
Lova: Lattice-Based Folding Scheme from
Unstructured Lattices

Giacomo Fenzi
giacomo.fenzi@epfl.ch

EPFL

Christian Knabenhans
christian.knabehans@epfl.ch

EPFL

Ngoc Khanh Nguyen
ngoc khanh.nguyen@kcl.ac.uk

King’s College London

Duc Tu Pham
pdtu01@gmail.com

ENS Paris

Abstract. Folding schemes (Kothapalli et al., CRYPTO 2022) are a
conceptually simple, yet powerful cryptographic primitive that can be
used as a building block to realise incrementally verifiable computation
(IVC) with low recursive overhead without general-purpose non-interactive
succinct arguments of knowledge (SNARK). Most folding schemes known
rely on the hardness of the discrete logarithm problem, and thus are both
not quantum-resistant and operate over large prime fields. Existing post-
quantum folding schemes (Boneh, Chen, ePrint 2024/257) based on lattice
assumptions instead are secure under structured lattice assumptions, such
as the Module Short Integer Solution Assumption (MSIS), which also
binds them to relatively complex arithmetic. In contrast, we construct
Lova, the first folding scheme whose security relies on the (unstructured)
SIS assumption. We provide a Rust implementation of Lova, which
makes only use of arithmetic in hardware-friendly power-of-two moduli.
Crucially, this avoids the need of implementing and performing any finite
field arithmetic. At the core of our results lies a new exact Euclidean
norm proof which might be of independent interest.

1 Introduction

Incrementally verifiable computation [Val08] (IVC) is a cryptographic primitive
that allows a long (possibly infinite) computation to be run, such that correctness
of the state of the computation can be efficiently verified at any point. IVC
and its generalisation, proof-carrying data [CT10] (PCD), have found numerous
applications in succinct blockchains [BMRS20; BGH19; Mina], verifiable delay
functions [BBBF18; KMT22], SNARKs for machine computations [BCTV14],
and more.

Originally, IVC and PCD were built on recursive SNARKs [BCCT13; BCTV14;
Val08] which prove that: (i) the current computation step was executed correctly,
and (ii) there exists a proof that the computation was performed correctly for
all previous steps up to that point. This approach, however, suffers from several
restrictions on the choice of the underlying SNARKs, making the approach rather
impractical. More recent constructions of IVC and PCD were proposed from

so-called folding and (split-)accumulation schemes [BCMS20; BCL+21; BC23;
KST22; KS22; KS23]. Informally, a folding scheme “folds” several instances
of a certain relation into a single instance, so that correctness of the folded
instance implies correctness of all original instances. Until recently, folding
(aka accumulation) schemes are instantiated using Pedersen commitments, and
their security holds in the random oracle model under the discrete logarithm
assumption. Consequently, all the constructions are currently exposed to efficient
quantum attacks [Sho94].

Given the recent announcement of the US National Institute of Standardisation
and Technology (NIST) on the post-quantum standardisation effort [NIST], it is
becoming more and more likely that lattices will form the future foundation of
public-key cryptography. Hence, a natural question arises as to whether folding
schemes can be efficiently realised from lattice-based assumptions.

1.1 Our Results

In this paper, we present Lova1, the first folding scheme based on unstruc-
tured lattice assumptions, i.e. the Short Integer Solution (SIS) assumption. Our
construction brings the following benefits over relying on more structured as-
sumptions, such as Module-SIS [LS15]. It allows for much simpler (yet efficient)
instantiations of the folding scheme, without implementing polynomial ring
arithmetic and requiring NTT-friendly prime moduli while relying on a more
established computational assumption.

Our starting point is a generic construction of a folding scheme from Nova
[KST22], which requires an additively homomorphic compressing commitment
scheme Com. The rough intuition can be described as follows; the folding scheme
focuses on “commit-and-prove”-type relations:

R := {((x, t), (w, r)) : (x, w) ∈ R ∧ t = Com(w; r)} ,

where R is a binary NP relation. Further, given two valid instances (x0,w0)
and (x1,w1) ∈ R, the folded instance (x∗ := (x∗, t∗),w∗ := (w∗, r∗)) ∈ R
is constructed by taking a linear combination of (x0,w0) and (x1,w1) with
challenges generated by the verifier, or in the non-interactive case, output values
of the random oracle. Thus, one could naively obtain a lattice-based folding
scheme by instantiating Com with the folklore Ajtai commitment scheme [Ajt96].

The resulting construction, unfortunately, comes with a major efficiency
drawback. Indeed, Ajtai commitments are binding only with respect to short
message and randomness vectors. This limitation becomes particularly problem-
atic because the norm of the folded witness w∗ increases after each folding step.
The consequences are twofold. First, a maximal number of folding steps must
be known ahead of setting the lattice parameters. This is contradictory to the
concept of IVC, where we do consider long, and possibly infinite, computations.
1 The name comes from the fact that our construction is a direct lattice adaptation of

the Nova folding scheme [KST22].

2

Second, the extracted message w∗ may not be a valid witness for x∗ with respect
to the relation R, due to slack and other related norm growth problems [BLNS20;
ACK21; AL21]. In this work, we incorporate two main techniques to circumvent
these limitations.
Decompose-and-fold. First, we apply the (folklore by now) “decompose-and-
fold” paradigm [PSTY13; BS23; BC24] which allows us to control the norm
growth during an honest execution. Intuitively, given a witness wi of norm at
most β, where i ∈ {0, 1}, the prover starts by decomposing it (usually w.r.t. some
decomposition base b) into many intermediate witnesses wi,1, . . . ,wi,k, where
each wi,j has much smaller norm than wi. Afterwards, the prover folds all the
2k intermediate witnesses (wi,j)i∈{0,1},j∈[k] into the final witness w∗. By picking
appropriate parameters b and β, one can ensure that norm of the folded witness
w

∗ is also bounded by β; thus no norm growth occurs when following the protocol
honestly.
Exact Euclidean norm proof. The second component is a new exact Euclidean
norm proof. This ingredient ensures that no slack and stretch occurs in the knowl-
edge soundness/extractability argument. Combined with the decompose-and-fold
approach, this enables us to build a lattice-based folding scheme, where the
number of folding steps is independent of the instantiated lattice parameters. We
highlight that our Euclidean norm proof could be of independent interest, and may
be applied in the context of lattice-based succinct arguments with fast verifica-
tion, e.g., in the recent polynomial commitment scheme by Cini et al. [CMNW24].

To showcase the simplicity and practicality of our folding scheme, we provide
a concrete instantiation and a proof-of-concept implementation. The Lova pro-
tocol is relatively simple and relies on unstructured assumptions, which makes
it particularly easy to implement and straightforward to parallelize. Both our
prover and verifier mostly perform linear algebra operations (especially matrix-
matrix multiplication with bounded-norm entries), and we do not require more
complex operations that appear in other lattice-based constructions (e.g., number-
theoretic transforms for polynomial arithmetic, or sumcheck-style computations).
In addition, we are able to choose the lattice modulus to be a hardware-friendly
power-of-two (q = 264 in our evaluation), which eschews modular arithmetic
altogether and reduces to standard integer arithmetic.

1.2 Technical Overview

We provide a brief overview of our techniques.
1.2.1 Background
Ajtai commitment. In the Ajtai commitment scheme [Ajt96], one commits to
a short vector s ∈ Zm by computing

As ≡ t (mod q) .

In the above q and A ∈ Zn×m are public parameters of the scheme, and t ∈ Zn is
the commitment to s. That Ajtai commitments are binding follows directly from

3

the SIS assumptions, as two distinct short vectors s, s∗ that satisfy the above
equation imply that s− s⋆ ̸= 0 is also short and A(s− s⋆) = 0 (mod q).
Reductions of knowledge. Reductions of Knowledge (RoK) [KST22] are
interactive protocols between a prover and a verifier that reduce checking mem-
bership of an instance in a relation to checking membership a related instance in
a (usually simpler) relation. In a reduction of knowledge from R→ R′, the prover
and the verifier have access to an index i and an instance x. The honest prover
additionally has access to a witness w for the instance. They interact and at the
end of the interaction:

– If (i,x,w) ∈ R, the verifier accepts and outputs an instance x′ and the prover
outputs a witness w′ such that (i,x′,w′) ∈ R′.

– If at the end of the interaction the verifier accepts and outputs an instance x′,
there is an efficient extractor that given (i,x,x′) and w

′ such that (i,x′,w′) ∈
R′ outputs w such that (i,x,w) ∈ R

A folding scheme is then simply reduction of knowledge from a relation R2 to
itself. Note that both completeness and (knowledge) soundness require then that
the updated witness belongs to the same relation and that the extracted witness
belong to the original relation. For the lattice setting, where norm growth and
slack tend to accrue, this is the major technical hurdle to solve. The relation
that we consider is the following, which is a slight generalization of the natural
opening relation for Ajtai commitments2:

RSIS
q,β,t :=

{
(A, T, S) ∈ Zn×m × Zn×t × Zm×t

∣∣∣∣ AS ≡ T (mod q)
∀i ∈ [t], ∥S∗,i∥ ≤ β

}
.

Since an instance of (RSIS
q,β,t)2 can be reduced to one of RSIS

q,β,2t, we consider
designing a RoK for RSIS

q,β,2t → RSIS
q,β,t.

1.2.2 A Naive Attempt to Folding Schemes
As in previous folding approaches, we will aim to do so via a random linear
combinations, which will inevitably incur into problems. Let (A, T, S) ∈ RSIS

q,β,2t.
The (naive) protocol that we design is the following:

1. The verifier samples a challenge C← C2t×t ⊆ Z2t×t (from a yet unspecified
sampling set) and send it to the prover.

2. The prover computes and outputs the updated witness Z := SC.
3. The verifier computes the updated instance T′ := TC, accepts and outputs it.

This protocol suffers from two main issues:
Completeness norm growth. Folding must reduce checking two instances of
a relation to checking a single instance of the same relation. In this case, the new
opening Z will not in fact satisfy ∥Z∗,i∥ ≤ β for any non-trivial sampling set C.
2 Which we can recover by setting t = 1. We use this formulation as it will notationally

more convenient later on.

4

Extraction norm growth. The protocol is knowledge sound, as we can
construct an extractor that produces a (relaxed) witness via coordinate-wise
special soundness [BBC+18; FMN23]. Interpreting the challenge set C2t×t ∼= (Ct)2t

(i.e. so that each coordinate correspond to a row of the matrix) the extractor is
given access to a tree of 2t + 1 accepting transcripts,((

C(0)

Z(0)

)
, · · · ,

(
C(2t)

Z(2t)

))
,

such that, for j ∈ [2t], C(0), C(j) differ in exactly row j. Letting i∗ denote the
column in which the two differ we have that C

(0)
j,i∗ ̸= C

(j)
j,i∗ and C

(0)
j′,i = C

(j′)
j′,i for

i ∈ [t] and j′ ̸= j. For j ∈ [2t], the extractor computes

S∗,j ≡
Z(0)

∗,j − Z(j)
∗,j

C
(0)
j,i∗ − C

(j)
j,i∗

(mod q) ,

and sets S :=
[
S∗,1, . . . , S∗,2t

]
. It is easy to see then that, for every j ∈ [2t],

AS∗,j ≡
AZ(0)

∗,j −AZ(j)
∗,j

C
(0)
j,i∗ − C

(j)
j,i∗

≡ T∗,j (mod q) .

What is left is to bound the norm of the extracted witness S. Letting βC :=
maxc ̸=c′∈C

∥∥(c− c′)−1 mod q
∥∥, and β′ denote the completeness norm bound on

Z, we can only conclude that norm of S∗,j is at most 2 · βC · β′ > β. So, even if
there were no completeness norm growth and β′ = β (which as argued before, is
not currently the case), the extraction incurs in a norm blowup. The particularly
hard term to control is βC. Selecting C that simultaneously is (i) large enough
for soundness; (ii) with elements of small norm (to keep the completeness norm
under control); and (iii) with βC small is challenging. In polynomial rings, setting
C to be the monomials can partially help, but there are limitations even in the
cyclotomic ring setting [AL21].

To construct an efficient folding scheme for Ajtai commitments, we have to
solve both of the above problems.

– To solve the completeness norm growth, we will ask the prover to decompose
its opening and send us an updated commitment, which we can check for
consistency against the old commitment.

– To solve the extraction norm growth, we will proceed in steps. First, we
will present an approach to extract (a decomposed witness) with almost no
extraction blowup, and then we will augment this protocol with a proof of
exact norm that allows it to eliminate it completely.

1.2.3 Extracting Witness with Small Norm
We now aim to choose a challenge set C suitable for both keeping completeness
and extraction norm growth under control. A natural choice is the set of binary
challenges C = {0, 1} as used in [BBC+18; CMNW24]. Then, as demonstrated in

5

the aforementioned works, we have βC = 1 and norm of the extracted matrix is
at most 2β′. Below, we consider a slight extension of this approach, which later
will be crucial to prove exact norm bounds.

Namely, consider ternary challenges C = {−1, 0, 1} instead. As in the binary
case, those challenges are small, so they will contribute little to the completeness
growth. For extraction, recall that norm growth was in large part contributed
by the term βC. For our choice of C, the differences of challenges consists of
δ := α− α′ with α, α′ ∈ {−1, 0, 1} and α ̸= α′. We notice that δ ∈ {±1,±2} and
further equals 2 only if (α, α′) = (±1,∓1). When δ = ±1, dividing by δ does
not create any norm blowup, similarly as in the binary case. On the other hand,
for δ = ±2, it is unclear whether the extracted witness is short, or even if it is
well-defined, e.g. for even moduli q.

To leverage this observation, we revisit the coordinate-wise special soundness
(CWSS) property and the heavy-row analysis in [BBC+18, Lemma 3]. For each
coordinate i, we construct an extractor that recovers two accepting transcripts
(C, Z), (C′, Z′) such that: (i) C and C′ differ exactly, and only, in the i-th row,
and (ii) their corresponding i-th row vectors ci, c′

i satisfy ci ̸≡ c′
i (mod 2). The

latter condition makes sure that there exists an entry of ci − c′
i which is ±1 and

allows for extracting a witness with norm at most 2β′ as in the binary setting.
Roughly, the analysis relies on the heavy-row argument [Dam10]. Suppose a

cheating prover succeeds to produce a valid response Z for a random challenge
matrix C with a noticeable probability. Then, for any coordinate i, with sufficiently
large probability (i.e. the probability of “landing in a heavy row”), the set of
matrix challenges C′, which satisfy conditions (i) and (ii) described above, that
are simultaneously “good” (in the sense that the prover outputs an accepting
transcript) must be big enough.

Replicating the CWSS analysis with the improved extraction procedure to
the strawman protocol, we reduce the extraction norm blowup of the strawman
protocol to 2 · β′. We highlight that the new approach suffers from a larger
soundness than in the binary challenge setting, which is now roughly (2

3)t.
1.2.4 Almost a Folding Scheme
Following the above strategy, we design a folding scheme with no completeness
blowup. Further, we use the extraction strategy previously described to extract a
very short (decomposed) witness, which we later show how to upgrade to extract
a witness with no extraction norm blowup.
b-decomposition. In the sequel G is the b-decomposition gadget matrix, and
G−1 denote its inverse, i.e. G−1(S)G = S for every S. G−1 decomposes S into a
matrix S̃ where each entry is in [−⌊b/2⌋, ⌊b/2⌋] (in this work, we use balanced
base-b decomposition).
Folding scheme. Let (A, T, S) ∈ RSIS

q,β,2t. The new protocol that we design is
the following:

1. The prover computes S̃ := G−1(S), T̃ := AS̃ mod q and sends T̃ to the
verifier.

2. The verifier samples a challenge C← {−1, 0, 1}2kt×t and send it to the prover.

6

3. The prover computes and outputs the updated witness Z := S̃C.
4. The verifier computes T′ := T̃C, accepts if

T̃G ≡ T (mod q) ,

and outputs the updated instance T′.

We analyse completeness and knowledge soundness of the above RoK. Com-
pleteness. First, it is easy to see that the verifier’s algebraic checks succeed.

T̃G ≡ AS̃G ≡ AS ≡ T (mod q) ,

AZ ≡ AS̃C ≡ T̃C (mod q) .

We are left to check the norms of Z. Let i ∈ [t], and consider ∥Z∗,i∥. Since∥∥S̃∗,j

∥∥ ≤ ⌊ b
2⌋
√

m, we have that

∥Z∗,j∥ ≤

∥∥∥∥∥
2kt∑
i=1

Ci,jS̃∗,i

∥∥∥∥∥ ≤ 2kt

⌊
b

2

⌋√
m .

As long as t ≤ β

2k⌊ b
2⌋

√
m

, the above norm is then bounded above by β.

Relaxed Knowledge Soundness. We apply a similar analysis to that in the
strawman protocol, except now that the extraction procedure is applied on 2kt+1
coordinates instead of 2t + 1. This recovers a decomposed witness S̄ ∈ Zn×2kt

which has
∥∥S̄∗,j

∥∥ ≤ 2β and for which AS̄ ≡ T̃ (mod q). Later on, we will make
use of this intermediate short extracted witness. The final extracted witness is
S := S̄G which satisfies

AS ≡ AS̄G ≡ T̃G ≡ T (mod q) .

Note that, for j ∈ [2t], ∥S∗,j∥ ≤ 2β2.
1.2.5 Exact Euclidean Norm Proof
To construct the final protocol, we require to augment the above protocol with a
proof of exact norm. Our first observation is that, if for every j ∈ [2t] ∥S∗,j∥ ≤ β
then the matrix D := S⊤S has a diagonal bounded by β2, i.e. for every i ∈ [2t],
has Di,i ≤ β2. This is because

Di,i = ⟨S∗,i, S∗,i⟩ = ∥S∗,i∥2 ≤ β2 .

We then rewrite the relation for opening of Ajtai commitments to:

Rq,β,t :=

 (A, (T, D), S)
∈ Zn×m × (Zn×t × Zt×t)× Zm×t

∣∣∣∣∣∣
AS ≡ T (mod q)
∧ D = S⊤S
∧ ∀i ∈ [t], Di,i ≤ β2

 . (1)

Now, let (A, (T, D), S) ∈ Rq,β,2t. The final protocol that we design is the following:

7

1. The prover computes S̃ := G−1(S), T̃ ≡ AS̃ mod q and D̃ := S̃⊤S̃ and sends
T̃, D̃ to the verifier.

2. The verifier samples a challenge C← {0,±1}2kt×t and send it to the prover.
3. The prover computes and outputs the updated witness Z := S̃C.
4. The verifier computes T′ := T̃C and D′ := C⊤D̃C, accepts if

G⊤D̃G = D
∧ T̃G ≡ T (mod q) ,

and outputs the updated instance (T′, D′).

The protocol is complete with no norm blowup. We are left to show that the
additional information allows us to enforce exact extracted norm. We consider a
new extractor that acts a following:

1. Run the malicious prover, answering its query with a uniformly random
C← C2kt×t, to obtain a transcript (T̃, D̃, C, Z).

2. If the transcript is not accepting, abort.
3. Rewind the prover to the beginning and run the extractor to obtain a witness

S̄ ∈ Zm×2kt (note that this is not the final witness that we previously extracted,
which can be recovered by right multiplying by G), aborting if extraction fails.

4. Output S := S̄G.

First note that, as desired:

AS ≡ AS̄G ≡ T̃G ≡ T (mod q) .

If S̄⊤S̄ = D̃, then we have that

S⊤S = (S̄G)⊤S̄G = G⊤D̃G = D ,

and since, for i ∈ [2t], Di,i ≤ β2 we are done. What is left is to bound the
probability that S̄⊤S̄ ̸= D̃. Since the first transcript is accepting, it must be that

AZ ≡ T′ ≡ T̃C ≡ AS̄C (mod q) .

Thus, it must be that Z = S̄C, or else the adversary has found a short SIS
solution (since for every j ∈ [2t],

∥∥S̄∗,j

∥∥ ≤ 2β and C, Z are short). When this
holds, it must also be that (S̄C)⊤S̄C = C⊤D̃C. Writing f(X) = (S̄X)⊤S̄X and
g(X) = X⊤D̃X, the above conditions can be rewritten as f(C) = g(C). The
functions f and g can be thought as 2kt× t functions (one for each coordinate),
and each of these functions is a multivariate polynomial of total degree at most
2. Indexing accordingly, further if f(C) = g(C) then fi,i(C∗,i) = gi,i(C∗,i) for
i ∈ [t]. Since S̄⊤S̄ ̸= D̃, these two polynomials are not identically equal, and so
the probability that, over a random setting of the variables, the equation holds
is at most 2

|C| by the Demillo-Lipton-Schwartz-Zippel lemma (applied over the
integral domain Z)3. Since the equation needs to hold jointly over all the choices
3 Choosing C to be ternary instead of the arguably more natural binary challenges, in

hindsight, is what allows us to have soundness in this step.

8

of i, then the probability is at most
(

2
|C|

)t

. This concludes our argument. We
highlight that this probabilistic test was the main reason why chose challenge
matrices with ternary entries.

1.3 Related Works

Folding schemes were introduced by Kothapalli et al. [KST22] as a motivation to
build incrementally verifiable computation from simple cryptographic building
blocks. In a concurrent work, Bünz et al. [BCL+21] generically constructed an
IVC from a similar primitive, called a split-accumulation scheme. In both works,
the underlying folding/accumulation scheme works for a fixed, but universal,
R1CS language. More recently, there has been significant progress in building
folding schemes which circumvent the limitation of a single fixed R1CS, by
supporting multiple circuits, high-degree relations, and lookup gates [BC23; EG23;
KS22; KS23]. The aforementioned constructions still crucially rely on additively
homomorphic vector commitments. Thus, we believe that our techniques could be
applied to the aforementioned constructions identically as for [BCL+21; KST22].

To the best of our knowledge, the only lattice-based folding scheme is the work
by Boneh and Chen [BC24], called LatticeFold. The construction also follows the
decompose-and-fold paradigm, which circumvents the norm growth issue during
an honest execution. On the contrary, the paper introduces a new way to prove
shortness in the infinity norm by cleverly combining the CRT packing technique
[BLS19; ESLL19; YAZ+19], together with the sumcheck argument [LFKN92].
By the nature of the techniques, the folding scheme must rely on structured
lattice assumptions. Moreover, proving the ℓ2 norm, rather than the ℓ∞ one, is
very often what one would like to do when constructing proofs for lattice-based
primitives – especially when the witness vector comes from performing trapdoor
sampling [ABB10; DLP14; MP12].

2 Preliminaries

Notation. We denote the security parameter by λ, which is implicitly given to
all algorithms unless specified otherwise. Further, we write negl(λ) (resp. poly(λ))
to denote an unspecified negligible function (resp. polynomial) in λ. In this work,
we implicitly assume that the vast majority of the key parameters, e.g. the ring
dimension, and the dimensions of matrices and vectors, are poly(λ). However,
the modulus used in this work may be super-polynomial in λ.

For a, b ∈ N with a < b, write [a, b] := {a, a + 1, . . . , b}, [a] := [1, a]. For q ∈ N
write Zq for the integers modulo q. We denote vectors with lowercase boldface
(i.e. u, v) and matrices with uppercase boldface (i.e. A, B). Specifically, for a
matrix A, we write Ai,∗ and A∗,j for the i-th row and the j-th column of A
respectively, and write with lowercase Ai,j for the entry in the i-th row and j-th
column. For a vector x of length n, we write xi or x[i] for its i-th entry. Similarly,
we define xi := (x1, . . . , xi) for i ∈ [n]. Given two vectors u, v, we denote by
(u, v) its concatenation.

9

Decompose and gadget matrix. Let b > 1. We set k := ⌊logb β⌋ + 24

and g =
[
1, b, . . . , bk−1]⊤ ∈ Zk. Given S ∈ Zm×n, we can decompose it by

computing S̃ ∈ Zm×kn such that S = S̃Gn, where Gn is the gadget matrix
and Gn := In ⊗ g ∈ Zkn×n. Note that if ∥S∗,i∥ ≤ β for all i ∈ [n], then∥∥S̃∗,j

∥∥ ≤ ⌊
b
2
⌋√

m for all j ∈ [kn]. We denote G−1
n : Zm×n → Zm×kn for the

function that decomposes S into S̃ satisfying S = S̃Gn. When the dimensions
are clear from context we simply write G and G−1.

Definition 1 (SIS). Let q = q(λ), n = n(λ), m = m(λ) and β = β(λ). We say
that the SISn,m,q,β assumption holds if for any PPT adversary A, the following
holds:

Pr
[

Az ≡ 0 (mod q) ∧ 0 < ∥z∥ ≤ β

∣∣∣∣ A← Zn×m
q

z← A(A)

]
= negl(λ) .

2.1 The Demillo-Lipton-Schwartz-Zippel Lemma

We recall the Demillo-Lipton-Schwartz-Zippel lemma [DL78; Sch80; Zip79], a
tool for probabilistic polynomial identity testing commonly used in proof systems.

Lemma 1 (Demillo-Lipton-Schwartz-Zippel Lemma). Let f ∈ R[x1, x2, . . . , xn]
be a non-zero polynomial of total degree d over an integral domain R. Let S be a
finite subset of R and r1, . . . , rn be sampled independently and uniformly random
from S. Then

Pr [f(r1, . . . , rn) = 0] ≤ d

|S|
.

2.2 Concentration Inequalities

We will use the following well-known Chernoff-Hoeffding bound.

Lemma 2 (Chernoff-Hoeffding Bound). Let X1, . . . , Xn be independent
random variables taking value in { 0, 1 }. Let X =

∑n
i=1 Xi denote their sum and

let µ = E[X]. Then for all ϵ ≥ 0:

Pr [X ≤ µ− ϵn] ≤ e−2ϵ2n.

2.3 Reduction of Knowledge

We recall the definition of reduction of knowledge from [KP23], which also
captures the notion of folding scheme. That is, a prover, who wants to prove
that it knows a witness w1 such that (x1,w1) ∈ R1, can use a reduction of
knowledge from R1 to R2 and try to prove that it knows a witness w2 such that
(x2,w2) ∈ R2, where x2 is the reduced instance.

4 We use balanced base-b decomposition throughout, where x =
∑

i∈[k] xib
i and

|xi| ≤
⌊

b
2

⌋
.

10

Definition 2 (Reduction of Knowledge). Consider ternary relations R1 and
R2. A reduction of knowledge from R1 to R2 consists of three PPT algorithms
(G,P,V) denoting the generator, the prover, and the verifier

– G(λ)→ i: Takes security parameter λ. Outputs public parameters i.
– P(i,x1,w1)→ (x2,w2): Takes as input public parameters i, and statement-

witness pair (x1,w1). Interactively reduces the statement (i,x1,w1) ∈ R1 to a
new statement (i,x2,w2) ∈ R2.

– V(i,x1)→ x2: Takes as input public parameters i, and statement x1 associated
with R1. Interactively reduces the task of checking x1 to the task of checking a
new statement x2 associated with R2.

Let ⟨P,V⟩ denote the interaction between P and V that runs the interaction
on prover input (i,x1,w1) and verifier input (i,x1), then outputs the verifier’s
statement x2 and the prover’s witness w2. A reduction of knowledge Π = (G,P,V)
from R1 to R2 satisfies the following properties.

Definition 3 (Perfect Completeness). Π has perfect completeness if for all
PPT adversaries A,

Pr

(i,x2,w2) ∈ R2

∣∣∣∣∣∣
i← Setup(1λ)

(x1,w1)← A(i)
(x2,w2)← ⟨P(i,x1,w1),V(i,x1)⟩

 = 1 .

Definition 4 (Knowledge Soundness). Π is knowledge sound (with knowledge
error κ(λ)) if for all expected polynomial-time adversaries A and P∗, there is an
expected polynomial-time extractor E such that

Pr

 (i,x2,w2) ∈ R2
∧(i,x1,w1) /∈ R1

∣∣∣∣∣∣∣∣
i← Setup(1λ)

(x1, st)← A(i)
(Tr,x2,w2)← ⟨P∗(i,x1, st),V(i,x1)⟩

w1 ← EP∗(i,x1, st)

 ≤ κ(λ) 5.

Definition 5 (Public Reducibility). Π satisfies public reducibility if there ex-
ists a deterministic polynomial-time algorithm f such that for any PPT adversary
A and expected polynomial-time adversary P∗,

Pr

f(i,x1, Tr) = x2

∣∣∣∣∣∣
i← Setup(1λ)

(x1, st)← A(i)
(Tr,x2,w2)← ⟨P∗(i,x1, st),V(i,x1)⟩

 = 1 .

5 Our definition of knowledge soundness is different but equivalent to that of [KP23].

11

Reduction from (Rq,β,t)2 to Rq,β,2t

P(A, S1, S2, T1, D1, T2, D2) V(A, T1, T2, D1, D2)

U := S⊤
2 S1

V := S⊤
1 S2

U, V

Output: S :=
[
S1 S2

]
Output:

(
T :=

[
T1 T2

]
, D :=

[
D1 V
U D2

])

Fig. 1: Reduction of knowledge from (Rq,β,t)2 to Rq,β,2t.

3 A Folding Scheme for Ajtai Commitment Openings

In this section, we construct a folding scheme for the Ajtai commitment openings
relation Rq,β,t, defined in Equation (1); or equivalently, a reduction of knowledge
from (Rq,β,t)2 to Rq,β,t.

For simplicity, we describe the folding scheme as the composition of two
reductions of knowledge from (Rq,β,t)2 to Rq,β,2t and from Rq,β,2t to Rq,β,t. The
first reduction of knowledge serves the purpose of merging two instances of
Rq,β,t into one single instance Rq,β,2t of larger size, while the second reduction of
knowledge is where folding takes place to reduce the size of the instance from
Rq,β,2t to Rq,β,t.

3.1 Reduction of Knowledge from (Rq,β,t)2 to Rq,β,2t

Let (A, (T1, D1), S1), (A, (T2, D2), S2) be two instances of Rq,β,t. The idea is to
concatenate S :=

[
S1 S2

]
and T :=

[
T1 T2

]
. However, the verifier does not have

enough information to compute D = S⊤S. Hence, we let the prover send S⊤
1 S2

and S⊤
2 S1 to the verifier. We illustrate the protocol in Figure 1.

Lemma 3. The protocol shown in Figure 1 satisfies public reducibility, perfect
completeness, and knowledge soundness.

Proof. We prove each property separately.

Public reducibility: Given the instances (T1, D1), (T2, D2) and the transcript
Tr = (U, V), one can efficiently compute T, D.

Completeness: We have that

AS ≡ A
[
S1 S2

]
≡

[
AS1 AS2

]
≡

[
T1 T2

]
≡ T (mod q) ,

S⊤S =
[
S⊤

1
S⊤

2

] [
S1 S2

]
=

[
S⊤

1 S1 S⊤
1 S2

S⊤
2 S1 S⊤

2 S2

]
=

[
D1 V
U D2

]
= D .

12

Parameter Explanation
q SIS modulus
n Height of the matrix A
m Width of the matrix A
β Norm bound for SIS instances
t Number of commitment openings
b Decomposition base
k ⌊logb β⌋+ 2

Table 1: Overview of parameters and notation.

We can see from the last inequality that the diagonal of D containing the
diagonals of D1 and D2, thus Di,i ≤ β2,∀i ∈ [2t].

Knowledge soundness: Given (A, (T, D), S) ∈ Rq,β,2t, it is not hard to see
that if we parse

[
S̄1 S̄2

]
:= S, then

(A, (T1, D1), S̄1), (A, (T2, D2), S̄2) ∈ Rq,β,t .

3.2 Reduction of Knowledge from Rq,β,2t to Rq,β,t

Now, we describe the reduction of knowledge (see Figure 2) to fold a larger
instance to a smaller one while keeping the norm small.

The prover starts by decomposing the witness S̃ = G−1(S). In this section,
the dimension 2t is fixed, and we write G and G−1 as shorthand for G2t and
G−1

2t , respectively.
Next, it computes and sends T̃ := AS̃ and D̃ := S̃⊤S̃ to the verifier, where D̃

serves as a proof of exact norm. The verifier then proceeds with uniform sampling
and sending the challenge C ∈ C2kt×t.

Finally, the prover outputs the folded witness S′ := S̃C. Meanwhile, the
verifier performs two checks. Firstly, it checks G⊤D̃G⊤ = D to verify the norm
proof. Secondly, it checks T̃G ≡ T mod q to ensure that the prover decomposes
correspondently. Then, it outputs (T′ := T̃C, D′ := C⊤D̃C) as the folded
instance. Note that the norm of the new witness does not increase as long as
the challenge space only contains small elements. Furthermore, looking ahead to
knowledge soundness, we set C := {−1, 0, 1}.

Now, we prove that this reduction of knowledge satisfies public reducibility,
perfect completeness, and knowledge soundness.

Lemma 4 (Public Reducibility and Perfect Completeness). The pro-
tocol Π shown in Figure 2 satisfies public reducibility. Furthermore, if t ≤
β/(2k

⌊
b
2
⌋√

m), Π satisfies perfect completeness.

13

Reduction from Rq,β,2t to Rq,β,t

P(A, S, T, D) V(A, T, D)

S̃ := G−1(S) ∈ Zm×2kt

T̃ := AS̃ mod q

D̃ := S̃⊤S̃

T̃, D̃

C← C2kt×t

C

Output: S′ := S̃C Check: G⊤D̃G = D
Check: T̃G ≡ T mod q

Output: (T′ := T̃C, D′ := C⊤D̃C)

Fig. 2: Reduction of knowledge from Rq,β,2t to Rq,β,t.

Proof. We prove each property in turn.
Public reducibility. Given the instance (A, (T, D), S) and the transcript
Tr = (T̃, D̃, C), one can efficiently compute (T′, D′).
Perfect completeness. We have that

G⊤D̃G = G⊤S̃⊤S̃G = S⊤S = D ,

T̃G ≡ AS̃G ≡ AS ≡ T (mod q) ,

AS′ ≡ AS̃C ≡ T̃C ≡ T′ (mod q) ,

S′⊤S′ = (S̃C)⊤S̃C = C⊤S̃⊤S̃C = C⊤D̃C = D′ ,∥∥S′
∗,j

∥∥ ≤ ∥∥∥∥∥
2kt∑
i=1

Ci,jS̃∗,i

∥∥∥∥∥ ≤ 2kt

⌊
b

2

⌋√
m ≤ β ,

where the last inequality holds when t ≤ β/(2k
⌊

b
2
⌋√

m).

To demonstrate that the protocol shown in Figure 2 is knowledge sound (with
exact witnesses), we first construct an extractor that yields a relaxed witness, as
detailed in Lemma 5. Then, in Lemma 6, we augment this relaxed extractor in
order to achieve (exact) knowledge soundness.

Lemma 5 (Relaxed Knowledge Soundness). For a malicious prover P,
which convinces the verifier with probability ϵ > 4 · 2t(δ+2/3)/3t for any δ > 0,

14

there exists an extractor for the protocol in Figure 2 that yields S satisfying

AS ≡ T̃ mod q,
∥∥S∗,j

∥∥ ≤ 2β,∀j ∈ [2kt] . (2)

and runs in time O(λkt/ϵ).

Proof. We closely follow the approach from Baum et al. [BBC+18]. For j ∈ [2kt],
we construct an extractor that produces two accepting transcripts, with challenges
C(0,j), C(1,j) and corresponding witnesses Z(0,j), Z(1,j) such that C(0,j) and C(1,j)

are identical except for the j-th row, and further such that, there exists i ∈ [t]
such that C

(0,j)
j,i − C

(1,j)
j,i = ±1. This suffices to show the lemma since we have

that
A(Z(0,j)

∗,i − Z(1,j)
∗,i) = (C(0,j)

j,i − C
(1,j)
j,i)T̃∗,j (mod q).

We therefore obtain S∗,j := (Z(0,j)
∗,i − Z(1,j)

∗,i)/(C(0,j)
j,i − C

(1,j)
j,i) with norm at most

2β.
Let P denote a (possibly malicious) prover, which we assume to be deter-

ministic without loss of generality. Let ϵ denote the success probability of the
prover P (over the randomness of the choice of the challenge C). For j ∈ [2kt],
the extractor Ej is the following algorithm.

EP
j (x) :

1. Run P until it outputs its first message T̃, D̃.
2. Sample C(0,j) ← C2kt×t.
3. Run P until it outputs a witness Z(0,j).
4. If the verifier accepts the transcript (T̃, D̃, C(0,j), Z(0,j)) continue, else go

to Item 2.
5. Define

Sj :=
{

C ∈ C2kt×t

∣∣∣∣∣ ∃i ∈ [t] s.t. |C(0,j)
j,i − Cj,i| = 1

∀i ∈ [t], j′ ∈ [2kt] s.t. j ̸= j′ : C
(0,j)
j,i = Cj′,i

}

6. Rewind the prover P. If this label has been reached more than λ/ϵ times,
abort.

7. Sample C(1,j) ← Sj .
8. Run P until it outputs a witness Z(1,j).
9. If the verifier accepts the transcript (T̃, D̃, C(1,j), Z(1,j)) continue, else go

to Item 6.
10. Output (C(0,j), C(1,j), Z(0,j), Z(1,j)).

The expected running time of the extractor is at most 1/ϵ + λ/ϵ = poly(λ)/ϵ.
We are left to bound the failure probability of the extractor. We denote

by G ⊆ C2kt×t the set of accepting challenges, i.e., those for which P outputs
an accepting transcript. We also say a challenge C′ is j-special w.r.t. C if
they disagree only in the j-th row, that have the required difference in at least
on entry. The goal of the extractor EP

j is to output a challenge C(1,j) that is
both accepting and j-special w.r.t. C(0,j). Consider the binary matrix Mj , whose

15

entries correspond to challenges. We index the rows of Mj by Cj,∗ and its columns
by (C1,∗, . . . , Cj−1,∗, Cj+1,∗, . . . , C2kt,∗). An entry C in Mj is 1 if C ∈ G, and 0
otherwise. Note that the fraction of ones in Mj is at least ϵ.

Following the terminology in [BBC+18], a column in Mj is heavy if its
fractions of ones is at least ϵ/2. By [BBC+18, Lemma 2], given C(0,j) is accepted,
the probability that the column containing C(0,j) is heavy is at least 1/2. In
this case, the fraction of both accepting and j-special (w.r.t. C(0,j)) challenges
associated with the column is at least ϵ/2− g(Z), where g(Z) is the fraction of
challenges that are not j-special in that column, depending on the number of
zeroes Z in the j-th row of C(0,j). Concretely, a challenge C′ is not j-special
w.r.t. to C if and only if, in the j-th row, C′ has the same zero entries as C and
the remaining entries are ±1; thus

g(Z) = 2t−Z

3t
.

Since C(0,j) is sampled uniformly from Ct, Z is concentrated around t/3. Using
the Chernoff-Hoeffding bound, we obtain an upper-bound on the abort probability.
Specifically, let A be the event that the extractor aborts and H be the event that
the column containing C(0,j) is heavy, we have

Pr[A] = Pr
[
A

∣∣ H̄
]
· Pr[H̄] + Pr[A ∧H]

≤ Pr[H̄] + Pr [A ∧H |Z ≤ t/3− δt] · Pr[Z ≤ t/3− δt]
+ Pr [A ∧H |Z > t/3− δt] · Pr[Z > t/3− δt]
≤ Pr[H̄] + Pr[Z ≤ t/3− δt] + Pr [A ∧H |Z > t/3− δt]

≤ 1/2 + e−2δ2t + (1− (ϵ/2− g(t/3− δt))λ/ϵ .

If ϵ > 4 · 2t(δ+2/3)/3t, then ϵ/2− g(t/3− δt) > ϵ/4 and

(1− (ϵ/2− g(t/3− δt))λ/ϵ < (1− ϵ/4)λ/ϵ < e−4λ < 2−λ ,

Pr[A] < 1/2 + e−2δ2t + 2−λ .

Running the extractor O(λ) times yields an extractor that runs in expected time
poly(λ)/ϵ and outputs a transcript of the required structure.

By using Lemma 5, we obtain a relaxed extractor, which can be used to prove
knowledge soundness of the protocol in Figure 2. We note that this alternative
notion of knowledge soundness, where the extractor runs in expected poly(λ)/ϵ
times, is equivalent to the notion adapted for a reduction of knowledge (see
[Att23, Remark 2.4] for more discussion).

Lemma 6 (Exact Knowledge Soundness). Assuming SISn,m,q,(2kt+1)β, the
protocol in Figure 2 satisfies knowledge soundness.

Proof. Let (Tr := (T̃, D̃, C),x2 := (T′, D′),w2 := S′) be the output of the
interaction between a malicious prover P∗ and the verifier V. If (A,x2,w2) ∈

16

Rq,β,t, then by Lemma 5, we obtain a relaxed extractor that outputs S̄ satisfying
Equation (2).

Furthermore, in such cases, we have that S′ = S̄C with probability at least
1− κSIS. Indeed, otherwise, S′ − S̄C is SISn,m,q,(2kt+1)β solutions since

AS′ ≡ T′ ≡ T̃C ≡ ASC (mod q).

In addition, when S′ = S̄C, we have that C⊤S̄⊤S̄C = S′⊤S′ = C⊤D̃C, or
equivalently, f(C) = g(C), where f(X) := X⊤S̄⊤S̄X and g(X) := X⊤D̃X are
functions in the variables X ∈ C2kt×t. Looking at the index (i, i) of f and g,

fi,i(X) =
∑

u∈[2kt]

∑
v∈[2kt]

(S̄⊤S̄)u,vXu,iXv,i ,

gi,i(X) =
∑

u∈[2kt]

∑
v∈[2kt]

D̃u,vXu,iXv,i ,

which both have total degree 2. Then by the Demillo-Lipton-Schwartz-Zippel
lemma for the integral domain Z, we have that the probability of fi,i(C∗,i) =
gi,i(C∗,i) but S̄⊤S̄ ̸= D̃ is at most 2/|C| for uniformly random C∗,i in C2kt.

Note that when S⊤S = D̃, then

G⊤S⊤SG = G⊤D̃G = D ,

ASG ≡ T̃G ≡ T (mod q) ,

which implies SG is a valid witness for T. Therefore, we can bound the probability
of (A,x2,w2) ∈ Rq,β,t but S̄G is not a witness for (A, (T, D)) by the probability
that f(C) = g(C) but S⊤S ̸= D̃, which is at most (2/|C|)t because for each
i ∈ [t], fi,i(C∗,i) = gi,i(C∗,i) and C∗,i is sampled independently and uniformly at
random from C2kt. More precisely, if E is the event that the extractor in Lemma 5
succeeds, then

Pr
[
(A, (T′, D′), S′) ∈ Rq,β,t ∧ (A, (T, D), S̄G) /∈ Rq,β,2t ∧ E

]
≤Pr

[
f(C) = g(C) ∧ (A, (T, D), S̄G) /∈ Rq,β,2t ∧ E

]
+ κSIS

≤Pr
[
f(C) = g(C) ∧ S̄⊤S̄ ̸= D̃ ∧ E

]
+ κSIS

≤
(

2
|C|

)t

+ κSIS .

Applications to folding schemes for NP relations. Unfortunately, unlike
in Nova [KST22], we cannot easily modify our construction to support (relaxed)
R1CS relations. The issue is that the norm of the (additional cross-term) folded
witness now depends on the magnitude of entries in the R1CS matrices A, B, C,
which we cannot assume is small in general. We leave a construction of a lattice-
based folding schemes for R1CS-type relations as future work.

17

Instead, we provide a sketch on how to build a folding scheme for the subset
sum problem which is NP-complete. We recall that the subset sum problem is
essentially to find a binary vector s such that Ms = y over Z for public matrix
M and vector y.

First, we use the observation from [LNP22] that an integer vector s has binary
values if and only if ⟨s, s − 1⟩ = 0, where 1 is the all-one vector. Secondly, we
can pick a proof system modulus q large enough so that Ms = y (mod q) is
equivalent to Ms = y over integers, i.e. no modulo overflow occurs.

Thus, similarly to (1) we can define a relation:

R⋆
q,β,t :=

{
(A, (T, D), S)

∈ Zn×m × (Zn×t × Zt×t)× Zm×t

∣∣∣∣ AS ≡ T (mod q)
∧ D = S⊤S− S⊤1

}
(3)

where in this equation 1 is the all-one matrix. Here, the matrix A will contain
the SIS commitment key (to ensure binding), together with the matrix M related
to the subset sum problem. Then, given a valid tuple (A, (T, D), S) ∈ R⋆

q,β,t, one
can be convinced that the matrix S has binary entries by simply checking that
diagonal entries Di,i of D are equal to zero. Finally, building a folding scheme for
R⋆

q,β,t is almost identical to the construction above up to certain straightforward
modifications.

4 Implementation & Evaluation

4.1 Parameter Selection

For an input witness length m and a security parameter t, we need to select
a SIS modulus q ∈ N, a commitment output length n ∈ N, a norm β < q, a
decomposition basis b (which fixes a decomposition length k = ⌊logb β⌋+ 2) such
that the following conditions are fulfilled:

1. The knowledge error κKS = Q(κPIT + κrS + κSIS) must be at most 2−λ, where κrS

is the knowledge error from Lemma 5;
2. For perfect completeness, 2tk

(⌊
b
2
⌋√

m
)
≤ β;

3. For (knowledge) soundness, SISn,m,β,L2 must be κSIS-hard.

The knowledge error is κKS = Q(κPIT + κrS + κSIS) = Q((2
3)t + 4(2t(δ+2/3)

3t) + κSIS).
Setting λ = 128 and Q = 264, we choose t = 330 and κSIS ≤ 2−(129+64) such that
κKS ≤ 5 · 264(2

3)334 + 2−129 ≤ 2−λ. The second condition gives rise to the bounds
β ≥ e

−W−1(− ln b
bt

√
m

) + 2
⌊

b
2
⌋
t
√

m (where W−1 is the non-principal branch of the
real Lambert W-function). Additionally, 2 ≤ b ≤

√
β. For efficiency, we want b to

be as large as possible, i.e., b ≈
√

β. Substituting in the condition above, we get
t
⌊
log√

β
(β) + 2

⌋√
β
√

m
!
≤ β, which yields β = (4t)2m, b = ⌊

√
β⌉, and k = 4.

We choose q = 264 for the lattice modulus, which is both large enough to
guarantee SIS hardness and allows for very efficient modular arithmetic (modular
reductions reduce to wrapping 64-bit arithmetic, and are implemented directly
in hardware for machines with 64-bit instruction sets).

18

Finally, we perform binary search on n in order to find the smallest n such that
the underlying SIS instances are κSIS-hard. We rely on the lattice-estimator
tool [est], which uses the methodology outlined by Gama and Nguyen [GN08].
Improving Proof Size. For the parameter sets outlined above, we made
use of a worst-case bound on the norm of folded witnesses to ensure perfect
completeness. If one is willing to accept a negligibly small completeness error κC,
we can leverage probabilistic upper bounds on the norm of folded witnesses to
reduce proof sizes.

Since |Ci,j | is a Bernoulli-distributed random variable with p = 2
3 , we have

E
[∑

l∈[2kt]|Cl,j |
]

= 4kt
3 and Pr

[∑
l∈[2kt]|Cl,j | ≥ 4kt

3 + 2ktϵ
]
≤ e−4ktϵ2 by a

Chernoff-Hoeffding bound. Solving for e4ktϵ2 = κC = 2−µ yields ϵ =
√

µ ln 2
2kt .

Putting everything together, we have that

∥S∗,j∥ ≤
⌊

b

2

⌋ (
4kt

3 + 2ktϵ

)√
m =

⌊
b

2

⌋ (
4kt

3 +
√

µ ln 2
)√

m

with all but negligible probability. Setting µ = 128, and for t = 330 and k = 4 as
above, this bound is roughly a third of the worst-case bound.

4.2 Implementation

We implement Lova and open-source our implementation6. In our implementation,
we translate several nice properties of Lova into hardware-friendly optimizations:

– We leverage symmetries to compute and send fewer matrix entries; in particular,
our prover only computes one matrix instead of two for the protocol in Figure 1,
and only computes the lower triangular part of symmetric matrices for the
protocol in Figure 2.

– Since our challenges are ternary, random linear combinations can be computed
without any multiplications, using only negations, and additions.

– We parallelize both the prover and verifier.
– As mentioned above, we set the SIS modulus to q = 264, which allows us to

eschew modular arithmetic in favor of native 64-bit arithmetic.

In order to safely instantiate the Fiat-Shamir transform, we rely on and extend
the nimue framework [nimue]. We benchmark our implementation on an AWS
EC2 m5.8xlarge instance with 128 GB of RAM and 32 Intel Xeon vCPUs @
3.1 GHz.

4.3 Evaluation

Proof size. For one run of the Lova folding protocol with two witnesses of
size m, the prover sends one t × t matrix with entries of norm at most β2

(noting that U = V⊤), one n× 2kt matrix with entries in Zq, and one 2kt× 2kt

6 https://github.com/lattirust/lova

19

https://github.com/lattirust/lova

symmetric matrix with entries of norm at most
⌊

b
2
⌋2, totalling t2⌊

2 + log β2⌋
+

2hkt⌊1 + log q⌋+ (2kt)(2kt+1)
2

⌊
2 + log

⌊
b
2
⌋2⌋

bits.
In general (what we call PCD-type settings), the prover folds two full witnesses,

i.e., matrices with t columns. In IVC-type settings, the prover repeatedly folds
a fresh witness (i.e., which consists of the same vector concatenated t times
with itself) with a non-fresh witness. In this setting, the prover and the verifier
can exploit this extra structure to reduce computation and proof size. We show
concrete proof times for varying witness lengths in Table 2.

Instance length 217 218 219

IVC Proof size (κC = 0) 17.53 MB 18.36 MB 19.18 MB
Proof size (κC ≤ 2−128) 16.62 MB 17.42 MB 18.24 MB

PCD Proof size (κC = 0) 43.64 MB 45.51 MB 47.36 MB
Proof size (κC ≤ 2−128) 41.62 MB 43.43 MB 45.28 MB
Prover time (κC = 0) 725.35 s 1568.5 s 3243.8 s
Prover time (κC ≤ 2−128) 702.11 s 1492.8 s 3002.9 s

Table 2: Proof sizes and prover runtime for a single folding step. We consider IVC
and PCD-type settings, and perfect completeness (worst-case bound analysis)
and negligible completeness error (probabilistic bound analysis).

Prover Runtime and Verifier Complexity. Concrete prover runtimes are
shown in Table 2. The verifier needs to sample ⌈32kt2⌉ ≈ 3.22 · kt2 bits from
a hash function in order to generate the ternary challenge matrix. Checking
T̃G ≡ T mod q and G⊤D̃G = D requires n · 2t and (2t)2 linear constraints,
respectively. Finally, in order to check that the new instance is valid, the verifier
needs to check T′ = T̃C and D′ = C⊤D̃C, which requires n·2t and (2k)2 +(2kt)2

quadratic constraints, respectively. Note that these constraints are very sparse,
and the for the latter constraints, the values of some variables are ternary;
depending on the chosen constraint and proof systems, these properties may
be exploited to significantly reduce the overhead of proving and verifying this
circuit.

4.4 Acknowledgements

Giacomo Fenzi is partially supported by the Ethereum Foundation and the Sui
Foundation. Ngoc Khanh Nguyen was supported by the Ethereum Foundation
Ecosystem Support Program FY24-1358.

20

References

[ABB10] S. Agrawal, D. Boneh, and X. Boyen. “Efficient Lattice (H)IBE in
the Standard Model”. In: EUROCRYPT. 2010, pp. 553–572.

[ACK21] T. Attema, R. Cramer, and L. Kohl. “A Compressed $\varSigma
$-Protocol Theory for Lattices”. In: CRYPTO (2). Vol. 12826.
Lecture Notes in Computer Science. Springer, 2021, pp. 549–579.

[Ajt96] M. Ajtai. “Generating Hard Instances of Lattice Problems (Ex-
tended Abstract)”. In: STOC. 1996, pp. 99–108.

[AL21] M. R. Albrecht and R. W. F. Lai. “Subtractive Sets over Cyclo-
tomic Rings - Limits of Schnorr-Like Arguments over Lattices”.
In: CRYPTO (2). Vol. 12826. Lecture Notes in Computer Science.
Springer, 2021, pp. 519–548.

[Att23] T. Attema. “Compressed Sigma-Protocol Theory”. PhD thesis. CWI
and TNO, 2023. url: https://hdl.handle.net/1887/3619596.

[BBBF18] D. Boneh, J. Bonneau, B. Bünz, and B. Fisch. “Verifiable De-
lay Functions”. In: CRYPTO (1). Vol. 10991. Lecture Notes in
Computer Science. Springer, 2018, pp. 757–788.

[BBC+18] C. Baum, J. Bootle, A. Cerulli, R. d. Pino, J. Groth, and V. Lyuba-
shevsky. “Sub-linear Lattice-Based Zero-Knowledge Arguments for
Arithmetic Circuits”. In: Proceedings of the 38th Annual Interna-
tional Cryptology Conference. CRYPTO ’18. 2018, pp. 669–699.

[BC23] B. Bünz and B. Chen. ProtoStar: Generic Efficient Accumula-
tion/Folding for Special Sound Protocols. Cryptology ePrint Archive,
Paper 2023/620. https://eprint.iacr.org/2023/620. 2023.
url: https://eprint.iacr.org/2023/620.

[BC24] D. Boneh and B. Chen. LatticeFold: A Lattice-based Folding Scheme
and its Applications to Succinct Proof Systems. Cryptology ePrint
Archive, Paper 2024/257. https://eprint.iacr.org/2024/257.
Last accessed: 19.05.2024. 2024. url: https://eprint.iacr.org/
2024/257.

[BCCT13] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. “Recursive
Composition and Bootstrapping for SNARKs and Proof-Carrying
Data”. In: Proceedings of the 45th ACM Symposium on the Theory
of Computing. STOC ’13. 2013, pp. 111–120.

[BCL+21] B. Bünz, A. Chiesa, W. Lin, P. Mishra, and N. Spooner. “Proof-
Carrying Data Without Succinct Arguments”. In: CRYPTO (1).
Vol. 12825. Lecture Notes in Computer Science. Springer, 2021,
pp. 681–710.

[BCMS20] B. Bünz, A. Chiesa, P. Mishra, and N. Spooner. “Recursive Proof
Composition from Accumulation Schemes”. In: TCC (2). Vol. 12551.
Lecture Notes in Computer Science. Springer, 2020, pp. 1–18.

[BCTV14] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. “Scalable Zero
Knowledge via Cycles of Elliptic Curves”. In: Proceedings of the
34th Annual International Cryptology Conference. CRYPTO ’14.

21

https://hdl.handle.net/1887/3619596
https://eprint.iacr.org/2023/620
https://eprint.iacr.org/2023/620
https://eprint.iacr.org/2024/257
https://eprint.iacr.org/2024/257
https://eprint.iacr.org/2024/257

Extended version at http://eprint.iacr.org/2014/595. 2014,
pp. 276–294.

[BGH19] S. Bowe, J. Grigg, and D. Hopwood. Halo2. 2019. url: https:
//github.com/zcash/halo2.

[BLNS20] J. Bootle, V. Lyubashevsky, N. K. Nguyen, and G. Seiler. “A
Non-PCP Approach to Succinct Quantum-Safe Zero-Knowledge”.
In: CRYPTO (2). Vol. 12171. Lecture Notes in Computer Science.
Springer, 2020, pp. 441–469.

[BLS19] J. Bootle, V. Lyubashevsky, and G. Seiler. “Algebraic Techniques
for Short(er) Exact Lattice-Based Zero-Knowledge Proofs”. In:
CRYPTO (1). Vol. 11692. Lecture Notes in Computer Science.
Springer, 2019, pp. 176–202.

[BMRS20] J. Bonneau, I. Meckler, V. Rao, and E. Shapiro. Coda: Decentral-
ized Cryptocurrency at Scale. Cryptology ePrint Archive, Paper
2020/352. https://eprint.iacr.org/2020/352. 2020. url:
https://eprint.iacr.org/2020/352.

[BS23] W. Beullens and G. Seiler. “LaBRADOR: Compact Proofs for
R1CS from Module-SIS”. In: Lecture Notes in Computer Science
14085 (2023), pp. 518–548.

[CMNW24] V. Cini, G. Malavolta, N. K. Nguyen, and H. Wee. Polynomial
Commitments from Lattices: Post-Quantum Security, Fast Verifi-
cation and Transparent Setup. Cryptology ePrint Archive, Paper
2024/281. https://eprint.iacr.org/2024/281. 2024. url:
https://eprint.iacr.org/2024/281.

[CT10] A. Chiesa and E. Tromer. “Proof-Carrying Data and Hearsay Argu-
ments from Signature Cards”. In: Proceedings of the 1st Symposium
on Innovations in Computer Science. ICS ’10. 2010, pp. 310–331.

[Dam10] I. Damg̊ard. On Σ Protocols. http://www.cs.au.dk/˜ivan/
Sigma.pdf. 2010.

[DL78] R. A. DeMillo and R. J. Lipton. “A Probabilistic Remark on
Algebraic Program Testing”. In: Information Processing Letters 7.4
(1978), pp. 193–195.

[DLP14] L. Ducas, V. Lyubashevsky, and T. Prest. “Efficient Identity-Based
Encryption over NTRU Lattices”. In: ASIACRYPT. 2014, pp. 22–
41.

[EG23] L. Eagen and A. Gabizon. ProtoGalaxy: Efficient ProtoStar-style
folding of multiple instances. Cryptology ePrint Archive, Paper
2023/1106. https://eprint.iacr.org/2023/1106. 2023. url:
https://eprint.iacr.org/2023/1106.

[ESLL19] M. F. Esgin, R. Steinfeld, J. K. Liu, and D. Liu. “Lattice-Based
Zero-Knowledge Proofs: New Techniques for Shorter and Faster
Constructions and Applications”. In: CRYPTO (1). Springer, 2019,
pp. 115–146.

[est] M. R. Albrecht, B. Curtis, C. Yun, C. Lefebvre, F. Virdia, F.
Göpfert, H. Hunt, H. Kippen, J. Owen, L. Ducas, L. Pulles, M.

22

http://eprint.iacr.org/2014/595
https://github.com/zcash/halo2
https://github.com/zcash/halo2
https://eprint.iacr.org/2020/352
https://eprint.iacr.org/2020/352
https://eprint.iacr.org/2024/281
https://eprint.iacr.org/2024/281
http://www.cs.au.dk/~ivan/Sigma.pdf
http://www.cs.au.dk/~ivan/Sigma.pdf
https://eprint.iacr.org/2023/1106
https://eprint.iacr.org/2023/1106

Schmidt, M. Walter, R. Player, and S. Scott. lattice-estimator. url:
https://github.com/malb/lattice-estimator.

[FMN23] G. Fenzi, H. Moghaddas, and N. K. Nguyen. Lattice-Based Polyno-
mial Commitments: Towards Asymptotic and Concrete Efficiency.
Cryptology ePrint Archive, Paper 2023/846. https://eprint.
iacr.org/2023/846. 2023. url: https://eprint.iacr.org/
2023/846.

[GN08] N. Gama and P. Q. Nguyen. “Predicting Lattice Reduction”. In:
Advances in Cryptology – EUROCRYPT 2008. Springer Berlin
Heidelberg, 2008, pp. 31–51. url: http://dx.doi.org/10.1007/
978-3-540-78967-3_3.

[KMT22] D. Khovratovich, M. Maller, and P. R. Tiwari. MinRoot: Candidate
Sequential Function for Ethereum VDF. Cryptology ePrint Archive,
Paper 2022/1626. https://eprint.iacr.org/2022/1626. 2022.
url: https://eprint.iacr.org/2022/1626.

[KP23] A. Kothapalli and B. Parno. “Algebraic Reductions of Knowledge”.
In: Advances in Cryptology – CRYPTO 2023. Ed. by H. Handschuh
and A. Lysyanskaya. Cham: Springer Nature Switzerland, 2023,
pp. 669–701. isbn: 978-3-031-38551-3.

[KS22] A. Kothapalli and S. Setty. SuperNova: Proving universal machine
executions without universal circuits. Cryptology ePrint Archive,
Paper 2022/1758. https://eprint.iacr.org/2022/1758. 2022.
url: https://eprint.iacr.org/2022/1758.

[KS23] A. Kothapalli and S. Setty. HyperNova: Recursive arguments for
customizable constraint systems. Cryptology ePrint Archive, Paper
2023/573. https://eprint.iacr.org/2023/573. 2023. url:
https://eprint.iacr.org/2023/573.

[KST22] A. Kothapalli, S. T. V. Setty, and I. Tzialla. “Nova: Recursive
Zero-Knowledge Arguments from Folding Schemes”. In: CRYPTO
(4). Vol. 13510. Lecture Notes in Computer Science. Springer, 2022,
pp. 359–388.

[LFKN92] C. Lund, L. Fortnow, H. J. Karloff, and N. Nisan. “Algebraic
Methods for Interactive Proof Systems”. In: Journal of the ACM
39.4 (1992), pp. 859–868.

[LNP22] V. Lyubashevsky, N. K. Nguyen, and M. Plançon. “Lattice-Based
Zero-Knowledge Proofs and Applications: Shorter, Simpler, and
More General”. In: CRYPTO (2). Vol. 13508. Lecture Notes in
Computer Science. Springer, 2022, pp. 71–101.

[LS15] A. Langlois and D. Stehlé. “Worst-case to average-case reductions
for module lattices”. In: Des. Codes Cryptogr. 75.3 (2015), pp. 565–
599.

[Mina] O(1) Labs. Mina cryptocurrency. 2017. url: https://minaprotocol.
com/.

[MP12] D. Micciancio and C. Peikert. “Trapdoors for Lattices: Simpler,
Tighter, Faster, Smaller”. In: EUROCRYPT. 2012, pp. 700–718.

23

https://github.com/malb/lattice-estimator
https://eprint.iacr.org/2023/846
https://eprint.iacr.org/2023/846
https://eprint.iacr.org/2023/846
https://eprint.iacr.org/2023/846
http://dx.doi.org/10.1007/978-3-540-78967-3_3
http://dx.doi.org/10.1007/978-3-540-78967-3_3
https://eprint.iacr.org/2022/1626
https://eprint.iacr.org/2022/1626
https://eprint.iacr.org/2022/1758
https://eprint.iacr.org/2022/1758
https://eprint.iacr.org/2023/573
https://eprint.iacr.org/2023/573
https://minaprotocol.com/
https://minaprotocol.com/

[nimue] M. Orrù. nimue. url: https://github.com/arkworks-rs/nimue.
[NIST] NIST. Status Report on the Third Round of the NIST Post-Quantum

Cryptography Standardization Process. 2022. url: https://csrc.
nist.gov/pubs/ir/8413/final.

[PSTY13] C. Papamanthou, E. Shi, R. Tamassia, and K. Yi. “Streaming
Authenticated Data Structures”. In: EUROCRYPT. Vol. 7881.
Lecture Notes in Computer Science. Springer, 2013, pp. 353–370.

[Sch80] J. T. Schwartz. “Fast Probabilistic Algorithms for Verification
of Polynomial Identities”. In: Journal of the ACM 27.4 (1980),
pp. 701–717.

[Sho94] P. W. Shor. “Algorithms for Quantum Computation: Discrete
Logarithms and Factoring”. In: FOCS. IEEE Computer Society,
1994, pp. 124–134.

[Val08] P. Valiant. “Incrementally Verifiable Computation or Proofs of
Knowledge Imply Time/Space Efficiency”. In: Proceedings of the
5th Theory of Cryptography Conference. TCC ’08. 2008, pp. 1–18.

[YAZ+19] R. Yang, M. H. Au, Z. Zhang, Q. Xu, Z. Yu, and W. Whyte. “Effi-
cient Lattice-Based Zero-Knowledge Arguments with Standard
Soundness: Construction and Applications”. In: CRYPTO (1).
Springer, 2019, pp. 147–175.

[Zip79] R. Zippel. “Probabilistic algorithms for sparse polynomials”. In:
Proceedings of the 1979 International Symposium on Symbolic and
Algebraic Computation. EUROSAM ’79. 1979, pp. 216–226.

24

https://github.com/arkworks-rs/nimue
https://csrc.nist.gov/pubs/ir/8413/final
https://csrc.nist.gov/pubs/ir/8413/final

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview
	1.2.1 Background
	1.2.2 A Naive Attempt to Folding Schemes
	1.2.3 Extracting Witness with Small Norm
	1.2.4 Almost a Folding Scheme
	1.2.5 Exact Euclidean Norm Proof

	1.3 Related Works

	2 Preliminaries
	2.1 The Demillo-Lipton-Schwartz-Zippel Lemma
	2.2 Concentration Inequalities
	2.3 Reduction of Knowledge

	3 A Folding Scheme for Ajtai Commitment Openings
	3.1 Reduction of Knowledge from (R(q,β,t))² to R(q,β,2t)
	3.2 Reduction of Knowledge from R(q,β,2t) to R(q,β,t)

	4 Implementation & Evaluation
	4.1 Parameter Selection
	4.2 Implementation
	4.3 Evaluation
	4.4 Acknowledgements

	References

