
uKNIT: Breaking Round-alignment for Cipher Design
Featuring uKNIT-BC, an Ultra Low-Latency Block Cipher

Kai Hu1,4, Mustafa Khairallah2, Thomas Peyrin3 and Quan Quan Tan3

1 School of Cyber Science and Technology, Shandong University, Qingdao, Shandong,
China

kai.hu@sdu.edu.cn
2 Dept. of Electrical and Information Technology, Lund University, Lund, Sweden

mustafa.khairallah.1608@eit.lth.se
3 Nanyang Technological University, Singapore

thomas.peyrin@ntu.edu.sg, quanquan001@e.ntu.edu.sg
4 Key Laboratory of Cryptologic Technology and Information Security, Ministry of

Education, Shandong University, Jinan, China

Abstract. Automated cryptanalysis has seen a lot of attraction and
success in the past decade, leading to new distinguishers or key-recovery
attacks against various ciphers. We argue that the improved efficiency
and usability of these new tools have been undervalued, especially for
design processes. In this article, we break for the first time the classical
iterative design paradigm for symmetric-key primitives, where construc-
tions are built around the repetition of a round function. We propose
instead a new design framework, so-called uKNIT, that allows a round-
by-round optimization-led automated construction of the primitives and
where each round can be entirely different from the others (the secu-
rity/performance trade-off actually benefiting from this non-alignment).
This new design framework being non-trivial to instantiate, we further
propose a method for SPN ciphers using a genetic algorithm and leverag-
ing advances in automated cryptanalysis: given a pool of good cipher can-
didates on x rounds, our algorithm automatically generates and selects
(x + 1)-round candidates by evaluating their security and performance.
We emphasize that our design pipeline is also the first to propose a fully
automated design process, with completely integrated implementation
and security analysis.
We finally exemplify our new design strategy on the important use-case
of low-latency cryptography, by proposing the uKNIT-BC block cipher,
together with a complete security analysis and benchmarks. Compared
to the state-of-the-art in low-latency ciphers (PRINCEv2), uKNIT-BC im-
proves on all crucial security and performance directions at the same
time, reducing latency by 10%, while increasing resistance against clas-
sical differential/linear cryptanalysis by more than 10%. It also reduces
area by 17% and energy consumption by 44% when fixing the latency of
both ciphers. As a contribution of independent interest, we discovered a
generalization of the Superposition-Tweakey (STK) construction for key
schedules, unlocking its application to bit-oriented ciphers.

Keywords: uKNIT, low-latency, block cipher, primitive design.

1 Introduction

Designing symmetric-key cryptography algorithms has always been a delicate
balance between achieving robust security and optimizing performances. Histor-
ically, both the design of cryptographic primitives and their subsequent crypt-
analysis were predominantly manual processes, relying on human ingenuity and
expertise. However, in the last decade, the community has witnessed remarkable
advancements in automated cryptanalysis techniques. Tools based on Boolean
satisfiability problem (SAT) [85,102,109,79], Mixed-Integer Linear Programming
(MILP) [86,14,15,81], and Constraint Programming (CP) [60,48,39] solvers have
become essential in the cryptanalyst’s arsenal, automating substantial parts of
the analysis, even including the key-recovery phase [94]. Their ease of use has
allowed researchers to explore more complex and interesting search spaces in the
analysis of ciphers.

While cryptanalysis has seen significant automation, cipher design has largely
remained a task performed by humans. The core structure of most modern
symmetric-key algorithms continues to be crafted by cryptographers, with au-
tomation typically limited to selecting internal components such as S-boxes,
linear layer matrices, and rotation values (mostly via local brute-force searches).
Despite the evident power of automated tools in cryptanalysis, their potential in
the design phase remains relatively underexplored (one counter-example being
the search for large AES-round-based permutations [68,89,95]). We believe that
harnessing these tools for the design process could lead to the discovery of more
secure and efficient cryptographic primitives.

In particular, symmetric-key cryptography is almost entirely characterized by
the iterative function design paradigm, where the primitive is built by repeating
a fixed round function with minor variations along the rounds (constants, coun-
ters, or rotation values). This design approach is exemplified in widely adopted
standards like AES, SHA-2 or SHA-3. Iterative functions were initially favored be-
cause they facilitated both compact implementations (using for loops) and ease
of human-guided analysis/provable security. However, in many use cases, these
two advantages are increasingly becoming less relevant. First, in many scenarios,
such as in fast software or low-latency hardware, unrolled implementations do
not pose significant challenges (they are actually favored in low-latency hard-
ware). Secondly, automated tools now dominate cryptanalysis, rendering the
human-friendly iterative structure less critical (these tools fundamentally do not
assume nor care about such a structure).

In this paper, we explore whether abandoning the classical iterative design
paradigm could yield symmetric-key algorithms with better security/performance
trade-offs. A non-iterative design framework offers greater flexibility, potentially
leading to more diverse and powerful cryptographic constructions. Maybe even
more importantly, by creating primitives via incremental addition of rounds and
allowing each to vary in structure, the designer might benefit from a locally
guided, greedy approach to optimize security and performance simultaneously.
This exploration could provide insights into alternative cipher designs that out-
perform their iterative counterparts. However, implementing such a framework

2

presents its own set of challenges, and realizing its potential seems not straight-
forward.

A natural use case to test this new design strategy is low-latency cryp-
tography, which essentially consists in providing secure cryptographic primi-
tives performing with the lowest possible latency in hardware implementations
(typically fully unrolled implementations in ASIC), while maintaining area and
energy consumption to reasonable levels. This is notably different from the
goal of lightweight cryptography (currently undergoing standardization by the
NIST [107]), which does not originally aim to optimize latency. This research
field has received much attention very recently due to its numerous critical ap-
plications: autonomous vehicles, cloud computing, and financial transactions, re-
quire secure, low-latency communication for rapid and essential decision-making.
More specifically, low-latency ciphers are already used for RAM memory encryp-
tion/authentication [91] or to authenticate pointers for system security [12].

The first published cipher with low-latency as stated target is the block
cipher PRINCE [32], later upgraded to PRINCEv2 [36]. Other low-latency block
ciphers have been proposed by the community [75,78,114,63], as well as low-
latency tweakable block ciphers [11,4,5,37,12,6] and various other low-latency
primitives such as PRFs [7,13,3,110,2]. Unfortunately, similarly to lightweight
cryptography, the heavy constraints imposed on the performance led to several
candidates presenting security issues or little security margin [55,83,34,17]. In
fact, most low-latency primitives have reduced security claims compared to their
functional sizes (e.g. PRINCE only guarantees security up to 2126−n for 2n data)
or very small block sizes [12,37].

Creating a secure low-latency cipher is a complex task as it represents a
dual-objective optimization problem: designers must strike a balance between
security and latency. Typically, the approach cryptographers take is to focus on
one objective first and then attempt to ‘fit’ the other. One can of course take
the classical approach of relying on mathematical constructions to ensure a min-
imum level of security, such as guaranteeing adequate diffusion in the linear layer
or a minimum algebraic degree for an S-box. Most low-latency constructions ba-
sically use low-latency sub-components (S-boxes, linear layers) in the hope that
this will transfer to the global construction. Then, among the candidates with
similar security properties, they select the one with the lowest latency. While
this strategy could be sound, it may not yield the best security/latency ratio,
mainly because when functions are composed, the interactions between differ-
ent components become too complex to manage effectively. In addition, latency
is very hard to predict [78] (in contrast to area and throughput in lightweight
cryptography, which can be quite accurately modelled). Being able to build a
cipher round per round, optimizing for latency and security at the same time,
might partially solve these issues.

Our contributions. In this paper, we propose uKNIT, a new simple design
paradigm for building symmetric-key primitives, leaving behind the classical it-
erative top-down constructions that prevailed thus far. uKNIT does not enforce
each round to be the same, and more importantly allows to build the primi-

3

tive one round at a time (knitting a cipher), optimizing for both security and
performance. This optimization-guided search strategy explores a much larger
space than previous designs and allows to locally adapt the cipher to meet the
designer’s global security/performance targets.

Exploring efficiently such a large design space is not trivial and presents
many challenges. Our second contribution is a search technique based on a ge-
netic algorithm for the large class of substitution-permutation network (SPN)
primitives. This algorithm is generic and can be configured to many different
security and performance goals, but for simplicity we describe it within the sce-
nario of an attacker trying to maximize the resistance of his primitive against
classical differential and linear cryptanalysis, while minimizing latency.

The third contribution is the application of this technique to the impor-
tant and very practical use-case of low-latency cryptography, currently under-
going intense study by the community. More precisely, we propose uKNIT-BC,
a novel 64-bit block 128-bit key ultra low-latency SPN block cipher. Our can-
didate largely improves over the current best-performing low-latency block ci-
pher, PRINCEv2 [36] on all crucial security and performance directions at the
same time: reduction of the latency by 10%, while increasing resistance against
classical differential/linear cryptanalysis by more than 10%. Besides, it shows
area reduction of 10% to 20% and power consumption reduction of 8% to more
than 50% at different comparison points normalized at different frequencies. To
strengthen the confidence in the security of our design, we performed a very
thorough analysis regarding many state-of-the-art attack techniques. This con-
tribution not only validates the interest of exploring new primitives within the
uKNIT framework, but also represents an important achievement in the field of
low-latency cryptography by itself.

We emphasize that low-latency is one clear example that we chose to explore
in detail in this paper, but we believe our search strategy will lead to more
efficient primitives in many other areas and use cases (lightweight cryptography,
fast software encryption, etc.).

As an additional contribution, our design process is supported by an entirely
automated security and hardware performance evaluation pipeline. At each step
of the search, automated cryptanalysis tools conduct complex security analysis
of the pre-candidates, while hardware implementations and benchmarks are au-
tomatically produced for a more accurate evaluation of their latency (previous
works did not predict latency, or only estimated it via modeling). To the best of
our knowledge, this is the first time a cryptographic scheme is being built from
such a fully automated security/performance evaluation pipeline.

Finally, as a last contribution of independent interest, we describe a novel
method to build strong key schedules, generalizing over the Superposition-Tweakey
(STK) construction, which was originally introduced in [69] and later influenced
various tweakable block cipher constructions [11]. Our generalization, so-called
gSTK, is particularly interesting as it can apply to bit-oriented ciphers (in con-
trary to STK), while ensuring sufficient diffusion within the round keys.

4

Outline. In Section 2, we present the uKNIT framework and in Section 3 a
method to automatically generate uKNIT ciphers instances for SPNs, based on
a genetic algorithm. In Section 4, we concentrate on the case of low-latency,
explaining the rationale for our low-latency block cipher proposal uKNIT-BC,
later fully specified in Section 5. An exhaustive security analysis of uKNIT-BC
is conducted in Section 6, while implementation benchmarks of the cipher and
comparison with competitors are given in Section 7. Finally, we conclude in
Section 8.

2 The uKNIT design framework

In symmetric-key cryptography, most block ciphers and other primitives rely
on an iterative design paradigm, where a sequence of rounds R1, R2, . . . , Rr is
applied to the input and where each round Ri applies the same transformation
R (up to a small variation, usually a constant value or even a rotation value, as
was used to build the 64-bit ARX-based S-box Alzette [9]). For example, an
r-round iterative block cipher E taking as input a plaintext P and a key K can
be written as:

E(P,K) = Rr ◦Rr−1 ◦ · · · ◦R1(P,K).

In the case of an SPN block cipher, we would typically have

Ri(X,K) = L ◦ S(X ⊕Ki ⊕ ci)

where S stands for the substitution layer, L for the (usually linear) permutation
layer, Ki for the subkey generated at round i from the master key K, and ci a
round dependent constant.

Iterative primitives are usually created directly via a top-down approach: the
designer crafts the function R (S and L in the case of SPNs) according to its
security/performance needs and this immediately defines the entire primitive.
To ensure good performances, the designers can, of course, choose components
S and L that are likely to behave well for the targeted efficiency criterion. For
security, they should make sure the components provide strong security when
repeatedly iterated. Some structure usually helps in this regard, the wide-trail
strategy [45] for the AES block cipher being an excellent example.

To the best of our knowledge, examples of existing symmetric-key cryp-
tographic primitives that are not purely iterative constructions would be the
Kaliski-Robshaw block cipher [70] or the MD4/MD5/SHA-1 hash functions. In both
cases, the few “rounds” composing the primitives use a different internal com-
ponent (a different Boolean function), in the hope that this would complicate
the attacker’s task. For example, a particular strategy to find a good differential
characteristic for the first round might fail for the second round. Yet, these con-
structions remain very iterative. First, only a small function within the round
differs. Secondly, each round is in fact composed of many “steps” that are actu-
ally the same. Thus, these constructions remained built classically, the designers
did not analyze nor leverage the possible special interactions stemming from the
rounds being slightly different.

5

Another line of work deviating a little from the pure iterative constructions
is the arithmetization-oriented family of primitives LowMC [1] and RASTA [54].
In these SPN designs, the substitution layer S is fixed, but the permutation
layer L is chosen pseudo-randomly at each round. However, these designs do not
try to precisely analyze and leverage any security or performance gain by having
different L at each round (as they are supposed to look randomly chosen). Again,
these primitives were created using a top-down approach, where all the rounds
were specified at the same time.

Finally, we can mention constructions such as HADES [62] and PRINCE [32] that
are classical iterative structures, but where a special round portion is present at
the middle of the cipher only.

2.1 The uKNIT ciphers space

We propose uKNIT, a simple method to build ciphers, generalizing the classical
iterative constructions. A uKNIT primitive is defined by a sequence of rounds
R1, R2, . . . , Rr applied to the input, but where each round Ri does not necessarily
apply the same transformation. Reusing our block cipher example, we would
typically have

Ri(X,K) = Li ◦ Si(X ⊕Ki ⊕ ci)

where layers Li and Si might be completely distinct.
One obvious benefit from the uKNIT framework is that the space of the func-

tions considered is larger, iterative constructions being a subset of uKNIT ones. A
larger search space means candidates with potentially better security/performance
trade-offs. In addition, with their very distinct rounds, uKNIT ciphers present a
natural tendency to avoid strong alignment. More importantly, uKNIT ciphers
space allows a paradigm shift in how we build symmetric-key primitives. Instead
of crafting the scheme directly with a top-down approach, with uKNIT one can
be much more exotic in how ciphers are created. One could use an incremental
process where rounds are added one at a time, both in the forward (appending
a round) or backward (pre-pending a round) direction, trying to optimize some
fitness function f . This allows to optimize locally the cipher’s design choices,
expecting that this improvement will translate on a global scale. Given an exist-
ing construction with r rounds, one can build a set of (r + 1)-round candidates
(or (r + s) rounds, where s is a relatively small integer) and select the one that
maximizes f . One can even consider simply updating a r-round candidate to a
new r-round one with a higher value according to the fitness function. Another
possibility is to combine smaller ciphers to create larger ones: from a r1-round
candidate and another r2-round candidate, we can produce a (r1 + r2)-round
one by concatenating the rounds. Note that f can be fully adapted to the use
case (in terms of security and performance criterion), which makes uKNIT a very
generic symmetric-key construction framework.

6

2.2 The knitting methodology: gradually building uKNIT ciphers

We describe our methodology which we instantiate in Section 3 for the case of
SPN ciphers. We assume that the designer has a goal (or a set of goals) for
the cipher, represented by the fitness function f . We further consider that the
designer has access to performance evaluation and cryptanalysis tools to evaluate
the fitness function on any cipher candidate. The methodology is to gradually
build the cipher up to i rounds, a process that we refer to as knitting a cipher.
When building the i-round cipher, we take as input a group of ciphers of i or
less rounds, but that does not satisfy our goals. These ciphers are fed to the
optimization algorithm which has access to the analysis tools and eventually the
optimization algorithm is expected to output an i-round cipher that is better,
with respect to the fitness function, than all the input ciphers. This process is
repeated until the cipher meets our goals. We can also vary the optimization
algorithm at different steps of the process, in order to achieve a good trade-off
between computational power and cipher behaviour. One step of this process is
summed up in Figure 1.

Optimization
Algorithm

group of ciphers
with ≤ i rounds i-round cipher

cryptanalysis
tools

performance
analysis

fitness
function

Fig. 1: One step of our knitting methodology.

There are many ways to interpret this methodology. For example, consider
the process of designing an r-round cipher starting from a (r− 2)-round cipher.
We can consider that we run the methodology twice, once to get an (r−1)-round
cipher, then to get an r-round cipher, or simply run it once to jump from r − 2
to r, or even run it many times before we get from r − 2 to r − 1, it is a matter
of different interpretations, as all these descriptions can be referring to the same
execution.

3 Application of uKNIT to SPNs

The uKNIT cipher space is extremely large, which naturally triggers the question
of how to find a good candidate within this space. We provide in this section
one practical solution to knit an SPN cipher, mainly based on a genetic search,
as well as a smart brute-force search when necessary.

Genetic search algorithms are evolutionary algorithms that are commonly
employed to solve multi-objective optimization problems and offer several ad-
vantages, including the ability to handle complex and nonlinear optimization
challenges. Before we introduce the genetic search and the smart brute-force al-
gorithms, we describe the global search structure along which we knit the cipher.

7

3.1 The fitness computation

During the search, we need to evaluate the fitness of the current candidate, in
terms of performance and security. Given a set of tools that can automatically
evaluate the performance and the security of a candidate, a specific function
needs to be defined to assign it a score. This function acts as a compass and
depends on the use case considered: what platform, what performance criteria,
what security target, etc. It can be computed from exact evaluations or merely
approximations. It might even dynamically change during the search process (if
some criterion is favored at the beginning of the search and another one towards
the end).
Remark. To reduce the number of computations required during the security
evaluations, especially when dealing with a large number of rounds, it might be
useful to set an upper bound on the number of rounds we are analyzing. An
upper bound can be chosen as the number of rounds that an attacker uses as
a distinguisher for a key recovery attack for example. In other words, we can
choose to only study “windows” of rounds from the cipher candidates, instead of
the entire ciphers. As such, we propose the following definition to facilitate the
description of the process.

Definition 1 (Window). For a cipher C that has r rounds, the ith l-length
window is the l consecutive rounds of C starting from the ith round, where 0 ≤
i < r and 1 ≤ l ≤ r − i. The ith l-length window is denoted by W(i, l).

Example. The window W (2, 8) refers to the 8-round cipher obtained by extract-
ing rounds 2 through 9 from the cipher.

3.2 The search - Knitting an SPN cipher

The biggest challenge when knitting an SPN cipher is the huge search space
inherent from uKNIT. To control the variability of the search, we can construct
the cipher part by part. As a starting point, we generate a set of random x-
round ciphers (x being a relatively small value), evaluate and sort these x-round
candidates according to their fitness. These candidates are the first generation
of the genetic search. Then, we trigger the generation evolution by breeding and
mutation.

In each generation, we discard the bad performing ciphers and derive new
candidates from the better performing ones. This continues for several loops (or
generations). Once we are satisfied with the set of x-round ciphers, we add one
round at a time to generate ciphers with a higher number of rounds.

Alternative optimization approach. If the computational power is limited,
the search can be divided into two phases if needed. We can employ a genetic
algorithm to search for candidate ciphers up to round i. In this phase, the number
of ciphers that require evaluation can grow rapidly (in the case of uKNIT-BC, it
easily exceeds 100,000 candidates). The computational power constraints are
primarily dictated by the time required for the fitness function to evaluate the

8

candidates. For the next r− i rounds, we can use a smart brute-force algorithm
to further extend the number of rounds. However, up to computational power
limitations, we recommend using the genetic algorithm as much as possible, as
it seems to consistently produce better candidates compared to the brute-force
approach. Figure 2 provides an overview of the entire process. In fact, we use
the pure genetic approach in the remainder of the paper.

1 2 3 4 5 6 7 8 9 10 11 12

Genetic Algorithm

Genetic Algorithm Smart brute-force

Choose a set of good
x-round ciphers

Fig. 2: Overview of the search process to knit an SPN cipher.

3.3 Genetic algorithm

A genetic algorithm is a search heuristic inspired by the principles of evolution
and natural selection. It is particularly effective for solving optimization prob-
lems where the density of good solutions is limited due to a large solution space,
making brute-force methods inefficient or impractical.

In the following paragraphs, we examine each component of our genetic algo-
rithm and explain how they contribute to the overall search process. We provide
in the description some precise parameters values that we found to be working
well during our experiments. Of course, these depend on the use cases and the
cipher properties. The designer should not hesitate to test/adapt them.

Overview. At a high level, Figure 3 illustrates the flow of our genetic algorithm.
The process begins with initialization, during which the population is generated.
We then evaluate the fitnesss of each candidate in this population to identify
two key groups: the breeding population (those selected to breed before being
eliminated) and the surviving population (those that continue to the next round).

The two groups undergo breeding and cloning, respectively, and may experi-
ence a potential mutation before moving on to the next generation. This cycle
continues for some generations. Afterward, we append two new components, a
permutation layer and a substitution layer, to the current cipher candidates. This
process repeats until we reach the desired level of security and performance.

Initialization. For the initialization part of the search algorithm, we require a
pool of ciphers. We have set the number of candidates to be 200, which turned
out to be a good trade-off in our experiments. We construct each candidate
cipher C in this manner:

C = Sx−1 ◦ Lx−2 ◦ Sx−2 ◦ · · · ◦ L0 ◦ S0

9

Initialization Compute fitness Selection

Fittest pop.

Clone & Mutate

Breeding pop.

Breed & Mutate
Satisfied?

Append 1 round No

Yes

Fig. 3: The flow of the genetic algorithm to search for SPN ciphers.

where Si and Li are chosen randomly from sets S and L respectively. These are
sets of substitution and permutation layers that we have pre-set in the beginning.
The choice of these sets for the case of uKNIT-BC is discussed in Section 4. For
the lower number of rounds, we set each round to have 100 generations. This
value can be adjusted and is dependent on the available computational power
and the complexity of the fitness function.

Selection. This process throws away the weaker candidates, following the con-
cept of “survival of the fittest”. However, considering only the fitness may cause
the population to converge too quickly. Thus, we have to bring in some diversity,
as well. Overall, the selection process is split into two parts:

– Selecting the fittest ciphers. The top 10 ciphers (sorted by on fitness)
are selected. This set of ciphers is known as the “previous generation” as they
are preserved until the next elimination, unless it is the last generation of
its respective rounds. To extend the influence on the next generation, these
ciphers are cloned and have a mutation introduced with probability 1.

– Selecting the breeding population. The set of ciphers we select here will
breed the next generation of ciphers. The process of selecting this group is
based on both its fitness and a diversity measurement from a new candidate
to the current pool of candidates:
1. Initialize an empty set C
2. For each cipher C in the population set: Compute the diversity of C

from all C ′ ∈ C
3. Normalize the fitness and diversity scores
4. Compute the score: a · (fitness) + b · (diversity) with a = 1 and b = 10
5. Select the cipher with the top score and place it in C
6. Repeat from Step 2 until we have obtained 40% of the population size.

The distance of a cipher C to another cipher C ′ is hard to quantify as we
neither have a notion of quantifiable distance between S-boxes nor the linear
layers that considers their cryptographic properties. Thus, for the substitution
layer, we simply count the number of differing S-boxes and for the linear layer,
we count the number of different entries in the (binary) matrix. The exact details
of the diversity computation are shown in Algorithm 1 of Appendix A.

10

Breeding. There are three types of breeding we implement: single-point crossover,
double-point crossover and uniform crossover. To illustrate a single-point crossover,
consider two ciphers C and C ′ as the parents in a chain form:

C : S0 − P0 − S1 − P1 − ...− Sn

C ′ : S′
0 − P ′

0 − S′
1 − P ′

1 − ...− S′
n

then a single point crossover chooses one part of the link and swap the remaining
parts of the chain with the other parent to create two offspring:

C ′′ : S0 − P0 − S1 − P1 − S′
2 − P ′

2 − ...− S′
n

C ′′′ : S′
0 − P ′

0 − S′
1 − P ′

1 − S2 − P2 − ...− Sn

A double point crossover chooses two points instead of one and swap the parts
accordingly and a uniform crossover would be a random mixture of S-boxes
and linear layers. Note that a uniform crossover is very likely to destroy any
cryptographic properties across different rounds and hence, it is assigned a lower
probability. The breeding process proceeds as follow:

1. Randomly select randomly with uniform probability two candidates C and
C ′ from the breeding population.

2. Let C and C ′ undergo either single-point, double-point, or uniform crossover
with probability 0.4, 0.4 and 0.2, respectively.

3. With a probability of 0.05, the new ciphers undergo mutation. If the new
candidates after breeding are already included in the set of offspring, then
this probability is increased to 1. The details of the mutation for the case of
uKNIT-BC are explained in Section 4.

4. Repeat this process until we obtain a total of 200 new ciphers.

3.4 Smart brute-force

While genetic algorithm should be favored, we introduce a smart brute-force
method in the case where the genetic algorithm is spending an excessive amount
of time evaluating the large number of candidates. We emphasize that this
method is simply a way to reduce the number of candidates we need to evalu-
ate, thus decreasing the time complexity by a constant factor. This method can
be applied after we have obtained fairly decent candidates with high number
of rounds. Unlike a naïve brute-force method, this smart brute-force takes into
account some specific factors, which we discuss here.

First, note that in the smart brute-force approach, we do not employ the
concept of generations, or rather, it can viewed as if there is only 1 generation
per round. However, as compensation, we can afford to increase the number of
candidates.

The smart brute-force approach basically consists in adding a new round,
alternating at the start or the end of the original candidate, such that the fitness
function is locally optimized. More precisely, the new round is not generated

11

randomly, but by choosing carefully its sub-components (S-Box and linear layer)
to heuristically increase the fitness function.

For instance, in our case where the target security is the resistance against
classical differential cryptanalysis, the smart brute force approach takes in an
x-round cipher as well as one of its best differential characteristic. This approach
generates many potential linear layers for the additional round and selects one
that maximizes the number of active S-boxes in the new round based on the best
differential characteristic given. The output is an x+ 1-round cipher.

4 Design rationale of the uKNIT-BC block cipher

We apply here our SPN search strategy to the case of low-latency block cipher.
We use candidates of x = 3 rounds to populate our first generation.

4.1 Fitness computation during the search

Our performance goal is to minimize the total cipher’s latency, while provid-
ing enough security against state-of-the-art attacks. Therefore, our fitness or
objective function must account for both factors. To achieve this, we rely on
open-source tools to evaluate these metrics. While there are various methods
to measure a cipher’s security, we chose to preliminarily assess it based on the
best differential characteristic and linear trail. To evaluate the best differential
characteristic and linear trail, we convert a cipher candidate automatically into
SAT models that describe its differential characteristic and linear trail, which is
then analyzed by a SAT solver. The modeling method we used follows the tech-
niques described in [102]. For this purpose, we use the SAT solver CaDiCaL [19],
but our model is compatible with any SAT solver that accepts DIMACS format.
For the latency measurement, we use OpenLane [97], an open-source automated
RTL to GDSII flow that leverages other available open-source CAD tools such
as Yosys [111], a set of optimization scripts and synthesis strategies for latency
and area and an open-source PDK known as Skywater 130nm 5, which is a
collaboration between Google and SkyWater Technology Foundry. Unlike other
open-source PDKs, Skywater 130nm has been silicone-proven both academically
and commercially.

After obtaining the probability of the best differential characteristic (probd),
the bias of the best linear trail (biasl), and the latency of the cipher (lat), the
fitness of a candidate is computed as:

max[− log2(probd),−2 · log2(biasl)]2
lat

Remark. While it may look more intuitive to have the above expression to be
security
latency , the security does not scale linearly with the number of rounds (whereas
it does for latency). In particular, in the early stages where the number of rounds
5 https://github.com/google/skywater-pdk

12

https://github.com/google/skywater-pdk

is small, a proportionate increase in security should be prioritized over a propor-
tionate decrease in latency. The above expression is selected during the initial
testing phase where we tested a few different expressions and this expression
produces candidates that are consistent with our goals for the cipher.

4.2 Structure selection

As we are using a genetic algorithm to automate the search process, we are
concerned about having a good starting point and properly defining the set of
possible components within our search parameters. Therefore, our initial starting
point is somewhat influenced by existing low-latency and low-energy designs such
as PRINCE, MANTIS and MIDORI.

Type of construction. For our construction, we opted for the SPN structure
with a 64-bit state size. The extensive amount of cryptanalysis conducted on
SPN ciphers has given cryptanalysts a deeper understanding of this structure
and, naturally, one significant advantage of this choice is the wider availability of
automated tools optimized for this task. While we briefly considered the Feistel
construction, it proved to be unsuitable for a low-latency context, as only half
the state is processed at any given time. Additionally, using a 64-bit structure
ensures that the search space will not be too large for automated tools to handle.
It is important to note that mutations within our genetic algorithm do not alter
the type of structure chosen.

Number of rounds. During the search, a constant evaluation of security and
performance is required for the fitness function. One problem we encountered
when we attempted to generate ciphers with a short number of rounds was that
the construction required much stronger S-boxes and linear layers. This caused
the SAT solver to have a hard time solving the model given and thus, slowing
down the process significantly. Moreover, ciphers with fewer rounds are also more
vulnerable to meet-in-the-middle (MitM) attacks. With the 64-bit SPN structure
of uKNIT-BC and its (probably sparse) diffusion layer, we evaluated that at least
10 rounds would be needed to resist MitM attacks. From there, we did not know
in advance how many rounds would ensure enough security according to our
criterion, but a first rough evaluation indicated a number of rounds around 12
to 14.

4.3 Choice of substitution layers

Initialization. For the substitution layer, we opted for 4-bit S-boxes due to their
extensive study and documentation. These S-boxes can be categorized based on
affine equivalence classes, with S-boxes within the same class sharing very similar
security properties. This categorization allows us to efficiently eliminate entire
sets of S-boxes when necessary. This is particularly important as unlike other
designs, we do not limit ourselves to using the same S-box throughout the sub-
stitution layer, or even within a single layer. Consequently, the search space is

13

very large. Initially, we considered all possible 4-bit S-boxes, excluding those
with undesirable security properties, such as those that contain linear compo-
nents or probability-one differential transitions. While this approach enabled us
to design ciphers with slightly lower latency but stronger security properties, the
complexity of these ciphers made them too challenging for our automated tools
to analyze, particularly when evaluating a large number of candidates. Even-
tually, we restricted our selection to the S-box used in MANTIS (which is also
MIDORI’s Sb0) as well as the S-boxes that are simple bit-transpositions of it,
affecting both the inputs and outputs. The MANTIS S-box was chosen for its no-
tably lower latency compared to other S-boxes, and applying bit transpositions
will not change its latency. Surprisingly, this decision significantly sped up the
performance of the automated tool.

Mutation. For the S-boxes, we have identified four mutations meant to reflect
an increasing distance in terms of the S-box properties:

1. A bit permutation on the output
2. A linear permutation on the output
3. An affine permutation on the output
4. A swap of indices: S[i]←→ S[j] for some i, j ∈ {0, ..., 15}

For the first three cases, we allow the S-boxes to be in the same affine equivalence
class, which help to preserve most of the security properties. However, our initial
empirical results showed that the increase in security is not worth the increase
in latency, thus, for uKNIT-BC, we eventually decided to set the mutation to only
allow bit permutations only.

4.4 Choice of linear layers

For our low-latency cipher design, the depth of the linear circuit is a critical
factor, just as it is in other ciphers targeting minimal latency. To ensure maxi-
mum diffusion for each output bit, we restrict the set of possible circuits to be
a set where each output bit is computed through a series of p-XOR gates. This
configuration corresponds to having p+1 ‘1’s in each row of the linear transfor-
mation matrix. To prevent excessive fan-out where a single signal is used in too
many places, each input bit is also used in p-XOR gates. This is equivalent to
having p+1 ‘1’s in each column of the matrix. Under these conditions, p cannot
be odd if we want the linear circuit to be invertible. Therefore, if p is odd, we
allow one row or column to have (p − 1)-XOR gates instead. In our design, we
considered cases where p = 0, 1, and 2. We did not explore p ≥ 3 as this would
increase the depth of the circuit by one, which would negatively impact latency
when taking the key addition into account (refer to Figure 4 for an illustration
of XOR depth).

Almost-MDS matrices. Among the set of 2-XORs invertible matrices, there
exists a subset that exhibits a critical mathematical property known as the
almost-MDS property. This property is significant because it offers a strong level

14

x1 x2 x3 k

y

x1 x2 x3 x4

k

y

depth = 1

depth = 2

depth = 3

Fig. 4: An illustration of the depth with 4 and 5 variables (including the keys).

of diffusion while maintaining relatively low complexity in terms of the number
of XOR gates required. To the best of our knowledge, two low-latency cipher
designs have utilized this type of linear layers: MIDORI and PRINCE. We give the
values of the MIDORI and PRINCE matrices in Appendix C.

We aim to leverage these almost-MDS matrices to achieve an optimal bal-
ance between security (via strong diffusion) and efficiency (via minimal latency).
However, we only use them as a starting search point, and apply several transfor-
mations as part of the genetic algorithm. The almost-MDS matrices are defined
over nibbles, and by performing a row-wise or column-wise rotation at this block
matrix level, the almost-MDS property can be preserved. However, in our case,
we seek greater variation, even if it means deviating from the almost-MDS prop-
erty. Based on our experiments, as long as the deviation is not significant, the
overall quality of the linear layer remains strong. Thus, for the initialization
phase, we consider the case that we are allowed to do elementary row swap
(ERS) and column swap operations (ECS) at the bit-level. More specifically, we
follow these steps to generate our initial linear layer:

1. Randomly select either M̃
(0)
prince or Mmidori

2. Apply a random number of ECS operations
3. Apply a random number of ERS operations
4. Repeat Step 1 to 3 to obtain four of them for each of the 16-bit columns
5. Verify that it is invertible, if not, repeat the process from Step 1

Although the ERS and ECS mentioned above allow for some diffusion to
other columns (not exactly a MixColumns), to ensure the various cells are mixed
thoroughly, we also implemented the ShiftRows operation identical to that of
PRINCE after the matrix multiplication operation for all the candidates:

s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

→

s0 s4 s8 s12
s5 s9 s13 s1
s10 s14 s2 s6
s15 s3 s7 s11

Mutation. In the linear layer, represented by a 64 × 64 binary matrix, the
mutation function is similar to the operation we perform in the initialization. It

15

operates by randomly selecting two rows and swapping them. The same process
is then applied to the columns. This is equivalent to rewiring two input and
output bits in the linear layer. While this operation carries a high probability of
disrupting the almost-MDS property further, our experiments show that as long
as the number of swaps is kept low, the resulting candidates often demonstrate
enhanced security, particularly in terms of their best differential characteristics.

4.5 The key schedule

Jean et al. [69] proposed a generalized construction of building key schedules
for key alternating ciphers, dubbed as the Superposition-Tweak-key (STK) con-
struction. For a block cipher with block size n, the (twea)key is divided into p
blocks, each of size n. Each key block is processed independently. Each round,
a function h′ permutes the nibbles of each block. Then, an LFSR is applied to
each nibble. In the same block, the same LFSR is applied to all nibbles, while
different blocks must have different LFSRs. Last but not least, the key blocks
are XORed together to generate the round key.

The goal of this construction is to ensure that when the cipher is used with
two related keys with a known difference, the number of nibbles where the key
blocks have non-zero difference but the corresponding round key has 0 differ-
ence is limited. Indeed, the construction achieves this goal efficiently, and has
been used in several TBC designs. In [41], Cogliati et al. studied extending the
STK framework to more than 3 branches (as in the first generation of STK-
based ciphers), correcting an error another proposal [88]. In [72], Khairallah et
al. studied how smart mode designs coupled with STK-based TBCs can lead
to efficient implementations and cheap side-channel countermeasures, which is
relevant in the domain of low-latency ciphers, since expensive masking is not
an option. However, the original presentation of the STK construction has two
drawbacks for our use case:

1. The STK construction was particular to AES-like ciphers, where the whole ci-
pher is nibble- or byte-oriented. Thus, it may not be suitable for bit-oriented
ciphers.

2. The number of rounds in our proposal is small. Thus, having a key schedule
where the nibbles do not interact with each other can lead to slow diffusion.

For these reasons, we need a generalization of the STK construction that can
work for bit-oriented ciphers, and has sufficient diffusion in the round keys. In
order to do so, we have to view the round keys as bit vectors. In Definition 2,
we give a mathematical representation of any linear key schedule, viewed over
binary vector spaces.

Definition 2. Let p, n, k be three positive integers, where n is the block size,
k is the (twea)key size, and k = np. The master key Km is a vector from the
vector space Fk

2 . For i ∈ {0, 1, . . . , r}, where r is the number of rounds, Ki ∈ Fn
2

are the round (twea)keys. Then, any linear key schedule can be represented as a
sequence of n× k matrices over F2: G0, G1, . . . , Gr, such that Ki = GiKm. We
call the set of matrices G = {G0, G1, . . . , Gr} a linear key schedule.

16

Given Definition 2, we can now give a stronger goal for the key schedule, but
does not only work for nibble-oriented ciphers.

Definition 3. Let G be an r-round linear key schedule according to Definition 2.
The key schedule is a generalized STK (gSTK) key schedule if for any p indices
0 ≤ i0 < i1 < . . . < ip−1 ≤ r, [GT

i0
GT

i1
· · · GT

ip−1
] is a full rank matrix, where

GT is the transpose matrix of G.

It is easy to see why the property in Definition 3 captures the essence of the
STK construction. Note that if we select p′ < p round keys, it must hold that
there are many keys Km that lead to the same set of p′ round keys. Thus, an
adversary with full control over the key difference can choose a set of p′ round
keys such that Km ̸= K ′

m, but the round keys are equal. We want to make sure
that this does not hold for p′ ≥ p. Thus, we want that the relation between any
set of p round keys and the input key to be bijective. Definition 3 is a more
formal way of writing this. For small r, it is easy to check whether this property
holds. It boils down to checking the determinants of

(
r
p

)
matrices of size k × k.

Another interesting observation is that a powerful adversary can always
choose a key such that a specific set of p rounds keys take a specific value.
However, this determines all the other round keys. Thus, we can set G0 to Gp−1

such that the first p rounds keys are simply blocks of the input keys. This allows
us to reduce the latency in unrolled key schedule as for the first p key additions,
the round keys are readily available, and the pth round key is only used after p
rounds, so we can afford to use a circuit with somewhat higher latency. Since the
linear key schedule is typically lighter than the cipher, the key schedule has min-
imal effect on the overall latency. The challenge now becomes how to select the
matrices. In the remainder of this section, we shall focus on the case of n = 64,
k = 128 and p = 2, and discuss possible options of selecting the matrices in
efficient and smart ways.

Based on our observations, we assign G0 = [I 0] and G1 = [0 I]. Then, the
design problem becomes: Find (r − 1) 64× 128 matrices G2, . . . , Gr such that[

Gi

Gj

]
,

[
I 0
Gi

]
and

[
0 I
Gi

]
are all invertible ∀ 2 ≤ i < j ≤ r.

We now re-introduce some simplifications from the STK construction to re-
duce our search space.

Method I: We consider the case where each block of the key is treated inde-
pendently, and then the different blocks are XORed to get each round key. This
translates to choosing 2r − 2 64× 64 matrices A2, . . . , Ar and B2, . . . , Br, s.t.

Ai, Bi and
[
Ai Bi

Aj Bj

]
are all invertible ∀ 2 ≤ i < j ≤ r.

Method II: We refine the analysis further by considering an iterative structure.
We choose 2 64× 64 invertible matrices A and B such that[

Ai Bi

Aj Bj

]
is invertible ∀ 1 ≤ i < j ≤ r − 1.

17

This allows us to simplify the condition to check to a condition on the dif-
ferences between repeated iterations of A and B. In particular, A and B satisfy
the gSTK requirement if

0 ̸= det

([
Ai Bi

Aj Bj

])
= det(Ai)det(Bj −AjA−iBi) =

det(Ai)det(Bj −Aj−iBi) = det(Ai)det(Bj−i −Aj−i)det(Bi) (1)

which translates to A and B being invertible, and Bl − Al is invertible for
1 ≤ l ≤ r − 2.

Method III: This method, and Method IV, use a nibble structure, but we have
faster diffusion compared to just nibble permutations. Instead of defining A and
B as binary matrices, we define them as matrices over the finite field GF(2b),
where b is typically 4 or 8. We also define B = AC, where C = cI, for c ∈
GF(2b) and c ̸= 0 and ci ̸= 1 ∀ 1 ≤ r. We can show that this is sufficient since
C commutes with any matrix: AC = AcI = cAI = cIA = CA. Thus,

det((AC)r−Ar) = det(ArCr−Ar) = det(Ar)det(Cr−I) = det(Ar)det((cr−1)I)

Incidentally, if A consists of elements 0 and 1 only, and each row has only one
non-zero element, then this method coincides with the original STK construction.

If c is a primitive element of a field defined by a primitive polynomial, then the
multiplication can be implemented by a Linear Feedback Shift Register (LFSR)
of maximal length 2b − 1 and the condition is satisfied as long as r ≥ 2b − 1.
For b = 4, multiple LFSRs can suffice, such as the Galois LFSR defined by the
primitive polynomial x4+x+1 and the Fibonacci LFSR defined by the primitive
polynomial x4 + x3 + 1. In fact, the two are defined over two isomorphic fields
and we use the latter in our design. See [106, Section 7.4] on how to implement
LFSRs from primitive polynomials using both methods, labelled in the book as
Method I (Fibonacci LFSR) and II (Galois LFSR).

Method IV: We could use different matrices for different rounds on the form
Bi = ci−2Ai and the analysis follows.

An interesting observation in methods III and IV is that as long as the
matrix/matrices A are invertible and c is of a sufficiently large order, then the
choice of A does not affect the gSTK property and we can use any matrix, from
nibble permutations, all the way up to MDS matrices or very dense matrices.

Rationale of the key schedule of uKNIT-BC. Although we do not claim any
security for uKNIT-BC in the related-key setting, we still want a well-designed key
schedule as it enhances the security against key-recovery attacks by introducing
non-trivial relations between round keys.

We expect to achieve two goals for the key schedule:

– It should not be too heavy such that it increases the overall area and latency;

18

– It should be easy to model by automatic search tools, as it will facilitate the
search and provide lower bounds against the related-key differential attacks.

The two goals require the design of key schedule be simple, thus the gSTK
framework discussed above is ideal for us. As such, we instantiate a particular
instance of the gSTK, using Method III.

According to Method III, the first two round keys use the master keys directly.
For the remaining round keys, we only need to choose proper A ∈ GF(24)4×4

and C = cI. First, to avoid the heavy field multiplication, we choose an LFSR
used by SKINNY-64 to play the role of c. Second, for the choice of A, we define
A = P◦M where P is a nibble-permutation matrix, while M ∈ F 16×16

24 is a matrix
with some XORs that provide a stronger diffusion. To make the key schedule
simple, we restrict that all the entries of M are either 0 or 1. which is inline with
the rationale that some previous tweakable block cipher designs have considered.
Using some XORs in M would speed up the diffusion, but too many XORs would
also significantly complicate the related-key differential lower bounds search.
Therefore, we chose M that contains one XOR per 4 rows (columns) for uKNIT-BC
key schedule (see Section 4.5). As for P , we use a brute-force search to search
among all cyclic permutations such that for every four rounds, each key position
must be in position 3, 6, 9 or 12 where an XOR operation is applied. The criteria
for a good choice of P is one that has a decent amount of diffusion. Eventually,
we chose one that after 11 iterations of G = [P ◦M,P ◦M ◦ L] (L is a matrix
corresponding to applying an LFSR to each nibble), every nibble of K12 is a
function of at least 10 nibbles of Km P is given in Section 4.5.

Such a design achieves a good balance between the diffusion speed and the
search efficiency for the security lower bounds. With the SAT tools, we check
the lower bounds for the related-key differential probability for all windows. The
data is shown in Table 9 of Appendix F.

5 Specifications of the low-latency block cipher uKNIT-BC

Since each component of the cipher is distinct, its description is more complex
compared to other conventional ciphers. As far as possible, we try to give a com-
pact specification of our cipher. We also provide a GitHub repository containing
the implementation and test vectors here:
https://anonymous.4open.science/r/uKNIT-implementations-7ABA

5.1 Overview

uKNIT-BC is a 64-bit block, 128-bit key block cipher that contains 12 rounds (a
total of 12 substitution layers and 11 linear layers). It also has 13 round-key
additions. Each round, except the final one, consists of two layers: substitution
layer and linear layer. The final round contains only the substitution layer. Fig-
ure 5 describes the overview of uKNIT-BC. In our description, each n-bit variable
is a bit column vector indexed 0, 1, . . . , n from top to bottom. When we refer to
a nibble vector, the indexing order is the same and nibble i refers to the bits 4i
to 4i+ 3, from top to bottom.

19

https://anonymous.4open.science/r/uKNIT-implementations-7ABA

P

K1

K0

R0

L M

M

P

P

R1

S1 L1

L M

M

P

P

R2

· · ·

· · ·

· · ·

L M

M

P

P

R11 C

S11

Fig. 5: The structure of uKNIT-BC including the key schedule.

5.2 Substitution layers

The 4-bit S-boxes applied to each nibble of the internal state in uKNIT-BC can be
represented by (D◦SMANTIS◦B)(x) where SMANTIS is the MANTIS S-box (SMANTIS[x]=
[c, a, d, 3, e, b, f, 7, 8, 9, 1, 5, 0, 2, 4, 6]) and D and B are transposition matrices
given in Table 5 of Appendix B.1.

5.3 Linear layers

Our linear layers Li are very sparse 64×64 binary matrices applied on the entire
internal state. Since we have exactly 3 indices in each row having “1” with the
rest being “0”, we can describe the matrices solely based on these indices. Table 7
and 8 of Appendix B.2 provide the list of these indices.

5.4 Key schedule

The key schedule of uKNIT-BC is depicted in Figure 5. Given the 128-bit master
key Km = K0||K1, K0 and K1 are used as the round keys of the first two rounds.
For i ≥ 2, the round key Ki is computed by

K0 = P ◦M(K0), K1 = P ◦M ◦ L(K1),

Ki = K0 ⊕K1,

where L is a linear operation that applies the SKINNY-64 LFSR to each nibble of
K1. L : (x3||x2||x1||x0)→ (x2||x1||x0||x3⊕x2). The permutation P is defined as
P = [3, 8, 13, 2, 15, 9, 11, 5, 0, 6, 14, 10, 7, 12, 4, 1]. More precisely, the 64-bit input
key K is split into 16 nibbles, and the output is K ′[i] ← K[P [i]], where K[i] is
the ith nibble.

Finally, M is a matrix defined as M =

[
M ′

M ′

M ′

M ′

]
where M ′ =

[
1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 1

]
.

20

6 Security analysis of uKNIT-BC

In this section, we perform an extensive security analysis of uKNIT-BC with state-
of-the-art cryptanalysis. We give in Table 1 the best key-recovery attacks we
obtained. Due to page limitation, we only provide here a summary of our analysis.
All the details and more analysis are provided in Appendix G.

Security claims and attack model. We claim that there is no attack that
can break the full uKNIT-BC with less than 2112 time complexity and 247 (chosen
/ adaptively-chosen) plaintext-ciphertext pairs (250 bytes). These two numbers
consider the NIST lightweight cryptography requirement [90], and they are sim-
ilar to what is claimed for PRINCEv2. We do not claim any security regarding
related-key, known-key or chosen-key attacks. We did a complete cryptanalysis
on uKNIT-BC and did not find any attack that threatens its security. We encour-
age third-party cryptanalysis on any (consecutive) windows, even surpassing the
complexity limitations we set, as they are beneficial to explore the security mar-
gin of uKNIT-BC.

Notations. We first introduce a few more notations to facilitate the descriptions
of our attacks. The S-boxes and linear layers used in the ith-round uKNIT-BC are
denoted by Si and Li respectively, where 0 ≤ i ≤ 11 (the L11 is omitted in
uKNIT-BC). For 0 ≤ i ≤ 10, the input of the ith-round is xi, and after the
XORing with the round key ki, it becomes x′

i, i.e., x′
i = xi⊕ ki. Then, we apply

Si to x′
i to get yi and apply Li to yi to get xi+1. For the last round, i.e., i = 11,

we have x12 = S11(x11)⊕ k12.
In differential cryptanalysis, given xi, x

′
i, yi, their differences are denoted by

∆(xi), ∆(x′
i) and ∆(yi), respectively. Given a state z ∈ {x, x′, y, k}, z[t]b is the

t-th bit of z, while z[t0, t1, t2, . . . , tn−1]b are the n bits of z as z[ti]b, 0 ≤ t ≤ n−1.
Similarly, z[t]n is the t-th nibble of z, while z[t0, t1, . . . , tn−1]n are the n nibbles
of z[ti]n, 0 ≤ i ≤ n − 1. When t0, . . . , tn−1 are consecutive, we also write these
n bits and nibbles as z[t0 ∼ tn−1]b and z[t0 ∼ tn−1]n, respectively. As for the
discussions on linear cryptanalysis, the linear masks of a state z ∈ {x, x′, y, k}
are denoted by Γ (z).

6.1 Differential cryptanalysis

In this subsection, we analyze the security of uKNIT-BC against differential at-
tacks [24]. Unlike typical ciphers, uKNIT-BC is fully non-aligned as all rounds
are very different, so we should check the security of all windows for W(i, r),

Table 1: Overview of our main key-recovery attacks on round-reduced uKNIT-BC,
for which the full number of rounds is 12.

Attack Rounds Targeted Win. Time Data Reference
Differential 10 W(0, 10) 278 Enc. 256 CP Section 6.1

Impossible differential 10 W(1, 10) 293 Enc. 255 CP Appendix G.2
Demirci-Selçuk MitM 9 W(0, 9) 287 Enc. 261 CP Appendix G.5

21

1 ≤ r ≤ 12 and 0 ≤ i ≤ 12 − r. With our SAT tool, we search for differential
characteristics (DCs) for all windows and the results are shown in Table 2 (left).

Table 2: Differential probabilities (left) and linear correlations (right), in − log2,
for W(i, r), 1 ≤ r ≤ 12, 0 ≤ i ≤ 12 − r. The last column gives the value for
the r-round PRINCE (both v1 and v2) where these r rounds contain ⌊(r − 2)/2⌋
forward rounds, ⌈(r − 2)/2⌉ backward rounds and the middle 2 rounds.

r
i 0 1 2 3 4 5 6 7 8 9 10 11 PRINCE

1 2 2 2 2 2 2 2 2 2 2 2 2 –
2 8 8 6 6 8 8 6 8 8 6 8 – –
3 14 12 12 12 14 14 12 14 12 12 – – –
4 25 23 24 26 30 26 26 24 24 – – – 32
5 40 40 39 40 40 39 37 37 – – – – 39
6 49 48 46 46 50 47 49 – – – – – 44
7 60 58 52 61 60 59 – – – – – – 56
8 71 70 68 71 72 – – – – – – – 66
9 81 82 80 82 – – – – – – – – 74
10 94 87 92 – – – – – – – – – 80
11 101 99 – – – – – – – – – – 89
12 113 – – – – – – – – – – – 99

r
i 0 1 2 3 4 5 6 7 8 9 10 11 PRINCE

1 1 1 1 1 1 1 1 1 1 1 1 1 –
2 4 4 3 3 4 4 3 4 4 3 4 – –
3 7 6 6 6 7 6 6 7 6 6 – – –
4 13 10 11 13 14 12 12 11 12 – – – 16
5 19 18 19 19 19 18 17 17 – – – – 19
6 24 23 22 23 25 23 21 – – – – – 22
7 29 26 26 30 29 27 – – – – – – 27
8 35 34 34 34 34 – – – – – – – 32
9 39 38 37 39 – – – – – – – – 34
10 45 44 43 – – – – – – – – 38
11 49 50 – – – – – – – – – – 41
12 55 – – – – – – – – – – – 49

Remark. When r ≤ 5, the differential probabilities of W(i, r) are higher than
the r-round PRINCE ones. However, for r ≥ 6, the differential probabilities of all
r-length windows are lower. This shows that the components of uKNIT-BC are
weaker in security than those of PRINCE, but for a higher number of rounds, the
freedom to combine different components allowed uKNIT-BC to achieve stronger
differential security. Generally speaking, a weaker component goes along with a
better latency performance, which helps to explain to some extent why uKNIT-BC
is better than PRINCE in both the security and latency criteria.

For 8-length windows, all probabilities are lower than 2−64, so we expect
that 8-round uKNIT-BC does not have any useful DCs. Thus, we choose to
use a DC of W(2, 7) to mount a differential key-recovery attack. With an au-
tomatic search model that can consider both the distinguisher and the key-
recovery process (see Appendix D), we check W(0 ≤ i ≤ 1, 11) with 7-round
DC and 2-round backward and forward propagations. However, no effective key-
recovery attack was detected. We then check W(0 ≤ i ≤ 2, 10) with 7-round DC
with r0-round backward propagation and r2-round forward propagation, where
(r0, r2) ∈ {(2, 1), (1, 2)} and manage to detect some useful key-recovery attacks.
The best key-recovery attack is depicted in Figure 6 which works for W(0, 10)
with 7-round DC, 2-round backward propagation and 1-round forward propaga-
tion. The key-recovery process is as follows:

1. A total of 120 key bits (consisting of k0[0 ∼ 11]n, k1[0 ∼ 2, 4, 5, 7, 8, 10, 11]n,
and k10[0, 2, 3, 7 ∼ 10, 12, 15]n) are involved in the backward and forward
propagations. Thus, we initialize a counter H with 2120 entries.

22

2. One plaintext structure contains 248 plaintexts. Encrypt these plaintexts
and combine them to 295 pairs. Since the ciphertext difference has 7 inactive
S-boxes, thus only 295−28 = 267 pairs survive.

3. For each surviving pairs, we guess all 248 values of ∆(x1[0 ∼ 2, 4, 5, 7, 8, 10, 11]n).
The possible keys of k1[0 ∼ 2, 4, 5, 7, 8, 10, 11] and k0[0 ∼ 11] can be extracted
with some table-lookups for the active S-boxes. With ∆(x10) and ∆(x9), the
36 bits of k10[0, 2, 3, 7 ∼ 10, 12, 15] can be obtained by table-lookups, too.

4. k0 and k1 are directly related to the master key. Thus, the remaining 44 bits
of the master key can be searched exhaustively.

P = x0

•
•
•
•

•
•
•
•

•
•
•
•

k0

x′0

S0

y0

L0

x1

•
•
•
•
•
•

•
•
•

k1

x′1

S1
1
2
4

2
4

1

1

2
2

y1

L1
4
8

4
x2

PR=7 = 2−53

1

4
a

L8
1

y8

2
5 4

4
c
2

a

4
x9

S9

y9

•
•
• •

•
•
•
•

•

k10

C = x10

Fig. 6: The differential key-recovery attack onW(0, 10) based on a DC ofW(2, 7)
(red color) whose probability is 2−53.

Complexity. For each plaintexts pair described above, the probability that it
can propagate to ∆(y1) is 2−48. Thus, to make one right pair to appear, we need
about 2(48+53) = 2101 pairs due to the 2−53-probability DC. In other words,
2101−95 = 26 structures yield one right pair. To use 4 right pairs, we need 28

structures. Since the counter is as large as 2120 rows, the average number of
times where the wrong keys are hit is significantly smaller than 1. Thus, the
signal-to-noise rate is overwhelmingly large. Therefore, the data complexity is
248+8 = 256 plaintexts. The time complexity is to process the 267+8 = 275 pairs.
For each pair, we need to do 30 table-lookups for extracting the keys, thus the
time complexity is about 280 memory accesses. We regard each memory access
as one S-box evaluation, so 280 memory access can be scaled to 272.7 10-round
uKNIT-BC encryptions. Besides, for each pair, on average 2120−64−53 = 23 pairs
would be suggested, so we need to access H 8 times. Considering H is a large
table, we regard one access to H as one encryption, thus the time complexity of
accessing H is about 278 encryptions, which dominates the time complexity. The
memory complexity is dominated by the counter with 2120 rows. Since we expect

23

4 right pairs, 4 bits for each row should be sufficient. The memory complexity
can be scaled to 2116 64-bit blocks.

We also considered the effect of clustering and multiple differential cryptanal-
ysis in Appendix G.1. We show that they should not be a threat for uKNIT-BC.

6.2 Linear (hull) cryptanalysis

Linear cryptanalysis [84] is another fundamental attack to check the security of
a cipher. Akin to the differential attack, we use our SAT models to check for
the linear correlations of all possible windows of uKNIT-BC. The results for all
linear characteristics (LCs) are shown in Table 2 (right). Similar observations
are found here, when r ≤ 7, the correlation of W(i, r), 0 ≤ i ≤ 12 − r can be
larger than those of PRINCE. While for r ≥ 8, the correlations of all W(i, r) will
be smaller than PRINCE, which again shows the effectiveness of uKNIT strategy –
weaker components can be combined to design ciphers that have strong security
without sacrificing the latency.

We use a model to search for good linear key-recovery attacks similarly to
the differential key-recovery process. The best attack with a single LC works
for W(0, 10) consisting of a distinguisher of correlation 2−30 for W(2, 7) and a
2-round backward propagation involving 96-bit keys and 1-round forward prop-
agation involving 24-bit keys. Since the squared correlation of its distinguisher is
significantly smaller than the 7-round DC we used in Section 6.1, we believe the
linear attacks based on one LC cannot be stronger than the differential attack.

To examine how much uKNIT-BC suffers from the linear hull effect, we use a
similar method from Appendix G.1. The main target is still W(2, 8) as it is in
the middle which is the most crucial chunk in a possible key-recovery attack. We
searched for 100 LCs for W(2, 8) whose correlation is exactly 2−34. These LCs
belong to 7 different linear truncated patterns (LTPs). The LTPs share a similar
definition with DTPs but it treats linear masks rather than the differences. Also,
when clustering LCs, we use the squared correlations to build the matrix MSi

to avoid the cancellations of positive and negative correlations. Technically, we
consider the expected linear potential of a linear hull.

Definition 4 (Expected linear potential (ELP) [92]). Let Γ (xi) and Γ (xi+r)
be the input and output masks of an r-round key-alternating cipher (note that
uKNIT-BC is key-alternating). The expected linear potential is defined as

ELP(Γ (xi), Γ (xi+r)) =
∑

Γ (xi+1),...,Γ (xi+r−1)

C2((Γ (xi), Γ (xi+1), . . . , Γ (xi+r)))

where C(Γ (xi), Γ (xi+1), . . . , Γ (xi+r)) is the correlation of a LC.

Among the 7 LTPs, the ELP of the best linear hull for W(2, 8) we find is
2−62.4, denoted by

(0, 0, 0, 0, b, 4, 0, e, 0, 0, 0, 0, 0, 0, 0, 0)
W(2,8)−−−−→ (0, 2, 0, 4, 2, 0, 2, 0, 0, 0, 0, 1, 8, 0, 0, 0)

24

This linear hull might be used in a key-recovery attack on W(0, 10). However,
due to the extremely high ELP, we believe it should be difficult to be used in
the key-recovery attack considering the data limit we put on uKNIT-BC.

7 Implementations and benchmarks

General Comparison. We synthesized the different ciphers for the TSMC
65nm technology library using design compiler. For each cipher, we derived two
measurements: the first one is a combinational unconstrained circuit as a base-
line. In the second, For the second result, we place each cipher between input
and output registers and set the target clock period to 1ns. For all ciphers, this
goal is unattainable. However, the synthesis algorithm outputs the closest netlist
it could reach to this goal, as the expense of larger area. In both cases, we use
the compile_ultra command. For uKNIT-BC, we also included the results of the
circuit synthesized for the maximum achievable frequency of PRINCEv2. While
uKNIT-BC is competitive even at its own maximum achievable frequency, it does
not provide a fair comparison as PRINCEv2 cannot even reach that frequency.
Thus, it is a more fair comparison to also include the area gain when only the
maximum achievable frequency of PRINCEv2 is targeted. We also include the
results with key schedule and with precomputed round keys (key side loading).
The results are given in Table 3. In the comparison, we included most of the ci-
phers that claim to be designed with low latency in mind. However, they satisfy
different security goals. KoalaP is a public permutation used in a Variable-Input-
Length PRF (VIL-PRF), which takes many blocks and the latency is for how
fast each block is absorbed. If it is used with a fixed 64-bit input length, it re-
quires two calls to the permutation, doubling the latency, making it slower that
uKNIT-BC. Gleeok128 and Orthros are Fixed-Input-Length PRFs (FIL-PRFs).
They are not designed to resist the same type of attacks as uKNIT-BC, so they
can tolerate having lower latency for 128-bit blocks. That being said, from a
pure latency point of view, we do in fact have lower latency, and in Appendix H
we discuss how to build a PRF from uKNIT-BC, not even considering using less
rounds. BipBip has a 24-bit block, yet its latency is not that much better than
uKNIT-BC (less than 3%). SPEEDY and Qarmav1 are TBCs with large block size
and are both slower than uKNIT-BC. Last but not least, the candidate that is clos-
est to uKNIT-BC in terms of security model and block size is PRINCEv2. uKNIT-BC
has ∼ 10% lower latency, and for the lowest latency of PRINCEv2, we need only
half the are with precomputed round keys of ∼ 18% less area with key sched-
ule. For the remainder of this section, we provide more in depth benchmarking
compared exclusively to PRINCEv2.

Power Consumption. We believe a straightforward comparison of different
circuits synthesized for different targets, then setting the frequency to a nominal
value, e.g. 10 MHz, is not very informative. This is especially true if the circuit
used in the comparison is synthesized with maximum achievable frequency in
mind. The synthesizer can allocate a very large area to achieve such frequency

25

Table 3: Comparison of different low latency primitives using TSMC 65nm. The
first row of each cipher is the unconstrained combinational circuit, and the second
row is the single cycle circuit with target latency of 1ns. For KoalaP, the first
row is just the permutation, while the second row is the latency is the time
the PRF takes to absorb 1 64-bit block per cycle. For the VIL-PRF latency of
KoalaP, we need to multiply the permutation latency by 1 + nb where nb is the
number of input 64-bit blocks per 257-bit output block.

Name Block Size Latency (ns) Area (µm2)

FIL-PRF
Gleeok128 [3] 128 3.45 73, 078.92

128 1.61 133, 343.99

Orthros [7] 128 2.66 40, 932.36
128 1.59 77, 437.08

TBC

BipBip [12] 24 4.03 39, 278.52
24 1.45 60, 630.12

SPEEDY 7 rnds [78] 192 3.75 46, 826.64
192 1.79 88, 331.04

Qarmav1 9 rnds [4] 128 4.84 42, 787.08
128 2.74 94, 944.23

Public
KoalaP [2] 64 1.46 24, 104.88

Perm. 64 1.16 52, 965.36

BC

PRINCEv2 [36] 64 2.90 12, 006.72
64 1.65 27, 564.12

uKNIT-BC
64 2.58 10, 685.88

(with side loading) 64 1.64 14, 587.92
64 1.49 21, 779.27

uKNIT-BC
64 2.53 15, 859.80
64 1.64 22, 963.67
64 1.48 30, 436.20

which increases power consumption. Thus, estimating the power of this partic-
ular circuit at a much lower frequency gives an inaccurate picture of how the
cipher is used. Rather, if we target a low frequency, we should estimate the
power using a circuit that is optimized either for area or for power consumption,
not for frequency. Besides, comparing the power consumption of ciphers with
different block sizes is also not very informative. Thus, we compare our proposal
to PRINCEv2 and we follow a different approach. We synthesize each cipher for
specific frequencies, and use the circuit corresponding to each frequency to esti-
mate the power consumption. In case of the maximum achievable frequency for
PRINCEv2, we synthesize uKNIT-BC for the same frequency and set the circuit
of PRINCEv2 at that frequency. In case of the maximum achievable frequency
for uKNIT-BC, we set the frequency of that circuit as such. Besides, we set the
switching activity of the key bits to 0. The key is loaded once and used to en-
crypt many blocks. Thus, it is unreasonable to assume that the key values, and
key schedule gates, are toggling all the time. It is a standard practice to simu-
late real operating conditions to estimate and optimize power consumption. The

26

results are presented in Table 4 (top). The results indeed show the subtleties of
comparing power consumption.

Table 4: Power consumption and area at different frequencies.

Power consumption (in mW) using TSMC 65nm
Frequency 675 MHz 606 MHz 500 MHz 250 MHz 10 MHz
PRINCEv2 Infeasible 17.60 7.49 3.02 0.43

uKNIT-BC (SL) 13.73 8.02 4.92 2.22 0.34

Gain ∞ 54.4% 34.3% 26.4% 20.9%

uKNIT-BC 18.15 9.83 6.08 2.76 0.50

Gain ∞ 44.1% 18.8% 8.6% −16.3%

Power consumption (in mW) using FDSOI 28nm 1.1V
Frequency 1.07 GHz 1 GHz 961 MHz 500 MHz 250 MHz 10 MHz
PRINCEv2 Infeasible Infeasible 15.47 3.41 1.75 0.18

uKNIT-BC (SL) 13.95 7.19 6.07 2.58 1.33 0.14

Gain ∞ ∞ 60.8% 24.3% 24.0% 22.2%

uKNIT-BC 14.39 8.39 6.72 2.93 1.53 0.21

Gain ∞ ∞ 56.6% 14.1% 12.6% −16.6%

Area (in µm2) using FDSOI 28nm 1.1V
Frequency 1.07 GHz 1 GHz 961 MHz 10-500 MHz
PRINCEv2 Infeasible Infeasible 9968.42 4777.51

uKNIT-BC (SL) 8015.40 4750.10 4297.06 3744.29

uKNIT-BC 10939.79 7635.64 6905.32 6078.71

In the medium range of frequency (250 ∼ 500 MHz), uKNIT-BC experi-
ences approximately 25% ∼ 35% improvement without the key schedule and
approximately 8% ∼ 19% with key schedule. At PRINCEv2 maximum achievable
frequency, uKNIT-BC reaches 44% and 55% improvement over PRINCEv2 with
and without the key schedule, respectively. This massive gain is attributed to
the fact that uKNIT-BC reaches this frequency without extensive optimization,
while PRINCEv2 requires very high optimization effort and enlarged area. This is
also why we observe a widening gap between the two ciphers, until we reach a
range of frequencies for which PRINCEv2 is unsynthesizable. The power consump-
tion of uKNIT-BC at maximum achievable frequency with key schedule is only
marginally higher than PRINCEv2 at the maximum achievable frequency. Due to
the frequency difference, this implies uKNIT-BC consumes 7.5% less energy. At
low frequencies, uKNIT-BC consumes 20.9% less power without key schedule, but
has higher consumption with key schedule due to the effects of leakage power
consumption in the gates of the key schedule.

FDSOI 28nm. As further verification of our analysis, we replicated our results
for PRINCEv2 and uKNIT-BC (with and without key schedule) using the FDSOI

27

28nm 1.1V standard cell library. Table 4 (mid) includes the power results, while
Table 4 (bottom) includes the area results. We observe the same trends, and
even higher gains in terms of power consumption as the latency is increased. In
fact, uKNIT-BC can reach the GHz range, while PRINCEv2 cannot.

8 Conclusion

In this paper, we introduced a new design framework called uKNIT, aimed at
providing guidelines for generating ciphers with various objectives and breaking
for the first time the round alignment that prevailed. To showcase the strength of
this framework, we instantiated a specific example focused on creating an ultra-
low latency cipher, uKNIT-BC. It outperforms the state-of-the-art low-latency ci-
pher (PRINCEv2) in both security and performance. Additionally, we generalized
the STK construction for key scheduling, enabling its application to bit-oriented
ciphers. To the best of our knowledge, this is also the first attempt at fully au-
tomating the cipher design process. Automation enables us to explore uncharted
territories more effectively, paving the way for innovative cryptographic designs.

Acknowledgments

We thank the anonymous reviewers for the relevant comments on the first ver-
sion of our paper. This research was supported by the Seagate Technology LLC
grant “Low-Latency Lightweight Cryptography” and the Singapore NRF Inves-
tigatorship grant NRF-NRFI08-2022-0013. The second author is funded by the
Wallenberg-NTU Presidential Postdoctoral Fellowship.

References

1. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology
- EUROCRYPT 2015. LNCS, vol. 9056, pp. 430–454. Springer (2015), https:
//doi.org/10.1007/978-3-662-46800-5_17

2. Amiri-Eliasi, P., Belkheyar, Y., Daemen, J., Ghosh, S., Kuijsters, D., Mehrdad, A.,
Mella, S., Rasoolzadeh, S., Assche, G.V.: Koala: A Low-Latency Pseudorandom
Function. IACR Cryptol. ePrint Arch. p. 1249 (2024), https://eprint.iacr.
org/2024/1249

3. Anand, R., Banik, S., Caforio, A., Ishikawa, T., Isobe, T., Liu, F., Minematsu,
K., Rahman, M., Sakamoto, K.: Gleeok: A Family of Low-Latency PRFs and its
Applications to Authenticated Encryption. IACR Trans. Cryptogr. Hardw. Em-
bed. Syst. 2024(2), 545–587 (2024), https://doi.org/10.46586/tches.v2024.
i2.545-587

4. Avanzi, R.: The QARMA Block Cipher Family. Almost MDS Matrices Over
Rings With Zero Divisors, Nearly Symmetric Even-Mansour Constructions With
Non-Involutory Central Rounds, and Search Heuristics for Low-Latency S-Boxes.
IACR Trans. Symmetric Cryptol. 2017(1), 4–44 (2017), https://doi.org/10.
13154/tosc.v2017.i1.4-44

28

https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-46800-5_17
https://eprint.iacr.org/2024/1249
https://eprint.iacr.org/2024/1249
https://doi.org/10.46586/tches.v2024.i2.545-587
https://doi.org/10.46586/tches.v2024.i2.545-587
https://doi.org/10.13154/tosc.v2017.i1.4-44
https://doi.org/10.13154/tosc.v2017.i1.4-44

5. Avanzi, R., Banik, S., Dunkelman, O., Eichlseder, M., Ghosh, S., Nageler, M.,
Regazzoni, F.: The QARMAv2 Family of Tweakable Block Ciphers. IACR Trans.
Symmetric Cryptol. 2023(3), 25–73 (2023), https://doi.org/10.46586/tosc.
v2023.i3.25-73

6. Avanzi, R., Dunkelman, O., Minematsu, K.: MATTER: A Wide-Block Tweakable
Block Cipher. IACR Cryptol. ePrint Arch. p. 1186 (2024), https://eprint.iacr.
org/2024/1186

7. Banik, S., Isobe, T., Liu, F., Minematsu, K., Sakamoto, K.: Orthros: A Low-
Latency PRF. IACR Cryptol. ePrint Arch. p. 390 (2021), https://eprint.iacr.
org/2021/390

8. Bar-On, A., Dunkelman, O., Keller, N., Weizman, A.: DLCT: A New Tool
for Differential-Linear Cryptanalysis. In: Ishai, Y., Rijmen, V. (eds.) Advances
in Cryptology - EUROCRYPT 2019. LNCS, vol. 11476, pp. 313–342. Springer
(2019), https://doi.org/10.1007/978-3-030-17653-2_11

9. Beierle, C., Biryukov, A., dos Santos, L.C., Großschädl, J., Perrin, L., Udovenko,
A., Velichkov, V., Wang, Q.: Alzette: A 64-Bit ARX-box - (Feat. CRAX and
TRAX). In: Micciancio, D., Ristenpart, T. (eds.) Advances in Cryptology -
CRYPTO 2020. LNCS, vol. 12172, pp. 419–448. Springer (2020), https://doi.
org/10.1007/978-3-030-56877-1_15

10. Beierle, C., Canteaut, A., Leander, G., Rotella, Y.: Proving Resistance Against
Invariant Attacks: How to Choose the Round Constants. In: Katz, J., Shacham, H.
(eds.) Advances in Cryptology - CRYPTO 2017. LNCS, vol. 10402, pp. 647–678.
Springer (2017), https://doi.org/10.1007/978-3-319-63715-0_22

11. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki,
Y., Sasdrich, P., Sim, S.M.: The SKINNY Family of Block Ciphers and Its
Low-Latency Variant MANTIS. In: Robshaw, M., Katz, J. (eds.) Advances in
Cryptology - CRYPTO 2016. LNCS, vol. 9815, pp. 123–153. Springer (2016),
https://doi.org/10.1007/978-3-662-53008-5_5

12. Belkheyar, Y., Daemen, J., Dobraunig, C., Ghosh, S., Rasoolzadeh, S.: BipBip:
A Low-Latency Tweakable Block Cipher with Small Dimensions. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2023(1), 326–368 (2023), https://doi.org/10.
46586/tches.v2023.i1.326-368

13. Belkheyar, Y., Daemen, J., Dobraunig, C., Ghosh, S., Rasoolzadeh, S.: Intro-
ducing two Low-Latency Cipher Families: Sonic and SuperSonic. IACR Cryptol.
ePrint Arch. p. 878 (2023), https://eprint.iacr.org/2023/878

14. Bellini, E., Gérault, D., Grados, J., Makarim, R.H., Peyrin, T.: Boosting
Differential-Linear Cryptanalysis of ChaCha7 with MILP. IACR Trans. Symmet-
ric Cryptol. 2023(2), 189–223 (2023), https://doi.org/10.46586/tosc.v2023.
i2.189-223

15. Bellini, E., Gérault, D., Grados, J., Makarim, R.H., Peyrin, T.: Fully Automated
Differential-Linear Attacks Against ARX Ciphers. In: Rosulek, M. (ed.) Topics
in Cryptology - CT-RSA 2023. LNCS, vol. 13871, pp. 252–276. Springer (2023),
https://doi.org/10.1007/978-3-031-30872-7_10

16. Beyne, T.: Block Cipher Invariants as Eigenvectors of Correlation Matrices.
In: Peyrin, T., Galbraith, S.D. (eds.) Advances in Cryptology - ASIACRYPT
2018. LNCS, vol. 11272, pp. 3–31. Springer (2018), https://doi.org/10.1007/
978-3-030-03326-2_1

17. Beyne, T., Neyt, A.: Note on the cryptanalysis of Speedy. Cryptology ePrint
Archive, Paper 2024/262 (2024), https://eprint.iacr.org/2024/262

29

https://doi.org/10.46586/tosc.v2023.i3.25-73
https://doi.org/10.46586/tosc.v2023.i3.25-73
https://eprint.iacr.org/2024/1186
https://eprint.iacr.org/2024/1186
https://eprint.iacr.org/2021/390
https://eprint.iacr.org/2021/390
https://doi.org/10.1007/978-3-030-17653-2_11
https://doi.org/10.1007/978-3-030-56877-1_15
https://doi.org/10.1007/978-3-030-56877-1_15
https://doi.org/10.1007/978-3-319-63715-0_22
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.46586/tches.v2023.i1.326-368
https://doi.org/10.46586/tches.v2023.i1.326-368
https://eprint.iacr.org/2023/878
https://doi.org/10.46586/tosc.v2023.i2.189-223
https://doi.org/10.46586/tosc.v2023.i2.189-223
https://doi.org/10.1007/978-3-031-30872-7_10
https://doi.org/10.1007/978-3-030-03326-2_1
https://doi.org/10.1007/978-3-030-03326-2_1
https://eprint.iacr.org/2024/262

18. Beyne, T., Verbauwhede, M.: Integral Cryptanalysis Using Algebraic Transition
Matrices. IACR Trans. Symmetric Cryptol. 2023(4), 244–269 (2023), https://
doi.org/10.46586/tosc.v2023.i4.244-269

19. Biere, A., Faller, T., Fazekas, K., Fleury, M., Froleyks, N., Pollitt, F.: CaDiCaL
2.0. In: Gurfinkel, A., Ganesh, V. (eds.) Computer Aided Verification - CAV 2024.
LNCS, vol. 14681, pp. 133–152. Springer (2024)

20. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31
Rounds Using Impossible Differentials. In: Stern, J. (ed.) Advances in Cryptology
- EUROCRYPT ’99. LNCS, vol. 1592, pp. 12–23. Springer (1999), https://doi.
org/10.1007/3-540-48910-X_2

21. Biham, E., Dunkelman, O., Keller, N.: The Rectangle Attack - Rectangling
the Serpent. In: Pfitzmann, B. (ed.) Advances in Cryptology - EUROCRYPT
2001. LNCS, vol. 2045, pp. 340–357. Springer (2001), https://doi.org/10.1007/
3-540-44987-6_21

22. Biham, E., Dunkelman, O., Keller, N.: New Results on Boomerang and Rectan-
gle Attacks. In: Daemen, J., Rijmen, V. (eds.) Fast Software Encryption - FSE
2002. LNCS, vol. 2365, pp. 1–16. Springer (2002), https://doi.org/10.1007/
3-540-45661-9_1

23. Biham, E., Dunkelman, O., Keller, N.: New Combined Attacks on Block Ciphers.
In: Gilbert, H., Handschuh, H. (eds.) Fast Software Encryption - FSE 2005. LNCS,
vol. 3557, pp. 126–144. Springer (2005), https://doi.org/10.1007/11502760_9

24. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) Advances in Cryptology - CRYPTO ’90. LNCS,
vol. 537, pp. 2–21. Springer (1990), https://doi.org/10.1007/3-540-38424-3_1

25. Biryukov, A., Shamir, A.: Structural Cryptanalysis of SASAS. In: Pfitzmann, B.
(ed.) Advances in Cryptology - EUROCRYPT 2001. LNCS, vol. 2045, pp. 394–
405. Springer (2001), https://doi.org/10.1007/3-540-44987-6_24

26. Biryukov, A., Wagner, D.A.: Slide Attacks. In: Knudsen, L.R. (ed.) Fast Software
Encryption - FSE ’99. LNCS, vol. 1636, pp. 245–259. Springer (1999), https:
//doi.org/10.1007/3-540-48519-8_18

27. Biryukov, A., Wagner, D.A.: Advanced Slide Attacks. In: Preneel, B. (ed.) Ad-
vances in Cryptology - EUROCRYPT 2000. LNCS, vol. 1807, pp. 589–606.
Springer (2000), https://doi.org/10.1007/3-540-45539-6_41

28. Blondeau, C., Bogdanov, A., Wang, M.: On the (In)Equivalence of Impossible
Differential and Zero-Correlation Distinguishers for Feistel- and Skipjack-Type
Ciphers. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) Applied Cryptogra-
phy and Network Security - ACNS 2014. LNCS, vol. 8479, pp. 271–288. Springer
(2014), https://doi.org/10.1007/978-3-319-07536-5_17

29. Bogdanov, A., Leander, G., Nyberg, K., Wang, M.: Integral and Multidimensional
Linear Distinguishers with Correlation Zero. In: Wang, X., Sako, K. (eds.) Ad-
vances in Cryptology - ASIACRYPT 2012. LNCS, vol. 7658, pp. 244–261. Springer
(2012), https://doi.org/10.1007/978-3-642-34961-4_16

30. Bogdanov, A., Rijmen, V.: Linear hulls with correlation zero and linear crypt-
analysis of block ciphers. Des. Codes Cryptogr. 70(3), 369–383 (2014), https:
//doi.org/10.1007/s10623-012-9697-z

31. Bogdanov, A., Wang, M.: Zero Correlation Linear Cryptanalysis with Reduced
Data Complexity. In: Canteaut, A. (ed.) Fast Software Encryption - FSE
2012. LNCS, vol. 7549, pp. 29–48. Springer (2012), https://doi.org/10.1007/
978-3-642-34047-5_3

30

https://doi.org/10.46586/tosc.v2023.i4.244-269
https://doi.org/10.46586/tosc.v2023.i4.244-269
https://doi.org/10.1007/3-540-48910-X_2
https://doi.org/10.1007/3-540-48910-X_2
https://doi.org/10.1007/3-540-44987-6_21
https://doi.org/10.1007/3-540-44987-6_21
https://doi.org/10.1007/3-540-45661-9_1
https://doi.org/10.1007/3-540-45661-9_1
https://doi.org/10.1007/11502760_9
https://doi.org/10.1007/3-540-38424-3_1
https://doi.org/10.1007/3-540-44987-6_24
https://doi.org/10.1007/3-540-48519-8_18
https://doi.org/10.1007/3-540-48519-8_18
https://doi.org/10.1007/3-540-45539-6_41
https://doi.org/10.1007/978-3-319-07536-5_17
https://doi.org/10.1007/978-3-642-34961-4_16
https://doi.org/10.1007/s10623-012-9697-z
https://doi.org/10.1007/s10623-012-9697-z
https://doi.org/10.1007/978-3-642-34047-5_3
https://doi.org/10.1007/978-3-642-34047-5_3

32. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalçin, T.: PRINCE - A Low-Latency Block Cipher for Pervasive Computing
Applications - Extended Abstract. In: Wang, X., Sako, K. (eds.) Advances in
Cryptology - ASIACRYPT 2012. LNCS, vol. 7658, pp. 208–225. Springer (2012),
https://doi.org/10.1007/978-3-642-34961-4_14

33. Boura, C., Canteaut, A.: Another View of the Division Property. In: Robshaw,
M., Katz, J. (eds.) Advances in Cryptology - CRYPTO 2016. LNCS, vol. 9814, pp.
654–682. Springer (2016), https://doi.org/10.1007/978-3-662-53018-4_24

34. Boura, C., David, N., Boissier, R.H., Naya-Plasencia, M.: Better Steady than
Speedy: Full Break of SPEEDY-7-192. In: Hazay, C., Stam, M. (eds.) Advances in
Cryptology - EUROCRYPT 2023. LNCS, vol. 14007, pp. 36–66. Springer (2023),
https://doi.org/10.1007/978-3-031-30634-1_2

35. Boura, C., Naya-Plasencia, M.: Symmetric Cryptography, Volume 2: Cryptanal-
ysis and Future Directions. John Wiley & Sons (2024)

36. Bozilov, D., Eichlseder, M., Knezevic, M., Lambin, B., Leander, G., Moos, T.,
Nikov, V., Rasoolzadeh, S., Todo, Y., Wiemer, F.: PRINCEv2 - More Security
for (Almost) No Overhead. In: Dunkelman, O., Jr., M.J.J., O’Flynn, C. (eds.)
Selected Areas in Cryptography - SAC 2020. LNCS, vol. 12804, pp. 483–511.
Springer (2020), https://doi.org/10.1007/978-3-030-81652-0_19

37. Canale, F., Güneysu, T., Leander, G., Thoma, J.P., Todo, Y., Ueno, R.:
SCARF - A Low-Latency Block Cipher for Secure Cache-Randomization. In:
Calandrino, J.A., Troncoso, C. (eds.) USENIX Security Symposium, 2023. pp.
1937–1954. USENIX Association (2023), https://www.usenix.org/conference/
usenixsecurity23/presentation/canale

38. Canteaut, A., Fuhr, T., Gilbert, H., Naya-Plasencia, M., Reinhard, J.: Multiple
Differential Cryptanalysis of Round-Reduced PRINCE. In: Cid, C., Rechberger,
C. (eds.) Fast Software Encryption - FSE 2014. LNCS, vol. 8540, pp. 591–610.
Springer (2014), https://doi.org/10.1007/978-3-662-46706-0_30

39. Chakraborty, D., Hadipour, H., Nguyen, P.H., Eichlseder, M.: Finding Complete
Impossible Differential Attacks on AndRX Ciphers and Efficient Distinguishers for
ARX Designs. IACR Trans. Symmetric Cryptol. 2024(3), 84–176 (2024), https:
//doi.org/10.46586/tosc.v2024.i3.84-176

40. Cid, C., Huang, T., Peyrin, T., Sasaki, Y., Song, L.: Boomerang Connectivity
Table: A New Cryptanalysis Tool. In: Nielsen, J.B., Rijmen, V. (eds.) Advances
in Cryptology - EUROCRYPT 2018. LNCS, vol. 10821, pp. 683–714. Springer
(2018), https://doi.org/10.1007/978-3-319-78375-8_22

41. Cogliati, B., Jean, J., Peyrin, T., Seurin, Y.: A Long Tweak Goes a Long Way:
High Multi-user Security Authenticated Encryption from Tweakable Block Ci-
phers. IACR Communications in Cryptology 1(2) (2024)

42. Cui, T., Jia, K., Fu, K., Chen, S., Wang, M.: New Automatic Search Tool for Im-
possible Differentials and Zero-Correlation Linear Approximations. IACR Cryp-
tol. ePrint Arch. p. 689 (2016), http://eprint.iacr.org/2016/689

43. Daemen, J., Govaerts, R., Vandewalle, J.: Correlation Matrices. In: Preneel,
B. (ed.) Fast Software Encryption - FSE 1994. LNCS, vol. 1008, pp. 275–285.
Springer (1994), https://doi.org/10.1007/3-540-60590-8_21

44. Daemen, J., Knudsen, L.R., Rijmen, V.: The Block Cipher Square. In: Biham, E.
(ed.) Fast Software Encryption - FSE ’97. LNCS, vol. 1267, pp. 149–165. Springer
(1997), https://doi.org/10.1007/BFb0052343

31

https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-662-53018-4_24
https://doi.org/10.1007/978-3-031-30634-1_2
https://doi.org/10.1007/978-3-030-81652-0_19
https://www.usenix.org/conference/usenixsecurity23/presentation/canale
https://www.usenix.org/conference/usenixsecurity23/presentation/canale
https://doi.org/10.1007/978-3-662-46706-0_30
https://doi.org/10.46586/tosc.v2024.i3.84-176
https://doi.org/10.46586/tosc.v2024.i3.84-176
https://doi.org/10.1007/978-3-319-78375-8_22
http://eprint.iacr.org/2016/689
https://doi.org/10.1007/3-540-60590-8_21
https://doi.org/10.1007/BFb0052343

45. Daemen, J., Rijmen, V.: The Wide Trail Design Strategy. In: Honary, B. (ed.)
Cryptography and Coding, 8th IMA International Conference. LNCS, vol. 2260,
pp. 222–238. Springer (2001), https://doi.org/10.1007/3-540-45325-3_20

46. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography, Springer (2002), https://
doi.org/10.1007/978-3-662-04722-4

47. Dai, W., Hoang, V.T., Tessaro, S.: Information-Theoretic Indistinguishability via
the Chi-Squared Method. In: Katz, J., Shacham, H. (eds.) Advances in Cryptology
- CRYPTO 2017. LNCS, vol. 10403, pp. 497–523. Springer (2017), https://doi.
org/10.1007/978-3-319-63697-9_17

48. Delobel, F., Derbez, P., Gontier, A., Rouquette, L., Solnon, C.: A CP-Based Au-
tomatic Tool for Instantiating Truncated Differential Characteristics. In: Chat-
topadhyay, A., Bhasin, S., Picek, S., Rebeiro, C. (eds.) Progress in Cryptol-
ogy - INDOCRYPT 2023. LNCS, vol. 14459, pp. 247–268. Springer (2023),
https://doi.org/10.1007/978-3-031-56232-7_12

49. Demirci, H., Selçuk, A.A.: A Meet-in-the-Middle Attack on 8-Round AES. In:
Nyberg, K. (ed.) Fast Software Encryption - FSE 2008. LNCS, vol. 5086, pp.
116–126. Springer (2008), https://doi.org/10.1007/978-3-540-71039-4_7

50. Derbez, P., Fouque, P.: Exhausting Demirci-Selçuk Meet-in-the-Middle Attacks
Against Reduced-Round AES. In: Moriai, S. (ed.) Fast Software Encryption -
FSE 2013. LNCS, vol. 8424, pp. 541–560. Springer (2013), https://doi.org/10.
1007/978-3-662-43933-3_28

51. Derbez, P., Fouque, P.: Automatic Search of Meet-in-the-Middle and Impossible
Differential Attacks. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology -
CRYPTO 2016. LNCS, vol. 9815, pp. 157–184. Springer (2016), https://doi.
org/10.1007/978-3-662-53008-5_6

52. Derbez, P., Fouque, P., Jean, J.: Improved Key Recovery Attacks on Reduced-
Round AES in the Single-Key Setting. In: Johansson, T., Nguyen, P.Q. (eds.)
Advances in Cryptology - EUROCRYPT 2013. LNCS, vol. 7881, pp. 371–387.
Springer (2013), https://doi.org/10.1007/978-3-642-38348-9_23

53. Dinur, I., Dunkelman, O., Shamir, A.: Collision Attacks on Up to 5 Rounds of
SHA-3 Using Generalized Internal Differentials. In: Moriai, S. (ed.) Fast Software
Encryption - FSE 2013. LNCS, vol. 8424, pp. 219–240. Springer (2013), https:
//doi.org/10.1007/978-3-662-43933-3_12

54. Dobraunig, C., Eichlseder, M., Grassi, L., Lallemand, V., Leander, G., List, E.,
Mendel, F., Rechberger, C.: Rasta: A cipher with low ANDdepth and few ANDs
per bit. IACR Cryptol. ePrint Arch. p. 181 (2018), http://eprint.iacr.org/
2018/181

55. Dobraunig, C., Eichlseder, M., Kales, D., Mendel, F.: Practical Key-Recovery
Attack on MANTIS5. IACR Trans. Symmetric Cryptol. 2016(2), 248–260 (2016),
https://doi.org/10.13154/tosc.v2016.i2.248-260

56. Dunkelman, O., Keller, N., Shamir, A.: Improved Single-Key Attacks on 8-Round
AES-192 and AES-256. In: Abe, M. (ed.) Advances in Cryptology - ASIACRYPT
2010. LNCS, vol. 6477, pp. 158–176. Springer (2010), https://doi.org/10.1007/
978-3-642-17373-8_10

57. Dunkelman, O., Keller, N., Shamir, A.: A Practical-Time Related-Key Attack on
the KASUMI Cryptosystem Used in GSM and 3G Telephony. In: Rabin, T. (ed.)
Advances in Cryptology - CRYPTO 2010. LNCS, vol. 6223, pp. 393–410. Springer
(2010), https://doi.org/10.1007/978-3-642-14623-7_21

32

https://doi.org/10.1007/3-540-45325-3_20
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-319-63697-9_17
https://doi.org/10.1007/978-3-319-63697-9_17
https://doi.org/10.1007/978-3-031-56232-7_12
https://doi.org/10.1007/978-3-540-71039-4_7
https://doi.org/10.1007/978-3-662-43933-3_28
https://doi.org/10.1007/978-3-662-43933-3_28
https://doi.org/10.1007/978-3-662-53008-5_6
https://doi.org/10.1007/978-3-662-53008-5_6
https://doi.org/10.1007/978-3-642-38348-9_23
https://doi.org/10.1007/978-3-662-43933-3_12
https://doi.org/10.1007/978-3-662-43933-3_12
http://eprint.iacr.org/2018/181
http://eprint.iacr.org/2018/181
https://doi.org/10.13154/tosc.v2016.i2.248-260
https://doi.org/10.1007/978-3-642-17373-8_10
https://doi.org/10.1007/978-3-642-17373-8_10
https://doi.org/10.1007/978-3-642-14623-7_21

58. Dunkelman, O., Keller, N., Shamir, A.: A Practical-Time Related-Key Attack on
the KASUMI Cryptosystem Used in GSM and 3G Telephony. J. Cryptol. 27(4),
824–849 (2014), https://doi.org/10.1007/s00145-013-9154-9

59. Dunkelman, O., Keller, N., Shamir, A.: Slidex Attacks on the Even-Mansour
Encryption Scheme. J. Cryptol. 28(1), 1–28 (2015), https://doi.org/10.1007/
s00145-013-9164-7

60. Gérault, D., Lafourcade, P., Minier, M., Solnon, C.: Computing AES related-key
differential characteristics with constraint programming. Artif. Intell. 278 (2020),
https://doi.org/10.1016/j.artint.2019.103183

61. Gorski, M., Lucks, S., Peyrin, T.: Slide Attacks on a Class of Hash Functions. In:
Pieprzyk, J. (ed.) Advances in Cryptology - ASIACRYPT 2008. LNCS, vol. 5350,
pp. 143–160. Springer (2008), https://doi.org/10.1007/978-3-540-89255-7_
10

62. Grassi, L., Lüftenegger, R., Rechberger, C., Rotaru, D., Schofnegger, M.: On a
Generalization of Substitution-Permutation Networks: The HADES Design Strat-
egy. In: Canteaut, A., Ishai, Y. (eds.) Advances in Cryptology - EUROCRYPT
2020. LNCS, vol. 12106, pp. 674–704. Springer (2020), https://doi.org/10.
1007/978-3-030-45724-2_23

63. Greene, P., Motley, M., Weeks, B.: ARADI and LLAMA: Low-Latency Cryp-
tography for Memory Encryption. IACR Cryptol. ePrint Arch. p. 1240 (2024),
https://eprint.iacr.org/2024/1240

64. Hadipour, H., Eichlseder, M.: Integral Cryptanalysis of WARP based on Mono-
mial Prediction. IACR Trans. Symmetric Cryptol. 2022(2), 92–112 (2022), https:
//doi.org/10.46586/tosc.v2022.i2.92-112

65. Hall, C., Wagner, D.A., Kelsey, J., Schneier, B.: Building PRFs from PRPs. In:
Krawczyk, H. (ed.) Advances in Cryptology - CRYPTO ’98. LNCS, vol. 1462, pp.
370–389. Springer (1998), https://doi.org/10.1007/BFb0055742

66. Hu, K., Peyrin, T., Tan, Q.Q., Yap, T.: Revisiting Higher-Order Differential-
Linear Attacks from an Algebraic Perspective. In: Guo, J., Steinfeld, R. (eds.)
Advances in Cryptology - ASIACRYPT 2023. LNCS, vol. 14440, pp. 405–435.
Springer (2023), https://doi.org/10.1007/978-981-99-8727-6_14

67. Hu, K., Sun, S., Wang, M., Wang, Q.: An Algebraic Formulation of the Division
Property: Revisiting Degree Evaluations, Cube Attacks, and Key-Independent
Sums. In: Moriai, S., Wang, H. (eds.) Advances in Cryptology - ASIACRYPT
2020. LNCS, vol. 12491, pp. 446–476. Springer (2020), https://doi.org/10.
1007/978-3-030-64837-4_15

68. Jean, J., Nikolic, I.: Efficient Design Strategies Based on the AES Round Function.
In: Peyrin, T. (ed.) Fast Software Encryption - FSE 2016. LNCS, vol. 9783, pp.
334–353. Springer (2016), https://doi.org/10.1007/978-3-662-52993-5_17

69. Jean, J., Nikolić, I., Peyrin, T.: Tweaks and Keys for Block Ciphers: The
TWEAKEY Framework. In: Sarkar, P., Iwata, T. (eds.) Advances in Cryptology
– ASIACRYPT 2014. pp. 274–288. Springer Berlin Heidelberg, Berlin, Heidelberg
(2014)

70. Jr., B.S.K., Robshaw, M.J.B.: Fast Block Cipher Proposal. In: Anderson, R.J.
(ed.) Fast Software Encryption - 1993. LNCS, vol. 809, pp. 33–40. Springer (1993),
https://doi.org/10.1007/3-540-58108-1_3

71. Kelsey, J., Kohno, T., Schneier, B.: Amplified Boomerang Attacks Against
Reduced-Round MARS and Serpent. In: Schneier, B. (ed.) Fast Software En-
cryption - FSE 2000. LNCS, vol. 1978, pp. 75–93. Springer (2000), https:
//doi.org/10.1007/3-540-44706-7_6

33

https://doi.org/10.1007/s00145-013-9154-9
https://doi.org/10.1007/s00145-013-9164-7
https://doi.org/10.1007/s00145-013-9164-7
https://doi.org/10.1016/j.artint.2019.103183
https://doi.org/10.1007/978-3-540-89255-7_10
https://doi.org/10.1007/978-3-540-89255-7_10
https://doi.org/10.1007/978-3-030-45724-2_23
https://doi.org/10.1007/978-3-030-45724-2_23
https://eprint.iacr.org/2024/1240
https://doi.org/10.46586/tosc.v2022.i2.92-112
https://doi.org/10.46586/tosc.v2022.i2.92-112
https://doi.org/10.1007/BFb0055742
https://doi.org/10.1007/978-981-99-8727-6_14
https://doi.org/10.1007/978-3-030-64837-4_15
https://doi.org/10.1007/978-3-030-64837-4_15
https://doi.org/10.1007/978-3-662-52993-5_17
https://doi.org/10.1007/3-540-58108-1_3
https://doi.org/10.1007/3-540-44706-7_6
https://doi.org/10.1007/3-540-44706-7_6

72. Khairallah, M., Yadhunathan, S., Bhasin, S.: Lightweight Leakage-Resilient
PRNG from TBCs Using Superposition. In: Wacquez, R., Homma, N. (eds.)
Constructive Side-Channel Analysis and Secure Design - COSADE 2024.
LNCS, vol. 14595, pp. 197–217. Springer (2024), https://doi.org/10.1007/
978-3-031-57543-3_11

73. Knudsen, L.: DEAL-a 128-bit block cipher. complexity 258(2), 216 (1998)
74. Knudsen, L.R., Wagner, D.A.: Integral Cryptanalysis. In: Daemen, J., Rijmen,

V. (eds.) Fast Software Encryption - FSE 2002. LNCS, vol. 2365, pp. 112–127.
Springer (2002), https://doi.org/10.1007/3-540-45661-9_9

75. Kounavis, M.E., Deutsch, S., Ghosh, S., Durham, D.: K-Cipher: A Low Latency,
Bit Length Parameterizable Cipher. In: IEEE Symposium on Computers and
Communications - ISCC 2020. pp. 1–7. IEEE (2020), https://doi.org/10.1109/
ISCC50000.2020.9219582

76. Langford, S.K., Hellman, M.E.: Differential-Linear Cryptanalysis. In: Desmedt,
Y. (ed.) Advances in Cryptology - CRYPTO ’94. LNCS, vol. 839, pp. 17–25.
Springer (1994), https://doi.org/10.1007/3-540-48658-5_3

77. Leander, G., Abdelraheem, M.A., Alkhzaimi, H., Zenner, E.: A Cryptanalysis of
PRINTcipher: The Invariant Subspace Attack. In: Rogaway, P. (ed.) Advances
in Cryptology - CRYPTO 2011. LNCS, vol. 6841, pp. 206–221. Springer (2011),
https://doi.org/10.1007/978-3-642-22792-9_12

78. Leander, G., Moos, T., Moradi, A., Rasoolzadeh, S.: The SPEEDY Family of
Block Ciphers Engineering an Ultra Low-Latency Cipher from Gate Level for
Secure Processor Architectures. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2021(4), 510–545 (2021), https://doi.org/10.46586/tches.v2021.i4.510-545

79. Li, H., Zhang, H., Hu, K., Liu, G., Qiu, W.: AlgSAT - A SAT Method for Verifica-
tion of Differential Trails from an Algebraic Perspective. In: Zhu, T., Li, Y. (eds.)
Information Security and Privacy - ACISP 2024. LNCS, vol. 14895, pp. 450–471.
Springer (2024), https://doi.org/10.1007/978-981-97-5025-2_23

80. Liu, M., Lu, X., Lin, D.: Differential-Linear Cryptanalysis from an Algebraic Per-
spective. In: Malkin, T., Peikert, C. (eds.) Advances in Cryptology - CRYPTO
2021. LNCS, vol. 12827, pp. 247–277. Springer (2021), https://doi.org/10.
1007/978-3-030-84252-9_9

81. Liu, Y., Xiang, Z., Chen, S., Zhang, S., Zeng, X.: A Novel Automatic Tech-
nique Based on MILP to Search for Impossible Differentials. In: Tibouchi, M.,
Wang, X. (eds.) Applied Cryptography and Network Security - ACNS 2023.
LNCS, vol. 13905, pp. 119–148. Springer (2023), https://doi.org/10.1007/
978-3-031-33488-7_5

82. Lucks, S.: The Saturation Attack - A Bait for Twofish. In: Matsui, M. (ed.) Fast
Software Encryption - FSE 2001. LNCS, vol. 2355, pp. 1–15. Springer (2001),
https://doi.org/10.1007/3-540-45473-X_1

83. Mahzoun, M., Kraleva, L., Posteuca, R., Ashur, T.: Differential Cryptanalysis of
K-Cipher. In: IEEE Symposium on Computers and Communications - ISCC 2022.
pp. 1–7. IEEE (2022), https://doi.org/10.1109/ISCC55528.2022.9912926

84. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T.
(ed.) Advances in Cryptology - EUROCRYPT ’93. LNCS, vol. 765, pp. 386–397.
Springer (1993), https://doi.org/10.1007/3-540-48285-7_33

85. Mouha, N., Preneel, B.: Towards Finding Optimal Differential Characteristics for
ARX: Application to Salsa20. Cryptology ePrint Archive, Paper 2013/328 (2013),
https://eprint.iacr.org/2013/328

34

https://doi.org/10.1007/978-3-031-57543-3_11
https://doi.org/10.1007/978-3-031-57543-3_11
https://doi.org/10.1007/3-540-45661-9_9
https://doi.org/10.1109/ISCC50000.2020.9219582
https://doi.org/10.1109/ISCC50000.2020.9219582
https://doi.org/10.1007/3-540-48658-5_3
https://doi.org/10.1007/978-3-642-22792-9_12
https://doi.org/10.46586/tches.v2021.i4.510-545
https://doi.org/10.1007/978-981-97-5025-2_23
https://doi.org/10.1007/978-3-030-84252-9_9
https://doi.org/10.1007/978-3-030-84252-9_9
https://doi.org/10.1007/978-3-031-33488-7_5
https://doi.org/10.1007/978-3-031-33488-7_5
https://doi.org/10.1007/3-540-45473-X_1
https://doi.org/10.1109/ISCC55528.2022.9912926
https://doi.org/10.1007/3-540-48285-7_33
https://eprint.iacr.org/2013/328

86. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and Linear Cryptanalysis
Using Mixed-Integer Linear Programming. In: Wu, C., Yung, M., Lin, D. (eds.)
Information Security and Cryptology - Inscrypt 2011. LNCS, vol. 7537, pp. 57–76.
Springer (2011), https://doi.org/10.1007/978-3-642-34704-7_5

87. Murphy, S.: The Return of the Cryptographic Boomerang. IEEE Trans. Inf. The-
ory 57(4), 2517–2521 (2011), https://doi.org/10.1109/TIT.2011.2111091

88. Naito, Y., Sasaki, Y., Sugawara, T.: Lightweight Authenticated Encryption
Mode Suitable for Threshold Implementation. In: Canteaut, A., Ishai, Y. (eds.)
Advances in Cryptology - EUROCRYPT 2020. Lecture Notes in Computer
Science, vol. 12106, pp. 705–735. Springer (2020), https://doi.org/10.1007/
978-3-030-45724-2_24

89. Nikolic, I.: How to Use Metaheuristics for Design of Symmetric-Key Primitives.
In: Takagi, T., Peyrin, T. (eds.) Advances in Cryptology - ASIACRYPT 2017.
LNCS, vol. 10626, pp. 369–391. Springer (2017), https://doi.org/10.1007/
978-3-319-70700-6_13

90. NIST: Submission requirements and evaluation criteria for the lightweight
cryptography standardization process (2018), https://csrc.nist.
gov/CSRC/media/Projects/Lightweight-Cryptography/documents/
final-lwc-submission-requirements-august2018.pdf

91. NXP Semiconductors: AN12527 - LPC55Sxx PRINCE Real-Time Data
Encryption. Application note (2023), https://www.nxp.com/docs/en/
application-note/AN12527.pdf

92. Nyberg, K.: Linear Approximation of Block Ciphers. In: Santis, A.D. (ed.) Ad-
vances in Cryptology - EUROCRYPT ’94. LNCS, vol. 950, pp. 439–444. Springer
(1994), https://doi.org/10.1007/BFb0053460

93. Peyrin, T.: Improved Differential Attacks for ECHO and Grøstl. In: Rabin, T.
(ed.) Advances in Cryptology - CRYPTO 2010. LNCS, vol. 6223, pp. 370–392.
Springer (2010), https://doi.org/10.1007/978-3-642-14623-7_20

94. Qin, L., Dong, X., Wang, X., Jia, K., Liu, Y.: Automated Search Oriented to
Key Recovery on Ciphers with Linear Key Schedule Applications to Boomerangs
in SKINNY and ForkSkinny. IACR Trans. Symmetric Cryptol. 2021(2), 249–291
(2021), https://doi.org/10.46586/tosc.v2021.i2.249-291

95. Sakamoto, K., Liu, F., Nakano, Y., Kiyomoto, S., Isobe, T.: Rocca: An Effi-
cient AES-based Encryption Scheme for Beyond 5G (Full version). IACR Cryptol.
ePrint Arch. p. 116 (2022), https://eprint.iacr.org/2022/116

96. Sasaki, Y., Todo, Y.: New Impossible Differential Search Tool from Design
and Cryptanalysis Aspects - Revealing Structural Properties of Several Ci-
phers. In: Coron, J., Nielsen, J.B. (eds.) Advances in Cryptology - EURO-
CRYPT 2017. LNCS, vol. 10212, pp. 185–215 (2017), https://doi.org/10.1007/
978-3-319-56617-7_7

97. Shalan, M., Edwards, T.: Building OpenLANE: A 130nm OpenROAD-based
Tapeout- Proven Flow : Invited Paper. In: 2020 IEEE/ACM International Con-
ference On Computer Aided Design (ICCAD). pp. 1–6 (2020)

98. Shi, D., Sun, S., Derbez, P., Todo, Y., Sun, B., Hu, L.: Programming the Demirci-
Selçuk Meet-in-the-Middle Attack with Constraints. In: Peyrin, T., Galbraith,
S.D. (eds.) Advances in Cryptology - ASIACRYPT 2018. LNCS, vol. 11273, pp.
3–34. Springer (2018), https://doi.org/10.1007/978-3-030-03329-3_1

99. Shi, D., Sun, S., Song, L., Hu, L., Yang, Q.: Exploiting Non-full Key Addi-
tions: Full-Fledged Automatic Demirci-Selçuk Meet-in-the-Middle Cryptanalysis

35

https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1109/TIT.2011.2111091
https://doi.org/10.1007/978-3-030-45724-2_24
https://doi.org/10.1007/978-3-030-45724-2_24
https://doi.org/10.1007/978-3-319-70700-6_13
https://doi.org/10.1007/978-3-319-70700-6_13
https://csrc.nist.gov/ CSRC/media/Pro jects/Lightweight- Cryptography/do cuments/final- lwc- submission-requirements-august2018.pdf
https://csrc.nist.gov/ CSRC/media/Pro jects/Lightweight- Cryptography/do cuments/final- lwc- submission-requirements-august2018.pdf
https://csrc.nist.gov/ CSRC/media/Pro jects/Lightweight- Cryptography/do cuments/final- lwc- submission-requirements-august2018.pdf
https://www.nxp.com/docs/en/application-note/AN12527.pdf
https://www.nxp.com/docs/en/application-note/AN12527.pdf
https://doi.org/10.1007/BFb0053460
https://doi.org/10.1007/978-3-642-14623-7_20
https://doi.org/10.46586/tosc.v2021.i2.249-291
https://eprint.iacr.org/2022/116
https://doi.org/10.1007/978-3-319-56617-7_7
https://doi.org/10.1007/978-3-319-56617-7_7
https://doi.org/10.1007/978-3-030-03329-3_1

of SKINNY. In: Hazay, C., Stam, M. (eds.) Advances in Cryptology - EURO-
CRYPT 2023. LNCS, vol. 14007, pp. 67–97. Springer (2023), https://doi.org/
10.1007/978-3-031-30634-1_3

100. Song, L., Yang, Q., Chen, Y., Hu, L., Weng, J.: Probabilistic Extensions: A One-
Step Framework for Finding Rectangle Attacks and Beyond. In: Joye, M., Lean-
der, G. (eds.) Advances in Cryptology - EUROCRYPT 2024. LNCS, vol. 14651,
pp. 339–367. Springer (2024), https://doi.org/10.1007/978-3-031-58716-0_
12

101. Sun, B., Liu, Z., Rijmen, V., Li, R., Cheng, L., Wang, Q., Alkhzaimi, H., Li,
C.: Links among Impossible Differential, Integral and Zero Correlation Linear
Cryptanalysis. IACR Cryptol. ePrint Arch. p. 181 (2015), http://eprint.iacr.
org/2015/181

102. Sun, L., Wang, W., Wang, M.: Accelerating the Search of Differential and Linear
Characteristics with the SAT Method. IACR Trans. Symmetric Cryptol. 2021(1),
269–315 (2021), https://doi.org/10.46586/tosc.v2021.i1.269-315

103. Todo, Y.: Structural Evaluation by Generalized Integral Property. In: Os-
wald, E., Fischlin, M. (eds.) Advances in Cryptology - EUROCRYPT 2015.
LNCS, vol. 9056, pp. 287–314. Springer (2015), https://doi.org/10.1007/
978-3-662-46800-5_12

104. Todo, Y., Leander, G., Sasaki, Y.: Nonlinear Invariant Attack - Practical Attack
on Full SCREAM, iSCREAM, and Midori64. In: Cheon, J.H., Takagi, T. (eds.)
Advances in Cryptology - ASIACRYPT 2016. LNCS, vol. 10032, pp. 3–33 (2016),
https://doi.org/10.1007/978-3-662-53890-6_1

105. Todo, Y., Morii, M.: Bit-Based Division Property and Application to Simon Fam-
ily. In: Peyrin, T. (ed.) Fast Software Encryption - FSE 2016. LNCS, vol. 9783, pp.
357–377. Springer (2016), https://doi.org/10.1007/978-3-662-52993-5_18

106. Tribbey, W.: Numerical Recipes: The Art of Scientific Computing (3rd Edition) is
written by William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian
P. Flannery, and published by Cambridge University Press, (c) 2007, hardback,
ISBN 978-0-521-88068-8, 1235 pp. ACM SIGSOFT Softw. Eng. Notes 35(6), 30–
31 (2010), https://doi.org/10.1145/1874391.187410

107. Turan, M.S., McKay, K., Chang, D., Bassham, L., Kang, J., Waller, N., Kelsey,
J., Hong, D.: Status Report on the Final Round of the NIST Lightweight Cryp-
tography Standardization Process. NIST IR 8454 (2023), https://doi.org/10.
6028/NIST.IR.8454

108. Wagner, D.A.: The Boomerang Attack. In: Knudsen, L.R. (ed.) Fast Software
Encryption - FSE ’99. LNCS, vol. 1636, pp. 156–170. Springer (1999), https:
//doi.org/10.1007/3-540-48519-8_12

109. Wang, D., Wang, B., Sun, S.: SAT-aided Automatic Search of Boomerang Dis-
tinguishers for ARX Ciphers. IACR Trans. Symmetric Cryptol. 2023(1), 152–191
(2023), https://doi.org/10.46586/tosc.v2023.i1.152-191

110. Wang, J., Huang, T., Wu, S., Liu, Z.: Twinkle: A family of Low-latency Schemes
for Authenticated Encryption and Pointer Authentication. IACR Communica-
tions in Cryptology 1(2) (2024)

111. Wolf, C.: Yosys Open SYnthesis Suite. https://yosyshq.net/yosys/
112. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP Method to Search-

ing Integral Distinguishers Based on Division Property for 6 Lightweight Block
Ciphers. In: Cheon, J.H., Takagi, T. (eds.) Advances in Cryptology - ASI-
ACRYPT 2016. LNCS, vol. 10031, pp. 648–678 (2016), https://doi.org/10.
1007/978-3-662-53887-6_24

36

https://doi.org/10.1007/978-3-031-30634-1_3
https://doi.org/10.1007/978-3-031-30634-1_3
https://doi.org/10.1007/978-3-031-58716-0_12
https://doi.org/10.1007/978-3-031-58716-0_12
http://eprint.iacr.org/2015/181
http://eprint.iacr.org/2015/181
https://doi.org/10.46586/tosc.v2021.i1.269-315
https://doi.org/10.1007/978-3-662-46800-5_12
https://doi.org/10.1007/978-3-662-46800-5_12
https://doi.org/10.1007/978-3-662-53890-6_1
https://doi.org/10.1007/978-3-662-52993-5_18
https://doi.org/10.1145/1874391.187410
https://doi.org/10.6028/NIST.IR.8454
https://doi.org/10.6028/NIST.IR.8454
https://doi.org/10.1007/3-540-48519-8_12
https://doi.org/10.1007/3-540-48519-8_12
https://doi.org/10.46586/tosc.v2023.i1.152-191
https://yosyshq.net/yosys/
https://doi.org/10.1007/978-3-662-53887-6_24
https://doi.org/10.1007/978-3-662-53887-6_24

113. Yang, Q., Song, L., Zhang, N., Shi, D., Wang, L., Zhao, J., Hu, L., Weng, J.:
Optimizing Rectangle and Boomerang Attacks: A Unified and Generic Frame-
work for Key Recovery. J. Cryptol. 37(2), 19 (2024), https://doi.org/10.1007/
s00145-024-09499-1

114. Zhang, L., Wu, R., Zhang, Y., Zheng, Y., Wu, W.: LLLWBC: A New Low-Latency
Light-Weight Block Cipher. In: Deng, Y., Yung, M. (eds.) Information Security
and Cryptology - Inscrypt 2022. LNCS, vol. 13837, pp. 23–42. Springer (2022),
https://doi.org/10.1007/978-3-031-26553-2_2

115. Zhang, Z., Hou, C., Liu, M.: Collision Attacks on Round-Reduced SHA-3 Us-
ing Conditional Internal Differentials. In: Hazay, C., Stam, M. (eds.) Advances
in Cryptology - EUROCRYPT 2023. LNCS, vol. 14007, pp. 220–251. Springer
(2023), https://doi.org/10.1007/978-3-031-30634-1_8

116. Zhang, Z., Hou, C., Liu, M.: Probabilistic Linearization: Internal Differential Col-
lisions in up to 6 Rounds of SHA-3. In: Reyzin, L., Stebila, D. (eds.) Advances
in Cryptology - CRYPTO 2024. LNCS, vol. 14923, pp. 241–272. Springer (2024),
https://doi.org/10.1007/978-3-031-68385-5_8

37

https://doi.org/10.1007/s00145-024-09499-1
https://doi.org/10.1007/s00145-024-09499-1
https://doi.org/10.1007/978-3-031-26553-2_2
https://doi.org/10.1007/978-3-031-30634-1_8
https://doi.org/10.1007/978-3-031-68385-5_8

Supplementary Materials

38

A Algorithm for diversity computation between two
ciphers

Algorithm 1 Diversity computation of two ciphers C and C ′

Inputs:
C = S0, P0, S1, P1, .., Pn−1, Sn

C′ = S′
0, P

′
0, S

′
1, P

′
1, .., P

′
n−1, S

′
n

Outputs:
A value representing the difference between C and C′

SL← S0, S1, .., Sn

SL′ ← S′
0, S

′
1, .., S

′
n

sCounter ← [0, ..., 0] ▷ initialize the diversity for each subst layer
for each substLayer index i from 0 to n do

for each S-box index j from 0 to 15 do
if SL[i][j] ̸= SL′[i][j] then sCounter[i] = sCounter[i] + 1
end if

end for
sCounter[i] = sCounter[i]/16 ▷ Normalization

end for
PL← P0, P1, .., Pn−1

PL′ ← P ′
0, P

′
1, .., P

′
n−1

pCounter ← [0, ..., 0] ▷ initialize the diversity for each permutation layer
for each linearLayer index i from 0 to n− 1 do

for each row index j from 0 to 63 do
for each col index k from 0 to 63 do

if PL[i][j][k] ̸= PL′[i][j][k] then pCounter[i] = pCounter[i] + 1
end if

end for
end for
pCounter[i]← pCounter[i]/(64× 64) ▷ Normalization

end for
return sum(sCounter) + sum(pCounter)

39

B uKNIT-BC components

B.1 uKNIT-BC substitution layers

The 4-bit S-boxes applied to each nibble of the internal state in uKNIT-BC can be
represented by (D◦SMANTIS◦B)(x) where SMANTIS is the MANTIS S-box (SMANTIS[x]=
[c, a, d, 3, e, b, f, 7, 8, 9, 1, 5, 0, 2, 4, 6]) and D and B are transposition matrices.

To represent the S-boxes succinctly, we use cycles. For example,
[
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

]
can

be represented as (03)(12). The transposition matrices D and B are given in
Table 5.

Table 5: The matrices D (top) and B (bottom) for all the S-boxes in each round.
S-box Round

0 1 2 3 4 5 6 7 8 9 10 11

0 (021)(3) (0)(132) (0231) (0321) (0231) (021)(3) (012)(3) (03)(1)(2) (021)(3) (0123) (03)(1)(2) (02)(13)
(0213) (02)(1)(3) (0)(132) (0)(123) (0)(12)(3) (0132) (0)(1)(23) (02)(1)(3) (0312) (0)(13)(2) (0321) (012)(3)

1 (0312) (032)(1) (0132) (03)(12) (0)(1)(2)(3) (01)(23) (03)(12) (0)(123) (0231) (0321) (012)(3) (0132)
(012)(3) (0312) (0321) (0)(1)(23) (0132) (023)(1) (0)(132) (013)(2) (0123) (03)(1)(2) (023)(1) (023)(1)

2 (023)(1) (01)(23) (03)(12) (021)(3) (032)(1) (0)(123) (0132) (0123) (012)(3) (02)(1)(3) (0)(12)(3) (03)(1)(2)
(013)(2) (021)(3) (0231) (0)(123) (02)(1)(3) (01)(23) (03)(12) (0)(123) (0)(132) (0)(1)(2)(3) (0312) (0)(1)(23)

3 (0123) (0)(132) (0)(13)(2) (023)(1) (03)(1)(2) (0)(1)(23) (01)(2)(3) (02)(1)(3) (03)(1)(2) (021)(3) (03)(12) (0132)
(0)(132) (0213) (023)(1) (0)(1)(2)(3) (0)(12)(3) (013)(2) (0321) (0123) (0213) (0)(12)(3) (0123) (03)(1)(2)

4 (032)(1) (0312) (0)(123) (0)(1)(2)(3) (0)(13)(2) (02)(13) (03)(1)(2) (0312) (031)(2) (031)(2) (0)(132) (0)(132)
(0)(1)(23) (0213) (0)(123) (02)(1)(3) (02)(1)(3) (0)(1)(23) (0132) (03)(1)(2) (0)(1)(23) (0213) (021)(3) (0213)

5 (032)(1) (0321) (021)(3) (02)(13) (032)(1) (031)(2) (0231) (02)(13) (023)(1) (0123) (0132) (0)(123)
(0231) (013)(2) (03)(12) (031)(2) (01)(2)(3) (03)(12) (03)(1)(2) (0)(123) (03)(1)(2) (01)(2)(3) (0)(123) (031)(2)

6 (0132) (03)(12) (0321) (01)(23) (0213) (021)(3) (02)(1)(3) (03)(12) (012)(3) (0)(123) (032)(1) (0)(13)(2)
(012)(3) (0321) (02)(1)(3) (013)(2) (0)(1)(2)(3) (032)(1) (0)(123) (0)(12)(3) (031)(2) (032)(1) (012)(3) (02)(1)(3)

7 (032)(1) (0312) (02)(1)(3) (01)(23) (0)(123) (0)(12)(3) (02)(13) (02)(13) (0)(123) (031)(2) (02)(13) (0)(12)(3)
(0)(123) (0)(13)(2) (0)(1)(23) (013)(2) (023)(1) (0)(123) (013)(2) (0123) (0312) (0132) (013)(2) (0)(13)(2)

8 (0312) (02)(1)(3) (01)(2)(3) (031)(2) (0)(132) (013)(2) (0321) (02)(13) (023)(1) (012)(3) (0)(1)(2)(3) (0231)
(0312) (02)(13) (03)(12) (03)(12) (0)(12)(3) (0123) (0)(1)(23) (02)(1)(3) (012)(3) (0)(12)(3) (0321) (02)(13)

9 (0)(1)(23) (0213) (0321) (031)(2) (023)(1) (02)(1)(3) (01)(23) (01)(23) (013)(2) (02)(1)(3) (0312) (03)(12)
(032)(1) (03)(1)(2) (0)(13)(2) (013)(2) (0231) (0321) (01)(2)(3) (023)(1) (032)(1) (031)(2) (031)(2) (0123)

10 (0)(1)(2)(3) (03)(12) (0312) (012)(3) (02)(13) (0213) (032)(1) (021)(3) (0231) (0231) (02)(1)(3) (012)(3)
(01)(23) (0)(132) (0231) (03)(12) (0)(123) (0)(1)(23) (013)(2) (03)(12) (03)(1)(2) (0)(12)(3) (0312) (0)(1)(23)

11 (0321) (0231) (0312) (012)(3) (0132) (03)(12) (0)(1)(2)(3) (0123) (0)(12)(3) (0)(13)(2) (0)(13)(2) (013)(2)
(0)(13)(2) (032)(1) (0)(123) (0)(132) (032)(1) (0231) (03)(12) (03)(12) (03)(12) (023)(1) (0321) (0132)

12 (0123) (02)(13) (012)(3) (02)(13) (03)(12) (0)(1)(23) (03)(1)(2) (01)(2)(3) (0)(132) (012)(3) (031)(2) (02)(13)
(013)(2) (0)(132) (0321) (0213) (02)(13) (0)(132) (0123) (02)(1)(3) (021)(3) (0123) (01)(2)(3) (0)(12)(3)

13 (0)(1)(23) (031)(2) (032)(1) (0)(12)(3) (0123) (0)(132) (032)(1) (012)(3) (0312) (03)(12) (03)(1)(2) (0312)
(0)(12)(3) (0)(12)(3) (02)(1)(3) (0312) (012)(3) (032)(1) (03)(1)(2) (0)(132) (032)(1) (0231) (0)(123) (02)(13)

14 (0123) (0123) (0132) (0231) (0)(12)(3) (0231) (02)(1)(3) (0123) (0)(1)(23) (0321) (0)(12)(3) (0)(13)(2)
(0)(132) (0)(123) (01)(2)(3) (0)(13)(2) (031)(2) (023)(1) (0)(1)(23) (0312) (0)(13)(2) (0321) (0)(132) (0231)

15 (02)(13) (0)(13)(2) (0132) (0)(1)(23) (0312) (02)(1)(3) (0231) (0321) (0)(123) (0)(132) (012)(3) (0)(132)
(0)(1)(23) (031)(2) (0132) (032)(1) (0)(1)(23) (03)(1)(2) (032)(1) (0312) (0123) (02)(13) (01)(2)(3) (01)(23)

B.2 uKNIT-BC linear layers

The linear layers Li of uKNIT-BC are very sparse 64×64 binary matrices applied
on the entire internal state. Since we have exactly 3 indices in each row having
“1” with the rest being “0”, we can describe the matrices solely based on these
indices. Table 7 and 8 of Appendix B.2 provide the list of these indices.

40

We give here a miniature example of how to read these linear layer tables. The

matrix Lex =

[
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

]
can be represented as in Table 6.

Table 6: Example of how we represent the matrix Lex using a table.
Index Lex

0 1 2 3
1 0 2 3
2 0 1 3
3 0 1 2

Table 7: The linear layer of uKNIT-BC (row index 0 to 31).
Index L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

0 0 10 14 3 6 14 0 8 14 0 6 9 3 6 8 3 5 11 3 6 7 7 11 15 5 8 14 4 11 14 1 8 13
1 1 8 15 0 5 15 7 11 15 2 4 10 2 7 10 0 7 8 2 5 13 0 6 9 4 11 12 6 8 60 2 10 12
2 2 9 12 1 7 13 3 5 27 1 7 37 0 5 11 2 6 9 0 4 15 3 10 12 7 9 13 5 9 13 3 11 15
3 3 11 13 2 4 12 2 4 9 3 5 11 1 4 9 1 4 10 1 12 14 1 4 14 6 10 15 7 10 15 0 9 14
4 18 23 25 16 23 30 12 18 21 16 21 24 19 27 28 18 23 30 6 7 10 16 20 24 17 25 31 18 23 31 17 23 26
5 16 22 26 22 27 29 19 23 24 19 23 25 18 21 24 21 26 29 17 22 24 18 23 27 18 21 29 17 24 30 16 24 29
6 19 21 24 17 20 25 17 20 25 18 20 26 16 22 29 17 20 24 18 23 27 17 21 25 16 23 24 19 22 29 22 27 30
7 17 20 27 18 26 31 16 22 26 17 22 27 20 25 30 16 25 31 35 39 47 19 22 26 22 26 30 16 20 28 18 20 31
8 35 36 42 38 42 46 39 42 46 35 39 43 35 41 44 36 40 47 32 36 41 34 39 43 39 40 46 39 41 46 33 43 47
9 32 38 47 32 39 44 36 43 44 35 39 46 32 43 47 39 43 45 33 40 44 33 36 40 38 42 45 36 42 44 37 41 45
10 37 41 45 34 37 41 38 40 45 33 41 44 33 40 45 38 42 44 37 43 45 35 37 41 37 41 47 37 40 45 34 36 40
11 33 40 44 33 43 45 37 41 47 36 40 47 34 42 46 37 41 46 16 20 25 32 38 42 36 43 44 34 39 41 35 39 46
12 55 58 62 52 57 62 48 56 60 50 54 62 51 52 61 53 57 61 53 56 63 53 59 61 49 56 62 55 57 62 53 59 61
13 49 56 61 48 55 56 49 52 61 52 58 60 54 58 60 51 52 56 54 58 61 52 58 60 50 57 60 48 53 58 50 58 62
14 50 52 57 49 59 63 50 54 58 49 53 63 48 56 63 48 59 60 55 57 60 54 57 63 51 59 61 51 59 63 48 54 63
15 51 53 63 50 53 60 55 59 63 51 55 61 49 53 59 49 55 63 52 59 62 55 56 62 48 58 63 12 49 54 51 55 56
16 23 25 30 19 27 29 12 21 28 23 25 30 16 22 26 16 22 31 21 26 31 23 27 29 17 20 31 18 25 31 18 20 25
17 21 24 28 18 21 31 23 24 30 20 26 29 21 24 31 18 23 27 20 25 30 22 26 30 18 21 27 19 27 29 23 26 28
18 22 26 29 20 25 28 20 25 29 22 27 28 19 23 28 19 26 29 23 27 29 20 24 31 19 26 30 16 21 28 16 21 29
19 20 27 31 16 23 24 22 26 31 21 24 31 17 25 30 20 24 28 22 24 28 21 25 28 23 24 28 17 26 30 19 27 30
20 32 38 43 35 42 46 34 40 45 8 42 45 34 37 46 32 40 47 35 39 42 32 38 46 34 41 47 32 36 42 36 40 44
21 36 42 46 32 39 40 35 41 47 8 34 42 35 36 44 34 42 44 33 38 44 35 37 47 35 42 45 38 43 47 32 41 45
22 33 39 44 33 36 45 32 42 46 32 40 47 32 38 47 35 43 45 34 43 45 33 36 45 32 40 46 35 38 43 33 38 47
23 34 41 45 37 41 47 33 43 44 33 38 44 33 39 45 33 41 46 36 41 46 34 39 44 33 43 44 33 37 40 35 39 42
24 49 54 61 49 54 63 51 55 63 52 56 58 48 55 63 49 55 58 50 54 58 48 54 57 53 58 63 53 58 61 55 56 60
25 52 57 60 50 53 58 49 52 57 49 53 59 50 58 60 52 56 62 49 52 59 49 53 59 52 56 62 49 54 56 50 52 62
26 48 58 62 55 56 61 54 58 62 48 51 55 53 59 62 48 54 60 51 55 57 50 55 56 55 57 60 50 57 62 48 54 57
27 51 53 59 51 57 62 51 59 63 50 54 57 51 52 57 50 57 61 48 53 56 51 52 58 54 59 61 51 52 63 49 59 61
28 7 11 13 0 5 8 0 6 14 1 7 12 2 7 14 5 11 12 3 6 10 6 9 13 2 8 14 3 6 8 4 11 15
29 4 8 15 3 6 9 4 9 13 0 6 13 1 4 13 6 9 14 1 8 12 1 4 8 3 10 15 0 7 10 6 9 14
30 6 10 14 1 7 11 3 5 10 3 5 15 3 6 12 4 10 13 0 4 11 3 5 12 0 9 13 1 5 9 5 10 12
31 5 9 12 2 4 10 1 7 15 2 4 14 0 5 15 7 8 15 2 5 9 2 11 15 1 11 12 2 4 11 7 8 13

41

Table 8: The linear layer of uKNIT-BC (row index 32 to 63).
Index L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

32 38 43 47 33 36 43 33 36 43 34 42 45 35 36 41 33 37 46 39 42 47 34 43 44 32 39 46 33 37 45 39 42 46
33 34 37 45 34 41 47 35 37 47 33 38 41 33 39 40 35 39 45 32 41 46 35 41 47 34 37 47 35 38 47 32 37 45
34 33 39 40 35 38 46 34 38 45 39 43 46 34 37 42 34 38 44 34 37 45 32 42 46 33 36 44 34 39 46 33 38 43
35 35 42 46 39 40 44 32 39 46 32 36 47 32 38 43 32 36 47 33 38 40 33 40 45 35 38 45 32 36 44 34 40 44
36 50 57 60 49 54 59 48 53 56 53 59 63 52 57 61 48 54 59 50 54 61 48 54 63 48 53 58 48 58 61 50 52 58
37 53 59 63 51 52 62 52 57 61 48 55 61 48 55 56 51 56 62 49 52 62 50 55 62 50 55 57 51 52 59 49 53 61
38 48 55 62 53 58 60 50 58 62 54 57 62 49 59 62 50 53 61 48 53 63 51 52 60 51 54 59 50 55 62 51 56 60
39 49 54 56 48 56 61 48 53 60 52 56 60 50 54 60 55 58 63 51 55 60 49 53 61 49 52 56 12 54 56 54 57 63
40 2 5 9 6 9 14 1 11 15 0 9 13 2 10 14 2 9 14 19 21 26 3 5 10 2 5 14 1 5 13 2 5 10
41 0 6 10 5 8 15 5 10 27 1 12 37 0 11 15 3 11 12 5 9 13 2 7 15 1 4 12 22 27 29 3 4 11
42 3 7 11 4 10 12 2 9 13 16 24 31 1 9 13 0 8 15 4 11 15 4 8 14 3 6 15 2 4 14 0 6 9
43 1 4 8 7 11 13 0 6 8 2 10 14 3 8 12 1 10 13 8 12 14 0 9 13 0 7 13 3 6 60 1 7 8
44 17 27 31 17 25 28 19 24 30 3 11 15 17 20 30 19 21 29 17 24 28 17 25 28 17 20 25 23 25 31 19 22 30
45 19 24 28 18 21 26 12 18 28 18 26 29 18 24 31 17 24 28 19 26 31 16 24 31 21 27 29 20 21 28 17 26 28
46 18 25 30 23 24 30 17 25 29 17 27 28 22 26 29 16 22 25 18 27 29 19 26 30 16 24 28 24 26 30 16 21 24
47 16 26 29 19 22 29 16 26 31 19 25 30 19 23 27 23 27 30 16 25 30 18 27 29 19 22 30 0 7 15 20 25 31
48 48 55 58 50 58 60 53 56 60 56 58 60 55 56 63 54 59 60 48 56 63 50 56 62 48 53 63 50 55 57 48 57 63
49 51 59 63 48 55 61 49 57 61 49 59 63 51 57 61 49 58 63 50 58 61 48 57 63 49 52 62 12 49 56 52 58 62
50 50 52 60 54 59 63 50 54 62 48 51 61 49 53 62 50 53 57 49 59 62 51 58 60 50 55 60 52 59 63 49 53 59
51 54 56 61 51 52 57 51 55 59 50 57 62 50 54 58 51 52 62 51 57 60 49 59 61 51 54 61 48 53 61 51 55 60
52 3 7 13 2 10 12 3 10 27 5 11 15 4 9 13 0 7 15 3 7 10 0 6 13 0 7 9 1 9 13 2 5 12
53 1 4 15 0 8 15 2 4 13 7 12 37 6 8 12 1 4 13 0 11 15 1 8 14 3 6 10 2 11 14 1 7 13
54 2 5 12 1 11 13 1 7 11 4 10 14 5 11 15 3 5 12 2 9 13 2 7 11 1 4 11 0 10 15 3 4 15
55 0 6 14 3 9 14 6 8 14 6 9 13 7 10 14 2 6 14 1 8 14 5 10 12 2 5 8 3 8 60 0 6 14
56 17 20 31 19 22 27 16 22 31 18 20 29 17 20 25 17 20 28 17 22 28 17 21 28 19 22 26 19 22 27 21 24 29
57 19 21 28 21 26 31 18 21 28 17 22 28 16 26 29 19 21 26 18 23 29 19 22 30 20 25 31 18 23 25 17 23 28
58 18 23 30 17 20 28 17 20 29 16 21 31 18 21 31 22 25 31 16 20 30 18 23 29 16 23 28 17 24 26 19 22 27
59 16 22 29 16 24 30 19 23 30 19 23 30 23 27 28 18 27 30 19 21 31 16 20 31 18 27 29 16 20 21 18 25 31
60 39 40 44 36 43 45 34 38 40 8 34 45 36 41 44 32 36 40 32 36 46 39 43 44 35 38 42 32 42 44 38 43 47
61 34 37 41 35 38 42 32 39 42 35 43 46 39 40 45 33 37 41 38 40 44 37 41 47 34 37 41 34 41 46 34 36 44
62 32 43 47 34 37 47 35 37 41 38 41 44 38 43 47 34 38 42 34 37 43 38 42 46 33 36 43 33 40 45 35 42 46
63 35 36 46 32 40 44 33 36 44 32 36 40 37 42 46 35 39 43 35 42 47 36 40 45 32 39 40 35 43 47 32 37 41

C The matrices of MIDORI and PRINCE

Let I4 ∈ F4×4
2 be the 4 × 4 identity matrix in and O4 ∈ F4×4

2 be the 4 × 4 all
zero matrix, and let Mi ∈ F4×4

2 be a matrix that has zero everywhere except for
diagonal entries (j, j) where j ̸= i. Then, the MixColumns matrices of PRINCE
and MIDORI are

M̃
(0)
PRINCE =

M0 M1 M2 M3

M1 M2 M3 M0

M2 M3 M0 M1

M3 M0 M1 M2

 M̃
(1)
PRINCE =

M1 M2 M3 M0

M2 M3 M0 M1

M3 M0 M1 M2

M0 M1 M2 M3

MMIDORI =

O4 I4 I4 I4
I4 O4 I4 I4
I4 I4 O4 I4
I4 I4 I4 O4

One may realise that M̃
(0)
PRINCE is actually a rotation of M̃ (1)

PRINCE.

42

D Automatic search for differential key-recovery attacks

The complexity of a full key-recovery attack is influenced by both the dis-
tinguisher and the key-guessing processes. To search for a good key-recovery-
friendly DC, we add the key-guessing part within our search as follows.

1. Distinguisher. The SAT model Md used in the search for the distinguisher
is produced.

2. Backward propagation. Assume that we add r0 rounds before the DC,
whose input difference is denoted by α. We need to describe the backward
propagation of α to the plaintext with probability 1. Thus, we add the fol-
lowing constraints to ensure that:
– the input and output differences of each S-box are either active or inac-

tive simultaneously
– for each linear layer, if one output difference bit bo is active, then all

input difference bits that are needed to calculate bo must be active
We call this model the backward propagation, denoted by Mb.

3. Forward propagation. Similar to the backward propagation, assume we
append r2 rounds to the DC, whose output difference is β. We construct a
forward propagation that requires:
– the input and output differences of each S-box to be either active or

inactive simultaneously
– for each linear layer, if one input difference bit bi is active, then all output

difference bits that are required for calculating bi must be active
This model is called forward propagation, denoted by Mf .

4. Objective function. To search for a key-recovery-friendly DC, we use two
objective functions as follows,

A(Mb) +A(Mf) ≤ O1, P(Md) ≤ O2

where A(Mb) and A(Mf) are the number of active S-boxes in the two-end
key-guess processes, P(Md) is the probability of the DC, and O1 and O2

are two positive numbers for the objective functions. In the search, starting
from small values, we try all possible combinations of (O1, O2), until we find
one that returns a solution. Note that this model is rather intuitive in how
it searches for good key-recovery attacks based on a DC, but it does not
provide a guarantee that the key-recovery attack found is optimal.

E Example of a differential truncated path for uKNIT-BC

We provide in Figure 7 an illustration of how to generate a DTP given a DC.

43

∆(x2) 0000be0700000000
00007d0e00000000

∆(x3) 0000000000000070
00000000000000a0

∆(x4) 0004000001000000
0004000008000000

∆(x5) 0000040480200808
00000808a0a00802

∆(x6) 02a4000034040000
0444000024040000

∆(x7) 0000000020400000
0000000080200000

∆(x8) 0000080000000002
0000080000000008

∆(x9) 0004802000082040
000c204000028010

DTP

a2 0000110100000000
0000110100000000

a3 0000000000000010
0000000000000010

a4 0001000001000000
0001000001000000

a5 0000010110100101
0000010110100101

a6 0111000011010000
0111000011010000

a7 0000000010100000
0000000010100000

a8 0000010000000001
0000010000000001

a9 0001101000011010
0001101000011010

Fig. 7: Generation of a DTP from a DC ofW(2, 8). For convenience, we also give
the differences and patterns of ∆(yi).

F Related-key differentials for uKNIT-BC

We provide in Table 9 the related-key differentials probabilities we found on
uKNIT-BC.

Table 9: The negative log-2 of probabilities (−log2(p)) of the related-key differ-
entials of uKNIT-BC for W(i, r) for 1 ≤ r ≤ 12 and 0 ≤ i ≤ 12− r. The numbers
in brackets mean that it is a lower bound.

r
i 0 1 2 3 4 5 6 7 8 9 10 11

1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 –
3 2 2 2 2 2 2 2 2 2 2 – –
4 6 7 6 6 6 6 6 6 6 – – –
5 14 12 14 12 11 13 13 13 – – – –
6 25 21 22 24 19 23 22 – – – – –
7 (29) (29) (29) (30) (30) (31) – – – – – –
8 (32) (33) (33) (32) (33) – – – – – – –
9 (35) (35) (35) (35) – – – – – – – –
10 (41) (42) (41) – – – – – – – – –
11 (45) (45) – – – – – – – – – –
12 (49) – – – – – – – – – – –

44

G Other security analysis of uKNIT-BC

We provide in this section a broader range of security analysis of uKNIT-BC.

G.1 Multiple differential cryptanalysis

Although uKNIT-BC is secure against differential attacks built from differential
characteristics (Section 6.1), we note that W(2, 8) is the weakest among all 8-
length windows, with a differential probability of 2−68. We need to check if
there are any differentials with clustering DCs for W(2, 8) whose probability
could reach 2−64. With our SAT model, we searched for 100 different DCs whose
probabilities are exactly 2−68. The 100 DCs belong to 72 distinct differentials,
and all of them belong to 3 similar differential truncated patterns.

Definition 5 (Differential truncated pattern (DTP)). A differential trun-
cated pattern for uKNIT-BC is a sequence of bit-strings as

T = (ai, ai+1, . . . , ai+r) ∈ (F16
2)r+1.

We say that a DC (xi, xi+1, . . . , xi+r) belongs to T if

xi[t]n =

{
0 if ai[t]b = 0;

any otherwise.

In [38], Canteaut et al. applied a multiple differential attack to 10-round PRINCE,
and later the same attack was applied to 11-round PRINCEv2 by the design-
ers [36]. In the language of DTP, this attack traces all DCs belonging to some
special DTPs where the Hamming weights of all ai are 4. In this paper, we
generalize their attack based on uKNIT-BC linear layers.

Figure 7 in Appendix E illustrates how to generate a DTP given a DC. By
adapting Canteaut et al. ’s method, we capture all DCs that belong to the DTP.
First, for 2 ≤ i < 9, we enumerate all possible ∆(yi) that satisfies the active
pattern of ai while Li(∆(yi)) satisfies the pattern ai+1. Denote the Hamming
weight of ai by wi and hi = min{wi, wi+1}, there are 2hi possible values for
∆(yi). Then, we can generate a matrix to describe the propagation of the differ-
ences from ∆(yi) to ∆(xi+1). Let M ∈ Fhi×hi

2 and the entry at the cross of the
uth column and vth row, denoted by MLi

v,u, is defined as

MLi
v,u =

{
1 u = sup(δ∆(yi)) and v = sup(δ∆(xi+1));

0 otherwise.

where sup(b) is the support of a bit vector b and δx is a bit unit vector with the
entry at x being 1. Thus, δ∆(xi+1) = Mv,uδ∆(yi). Then, according to ai, we can
generate all 2wi possible ∆(xi). For all ∆(xi) and ∆(yi) we can also generate a
matrix MSi ∈ Fwi+1×wi

2 with

MSi
v,u = P(∆(xi)

Si−→ ∆(yi)) where u = sup(δ∆(xi)) and v = sup(δ∆(yi)).

45

Therefore, using the same principles mentioned in [38], the (k, l)-entry of

MW(2,8) = MS9 ×
∏

8≥i≥2

(MLi ×MSi)

encodes the probability of the differential where the input difference is repre-
sented by the index k of the support for a2 and the output difference is repre-
sented by index l of the support for a9. With the DTP in Figure 7 in Appendix E,
we compute MW(2,8) and the best differential of this DTP has a probability of
2−63.3. We also found that the other two DTPs and the probability of their re-
spective best differential are also approximately 2−63.3. These differentials have
probabilities larger than but very close to 2−64. Key-recovery attacks based on
these differentials would therefore admit extremely high data and time complex-
ities. Considering our security claim, we do not think they will be a threat to
uKNIT-BC.

G.2 Impossible differential cryptanalysis

Impossible differential (ID) cryptanalysis was proposed independently by Knud-
sen [73] and Biham et al. [20], remaining one of the most powerful attacks on
block ciphers. The automatic search methods for ID distinguishers were devel-
oped from the DC searches [96,42]. By implementing these automatic models
with our SAT solvers, we detected the following two impossible truncated differ-
entials over W(3, 7). Denote one active S-box by 1 and inactive S-box by 0, the
2 impossible differentials are

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)
7R

̸→ (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)
7R

̸→ (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (2)

We use the second impossible differentials (Equation (2)) in a key-recovery
attack on W(1, 11). Two rounds are added before the distinguisher and two
rounds after. The key-recovery attack process is shown in Figure 8. The ID of
W(3, 7) is from ∆(x3) to ∆(y9). ∆(x3) propagates backward to the plaintext
∆(x1) with probability 1 and ∆(y9) propagates forward to the ciphertext with
probability 1. The active cells are shown in Figure 8. The key-recovery process
is as follows.

1. Initialize a table H with the 92-bit k1[1 ∼ 15]n, k2[8 ∼ 11]n, k11[7, 10, 11, 13]n
as the index and 0 for all the values.

2. As shown in Figure 8, one plaintext structure contains 260 plaintexts, yielding
a total of 2119 pairs. Encrypt all plaintexts of one structure, combine them
into pairs with a hash table. Since there are 10 inactive cells in the ciphertext
side, 2119−40 = 279 pairs survive. For 2t structures, there are 2t+79 pairs.

3. For each pair, we guess the 216 possibilities of ∆(x2) differences and extract
the 60-bit k1[1 ∼ 15]n and 16-bit k2[8 ∼ 11]n with some look-up tables.
At the side of the ciphertexts, 16-bit k11[7, 10, 11, 13]n can also be extracted
with table look-ups.

46

x1

•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

k1

x′
1

S1

y1

L1

x2

•
•
•
•

k2

x′
2

S2

y2

L2

⋆
x3

7-Round ID

⋆

y9

L9

x10

S10

y10

•
•
•

•

k11

x11

Fig. 8: The key-recovery process for W(1, 10) based on the second ID of W(3, 7)
(Equation (2)).

4. On average, a wrong pair can reach the input and output differences of the ID
with a probability of 2−56−12 = 2−68. Thus, with 2t+79 pairs, the probability
that one wrong key cannot be excluded by all pairs is (1 − 2−68)2

t+79

=

(1 − 2−68)2
68×2−68×2t+79 ≈ e−2t+11

. As we want the number of remaining
wrong keys to be less than 1, we have

292 × e−2t+11

< 1,

which means t ≥ −5.0. In other words, we only need 255 plaintexts and
process 255×2−1−40 = 269 pairs.

Complexity. The data complexity is 255 chosen plaintexts. The time complex-
ity is dominated by processing each pair and updating H for labelling those
impossible keys. For each pair, on average there are 292−68 = 224 keys that can
pass the filters. Thus, we need to access H 224 times for each pair. Since H is a
large table, we regard each access to H as one encryption. The time complexity
is eventually 269+24 = 293 encryptions. The memory complexity is dominated
by H, which is 292 bits that is equivalent to 286 64-bit blocks.

G.3 Zero-correlation cryptanalysis

Zero-correlation (ZC) attacks are an extension of linear cryptanalysis based on
linear hull with exact zero correlation (ZC linear hull) [30,29,31]. The automatic
search methods are similar to those for ID, which was first proposed in [42].

With our SAT tools, we detected the following two ZC linear hulls over
W(3, 7). Denote one active S-box by 1 and inactive S-box by 0, the 2 ZC linear

47

hulls are as follows,

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)
7R

̸→ (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)
7R

̸→ (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

They are the same as the above two IDs, which is not surprising as all matrices
of uKNIT-BC satisfy M = (MT)−1. For SPN ciphers, the ZC attacks are usually
weaker than ID attacks. Thus, we believe the ZC attacks will not be a threat to
uKNIT-BC.

G.4 Integral attacks

The integral attacks [74] were first known as Square attack as it was proposed for
attacking the block cipher SQUARE [44], and it was also studied under different
names such as saturation attack [82] or multiset attacks [25]. Nowadays, the most
effective way to search for integral properties is the division property method
and its automatic search tools [103,105,112,33,67,18].

By modeling the 2-subset bit-based division property [105] with SAT solvers
and setting the input division vector as all one but zero at one bit, the longest
zero-sum property we have detected is for 7 rounds of uKNIT-BC. We did not
detect any zero-sum properties for all W(i, 8), 0 ≤ i ≤ 4. We also considered the
round keys using the monomial prediction [67,64] to search for possible one-sum
properties, but found nothing for windows of length 8.

From the relationship between the zero-correlation linear hulls and the inte-
gral properties [101,28], we derive a better integral distinguisher with less data,
i.e.,

{60, 61, 62, 63} W(3,7)−−−−→ {0, 1, 2, 3}, {60, 61, 62, 63} W(3,7)−−−−→ {12, 13, 14, 15}

With a 7-round integral distinguisher, we believe integral attacks will not threaten
the security of the 12-round uKNIT-BC, as adding forward propagation rounds
are more difficult than the differential and linear cases.

G.5 Demirci-Selçuk meet-in-the-middle attack

The Demirci-Selçuk Meet-in-the-Middle (DS-MitM) attack was proposed by
Demirci and Selçuk as a new attack on AES [46] in 2008 [49]. Later, this attack
was significantly enhanced by Dunkelman et al. [56] and eventually became the
current best attack on AES-128 thanks to Derbez et al. [52]. Several tools have
been proposed to search for DS-MitM attacks for different ciphers. Some are de-
signed with general-purpose programming languages such as [50,51], others are
built upon the automatic search tools such as [98,99]. We mainly implemented
the methods in [98] to search for DS-MitM attacks on uKNIT-BC.

As shown in Figure 9, the best attack we detect covers W(0, 9) with a dis-
tinguisher on W(2, 5). Both the backward and forward propagations in the key-
recovery process cover 2 rounds. Before we introduce this attack, we will have to

48

x0

•
•
•

•
•
•

•
•
•
•

•
•
•
•

k0

x′0

S0

y0

L0

x1

•
•
•
•

k1

x′1

S1
F
F
F
F

y1

L1 F

x2

k2

F

x′2

S2

y2

L2

x3

k3

x′3

S3

y3

L3

x4

k4

x′4

S4

y4

L4

x5

k5

x′5

S5

y5

L5

x6

k6

x′6

S6

2

y6

L6
8

8
4

x7

k7
8

8
4

x′7

S7

y7 x8

L7

•
•
•

L−17 (k8)

x′8

S8

y8 x9

•
•
•
•

•
•
•

k9

Fig. 9: The DS-MITM attack process for W(0, 9). The distinguisher is applied
to W(2, 5) and labeled in red, while the online phase is labeled in blue.

give the definition of δ-set [49] in our context, which is a core notion in DS-MitM
attacks.

Definition 6 (δ-set for uKNIT-BC). A δ-set of size 2b is a set of internal states
such that b bits of the states take up all their possible values while other bits
remain constant.

The distinguisher in this attack covers from x′
2 to y6. We choose a 24-size

δ-set for x′
2 such that x′

2[9]n takes up all 16 possible values. Suppose that the
vectorial Boolean function that sends x′

2[9]n to y6[6]n is f , then we have the
following observations.

Observation 1 Suppose that the 16 elements in the δ-set are X0, X1, . . . , X15.
The total number of possible 60-bit ordered sequence

f(X0)⊕ f(X1), f(X0)⊕ f(X2), . . . , f(X0)⊕ f(X15) (3)

is fully determined by the 56-bit parameters,

x′
2[9]n, x′

3[2, 8, 15]n, x′
4[0, 3, 5, 12, 13, 15]n, x′

5[12 ∼ 14]n, x′
6[6]n (4)

where these parameters correspond to one element of the δ-set.

49

With the differential enumeration technique [56,52], the number of parameter
bits in Equation (4) can be reduced to 32 bits.

Observation 2 (Differential enumeration technique [56,52]) Suppose that
we have a truncated differential ∆(x′

2)→ ∆(y6) where ∆(x′
2)[9]n = ⋆ (any value

except 0) and ∆(y2)[6]n = 2. The 56-bit parameters can be determined by the
following 36-bit differences,

∆(x2)[9]n, ∆(y2)[9]n, ∆(y3)[2, 8, 15]n, ∆(x5)[12 ∼ 14], ∆(x6)[6]n.

As we have 260 possibilities of Equation 3 in the uniformly random situation,
Observations 1 and 2 can be used as a distinguisher. The key-recovery attack
process is described as follows.

Offline phase. We compute 232 60-bit sequences of Equation 3 and store them
into a hash table H.

Online phase. In the online phase, we find one right pair that satisfies the
truncated differential in Observation 2 and recover the corresponding keys. Then,
we use the keys to compute the sequence in Equation 3.

1. As shown in Figure 9, we propagate ∆(x′
2) backward to ∆(x0), and propagate

∆(y6) forward to ∆(x9). By doing so, we constructed a plaintext structure
containing 256 plaintexts, yielding 2111 pairs. Since the ciphertext difference
has 9 inactive nibbles, 2111−36 = 275 pairs will survive.

2. For each pair,
– ∆(x0) reaches ∆(x2) (with ∆(x2) being any non-zero difference) with a

probability of 2−52;
– ∆(x9) propagates to ∆(y6) = 2 is with a probability of 2−28.

In total, the probability to obtain a right pair is 2−52−28 = 2−80. Therefore,
the number of structures required to get a right pair is 280−75 = 25.

3. For each of these 280 right pair candidates, at the plaintext side, we guess
all possible 216 ∆(x1) and 24 ∆(x2), then extract on average one candidate
of k0[0, 1, 3 ∼ 5, 7 ∼ 15]n and k1[12 ∼ 14]n. At the ciphertext side, we
enumerate all possible 212 ∆(y7)[4, 10, 11]n, and we can extract on average
one L−1

7 (k8)[4, 10, 11]n and k9[1, 2, 5, 8, 14, 15]n.
4. Suppose that we select x′

2[9]n = k2[9]n, then we can get the δ-set at x2.
Decrypting them to x0 with the keys we obtain, we get all 16 plaintexts
for the δ-set. Encrypt the 16 plaintexts to ciphertexts. Using the guessed k8
and k9 bits to decrypt these 16 ciphertexts to y6, compute the sequence of
Equation (3).

5. Check if the calculated sequence is in H built in the offline phase. Since the
number of possibilities of Equation (3) is 256 (note that 4 bits have been
determined by the truncated differential), only 280−(56−36) = 260 pairs can
survive. For each surviving pair, we have on average 15 values for k0[0, 1, 3 ∼
5, 7 ∼ 15]n, k1[12 ∼ 14]n, L−1

7 (k8)[4, 10, 11]n and k9[1, 2, 5, 8, 14, 15]n accord-
ing to the guessed ∆(x2), or equivalently, we have about 262 key candidates
with its corresponding plaintext, ciphertext and intermediate pairs.

50

x0

•
•
•

•
•
•

•
•
•
•

•
•
•
•

k0

x′0

S0

y0

L0

x1

•
•
•
•

k1

x′1

S1
F
F
F
F

y1

L1 F

x2

k2

F

x′2

S2

y2

L2

x3

k3

x′3

S3

y3

L3

x4

k4

x′4

S4

y4

L4

x5

k5

x′5

S5

y5

L5

x6

k6

x′6

S6

1

y6

L6

2

2

2
x7

k7

2

2

2

x′7

S7

y7 x8

L7

•
•
•
•

L−17 (k8)

x′8

S8

y8 x9

•
•
•
•

•
•
•

k9

Fig. 10: The second DS-MitM key-recovery on W(0, 9).

6. To further determine the keys, we can play the DS-MitM with a slightly
modified distinguisher shown in Figure 10. As the probability that a pair of
the 260 being a right pair is 2−44, with 244 surviving pairs, we can find a
right pair for the second DS-MitM attack. So the same key candidates with
the first attack except that L−1

7 (k8)[10]n is replaced with L−1
7 (k8)[2]n can

be recovered. The filtering effect is 2−20 again. Thus only 262−20+2 = 244

key candidates survives. The time complexity of the second attack has been
negligible compared to the first one. We can repeat this process several times,
until we recover the only one key candidates.

7. Finally, we can exhaustively search the unknown 56 bits of k0 and k1, and
use the 60-bit values of k8, k9, as well as the internal keys derived from the
right pairs as filters, Finally, we expect only correct key.

Complexity. The complexities are all dominated by the first attack. The data
complexity basically consists in encrypting the 261 plaintexts. The memory com-
plexity represents the storage of the 236 60-bit sequences, which is 240 bits or
234 64-bit blocks. The time complexity of the offline phase is to computing all
sequences, which is 236+4 = 240 5-round encryptions. For the online phase, the
time complexity is dominated by processing all 280 pairs. For each pair, we need
to guess 15 ∆(x2), and the remaining time complexity is dominated by partially

51

encrypting the δ-set, which is 280+4+4 = 288 4-round encryptions, approximately,
287 9-round encryptions.

G.6 Boomerang and rectangle attacks

The boomerang attack was proposed in 1999 as a variant of differential cryptanal-
ysis [108]. In this attack, we first throw a plaintext pair (p0, p1) with p0⊕p1 = α
and obtain their corresponding ciphertexts (c0, c1). Then, we choose c2 and c3
such that c0 ⊕ c2 = β and c1 ⊕ c3 = β, and decrypt c2, c3 to get corresponding
p2, p3. We observe if p2 + p3 = α. If so, we say that the boomerang returns and
(p0, p1, p2, p3) is called a right quartet. The boomerang attack is an adaptively-
chosen-ciphertext attack, so in many cases, we prefer its chosen-plaintext version,
called rectangle attack [71,21]. The rectangle attack generates plaintext quartets
(p0, p1, p2, p3) satisfying p0⊕ p1 = α, p2⊕ p3 = α and observe after encryption if
c0 ⊕ c2 = β, c1 ⊕ c3 = β. If so, (p0, p1, p2, p3) is called a right quartet. We apply
the rectangle attack to uKNIT-BC in this subsection.

For a random permutation with block size n, a right quartet appears with a
probability of 2−2n. To estimate the right quartet probability for a block cipher
E, classically we usually divide the cipher into 2 parts as E = E1 ◦E0. We then
find a good differential for E0 with the input difference α whose probability is
p, and a good differential for E1 with the output difference β whose probability
is q (in practice, we find these differentials first and then determine α and β
afterwards). The probability of obtaining a right quartet is then estimated as
2−np2q2. Therefore, only when p2q2 > 2−n, then we will have a rectangle distin-
guisher. According to Table 2, the best rectangle attack on uKNIT-BC can only
reach 6 rounds.

Such an estimation heavily relies on the assumption that E0 the E1 are inde-
pendent, which is not always true in practice [87]. Several refinements have been
proposed to mitigate such independence problems [57,58,40]. The boomerang
connectivity table (BCT) is one of the latest technique among them [40].

Definition 7 (Boomerang connectivity table (BCT) [40]). For an n-bit
S-box, denoted by S, its BCT is a 2-dimensional 2n × 2n table, with the entry
BCT(δ, δ′) being

BCT(δ, δ′) = #{x ∈ Fn
2 : S−1(S(x)⊕ δ′)⊕ S−1(S(x⊕ δ)⊕ δ′) = δ}

The cipher is decomposed into three parts, E = E2 ◦ E1 ◦ E0 and in the
simple BCT attack, E1 is only one substitution layer. We first find a good dif-
ferential of E0, say α → α′ and a good differential of E2, say β′ → β. For
E1 = S0||S1|| · · · ||S15 where Si are the 16 S-boxes, we have the following com-
putation

P(E−1
1 (E1(x)⊕ β)⊕ E−1

1 (E1(x⊕ α′)⊕ β) = α′)

=
∏

0≤i<16

P
(
S−1
i (Si(x[i]n)⊕ β[i]n)⊕ S−1

i (Si(x[i]n ⊕ α′[i]n)⊕ β[i]n) = α′[i]n
)

(5)

52

For each sbox, the right side of the equation is computed using its BCT. Denote
the probability of E1 calculated from Equation (5) by r, then the probability of
obtaining a right quartet of E is estimated to be 2−np2q2r. When p2q2r > 2−n,
then we have a rectangle distinguisher.

We constructed a SAT model for the rectangle distinguisher incorporating
the BCT. Our targets are the windows with length 7. For W(i, 7), a differential
search model coversW(i, 3) as E0 andW(i+3, 3) without the first S-box layer as
E2. The middle S-box layer is described using the BCT. The objective function
is then to maximize p2q2r.

For windows with length 8, there are no rectangle distinguishers whose right
quartet probability is close to 2−128. However, for 7-length windows, the best
rectangle distinguisher we detect is forW(2, 7), whose right quartet probability is
2−115. We also modeled the key-recovery process, i.e., the backward propagation
and forward propagation, based on the distinguisher part, which is similar to the
differential attacks (Section 6.1). The key-recovery process in rectangle attacks
can be complicated and many improvements have been proposed [22,100,113].
We have checked the complexity of the rectangle attack based on the formulas
in [100,113] and we concluded that the key-recovery attack will not reach 10
rounds.

G.7 (Higher-order) differential-linear attacks

Similar to the boomerang attacks, resistance against the plain differential and
linear cryptanalysis does not necessarily lead to resistance against their vari-
ants or combinations. Differential-linear cryptanalysis, proposed by Langford
and Hellman in 1994 [76], combines the differential and linear attacks. For a
cipher E, let C = E(P) and C ′ = E(P ′). Given a difference-mask pair (δ, λ),
the correlation of the DL distinguisher is

C(δ, λ) = 2−n
∑
x∈Fn

2

(−1)λ·(E(x)⊕E(x⊕∆))

Similar to the case of linear cryptanalysis, if the correlation is not 0, we have an
opportunity to distinguish the cipher from a random permutation.

The classical method to estimate the correlation is to divide the cipher into
two parts as E = E1 ◦E0. If we have a DC for E0, say δ → δ′, with a probability
p, and a LC for E1 say λ′ → λ, with a correlation q. The correlation can be
estimated as pq2 [76]. However, such an estimation relies on many assumptions
such as E0 and E1 being independent. To overcome this assumption, Dunkelman
et al. introduced the differential-linear connectivity table (DLCT) to connect the
differential and linear parts [8]. The DLCT is defined as follows,

Definition 8 (Differential-linear connectivity table (DLCT) [8]). For an
n-bit S-box denoted by S, its DLCT is a 2-dimensional 2n× 2n table, with entry
DLCT(δ, λ) being

DLCT(δ, λ) =
∑
x∈Fn

2

(−1)λ·(S(x)⊕S(x⊕δ))

53

With the DLCT, a cipher is decomposed into three parts, say E = E2◦E1◦E0,
where E1 is an S-box layer. We then construct a SAT model to search for the DL
distinguishers for uKNIT-BC. In the SAT model, we model E0 and E2 to search
for DC and LC respectively and for E1, we model the DLCT for each S-box.
With this method, the best DL distinguisher we could find has a correlation of
2−25 for W(2, 7). However, for 8 rounds, no DL distinguisher exists and their
correlations are far from 2−32. Therefore, we believe that a DL key-recovery
attack would be weaker than the differential or linear attack, thus uKNIT-BC is
resistant against DL cryptanalysis.

Higher-order differential-linear (HDL) cryptanalysis was first proposed by
Biham et al. to study possible combined attacks [23]. In [66], the authors used the
HATF technique inspired by the ATF methods [80] to give a practical estimation
process of the HDL bias. This attack strategy can be effective against some
low-degree permutation-based ciphers, but considering that uKNIT-BC is a block
cipher with degree-3 S-boxes (all S-boxes are bit-permutation equivalence of the
MANTIS S-box), we believe uKNIT-BC resists HDL attacks.

G.8 Invariant attack

Invariant attacks study the structural properties of a cipher where a partition of
the plaintext space into a set S or its complement is preserved. In [77], Leander
et al. introduced the invariant subspaces and in [104] Todo et al. presented the
nonlinear invariants. Beierle et al. studied how to choose the constants to resist
invariant-type attacks in [10]. Later, in [16] Beyne showed that the invariant at-
tacks can be effectively explained by the eigenvectors of correlation matrices [43].
As discussed in [35, Chapter 9], the invariant attacks mainly provide threats to
lightweight ciphers with a simple key schedule, e.g., the identical round keys
with different constants XORed (like PRINCE) or two round keys are used alter-
natively (like MIDORI). For a cipher with a relatively complicated key schedule,
variant attacks are much more difficult to be found. With our key schedule based
on the gSTK, we believe that invariant attacks are not a threat to the security
of uKNIT-BC.

G.9 Slide attacks and internal differential attacks

The slide attack and its variants [26,27,59,61] explore the symmetry of different
round functions. While the internal differential attacks [93,53,116,115] uses the
symmetry between a part of the round function and the other part. uKNIT-BC
enjoys a highly non-aligned property where (almost) all S-boxes and linear layers
are different so it has an inherent strong resistance against both attacks.

54

H Application to PRF: XoP with uKNIT-BC

One of the benefits of uKNIT is not only providing very competitive minimum
latency, but also a wider range of area-latency trade-offs. As demonstrated in the
last two rows of Table 3, uKNIT can provide ∼ 10% lower latency that PRINCEv2,
but, interestingly, for the same latency as PRINCEv2 is requires only ∼ 80% of the
area. This leads to a very interesting trade-off: consider a user that can dedicate
the same latency and area as PRINCEv2 for low latency applications but requires
a PRF rather than a block cipher, e.g., using the CounTeR (CTR) mode. It is
well known that using PRINCEv2 in the CTR mode is insecure as it only offers
32 bits of security. On the other hand, consider the single-permutation Sum of
Permutation (XoP) construction given by:

EK(0∥M)⊕ EK(1∥M).

It was given in [65] and its security was proven in [47], where it was shown to have
a PRF security bound O(q/2n), where q < 2n−1 is the number of queries and
n is the block size. Note that the construction consists of two calls to the block
cipher with the same key. Thus, it requires implementing the main SPN twice,
while the key schedule only once. This leads us to conclude that for roughly
1.33× area as PRINCEv2 we can double the PRF security. This is an extra level
of security optimization, on top of optimizing the primitive itself. Note that since
PRINCEv2 does not have a key schedule per se (the round keys are just copies of
the master key), the same does not apply to prince. At 1.65ns, XoP-uKNIT-BC
would need ≈ 37551.59µm2, while XoP-PRINCEv2 would need ≈ 55, 128.24µm2.

Note that Orthros and Gleeok128 are both PRFs based on other variants
of XoP, where the internal block ciphers are pruned by reducing their number of
rounds compared to a secure PRP version. uKNIT has lower latency than both
of them without this trade-off and is transformed into a PRF using the XoP
construction above. However, the former PRFs operate on 128 bits.

55

56

	uKNIT: Breaking Round-alignment for Cipher Design

