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Abstract. This paper introduces the Pad Thai message recovery attack
on REDOG, a rank-metric code-based encryption scheme selected for the
second round of evaluation in the Korean Post-Quantum Cryptography
(KPQC) competition. The attack exploits the low rank weight of a por-
tion of the ciphertext to construct multiple systems of linear equations,
one of which is noise-free and can be solved to recover the secret message.
The Pad Thai attack significantly undermines the security of REDOG,
revealing that its provided security is much lower than originally claimed.

1 Introduction

In this paper we introduce the Pad Thai attack, a message recovery attack
on REDOG [KHL+23], a code-based public-key encryption system that uses
rank-metric codes, specifically Gabidulin codes [Gab85]. REDOG (REinforced
modified Dual-Ouroboros based on Gabidulin codes) is built on the hardness of
solving the rank decoding problem. It is a candidate in the Korean competition
on post-quantum cryptography (KPQC) and has progressed to the second round.

Research into rank-metric codes began with Delsarte in 1978 [Del78], and
they were later independently rediscovered by Gabidulin in 1985 [Gab85]. Un-
like Delsarte, Gabidulin focused on rank-metric codes that are linear over an
extension field. The first cryptographic scheme using rank-metric codes, GPT,
was introduced in 1991 by Gabidulin, Paramonov, and Tretjakov [GPT91]. How-
ever, the original GPT scheme was broken by Overbeck [Ove05,Ove08], who
demonstrated structural attacks that could recover both the secret and public
keys.

In 2021, Kim, Kim, Galvez, and Kim [KKGK21] proposed a new rank-metric
code-based scheme as a modification of the Dual-Ouroboros public-key encryp-
tion scheme [GGH+20]. This scheme employed Gabidulin codes to avoid de-
cryption failures. Lau, Tan, and Prabowo [LTP21] analyzed the scheme and
suggested a modification that uses a technique introduced by Loidreau [Loi17]
of selecting a certain secret invertible matrix having entries in a space of small
dimension. These revisions culminated in the REDOG public-key encryption
system [KHL+22]. In 2023, Lange, Pellegrini, and Ravagnani [LPR23] analyzed
REDOG, identifying both its incorrectness and vulnerability to algebraic attacks
on the rank syndrome decoding problem. They also proposed fixes that improved
both correctness and security. With these improvements, an updated version of
REDOG [KHL+23] advanced to the second round of the KPQC competition.
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1.1 Our Contribution

We present the Pad Thai message recovery attack on REDOG [KHL+23]. In
REDOG, part of the public matrix is constructed using a strategy introduced
by Loidreau [Loi17]. For REDOG’s chosen parameters, this approach imposes a
very low upper bound on the rank weight of the noise added to the codeword
encoding the message. As a result, many entries of the error vector share the
same value. The Pad Thai attack leverages this large number of identical entries
in the error vector to create a noise-free system of linear equations, which can be
uniquely solved to recover the secret message. We also analyze the complexity
and success probability of our attack algorithm, demonstrating that it signifi-
cantly undermines REDOG’s security, which falls short of its claimed robustness.

2 Preliminaries and Background Notions

In this section, we introduce the necessary concepts and notation regarding rank-
metric codes and the Pad Thai attack. We use the same notation as in [LPR23].

Let F2m denote a finite field with 2m elements throughout this paper. Let
{α1, . . . , αm} be a basis of F2m over F2. For any x ∈ F2m , we can represent x by
(X1, . . . , Xm) ∈ Fm

2 as it can be uniquely written as x =
∑m

i=1 Xiαi, Xi ∈ F2 for
all 1 ≤ i ≤ m. We refer to this as the vector representation of x. We may extend
this process to v = (v1, . . . , vn) ∈ Fn

2m , defining a map Mat : Fn
2m → Fm×n

2 by:

v 7→


V11 V21 . . . Vn1

V12 V22 . . . Vn2

...
...

. . .
...

V1m V2m . . . Vnm

 .

Definition 2.1. The rank weight of a vector v ∈ Fn
2m is defined as wtR(v) :=

rkq(Mat(v)) and the rank distance between v,w ∈ Fn
2m is defined as dR(v,w) :=

wtR(v −w).

We remark that the rank distance of two vectors is independent from the
choice of the basis of F2m . For v ∈ Fn

2m , we denote the space spanned by v as
⟨v⟩. More concretely, if we refer to this space, we mean the F2-subspace of Fm

2

spanned by the columns of Mat(v).
Rank-metric codes are an alternative to the traditional hamming-metric

codes. Therefore, we briefly introduce the Hamming weight and the Hamming
distance.

Definition 2.2. The Hamming weight of a vector v ∈ Fn
2m is defined as the

number of non-zero entries of v, i.e. wtH(v) := #{i ∈ {1, . . . , n} | vi ̸= 0}.
The Hamming distance between vectors v,w ∈ Fn

2m is defined as dH(v,w) :=
wtH(v −w).

A code, together with its minimal distance and correction capability are
defined as follows.
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Definition 2.3. Let n, k, d ∈ N and let D be a distance metric. Then, an
[n, k, d]-code C with respect to D over F2m is a k-dimensional F2m-linear sub-
space of Fn

2m with minimum distance

d := min
x,y∈C, x̸=y

D(x,y)

and correction capability ⌊(d− 1)/2⌋.

For our result, we only consider D = dR or D = dH , i.e. the rank distance or
hamming distance, respectively. If D = dR (resp. D = dH) then the code C is
also called a rank-metric (resp. Hamming-metric) code. In this paper we consider
all codes to be linear over the field extension F2m .

The final notions that we require concerning codes are those of the generator
matrix and parity check matrix of a code. A matrix G is called a generator
matrix of a code C if the rows of G span C. A matrix H is called a parity check
matrix of a code C if C is the right-kernel of H.

REDOG utilizes Gabidulin codes [Gab85] in their system specification, which
is a well-known family of rank metric codes. In this paper, we mainly use
Gabidulin codes as a black box. For more details on Gabidulin codes, we re-
fer to the original paper.

Remark 2.4. We have omitted definitions regarding the system specification of
REDOG as these will not be used for the Pad Thai attack. This included defi-
nitions such as Moore matrices, circulant matrices, and isometries, for which we
refer to the original REDOG paper [KHL+23].

To analyze the performance of the Pad Thai attack, we estimate the number
of basic operations that the attack needs to carry out. As we work over a finite
field, we regard any field operation as one basic operation. Note that REDOG
is defined over an extension field, for which we count the number of operations
in the base field.

3 System Specification

This section introduces the specification of REDOG. We use the same notation
as in [LPR23].

The system parameters are positive integers (n, k, ℓ, q,m, r, λ, t1, t2), with ℓ <
n and t1+λt2 ≤ r ≤ ⌊(n− k)/2⌋. Furthermore, a hash function hash : {0, 1}∗ →
{0, 1}ℓhash for some positive integer ℓhash is chosen. Since the input of hash will
be elements of F2n−k

2m , we assume that such input is internally transformed into
a string of symbols in {0, 1}.

The REDOG PKE consists of three algorithms, Keygen,Encrypt,Decrypt. The
Keygen algorithm, see Algorithm 3.1, outputs a public key pk = (M,F) and a
secret key sk = (P,H,S, Φ).
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Algorithm 3.1 REDOG-2-Keygen

Input : ∅.
Output : A public key pk ∈ Fℓ×2n−k

2m and a secret key sk = (P,H,S, Φ) with P ∈ Fn×n
2m ,

H ∈ F(n−k)×(2n−k)
2m , S ∈ F(n−k)×(n−k)

2m and Φ a Gabidulin decoder for the code with
parity check matrix H.

1. Select a parity check matrix H = (H1 | H2) of a [2n − k, n] Gabidulin code, so
that H2 ∈ GLn−k(F2m). Let Φ be the syndrome decoder that corrects r errors;

2. Select a full rank matrix M ∈ Fℓ×n
2m and an isometry P ∈ Fn×n

2m (with respect to
the rank metric);

3. Select a λ-dimensional F2-subspace Λ ⊂ F2m containing 1 and select a random
circulant matrix S−1 ∈ GLn−k(F2m) having entries only in Λ;

4. Compute F = MP−1HT
1

(
HT

2

)−1
S and publish the public key pk = (M,F). Store

the secret key sk = (P,H,S, Φ).

The encryption algorithm, see Algorithm 3.2, takes as input a message msg ∈
Fℓ
2m and a public key pk = (M,F). It outputs a ciphertext c of the form c =

(c1, c2).

Algorithm 3.2 REDOG-2-Encrypt

Input : A message msg ∈ Fℓ
2m and a public key pk = (M,F).

Output : A ciphertext c = (c1, c2) ∈ Fn
2m × Fn−k

2m .

1. Generate uniformly random e = (e1, e2) ∈ F2n−k
2m with e1 ∈ Fn

2m having wtR(e1) =
t1 and e2 ∈ Fn−k

2m having wtR(e2) = t2;
2. Compute m = msg + hash(e);
3. Compute c1 = mM+ e1 and c2 = mF+ e2 and output c = (c1, c2).

The decryption algorithm, see Algorithm 3.3, takes as input a ciphertext of
the form c = (c1, c2) and a secret key sk = (P,H,S, Φ). It outputs a message
msg ∈ Fℓ

2m .

Algorithm 3.3 REDOG-2-Decrypt

Input : A ciphertext c = (c1, c2) ∈ Fn
2m × Fn−k

2m and a secret key sk = (P,H,S, Φ).
Output: The message msg ∈ Fℓ

2m corresponding to c.

1. Compute c′ = c1P
−1HT

1 − c2S
−1HT

2 = e′HT where the vector e′ :=
(e1P

−1,−e2S
−1);

2. Decode c′ using Φ to obtain e′. Recover e = (e1, e2) using P and S;
3. Solve mM = c1 − e1;
4. Output msg = m− hash(e).



Analysis of REDOG: the Pad Thai Attack 5

Note that wtR(e
′) = t1 + λt2 ≤ r, so that indeed Φ can be applied to c′ (Step 2

of Algorithm 3.3) to obtain error vector e′.

3.1 Suggested Parameters

We list the suggested parameters of REDOG for 128, 192 and 256 bits of security
submitted to round 2 of the KpqC competition.

Security parameter (n, k, ℓ, q,m, r, λ, t1, t2)

128 (30, 6, 25, 2, 59, 12, 3, 6, 2)

192 (44, 8, 37, 2, 83, 18, 3, 12, 2)

256 (58, 10, 49, 2, 109, 24, 3, 15, 3)

Table 1. Suggested parameters by [KHL+23]. The security parameter is given in the
number of bits.

4 The Pad Thai Attack

In this section, we describe our attack on REDOG which succeeds in recover-
ing the messages corresponding to REDOG’s ciphertexts. Let us first give an
overview of the attack.

4.1 Overview

We break down the description of the Pad Thai attack into two steps. We aim
to construct a system of linear equations which can be solved uniquely for m,
and subsequently for e1 and e2. Finally, we recover the message by computing
msg = m− hash(e1 | e2).

First Step. The goal of the first step is to construct a system of linear equations
starting from the relation c2 = mF+ e2. To construct this system, we combine
columns of F and the corresponding entries of c in order to obtain a system of
equations c′2 = mF′ + e′2 where e′2 has only t2 nonzero entries whose positions
are known.

Assume that we know the mentioned system. Observe that, for all security
levels of REDOG, we have t2 = 2 or t2 = 3, which means that n− k− t2 entries
in c′2 are error-free. Let i1, . . . , it2 ∈ {1, . . . , n − k} be such that e2,ij ̸= 0 for

j ∈ {1, . . . , t2}. Take F′′ ∈ Fℓ×(n−k−t2)
2m as the submatrix of F′ consisting of the

columns F ′
i for i ̸= i1, . . . , it2 . Similarly, compute c′′2 ∈ Fn−k−t2

2m by taking the
entries c′i where i ̸= i1, . . . , it2 . Then, the message m satisfies

c′′2 = mF′′, (1)
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which is an underdetermined system as we have ℓ unknowns of m and n−k− t2
equations, where n−k−t2 < ℓ for every security level. In reality, ℓ−n+k = t2+1
for every security level, which means that we are t2 + 1 equations short.

Second Step. In order to uniquely compute m we need to pad the system
in (1) with t2 +1 extra error-free equations by combining some of the equations
from c1 = mM + e1. Let c′1,i = mM ′

i for i = 1, . . . , t2 + 1 be such error-free
equations. We can add these equations to (1) and obtain a new system

(c′′2 | c1,1 | · · · | c1,t2+1) = m
(
F′′ | M ′

1 | · · · | M ′
t2+1

)
. (2)

In REDOG’s specification, M is chosen uniformly at random among the full-
rank matrices in Fℓ×n

2m . Moreover, F is assumed to be another random matrix
by [KHL+23, Problem 2] so we can safely assume that

(
F′′ | M ′

1 | · · · | M ′
t2+1

)
∈

Fℓ×ℓ
2m is a random matrix, thus having full rank with high probability. We can

now compute m by inverting the system (2) and recover msg.

4.2 First Step

We describe a method to produce a system of equations c′2 = mF′ + e′2 where
the Hamming weight wtH(e′2) = t2 and the positions of non-zero entries of e′2
are known. This can be done because of the following observation.

Remark 4.1. Let Fi denote the i-th column of F, then c2,i = mFi+e2,i. Assume
that e2,i = e2,j for some i, j. Then

c2,i + c2,j = m(Fi + Fj) + e2,i + e2,j = m(Fi + Fj).

Let α1, . . . , αt2 ∈ F∗
2m be such that ⟨e2⟩F2 = ⟨α1, . . . , αt2⟩F2 . So each entry e2,i of

e2 can assume a value in an F2-vector subspace of F2m containing 2t2 elements.
This suggests that REDOG’s encryption algorithm chooses e2 among 2(n−k)t2

possibilities (actually, less than 2(n−k)t2 as the rank weight constraint wtR(e2) =
t2 must also hold). Label the unknown values of ⟨e2⟩F2 as {0, α1, α2, . . . , α2t2−1},
where

αj =

t2∑
h=1

zj,hαh (3)

for some zj,h ∈ F2 for every j = t2 + 1, . . . , 2t2 − 1. Most of the time we will
handle 0 separately, but for convenience, we define α0 = 0.

In the following, let 2{1,...,n} denote the set of subsets of {1, . . . , n}, and thus(
2{1,...,n}

)t
a vector of t such subsets.

Definition 4.2 (Set of arrangements of subsets). Let t ∈ N be a positive
integer. We define the set of arrangements of t disjoint subsets over n elements

as the set of ordered tuples in
(
2{1,...,n}

)t
defined as

At,n :=

{
a ∈

(
2{1,...,n}

)t

|
t⋃

i=1

ai = {1, . . . , n}, ai ∩ aj = ∅ ∀i ̸= j

}
.
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Proposition 4.3. Let α = {α1, . . . , αt2} ⊂ F∗
2m be a set of F2-linearly in-

dependent elements. There exists a one-to-one correspondence between the set
Eα,n−k := {e ∈ Fn−k

2m | ⟨e⟩F2
⊆ ⟨α1, . . . , αt2⟩F2

} and A2|α|,n−k.

Proof. For e ∈ Eα,n−k, denote by

e0 := {i ∈ {1, . . . , n− k} | ei = 0}

and by

eαj := {i ∈ {1, . . . , n− k} | ei = αj}

the positions where e2 is 0 and αj for all j = 1, . . . , 2t2 − 1, respectively. We
prove that the map

φα,n−k : Eα,n−k → A2|α|,n−k

e 7→ (e0, eα1 , . . . , eα2t2−1)

is a bijection by showing that it is both injective and surjective. Let e, f ∈ Eα,n−k

be such that e ̸= f . Then there exists i ∈ {1, . . . , n− k} such that ei ̸= fi. Write
ei = αj1 and fi = αj2 for some j1, j2 ∈ {0, . . . , 2t2 − 1} with j1 ̸= j2, then
eαj1 ̸= fαj1 . It follows that φα,n−k(e) ̸= φα,n−k(f).

On the other hand, let a ∈ A2|α|,n−k and let e ∈ Fn−k
2m be such that ej = 0 for

every j ∈ a1 and ej = αi−1 for every j ∈ ai−1 and every i = 2, . . . , 2t2 . Clearly,
⟨e⟩F2

⊆ ⟨α1, . . . , αt2⟩F2
and φα,n−k(e) = a.

Definition 4.4 (Good basis of a vector). Let v ∈ Fn
2m be such that wtR(v) =

t. A set of elements {α1, . . . , αt} ⊂ Ft
2m such that ⟨v⟩F2 = ⟨α1, . . . , αt⟩F2 , is called

a good basis for v if for every j ∈ {1, . . . , t} there exists an i ∈ {1, . . . , n} such
that vi = αj.

Remark 4.5. It is clear that a good basis exists for every e ∈ F2m . To see that,
let t = wtR(e) and define the basis {α1, . . . , αt} of ⟨e⟩F2 by taking the leftmost t
entries in e which are linearly independent over F2. Then {α1, . . . , αt} is a good
basis for e.

Denote by A′
2t2 ,n−k the subset of A2t2 ,n−k so that ai ̸= ∅ for i = 2, . . . , t2 + 1.

Definition 4.6 (Arrangement of a vector). Let e ∈ Fn−k
2m with wtR(e) = t2

and α = {α1, . . . , αt2} ⊂ Ft2
2m be a good basis for e. Then we call φα,n−k(e) the

arrangement of e with respect to α.

Observe that, given a good basis α for e, the arrangement of e w.r.t. α is in
A′

2t2 ,n−k.



8 Alex Pellegrini, Marc Vorstermans

Algorithm 4.7 RearrangeSystem

Input: An arrangement a ∈ A′
2t2 ,n−k, a REDOG’s partial ciphertext c2 ∈ Fn−k

2m cor-

responding to a message m ∈ Fℓ
2m under the partial public key F ∈ Fℓ×(n−k)

2m .

Output: A vector c′′2 ∈ Fn−k−t2
2m and a matrix F′′ ∈ Fℓ×(n−k−t2)

2m .

1. Fix elements xi ∈ ai for every i = 2, . . . , t2 + 1;
2. Construct F′′ ∈ Fℓ×(n−k−t2)

2m and c′′2 by computing the following columns and
values:
(a) F ′′

j = Fj and c′′2,j = c2,j for every j ∈ a1;
(b) F ′′

j = Fj +Fxi and c′′2,j = c2,j + c2,xi for all j ∈ ai \ {xi} and i = 2, . . . , t2 +1;
(c) F ′′

j = Fj+
∑t2

h=1 zi−1,hFxh+1 and c′′2,j = c2,j+
∑t2

h=1 zi−1,hc2,xh+1 for all j ∈ ai

and i = t2 + 2, . . . , 2t2 .
3. Return F′′ and c′′2 , the matrix F′′ and vector c′′ punctured at xi, i = 2, . . . , t2 +1.

Proposition 4.8. Let c2 = mF + e2 be a REDOG’s partial ciphertext and
φα,n−k(e2) be the arrangement of e2 w.r.t a good basis α. Then Algorithm 4.7

returns c′′2 ∈ Fn−k−t2
2 and F′′ ∈ Fℓ×(n−k−t2)

2m such that

c′′2 = mF′′.

Proof. The algorithm repeatedly applies the observation in Remark 4.1. Each j ∈
a1 has that c2,j is error free. Each j ∈ ai, i = 2, . . . , t2+1 has c2,j = mFj +αi−1.
The algorithm selects one such index as xi and then applies Remark 4.1 to cancel
the αi−1 in all other c2,j for j ∈ ai \ {xi}. Eventually, c′′2 is punctured at xi so
that only those entries without error remain.

Similarly, all c2,j with j ∈ ai for i = t2 + 2, . . . , 2t2 have error αi−1 added
and (3) states the coefficients zi−1,h representing αi−1 in the basis. Again using
that cxh

contributes αh−1 shows that the third case produces an error-free c′′2,j
for j ∈ ai.

In total, the matrix and vector are punctured at the t2 positions of the xi,
thus producing n− k − t2 error free equations c′′2,j = mF ′′

j .

Proposition 4.8 together with Algorithm 4.7 provides a method that transforms
the system of equations c2 = mF + e2 into a smaller system c′′2 = mF′′ that
does not involve any noise. As the system is underdetermined, we present an
algorithm in the next section that exploits REDOG’s partial ciphertext c1 to
obtain the necessary remaining equations for the system.

Remark 4.9. Note that Proposition 4.8 assumes knowledge of the arrangement
of e2. We want to stress that, since the basis α is unknown, knowing the arrange-
ment of e2 w.r.t. α does not necessarily mean knowing e2. This assumption will
be satisfied as we iterate over all possible arrangements of e2.

4.3 Second Step

In this subsection, we investigate how to pad the system equations c′′2 = mF′′

with t2+1 additional equations to uniquely determinem. The idea is to construct
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these extra equations, combining equations from c1 = mM + e1. Observe that
since wtR(e1) = t1, then any set {e1,i1 , . . . , e1,it1+1

} of t1 + 1 entries of e1 is
linearly dependent, i.e. there exist z1, . . . , zt1+1 ∈ F2 not all zero such that

t1+1∑
j=1

zje1,ij = 0.

This suggests that given a set of t1 + 1 equations of c1 = mM + e1 one can
search the space of F2-linear combinations for t1 + 1 non-zero combinations of
the equations, which cancels the error factor.

Remark 4.10. Observe that we need to make sure that the columns Mij for
j = 1, . . . , t1 + 1 are linearly independent, as otherwise we might run into

t1+1∑
j=1

zjMij = 0

which is a useless equation. However, the probability for this to happen is neg-
ligible for each parameter set.

Since we need t2 + 1 extra equations to pad the system, we need to find t2 + 1
equations simultaneously with this method. In total, we obtain a linear system
of ℓ = n− k + 1 equations that can be solved to recover the message.

4.4 The Full Attack

For each system rearrangement that we perform in the first step, we need to test
all paddings in the second step. Testing the solution of each system we construct
implies computing a candidate message m′ ∈ Fℓ

2m and candidate errors e′1 ∈ Fn
2m

and e′2 ∈ Fn−k
2m and checking whether the rank weights of e′1 and e′2 match t1 and

t2, respectively. Therefore, combining the two steps described in this section, we
obtain the following algorithm.
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Algorithm 4.11 PadThaiAttack

Input: A REDOG’s ciphertext c = (c1, c2) ∈ F2n−k
2m corresponding to a message

msg ∈ Fℓ
2m under the public key pk = (M,F) ∈ Fℓ×(2n−k)

2m .
Output: The message msg.

For each arrangement a ∈ A′
2t2 ,n−k do:

1. Let F′′, c′′ = RearrangeSystem(a, c2,F);
2. Pick random sets J1, . . . , Jt2+1 ⊂ {1, . . . , n} with |Ji| = t1 + 1;
3. Let MJi be the matrix consisting of columns of M indexed by Ji;
4. If rk(MJi) < t1 + 1 for some i ∈ {1, . . . , t2 + 1} then go to Step 2.

5. For every (v1, . . . ,vt2+1) ∈
(
Ft1+1
2

)t2+1
do:

(a) Compute M ′
i = MJiv

⊤ for each i = 1, . . . , t2 + 1;
(b) Let c1,Ji be the vector consisting of the entries of c1 indexed by Ji;
(c) Compute c′1,i = c1,Jiv

⊤
i for each i = 1, . . . , t2 + 1;

(d) Let G := (F′′ | M ′
1, . . . ,M

′
t2+1) and y := (c′′ | c′1,2, . . . , c′1,t2+1);

(e) Compute m′ = yG−1;
(f) Compute e′

1 = c1 −m′M and e′
2 = c2 −m′F;

(g) If wtR(e
′
1) = t1 and wtR(e

′
2) = t2 then return msg = m′ − hash(e′

1 | e′
2).

Let us provide an argument for the correctness of the Pad Thai attack.

Proposition 4.12. Algorithm 4.11, under the assumption that matrix G in
Step 5.(d) is invertible, recovers a valid message msg corresponding to a RE-
DOG’s ciphertext c under public key pk = (M,F).

The proof of Proposition 4.12 follows directly from Proposition 4.8 and the ar-
guments given in Section 4.3. We thus omit the full proof. In the next section,
we give the complexity analysis of our attack and point out some areas of im-
provement.

Remark 4.13. The matrix G in Step 5.(d) of Algorithm 4.11 needs to be invert-
ible for the attack to be successful. This is a direct consequence of Lemma 5.3,
which can be applied to show that G is invertible with probability ∼ 1. A more
elaborate argument is presented in Section 5.1.

5 Analysis of the Pad Thai Attack

In this section, we describe the complexity of our attack on REDOG described
in Algorithm 4.11. Let us start with the following easy lemma.

Lemma 5.1. The cardinality of A2t2 ,n−k is 2t2(n−k).

Proof. By Proposition 4.3 there is a bijection between A2t2 ,n−k and Eα,n−k for a
fixed set α = {α1, . . . , αt2} ⊂ Ft2

2m . The number of elements in Eα,n−k is clearly
2t2(n−k).
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A first assessment of the complexity of the Pad Thai attack is given in the
following proposition.

Proposition 5.2. The Algorithm 4.11 recovers the message msg corresponding
to a REDOG ciphertext c under public key pk = (M,F) in

O(2(t1+1)(t2+1)+t2(n−k)ℓωm2) (4)

field operations, where 2 ≤ ω ≤ 3 is the matrix multiplication exponent.

Proof. The algorithm consists of two nested cycles. The first cycle iterates over
all arrangements A′

2t2 ,n−k, which is a subset of A2t2 ,n−k whose cardinality is
reported in Lemma 5.1.

The most expensive steps of each cycle of Algorithm 4.11 are Steps 2.(c) in Al-
gorithm 4.7 and 5.(e). The former computes 2t2−t2−1 sums Fj+

∑t2
h=1 zi−1,hFxh+1

,
i.e. the sum of t2 elements of Fℓ

2m for a total number of operations in F2

in O(2t2mt2ℓ). The latter happens in the nested cycle and inverts a matrix
G ∈ Fℓ×ℓ

2m . Its cost, using schoolbook multiplications in finite fields, is in O(ℓωm2)
and is performed 2(t1+1)(t2+1) times for each outer cycle. For each parameter set
in Table 1 we have that

2t2mt2ℓ < 2(t1+1)(t2+1)ℓωm2.

Combining with the number of outer cycles we obtain the claimed complexity.

The following table reports the updated security provided by REDOG based
on our attack.

Security parameter (n, k, ℓ, q,m, r, λ, t1, t2) Pad Thai attack

128 (30, 6, 25, 2, 59, 12, 3, 6, 2) 93.8

192 (44, 8, 37, 2, 83, 18, 3, 12, 2) 138.37

256 (58, 10, 49, 2, 109, 24, 3, 15, 3) 237.3
Table 2. log2 of the complexity of the Pad Thai attack for each security level of
REDOG according to equation (4) with ω = 2.807.

Table 2 suggests that the combination of parameters of REDOG security level
256 has a smaller loss of security under the Pad Thai attack compared to security
levels 128 and 192. This can be explained by the choices for parameter t2.

5.1 Success Probability

The matrix F ∈ Fℓ×n−k
2m is assumed to be indistinguishable from random as

per [KHL+23, Problem 2], hence we can consider every output matrix F′′ ∈
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Fℓ×n−k−t2
2m of Algorithm 4.7 as random too. Furthermore, given that each pad

consists of a combination of random columns of an actually random matrix
M ∈ Fℓ×n

2m , we conclude that the entire matrix G ∈ Fℓ×ℓ
2m can be considered as

a matrix chosen uniformly at random. We only need to estimate the probability
that G is invertible in order for the attack to succeed when the right system has
been set up. To this end we can use the following result of [LPR23].

Lemma 5.3 ([LPR23, Lemma 4.2]). Let V be a t-dimensional subspace V ⊆
Fm
2 and let S ∈ V s be a uniformly random s-tuple of elements of V . The proba-

bility p(q, s, t) that ⟨Si | i ∈ {1, . . . , s}⟩ = V is

p(q, s, t) =

{
0 if 0 ≤ s < t;∑t

i=0

[
t
i

]
q
(−1)t−iqs(i−t)+(t−i

2 ) otherwise,
(5)

where
[
t
i

]
q
is the q-binomial coefficient, counting the number of subspaces of

dimension i of Ft
2, and

(
a
b

)
= 0 for a < b. In particular, this probability does not

depend on m or on the choice of V , but only on its dimension.

By setting V = Fℓ
2m and s = t = ℓ in the above lemma, we obtain that the

set of columns of G spans the entire space V . In other words, G is invertible
with probability ∼ 1 for every cycle and every security level. As a result, we are
assured that the attack succeeds at recovering the secret msg with probability
∼ 1.

5.2 Attack Improvements

In this subsection, we point out an interesting behavior of Algorithm 4.7 of the
first step of our attack. We observe that Algorithm 4.7 rearranges the system
c2 = mF+ e2 depending only on the arrangement of e2. Here is an example for
t2 = 2.

Example 5.4. Let e, f ∈ Fn−k
2m be the vectors

e = (0, 0, α, α, β, α+ β)

and
f = (0, 0, β, β, α+ β, α).

These two vectors have the same arrangement w.r.t. the bases {α, β} and {β, α+
β}, respectively. Now, let ce = mF + e and cf = mF + f and let x1 = 3 and
x2 = 5. Let also a be the arrangement of e (equivalently, of f). Then, on inputs
(a, ce) and (a, cf ), Algorithm 4.7 produces the same output.

This means that we can run the first cycle on a subset of the arrangements
A′

2t2 ,n−k as Algorithm 4.7 does not distinguish between errors having the same

arrangement. Indeed, for each arrangement there are r =
∏t2−1

i=0 (2t2 − 2i) other
arrangements for which Algorithm 4.7 produces the same output. The updated
complexity becomes therefore

O(2(t1+1)(t2+1)+t2(n−k)ℓωm2r−1). (6)
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The updated values are as follows.

Security parameter (n, k, ℓ, q,m, r, λ, t1, t2) Pad Thai attack

128 (30, 6, 25, 2, 59, 12, 3, 6, 2) 91.22

192 (44, 8, 37, 2, 83, 18, 3, 12, 2) 135.78

256 (58, 10, 49, 2, 109, 24, 3, 15, 3) 229.9
Table 3. log2 of the complexity of the Pad Thai attack for each security level of
REDOG according to equation (6) with ω = 2.807.

Another improvement comes from noting that the complexity estimates con-
sider all arrangements in A2t2 ,n−k including those that correspond to error vec-
tors e2 that have rank weight wtR(e2) ≤ t2. Considering only arrangements for
error vectors with rank weight exactly t2 slightly reduces the number of arrange-
ments that we need to iterate over in the first step.

Remark 5.5. We want to stress that the values in Table 2 and Table 3 are over-
estimates due to the fact that Algorithm 4.11 iterates over A′

2t2 ,n−k, which is a
subset of A2t2 ,n−k and that we assume schoolbook arithmetic in F2m .
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