries induce exactly ME − ℓE(τ̃) (resp.,
MD − ℓD(τ̃)) distinct permutation evaluations, and let ℓ(τ̃) = ℓE(τ̃) + ℓD(τ̃). We have

Pr (A [WR] generates τ̃) = 1
(2b)N+ME+MD−ℓ(τ̃)

1
(2k)µ .

5Indeed, the quantities ME and MD are defined separately, but do not account for potential repeated
permutation evaluations. For instance, if encryption query (E, m, N, A, P, C, T) is followed by a decryption
query (D, m, N, A, C∥C̃, T̃), then fresh permutation evaluations begin only from the moment of absorbing
C̃.

30

In the ideal world, the decryption queries do not generate permutation evaluations, and
the overlap between ME and MD impacts only the number of mock intermediate states.
Remarking that ℓ(τ̃) is the number of superseded decryption paths, a good transcript
induces ME + N distinct permutation evaluations, and MD − ℓ(τ̃) distinct random states
Sout[path]. Therefore,

Pr (A [WI] generates τ̃) = 1
(2b)N+ME

(2b)MD−ℓ(τ̃)
1

(2k)µ .

We therefore obtain

Pr (A [WR] generates τ̃)
Pr (A [WI] generates τ̃) =

(
2b
)
N+ME

(2b)MD−ℓ(τ̃)

(2b)N+ME+MD−ℓ(τ̃)
≥ 1 . (9)

Probability of BADm
a in the Ideal World. We do this evaluation in a query-wise

fashion, upper bounding on-the-fly the probability that any fresh permutation evaluation
or mock intermediate state triggers BADm

a . Permutation evaluations are considered in
the order they occur, while mock intermediate states are considered at the end. Let
i ∈ J1,ME +NK, and for an event Evt, Evt[i] denotes the probability that Evt is set after
i fresh permutation evaluations (coming either from permutation or encryption queries).
Let BADm

a [0] be ColKm
a , as this is the only event that can be set before any query from

the distinguisher. Therefore, BADm
a ∧ ¬BADm

a [ME + N] denotes the event that one of
the intermediate states generated after the interaction (i.e., by decryption queries that are
not superseded) sets BADm

a .
Let 1C[i] denote the indicator function equal to one if and only if the evaluation number

i is fresh and made in the context of a construction query (here, necessarily an encryption
query). Similarly, 1P[i] equals one if and only if the evaluation number i is fresh and made
from a permutation query. Note that whenever an encryption query (E, m, N, A, P, C, T) is
made, there can exist earlier decryption queries of the form (D, m, N, A, C, Tj ,⊥)j . Define
ηenc,dec[i] as follows:

• If evaluation i originates from a permutation query or an encryption query with a
non-final path, then ηenc,dec[i] = 0;

• Otherwise, let (E, m, N, A, P, C, T) ∈ τ be the associated encryption query, then
ηenc,dec[i] counts the number of (necessarily earlier) decryption queries of the form
(D, m, N, A, C, Tj ,⊥).

Since two encryption queries with the same user, nonce, associated data, but with different
plaintexts cannot have the same ciphertexts, one single decryption query cannot contribute
to increment two distinct ηenc,dec[i] and ηenc,dec[j]. Therefore, we have

∑ME+N
i=1 ηenc,dec[i] ≤

QD.
We break down the probability of BADm

a by using basic probability as follows:

1. BADm
a [0], or ColKm

a by definition;

2. BADm
a [i] for i ∈ J1,ME + NK, in more detail:

(a) GueKm
a [i], assuming ¬BADm

a [i− 1];
(b) Decm

a [i], assuming ¬BADm
a [i− 1] ∧ ¬GueKm

a [i];6

(c) ColSm
a [i], assuming ¬BADm

a [i− 1] ∧ ¬GueKm
a [i] ∧ ¬Decm

a [i];
(d) GueSm

a [i], assuming ¬BADm
a [i− 1] ∧ ¬GueKm

a [i] ∧ ¬Decm
a [i] ∧ ¬ColSm

a [i];
6Note that, although Decm

a involves a decryption query, any permutation evaluation that triggers this
bad event during the interactive phase comes from an encryption query.

31

3. BADm
a after the interaction, which is equivalent to BADm

a assuming ¬BADm
a [ME +

N].

Case 2 can be set only with intermediate states from encryption queries while case 3
involves additionally intermediate states from decryption queries.

Case 1. Let us start with the bounding of case 1. We have

Pr (BADm
a [0]) = Pr (ColKm

a) ≤ µ(µ− 1)
2k+1 . (10)

Case 2. In the following, let i ∈ J1,ME +NK. We first focus on the conditioned GueKm
a [i]

probability of case 2a. In order to set this event, the adversary must be able to guess one
of the µ uniform random keys, either via a direct permutation call, or via a permutation
evaluation made from an encryption query. In the second case, we can out of generosity for
this event only assume that the adversary has full control on the input of the intermediate
states. Moreover, each failed guess eliminates µ elements in {0, 1}k from the set of candidate
keys. Therefore,

Pr (GueKm
a [i] | ¬BADm

a [i− 1]) ≤ (1P[i] + 1C[i]) µ

2k − µ (ME + N)

≤ (1P[i] + 1C[i]) 2µ

2k
, (11)

where we used that µ (M + N) ≤ 2k−1.
Regarding the conditioned Decm

a [i] of case 2b, this event during the interactive phase
can be set only during the generation of a final state of an encryption query. Those
aforementioned states are sampled uniformly in a permutation-consistent way, added to
the key, and truncated before output. The keys are uniformly random and hidden from
the adversary, and there are by definition ηenc,dec[i] candidate tags to hit. Therefore,

Pr (Decm
a [i] | ¬BADm

a [i− 1] ∧ ¬GueKm
a [i]) ≤ ηenc,dec[i] 1

2t
. (12)

Then, we focus on the conditioned ColSm
a [i] probability in case 2c. This event can

be set only by an evaluation from an encryption query. Let path ∈ P be the associated
encryption path. Assuming ¬BADm

a , the state Sout[path] is sampled uniformly at random
from a set of size at least 2b −ME −N. Therefore, the probability that Sout[path] collides
on its inner part with any other state Sout[path′], modulo XORing key material or the
domain separator bits (captured by the presence of δ and δ′), can be upper bounded by

1C[i] 9 · 2r ·ME

2b −ME −N
,

where we used that |ValidXor (path)| ≤ 3. Therefore,

Pr (ColSm
a [i] | ¬BADm

a [i− 1] ∧ ¬GueKm
a [i] ∧ ¬Decm

a [i]) ≤ 1C[i] 18ME

2c
, (13)

where we used that ME + N ≤ 2b−1.
Then, let us focus on the conditioned GueSm

a [i] from case 2d. First, if the evaluation
number i comes from a permutation query (X, Y, d) ∈ τ , then for every existing intermediate
state Sin[path] and Sout[path], we evaluate the probability that the query (X, Y, d) paired
with the state sets BADm

a , and count the number of candidate states to be guessed:

• If d = fwd (resp., d = inv), then the state Y (resp., X) is sampled uniformly at
random from a set of size at least 2b−ME −N, thus it collides with a Sout[path]⊕ δ

32

on its inner part with probability at most 3·2r

2b−ME−N
. There are at most ME such

states, thus we get a probability at most

1P[i] 6ME

2c
,

where we used that ME + N ≤ 2b−1. From now on, we consider the other cases,
where the direction of the permutation aligns with the state to guess;

• If the state to guess is of the form Sout [(E, m, N, A, P, 1)], then conditioned on
¬BADm

a [i−1], this state is sampled uniformly from a set of size at least 2b−ME−N.
The outer b − t bits are completely hidden from the adversary. The rightmost t
bits are added to ⌊Km⌋t before being returned as tag. Since the keys are random
and hidden, access to those t bits is of no help for the adversary. The total number
of distinct states Sout [(E, m, N, A, P, 1)] is upper bounded by QE . Therefore, this
event is set with probability at most

1P[i] QE

2b −ME −N
≤ 1P[i] 2QE

2b
,

where we used that ME + N ≤ 2b−1;

• Otherwise, the state to guess is an internal state (either the output of the first
permutation evaluation, the input of the last permutation evaluation, or any input
or output of a middle permutation evaluation). Since the adversary is allowed to
repeat nonces, we can without loss of accuracy in the bounding assume that the
states have their outer part set to a value of the adversary’s choice, thus we consider
equality on the inner part. Each of the states is sampled uniformly from a set of
size at least 2b −ME − N, and as long as ¬BADm

a [i − 1] holds, their inner part
remains secret from the adversary. There are at most 3 (ME −QE) states concerned
(including potential future states), thus we obtain a probability at most

1P[i] 3 (ME −QE) · 2r

2b −ME −N
≤ 1P[i] 6 (ME −QE)

2c
,

where we used that ME + N ≤ 2b−1.

Then, if the evaluation number i comes from an encryption query and is associated to a
path path, in all cases the bad event can be triggered only by the randomness of Sout[path].
There are at most 3 different possible values for δ, and Sout[path] is sampled uniformly at
random from a set of size at least 2b−ME−N. Therefore, this event is set with probability
at most

1C[i] 6N2c
,

where we used that ME + N ≤ 2b−1. Therefore,

Pr (GueSm
a [i] | ¬BADm

a [i− 1] ∧ ¬GueKm
a [i] ∧ ¬Decm

a [i] ∧ ¬ColSm
a [i])

≤ 1P[i] 12ME

2c
+ 1C[i] 6N2c

. (14)

Case 3. Finally, we can focus on the conditioned bad event in case 3. Because ¬BADm
a [ME+

N] holds, then in order to be set, the bad event necessarily involves an intermediate state
Sout[path], for path a decryption path not superseded. The inner part of these states are
sampled uniformly at random, with at most MD such states in total. We evaluate all
sub-events as follows:

33

• ColKm
a : this event cannot be set after the interaction;

• GueKm
a : this event is set with probability at most 2µMD

2k , where we used that
µ (N + M) ≤ 2k−1;

• ColSm
a : this event is set with probability at most 9MD(ME+MD)

2c ;

• GueSm
a : this event is set with probability at most 6MDN

2c ;

• Decm
a : this event is set with probability at most QD

2t .

Therefore,

Pr (BADm
a | ¬BADm

a [ME + N]) ≤ 2µMD

2k
+ 9MD(ME + MD)

2c
+ 6MDN

2c
+ QD

2t
. (15)

Conclusion. By combining the conditioned probabilities of (10) to (15), we obtain

Pr (BADm
a) ≤ µ(µ− 1)

2k+1 + 2µ (M + N)
2k

+ 18M (M + N)
2c

+ 2QD

2t
.

We obtained an upper bound for the probability that the ideal world generates a bad
transcript. Using the H-coefficient technique, and the fact that the ratio of good transcript
is lower-bounded by one (cf., (9)), we conclude. □

6.3 Proof of Theorem 3
Authenticity in the nonce-misuse resilience setting is implied by authenticity in the nonce-
misuse setting (i.e., Theorem 2). This proof is therefore dedicated to confidentiality. This
proof will re-use a significant part of the notation defined in Section 6.2, and we will
explicitly highlight the adaptations made here.

Let A be an adversary that makes at most N permutation queries, and QE encryption
queries of at most ME blocks, as in the theorem statement. Our goal is to upper bound
Advµ-mr-conf

Ascon (A). The adversary interacts either with the real world WR, which gives
access to

[(
Encp

Km
, Encp

Km

)µ

m=1 , p±
]
, or with the ideal world WI , which gives access to[(

Encp
Km

, $m

)µ

m=1 , p±
]
. A may misuse nonces with the queries to O1,m, but not with

O2,m. We will refer to a query to O2,m as a challenge query, and to O1,m as a learning
query. Let ME,C be the data complexity of challenge queries, and ME,L the one of learning
queries, so that ME = ME,C + ME,L.

Transcript Notation. We define below notation for the transcript τ :

• A forward (resp., inverse) permutation query with input X and output Y generates
the transcript element (X, Y, fwd) (resp., (X, Y, inv));

• A challenge encryption query with user m, input (N, A, P), and output (C, T)
generates the transcript element (EC , m, N, A, P, C, T);

• A learning encryption query with user m, input (N, A, P), and output (C, T) generates
the transcript element (EL, m, N, A, P, C, T).

34

Paths and Intermediate States. We will re-use the path notation from Section 6.2.
This time, all construction queries are encryption queries, so that the paths take the
form path = (O, m, N, A, P, f) ∈ P, where O = EC if the associated query is a challenge
query, otherwise O = EL. Thanks to the fact that the queries to O1,m and O2,m do not
have overlapping nonces, a challenge path cannot be the parent of a learning path, and
vice-versa. Because the queries to the challenge oracle are nonce-respecting, each challenge
path can have at most one child. We define the dictionaries Sin and Sout similarly to
Section 6.2. The labels of the dictionaries are in P in the real world, or the set of learning
paths in the ideal world.

Mock Intermediate States. Again, our approach will be to establish an extended
transcript that releases the intermediate states associated to all construction queries.
Therefore, we define in the following a procedure to generate mock intermediate states in
the ideal world for Sin[path] and Sout[path] for any challenge path path. The sampling
procedure, taking place at the end of the interaction, operates as follows:

• Sample Sin[path], for all path = (EC , m, N, A, P, f) as follows:

– If P = A = ∅, then necessarily f = 0 and Sin[path]← IV ∥Km∥N ;

– Else, if P = ∅, then Sin[path] $←− {0, 1}b;
– Else, let l ∈ N be the length of P , find the (unique) encryption query with user

m and nonce N , get the ciphertext block number l (name it Cl), and sample
Z

$←− {0, 1}c. Then: Sin[path]← Cl∥Z;

• Then, sample Sout[path], for all path = (EC , m, N, A, P, f) as follows:

– If f = 1, the existence of such a path means that there exists (EC , m, N, A, P, C, T) ∈
τ . Then, sample Z

$←− {0, 1}b−t, and: Sout[path]← Z∥ (⌊Km⌋t ⊕ T);
– Otherwise, let pathC = (m, N, A′, P ′, f ′) be the (necessarily unique) child of

path, and let B ∈ {0, 1}r be the last block of A′∥P ′, then:

Sout[path]← (B∥0c)⊕XorState (path, pathC)⊕ Sin[pathC] .

All of these states are generated after the interactive phase. However, some of them might
use randomness from the non-interactive phase (e.g., the Sin[(EC , m, N, ∅, ∅, 0)] are fixed
by the user key Km, and the Sout[(EC , m, N, A, P, 1)] have their rightmost t bits set by
the encryption query output, along with the key Km).

Extended Transcript. Now that the dictionaries Sin and Sout are defined for all labels
in P in both worlds, we can define the extended transcript τ̃ built from τ by replacing
adding elements as follows:

• All permutation queries (X, Y, d) are kept untouched;

• An encryption query tuple (O, m, N, A, P, C, T) ∈ τ is now followed by tuples of the
form (path, Sin[path], Sout[path]) for all path generated by (m, N, A, P). If some
paths repeat (due to the nonce-misuse setting), then the duplicates are removed
from the transcript;

• At the end of τ̃ , a tuple containing the keys (K1, . . . , Kµ) is added.

Summarizing, from τ̃ we can reconstruct the two dictionaries Sin and Sout, the set P, the
list of all permutation queries (X, Y, d), and the user’s keys. This transcript is released at
the end of the interaction, right before the distinguisher outputs its decision bit.

35

Bad Events. We will re-use the bad events defined in Section 6.2, except Dec, which
does not apply there. In order to completely inherit the notation from this section, let us
define PS = ∅. The bad events are as follows:

ColKmr
c : ColKm

a (of Section 6.2) ; GueKmr
c : GueKm

a (of Section 6.2) ;
ColSmr

c : ColSm
a (of Section 6.2) ; GueSmr

c : GueSm
a (of Section 6.2) ;

BADmr
c : ColKmr

c ∨GueKmr
c ∨ColSmr

c ∨GueSmr
c .

Probability of Good Transcripts. As in Section 6.2, the absence of BADmr
c guarantees

that the intermediate states generated in the ideal world are consistent with the structure
of the mode Ascon-AE. Therefore, every transcript which is reachable in the real world is
also reachable in the ideal world, and vice-versa. Let τ̃ be a transcript that does not set
BADmr

c . In the real world, this transcript induces N + ME,L + ME,C permutation calls
and µ keys, thus

Pr (A [WR] generates τ̃) = 1
(2b)N+ME,L+ME,C

1
(2k)µ .

In the ideal world, this transcript induces N + ME,L permutation calls, ME,C random
values, and µ keys. Therefore,

Pr (A [WI] generates τ̃) = 1
(2b)N+ME,L

(2b)ME,C

1
(2k)µ .

Therefore,

Pr (A [WR] generates τ̃)
Pr (A [WI] generates τ̃) =

(
2b
)
N+ME,L

(2b)ME,C

(2b)N+ME,L+ME,C

≥ 1 . (16)

Probability of BADmr
c in the Ideal World. This will be done in a query-wise fashion,

similarly to Section 6.2. In the ideal world, the only encryption queries that trigger
permutation evaluations are learning queries. Let i ∈ J0,ME,L + NK, and denote by
BADmr

c [i] the probability that BADmr
c is set after i fresh permutation evaluations

(coming either from permutation or learning construction queries). Here, as before,
BADmr

c [0] = ColKmr
c .

By basic probability, we have

Pr (BADmr
c) ≤ Pr (BADmr

c [ME,L + N])
+ Pr (BADmr

c | ¬BADmr
c [ME,L + N]) . (17)

We remark that the bounding of the query-wise event BADmr
c [ME,L + N] can be

performed the same way as in the proof from Section 6.2, the differences being that
(i) at most ME,L permutation evaluations from encryption queries are made during the
interactive phase (as opposed to ME in Section 6.2), and (ii) the bad event Dec does not
apply here. Therefore,

Pr (BADmr
c [ME,L + N])

≤ µ(µ− 1)
2k+1 + 2µ (ME,L + N)

2k
+ 18 (ME,L)2

2c
+ 18ME,LN

2c
. (18)

The bad events in the second term appearing in (17) can also be upper bounded the same
way, noticing again that this phase involves ME,C fresh intermediate states (and not MD).
This time, the intermediate states have their entire b bits generated randomly, but since

36

the bad events are defined only on the inner part, we can use the same bounding technique.
We obtain

Pr (BADmr
c | ¬BADmr

c [ME,L + N])

≤ 2µME,C

2k
+ 9ME,C(ME,L + ME,C)

2c
+ 6ME,CN

2c
. (19)

Finally, combining (18) and (19) into (17), we obtain

Pr (BADmr
c) ≤ µ(µ− 1)

2k+1 + 2µ (ME + N)
2k

+ 18ME (ME + N)
2c

.

We obtained an upper bound for probability that the ideal world generates a bad transcript.
Using the H-coefficient technique, and the fact that the ratio of good transcript is lower-
bounded by one (cf., (16)), we conclude. □

6.4 Proof of Theorem 4
We consider authenticity in Section 6.4.1 and confidentiality in Section 6.4.2.

6.4.1 Authenticity

Let A be an adversary that makes at most N permutation queries, QE encryption queries
of at most ME blocks, and QD decryption queries of at most MD blocks, as in the theorem
statement. Our goal is to upper bound Advµ-lr-auth

Ascon,L (A), for any set of leakage functions that
do not leak any information about the two outer permutation calls during the initialization
and finalization phases. We therefore assume maximal leakage, so that the leakage function
leaks all inner permutation calls. The adversary interacts either with the real world WR,
which gives access to

[([
Encp

Km

]
L

, Encp
Km

,
[
Decp

Km

]
L

, Decp
Km

)µ

m=1
, p±

]
, or with the

ideal world WI , which gives access to
[([

Encp
Km

]
L

, Encp
Km

,
[
Decp

Km

]
L

,⊥
)µ

m=1
, p±

]
.

The adversary must be nonce-respecting with its queries to O2,m. The oracles O1,m

and O3,m will be referred to as the leaky oracles, while the oracles O2,m and O4,m will
be referred to as the challenge oracles. Although O2,m does not produce real-or-random
strings, we still categorize it as a challenge oracle because the nonces used with O2,m can
be re-used with the decryption oracle O4,m. To accurately track the adversarial resources,
we refine the online complexity (Q,M) as follows: it is split into the queries to the challenge
oracles (QC ,MC) and queries to the leaky oracles (QL,ML). These are further divided into
encryption and decryption queries, with the symbols D or E prepended to the subscript.
For example, (QE,L,ME,L) represents the online complexity of queries made to the leaky
encryption oracle.

Transcript Notation. We define below a notation for the transcript τ :

• A forward (resp., inverse) permutation query with input X and output Y generates
the transcript element (X, Y, fwd) (resp., (X, Y, inv));

• A leaky query with user m generates the following transcript elements:

– If the query is an encryption query with input (N, A, P), and output (C, T),
the element (EL, m, N, A, P, C, T) is added to the transcript;

– If the query is a decryption query with input (N, A, C, T), and output P̃ , the
element (DL, m, N, A, C, T, P̃) is added to the transcript;

37

– An element (X, Y, cons), for all inner permutation evaluations made with input
X and output Y from the construction. In other words, all permutation
evaluations are added to the transcript, except the two extreme ones;

• A query to the challenge encryption oracle with user m, input (N, A, P), and output
(C, T), generates the transcript element (EC , m, N, A, P, C, T);

• A query to the challenge decryption oracle with user m, input (N, A, C, T), and
output P̃ , generates the transcript element (DC , m, N, A, C, T, P̃).

Paths and Intermediate States. We adapt the path notation from Section 6.2 as follows:
• The paths generated by the challenge queries inherit the inductive path definition

from Section 6.2, with one administrative modification: the very first element of the
path is adjusted to distinguish it as a challenge path. In detail, a challenge path
takes the form path = (O, m, N, A, B, f), where O = EC if the associated query
is an encryption query, and O = DC if the associated query is a decryption query.
Denote by PC the set of paths generated by this procedure, and let PS be the set of
decryption paths in PC that are superseded;

• A leaky query (O, m, N, A, B,−) ∈ τ with O ∈ {EL, DL} generates exactly two
paths: (O, m, N, ∅, ∅, 0) and (O, m, N, A, B, 1). All other intermediate states are
given to the adversary and treated as direct permutation queries in the transcript.
Let PL be the set of paths generated by leaky construction queries.

Let P = PL ∪ PC be the set of all paths generated by construction queries. We define the
dictionaries Sin and Sout as in Section 6.2, with labels in P in the real world. In the ideal
world, however, the challenge decryption paths are (not yet) present. We stress that the
leaked intermediate states (X, Y, cons) are absent in the set of paths P.

Mock Intermediate States. Again, we aim to establish an extended transcript that
releases the intermediate states, hence we need to specify a procedure to sample Sin[path]
and Sout[path] for any challenge decryption path path. The procedure is the same as the
one defined in Section 6.2, and we can safely ignore leaky paths, since they do not have
overlapping nonces.

Extended Transcript. Now that the dictionaries Sin and Sout are defined for all keys in
P in both worlds, we can define the extended transcript τ̃ built from τ as follows:

• All permutation evaluations from permutation queries or from leaky construction
queries (X, Y, d) are kept untouched, except that if a tuple (X, Y) repeats, then it is
removed from τ̃ ;

• A challenge construction query (O, m, N, A, P, C, T) ∈ τ is now followed by tuples of
the form (path, Sin[path], Sout[path]) for all paths descendant of the aforementioned
query. If some paths repeat (due to the nonce-misuse setting, or if a decryption path
is superseded by a challenge encryption path), then the duplicates are removed from
the transcript;

• A leaky construction query (O, m, N, A, P, C, T) ∈ τ is now followed by tuples of
the form (path, Sin[path], Sout[path]), for the two elements path generated by the
aforementioned query. Again, if some paths are redundant, then the duplicates are
removed from the transcript;

• At the end of τ̃ , a tuple containing the keys (K1, . . . , Kµ) is added.
This transcript is released at the end of the interaction, right before the distinguisher
outputs its decision bit.

38

Bad Events. We introduce the following bad events:

ColKlr
a : ColKm

a (of Section 6.2) ; GueKlr
a : GueKm

a (of Section 6.2) ;
Declr

a : ∃(DC , m, N, A, C, T, P̃) ∈ τ̃ such that ⌊Sout[(DC , m, N, A, C, 1)]⌋t ⊕ ⌊Km⌋t = T , or
∃path ∈ P superseding (DC , m, N, A, C, 1) with ⌊Sout[path]⌋t ⊕ ⌊Km⌋t = T ;

ColSlr
a : ∄=path ∈ PC \ PS, path′ ∈ P \ PS

such that Sin[path] c= Sin[path′] or Sout[path] c= Sout[path′] ;
GueSlr

a : ∃(X, Y, d) ∈ τ̃ , path ∈ P \ PS such that X
c= Sin[path] or Y

c= Sout[path] ;
BADlr

a : ColKlr
a ∨GueKlr

a ∨ColSlr
a ∨GueSlr

a ∨Declr
a .

Compared to the bad events from Section 6.2, ColSlr
a now only considers collisions involving

a challenge intermediate state. Moreover, GueSlr
a has been adjusted to account for the

fact that not all intermediate states are added to the set P. Finally, Declr
a accounts for

the fact that the decryption queries are clearly distinguished as challenge queries, though
this adjustment is purely administrative.

Probability of Good Transcripts. The absence of BADlr
a prevents the ideal world from

generating states which do not adhere to the structure of the Ascon-AE mode. In addition,
the absence of BADlr

a (or, more precisely, of Declr
a) in the real world prevents the

challenge decryption oracle from returning a string P̃ different from ⊥. Therefore, every
good transcript which is reachable in the real world is also reachable in the ideal world,
and vice-versa. Let τ̃ be a good transcript. Such a transcript induces a certain number
of permutation evaluations from the queries to the leaky oracles and the permutation
queries. These evaluations do not overlap with evaluations from the challenge oracles, and
the count is identical in both the real and ideal worlds. Moreover, in the real world, the
challenge queries induce MD,C + ME,C − |PS| additional permutation evaluations, while
in the ideal world this induces ME,C additional permutation evaluations and MD,C − |PS|
random b-bit states. Therefore, similarly to Section 6.2, we have

Pr (A [WR] generates τ̃)
Pr (A [WI] generates τ̃) ≥ 1 . (20)

Probability of BADlr
a in the Ideal World. We will again use a query-wise approach

to evaluate the probability to set BADlr
a . The number of permutation evaluations done

during the interactive phase is at most ME + MD,L + N. Let i ∈ J0,ME + MD,L + NK.
We will re-use the notation ηenc,dec[i] from Section 6.2. Since part of the leaky evaluations
is treated the same way as permutation queries, we refine the indicator functions 1C[i] and
1P[i] into the following functions:

• 1P,CL[i] is equal to 1 if and only if the evaluation number i is fresh, and (i) either the
evaluation is from a direct permutation query, or (ii) the evaluation comes from a
leaky construction evaluation. CL stands for “construction leaky”. The total number
of is setting this function to 1 is the number of tuples (X, Y, d) in the extended
transcript, thus at most N + ML −QL;

• 1C,KB[i] is equal to 1 if and only if the evaluation number i is fresh, and comes from
a construction evaluation during the leftmost or rightmost permutation evaluation.
1C,KB[i] is itself refined into 1C,KBI[i] and 1C,KBF[i], for respectively the initial and the
final evaluation. Each of these functions is set to 1 by at most QE + QD,L different
indexes. KBI and KBF stand for respectively “initial key blinding” and “final key
blinding”;

39

• 1CH[i] is equal to 1 if and only if the permutation evaluation number i is fresh, and
originates from an internal state generated during a challenge permutation query
(excluding thus the key blindings). Thanks to the nonce-respecting setting, the
number of is that set this function to 1 is at most ME,C − 2QE,C .

We will derive two distinct bounds, with the second involving an additional auxiliary event,
which helps to manage inner collisions. Depending on the adversarial resources, the tighter
of the two bounds will apply.

Probability of BADlr
a in the Ideal World, First Bound. In this bounding, we evaluate

BAD1lr
a := BADlr

a , without an additional auxiliary event. We break down the probability
of BAD1lr

a by using basic probability as follows:

1. BAD1lr
a [0], or ColKlr

a by definition;

2. BAD1lr
a [i] for i ∈ J1,ME + MD,L + NK, in more detail:

(a) GueKlr
a [i], assuming ¬BAD1lr

a [i− 1];
(b) GueSlr

a [i], assuming ¬BAD1lr
a [i− 1] ∧ ¬GueKlr

a [i];
(c) ColSlr

a [i], assuming ¬BAD1lr
a [i− 1] ∧ ¬GueKlr

a [i] ∧ ¬GueSlr
a [i];

(d) Declr
a [i], assuming ¬BAD1lr

a [i− 1] ∧ ¬GueKlr
a [i] ∧ ¬ColSlr

a [i] ∧ ¬GueSlr
a [i];

3. BAD1lr
a at the end of the interaction, which is equivalent to BAD1lr

a assuming
¬BAD1lr

a [ME + MD,L + N].

Cases 1, 2a, 2d, and 3 can be upper bounded the same way as in Section 6.2, so that

Pr
(

BAD1lr
a [0]

)
≤ µ(µ− 1)

2k+1 , (21)

Pr
(

GueKlr
a [i] | ¬BAD1lr

a [i− 1]
)
≤ (1P,CL[i] + 1CH[i] + 1C,KBF[i]) 2µ

2k
, (22)

Pr
(

Declr
a [i] | ¬BAD1lr

a [i− 1] ∧ ¬GueKlr
a [i] ∧ ¬ColSlr

a [i] ∧ ¬GueSlr
a [i]

)
≤ ηenc,dec[i] 1

2t
, (23)

Pr
(

BAD1lr
a | ¬BAD1lr

a [ME + MD,L + N]
)
≤ 2µMD,C

2k
+ QD,C

2t

+ 2MD,C (M + N)
2c

. (24)

where we used that µ (N + M) ≤ 2k−1. Now, we have two cases left.

Case 2b. We focus on the conditioned GueSlr
a [i]. If the evaluation is from a permutation

query or a leaky internal state evaluation, it can target either an input/output of a
leftmost/rightmost permutation call, or a challenge intermediate state. For challenge
intermediate states, using that the inner part of challenge intermediate states is secret and
hidden from the adversary, we obtain a probability of at most

1P,CL[i] 4ME,C

2c
,

where we used that M + N ≤ 2b−1. For the key blinding input/outputs, the adversary has,
in the best case, access to the input of the evaluation before the key additions and the
output after the key additions. It therefore remains to guess the state after key addition.7

7For the output of the rightmost key blinding, we take a lossy step here.

40

There are 3 different places where the key blinding is applied,8 thus in total at most
3(QE + QD,L) states to be guessed. Therefore, this event is set with a probability of at
most

1P,CL[i] 6 (QE + QD,L)
2k

,

where we used that Q (M + N) ≤ 2k−1. Else, if the evaluation i is from an internal state
evaluation due to a challenge query, we obtain a probability of at most

1CH[i] 4 (N + ML −QL)
2c

,

where we used that M + N ≤ 2b−1. Else, if the evaluation i is from a construction query
during the leftmost or rightmost evaluation, we obtain a probability of at most

1C,KB[i] 4 (N + ML −QL)
2k

,

where we used that Q (M + N) ≤ µ2k−1. Therefore,

Pr
(

GueSlr
a [i] | ¬BAD1lr

a [i− 1] ∧ ¬GueKlr
a [i]

)
≤ 1P,CL[i] 4ME,C

2c

+ 1CH[i] 4 (N + ML −QL)
2c

+ 1P,CL[i] 6 (QE + QD,L)
2k

+ 1C,KB[i] 4 (N + ML −QL)
2k

. (25)

Case 2c. We focus on the conditioned ColSlr
a [i]. With this event, only collisions with a

challenge intermediate state matter. Those states have a secret inner part, and can be
evaluated similarly to the conditioned GueSlr

a [i]. Therefore,

Pr
(

ColSlr
a [i] | ¬BAD1lr

a [i− 1] ∧ ¬ColKSlr
a [i] ∧ ¬GueSlr

a [i]
)

≤ 1C,KB[i] 4ME,C

2c
+ 1CH[i]

(
6QL

2c
+ 4ME,C

2c

)
, (26)

where we used M + N ≤ 2b−1.
Combining (21) to (26), and simplifying the bounds with constant factor losses, we

obtain

Pr
(

BAD1lr
a

)
≤ µ(µ− 1)

2k+1 + 2µ (N + M)
2k

+ 14Q (N + M)
2k

+ 2QD

2t
+ 18M (M + N)

2c
.

(27)

Probability of BADlr
a in the Ideal World, Second Bound. We introduce the following

auxiliary bad event Innerlr
a , set whenever there exists i ∈ J1,ME + MD,L + NK such that

the output of the evaluation i collides on its inner part with a prior permutation evaluation
input or output.

Let BAD2lr
a = BADlr

a ∨ Innerlr
a , we will evaluate the probability of BAD2lr

a . Let

8Note that due to the absence of GueKlr
a [i], the event can never be set with the input of the leftmost

permutation call.

41

i ∈ J0,ME + MD,L + NK. We introduce the following random variables:

ΘKBI[i] = max
Z∈{0,1}c−k

∣∣{path = (m, N, ∅, ∅, 0) ∈ P[1 : i] | ∃p (Sin[path]) in forward direction

such that Sout[path][c + 1 : c− k] = Z
}∣∣ ,

ΘKBF[i] = max
Z∈{0,1}c−k

∣∣∣{(X, Y, d) ∈ τ̃ [1 : i] | d ∈ {fwd, cons} and ⌊Y ⌋c−k = Z
}

∪
{

path = (m, N, ∅, ∅, 0) ∈ P[1 : i] | ∃p (Sin[path]) in forward direction

such that ⌊Sout[path]⌋c−k = Z
}∣∣∣ ,

where we abuse notation with P [1 : i] to denote the set of path descendants of the queries
made up to and including the evaluation number i.

Moreover, let ΘKBI and ΘKBF denote respectively ΘKBI[N+ME +MD,L] and ΘKBF[N+
ME + MD,L]. The variable ΘKBI counts the maximal size of multicollisions on the middle
c − k bits made from the first permutation evaluation in the construction queries. The
variable ΘKBF counts the maximal size of multicollisions on the lowest c − k bits, over
(almost) all permutation evaluations made in the forward direction. It is constructed from
two sets: one that gathers the states generated from challenge queries or construction queries
with a single plaintext/ciphertext block, and another one that gathers forward permutation
queries and leaky permutation evaluations. All forward permutation evaluations are
included since they can potentially be presented as input to the final permutation evaluation.
Looking ahead, since Innerlr

a is included in the bad events, this means that, as long as
BAD2lr

a does not occur, the internal states generated from construction queries are
only from forward permutation evaluations, and we can use ΘKBI and ΘKBF to tame
multicollisions. We thus have

Ex (ΘKBI) ≤ mucol
(
Q, 2c−k

)
, Ex (ΘKBF) ≤ mucol

(
M + N, 2c−k

)
. (28)

We will evaluate the probability of BAD2lr
a . Again, we break down the probability of

BAD2lr
a using basic probabilities as follows:

1. BAD2lr
a [0]: same bounding as (21);

2. BAD2lr
a [i], for all i ∈ J1,N + ME + MD,LK, we evaluate:

(a) GueKlr
a [i], assuming ¬BAD2lr

a [i− 1]: same bounding as (22);
(b) Innerlr

a [i], assuming ¬BAD2lr
a [i−1]∧¬GueKlr

a [i]∧¬ColKSlr
a [i]: the reasoning

and bounding is done later in (29);
(c) GueSlr

a [i] ∧ ¬BAD2lr
a [i − 1] ∧ ¬Innerlr

a [i] ∧ ¬GueKlr
a [i]: the reasoning and

bounding is done later in (31);
(d) ColSlr

a [i], assuming ¬BAD2lr
a [i− 1]∧¬GueKlr

a [i]∧¬Innerlr
a [i]∧¬GueSlr

a [i]:
same bounding as (26);

(e) Declr
a [i], assuming ¬BAD2lr

a [i− 1]∧¬GueKlr
a [i]∧¬Innerlr

a [i]∧¬ColSlr
a [i]∧

¬GueSlr
a [i]: same bounding as (23);

3. BAD2lr
a at the end of the interaction, which is equivalent to BAD2lr

a assuming
¬BAD2lr

a [N + ME + MD,L]: Innerlr
a cannot be set at the end of the interaction,

and the same bound as (24) can be derived.

We are left with two cases.

Case 2b. We start to evaluate the conditioned Innerlr
a [i]. This corresponds to the

probability that a b-bit string generated in a permutation-consistent way collides on its

42

inner part with another b-bit string:

Pr
(

Innerlr
a [i] | ¬BAD2lr

a [i− 1] ∧ ¬GueKlr
a [i] ∧ ¬ColKSlr

a [i]
)

≤ (1P,CL[i] + 1C,KB[i]) 4(i− 1)
2c

, (29)

where we used that M + N ≤ 2b−1.

Case 2c. We then evaluate the event GueSlr
a [i]∧¬BAD2lr

a [i−1]∧¬Innerlr
a [i]∧¬GueKlr

a [i].
We will introduce the multicollision random variables ΘKBI and ΘKBF only during the
sub-case that requires it, which is the reason why we did not switch to conditioned
probabilities directly. If the ith evaluation is from a permutation query or a leaky internal
state evaluation, we upper bound the probability that the evaluation guesses correctly one
of the following states:

• A state that is input of the leftmost key blinding: this case has already been handled
with the bad event GueKlr

a [i];

• A state that is output of the leftmost key blinding: the states in question are XORed
with the keys before being leaked, and we can use multicollisions on the middle
c− k bits, since the key blinding evaluations are made in the forward direction. Let
θKBI ∈ N, then conditioned on ΘKBI[i] = θKBI, this event is set with probability at
most

1P,CL[i] 2θKBI

2k
;

• A state that is input of the rightmost key blinding: the same reasoning applies here.
Let θKBF ∈ N, then conditioned on ΘKBF[i] = θKBF, this event is set with probability
at most

1P,CL[i] 2θKBF

2k
;

• A challenge intermediate state, or output of the rightmost key blinding: the states
in question are sampled uniformly and remain secret from the adversary. Therefore,
this event is set with probability at most

1P,CL[i] 4 (ME,C −QE,C + QL)
2c

.

On the other hand, if the ith evaluation is from an internal evaluation due to a challenge
query, the event is set with a probability of at most

1CH[i] 4 (N + ML −QD,L)
2c

.

If the ith evaluation corresponds to a construction evaluation and is the output of the
leftmost or rightmost permutation evaluation, then the output state is once again sampled
in a permutation-consistent manner, and the event occurs with a probability of at most

1C,KB[i] 4 (N + ML −QD,L)
2c

.

We next consider the case when the ith evaluation is from a construction evaluation, and
the event is evaluated on the rightmost permutation input. Then, in the best case, the

43

adversary can choose among a certain set of states with full control on their outer parts,
and then the key addition is applied on the middle k bits of the chosen state S. For all
existing (X, Y, d) ∈ τ̃ [1 : i− 1], the only candidates to set this event must have their outer
part and rightmost c−k bits set to those of S. Let Z ∈ {0, 1}b−k, and define CZ as follows:

CZ = {(X, Y, d) ∈ τ̃ | ⌈X⌉r∥⌊X⌋c−k = Z} .

CZ counts the number of (X, Y, d) ∈ τ̃ such that X has its top r bits concatenated with its
bottom c− k bit fixed to Z. By the absence of Innerlr

a [i], the state S was obtained only
from forward permutation evaluations, so that multicollisions can be used. Let θKBF ∈ N.
We define 1C,KBF,Z [i | θKBF] to be the indicator function equal to 1 if and only if, conditioned
on ΘKBF = θKBF, the evaluation number i is a rightmost key blinding, has it top r bits
concatenated with its bottom c− k bits equal to Z. Conditioned on ΘKBF = θKBF, this
event is set with a probability of at most∑

Z∈{0,1}b−k

1KBf,Z [i | θKBF] 2CZ

2k
.

Looking ahead, when summing over all queries and all possible values for multicollisions,
we will have a term of the form:∑

i

∑
θKBF

∑
Z

1KBf,Z [i | θKBF] 2CZ

2k
Pr (ΘKBF[i] = θKBF)

=
∑

Z

2CZ

2k

∑
θKBF

Pr (ΘKBF = θKBF)
∑

i

1C,KBF,Z [i | θKBF]

≤
∑

Z

2CZ

2k

∑
θKBF

Pr (ΘKBF = θKBF) · θKBF

≤
2(N + M) ·mucol

(
N + M, 2c−k

)
2k

, (30)

where we used (28). Therefore,

Pr
(

GueSlr
a [i] ∧ ¬BAD2lr

a [i− 1] ∧ ¬GueKlr
a [i] ∧ ¬Innerlr

a [i]
)

≤ 1P,CL[i] 2 (ME,C −QE,C + QL)
2c

+ (1CH[i] + 1C,KBI[i]) 2 (N + ML)
2c

+
∑

θKBF∈N

1P,CL[i] 2θKBF

2k
+

∑
Z∈{0,1}b−k

1C,KBF,Z [i | θKBF] 2CZ

2k

 ·Pr (ΘKBF = θKBF)

+
∑

θKBI∈N
1P,CL[i] 2θKBI

2k
Pr (ΘKBI = θKBI)

≤ 1P,CL[i] 2 (ME,C −QE,C + QL)
2c

+ (1CH[i] + 1C,KBI[i]) 2 (N + ML)
2c

+ 1P,CL[i]
2mucol

(
N + M, 2c−k

)
2k

+ 1P,CL[i]
2mucol

(
Q, 2c−k

)
2k

+
∑

θKBF∈N
Pr (ΘKBF = θKBF)

∑
Z∈{0,1}b−k

1C,KBF,Z [i | θKBF] 2CZ

2k
. (31)

Combining (21) to (24), (26) and (29) to (31), we obtain

Pr
(

BAD2lr
a

)
≤ µ(µ− 1)

2k+1 + 2µ (N + M)
2k

+ 2QD

2t
+ 18M (M + N)

2c

+ 2 (M + N)2

2c
+

6(N + M) ·mucol
(
N + M, 2c−k

)
2k

. (32)

44

Since both bounds (27) and (32) are valid upper bounds of the probability of BADlr
a ,

we take the minimum of these two bounds and obtain

Pr
(

BADlr
a

)
≤ min

{
Pr
(

BAD1lr
a

)
, Pr

(
BAD2lr

a

)}
≤ µ(µ− 1)

2k+1 + 2µ (N + M)
2k

+ 2QD

2t
+ 18M (M + N)

2c

+ min
{

14Q (N + M)
2k

,
4 (M + N)2

2c
+

6(N + M) ·mucol
(
N + M, 2c−k

)
2k

}
.

We obtained an upper bound for the probability that the ideal world generates a bad
transcript. Using the H-coefficient technique, and the fact that the ratio of good transcript
is lower-bounded by one (cf., (20)), we conclude. □

6.4.2 Confidentiality

Let A be an adversary that makes at most N permutation queries, QE encryption queries
of at most ME blocks, and QD decryption queries of at most MD blocks, as in the
theorem statement. Our goal is to upper bound Advµ-lr-conf

Ascon,L (A), for any set of leakage
functions that do not leak any information about the two outer permutation calls during
the initialization and finalization phases. The adversary interacts either with the real
world WR, which gives access to

[([
Encp

Km

]
L

, Encp
Km

,
[
Decp

Km

]
L

)µ

m=1
, p±

]
, or with the

ideal world WI , which gives access to
[([

Encp
Km

]
L

, $m,
[
Decp

Km

]
L

)µ

m=1
, p±

]
, where the

adversary must be nonce-respecting with its queries to O2,m.
Similarly to the fact that the nonce-misuse authenticity proof can be used for bounding

confidentiality in the nonce-misuse resilience setting, the proof of leakage resilience authen-
ticity can be reused for leakage resilience confidentiality. We adopt the same terminology
as in Section 6.4.1, with O1,m and O3,m will be referred to as leaky oracles, and O2,m and
O4,m referred to as challenge oracles.

Setup. We adopt the same transcript and path notation as in Section 6.4.1, with the
difference that there are no challenge decryption queries, which thus do not appear in
the transcript, nor in the paths. We also generate mock intermediate states, following
the same procedure as in the nonce-misuse resilience confidentiality proof in Section 6.2,
and we can safely ignore leaky paths, since they do not have overlapping nonces. The
extended transcript, released at the end of the interaction, can be derived as in Section 6.4.1.
From τ̃ we can reconstruct the two dictionaries Sin and Sout, the set P, the list of all
permutation queries (X, Y, d), and the users’ keys. Finally, we re-use the bad events defined
in Section 6.4.1, except Dec, which does not apply there. In order to inherit the notation
from this section, let us define PS = ∅. The bad events are as follows:

ColKlr
c : ColKlr

a (of Section 6.2) ; GueKlr
c : GueKlr

a (of Section 6.2) ;
ColSlr

c : ColSlr
a (of Section 6.2) ; GueSlr

c : GueSlr
a (of Section 6.2) ;

Innerlr
c : Innerlr

a (of Section 6.2) ;
BADlr

c : ColKlr
c ∨GueKlr

c ∨ColSlr
c ∨GueSlr

c ;
BAD1lr

c : BADlr
c ; BAD2lr

c : BADlr
c ∨ Innerlr

c .

Probability of Good Transcripts. Since the bad events from Section 6.4.1 already handled
collisions with challenge states from encryption queries, the same reasoning can be applied,
so that the absence of BADlr

c guarantees that the intermediate states generated in the

45

ideal world are consistent with the structure of the mode Ascon-AE. Therefore, every
transcript which is reachable in the real world is also reachable in the ideal world, and
vice-versa, and for any transcript τ̃ that does not set BADlr

c , we have

Pr (A [WR] generates τ̃)
Pr (A [WI] generates τ̃) ≥ 1 . (33)

Probability of BADlr
c in the Ideal World. Compared to the evaluation done in Sec-

tion 6.4.1, all challenge intermediate states are sampled at the end of the interaction, thus
the evaluation of BAD1lr

c (or BAD2lr
c) involving these challenge intermediate states is

postponed at the end of the interaction. Overall, the same technique can be applied, and
we obtain

Pr
(

BADlr
c

)
≤ µ(µ− 1)

2k+1 + 2µ (N + M)
2k

+ 18M (M + N)
2c

+ min
{

14Q (N + M)
2k

,
4 (M + N)2

2c
+

6(N + M) ·mucol
(
N + M, 2c−k

)
2k

}
.

We obtained an upper bound for probability that the ideal world generates a bad transcript.
Using the H-coefficient technique, and the fact that the ratio of good transcript is lower-
bounded by one (cf., (33)), we conclude. □

6.5 Proof of Theorem 5
Let A be an adversary that makes at most N permutation queries, QE encryption queries
of at most ME blocks, and QD decryption queries of at most MD blocks, as in the theorem
statement. Our goal is to upper bound Advµ-sr-auth

Ascon (A).
Let BotDecp

Km
be the function that takes as input a tuple (N, A, C, T) ∈ {0, 1}n ×

{0, 1}∗ × {0, 1}∗ × {0, 1}t, computes internally Decp
Km

, but always returns ⊥. Therefore,
the function

[
BotDecp

Km

]
L

always returns ⊥, but leaks the internal states in the same
way as

[
Decp

Km

]
L

. With this notation, the adversary interacts either with the real world

WR, which gives access to
[([

Encp
Km

]
L

,
[
Decp

Km

]
L

)µ

m=1
, p±

]
, or with the ideal world

WI , which gives access to
[([

Encp
Km

]
L

,
[
BotDecp

Km

]
L

)µ

m=1
, p±

]
. The following proof

will be heavily based on the one of Section 6.4.1, the difference being that challenge queries
are not present.

Setup. We adopt the same transcript and path notation as in Section 6.4.1, with the
difference that there are no challenge queries. All intermediate states come from gen-
uine permutation evaluations, so that no mock intermediate states are needed. How-
ever, we need to revise the definition of superseded paths. Recall that a decryption
path path = (DL, m, N, A, C, f) from a previous query is considered superseded by a
later encryption path path′ = (EL, m, N, A, P, f) associated to an encryption query
(EL, m, N, A′, P ′, C ′, T) ∈ τ , if |P | = |C| and C = C ′[1 : |C|]. In the previous proofs,
only decryption queries could be superseded by encryption queries, because intermediate
states for decryption queries were generated at the end of the interaction. In contrast,
now decryption queries can supersede encryption queries. In more detail, an encryp-
tion path (EL, m, N, A, P, f) associated to an encryption query (EL, m, N, A′, P ′, C, T)
is superseded by a later decryption path path′ = (DL, m, N, A, C ′, f) if |P | = |C ′| and
C ′ = C[1 : |C ′|]. Let PS denote the set of paths that have been superseded according to
this revised definition.

The extended transcript, released at the end of the interaction, can be derived as in
Section 6.4.1. From τ̃ we can reconstruct the two dictionaries Sin and Sout, the set P, the

46

list of all permutation queries (X, Y, d), and the users’ keys. Finally, we re-use the bad
events defined in Section 6.4.1 as follows:

ColKsr
a : ColKlr

a (of Section 6.4.1) ; GueKsr
a : GueKlr

a (of Section 6.4.1) ;
GueSsr

a : GueSlr
a (of Section 6.4.1) ; Innersr

a : Innerlr
a (of Section 6.4.1) ;

Decsr
a : ∃(DL, m, N, A, C, T, P̃) ∈ τ̃ such that ⌊Sout[(DL, m, N, A, C, 1)]⌋t ⊕ ⌊Km⌋t = T , or
∃path ∈ P superseding (DL, m, N, A, C, 1) with ⌊Sout[path]⌋t ⊕ ⌊Km⌋t = T ;

BADsr
a : ColKsr

a ∨GueKsr
a ∨GueSsr

a ∨ Innersr
a ∨Decsr

a .

Because there are no more challenge paths, there is no bad event of the form ColS, and
Decsr

a now includes leaky decryption queries. Moreover, now Innersr
a is incorporated in

the main bad event.

Probability of Good Transcripts. As long as Decsr
a does not occur, the decryption queries

in real world will always output ⊥, so that for any good transcript τ̃ ,

Pr (A [WR] generates τ̃) = Pr (A [WI] generates τ̃) . (34)

Note that here, using the fundamental lemma of game playing [BR06] would have been
sufficient, but we continue to use the H-coefficient technique for the sake of consistency.

Probability of BADsr
a . The bounding of BADsr

a can be handled similarly to the second
bounding in Section 6.4.1, with one key difference for the bad event Decsr

a : this time, the
adversary can submit forgeries with nonces associated to states that leaked. However,
as long as ¬GueSsr

a [i] holds, the adversary cannot predict the input to the key blinding
call using its permutation queries. Moreover, as long a ¬Innersr

a [i] holds, every rightmost
permutation evaluation made during a decryption query is unique, so that no two distinct
decryption queries share the same input final state. Therefore, the bounding of the
conditioned Decsr

a [i] is the same, and we have

Pr (BADsr
a) ≤ µ(µ− 1)

2k+1 + 2µ (N + M)
2k

+ 2QD

2t
+ 18M (M + N)

2c

+ 4 (M + N)2

2c
+

6(N + M) ·mucol
(
N + M, 2c−k

)
2k

.

We obtained an upper bound for the probability that the ideal world generates a bad
transcript. Using the H-coefficient technique, and the fact that the ratio of good transcript
is lower-bounded by one (cf., (34)), we conclude. □

6.6 Proof of Theorem 6
Let A be an adversary with complexity (N, QE ,ME , QD,MD), as in the theorem statement.
Our goal is to upper bound Advµ-rup-auth

Ascon (A). Out of generosity, we assume that a query
to V triggers first an evaluation to D, and a query to D is followed by an evaluation
of V, and doing so only increases the adversary’s success probability. Therefore, we can
combine the oracles D and V back into a single oracle DV, which first evaluates D, then
V. Denote by DBot the oracle that computes DV, releases the unverified plaintext, but
instead of returning the output of V, it always return ⊥.

With this notation, the adversary interacts either with the real world WR, which gives
access to

[(
Encp

Km
, DVp

Km

)µ

m=1 , p±
]
, or with the ideal world WI , which gives access

to
[(

Encp
Km

, DBotp
Km

)µ

m=1 , p±
]
. Here, the adversary’s complexity is (QD,MD) for the

47

oracle O2,m. By abuse of notation, we will continue to refer to the oracle O2,m as a
decryption oracle.

The following proof builds on the nonce-misuse authenticity proof from Section 6.2. The
key difference lies in how decryption queries are handled: in the current case, all states are
computed on-the-fly rather than at the end of the interaction. We will make adjustments
similar to those made when adapting the leakage resilience proof (in Section 6.4.1) for the
state-recovery proof (in Section 6.5).

Setup. The transcript notation now needs to account for the unverified plaintext released
by the decryption oracle. It is defined as follows:

• A forward (resp., inverse) permutation query with input X and output Y generates
the transcript element (X, Y, fwd) (resp., (X, Y, inv));

• An encryption query with user m, input (N, A, P), and output (C, T) generates the
transcript element (E, m, N, A, P, C, T);

• A decryption query with user m, input (N, A, C, T), output unverified plaintext P ,
and verification output V generates the transcript element (D, m, N, A, C, P, T, V).

We adopt the same path notation as in Section 6.2, but adapt the notion of superseded
paths as done in Section 6.5. Let PS denote the set of paths that have been superseded.
All intermediate states come from genuine permutation evaluations, so that no mock
intermediate states are needed. The extended transcript, released at the end of the
interaction, can be derived as in Section 6.2. Finally, we re-use the bad events defined in
Section 6.2 as follows:

ColKrup
a : ColKm

a (of Section 6.2) ; GueKrup
a : GueKm

a (of Section 6.2) ;
ColSrup

a : ColSm
a (of Section 6.2) ; GueSrup

a : GueSm
a (of Section 6.2) ;

Decrup
a : Decm

a (of Section 6.2) ;
BADrup

a : ColKrup
a ∨GueKrup

a ∨ColSrup
a ∨GueSrup

a ∨Decrup
a .

Probability of Good Transcripts. Similar to the state-recovery proof of Section 6.5, as
long as Decrup

a does not occur, the decryption queries in real world will always output ⊥,
so that for any good transcript τ̃ ,

Pr (A [WR] generates τ̃) = Pr (A [WI] generates τ̃) . (35)

Again, using the fundamental lemma of game playing [BR06] would have been sufficient,
but we continue to use the H-coefficient technique for the sake of consistency.

Probability of BAD in the Ideal World. The same bounding technique as in Section 6.2
can be done. Indeed, the bad events defined previously are general enough to treat
encryption and decryption states the same way, focusing only on equality on the inner
part of the states. In this case, there are no more events that can be set at the end of the
interaction. Therefore,

Pr (BADrup
a) ≤ µ(µ− 1)

2k+1 + 2µ (M + N)
2k

+ 18M (M + N)
2c

+ 2QD

2t
.

We obtained an upper bound for the probability that the ideal world generates a bad
transcript. Using the H-coefficient technique, and the fact that the ratio of good transcript
is lower-bounded by one (cf., (35)), we conclude. □

48

7 Generic Attacks for Ascon-AE
We include the attacks of Propositions 1, 3–5, and 7 here, in Sections 7.1–7.5, respectively.

7.1 Proof of Proposition 1
In each of the following sections, we describe the adversaries as stated in the proposition.
These are all forgery attacks, but they can be easily converted into distinguishing attacks
by returning “ideal” when the attack fails, and “real” otherwise (see for instance the last
step in Section 7.3).

7.1.1 Adversary A1

Recall that A1 has resources satisfying QD ≈ 2t. A simple matching attack consists of
submitting ≈ 2t arbitrary decryption queries, each with a different tag.

7.1.2 Adversary A2

Recall that A2 has resources satisfying N ≈ 2k/µ. This term corresponds to the probability
that the adversary guesses one of the user keys. Consider the following attack:

1. Let N ∈ {0, 1}n. For m ∈ J1, µK make an encryption query, with user m, with input
(N, ∅, 0r), and denote the ciphertext by Cm and the tag by T m;

2. For i ∈ J1,NK, sample Li
$←− {0, 1}k, and compute Encp

Li
(N, ∅, 0r), get a ciphertext

C̃i;

3. With probability ≈ µN
2k ≈ 1, there exists a Li from step 2 that collides with a key

Km of a user m. The adversary can check this by observing that C̃i = Cm. In the
following, we assume that this is the case;

4. Let P ∈ {0, 1}∗, and N ′ ̸= N . Compute (C, T) = Encp
Li

(N ′, ∅, P);

5. Submit a forgery for user m with input (N ′, ∅, C, T).

In order to reduce the probability of a false positive in step 3 to a negligible probability,
the encryption queries in step 1 can be extended with γ = O

(
⌈ b

r ⌉
)

plaintext blocks.

7.1.3 Adversary A3

Recall that A3 has resources satisfying (ME + 2r)N ≈ 2b. At a high level, the following
attack involves guessing an intermediate state generated during encryption queries and
using it to create a forgery. Let γ ∈ N be a parameter. As in the previous attack, γ serves
to mitigate the probability to obtain false positives, and we suggest taking γ = O

(
⌈ b

r ⌉
)
.

For simplicity of presentation, we will assume that µ · 2n ≥ ME , but the attack can be
easily adapted by stretching the block length of the encryption queries by a logarithmic
factor. Let

(
mi, N i

)
i

be a family of ME pairwise distinct user indices and nonces. The
attack operates a follows:

1. Encryption queries: for i = 1, . . . ,ME , make an encryption query with user mi

with input
(
N i, ∅, 0r(γ+1)), and denote the ciphertexts by Ci

0, Ci
1, . . . , Ci

γ .
This step requires O (ME) encryption queries with O (γ) blocks each;

2. State guessing:

(a) Denote by ν ∈ {0, 1}r the outer part that occurs most frequently among
(Ci

0)i∈J1,MEK;

49

(b) For l ∈ J1,NK, sample X l $←− {0, 1}c, and compute pf (ν∥X l) for f ∈ J1, γK;
(c) If there exists some l ∈ J1,NK, i ∈ J1,MEK such that for all f ∈ J0, γK,
⌈pf (ν∥X l)⌉r = Ci

f , then we consider that the adversary has successfully guessed
the intermediate state with user mi, nonce N i, empty associated data, and
after having absorbed the plaintext block 0r;

(d) Let Sin := ν∥X l, Sfin be the state of the associated encryption query right
before the last key blinding, T be the tag of the associated encryption query,
N := N i, and m := mi.

This step requires γN permutation queries. As for the success probability, note that
γ allows to reduce the influence of false positives. Therefore, the success probability
is almost the probability that the adversary permutation query history contains a
successful guess, which is itself ≈ MEN

2b + N
2c ≈ 1;

3. State binding: The goal of this step is to connect Sin and Sfin by a sequence of
message blocks different from (0r(γ+1), 1∥0r−1). To achieve this, we use an attack
introduced by the designers of the sponge [BDPV07], which relies on finding inner
collisions. Let us first for simplicity assume that r > c/2. It consists of the following
steps:

(a) Compute Xi := p
(
Sin ⊕ P i

1∥0c
)

for N different P i
1s, distinct from 0r;9

(b) Compute Y i := p−1 (Sfin ⊕ P i
3∥0c

)
for N different P i

3s, distinct from 0r;
(c) If there exists i, j ∈ J1,NK such that ⌊Xi⌋c = ⌊Yj⌋c, let P2 := ⌈Xi⌉r ⊕ ⌈Yj⌉r,

and output (P i
1, P2, P j

1); else abort.

Note that the returned sequence of message blocks corresponds to a valid padding.
In the setting where N ≥ 2r and r ≤ c/2, the attack can be extended by making
multiple sequential absorb calls in steps 3a and 3b. In the following, we denote the
output sequence of message blocks by (P1, . . . , Pd).
This step requires 2N permutation queries. The step succeeds with probability
≈ min

{
1, N2

2c

}
. Given that (ME + 2r)N ≈ 2b and ME ≪ N, this gives a success

probability of ≈ 1;

4. Compute the ciphertexts: Initialize S ← Sin. Then, for f ∈ J1, dK, compute
C̃f ← ⌈S⌉r ⊕ Pf , and update S ← p(S ⊕ (Pf∥0c));

5. Forgery: Let l = |unpadr(P1∥ · · · ∥Pd)|. Submit a forgery with input (m, N, ∅,
(C̃1∥ · · · ∥C̃d)[0 : l], T).

Overall, the attack requires O (ME) encryption queries, one decryption query, and O (N)
permutation queries, and succeeds with high probability. □

7.2 Proof of Proposition 3
Recall that A has resources satisfying MEN ≈ 2c. The attack is similar to the one
described in Section 7.1.3, with the main difference being that in this case, the adversary
makes use of the nonce-misuse setting to set the outer parts of the states to a value of its
choice. Let γ ∈ N be a parameter. As in the previous attacks, γ serves to mitigate the
probability to obtain false positives, and we suggest taking γ = O

(
⌈ b

r ⌉
)
. For simplicity,

we describe the attack in the case where µ · 2n ≥ME , similar to the nonce-respecting case.
Let

(
mi, N i

)
i

be a family of ME pairwise distinct user indices and nonces. The attack
operates a follows:

9To generalize the attack to any input sequence of message blocks (B1, . . . , Bl), the P i
1s can be chosen

different from B1.

50

1. Encryption queries: For i = 1, . . .ME , do the following:

(a) Make an encryption query with user mi with input
(
N i, ∅, 0r

)
, and denote by

Ci the obtained ciphertext;
(b) Make an encryption query with user mi with input

(
N i, ∅, Ci∥0γr

)
, get cipher-

texts
(
Ci

0, Ci
1, . . . , Ci

γ

)
, and tag T i.

Note that in the second permutation evaluation made in the context of the query
from step (b), the outer part of the state is set to 0r, so that necessarily Ci

0 = 0r.
This step requires O (ME) encryption queries, each with O (γ) blocks, and each
nonce is re-used twice;

2. State guessing: This step is identical to step 2 of Section 7.1.3, except that in this
case, the permutation queries of the adversary now have all their outer r bits fixed
to 0r. Thus, the adversary only needs to guess one of the rightmost c bits of the
intermediate states obtained during encryption queries. This speeds up the success
probability to ≈ MEN

2c ≈ 1;

3. State binding: Same as step 3 of Section 7.1.3;

4. Compute the ciphertexts: Same as step 4 of Section 7.1.3;

5. Forgery: Same as step 5 of Section 7.1.3.

Overall, the attack requires O (ME) encryption queries where each nonce is repeated twice,
one decryption query, and O (N) permutation evaluations. The state guessing attack
(step 2) succeeds with probability ≈ MEN

2c ≈ 1, the state binding attack (step 2) succeeds
with probability ≈ min

{
1, N2

2c

}
≈ 1, so that this attack succeeds with probability close to

1. □

7.3 Proof of Proposition 4
We give below a key recovery attack that exploits nonce-misuse encryption queries. Recall
that Aconf and Aauth have resources satisfying MEN ≈ 2c. The strategies of Aconf and
Aauth are identical, except in the final step. In the phases of the attack shared with Aauth,
Aconf makes encryption queries only to the non-challenge oracle (i.e., O1,m), allowing thus
nonce reuse. The attack operates as follows:

1. Encryption queries and state guessing: Apply steps 1 and 2 from the attack
described in Section 7.2. If the attack succeeds, denote by Sin the state guessed and
let Sout = p (Sin). Let m, N , and P be the user, nonce, and plaintext block sequence
associated to this state (i.e., after absorbing P , one gets the permutation input Sin),
respectively.
This step requires O (ME) nonce-misuse encryption queries with O (1) blocks each,
where each nonce is repeated twice, and O (N) permutation queries. The step
succeeds with probability ≈ MEN

2c ≈ 1;

2. State expansion: For i ∈ J1,MEK, make a forward permutation query p(Sout ⊕
(P i

2∥0c)).10 We obtain a family of states along with their paths:

Si = 0r∥⌊p(Sout ⊕ (P i
2∥0c))⌋c ,

pathi =
(
m, N, ∅, (P, P i

2, ⌈p(Sout ⊕ (P i
2∥0c))⌉r)

)
.

10If 2r < ME , this step can be extended by making cascaded permutation calls.

51

Note that all states Sis have their outer r bits fixed to 0r. Some of the states Si will
later be interpreted as states right before the last key blinding.
This step requires ME permutation queries;

3. Filtering: Let mucol ∈ {0, 1}c−k be such that the size of the following set is
maximal:

Imucol =
{

i ∈ J1,MEK | ⌊Si⌋c−k = mucol
}

.

In other words, the states Si are filtered by selecting those with the rightmost c− k
bits to the value that maximizes the number of Sis. We expect that |Imucol| ≥
max

{
1, ME

2c−k

}
with high probability. Looking ahead, in the regime where ME

2c−k ≤ 1,
then the attack targeting the term µN

2k from Section 7.1.2 is better. Therefore, we
assume ME

2c−k > 1 in the following;

4. Construction queries: For each i ∈ Imucol, make an encryption query with input
pathi, and get tag T i.
This step requires on expectation ME

2c−k encryption queries, all using the same nonce;

5. Key guessing: From the previous step, the adversary has made ≈ ME

2c−k encryption
queries, where the inputs to their last permutation query (during the key blinding)
have b− k bits set to a value known by the adversary. These bits are always in fixed
positions, i.e., the leftmost r bits and the rightmost c− k bits. The following step
consists of trying to guess the remaining k bits of those states.
For j = 1, . . . ,N, do the following:

(a) Sample Xj $←− {0, 1}k, and make the permutation query p
(
0r∥Xj∥mucol

)
;

(b) For each i ∈ Imucol:
i. Compute Kij = ⌈⌊Si⌋c⌉k ⊕Xj ;
ii. If

⌊
⌊p
(
0r∥Xj∥mucol

)
⌋k ⊕Kij

⌋
t

= T i, then Kij is a key candidate;
iii. For each key candidate, the adversary checks whether the obtained cipher-

texts and the state Si from the encryption query number i match those
obtained with a direct evaluation of Encp

Kij . This step allows to determine
whether Kij is a false positive or a correct key.

Checking one false positive in step 5(b)iii costs O (1) permutation queries. In order
to not blow up the permutation complexity of the adversary, we allow a small
number of false positives per permutation query, hence the requirement ME

2c−k+t ≤ 1,
or equivalently N ≥ 2k−t, as stated in the proposition.
The probability that the adversary, via one of the permutation calls made in this
step, guesses the k bits of one of the i ∈ Imucol encryption queries is

≈ N |Imucol|
2k

≈ MEN

2c
≈ 1 ;

6. Last step: Let K be the guessed key. Depending on whether the adversary is
against confidentiality or authenticity, do the following:

• Aconf : make an evaluation with Encp
K with a new nonce, obtain several cipher-

text blocks (e.g., take γ = O
(
⌈ b

r ⌉
)
), and make the same query to the challenge

oracle. If the ciphertext blocks coincide with the challenge oracle, return 1, else
return 0. The distinguishing advantage of the adversary is close to 1;

52

• Aauth: make an evaluation with Encp
K with a new nonce, obtain a ciphertext

and tag, and submit it to the challenge decryption oracle.

Overall, the attack requires O (ME) encryption queries and O (N) permutation queries,
and succeeds with probability close to 1. □

7.4 Proof of Proposition 5
The attack shares similarities with the nonce-misuse resilience key-recovery attack presented
in Section 7.3, with the key difference being that the adversary has direct access to the
intermediate states, and thus does not need to do step 1 of this attack. This gives
more freedom in the parametrization of the attack. The strategies of Aconf and Aauth

are identical, except in the final step. In the phases of the attack shared with Aauth,
Aconf makes encryption queries only to the non-challenge oracle (i.e., O1,m), thus leaky
encryption queries. Here, the attack is parametrized by the maximum number of allowed
encryption queries, thus allowing for a tradeoff between offline and online complexity. We
make a case distinction depending on the chosen parameter regime.

Case 1, when max
{

2c/2, 2k/QE

}
= 2c/2. In this situation, the number of allowed

encryption queries is not a limiting factor. In that case, we have N ≈ 2c/2, and the attack
operates as follows:

1. State leaking: Let m ∈ {0, 1}µ, N ∈ {0, 1}n, PT ∈ {0, 1}∗, and P ← pad10∗

r (PT).
Make an encryption query to the leaky oracle with user m and input (N, ∅, PT), and
obtain Sin, the state after having absorbed P . Let Sout = p(Sin);

2. State expansion: For i ∈ J1,NK, make a forward permutation query p(Sout ⊕
(P i

2∥0c)).11 We obtain a family of states along with their paths:

Si = 0r∥⌊p(Sout ⊕ (P i
2∥0c))⌋c ,

pathi =
(
m, N, ∅, (P, P i

2, ⌈p(Sout ⊕ (P i
2∥0c))⌉r)

)
.

We will interpret Si as a state right before the last key blinding.
This step requires N permutation queries;

3. Filtering: Let mucol ∈ {0, 1}c−k be such that the size of the following set is
maximal:

Imucol =
{

i ∈ J1,NK | ⌊Si⌋c−k = mucol
}

.

We expect that |Imucol| ≥ N
2c−k with high probability;

4. Construction queries: For each i ∈ Imucol, make an encryption query with input
pathi, and get tag T i.
This step requires on expectation N

2c−k ≈ 2k−c/2 ≤ QE encryption queries;

5. Key guessing: Same as step 5 of Section 7.3.
Since the size of Imucol is different, the cost computation is a bit different as well.
The number of false positives per permutation query is equal to

|Imucol|
2t

= N

2c−k+t
.

11If 2r < N, this step can be extended by making cascaded permutation calls.

53

Similarly to the prior attack, we limit the number of false positives per permutation
query to at most a small constant, hence the requirement N ≥ 2k−t, as stated in the
proposition.
The probability that the adversary, via one of the permutation calls made in this
step, guesses the k bits of one of the i ∈ Imucol encryption queries is

≈ N |Imucol|
2k

≈ N2

2c
≈ 1 ;

6. Last step: Same as step 6 from Section 7.3.

Overall, this attack requires ≈ 2k−c/2 encryption queries and O (N) permutation queries,
and succeeds with probability close to 1.

Case 2, when max
{

2c/2, 2k/QE

}
= 2k/QE. In this situation, the number of allowed

encryption queries is a limiting factor, so that the offline complexity needs to compensate
for that, so that N ≈ 2k/QE . The performed steps are the same as in case 1, but the
parametrization is different. The attack operates as follows:

1. State leaking: Same as step 1 of case 1;

2. State expansion: Same as step 2 of case 1, with the difference that the number
of permutation calls made here is QE2c−k. Note that, since N ≈ 2k/QE , this step
costs 2c/N ≤ 2c/2 ≤ N permutation queries;

3. Filtering: Same as step 3 of case 1. This time, we expect that |Imucol| ≥ QE with
high probability;

4. Construction queries: Same as step 4 of case 1. This time, the number of
encryption queries is QE ;

5. Key guessing: Same as step 5 of case 1. This time, the number of false positives
per permutation query is equal to

|Imucol|
2t

= QE

2t
.

Again, the constraint N ≥ 2k−t guarantees that every permutation query has no
more than a small number of false positives.
The probability that the adversary, via one of the permutation calls made in this
step, guesses the k bits of one of the i ∈ Imucol encryption queries is

≈ N |Imucol|
2k

≈ QEN

2k
≈ 1 .

6. Last step: Same as step 6 of case 1.

Overall, this attack requires QE encryption queries and O (N) permutation queries, and
succeeds with probability close to 1.

With the case distinction performed depending on whether the number of allowed
encryption queries is limiting or not, we obtained an attack with complexities as stated in
the proposition. □

54

7.5 Proof of Proposition 7
At a high level, this is the forgery attack of Section 7.1.3, but with the state guessing step
removed, as the leaky oracles give access to the states.

1. State leaking: Let m ∈ {0, 1}µ, N ∈ {0, 1}n, PT ∈ {0, 1}∗, and P ← pad10∗

r (PT).
Make an encryption oracle to the leaky oracle with user m and input (N, ∅, PT),
and obtain S, the state right after the first key blinding. Let Sfin be the state after
having absorbed P (i.e., right before the last key blinding);

2. State binding: Same as step 3 of Section 7.1.3 with states S and Sfin, and plaintext
block P ;

3. Compute the ciphertexts: Same as step 4 of Section 7.1.3;

4. Forgery: Same as step 5 of Section 7.1.3.

Overall, the attack requires one encryption query, one decryption query, and O (N)
permutation queries. The state binding attack (step 2) succeeds with probability ≈ N2

2c ≈ 1.
□

8 Ascon-Hash/Ascon-(C)XOF Modes and Their Security
We describe the mode underlying Ascon-Hash/Ascon-(C)XOF in Section 8.1, the security
models in Section 8.2, and the security of the constructions in Section 8.3.

8.1 Description of the Modes
Ascon-Hash, Ascon-XOF, as well as Ascon-CXOF are based on the sponge construc-
tion [BDPV07]. Let b, c, r ∈ N such that b = r + c, and let p be a cryptographic
permutation over b bits. The sponge construction takes as input a plaintext P ∈ {0, 1}∗,
and a length l ∈ N. It returns a digest Z ∈ {0, 1}∗ with |Z| = l. Then, Ascon-XOFp is
defined as follows:

Ascon-XOFp : {0, 1}∗ × N −→ {0, 1}∗

(P, l) −→ Z ∈ {0, 1}l .

The construction is illustrated in Figure 4. Here, IV ∈ {0, 1}b is a fixed initialization value.
The Ascon specification [DEMS19,SMKK24] also specifies Ascon-Hash and Ascon-CXOF,
the main difference being in the choice of initialization value IV . Ascon-CXOF then further
distinguishes itself from the others in the fact that it additionally takes a customization
string C ∈ {0, 1}≤2048, and incorporates it into the padded message with a length encoding
at the beginning. The Ascon draft standard [SMKK24] specifies Ascon-Hash, Ascon-XOF,
and Ascon-CXOF to operate with capacity c = 256 and rate r = 64. The digest size of
Ascon-Hash is 256 whereas for Ascon-XOF and Ascon-CXOF it is unlimited.

8.2 Security Model
The main security model for hashing is indifferentiability, of Maurer et al. [MRH04]. This
model was tailored to cryptographic hash functions by Coron et al. [CDMP05], though
that model also applies to XOFs. Intuitively, the Ascon-XOF XOF based on random
permutation p is indifferentiable from a random oracle $ if there exists a simulator Sim
with oracle access to the random oracle $ such that (Ascon-XOFp, p±) is indistinguishable
from ($, Sim[$]).

55

IV r

IV c

p p p

· · ·

· · ·

p p

· · ·

· · ·

P1 P2 P3 Pv Z1 Z2

\

r

\

c

\

r

\

c

absorb squeeze

Figure 4: The Ascon-XOF mode of operation. Here, P is injectively padded as
(P1, . . . , Pv) ← pad10∗

r (P). Here, for graphical convenience, the IV is split as IV =
(IV r, IV c), with IV r ∈ {0, 1}r, IV c ∈ {0, 1}c.

Definition 9. Consider the Ascon-XOF mode of Section 8.1. Let $ be a random function,
p

$←− Perm (b), and Sim[$]± be a two-sided algorithm with oracle access to $. The
indifferentiability of Ascon-XOF with respect to simulator Sim against an adversary A is
defined as

Advindiff
Ascon-XOF,Sim (A) = ∆A

(
Ascon-XOFp, p± ; $, Sim[$]±

)
.

In indifferentiability, the adversarial resources are counted in the number of accumulated
permutation evaluations N that would be made in the left world.

However, in certain applications, it suffices to focus on the classical notions of collision,
preimage, and second preimage security. We will consider these notions in the random
permutation model, where we take collision resistance, (everywhere) preimage resistance,
and (everywhere) second preimage of Rogaway and Shrimpton [RS04]. Here, we require
that the minimal output size is fixed to some value ν. The second preimage security is
indexed by a parameter κ that specifies the maximal length of the preimage.

Definition 10. Consider the Ascon-XOF mode of Section 8.1, and let p
$←− Perm (b). Let

κ, ν ∈ N.

◦ The collision resistance of Ascon-XOF against an adversary A is defined as

Advcol[ν]
Ascon-XOF (A) = Pr

(
A
[
p±]→ (P, P ′) such that P ̸= P ′ and

Ascon-XOFp(P, ν) = Ascon-XOFp(P ′, ν)

)
;

◦ The (everywhere) preimage resistance of Ascon-XOF against an adversary A is defined
as

Advpre[ν]
Ascon-XOF (A) = max

Z∈{0,1}ν
Pr
(
A
[
p±] (Z)→ P such that Ascon-XOFp(P, ν) = Z

)
;

◦ The (everywhere) second preimage resistance of Ascon-XOF against an adversary A is
defined as

Advsec[κ, ν]
Ascon-XOF (A) = max

P ∈{0,1}≤κ
Pr
(
A
[
p±] (P)→ P ′ such that P ̸= P ′ and

Ascon-XOFp(P, ν) = Ascon-XOFp(P ′, ν)

)
.

Andreeva et al. [AMP10, Appendix A] gave the reasoning why indifferentiability implies
collision, preimage, and second preimage resistance. In detail, we have the following
reduction.

56

Lemma 3 ([AMP10]). Consider the Ascon-XOF mode of Section 8.1. Let $ be a random
function, p

$←− Perm (b), and Sim[$]± be any two-sided algorithm with oracle access to $.
Let κ, ν ∈ N. Let x ∈ {col[ν], pre[ν], sec[κ, ν]}, and let A be an x adversary with complexity
N. There exists an indifferentiability adversary A′ with respect to simulator Sim with
complexity N, and an x adversary A′′ with complexity N, such that

Advx
Ascon-XOF(A) ≤ Advindiff

Ascon-XOF,Sim(A′) + Advx
$(A′′) .

Here, Advx
$(A′′) slightly abuses notation as A′′ gets direct access to $ and aims to break x

security.

Note that Advcol[ν]
$ (A′′) ≤

(
N
2
)
/2ν and Advpre[ν]

$ (A′′) = Advsec[κ, ν]
$ (A′′) = N/2ν .

8.3 Overview
Bertoni et al. [BDPV08] proved that the sponge construction is indifferentiable from a
random oracle. In detail, they proved a bound up to

1−
N−1∏
i=0

(
1− i+1

2c

1− i
2r+c

)
,

which then gets approximated to
(
N+1

2
)
/2c. However, this approximation uses the inequality

1− x ≤ e−x in two directions (first to lower bound, then to upper bound), de facto making
this approximation a true approximation instead of a strict upper bound. Alternative
bounding would give a proper upper bound of the form 2

(
N+1

2
)
/2c. We adopt their result

but with this simplified upper bound.

Theorem 7 ([BDPV08]). Let b, c, r,N ∈ N with b = r + c. Consider the Ascon-XOF mode
of Section 8.1 with parameters b, c, r. Let A be an adversary with complexity N. There
exists a simulator Sim with complexity O (N) queries such that

Advindiff
Ascon-XOF,Sim (A) ≤ N(N + 1)

2c
.

This result directly implies collision, preimage, and second preimage resistance using
Lemma 3. However, Lefevre and Mennink [LM22] demonstrated that preimage resistance
is in fact better than that, and we include their result.12

Theorem 8 ([BDPV08,LM22]). Let b, c, r, κ, ν ∈ N with b = r + c, and let ℓ = ⌈ν
r ⌉. Let

N ∈ N be such that, for the case of preimage resistance, N ≤ 2c−1/3 and (ℓ − 1)2 ≤ 2b.
Consider the Ascon-XOF mode of Section 8.1 with parameters b, c, r. Let A be an adversary
with complexity N. We have

Advcol[ν]
Ascon-XOF (A) ≤ N(N + 1)

2c
+ N(N − 1)

2ν+1 ,

Advpre[ν]
Ascon-XOF (A) ≤ min

{
N(N + 1)

2c
,

4ℓN

2ν−r

}
+ 4N

2ν
,

Advsec[κ, ν]
Ascon-XOF (A) ≤ N(N + 1)

2c
+ N

2ν
.

For the specific parameters of Ascon-Hash, Theorem 8 implies 128-bit collision and
second preimage resistance but 192-bit preimage resistance. For Ascon-(C)XOF, Theorem 8

12In fact, the result of Lefevre and Mennink [LM22] is stronger in the sense that it applies to the
construction underlying PHOTON [GPP11], which has a larger initial absorption and squeezing absorption
rate. We consider their result in the context of Ascon-XOF.

57

implies min{ν/2, 128}-bit collision resistance, min{ν, 128}-bit second preimage resistance,
and min{ν, 192}-bit preimage resistance, where ν is the minimal output size.

The bounds of Theorem 7 and Theorem 8 are tight, with matching attacks already
given in the original specification [BDPV07, Section 5] and re-described in terminology
matching Definition 10 by Lefevre and Mennink [LM22].

Proposition 10 ([BDPV07, LM22]). Let b, c, r, κ, ν ∈ N with b = r + c. Consider the
Ascon-XOF mode of Section 8.1 with parameters b, c, r. There exists an adversary A with
N ≈ 2c/2, such that for any simulator Sim,

Advindiff
Ascon-XOF,Sim (A) ≈ 1 .

In addition, there exist adversaries Acol
1 with N ≈ 2c/2, Acol

2 with N ≈ 2ν/2, Apre
1 with

N ≈ max{2c/2, 2ν−r}, Apre
2 with N ≈ 2ν , Asec

1 with N ≈ 2c/2, and Asec
2 with N ≈ 2ν , such

that

Advcol[ν]
Ascon-XOF

(
Acol

1
)

, Advcol[ν]
Ascon-XOF

(
Acol

2
)
≈ 1 ,

Advpre[ν]
Ascon-XOF (Apre

1) , Advpre[ν]
Ascon-XOF (Apre

2) ≈ 1 ,

Advsec[κ, ν]
Ascon-XOF (Asec

1) , Advsec[κ, ν]
Ascon-XOF (Asec

2) ≈ 1 .

9 Ascon-PRF Mode and Its Security
We describe the mode underlying Ascon-PRF in Section 9.1, the security model in Sec-
tion 9.2, and the security of the construction in Section 9.3.

9.1 Description of the Mode
The construction underlying Ascon-PRF is a tweaked version of the full-state keyed
sponge [BDPV12,MRV15].13 Let b, c, r, c′, r′, k ∈ N such that b = r + c = r′ + c′, k ≤ b,
and let p be a cryptographic permutation over b bits. The function Ascon-PRFp takes
as input a key K ∈ {0, 1}k, a plaintext P ∈ {0, 1}∗, and a length l ∈ N. It returns a tag
T ∈ {0, 1}∗ with |T | = l. We have

Ascon-PRFp
K : {0, 1}∗ × N −→ {0, 1}∗ ,

(P, l) −→ T ∈ {0, 1}l .

The most notable difference with the full-state keyed sponge is that Ascon-PRF features
domain separation between the absorption phase and the squeezing phase. The construction
is illustrated in Figure 5. Ascon-PRF is suggested to be instantiated with key size
k = 128, absorption capacity and rate (c, r) = (64, 256), and squeezing capacity and rate
(c′, r′) = (192, 128).

9.2 Security
We consider plain multi-user PRF security for Ascon-PRF.

Definition 11. Consider the Ascon-PRF mode of Section 9.1. Let ($m)µ
m=1 be a family

of µ independent random functions, p
$←− Perm (b), and K1, . . . , Kµ

$←− {0, 1}k. The PRF
security of Ascon-PRF against an adversary A is defined as

Advµ-prf
Ascon-PRF (A) = ∆A

((
Ascon-PRFp

Km

)µ

m=1 , p± ; ($m)µ
m=1 , p±

)
.

13The Ascon-PRF specification also comes with a small-input variant Ascon-PRFshort, that is basically
a truncated permutation construction with key blinding.

58

p p p

· · ·

· · ·

p p

· · ·

· · ·

IV

K

\

b−k

\

k

P1 P2 Pv

0∗∥1

T1 T2

\

r

\

c

\

r′

\

c′

initialization absorb finalization

Figure 5: The Ascon-PRF mode of operation. Here, P is injectively padded as
(P1, . . . , Pv)← pad10∗

r (P).

9.3 Overview
Ascon-PRF is basically a full-state keyed sponge [BDPV12]. Mennink et al. [MRV15]
gave an analysis of the full-state keyed sponge, but it included a so-called proof-inherent
“multiplicity” term. Daemen et al. [DMV17] derived an analysis of the full-state keyed
duplex, and their bound also applies to Ascon-PRF. However, in our terminology, their
bound has a term MN/2c, but the attack matching this term is actually thwarted by
the domain separation between absorption and squeezing in Ascon-PRF. Because of this,
Mennink [Men23] dived into the existing duplex proofs [DMV17,DM19b] and improved
them to obtain a bound specifically tailored to Ascon-PRF. However, with respect to
multicollision bounding, their proofs adopt the first strategy of Section 3.4, whereas the
analysis of Ascon-AE of Sections 4 and 5 follows the second strategy. We thus take the
bound of Mennink, but adapt the bound by taking the second multicollision strategy.
(This boils down to replacing the fraction 2θ(N + 1)/2c by 2θN/2c, though for a different
meaning of the value θ.)

Theorem 9 ([Men23]). Let b, c, r, c′, r′, k ∈ N with b = r + c = r′ + c′ and k ≤ b. Let
N,M, Q ∈ N. Consider the Ascon-PRF mode of Section 9.1 with parameters b, c, r, c′, r′, k.
Let A be an adversary with complexity (N, Q,M). We have

Advµ-prf
Ascon-PRF (A) ≤

2mucol
(
M, 2r′

)
N

2c′ + (M−Q)Q
2b −Q

+
2
(
M
2
)

2b
+ Q(M−Q)

2min{c′+k,b} + µN

2k
+
(

µ
2
)

2k
.

Using that µ ≤M≪ N (cf., Section 3.3) and mucol (q, R) = O
(
1 + q

R

)
, we obtain a

bound of the order

Advµ-prf
Ascon-PRF (A) = O

(
µN

2k
+ N

2c′ + MN

2b

)
. (36)

The bound (36) is tight. The same type of attacks as those in Proposition 1 apply here,
as we show in Proposition 11.

Proposition 11. Let b, c, r, c′, r′, k ∈ N with b = r + c = r′ + c′ and k ≤ c. Consider the
Ascon-PRF mode of Section 9.1 with parameters b, c, r, c′, r′, k. There exist adversaries A1
with N ≈ 2k/µ, and A2 with (M + 2r′)N ≈ 2b, such that

Advµ-prf
Ascon-PRF (A1) , Advµ-prf

Ascon-PRF (A2) ≈ 1 .

Proof. The adversary A1 acts similarly to one described in Section 7.1.2: it tries to guess
one of the user’s keys by doing permutation queries, and checks them against the outputs

59

of each of the µ Ascon-PRF instances to determine whether one of its guesses is correct.
Similarly, adversary A2 follows the strategy from Section 7.1.3, as it aims to guess an
internal state. This internal state must be during the squeezing phase, and successfully
guessing it directly implies key recovery.

10 Conclusion
We presented a general discussion of existing, and new, results on the generic security of the
Ascon-AE authenticated encryption scheme, as well as the Ascon-Hash/Ascon-(C)XOF
hash/(C)XOF function, and the Ascon-PRF pseudorandom function. On the way, we
observed that, even though state-of-the-art appeared quite broad at first sight, there were
still many gaps to be filled. In particular, some proofs had to be revisited in light of the
assumption (in our work) that the outer and inner permutation of Ascon-AE are identical,
but also some existing results were not entirely correct/accurate, and results in bounded
leakage resilience and release of unverified plaintext were lacking.

10.1 What We Did Not Cover
Even though our treatment is rather broad, we do not cover all possible security models.
We elaborate on three directions that we did not cover:

• One thing that we do not cover is related-key security. We do, in fact, consider
multi-user security, where the adversary has access to µ instances of the scheme, but
we assume independence of these µ keys. If we would have stretched the analysis to
arbitrary distributions, e.g., as in Daemen et al. [DMV17, Section 2.1], this would
imply some forms of related-key security, but this would significantly add to the
complexity of the proofs;

• While we cover leakage resilience in Section 5.1, we do not cover security under fault
attacks, where the adversary may introduce faults in the implementation and that
way retrieve secret information. Fruitful starting points for the analysis of Ascon-AE
in this setting are [DMP22,SKP22,BGP+23];

• There has been significant recent interest in committing security of authenticated
encryption schemes, where the adversary has freedom in choosing the keys [LGR21,
ADG+22,CR22,BH22]. Clearly, there is a relation between hash function security
and key committing security of authenticated encryption schemes, but the blinding of
the keys in Ascon-AE makes this relation not directly applicable. Naito et al. [NSS23]
proved key committing security of the Ascon-AE mode with zero-padding, where
security (in part) depends on the size of the zero-padding. An alternative security
proof up to a comparable bound is given by Krämer et al. [KSW23].

In addition, our analysis does not cover variations to the Ascon-AE scheme of Section 2:

• The draft standard published by NIST [SMKK24] also specifies an option to implement
Ascon-AE with nonce masking, where the nonce gets blinded with additional key
material, following Dobraunig and Mennink [DM24]. The goal of this mechanism is
to enhance the multi-user security of the mode, i.e., to replace the term µN

2k with N
2k .

We did not cover this mechanism in our proofs, but remark that the change only
affects the initialization, that Dobraunig and Mennink proposed their mechanisms
as extension to the original duplex proofs [DMV17, DM19a], and that our results
may similarly be generalized by isolated generalization;

• The encryption in duplex-based authenticated encryption, and Ascon-AE in particu-
lar, consists of bitwise addition of plaintext into the outer part, but upon decryption,

60

the adversary chooses the ciphertext and has free choice in selecting the r outer bits
of the state. This gives the adversary additional power, especially in settings such as
release of unverified plaintext (Section 5.3). One way to mitigate this decrease in
security is to apply a more advanced mechanism to absorb plaintext and squeeze
ciphertext, e.g., following the approach of Beetle [CDNY18]. A general analysis
of security of Beetle-style authenticated encryption was given by Chakraborty et
al. [CJN20]. However, such mechanism cannot be implemented with Ascon-AE as a
black-box (unlike above variation); instead, it would basically be a different scheme.

10.2 Future Research
Finally, we wish to point out two directions where our models and assumptions limit, and
where further research on Ascon-AE would be worthwhile:

• For leakage resilience (Section 5.1), we started from the notion of nonce-misuse re-
silience, and we additionally covered any possible leakage function that is independent
of the permutation p. These two modeling decisions, together, implied that limited
and unlimited leakage are equivalent. However, while the first modeling decision is
rather fair, the second modeling decision is fairly liberal as in practice, an adversary
cannot freely choose the leakage function. Therefore, for specific leakage functions,
we expect much better security bounds. For example, if we limit the leakage function
to leak the Hamming weight of the first byte, the security bound may be closer to
security with no leakage than security with unlimited leakage. However, performing
security analysis for more complex leakage functions is very subtle and technical.
For example, Berendsen and Mennink [BM24] recently considered the security of
the suffix keyed sponge under Hamming weight leakage, and it seems not trivial to
generalize our analysis (of Theorem 4) to Hamming weight leakage, nor to generalize
the analysis of [BM24] on the suffix keyed sponge to Ascon-AE;

• We can be reasonably confident that the Ascon permutation (and, in the context of
Ascon-AE, the outer permutation po in particular) is sufficiently strong. That said,
they are definitely not perfectly random, and the more one considers round-reduced
variants (e.g., the inner permutation pi versus the outer permutation po), the more
one diverges from this assumption. Harshly said, our results do not apply to the
actual Ascon schemes. However, they do give some certainty, namely that no generic
attacks are possible beyond the proven bounds, and also state-recovery security
says that some level of security is still achieved even if one of the inner states leaks.
Having said that, it is a very interesting question to try to prove security of Ascon
under weaker assumption on the permutation.

Acknowledgements. We want to thank the Ascon team for feedback on this work.
Charlotte Lefevre is supported by the Netherlands Organisation for Scientific Research
(NWO) under grant OCENW.KLEIN.435. Bart Mennink is supported by the Netherlands
Organisation for Scientific Research (NWO) under grant VI.Vidi.203.099.

References
[ABD+23] Roberto Avanzi, Subhadeep Banik, Orr Dunkelman, Maria Eichlseder, Shibam

Ghosh, Marcel Nageler, and Francesco Regazzoni. The QARMAv2 Family of
Tweakable Block Ciphers. IACR Trans. Symmetric Cryptol., 2023(3):25–73,
2023.

61

[ABL+13] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Elmar Tis-
chhauser, and Kan Yasuda. Parallelizable and Authenticated Online Ciphers.
In Kazue Sako and Palash Sarkar, editors, Advances in Cryptology - ASI-
ACRYPT 2013 - 19th International Conference on the Theory and Application
of Cryptology and Information Security, Bengaluru, India, December 1-5,
2013, Proceedings, Part I, volume 8269 of Lecture Notes in Computer Science,
pages 424–443. Springer, 2013.

[ABL+14] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Nicky Mouha,
and Kan Yasuda. How to Securely Release Unverified Plaintext in Authen-
ticated Encryption. In Palash Sarkar and Tetsu Iwata, editors, Advances
in Cryptology - ASIACRYPT 2014 - 20th International Conference on the
Theory and Application of Cryptology and Information Security, Kaoshiung,
Taiwan, R.O.C., December 7-11, 2014. Proceedings, Part I, volume 8873 of
Lecture Notes in Computer Science, pages 105–125. Springer, 2014.

[ADG+22] Ange Albertini, Thai Duong, Shay Gueron, Stefan Kölbl, Atul Luykx, and
Sophie Schmieg. How to Abuse and Fix Authenticated Encryption Without
Key Commitment. In Kevin R. B. Butler and Kurt Thomas, editors, 31st
USENIX Security Symposium, USENIX Security 2022, Boston, MA, USA,
August 10-12, 2022, pages 3291–3308. USENIX Association, 2022.

[ADL17] Tomer Ashur, Orr Dunkelman, and Atul Luykx. Boosting Authenticated
Encryption Robustness with Minimal Modifications. In Jonathan Katz and
Hovav Shacham, editors, Advances in Cryptology - CRYPTO 2017 - 37th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August
20-24, 2017, Proceedings, Part III, volume 10403 of Lecture Notes in Computer
Science, pages 3–33. Springer, 2017.

[ADMV15] Elena Andreeva, Joan Daemen, Bart Mennink, and Gilles Van Assche. Security
of Keyed Sponge Constructions Using a Modular Proof Approach. In Gregor
Leander, editor, Fast Software Encryption - 22nd International Workshop,
FSE 2015, Istanbul, Turkey, March 8-11, 2015, Revised Selected Papers,
volume 9054 of Lecture Notes in Computer Science, pages 364–384. Springer,
2015.

[AHMN10] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and María Naya-
Plasencia. Quark: A Lightweight Hash. In Stefan Mangard and François-
Xavier Standaert, editors, Cryptographic Hardware and Embedded Systems,
CHES 2010, 12th International Workshop, Santa Barbara, CA, USA, August
17-20, 2010. Proceedings, volume 6225 of Lecture Notes in Computer Science,
pages 1–15. Springer, 2010.

[AJN14] Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves. NORX v1.
Submission to CAESAR competition, 2014.

[AMP10] Elena Andreeva, Bart Mennink, and Bart Preneel. Security Reductions of the
Second Round SHA-3 Candidates. In Mike Burmester, Gene Tsudik, Spyros S.
Magliveras, and Ivana Ilic, editors, Information Security - 13th International
Conference, ISC 2010, Boca Raton, FL, USA, October 25-28, 2010, Revised
Selected Papers, volume 6531 of Lecture Notes in Computer Science, pages
39–53. Springer, 2010.

[Ava17] Roberto Avanzi. The QARMA Block Cipher Family. Almost MDS Matri-
ces Over Rings With Zero Divisors, Nearly Symmetric Even-Mansour Con-

62

structions With Non-Involutory Central Rounds, and Search Heuristics for
Low-Latency S-Boxes. IACR Trans. Symmetric Cryptol., 2017(1):4–44, 2017.

[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar,
Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin.
PRINCE - A Low-Latency Block Cipher for Pervasive Computing Applications
- Extended Abstract. In Xiaoyun Wang and Kazue Sako, editors, Advances
in Cryptology - ASIACRYPT 2012 - 18th International Conference on the
Theory and Application of Cryptology and Information Security, Beijing,
China, December 2-6, 2012. Proceedings, volume 7658 of Lecture Notes in
Computer Science, pages 208–225. Springer, 2012.

[BDPV07] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge
Functions. Ecrypt Hash Workshop 2007, May 2007.

[BDPV08] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On
the Indifferentiability of the Sponge Construction. In Nigel P. Smart, editor,
Advances in Cryptology - EUROCRYPT 2008, 27th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Istanbul, Turkey, April 13-17, 2008. Proceedings, volume 4965 of Lecture
Notes in Computer Science, pages 181–197. Springer, 2008.

[BDPV11a] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplex-
ing the Sponge: Single-Pass Authenticated Encryption and Other Applications.
In Ali Miri and Serge Vaudenay, editors, Selected Areas in Cryptography -
18th International Workshop, SAC 2011, Toronto, ON, Canada, August 11-12,
2011, Revised Selected Papers, volume 7118 of Lecture Notes in Computer
Science, pages 320–337. Springer, 2011.

[BDPV11b] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On
the Security of the Keyed Sponge Construction. Symmetric Key Encryption
Workshop, February 2011.

[BDPV12] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Permutation-based encryption, authentication and authenticated encryption.
Directions in Authenticated Ciphers, July 2012.

[BGP+20] Francesco Berti, Chun Guo, Olivier Pereira, Thomas Peters, and François-
Xavier Standaert. TEDT, a Leakage-Resist AEAD Mode for High Phys-
ical Security Applications. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2020(1):256–320, 2020.

[BGP+23] Francesco Berti, Chun Guo, Thomas Peters, Yaobin Shen, and François-Xavier
Standaert. Secure Message Authentication in the Presence of Leakage and
Faults. IACR Trans. Symmetric Cryptol., 2023(1):288–315, 2023.

[BH22] Mihir Bellare and Viet Tung Hoang. Efficient Schemes for Committing Au-
thenticated Encryption. In Orr Dunkelman and Stefan Dziembowski, editors,
Advances in Cryptology - EUROCRYPT 2022 - 41st Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Trondheim, Norway, May 30 - June 3, 2022, Proceedings, Part II, volume
13276 of Lecture Notes in Computer Science, pages 845–875. Springer, 2022.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The

63

SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS.
In Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology
- CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II, volume 9815 of
Lecture Notes in Computer Science, pages 123–153. Springer, 2016.

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: An Ultra-Lightweight Block Cipher. In Pascal Paillier and Ingrid
Verbauwhede, editors, Cryptographic Hardware and Embedded Systems - CHES
2007, 9th International Workshop, Vienna, Austria, September 10-13, 2007,
Proceedings, volume 4727 of Lecture Notes in Computer Science, pages 450–466.
Springer, 2007.

[BKL+11] Andrey Bogdanov, Miroslav Knezevic, Gregor Leander, Deniz Toz, Kerem
Varici, and Ingrid Verbauwhede. spongent: A Lightweight Hash Function.
In Bart Preneel and Tsuyoshi Takagi, editors, Cryptographic Hardware and
Embedded Systems - CHES 2011 - 13th International Workshop, Nara, Japan,
September 28 - October 1, 2011. Proceedings, volume 6917 of Lecture Notes
in Computer Science, pages 312–325. Springer, 2011.

[BM24] Henk Berendsen and Bart Mennink. Tightening Leakage Resilience of the
Suffix Keyed Sponge. IACR Trans. Symmetric Cryptol., 2024(1):459–496,
2024.

[BMOS17] Guy Barwell, Daniel P. Martin, Elisabeth Oswald, and Martijn Stam. Au-
thenticated Encryption in the Face of Protocol and Side Channel Leakage.
In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology -
ASIACRYPT 2017 - 23rd International Conference on the Theory and Appli-
cations of Cryptology and Information Security, Hong Kong, China, December
3-7, 2017, Proceedings, Part I, volume 10624 of Lecture Notes in Computer
Science, pages 693–723. Springer, 2017.

[BN00] Mihir Bellare and Chanathip Namprempre. Authenticated Encryption: Rela-
tions among Notions and Analysis of the Generic Composition Paradigm. In
Tatsuaki Okamoto, editor, Advances in Cryptology - ASIACRYPT 2000, 6th
International Conference on the Theory and Application of Cryptology and
Information Security, Kyoto, Japan, December 3-7, 2000, Proceedings, volume
1976 of Lecture Notes in Computer Science, pages 531–545. Springer, 2000.

[BN08] Mihir Bellare and Chanathip Namprempre. Authenticated Encryption: Rela-
tions among Notions and Analysis of the Generic Composition Paradigm. J.
Cryptol., 21(4):469–491, 2008.

[BPP+17] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki,
Siang Meng Sim, and Yosuke Todo. GIFT: A Small Present - Towards
Reaching the Limit of Lightweight Encryption. In Wieland Fischer and
Naofumi Homma, editors, Cryptographic Hardware and Embedded Systems
- CHES 2017 - 19th International Conference, Taipei, Taiwan, September
25-28, 2017, Proceedings, volume 10529 of Lecture Notes in Computer Science,
pages 321–345. Springer, 2017.

[BR06] Mihir Bellare and Phillip Rogaway. The Security of Triple Encryption and a
Framework for Code-Based Game-Playing Proofs. In Serge Vaudenay, editor,
Advances in Cryptology - EUROCRYPT 2006, 25th Annual International

64

Conference on the Theory and Applications of Cryptographic Techniques, St.
Petersburg, Russia, May 28 - June 1, 2006, Proceedings, volume 4004 of
Lecture Notes in Computer Science, pages 409–426. Springer, 2006.

[BSS+13] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The SIMON and SPECK Families of Lightweight
Block Ciphers. Cryptology ePrint Archive, Report 2013/404, 2013. http:
//eprint.iacr.org/2013/404.

[CAE14] CAESAR: Competition for Authenticated Encryption: Security, Applicability,
and Robustness, May 2014. http://competitions.cr.yp.to/caesar.html.

[CDD+19] Donghoon Chang, Nilanjan Datta, Avijit Dutta, Bart Mennink, Mridul Nandi,
Somitra Sanadhya, and Ferdinand Sibleyras. Release of Unverified Plaintext:
Tight Unified Model and Application to ANYDAE. IACR Trans. Symmetric
Cryptol., 2019(4):119–146, 2019.

[CDH+12] Donghoon Chang, Morris Dworkin, Seokhie Hong, John Kelsey, and Mridul
Nandi. A Keyed Sponge Construction with Pseudorandomness in the Standard
Model. NIST SHA–3 Workshop, March 2012.

[CDK09] Christophe De Cannière, Orr Dunkelman, and Miroslav Knezevic. KATAN
and KTANTAN - A Family of Small and Efficient Hardware-Oriented Block
Ciphers. In Christophe Clavier and Kris Gaj, editors, Cryptographic Hardware
and Embedded Systems - CHES 2009, 11th International Workshop, Lausanne,
Switzerland, September 6-9, 2009, Proceedings, volume 5747 of Lecture Notes
in Computer Science, pages 272–288. Springer, 2009.

[CDMP05] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya.
Merkle-Damgård Revisited: How to Construct a Hash Function. In Victor
Shoup, editor, Advances in Cryptology - CRYPTO 2005: 25th Annual In-
ternational Cryptology Conference, Santa Barbara, California, USA, August
14-18, 2005, Proceedings, volume 3621 of Lecture Notes in Computer Science,
pages 430–448. Springer, 2005.

[CDN23] Bishwajit Chakraborty, Chandranan Dhar, and Mridul Nandi. Exact Security
Analysis of ASCON. In Jian Guo and Ron Steinfeld, editors, Advances in
Cryptology - ASIACRYPT 2023 - 29th International Conference on the Theory
and Application of Cryptology and Information Security, Guangzhou, China,
December 4-8, 2023, Proceedings, Part III, volume 14440 of Lecture Notes in
Computer Science, pages 346–369. Springer, 2023.

[CDN24] Bishwajit Chakraborty, Chandranan Dhar, and Mridul Nandi. Tight Multi-
user Security of Ascon and Its Large Key Extension. In Tianqing Zhu and
Yannan Li, editors, Information Security and Privacy - 29th Australasian
Conference, ACISP 2024, Sydney, NSW, Australia, July 15-17, 2024, Pro-
ceedings, Part I, volume 14895 of Lecture Notes in Computer Science, pages
57–76. Springer, 2024.

[CDNY18] Avik Chakraborti, Nilanjan Datta, Mridul Nandi, and Kan Yasuda. Beetle
Family of Lightweight and Secure Authenticated Encryption Ciphers. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2018(2):218–241, 2018.

[CJN20] Bishwajit Chakraborty, Ashwin Jha, and Mridul Nandi. On the Security
of Sponge-type Authenticated Encryption Modes. IACR Trans. Symmetric
Cryptol., 2020(2):93–119, 2020.

65

http://eprint.iacr.org/2013/404
http://eprint.iacr.org/2013/404
http://competitions.cr.yp.to/caesar.html

[CLL19] Wonseok Choi, ByeongHak Lee, and Jooyoung Lee. Indifferentiability of
Truncated Random Permutations. In Steven D. Galbraith and Shiho Moriai,
editors, Advances in Cryptology - ASIACRYPT 2019 - 25th International
Conference on the Theory and Application of Cryptology and Information
Security, Kobe, Japan, December 8-12, 2019, Proceedings, Part I, volume
11921 of Lecture Notes in Computer Science, pages 175–195. Springer, 2019.

[CR22] John Chan and Phillip Rogaway. On Committing Authenticated-Encryption.
In Vijayalakshmi Atluri, Roberto Di Pietro, Christian Damsgaard Jensen,
and Weizhi Meng, editors, Computer Security - ESORICS 2022 - 27th Euro-
pean Symposium on Research in Computer Security, Copenhagen, Denmark,
September 26-30, 2022, Proceedings, Part II, volume 13555 of Lecture Notes
in Computer Science, pages 275–294. Springer, 2022.

[CS14] Shan Chen and John P. Steinberger. Tight Security Bounds for Key-
Alternating Ciphers. In Phong Q. Nguyen and Elisabeth Oswald, editors,
Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Copenhagen, Denmark, May 11-15, 2014. Proceedings, volume 8441 of Lecture
Notes in Computer Science, pages 327–350. Springer, 2014.

[DDNT23] Nilanjan Datta, Avijit Dutta, Mridul Nandi, and Suprita Talnikar. Tight
Multi-User Security Bound of DbHtS. IACR Trans. Symmetric Cryptol.,
2023(1):192–223, 2023.

[DEMS14] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1. Submission to CAESAR competition, 2014.

[DEMS19] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1.2. Winning Submission to NIST Lightweight Cryptography, 2019.

[DEMS21] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1.2: Lightweight Authenticated Encryption and Hashing. J. Cryptol.,
34(3):33, 2021.

[DEMS24] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon MAC, PRF, and Short-Input PRF - Lightweight, Fast, and Efficient
Pseudorandom Functions. In Elisabeth Oswald, editor, Topics in Cryptology
- CT-RSA 2024 - Cryptographers’ Track at the RSA Conference 2024, San
Francisco, CA, USA, May 6-9, 2024, Proceedings, volume 14643 of Lecture
Notes in Computer Science, pages 381–403. Springer, 2024.

[DKL09] Yevgeniy Dodis, Yael Tauman Kalai, and Shachar Lovett. On cryptography
with auxiliary input. In Michael Mitzenmacher, editor, Proceedings of the 41st
Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda,
MD, USA, May 31 - June 2, 2009, pages 621–630. ACM, 2009.

[DM19a] Christoph Dobraunig and Bart Mennink. Leakage Resilience of the Duplex
Construction. In Steven D. Galbraith and Shiho Moriai, editors, Advances
in Cryptology - ASIACRYPT 2019 - 25th International Conference on the
Theory and Application of Cryptology and Information Security, Kobe, Japan,
December 8-12, 2019, Proceedings, Part III, volume 11923 of Lecture Notes in
Computer Science, pages 225–255. Springer, 2019.

[DM19b] Christoph Dobraunig and Bart Mennink. Security of the Suffix Keyed Sponge.
IACR Trans. Symmetric Cryptol., 2019(4):223–248, 2019.

66

[DM20] Christoph Dobraunig and Bart Mennink. Tightness of the Suffix Keyed Sponge
Bound. IACR Trans. Symmetric Cryptol., 2020(4):195–212, 2020.

[DM24] Christoph Dobraunig and Bart Mennink. Generalized Initialization of the
Duplex Construction. In Christina Pöpper and Lejla Batina, editors, Applied
Cryptography and Network Security - 22nd International Conference, ACNS
2024, Abu Dhabi, United Arab Emirates, March 5-8, 2024, Proceedings, Part II,
volume 14584 of Lecture Notes in Computer Science, pages 460–484. Springer,
2024.

[DMMS21] Sébastien Duval, Pierrick Méaux, Charles Momin, and François-Xavier Stan-
daert. Exploring Crypto-Physical Dark Matter and Learning with Physical
Rounding Towards Secure and Efficient Fresh Re-Keying. IACR Trans. Cryp-
togr. Hardw. Embed. Syst., 2021(1):373–401, 2021.

[DMP22] Christoph Dobraunig, Bart Mennink, and Robert Primas. Leakage and
Tamper Resilient Permutation-Based Cryptography. In Heng Yin, Angelos
Stavrou, Cas Cremers, and Elaine Shi, editors, Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2022,
Los Angeles, CA, USA, November 7-11, 2022, pages 859–873. ACM, 2022.

[DMV17] Joan Daemen, Bart Mennink, and Gilles Van Assche. Full-State Keyed Duplex
with Built-In Multi-user Support. In Tsuyoshi Takagi and Thomas Peyrin,
editors, Advances in Cryptology - ASIACRYPT 2017 - 23rd International
Conference on the Theory and Applications of Cryptology and Information
Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part II, volume
10625 of Lecture Notes in Computer Science, pages 606–637. Springer, 2017.

[DP08] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-Resilient Cryptography.
In 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2008, October 25-28, 2008, Philadelphia, PA, USA, pages 293–302. IEEE
Computer Society, 2008.

[DP10] Yevgeniy Dodis and Krzysztof Pietrzak. Leakage-Resilient Pseudorandom
Functions and Side-Channel Attacks on Feistel Networks. In Tal Rabin, editor,
Advances in Cryptology - CRYPTO 2010, 30th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 15-19, 2010. Proceedings, volume 6223 of
Lecture Notes in Computer Science, pages 21–40. Springer, 2010.

[DPVR00] Joan Daemen, Michaël Peeters, Gilles Van Assche, and Vincent Rijmen. Nessie
Proposal: NOEKEON. First Open NESSIE Workshop, 2000.

[FFL12] Ewan Fleischmann, Christian Forler, and Stefan Lucks. McOE: A Family
of Almost Foolproof On-Line Authenticated Encryption Schemes. In Anne
Canteaut, editor, Fast Software Encryption - 19th International Workshop,
FSE 2012, Washington, DC, USA, March 19-21, 2012. Revised Selected Papers,
volume 7549 of Lecture Notes in Computer Science, pages 196–215. Springer,
2012.

[FH15] Benjamin Fuller and Ariel Hamlin. Unifying Leakage Classes: Simulatable
Leakage and Pseudoentropy. In Anja Lehmann and Stefan Wolf, editors,
Information Theoretic Security - 8th International Conference, ICITS 2015,
Lugano, Switzerland, May 2-5, 2015. Proceedings, volume 9063 of Lecture
Notes in Computer Science, pages 69–86. Springer, 2015.

67

[FPS12] Sebastian Faust, Krzysztof Pietrzak, and Joachim Schipper. Practical Leakage-
Resilient Symmetric Cryptography. In Emmanuel Prouff and Patrick Schau-
mont, editors, Cryptographic Hardware and Embedded Systems - CHES 2012
- 14th International Workshop, Leuven, Belgium, September 9-12, 2012. Pro-
ceedings, volume 7428 of Lecture Notes in Computer Science, pages 213–232.
Springer, 2012.

[GBKR23] Henri Gilbert, Rachelle Heim Boissier, Louiza Khati, and Yann Rotella.
Generic Attack on Duplex-Based AEAD Modes Using Random Function
Statistics. In Carmit Hazay and Martijn Stam, editors, Advances in Cryptology
- EUROCRYPT 2023 - 42nd Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Lyon, France, April 23-27,
2023, Proceedings, Part IV, volume 14007 of Lecture Notes in Computer
Science, pages 348–378. Springer, 2023.

[GPP11] Jian Guo, Thomas Peyrin, and Axel Poschmann. The PHOTON Family
of Lightweight Hash Functions. In Phillip Rogaway, editor, Advances in
Cryptology - CRYPTO 2011 - 31st Annual Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2011. Proceedings, volume 6841 of Lecture
Notes in Computer Science, pages 222–239. Springer, 2011.

[GPPS19a] Chun Guo, Olivier Pereira, Thomas Peters, and François-Xavier Standaert.
Authenticated Encryption with Nonce Misuse and Physical Leakage: Defi-
nitions, Separation Results and First Construction - (Extended Abstract).
In Peter Schwabe and Nicolas Thériault, editors, Progress in Cryptology -
LATINCRYPT 2019 - 6th International Conference on Cryptology and In-
formation Security in Latin America, Santiago de Chile, Chile, October 2-4,
2019, Proceedings, volume 11774 of Lecture Notes in Computer Science, pages
150–172. Springer, 2019.

[GPPS19b] Chun Guo, Olivier Pereira, Thomas Peters, and François-Xavier Standaert.
Towards Low-Energy Leakage-Resistant Authenticated Encryption from the
Duplex Sponge Construction. Cryptology ePrint Archive, Report 2019/193,
2019. http://eprint.iacr.org/2019/193 (full version of [GPPS20]).

[GPPS20] Chun Guo, Olivier Pereira, Thomas Peters, and François-Xavier Standaert.
Towards Low-Energy Leakage-Resistant Authenticated Encryption from the
Duplex Sponge Construction. IACR Trans. Symmetric Cryptol., 2020(1):6–42,
2020.

[GPT15] Peter Gazi, Krzysztof Pietrzak, and Stefano Tessaro. The Exact PRF Security
of Truncation: Tight Bounds for Keyed Sponges and Truncated CBC. In
Rosario Gennaro and Matthew Robshaw, editors, Advances in Cryptology -
CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA,
USA, August 16-20, 2015, Proceedings, Part I, volume 9215 of Lecture Notes
in Computer Science, pages 368–387. Springer, 2015.

[GTW24] Felix Günther, Martin Thomson, and Christopher A. Wood. Usage Limits on
AEAD Algorithms. Internet Engineering Task Force, Internet-Draft, draft-
irtf-cfrg-aead-limits-09, October 2024.

[HRRV15] Viet Tung Hoang, Reza Reyhanitabar, Phillip Rogaway, and Damian Vizár.
Online Authenticated-Encryption and its Nonce-Reuse Misuse-Resistance. In
Rosario Gennaro and Matthew Robshaw, editors, Advances in Cryptology -
CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA,

68

http://eprint.iacr.org/2019/193

USA, August 16-20, 2015, Proceedings, Part I, volume 9215 of Lecture Notes
in Computer Science, pages 493–517. Springer, 2015.

[HSH+06] Deukjo Hong, Jaechul Sung, Seokhie Hong, Jongin Lim, Sangjin Lee, Bonseok
Koo, Changhoon Lee, Donghoon Chang, Jesang Lee, Kitae Jeong, Hyun
Kim, Jongsung Kim, and Seongtaek Chee. HIGHT: A New Block Cipher
Suitable for Low-Resource Device. In Louis Goubin and Mitsuru Matsui,
editors, Cryptographic Hardware and Embedded Systems - CHES 2006, 8th
International Workshop, Yokohama, Japan, October 10-13, 2006, Proceedings,
volume 4249 of Lecture Notes in Computer Science, pages 46–59. Springer,
2006.

[JLM14] Philipp Jovanovic, Atul Luykx, and Bart Mennink. Beyond 2c/2 Security
in Sponge-Based Authenticated Encryption Modes. In Palash Sarkar and
Tetsu Iwata, editors, Advances in Cryptology - ASIACRYPT 2014 - 20th
International Conference on the Theory and Application of Cryptology and
Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014.
Proceedings, Part I, volume 8873 of Lecture Notes in Computer Science, pages
85–104. Springer, 2014.

[JLM+19] Philipp Jovanovic, Atul Luykx, Bart Mennink, Yu Sasaki, and Kan Yasuda.
Beyond Conventional Security in Sponge-Based Authenticated Encryption
Modes. J. Cryptol., 32(3):895–940, 2019.

[JN20] Ashwin Jha and Mridul Nandi. Tight Security of Cascaded LRW2. J. Cryptol.,
33(3):1272–1317, 2020.

[KR19] Yael Tauman Kalai and Leonid Reyzin. A Survey of Leakage-Resilient
Cryptography. Cryptology ePrint Archive, Report 2019/302, 2019. http:
//eprint.iacr.org/2019/302.

[KSW23] Juliane Krämer, Patrick Struck, and Maximiliane Weishäupl. Committing AE
from Sponges: Security Analysis of the NIST LWC Finalists. Cryptology ePrint
Archive, Report 2023/1525, 2023. http://eprint.iacr.org/2023/1525.

[Lef24] Charlotte Lefevre. A Note on Adversarial Online Complexity in Security
Proofs of Duplex-Based Authenticated Encryption Modes. Cryptology ePrint
Archive, Report 2024/213, 2024. http://eprint.iacr.org/2024/213.

[LGR21] Julia Len, Paul Grubbs, and Thomas Ristenpart. Partitioning Oracle Attacks.
In Michael D. Bailey and Rachel Greenstadt, editors, 30th USENIX Security
Symposium, USENIX Security 2021, August 11-13, 2021, pages 195–212.
USENIX Association, 2021.

[LM22] Charlotte Lefevre and Bart Mennink. Tight Preimage Resistance of the
Sponge Construction. In Yevgeniy Dodis and Thomas Shrimpton, editors, Ad-
vances in Cryptology - CRYPTO 2022 - 42nd Annual International Cryptology
Conference, CRYPTO 2022, Santa Barbara, CA, USA, August 15-18, 2022,
Proceedings, Part IV, volume 13510 of Lecture Notes in Computer Science,
pages 185–204. Springer, 2022.

[LM24] Charlotte Lefevre and Bart Mennink. Generic Security of the Ascon Mode:
On the Power of Key Blinding. In Maria Eichlseder and Sébastien Gambs,
editors, Selected Areas in Cryptography, 31st International Workshop, SAC
2024, Montréal, Quebec, Canada, August 26-27, Revised Selected Papers,
Lecture Notes in Computer Science. Springer, 2024. to appear.

69

http://eprint.iacr.org/2019/302
http://eprint.iacr.org/2019/302
http://eprint.iacr.org/2023/1525
http://eprint.iacr.org/2024/213

[LMO+14] Jake Longo, Daniel P. Martin, Elisabeth Oswald, Daniel Page, Martijn Stam,
and Michael Tunstall. Simulatable Leakage: Analysis, Pitfalls, and New
Constructions. In Palash Sarkar and Tetsu Iwata, editors, Advances in
Cryptology - ASIACRYPT 2014 - 20th International Conference on the Theory
and Application of Cryptology and Information Security, Kaoshiung, Taiwan,
R.O.C., December 7-11, 2014. Proceedings, Part I, volume 8873 of Lecture
Notes in Computer Science, pages 223–242. Springer, 2014.

[LMP17] Atul Luykx, Bart Mennink, and Kenneth G. Paterson. Analyzing Multi-
key Security Degradation. In Tsuyoshi Takagi and Thomas Peyrin, editors,
Advances in Cryptology - ASIACRYPT 2017 - 23rd International Conference
on the Theory and Applications of Cryptology and Information Security, Hong
Kong, China, December 3-7, 2017, Proceedings, Part II, volume 10625 of
Lecture Notes in Computer Science, pages 575–605. Springer, 2017.

[LNS18] Gaëtan Leurent, Mridul Nandi, and Ferdinand Sibleyras. Generic Attacks
Against Beyond-Birthday-Bound MACs. In Hovav Shacham and Alexandra
Boldyreva, editors, Advances in Cryptology - CRYPTO 2018 - 38th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 19-23,
2018, Proceedings, Part I, volume 10991 of Lecture Notes in Computer Science,
pages 306–336. Springer, 2018.

[Men18] Bart Mennink. Key Prediction Security of Keyed Sponges. IACR Trans.
Symmetric Cryptol., 2018(4):128–149, 2018.

[Men23] Bart Mennink. Understanding the Duplex and Its Security. IACR Trans.
Symmetric Cryptol., 2023(2):1–46, 2023.

[MRH04] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability,
Impossibility Results on Reductions, and Applications to the Random Oracle
Methodology. In Moni Naor, editor, Theory of Cryptography, First Theory of
Cryptography Conference, TCC 2004, Cambridge, MA, USA, February 19-21,
2004, Proceedings, volume 2951 of Lecture Notes in Computer Science, pages
21–39. Springer, 2004.

[MRV15] Bart Mennink, Reza Reyhanitabar, and Damian Vizár. Security of Full-State
Keyed Sponge and Duplex: Applications to Authenticated Encryption. In
Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptology - ASI-
ACRYPT 2015 - 21st International Conference on the Theory and Application
of Cryptology and Information Security, Auckland, New Zealand, November
29 - December 3, 2015, Proceedings, Part II, volume 9453 of Lecture Notes in
Computer Science, pages 465–489. Springer, 2015.

[Nat15] National Institute of Standards and Technology. FIPS PUB 202: SHA-
3 Standard: Permutation-Based Hash and Extendable-Output Functions,
August 2015.

[NIS07] NIST. SHA-3 Project, February 2007. https://csrc.nist.gov/projects/
hash-functions/sha-3-project.

[NIS19] NIST. Lightweight Cryptography, February 2019. https://csrc.nist.gov/
Projects/Lightweight-Cryptography.

[NRS14] Chanathip Namprempre, Phillip Rogaway, and Thomas Shrimpton. Recon-
sidering Generic Composition. In Phong Q. Nguyen and Elisabeth Oswald,

70

https://csrc.nist.gov/projects/hash-functions/sha-3-project
https://csrc.nist.gov/projects/hash-functions/sha-3-project
https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://csrc.nist.gov/Projects/Lightweight-Cryptography

editors, Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Copenhagen, Denmark, May 11-15, 2014. Proceedings, volume 8441 of Lecture
Notes in Computer Science, pages 257–274. Springer, 2014.

[NSS23] Yusuke Naito, Yu Sasaki, and Takeshi Sugawara. Committing Security
of Ascon: Cryptanalysis on Primitive and Proof on Mode. IACR Trans.
Symmetric Cryptol., 2023(4):420–451, 2023.

[NY16] Yusuke Naito and Kan Yasuda. New Bounds for Keyed Sponges with Ex-
tendable Output: Independence Between Capacity and Message Length. In
Thomas Peyrin, editor, Fast Software Encryption - 23rd International Con-
ference, FSE 2016, Bochum, Germany, March 20-23, 2016, Revised Selected
Papers, volume 9783 of Lecture Notes in Computer Science, pages 3–22.
Springer, 2016.

[Pat91] Jacques Patarin. Étude des Générateurs de Permutations Basés sur le Schéma
du D.E.S. PhD thesis, Université Paris 6, Paris, France, November 1991.

[Pat08] Jacques Patarin. The “Coefficients H” Technique. In Roberto Maria Avanzi,
Liam Keliher, and Francesco Sica, editors, Selected Areas in Cryptography,
15th International Workshop, SAC 2008, Sackville, New Brunswick, Canada,
August 14-15, Revised Selected Papers, volume 5381 of Lecture Notes in
Computer Science, pages 328–345. Springer, 2008.

[PDM+18] Damian Poddebniak, Christian Dresen, Jens Müller, Fabian Ising, Sebastian
Schinzel, Simon Friedberger, Juraj Somorovsky, and Jörg Schwenk. Efail:
Breaking S/MIME and OpenPGP Email Encryption using Exfiltration Chan-
nels. In William Enck and Adrienne Porter Felt, editors, 27th USENIX
Security Symposium, USENIX Security 2018, Baltimore, MD, USA, August
15-17, 2018, pages 549–566. USENIX Association, 2018.

[Pie09] Krzysztof Pietrzak. A Leakage-Resilient Mode of Operation. In Antoine
Joux, editor, Advances in Cryptology - EUROCRYPT 2009, 28th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Cologne, Germany, April 26-30, 2009. Proceedings, volume 5479
of Lecture Notes in Computer Science, pages 462–482. Springer, 2009.

[PSV15] Olivier Pereira, François-Xavier Standaert, and Srinivas Vivek. Leakage-
Resilient Authentication and Encryption from Symmetric Cryptographic
Primitives. In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors,
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Com-
munications Security, Denver, CO, USA, October 12-16, 2015, pages 96–108.
ACM, 2015.

[RS04] Phillip Rogaway and Thomas Shrimpton. Cryptographic Hash-Function
Basics: Definitions, Implications, and Separations for Preimage Resistance,
Second-Preimage Resistance, and Collision Resistance. In Bimal K. Roy and
Willi Meier, editors, Fast Software Encryption, 11th International Workshop,
FSE 2004, Delhi, India, February 5-7, 2004, Revised Papers, volume 3017 of
Lecture Notes in Computer Science, pages 371–388. Springer, 2004.

[RS06] Phillip Rogaway and Thomas Shrimpton. A Provable-Security Treatment of
the Key-Wrap Problem. In Serge Vaudenay, editor, Advances in Cryptology -
EUROCRYPT 2006, 25th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, St. Petersburg, Russia, May

71

28 - June 1, 2006, Proceedings, volume 4004 of Lecture Notes in Computer
Science, pages 373–390. Springer, 2006.

[Shr04] Tom Shrimpton. A Characterization of Authenticated-Encryption as a Form
of Chosen-Ciphertext Security. Cryptology ePrint Archive, Report 2004/272,
2004. http://eprint.iacr.org/2004/272.

[SKP22] Sayandeep Saha, Mustafa Khairallah, and Thomas Peyrin. Exploring In-
tegrity of AEADs with Faults: Definitions and Constructions. IACR Trans.
Symmetric Cryptol., 2022(4):291–324, 2022.

[SMKK24] Meltem Sönmez Turan, Kerry A. McKay, Jinkeon Kang, and John Kelsey.
Ascon-Based Lightweight Cryptography Standards for Constrained Devices.
NIST SP 800-232 ipd, November 2024. https://csrc.nist.gov/pubs/sp/
800/232/ipd.

[SPY+10] François-Xavier Standaert, Olivier Pereira, Yu Yu, Jean-Jacques Quisquater,
Moti Yung, and Elisabeth Oswald. Leakage Resilient Cryptography in Practice.
In Ahmad-Reza Sadeghi and David Naccache, editors, Towards Hardware-
Intrinsic Security - Foundations and Practice, Information Security and Cryp-
tography, pages 99–134. Springer, 2010.

[SPY13] François-Xavier Standaert, Olivier Pereira, and Yu Yu. Leakage-Resilient
Symmetric Cryptography under Empirically Verifiable Assumptions. In Ran
Canetti and Juan A. Garay, editors, Advances in Cryptology - CRYPTO 2013
- 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22,
2013. Proceedings, Part I, volume 8042 of Lecture Notes in Computer Science,
pages 335–352. Springer, 2013.

[YSPY10] Yu Yu, François-Xavier Standaert, Olivier Pereira, and Moti Yung. Practical
leakage-resilient pseudorandom generators. In Ehab Al-Shaer, Angelos D.
Keromytis, and Vitaly Shmatikov, editors, Proceedings of the 17th ACM
Conference on Computer and Communications Security, CCS 2010, Chicago,
Illinois, USA, October 4-8, 2010, pages 141–151. ACM, 2010.

72

http://eprint.iacr.org/2004/272
https://csrc.nist.gov/pubs/sp/800/232/ipd
https://csrc.nist.gov/pubs/sp/800/232/ipd

	Introduction
	Generic Security of Sponges and Duplexes
	Generic Security of Ascon-AE Constructions
	A Decent Classification
	Outline
	Notation

	Ascon-AE Mode
	Adversarial Setup
	Adversaries and Distinguishing Advantages
	Notational Conventions
	Adversarial Resources
	Multicollisions

	Conventional Security of Ascon-AE
	Nonce-Respecting Security
	Nonce-Misuse Resistance
	Nonce-Misuse Resilience

	Leakage Security of Ascon-AE
	Leakage Resilience
	State-Recovery Security
	Release of Unverified Plaintext Security

	Security Proofs for Ascon-AE
	H-Coefficient Technique
	Proof of thm: auth NM
	Proof of thm: conf auth MR
	Proof of thm: auth conf LR ulimited
	Proof of thm: auth SR
	Proof of thm: auth RUP

	Generic Attacks for Ascon-AE
	Proof of prop: tight ae NR
	Proof of prop: tight NM
	Proof of prop: tight conf auth MR
	Proof of prop: tight ae LR unlimited
	Proof of prop: tight AUTH SR

	Ascon-Hash/Ascon-(C)XOF Modes and Their Security
	Description of the Modes
	Security Model
	Overview

	Ascon-PRF Mode and Its Security
	Description of the Mode
	Security
	Overview

	Conclusion
	What We Did Not Cover
	Future Research

