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Abstract. We present the first comprehensive study on thresholdizing
practical OV-based signature schemes, specifically focusing on MAYO
and UOV. Our approach begins by addressing the challenges associated
with thresholdizing algorithms that sample solutions to linear equation
systems of the form Ax = y, which are fundamental to OV-based signa-
ture schemes. Previous attempts have introduced levels of leakage that
we deem insecure. We propose a novel minimum-leakage solution and
assess its practicality. Furthermore, we explore the thresholdization of
the entire functionality of these signature schemes, demonstrating their
unique applications in networks and cryptographic protocols.
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1 Introduction

Nowadays, threshold signatures [Des90; DF90] are an emerging field in cryptog-
raphy, as they provide many real-world applications by allowing the distribution
of signing power to several parties using different access structures. This distri-
bution of signing power is often given to any subset of t parties among a set of
n of signers but with the restriction that t − 1 cannot sign. While the case for
efficient EC-DSA-based or Schnorr-based threshold-signature schemes has gath-
ered renewed interest in the recent years [Sho99; GGN16; Bol03; KG20; Lin24;
Ruf+22; Gar+21; Doe+19; Doe+23] (the former for their wide applications and
the latter mostly due to their applications in blockchain), they are mostly cen-
tered in a classical setting and have not focused on providing security against
quantum-adversaries. Moreover, the security of these schemes is nuanced, often
requiring additional mechanisms to address potential misbehavior by parties.
This misbehavior can stem from parties being either dishonest or honest but
curious. Furthermore, from a practical setting, some threshold schemes are in-
compatible with widely-used standardised signature schemes, or, when they are,
they tend to be inefficient or reliant upon ad-hoc assumptions.

Recently, there has been a renewed interest in providing quantum-security to
threshold signatures, as “quantum resistance” is listed as an important criterion



on the recent NIST standardization call [PB23, Sections 3.2 and 3.3] for threshold
signatures. A starting point in research on this area has focused on actively look-
ing at the proposed submissions for the NIST PQC standardization call [NIS22]
and analyzing what it will take to have a threshold variant of them. Due to
this, we have seen recently proposals of lattice-based threshold schemes [Bos+24;
Pin+24; ENP24; ASY22], isogeny-based threshold schemes [DM20], and hashed-
based threshold schemes [Kha+22]. Notably, Cozzo et. al [CS19] explored the
viability of applying generic MPC techniques to many of the NIST PQC sub-
missions at the time 4 in order to instantiate threshold signatures schemes.

In this work, we are interested in thresholdising multivariate-based signature
schemes, as they seem to arrive at practical communicational and computational
measures, and seem to be tailored and feasible for real-world applications [Wes24;
Adr24]. Ostensibly, both the MAYO [Beu+23a] and UOV [Beu+23c] signature
schemes seem to be highly practical, and their security relies on a well-studied
problem that has withstood the test of time despite cryptanalytic efforts.

Our starting point, as noted, will be the work of Cozzo et. al [CS19]. Our
goal is to explore what it will take to make threshold variants of both UOV
and MAYO, as practical OV-based schemes that are part of Round-2 of the “on-
ramp” post-quantum process [Ala+24]. Hence, we prioritize schemes that might
be standardized (and, thus, might become widely available), grounded in a well-
studied problem, and practical. We push the study further, and do not only
focus on constructing threshold signing for OV-based schemes; we propose each
functionality in its own: distributed key generation (DKG), multi-party signature
generation, and multi-party verification. This modular approach caters to diverse
application needs, allowing for tailored solutions.
Contributions. We contribute the following results in our work:

• Threshold variant of Solving Systems of Linear Equations: We present a
minimum-leakage threshold variant for the solving systems of linear equa-
tions algorithm. We provide an in-depth discussion of its leakage character-
istics and strategies for minimization.

• Threshold variants of OV-based schemes: We propose threshold variants of
the MAYO and UOV signature schemes, addressing the demand for quantum-
resistant cryptographic solutions that securely operate in multi-party set-
tings. We highlight their “MPC-friendliness” and present a ”matrix-only”
perspective that facilitates efficient MPC operations.

• Practical Framework: Our work outlines a practical framework for construct-
ing these threshold schemes, ensuring that the proposed schemes maintain
efficiency and compatibility with existing standardized signature algorithms.
We identify optimization opportunities and situate our work within an es-
tablished MPC framework and model.

• Modular Functionality:We introduce a modular approach to threshold schemes
by separately addressing critical functionalities to enhance flexibility and us-
ability.

4 At the Round-2 of the NIST post-quantum first standardization process.
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Outline. We start with the needed preliminaries in Section 2. Then, we provide
a description of OV-based schemes in Section 3. In Section 4, Section 5 and Sec-
tion 6, we present threshold protocols implementing system solving of linear
equations, DKG, signing and verification algorithms. In Section 7, we discuss
the costs and optimization techniques applicable to our protocol; in Section 8,
we present possible applications.
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2 Preliminaries

Sets, functions, and distributions. For an integerN > 0, we note [N ] = {0, . . . , N−
1}. To denote the assign operation, we use y := f(x) when f is deterministic and
y ← f(x) when randomized. When S is a finite set, we note U(S) the uniform

distribution over S, and shorthand x
$← S for x ← U(S). We use || to denote

concatenation and λ as the security parameter. We use the standard Landau
notation O(·) for asymptotics.

Finite fields Fq, and vectors over Fq. Given q, a power of a prime number, we
denote Fq a finite field with q elements. We give an explicit representation for
F16 as Z2[x]/(x

4 + x + 1). We denote the addition and multiplication of field
elements a and b as a+ b and ab respectively, and we denote the multiplicative
inverse of a as a−1. We denote by Fn

q the set of column vectors of length n over
Fq. Vectors are noted with small bold letters (i.e, x), and we write (x0, ..., xn−1)
for the coordinates of x ∈ Fn

q .

Matrices. We denote by Fm×n
q the set of (zero-indexed) matrices over Fq with m

rows and n columns. We denote by In ∈ Fn×n
q the identity matrix of size n-by-n.

Abusing notation, we see a vector b ∈ Fn
q as a matrix of dimension n × 1. If

A ∈ Fm×n
q , we denote by A[i, j] the entry in the i-th row and the j-th column of

A, and the j-th column of A by A[:, j] ∈ Fm
q . We say that a matrix A ∈ Fn×n

q

is upper triangular if A[i, j] = 0 for all 0 ≤ j < i < n.

If A,B ∈ Fm×n
q are matrices of same size, then we denote their (entry-wise)

sum as A+B. If A ∈ Fm×n
q and B ∈ Fn×k

q , then we denote the matrix product

by AB, i.e. AB ∈ Fn×k
q is the matrix whose entry in row i and column j is equal

to
∑n

l=0 A[i, l]B[l, j]. We denote by A⊤ the transpose of A, i.e. the matrix in
Fn×m
q such that A⊤[i, j] = A[j, i] for all 0 ≤ j < m and 0 ≤ i < n.

We define the function Upper : Fn×n
q → Fn×n

q that takes a square matrix
M as input, and outputs the upper triangular matrix Upper(M), defined as
Upper(M)i,i = Mi,i and Upper(M)i,j = Mi,j +Mj,i for i < j.
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Network model. We assume a synchronous network, as already assumed and
required by modern threshold signature schemes [Kon+21; GG19; LNR18]. We
also consider that the adversary can observe any message sent, and choose to
deliver or block messages at will on this network.

2.1 The UC Framework: Model and Functionalities

For our ideal functionalities, adversarial model, and proofs, our scheme instan-
tiations rely on the Universal-Composability (UC) framework introduced by
Canetti [Can01]. This framework allows for the independent implementation
of functionalities and to securely compose them. In the following, we give a brief
overview of the framework, where we use the traditional notation to refer to
protocols in uppercase and procedures in the lowercase.

UC Protocols. The UC framework is based on Probabilistic Polynomial-Time
(PPT) Interactive Turing machines (ITM) entities that are used to model par-
ties, adversaries, and simulators.

In the real-world experiment, we have n ITM-based parties (P1, . . . , Pn) that
execute a protocol Π, an adversary A that can corrupt any subset of parties,
and an environment Z that is initialized with an advice string z. All entities
are initialized with the security parameter λ and with a random tape. The en-
vironment Z activates the parties involved in Π, selects their inputs, receives
their outputs, and communicates with the adversary A, who may instruct the
corrupted parties to deviate from Π in any manner. The real-world experiment
completes when Z ceases to activate parties and produces a decision bit.

Conversely, the ideal-world experiment involves n ITM-based dummy parties
(P1, . . . , Pn), an ideal functionality F , an ideal-world adversary S (the simula-
tor), and an environment Z. The dummy parties relay messages from Z to F .
The simulator S can corrupt any subset of these dummy parties and interact
with F on their behalf communicating directly with F according to its speci-
fication. Throughout the experiment, Z and S interact with the simulator, the
role of the simulator goal being to convince the environment that it is partic-
ipating in the real experiment. The ideal-world experiment completes when Z
stops activating parties and outputs a decision bit.

The F-hybrid Model. When a protocol Π operates in a hybrid model of com-
putation where parties can communicate as usual and have access to an unlim-
ited number of instances of the ideal functionality F , it is called the F−hybrid
model [Can+02]. In this setting, let P denote a protocol that UC-realizes F , and
let ΠP be the“composed protocol”. Composition here means that ΠP is identical
to Π, except that each interaction with F is substituted by an activation of the
concrete instance of the protocol, with P’s outputs serving as values provided by
F . A fundamental theorem states that in such conditions, Π and ΠP exhibit the
same input/output behavior: P behaves just like the ideal functionality F even
when composed with an arbitrary protocol Π. A special case of this theorem
asserts that if Π UC-realizes some ideal functionality G in the F-hybrid model,
then ΠP also UC-realizes G.
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UC-Security Model. [Can01] defines a notion of security for a protocol Π by
comparing it to the ideal functionality F . The core intuition is that any attack
onΠ would be no more effective than an attack on F . Let IDEALF,S,Z(λ,z) denote
the random variable representing the output of the ideal-world experiment; let
REALΠ,A,Z(λ,z) denote the random variable representing the output of the real-
world experiment.

Definition 1 (UC-security). A protocol Π UC-realizes the functionality F , if for
every PPT A, there is a simulator S that for every PPT “admissible” environ-
ment Z,

{REALΠ,Z(λ,z)}λ∈N+,z∈{0,1}poly(λ) ≈c {IDEALF,S,Z(λ,z)}λ∈N+,z∈{0,1}poly(λ)

Remark 1 (On the Difference between Procedures and Protocols). Universal Com-
posability (UC) security is crucial not only for ensuring composability but also
for facilitating a modular approach to protocol design. It enables the definition
of functionalities that can be instantiated and utilized later without the need
to focus on their concrete implementations. However, when developing complex
protocols, it can be beneficial to create several separate ”sub-protocols” that can
be invoked within the main protocol, even if the specific functionalities these sub-
protocols instantiate are not explicitly defined. To address this, we introduce the
concept of a procedure. Procedures resemble protocols in that they outline the
steps parties must follow, but unlike protocols, they are not intended to instan-
tiate a specific functionality. Instead, they serve as modular blocks that can be
integrated into an actual protocol that does instantiate functionality. A useful
analogy is to compare procedures to “macros” in programming languages such
as C or C++. Like macros, which are expanded in the code before compilation,
procedures provide a flexible way to structure protocols. In contrast, function-
alities can be likened to “binaries”, which can be utilized without needing to
understand their internal workings.

2.2 The Arithmetic Black-Box Model

MPC protocols are typically designed using secret-sharing techniques. Secret-
sharing is a method that enables a dealer to distribute a secret x ∈ Fq among
parties in such a way that no subset of ≤ t parties learns anything about the
secret, while any subset of ≥ t + 1 parties can completely reconstruct it. This
is commonly denoted with JxK. The specific choice of secret-sharing schemes is
typically influenced by the concrete security setting (e.g. passive vs active se-
curity, or honest vs dishonest majority). To remain agnostic to any choice, we
use a standard abstraction from the literature known as the arithmetic black box
(ABB), which precisely models the ability of parties to distribute secrets, perform
arithmetic operations on them, and reconstruct secrets. The allowed arithmetic
operations include both affine operations such as additions, subtractions, or mul-
tiplication by constants—all of which can be typically performed locally in an
actual instantiation thanks to the linear properties of secret-sharing schemes—
and also the multiplication of secrets, which requires an interactive protocol in
an actual instantiation.
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Remark 2 (Sampling both public and secret random values). For our protocols,
we describe a slightly modified version of ABB model which allows for a few extra
operations that will be useful for our constructions. These are: (1) the ability to
sample random strings known to all parties, and (2) the ability to sample secret
random values that are unknown to any party. Both of these are common in the
literature and can be realized using standard techniques. For instance, sampling
secret random values can be generated by having each party distribute a random
share and then summing these shares to produce the secret value (for honest
majority this can be optimized by using super-invertible matrices [DN07]). For
public randomness, the parties can reconstruct a secret random value, and if
longer strings are needed, a PRG can be used to expand it.

Given this, our ABB functionality (FABB) is given below. We set all of our
schemes in this FABB-hybrid model.

Functionality 1: FABB

The functionality keeps track of an internal dictionary of pairs (x, id) mapping
field elements to IDs. Although we do not write this explicitly, the functionality
aborts in obvious cases such as if the provided parties’ IDs are inconsistent, if
the IDs are not populated when the functionality is asked to read them, or
if the IDs are populated when the functionality is asked to write them. The
functionality supports the following commands:

– On input (input, id, Pi) from all parties and (input, id, Pi, x) from Pi, the
functionality stores (x, id).

– On input (add, id1, id2, id3) from all parties, the functionality fetches
(x, id1) and (y, id2), and stores (x+ y, id3).

– On input (addmult-cons, id1, id2, (a, b)) from all parties, the functionality
fetches (x, id1) and stores (a · x+ b, id2).

– On input (mult, id1, id2, id3) from all parties, the functionality fetches
(x, id1) and (y, id2), and stores (x · y, id3).

– On input (output, id, Pi) from all parties, the functionality fetches (x, id)
and sends x to Pi.

– On input (rand, id) from all parties, the functionality samples r ← Fq

uniformly at random and stores (r, id).
– On input (coin) from all parties, the functionality samples r ← Fq uniformly

at random and sends r to all parties.

Remark 3 (On optimizations of concrete instantiations). The primary advantage
of the ABB model is its generality, which allows for a cleaner description that
accommodates multiple adversarial settings. However, actual implementations of
our protocols can be significantly optimized by leveraging specific characteristics
of the underlying adversarial model. This is especially beneficial in scenarios with
passive security or an honest majority setting, where multiple efficiency improve-
ments are possible. We discuss some of these specific optimizations in Section 7.
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Notation and Simplification of the ABB. When applying the ABB model in our
constructions, we omit low-level details as noting IDs for simplicity. We denote
a value x that is stored (x, id) by JxK, where, as noted, we ignore the specific
ID from the notation. For operations, we write Jx+ yK← JxK+ JyK to represent
a call to the add command, and similarly for other operations. We also use
α← coin and JxK← rand for when the parties call the commands coin and rand,
respectively. This notation is typically reserved for secret-sharing schemes and
it is deliberate: in a concrete instantiation of the ABB model, JxK would mean
that x is secret-shared among the parties. Furthermore, it will not be uncommon
that we refer to JxK as the parties having “shares” of x.

The majority of our constructions work with matrices, and we let notation
reflect this by using JXK for matrices X, meaning that each individual entry is
stored in the functionality. Sometimes we also use JXK← rand(Fa×b

q ) to empha-
size the dimensions of the sampled matrix. Matrix operations such as addition
and multiplication can be instantiated with the underlying field arithmetic, Note
that matrix addition and multiplication can be instantiated with the underlying
field arithmetic, though matrix multiplication can be optimized by leveraging its
structure rather than naively applying field operations. In some cases, multipli-
cation of n×n matrices can be reduced from n3 products to n2. This is discussed
in Appendix A. Additionally, other optimizations can be considered when con-
cretely instantiating the model by exploiting several intricacies of the adversarial
model at hand. We discuss some of these specific optimizations in Section 7.

2.3 Digital Signature Schemes

We start by introducing a formal definition of signature schemes in the standard
model. A signature scheme is a tuple of algorithms (SetUp,KeyGen,Sign,Verify),
defined as follows (henceforth, pp will be implicitly given to all functionality):

SetUp(1λ)→ pp. Given the security parameter as input 1λ, the procedure out-
puts the public parameters pp.

KeyGenpp()→ (pk, sk). The key generation procedure outputs a verification key
pk and a private signing key sk.

Signpp(pk, sk,msg)→ Sig. The signing procedure takes as input the public and
private keys, as well as a message to sign (msg), and it outputs a signature
Sig.

Verifypp(pk,msg,Sig)→ {0/1}. The verification procedure takes as input a ver-
ification key pk, a message msg, and a signature Sig, and it outputs 1 if Sig
is valid for msg under the verification key pk, and 0 otherwise.

We define threshold signatures as protocols that realize the different fea-
tures of the signature: key generation, signing, and verification. In this work, we
ensure the security of our protocols by proving that they UC-realize ideal func-
tionalities that perform the different algorithms (KeyGen,Sign,Verify). This is a
common way to study the soundness of distributed protocols [Doe+18; Cas+19;
Ara+21]. In particular, we do not attempt to define threshold signatures in the
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UC framework as opposed to some previous works [ADN06; BKP13; BMP22;
Mak22].

3 OV-based schemes: UOV and MAYO

In this section, we introduce OV-based schemes, and propose a unified descrip-
tion to represent UOV and MAYO as instances of it. OV-based schemes are are
type of multivariate-based cryptography, which is based on the Polynomial Sys-
tem Solving (PoSSo) problem of solving systems of m multivariate non-linear
polynomial equations in n variables over finite fields. The PoSSo problem is
proven to be NP-hard even for the simplest case of quadratic equations over the
field with two elements [GJ90] (in its decisional variant). When all polynomials
are of the quadratic form, the PoSSo problem is called the MQ-Problem, and
known attacks against the problem are exponential. The first attempt to build
a cryptographic scheme based on multivariate quadratic polynomials was done
by Ong, Schnorr and Shamir [OSS84], but its security is still based on the dif-
ficulty of factoring. Modern multivariate-based schemes are based on 1988’s C∗

scheme of Matsumoto and Imai [MI88] (broken in [Pat00]), which can be used
both for encryption and signatures. More concretely, modern multivariate-based
schemes are built upon the Oil and Vinegar (OV) scheme [Pat97], a simple and
well-studied scheme. While broken in polynomial time by [KS98] for a specific
set of parameters (n = 2m), a variant of the scheme, called the Unbalanced Oil
and Vinegar scheme (UOV) has withstood all cryptanalysis since 1999 [KPG99].

Oil and Vinegar-based (OV-based) schemes rely on a trapdoor function con-
structed using multivariate quadratic equations. Specifically, the function P :
Fn
q → Fm

q consists of m homogeneous quadratic polynomials in n variables over
a small finite field Fq. The assumption underlying these schemes is that finding
preimages (solving the system of quadratic equations) is computationally hard.
However, if one possesses additional structural information, known as the trap-
door, it becomes efficient to find preimages for any output. The trapdoor, or
secret key, in these schemes is a linear subspace O ⊂ Fn

q of dimension o, such
that for all vectors o ∈ O, the function P vanishes: P(o) = 0. In the case of the
Oil and Vinegar (OV) scheme, this subspace O is structured such that o = m,
and the quadratic map P can be used to verify the validity of a signature for
a message msg using the public key P. This structural property of the secret
subspace O enables the signer, who knows O, to efficiently solve a system of
m linear equations to generate valid signatures. In contrast, for anyone without
knowledge of this trapdoor structure, generating such signatures remains infeasi-
ble. To mitigate known attacks, the Unbalanced Oil and Vinegar (UOV) scheme
suggests using an unbalanced parameter set where n > 2m. This adjustment
helps ensure the security of the scheme by increasing the complexity of solving
the associated system of equations without the trapdoor.

8



3.1 Unbalanced Oil and Vinegar (UOV)

The UOV signature scheme (submitted to the “on-ramp” post-quantum NIST
process [Beu+23c]) is a OV-based scheme, created from the described trapdoor
function with the Full Domain Hash approach (specifically, the Hash-and-Sign
with Retry approach): a signature on a message msg is simply sampled given
a target input t such that P(t) = H(msg||salt), where H is as a cryptographic
hash function that outputs elements in the range of P, and salt is a fixed-length
bit string chosen uniformly at random for every signature. As noted the linear
subspace O ⊂ Fn

q of dimension o (o = m) is the trapdoor. To generate the
trapdoor function, one picks this subspace O uniformly at random and then
picks P uniformly at random from the set of multivariate quadratic maps with
m components in n variables that vanish on O. Note that on top of the qm

artificial zeros in the subspace O (guaranteed by the structure of the trapdoor
function), we expect roughly qn−m natural zeros that do not lie in O: since P
consists of m equations in n variables, the total number of solutions to P(s) = 0
is roughly qn−m.

Following the description of [Beu20], concretely, when given a target t, one
picks a random vector v ∈ Fn

q (a vinegar vector) and solves the system P(v+o) =
t for a vector o ∈ O (the oil vector). For public quadratic maps P, we can define
its differential (or“polar form”[Beu21]) P ′ as P ′(x,y) := P(x+y)−P(x)−P(y),
which is a symmetric bilinear map in x and y. One can then solve the linear
system for o, as:

P(v + o) = P ′ (v,o)︸ ︷︷ ︸
Linear in o

+�
��P(o)︸ ︷︷ ︸

=0

+P(v)︸ ︷︷ ︸
fixed

= t

(Rearranging gives:)

P ′(v,o) = t− P(v)

With success average probability of roughly 1− 1/q over the choice of v the
linear map P ′(v, ·) will be non-singular, which means that the linear system
P(v + o) = t has a unique solution. If it is not the case, one restarts for a new
value of v.

It should be noted that there is no formal security proof of the scheme which
concretely reduces it to a “hard” mathematical problem(s) (though, there has
been efforts on this front [SSH11; CDP22; Cog+24; KX24]). Instead, the security
analysis of UOV relies on looking at all the known attacks and analyzing how
they influence its concrete hardness.

3.2 MAYO

MAYO is a OV-based signature scheme that has been submitted to the“on-ramp”
NIST PQC standardization process [Beu+23b]. As it is OV-based, P has the
same structure as in OV-based schemes with the exception that the dimension of
the linear subspace O on which the trapdoor P evaluates to zero is “too small”,
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i.e., dim(O) = o, with o less than m. As the oil subspace is hidden in Fn
q , if its

size is smaller, it follows that it is harder to search for it. This, in turn, means
that other parameters of the scheme can be reduced without an impact, and that
key sizes can be reduced. As in UOV, to generate the trapdoor function, one first
picks the subspace O uniformly at random and then one picks P uniformly at
random from the set of multivariate quadratic maps with m components in n
variables that vanish in O. Reducing the dimension of O drastically shrinks the
key sizes, but it also means that the signing algorithm will not work anymore as
there are not enough degrees of freedom to always create a signature with high
probability. To solve this problem, in MAYO, P is not used as is in the signature
and verification procedures, and instead relies on a “whipping technique”5. Both
the signer and verifier “whip-up” P into a k-fold larger map P⋆ : Fkn

q → Fm
q ,

with m polynomials in k sets of n variables, where k is a fixed parameter of the
scheme. This, in turn, means that if P vanishes on O, then it follows that P⋆

vanishes on Ok. Formally, P⋆ is defined as:

P⋆(x1, . . . ,xk) :=

k∑
i=1

EiiP(xi) +

k∑
i=1

k∑
j=i+1

EijP ′(xi,xj) ,

For all i ∈ {1, . . . , k} and all j ∈ {i+1, . . . , k}, the matrix Eij ∈ Fm×m
q is fixed

and public. These matrices are chosen such that, under the correspondence be-
tween vectors in Fm

q and polynomials in Fq[X] of degree at mostm, multiplication
by Eij corresponds to multiplication by powers of X modulo an irreducible poly-
nomial f(X) ∈ Fq[X] of degree m. A MAYO signature, S = (s1, . . . , sk) ∈ Fnk

q ,
is considered valid if P⋆(s1, . . . , sk) = H(msg), where H(msg) is the hash of a
message.

To compute P⋆(S), the verifier (see algorithm 5) begins by calculating P(si)
and P ′(si, sj) for all i ∈ {1, . . . , k} and all j ∈ {i+1, . . . , k}, and then combines
them to obtain P⋆(S). Given that matrices Eij represent multiplication by pow-
ers of X (mod f(X)), the verifier can apply the appropriate powers of X to
the polynomials for P(si) and P ′(si, sj) and perform a single reduction modulo
f(X). Similarly, to sign a message (see algorithm 4), the signer partially evalu-
ates P and P ′ on k vectors (v1, . . . ,vk) ∈ Fn−o

q , and combines these results to
determine the coefficients of a linear system, Ax = y, whose solution yields the
signature. Just as in UOV, MAYO has a restart probability in case that the linear
system does not have a solution. It is defined as a probability average-bounded

by qk−(n−o)

q−1 + qm−ko

q−1 . As in UOV, the security analysis of MAYO mostly relies on
looking at all the known attacks and analyzing how they influence its hardness.

3.3 OV-based Schemes Description

In this section, we present a unified representation for both UOV and MAYO (as
OV-based schemes) that allows us to simultaneously thresholdize them. We will
refer to them as OV-based henceforth.
5 Similar to the “whipping techniques” of the SNOVA algorithm [Wan+23; Beu24;
Cab+24].

10



Parameters. OV-based schemes are parameterized by the following:

– q the size of a finite field Fq. In MAYO, in all current proposed parameter
sets, q = 16; in UOV, it varies depending on the security level.

– m, the number of multivariate quadratic polynomials in the public key.
– n, the number of variables in the multivariate quadratic polynomials in the
public key.

– o, the dimension of the oil subspace O.
– k, the whipping parameter, satisfying (k < n − o). This parameter is only

present in MAYO.
– Ei,j ∈ Fm×m

q for (0 ≤ i ≤ j < k), fixed public matrices.

These parameters cover both UOV and MAYO by adopting the following con-
straints:

– UOV is instantiated with o = m, k = 1, and E0,0 = Im.
– MAYO fixes the public matrices (Ei,j)i,j such that

E1,1 E1,2 . . . E1,k

E1,2 E2,2 . . .
...

...
...

. . .
...

E1,k Ek−1,1 . . . Ek,k


is non-singular. They correspond to multiplication by z mod f(Z)

Description. In the following, we formally describe the algorithms that con-
stitute an OV-based signature scheme. Contrary to the specifications of both
MAYO and UOV, we generalize their description such that operations are only
performed over matrices. Note that, for practicality in thresholdizing, we replace
the private seed expansion for generating key material with direct sampling of
values. Although this modifies the concrete execution of the algorithms from
their specifications, it does not impact security, and signature verification re-
mains unchanged. In practice, we can easily revert to seed sampling in the final
protocol for the expansion of pseudo-random matrices in the public key.

Key Generation functionality. The functionality is described in Algorithm 1. In
the following, we note some details of the functionality. To create the trapdoor,
one chooses at random a sequence of m multivariate quadratic polynomials (P)
that vanish on the space spanned by rows of

(
OT Io

)
, where O is sampled at

random and I is the identity matrix. Each polynomial pi(x)i∈m can be uniquely
represented by an upper diagonal matrix:

x⊤

(
P

(1)
i P

(2)
i

0 P
(3)
i

)
x

so that pi(x) = x⊤Pix. Each polynomial pi vanishes in O if:
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OTP
(1)
i O+OTP

(2)
i +P

(3)
i

is skew-symmetric. Hence, one picksP
(1)
i ∈ F(n−o)×(n−o)

q andP
(2)
i ∈ F(n−o)×o

q

uniformly at random, and derives P
(3)
i = Upper(−O⊤P

(1)
i O−O⊤P

(2)
i ). As part

of the key generation process, we also generate a value, denoted by Li, designed
to improve signing efficiency. We’ll delve into its purpose and functionality in
the following section.

Algorithm 1 OV-based.KeyGen()

Output: A key pair (pk, sk).

1: //Derive O and (P(1),P(2)) randomly. Note that this differs from the

specification, as we are not deriving them from a fixed seed.

2: O
$←− F(n−o)×o

q

3: {P(1)
i ,P

(2)
i }i∈[m]

$←− (F(n−o)×(n−o)
q ,F(n−o)×o

q )

4: //Compute P
(3)
i ∈ Fo×o

q .
5: for i from 0 to (m− 1) do

6: P
(3)
i ← Upper(−OT(P

(1)
i O−P

(2)
i ))

7: Li ← ((P
(1)
i +P

(1)T
i )O+P

(2)
i )

8: return (pk = ({P(1)
i ,P

(2)
i ,P

(3)
i }{i∈[m]}), sk = (O, {Li}{i∈[m]})).

Signing. The functionality is described in Algorithm 4. To sign a message, msg ∈
{0, 1}⋆, the signer first hashes msg together with a salt, salt ∈ {0, 1}saltlen (whose
purpose is to protect against side-channel and fault injection attacks). The result
is a target vector t = H(msg||salt) ∈ Fm

q . The signature is comprised of salt and a

preimage s ∈ Fkn
q for t. To compute this preimage s, the signer deterministically

generates a “vinegar” vector v = Expandv(m||salt||O||ctr) ∈ Fn−o
q , where ctr is a

byte-sized counter, initialized at 0x0. Then, the signer solves a system of linear
equations to find a vector x ∈ Fko

q so that s = (v+Ox)||x ∈ Fkn
q is the preimage

of t. If the linear system is singular, ctr is incremented by one, and the signing
starts again with the new v = Expandv(msg||salt||O||ctr). It is noteworthy that
the signer does not have to keep secret how many attempts were required to
find a solution, and it is, thus, not an issue to leak that the attempt failed.
After d failed attempts, the signer aborts: in honest executions, this happens
with an extremely small probability (≤ 2−786 for UOV, for example). For this
functionality, we use the values Li, and, as this value is independent of msg, we
pre-compute it once during key generation, and store it as part of the secret key.

Note that for the signing functionality, we call internally the functions:
OV-based.Compute A, OV-based.Compute y and x← SampleSolution(A,y). The
first and second are algorithms to compute intermediate values, while the latter
is used to find a solution to a system of linear equations of the form Ax = y
for an unknown x. This can be implemented in two ways as noted by [Beu+23d;
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Beu+23f]: (i) directly computing the solution using constant-time Gaussian elim-
ination, or (ii) first computing the right-inverse and multiplying it by the right
side of the equation. The MAYO specification uses the first approach with a ran-
dom vector r ∈ Fko

q that is used to pick each of the qko−m solutions with equal
probability. If the input matrixA does not have rankm, then SampleSolution(A,y, r)
outputs ⊥.

Algorithm 2 OV-based.Compute A({Mi}i∈[m])

Input: Private matrices {Mi}i∈[m], each of dimension Fk×o
q .

Output: Private matrix A ∈ Fm×ko
q .

1: A← 0m×ko, ℓ← 0
2: (M̂i)i∈[k] = 0 ▷ M̂i is in Fm×o

q

3: for t = 0 to k − 1 do
4: for j = 0 to m− 1 do
5: M̂t[j, :] = Mj [t, :]

6: for t = 0 to k − 1 do
7: for j = t to k − 1 do
8: A[:, t ∗ o : (t+ 1) ∗ o] += EℓM̂j

9: if i ̸= j then
10: A[:, j ∗ o : (j + 1) ∗ o] += EℓM̂t

11: ℓ← ℓ+ 1

12: return A

Algorithm 3 OV-based.Compute y({Yi}i∈[m])

Input: Matrices {Yi}i∈[m], each of dimension Fk×k
q .

Output: Vector y ∈ Fm
q .

1: y← 0m ∈ Fm
q

2: ℓ← 0
3: for j from 0 to k − 1 do
4: Uj ← Yj

5: for t from k − 1 to j do

6: u =

{
[(Ya)j,j ]a∈[m] if j = t

[(Ya)j,t + (Ya)t,j ]a∈[m] if j ̸= t

7: y← y +Eℓ · u
8: ℓ← ℓ+ 1

9: return y

Verification. The functionality can be seen in Algorithm 5. The verifier accepts
a signature s = H(msg||salt) by first recomputing t = H(msg||salt) and checking
that P⋆(si) = t.
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Algorithm 4 OV-based.Sign(sk, pk,msg)

Input: Secret key (sk), public key (pk).
Input: Message msg.
Output: Signature Sig = (S, salt).

1: //Parse (O, {Li}{i∈[m]}) and ({P(1)
i }{i∈[m]}, {P(2)

i }{i∈[m]}) from sk and pk.
2: (O, {L}{i∈[m]})← sk

3: {P(1)
i ,P

(2)
i }i∈[m] ← pk

4: //Hash salted message.

5: salt
$← {0, 1}λ+64

6: t← H(msg∥salt) ▷ t ∈ Fm
q

7:

8: V
$← Fk×(n−o)

q

9: for i from 1 to m do
10: Mi ← V · Li ▷ Mi ∈ Fk×o

q

11: Yi ← V ·P(1)
i ·V

T ▷ Yi ∈ Fk×k
q

12: //Build the linear system Ax = y.
13: A← OV-based.Compute A({Mi}i∈[m])
14: y← t− OV-based.Compute y({Yi}i∈[m])
15:

16: //Try to sample a random solution x to Ax = y.
17: x← SampleSolution(A,y) ▷ x ∈ Fko

q ∪ {⊥}
18: if x = ⊥ then
19: go to 7

20: //Output the signature.

21: X← Matrixify(x) ▷ X ∈ Fk×o
q , s.t. x is concatenation of rows of X

22: S← (V + (OXT)T,X) ▷ S ∈ Fk×n
q

23: return Sig = (S, salt).

Algorithm 5 OV-based.Verify(pk,msg,Sig)

Input: Public key (pk).
Input: Message msg.
Input: Signature Sig = (S, salt).
Output: A boolean indicating if the signature is valid.

1: //Parse ({P(1)
i }{i∈[m]}, {P(2)

i }{i∈[m]}, {P(3)
i }{i∈[m]}) from pk.

2: {P(1)
i ,P

(2)
i ,P3

i }i∈[m] ← pk
3: //Hash salted message.

4: t← H(msg∥salt) ▷ t ∈ Fm
q

5: for i from 1 to m do

6: Yi ← S

(
P

(1)
i P

(2)
i

0 P
(3)
i

)
ST

7: y← Compute y({Yi}i∈[m]) ▷ y = P∗(s)
8: return y == t ▷ Accept signature if y = t.
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4 Solving Systems of Linear Equations Obliviously

To enable our threshold constructions, we require a core operation: solving a
system of linear equations in which both the input matrix and the target vector
remain secret (hence, solving in an oblivious manner). This operation, which is
the SampleSolution algorithm (which is used in Line 17 of Algorithm 4), must
sample a solution uniformly at random from the set of all possible solutions.

A simple protocol for this task was proposed by Cozzo and Smart [CS19]
(which we refer to as“One-Sided Masking”) in the case where the matrix defining
the system is square. This simple protocol outputs a solution or ⊥: the latter
occurs in the case that the input matrix has a determinant zero (hence, the
matrix is singular) or the “one-side” masking has a determinant zero (which
happens with probability 1/q). However, as we discuss in Appendix B, their
protocol leaks sensitive information about the input matrix structure if it is
rank-deficient, disclosing far more than mere non-invertibility.

In this work, we address this limitation by proposing a novel approach that,
first, works for general non-square matrices, and, secondly, (and crucial for the
security of our threshold schemes), reveals only the rank of the matrix in cases
of rank deficiency: this significantly reduces the leakage compared to [CS19].

In Section 5.5, we provide explanations as to why this reduced leakage ap-
pears secure for our specific threshold setting. Still, we leave as an open problem
the design of a protocol for linear system solving that, in cases of rank defi-
ciency, reveals only that the matrix is not full rank without additional leakage.
In the following, we begin by defining the target functionality in Section 4.1,
and, in Section 4.2, we follow with the presentation of our concrete protocol.

4.1 Functionality for Solving Systems of Linear Equations in the ABB Model

Recall that our work is set in the ABB model to ensure general applicability.
Consequently, we model the task of sampling solutions to linear systems of equa-
tions as an extended functionality, denoted FABB+Solve, which augments the ABB
model by adding one extra instruction that, precisely, samples solutions to sys-
tems defined by matrix and target vectors that are stored in the ABB’s dictionary
(representing values that are “secret-shared”). To ensure completeness, we pro-
vide a full, detailed description of the functionality, including necessary specifics
regarding indexes of the dictionary. However, as mentioned in Section 2.2, after-
ward (and in particular for our protocol) we simplify the notation substantially
by working at the level of matrices instead of individual values, and omitting
indexes where possible, among other notational simplifications.

The functionality FABB+Solve takes as a parameter a distribution L(r) which
models leakage as a function of the rank r of A. In the concrete protocol, when
A is rank-deficient, the difference r − r+ is revealed (where r+ ← L(r)) rather
than r itself, which potentially provides an extra layer of security.
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Functionality 2: FABB+Solve(L)

The functionality has the exact same operations as FABB, with the addition of:
On input (solve, {idij}s,ti,j=1,1, {idi}

s
i=1, {id′j}tj=1) from the parties, where s ≤ t,

the functionality fetches {(aij , idij)}s,ti,j=1,1 and {(bi, idi)}si=1 and proceeds as
follows:

1. Let A ∈ Fs×t
q : the (i, j) entry of A is aij . Let ∈ Fs

q so that b[i] = bi. Let
r = rank(A).

2. Sample r+ ← L(r). If r − r+ < s, then send (rank-defect, r − r+) to all
parties.

3. Else, sample a uniformly random element x ∈ Ft
q constrained to A ·x = b,

and store (x[j], id′j) for j ∈ [t].

4.2 Concrete Protocol for Solving Systems of Linear Equations

Our protocol to instantiate FABB+Solve is given as Protocol ΠSolve below. Let us
recall that we write JA ·BK← JAK · JBK for when parties use the command mult
in FABB, and similarly we write JA + BK ← JAK + JBK for when they use the
command add. Importantly, we remark that, in an actual instantiation of FABB,
additions will come for free in terms of communication costs while multiplications
require some form of interaction. To emphasize this, in the functionality, we write
“parties compute locally” for additions and other local operations, even though
in the ABB model there is no such thing as “local computation”.

Protocol 1: ΠSolve

The protocol is set in the FABB-hybrid. All the commands except for (solve) are
forwarded directly to FABB.

On input (solve, JAK, JbK), where A has dimensions s×t and JbK has dimension
s, the parties proceed as follows:

1. Parties call JRK← rand(Fs×s
q ) and JSK← rand(Ft×t

q ).
2. Parties call JA · SK← JAK · JSK.
3. Parties call JTK← JRK · JA · SK.
4. Parties open T ← JTK. If r = rank(T) < s then the parties output

(rank-defect, r).
5. Otherwise, let T−1 ∈ Ft×s

q be a right inverse of T, that is, TT−1 = Is×s.
The parties call JA−1K← JSK·T−1 ·JRK. It can be checked that A−1 ∈ Ft×s

q

satisfies A ·A−1 = Is×s.
6. Let β1, . . . ,βt−s ∈ Ft−s

q be a basis for ker(T). The parties call
(Jz1K, . . . , Jzt−sK)← rand(Ft−s

q ).
7. Parties compute locally JzK←

∑t−s
i=1JziK · βi.

8. Parties call JxK← JA−1K · JbK + JSK · JzK
9. Output JxK.
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Theorem 1. Protocol ΠSolve instantiates functionality FABB+Solve(L) in the FABB-
hybrid model, where L(r) is such that:

L(r) =

{
r − rank

(
R ·

[
Ir 0s×(t−r)0(s−r)×r

]
· S
)
| R← Fs×s

q ,S← Ft×t
q

}

Proof. To prove Theorem 1, we describe a simulator S that interacts with the
ideal functionality FABB+Solve(L) and with the adversary, emulating internally
the arithmetic and coin-sampling functionalities, and emulating virtual honest
parties.

Initially, S calls FABB+Solve(L), receiving either (as output) some sharings
JwK of a solution,6 or (rankdef, r − r+) with r − r+ < s and r+ ← L(r). S
proceeds by emulating rand in Item 1 by distributing random shares: this is
possible because the adversary’s shares are independent of the underlying secret.
S also emulates the shared multiplications in Item 2 and Item 3. To match the
real-world distribution in Item 4, S samples invertible matrices U′ ← Fs×s

q and
V′ ← Ft×t

q , adjusting the shares of the honest parties so that the reconstruction
yields T′ = U′ · J · V′, where J is a matrix with r − r+ ones in its diagonal
and zeros elsewhere. We claim this has the same distribution as the real world,
where parties reconstruct T = R · A · S with R ∈ Fs×s

q and S ∈ Ft×t
q as

uniform matrices that are unknown to the adversary, conditioned on the event
rank(T) = r− r+. To see this, as an intermediate step, consider the distribution
of matrices T′′ = X · (R · A · S) · Y, with (X ∈ Fs×s

q ,Y ∈ Ft×t
q ) as random

invertible matrices and (R ∈ Fs×s
q ,S ∈ Ft×t

q ) as uniformly distributed matrices,
conditioned on rank(T′′) = r − r+. We can easily see that X ·R and S ·Y are
uniformly distributed since X and Y are invertible. Hence, T′′ has the same
distribution as T.

Now, let us study in more detail the distribution of T′′: remember that we
condition on rank(T′′) = r− r+, and we observe that rank(T′′) = rank(R ·A ·S)
as (X,Y) are invertible matrices. We can, hence, write R ·A · S = U · J ·V for
some invertible matrices (U,V). Thus, it holds that T′ = R′ · (R · A · S) · S′

with R′ := U′U−1 and S′ := V−1V′. Since U and V are invertible, and U′

and V′ are uniform and invertible matrices unknown to the adversary, it follows
that R′ and S′ are also uniform and invertible matrices that are unknown to
the adversary. Therefore, T′ follows the same distribution as T′′ conditioned on
the value of its rank, and consequently holds the same distribution as T. We
additionally note that the distribution of r− r+ follows exactly the distribution
of ranks of T by choice of L(r).

In case rank(T′) < s, then S returns its rank as leakage, as in the real world.
Now, in the case in which rank(T′) = s and a solution JwK was distributed by
FABB+Solve(L), we proceed as following Let x be the output in the real world,

6 We use w instead of x to distinguish between the output in the ideal and real worlds.
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and note that:

A · x = A · (A−1b+ Sz)

= A · (ST−1Rb) +ASz

= R−1 ·
(
RAS ·T−1 ·Rb+RAS · z

)
= R−1 ·

(
T ·T−1 ·Rb+T · z

)
= R−1 · (Is×s ·Rb+ 0)

= b.

Hence, the output x produced by ΠSolve is indeed a valid solution to the
system. Next, we need to establish that x is uniformly distributed. For this,
note that z is a uniformly random element—and unknown to the adversary—in
ker(T) and hence S · z is a uniformly random element in ker(R ·A) = ker(A).
This implies that A−1 · b+ S · z is a uniformly random element that maps to b
under A, as required.

⊓⊔

5 Threshold OV-based: UOV and MAYO Signatures

Now we describe our main contribution, which consists of threshold variants of
OV-based signatures in the ABB model, as specified by Functionality FABB+Solve

in page 16. Recall that this functionality extends the standard ABB model
(FABB) from Section 2.2 by enabling sampling solutions to “secret-shared” sys-
tems of equations: an essential component in the OV-based signing algorithm. We
begin in Section 5.2 by describing our approach to Distributed Key Generation
(DKG), a straightforward process due to the inherent“arithmetic-friendliness”of
these signature schemes Next, in Section 5.3, we introduce our threshold signing
protocols that generate signatures for a given public message using a “secret-
shared”private key. Before detailing these constructions, we provide an overview
of the functionality we aim to implement in Section 5.1.

5.1 Threshold OV-based Functionality

The functionality FThrSign described below models the threshold version of
OV-based signatures. In an initial “setup phase”, the functionality samples a
secret key, stores it internally, and announces the corresponding public key. Fol-
lowing this, any public message can be provided jointly by the parties and the
functionality will compute a signature for it, returning it to all parties.

As discussed in Section 3, the matrix A may be rank deficient with non-
negligible probability. In a local signature computation, a signer can simply
sample a new V and try again (in Line 7 of Algorithm 4). However, in an MPC
context, the runtime of the protocol must be public and, hence, as a minimum,
we leak the number of attempts until a full rank A is obtained and a solution can
be found. Our protocol, nevertheless, leaks slightly more than just the number of
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attempts: for each failed attempt, we leak a random variable depending on the
rank of the corresponding rank-deficient matrix A. This behavior is captured
by the set Leaks and by distributions L(r) for 0 ≤ r ≤ s. We provide a deeper
discussion on this matter in Section 5.5.

Functionality 3: FThrSign(L)

Setup phase: On input (sample-key) from all the parties for the first time (future
calls to this command are ignored), the functionality proceeds as follows:

1. Run (pk, sk)← OV-based.KeyGen().
2. Internally store the secret key sk = (O, (Li)i∈[m]).

3. Output to all parties the public key pk = (P
(1)
i ,P

(2)
i ,P

(3)
i )i∈[m].

Signing: On input (sign,msg), where msg ∈ {0, 1}∗ is the message to be signed,
the functionality proceeds as follows:

1. Sample salt
$← {0, 1}λ+64 and let t← H(msg∥salt) ∈ Fm

q .
2. Initialize Leaks = [ ].

3. Sample a matrix V← Fk×(n−o)
q .

4. For i ∈ [m]: Compute Mi = V · Li, and Yi = V ·P(1)
i ·V

⊺.
5. Compute A ← OV-based.Compute A({Mi}i∈[m]) and y ← t −

OV-based.Compute y({Yi}i∈[m]). Let r = rank(A) and r+ ← L(r).
6. If r − r+ < m, append r − r+ to Leaks and go to 3.
7. Sample x ∈ Fko

q uniformly at random constrained to Ax = y (by calling
SampleSolution).

8. Compute the signature S ← (V + (OXT)T,X), where X ← Matrixify(x),
and output ((S, salt), Leaks) to all parties.

5.2 Procedure for Distributed Key Generation

In certain threshold applications, like key management via MPC (cf. [Lin20]),
the secret key is held by a single party. This party utilizes a set of additional
parties for threshold signing, effectively safeguarding the key similarly to the
functionality of a hardware security module7. However, several other applica-
tions, like the ones we discuss in Section 8, assume that the full view of the
secret key is unknown to any single party, for which it is paramount to execute a
Distributed Key Generation (DKG) protocol to produce“shares”of the secret key
while only leaking the corresponding public key. In the classical setting, there are
some DKGs for Discrete-Logarithm (DLOG)-based threshold signatures though
few of them arrive at a round-optimal [Kat23], fully-secure [Wik05; Gen+07] so-
lution. In the classical setting, a simple solution sees the parties generate random
shares of a secret key ⟨s⟩, locally use those as exponents to compute ⟨gs⟩, and
7 We note that our construction trivially allows for these use cases, by letting the owner
of the secret key call the input command in FABB+Solve (which in practice corresponds
to distributing secret-shares of the secret key under certain secret-sharing schemes).
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reconstruct gs. However, for a post-quantum setting, like lattice-based signa-
tures schemes, there is no simple solution: parties must sample obliviously from
Gaussian distributions, for example, which is a much harder problem [ENP24].

In this section, we show that, fortunately, the structure of OV-based public
keys allows for very simple and efficient DKG protocols. We describe our DKG
for OV-based schemes in Procedure πKeyGen below.

Procedure 2: πKeyGen

Input: No inputs. The procedure is set in the FABB+Solve-hybrid model.

Output: A public key pk = (P
(1)
i ,P

(2)
i ,P

(3)
i )i∈[m], and a secret-shared secret

key (JOK, JL1K, . . . , JLmK), where O ∈ F(n−o)×o
q and Li ∈ F(n−o)×o

q .

1. Parties call JOK← rand(F(n−o)×o
q ).

2. For i ∈ [m], parties call P
(1)
i ← coin(F(n−o)×(n−o)

q ) and P
(2)
i ←

coin(F(n−o)×o
q ).

3. For i ∈ [m], parties locally compute JP(1)
i ·OK← P

(1)
i · JOK.

4. For i ∈ [m], parties call JOT · (P(1)
i ·O−P

(2)
i )K← JOTK · (JP(1)

i ·OK−P
(2)
i ).

5. Parties compute locally JP(3)
i K← Upper(J−OT(P

(1)
i O−P

(2)
i )K).

6. Parties reveal P
(3)
i .

7. For i ∈ [m], parties compute locally J(P(1)
i + P

(1)T
i )OK ← (P

(1)
i +P

(1)T
i ) ·

JOK.
8. Parties compute locally JLiK← J(P(1)

i +P
(1)T
i )OK + JP(2)

i K for i ∈ [m].

9. All parties output (pk = ({P(1)
i ,P

(2)
i ,P

(3)
i }{i∈[m]}) as the public key, and

they store (JOK, {JLiK}{i∈[m]})) as the “shares” of the secret key.

5.3 Procedure for Threshold Signing

We are now concerned with instantiating the threshold signing procedure of
Functionality FThrSign. Consider a secret key sk = (O, {Li}i∈[m]), where O ∈
F(n−o)×o
q and Li ∈ F(n−o)×o

q , and assume it is stored in the ABB as (JOK, JL1K, . . . , JLmK).
The procedure to securely compute a threshold signature on a public message
msg is given below as Procedure πSign.

Procedure 3: πSign

Input: Public key and secret key stored in FABB+Solve: pk =
(P

(1)
i ,P

(2)
i ,P

(3)
i )i∈[m], sk = (JOK, JL1K, . . . , JLmK). A message msg to be

signed.

Output: A signature S ∈ Fk×n
q on msg.

1. Parties call salt ← coin({0, 1}λ+64) and let t ← H(msg∥salt) ∈ Fm
q . Let

Leaks = [ ].

2. Parties call JVK← rand(Fk×(n−o)
q )

3. For i ∈ [m]: Parties call JMiK← JVK · JLiK.
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4. For i ∈ [m]: Parties call JYiK← JVK ·P(1)
i · JV

⊺K.
5. Compute locally JAK ← OV-based.Compute A({JMiK}i∈[m]) and JyK ←

JtK − OV-based.Compute y({JYiK}i∈[m]). This is possible since both
OV-based.Compute y and OV-based.Compute A are linear functions of their
arguments.

6. Parties call the command solve of FABB+Solve on inputs JAK and JyK. If the
output is (rank-deficient, r), parties append r to Leaks and go to 2. Else, let
JxK be the output.

7. Parties compute locally JXK ← Matrixify(JxK) and call JX · O⊺K ← JXK ·
JO⊺K.

8. Parties compute locally JS′K← JV + (OXT)⊺K, and they open S′ ← JS′K.
9. Parties return as output (Sig = (S, salt), Leaks), where S = (S′ | X) ∈

Fk×n
q .

5.4 Protocol for Instantiating FThrSign

Finally, we compose the procedures πKeyGen and πSign to instantiate the Func-
tionality FThrSign. This is detailed in the protocol ΠThrSign below, along with the
corresponding simulation-based proof in Theorem 2.

Protocol 4: ΠThrSign

The protocol is set in the FABB+Solve-hybrid model.

Setup phase: On input (sample-key), the parties execute πKeyGen. They obtain a
stored secret key JskK and a corresponding public key pk.

Signing: On input (sign,msg) and, if the setup was previously performed, parties
call πSign on input the key pairs andmsg, which results in (Sig = (S, salt), Leaks).
The parties return this result as the output of ΠThrSign.

Theorem 2. Protocol ΠThrSign instantiates FThrSign(L) in the FABB+Solve(L)-hybrid
model.

Proof. To prove Theorem 2, we note first that the proof is rather straightforward
as the protocol simply translates the signature functionality with functionalities
in the FABB model, and leverages FABB+Solve. Formally, we describe a simulator
S that interacts with the ideal functionality FThrSign(L) and with the adver-
sary, emulating internally the arithmetic and coin sampling functionalities, and
emulating virtual honest parties.

Let us start with the simulation of the Distributed Key Generation pro-
cedure πKeyGen. When S is called on input sample-key, it calls the functionality

FThrSign(L) on input sample-key. It obtains a public key pk = (P
(1)
i ,P

(2)
i ,P

(3)
i )i∈[m]

as output. Then, it simulates rand in Item 1 by distributing random shares of
JOK. As in our proof of FABB+Solve, this is possible because the shares of the
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adversary are independent of the underlying secret. Next, for Item 2, S simu-

lates coin by returning the matrices (P
(1)
i ,P

(2)
i )i∈[m] from pk. S is now also able

to simulate the adversary’s shares of JP(1)
i · OK in Item 3 using P

(1)
i and the

previously sampled shares of JOK. Then, Item 4 is again simulated by sampling

shares of JOT ·(P(1)
i ·O−P

(2)
i )K at random for the adversary as they are indepen-

dent of the underlying secret. Since parties are required to reveal P
(3)
i in Item 6,

S also selects honest shares of the above value. To ensure consistency with the

adversary’s shares and P
(3)
i , S simply extends the sharing JOT ·(P(1)

i ·O−P
(2)
i )K

, which is always possible since at most t− 1 shares are given to the adversary.
Simulation of Item 7 and Item 8 follows the same approach, and S samples the
shares of Li at random for the adversary, as they are again independent of the
underlying secret.

Given this simulated procedure, we turn to the simulation of threshold sign-
ing procedure πSign. Whenever S is called on (sign,msg), it calls the functionality
FThrSign(L) on (sign,msg). It obtains as output ((Sig, salt), Leaks). It simulates
the call to coin in Item 1 by returning salt. Note, however, that there is a loop
structure due to the restarts in Item 2. For each iteration of the loop structure, S
emulates ( Item 3, Item 4, Item 5) by sampling random shares of JVK, JMiK, JYiK
(respectively for each item) for the adversary. As these are always fresh shares
and less than t shares are given to the adversary, we ensure that they are in-
dependent of the underlying secret. For each iteration of the loop structure, S
emulates Item 6 as well, by using the table Leak: given a rank r ∈ Leak, we
simulate the solve protocol by returning (rank-defect, r). After going through all
of Leaks, S simulates solve by sampling random shares of JxK. Finally, for Item 8,
S samples random shares of S′ for the adversary and chooses honest shares of
S′ and X to be consistent with the final signature Sig = (S′|X).

⊓⊔

5.5 On the Leakage in FABB+Solve

Recall that our functionality FABB+Solve (see Section 4.2) not only produces a
signature, but also a set of positive integers Leaks representing the rank of each
matrix A that turned out to be rank-deficient. This arises from the difficulty of
determining whether a given secret matrix is full rank without leaking the rank
itself. Now, the “most ideal” functionality that models OV-based signing should
produce the signature, and nothing else. Since our functionality technically leaks
more than such an ideal setting, we discuss the potential implications of this in
terms of the unforgeability of the underlying scheme.

We first note here that many OV-based schemes (including MAYO and UOV)
follow the Hash and Sign with Retry paradigm [KX22]. For a given selection
of random coins in the inverse trapdoor function, and a given message hash, a
preimage of the hash may not necessarily exist. At a high level, the signature
algorithm addresses this challenge by resampling the coins used in the inverse of
the trapdoor function until a valid preimage is found. The term “retry” reflects
this resampling process. Once a preimage is successfully obtained, it is output
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Scheme λ Interval rank(A)

UOV-Ip 128 [41, 44]
UOV-Is 128 [59, 64]
UOV-III 192 [68, 72]
UOV-V 256 [91, 96]

MAYO1 128 [62, 64]
MAYO2 128 [62, 64]
MAYO3 192 [94, 96]
MAYO5 256 [127, 128]

Table 1: Overwhelming bounds on the rank of the matrices A for the different
parameter sets of UOV and MAYO, as reported in [Cog+24].

as the signature for the message, along with the salt if one is used. These retries,
in turn, imply a bias in the sampling and that an amount of information leakage
is present in these schemes, but there does not seem to be any attack that can
take advantage of the information leakage8. In the ROM-based security proof
for MAYO, for example, (see section 5.2 of [Beu+23a]), an adversary can make
at most Qs signing queries to the random oracle. Given the probability average-

bounded by B = qk−(n−o)

q−1 + qm−ko

q−1 if Qs · B ≤ 1/2 , this results in only a
constant factor reduction in advantage, indicating that security of MAYO is not
compromised by much. If Qs · B > 1, the security proof no longer provides
guarantees; but, as pointed out in the specification, there does not seem to be
any attack that can take advantage of the leakage. The same analysis applies
to UOV, but with a bigger leakage due to the larger restarting probability of
approximately B = 1/q. After decades of cryptanalysis, no attacks are known
that can efficiently make use of this leakage. While this leakage is noted in
the specifications of OV-based schemes, it should be further formalized in their
security proofs, for instance with a Renyi divergence argument.

In our threshold cases, note that nothing else besides the rank of the rank-
deficient matrix A is revealed, and furthermore, such a matrix is entirely dis-
carded, and a freshly new matrix V is sampled for a new attempt (leading to a
new matrix A). While leaking the rank A during signing appears like non-trivial
information on the private material, the security of this tweaked scheme follows
rather naturally from the assumptions described and made in OV-based schemes.
Leaking the rank of A slightly increases the information available to an attacker
over just leaking the rank deficiency of A. However, as shown in [Cog+24] and
in Table 1, the rank of A is concentrated in a small interval with overwhelming
probability, and thus we conjecture that leaking it is roughly equivalent to leak-
ing that A is rank deficient. In the continuity of previous works on multivariate

8 In fact, for many OV-based schemes, including UOV and MAYO, leaking that the ma-
trix is not invertible or how many attempts were tried via a timing side-channel is not
an issue as the matrix is discarded anyway [Beu+23e]. Many novel side-channel anal-
yses of these schemes do not take advantage of this information [Aul+23a; Aul+23b].
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cryptography, we thus conjecture that the rank leakage of our threshold solution
does not significantly increase the probability that an adversary could forge a
signature in UOV or MAYO.

6 Verifying OV-based Signatures Obliviously

In Section 5, we described the procedures and protocols that allows us to per-
form threshold signing. In this section, we will focus on the procedure to verify
said threshold signatures, but we will go beyond that and explore other types
of verification in threshold settings. Normally, the task of threshold signatures
schemes is concerned with signing and verifying a public message using secret-
shared keys. However, there are some practical applications that involve verifying
the validity of a secret-shared signature on a secret-shared message. For instance,
in [Ara+21; BJ18], it is noted that general MPC does not put any restriction
on what kind of inputs are allowed: one can ensure, for example, that a given
secret-shared input provided to some MPC computation is valid in regards to a
verification procedure. For example, in the classical millionaire’s problem [Yao82]
where Alice and Bob want to determine who has the highest net worth with-
out revealing anything else (their input), it may be important for the parties to
ensure that the inputs provided are not fabricated but rather that they corre-
spond to the actual net worth. To achieve this, parties supply not only their net
worth but also a signature from an authority (like certified banks) as part of the
MPC input9. Prior to executing the actual protocol, parties run the signature
verification algorithm in MPC to confirm that their inputs are correctly signed.

In this section, we will first introduce the functionality (see Section 6.1) and
protocols needed for threshold verification (see Section 6.2), and, later, expand
them for secret-shared signatures and secret-shared messages.

6.1 Threshold OV-based Functionality: Verification

The functionality FThrVerif described below models the verification of threshold
OV-based signature schemes. The functionality is straightforward as the verifi-
cation procedure of OV-based schemes simply involves a matrix product.

Functionality 4: FThrVerif

The functionality has all the commands as FABB.

On input (verify,msg, pk, Sig), where msg ∈ {0, 1}∗ is the message to be verified,
the functionality proceeds as follows:

9 It is also important to note that the signature must also be in secret-shared form
to maintain confidentiality. Traditional signature schemes do not inherently ensure
the privacy of the message: appending a message to a given signature results in a
signature scheme that lacks privacy.
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1. Parse (S, salt) from Sig and ({P(1)
i }{i∈[m]}, {P(2)

i )}{i∈[m]}, {P(3)
i )}{i∈[m]}

from pk. Let t← H(msg∥salt) ∈ Fm
q .

2. For i from 1 to m, set: Yi ← S

(
P

(1)
i P

(2)
i

0 P
(3)
i

)
ST

3. Set: y← OV-based.Compute y({Yi}i∈[m])
4. Send (accept, Sig) to all parties if y == t. Else, send (reject,Sig).

6.2 Protocol for Threshold Verification

To securely instantiate FThrVerif , the protocol leverages the simplicity of the veri-
fication algorithm in OV-based schemes, which reduces to a matrix product. The
protocol ΠThrVerif is essentially the same as Algorithm 5, where the last step (the
check) leaks no information in case of failure.

6.3 Certifying Inputs in a Threshold Manner

Given the functionality FThrVerif and its instantiation, ΠThrVerif , we consider the
possibility of expanding its scope to verify not only a complete view of the
signature and message but also their secret-shared representations. This exten-
sion would enable the certification of both public values and secret-shared ones,
broadening the functionality’s applicability. We call this ability“certifying inputs
in a threshold manner”.

In a classical setting, in [Ara+21], the authors make use of PS signatures [PS15],
based on the observation that PS signatures are somewhat “MPC-friendly” and
will allow for this certification. OV-based schemes exhibit a limited degree of
this MPC-friendliness (in the verification procedure) as they require messages
to be hashed prior to signing/verifying, and hashing of secret-shared data is
quite costly. However, it is worth mentioning that the verification procedure of
OV-based schemes offers opportunities for enhancing other MPC functionalities
(as we see in FThrVerif). Here, we present a verification procedure that removes
the use of the hash function (and of the salt) and assumes that the target t is
already the result of hashing of secret-shared (msg||salt): t is, hence, defined over
the message space Fm

q directly. The assumption made here is that a trusted party
performs and distributes the hashing of the secret-shared data. Below we define
a functionality FABB+CertInp which has the same features as the ABB model from
Section 2.2 and expands it with the ability for parties to prove that a given
(secret) input is “correct”. Concretely, we model this by allowing the parties to
provide as additional (secret) input a OV-based signature, which the function-
ality verifies using a public key provided by all parties. Crucially, FABB+CertInp

differs from FThrVerif in that fetches the already distributed t, contrary to the
hashing performed in Item 1.
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Functionality 5: FABB+CertInp

The functionality has all the commands as FABB.

On input (cert− verify, IDs, pk), where IDs is a set of IDs, the functionality
proceeds as follows:

1. Parse ({P(1)
i }{i∈[m]}, {P(2)

i )}{i∈[m]}, {P(3)
i )}{i∈[m]} from pk.

2. Use IDs to fetch a stored value t ∈ Fm
q and a stored signature S ∈ Fk×n

q

(without the salt).

3. For i from 1 to m, set: Yi ← S

(
P

(1)
i P

(2)
i

0 P
(3)
i

)
ST

4. Set: y← OV-based.Compute y({Yi}i∈[m])
5. Send (accept, S) to all parties if y == t. Else, send (reject, S).

The protocol (ΠABB+CertInp) for securely instantiating FABB+CertInp is relatively
straightforward given that the verification algorithm in OV-based schemes simply
involves a matrix product. However, a subtlety in this protocol is that, at the
end, the functionality performs an equality check, leaking nothing in case the
check fails. A standard approach in MPC for such equality checks is to compute
the difference between the two values (y and t), multiply this difference by a
secret random value, and then reconstruct the result. If the two original values
are equal, the result will be zero; otherwise, it will appear uniformly random due
to the non-zero product with a random factor, ensuring no information is leaked.
This approach is effective provided the underlying field has size > 2κ, where κ is
a statistical security parameter. In smaller fields, the secret random value could
unintentionally be zero, compromising the reliability of the check.

We adopt a similar approach, tailored to accommodate the relatively small
size of the field Fq (for instance, in MAYO, Fq = 16 for all security levels). First,
recall that in FABB+CertInp, the final equality check (see Item 5) is performed
between two vectors of dimension m over Fq. After subtraction, this becomes a
check for equality to 0 on a vector z ∈ Fm

q , where each entry is ”secret-shared.”
Assume that qm ≫ 2κ, which holds in the OV-based setting10 (in MAYO, for
example, qm = 2256 for security level 1). Let τ be chosen so that qτ ≈ 2κ.
We first compress the equality check by taking τ linear combinations of the
entries in z with public random coefficients from {0, 1}. With probability at
least 1 − 2−κ, if z ̸= 0, then at least one of these linear combinations will be
non-zero. Therefore, it suffices to check whether each of these τ combinations is
zero. Let w ∈ Fτ

q represent these τ linear combinations. We then treat w not
as a vector of dimension τ over Fq but as a single element W in the extension
field Fqτ . This allows us to perform a single zero-check on W , which is feasible
because W now belongs to a sufficiently large field.

Note that for this approach to work, the ABB model must support arithmetic
not only over Fq, but also over the extension field Fqτ . While operations over Fqτ

can be implemented using arithmetic over Fq, a straightforward approach may

10 If qm ≈ 2κ or qm ≪ 2κ, the protocol step involving “subset sums” can be omitted.
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lead to an overhead of approximately m2 for multiplications, as each product
in Fqτ would require about m2 multiplications in Fq. Therefore, we assume the
ABB model can natively support arithmetic over Fqτ , which can be instantiated
directly for better efficiency, avoiding the overhead associated with “emulating”
Fqτ arithmetic via Fq.

Remark 4. If qτ ≪ 2κ, we can simply append zeros. Conversely, if qτ ≫ 2κ,
we can improve the zero-check by taking log(κ) linear combinations of z with

random public 0/1 vectors (sampled using coin). This produces a vector in Flog(κ)
q

that is zero if and only if z = 0, with overwhelming probability.

Protocol 5: ΠABB+CertInp

The protocol is set in the FABB-hybrid. All the commands except for (solve) are
forwarded directly to FABB.
On input (verify, JtK, JSK, pk), the parties execute:

1. Parse ({P(1)
i }{i∈[m]}, {P(2)

i }{i∈[m]}, {P(3)
i }{i∈[m]}) from pk.

2. For i from 1 to m, call: JYiK← JSK

(
P

(1)
i P

(2)
i

0 P
(3)
i

)
JSTK

3. Locally compute: JyK ← JOV-based.Compute y({Yi}i∈[m])K, followed by
JzK← JyK− JtK.

4. For i ∈ [τ ], call (α1i, . . . , αmi)← coin({0, 1}).
5. For i ∈ [τ ], locally compute: JwiK←

∑m
j=1 αji ·JzjK, where z = (z1, . . . , zm).

Let w = (w1, . . . , wm).
6. Interpret JwK as JW K, where W ∈ Fqτ (a local operation). Call JRK ←

rand(Fqτ ).
7. Call JR ·W K← JRK · JW K.
8. Open U ← JR ·W K. If U = 0, output (accept); else, output (reject).

Theorem 3. Protocol ΠABB+CertInp instantiates FABB+CertInp in the FABB-hybrid
model.

Proof (Sketch). We do not provide a full simulation-based proof but instead, out-
line the main security arguments. The protocol mirrors the steps of FABB+CertInp within
the ABB model, with the main subtlety arising in the final equality check. Se-
curity follows from the following observations:

– If there exists any zj ̸= 0, then with probability at least 1− q−τ ≈ 1− 2−κ,
at least one of the linear combinations wj will also be non-zero.

– If W = 0, then R ·W = 0. Otherwise, when W ̸= 0, R ·W appears uniformly
random over Fqτ (which can be simulated). This value is zero only if R = 0,
which occurs with negligible probability, as qτ ≈ 2κ.

7 Instantiation, Costs and Optimizations

Our different protocols and procedures have been described in the ABB model
from Section 2.2, with the goal of making the presentation general and applicable
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to many different security settings and concrete constructions. However, once a
concrete security scenario is considered, instantiating the ABB and applying it
to our protocols lends itself to several optimizations that can noticeably boost
the efficiency of the final result. We discuss optimizations for the ABB model
in Appendix A. In this section, we discuss concrete instantiations and several
optimizations that can be done to our protocols (see Section 7.1). We also discuss
the approximate costs of our protocols (see Section 7.2).

7.1 Optimizations to our Threshold Signature Protocol

Given a concrete security setting (a dishonest or honest majority setting, for
example), we can apply several optimizations to our generic protocol ΠThrSign

that exploits certain specific properties. We discuss them in the following.

Dishonest Majority for ΠThrSign. For a dishonest majority setting, the following
optimizations/observations can be applied toΠSolve, which is used insideΠThrSign.

Matrix triples. As observed in [Che+20; MZ17], Beaver’s approach [Bea92] can
be optimised in the case in which two matrices are being multiplied. In a naive
implementation, multiplying two matrices (A,B) of dimensions n×m and m×ℓ,
respectively, requires a total of nmℓ individual multiplications. Since the ABB
model provides only field multiplications by default, our protocols and pro-
cedures effectively translate matrix products into nmℓ secure multiplications,
leading to significant computational overhead. The key insight from the afore-
mentioned works is that by preparing matrix triples instead of individual triples,
the cost of the online phase can be reduced from O(nmℓ) to O(nm+mℓ).

The technique can be summarized as follows. Let J·K denote the secret-sharing
scheme used (additive secret-sharing with MACs, for example). To multiply
two secret-shared matrices JXK and JYK, the parties first preprocess a triple
(JAK, JBK, JCK), where A and B are random n-by-m and m-by-ℓ matrices, re-
spectively, and C = A ·B. In the online phase, the parties then locally compute
and open the values D ← JXK − JAK and E ← JYK − JBK. Then, they locally
compute the product and output: JX ·YK ← D · JBK + JAK · E +D · E + JCK.
The cost of these openings is O(nm+mℓ), which is substantially lower than the
naive approach O(nmℓ) for meaningful parameter regimes.

The generation of the matrices (JAK, JBK, JCK) can vary in costs depending
on the specific instantiation. While a naive approach would still require O(nmℓ)
products, [Che+20] presents a more efficient method that leverages the structural
properties of these matrix triples, significantly reducing the overall cost compared
to a generic set of nmℓ arbitrary products.

Products by a random matrix. In various stages of our protocol and procedures,
parties need to compute the product between a given secret-shared matrix JXK
and a newly sampled shared matrix JYK, which is generated using the ABB
command rand. Notably, by leveraging the matrix triple concept discussed earlier,
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we can reduce the communication overhead in the online phase by half. The
procedure is as follows. After obtaining JXK, parties generate a matrix triple
(JAK, JBK, JCK) in the offline phase. They then locally compute and open the
valueD← JXK−JAK. Next, they locally compute the product JX·BK← D·JBK+
JCK. By setting JYK := JBK, the parties effectively obtain JX ·YK for a random
Y, as required. Importantly, this approach only incurs the cost of one matrix
opening instead of the two that would be necessary for an implementation.

Honest Majority for ΠThrSign. For an honest majority setting, the following
optimizations/observations can be applied to ΠThrSign.

Late Degree-Reduction for Matrix Products. While matrix triples can be effec-
tively utilized in the honest majority context, an alternative approach that cir-
cumvents the need for preprocessing triples may be more advantageous. As pre-
viously mentioned, in an honest majority scenario, it is common to perform local
multiplications that increase the polynomial degree from t to 2t, followed by de-
gree reduction using double sharings to revert to degree t. A significant benefit of
this method is that it allows the parties to compute dot products with the same
cost as a single product. Specifically, they can locally multiply the terms, raising
the degree to 2t. Instead of individually reducing the degree of each product,
they first sum the degree-2t sharings, yielding degree-2t sharings of the desired
dot product, which can subsequently be reduced. By applying this strategy to
matrix multiplication, the product of an n-by-m with an m-by-ℓ matrix can be
computed with communication complexity proportional to O(n×ℓ), significantly
improving upon the naive complexity O(nmℓ) (and, in fact, this is better than
the matrix triple approach if m is substantially large).

Active Security with Sublinear Overhead. This observation highlights a cru-
cial aspect of our protocols rather than a straightforward optimization. Our
construction is fundamentally based on the ABB model, which inherently re-
quires only secure additions and multiplications. Recent advancements in ac-
tively secure honest majority MPC leverage techniques known as distributed
zero-knowledge [Bon+19], which ensure that the overhead compared to passive
security is minimal (specifically, sublinear in the number of multiplications per-
formed). These techniques are particularly effective for verifying multiplications,
aligning well with our objectives. This is significant, as many other threshold
signature schemes, such as those based on elliptic curve cryptography (e.g.,
ECDSA), necessitate additional operations like group exponentiations. The fact
that OV-based signatures schemes require only additions and multiplications is
a pivotal advantage: it enables the use of novel methodologies in generic MPC.

7.2 Concrete Costs of our Protocols

In the following, we conduct an approximate evaluation of the practicality of our
protocols, focusing on both round complexity and computational time. We cal-
culate the number of rounds required for each protocol (specifically, for ΠThrSign),
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assuming that each depth of multiplication takes one round, coin sampling re-
quires two rounds, and linear and random operations are performed locally. Since
the computation time of these protocols is primarily influenced by the secure
multiplications, we provide an inventory of the multiplications executed.

Key generation: πKeyGen. Looking at the procedure, we see that Item 1 and Item 2
(sampling of random values) take two rounds. The multiplications needed for Item 7
and Item 4 take two additional rounds. A final round is required for Item 6. This
results in a total of 5 rounds for key generation

The multiplications performed in this procedure are: m matrix multiplica-
tions of dimension o× (n− o) and (n− o)× o, and m matrix multiplications of
dimension (n− o)× (n− o) and (n− o)× o.

Signature generation: πSign. Looking at the procedure, we see that Item 1 (sam-
ple of salt) takes two rounds. In parallel, one depth of multiplication is required
for Item 3 and Item 4, which results in an extra round. For the procedure solv-
ing the system of equations (ΠSolve), two depths of multiplications are required
for Item 3 and one extra round to open the value in Item 4. In case T is full-rank,
3 more rounds are required to compute a solution to the system (see from Item 6
onwards). Finally, two rounds are required to transform the solution to the sys-
tem into a signature and reveal it (see Item 8). In total, it takes 9 rounds to
perform signing assuming one finds a solution to the system of equations in the
first try. Assuming a probability of success p of solving the system of equations,
we can compute the average round complexity as 6+ 1

p ·3 (in the current protocol,

we would have p ≈ 1− 2
q ).

The multiplications performed in this procedure are:

– m matrix multiplications of dimension k × (n− o) and (n− o)× o.
– m matrix multiplications of dimension (n− o)× (n− o) and (n− o)× k.
– 2 matrix multiplication of dimension m× ko and ko× ko.
– 1 matrix multiplication of dimension m×m and m× ko.
– 1 multiplication of a matrix of dimension m×m with a vector ∈ m.
– 1 multiplication of a matrix of dimension ko× ko with a vector ∈ ko.
– 1 matrix multiplication of dimension ko× o and o× (n− o).

Verification of inputs: ΠABB+CertInp. Looking at the protocol, we see that it
requires a depth of two multiplications (see Item 2 and Item 7) and one reveal
(see Item 8). In Item 4 coin sampling is called, which can be started in parallel
with the first multiplication. This leads to a 4 round protocol.

The multiplications performed in this procedure are: m matrix multiplica-
tions of dimension k × n and n× k.

The computational cost of these algorithms is primarily driven by the m
multiplications required. Threshold variants of MAYO can be more costly than
those of UOV, due to the parameter k, which directly increases the total multi-
plication cost. For example, at security level 1, MAYO uses k = 9, whereas UOV
consistently sets k = 1.
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8 Applications

8.1 TLS and PKI

While the traditional architecture of TLS is based on a client-server infrastruc-
ture, most architectures used nowadays deviate from this setting. In a content
delivery network (CDN), for example, the aim is to accelerate webpage loading
for data-heavy applications by caching data on CDN servers rather than repeat-
edly fetching it from “original” (or “origin”) server for every request. When TLS
is used in these cases, CDN servers must terminate TLS connections on behalf of
the origin servers, requiring them to sign with the origin server’s long-term pri-
vate key. This setup can be managed in two modes: either the origin server shares
its long-term private key material with CDN servers, or it exposes a functionality
(given by an auxiliary machine) only used for signing purposes. However, either
option introduces security risks as private key material or sensitive operations
are shared between different parties and machines.

An alternative approach is to use threshold signing, so that only shares of
the private key are distributed between parties and machines (hence, the need
for a DKG as described in Section 5.2). As noted by [Her23], in the classical
setting, what seems to be needed for an actual application of threshold signa-
tures in this TLS setting is both practicality and compatibility with existing,
standardized signature schemes, as these schemes are widely used and accessi-
ble. If a post-quantum setting is also needed, a similar approach must be taken
by looking to incorporate practical post-quantum schemes that are proposed for
standardization. As noted in this work, threshold variants of OV-based schemes
seem suitable for this application.

Research has suggested [Wes24; Adr24] that schemes likeMAYO and UOV are
technically feasible to be used in TLS 1.3 connections, though their large pub-
lic keys present challenges. Cloudflare, for instance, observed a 1.5% increase in
median HTTPS handshake latency for every 1 KB of additional server response
data which often includes signatures and public keys. Similarly, Chrome reported
a 4% increase in TLS handshake latency when using ML-KEM, whose public key
signature pair (around 4 KB) increased the ClientHello size by roughly 1 KB.
This increase pushed the ClientHello size beyond the standard Internet MTU
(around 1400 bytes), causing it to fragment over multiple TCP or UDP packets.
These findings suggest that public key and signature sizes significantly impact
network performance, underscoring the importance of keeping sizes manageable
in threshold versions of these schemes. While increased computational times in
threshold variants can be distributed among parties and are less of a bottleneck,
the number of communication rounds might pose practical challenges. Further
studies would be valuable future work to see how the applications of the tech-
niques described in Section 7 can help with them.

8.2 The Tor Network and Onion Services

The Tor network serves millions of users a day, with the aim of providing
anonymity to its users from the websites they connect to, and concealing what
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they are connecting to from their Internet service provider and any other in-
termediary in their path [TTP24]. To maintain security, the network needs to
produce a fresh random value every day in such a way that it cannot be pre-
dicted in advance or somehow influenced by an attacker. This random number is
generated every midnight by the trusted directory authorities11. The technique
used for this procedure, a distributed random generator scheme, is based on
a commit-and-reveal technique. However, it is vulnerable to various attacks as
noted in the Tor security analysis [Pro24].

[Hop14] proposed that directory authorities use a threshold signature scheme
to sign the value H(time-period) in each consensus document (a document that
contains information about all known Tor relays), binding it to a specific time
period. In this approach, each authority generates a publicly verifiable share of
the signature during the voting process. As long as at least ⌈n/2⌉ authorities
are honest, the full signature can be reconstructed by each client. This threshold
signing mechanism ensures that if an adversary does not control at least ⌈n/2⌉
authorities, they cannot forge or compute the signature, which adds security to
the system. This approach has not yet been integrated into the network, primar-
ily due to the lack of a standardized, practical threshold algorithm. OV-based
schemes could offer an alternative, as their practical design and the construction
proposed in Section 5.1 make them promising candidates for wider implementa-
tion.
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jiska, and Marc Stöttinger. “Separating Oil and Vinegar with a Sin-
gle Trace Side-Channel Assisted Kipnis-Shamir Attack on UOV”.
In: 2023.3 (2023), pp. 221–245. doi: 10.46586/tches.v2023.i3.
221-245.

[BCS19] Carsten Baum, Daniele Cozzo, and Nigel P. Smart. “Using TopGear
in Overdrive: A More Efficient ZKPoK for SPDZ”. In: 2019, pp. 274–
302. doi: 10.1007/978-3-030-38471-5_12.

[Bea92] Donald Beaver. “Efficient Multiparty Protocols Using Circuit Ran-
domization”. In: 1992, pp. 420–432. doi: 10.1007/3-540-46766-
1_34.

[Beu20] Ward Beullens. Improved Cryptanalysis of UOV and Rainbow. Cryp-
tology ePrint Archive, Report 2020/1343. https://eprint.iacr.
org/2020/1343. 2020.

[Beu21] Ward Beullens. MAYO: Practical Post-Quantum Signatures from
Oil-and-Vinegar Maps. Cryptology ePrint Archive, Report 2021/1144.
https://eprint.iacr.org/2021/1144. 2021.

[Beu+23a] Ward Beullens, Fabio Campos, Sof́ıa Celi, Basil Hess, and Matthias
Kannwischer. MAYO. MAYO specification. https://pqmayo.org/
assets/specs/mayo.pdf. 2023.

[Beu+23b] Ward Beullens, Fabio Campos, Sof́ıa Celi, Basil Hess, and Matthias
J. Kannwischer. MAYO. Tech. rep. available at https://csrc.

33

https://dadrian.io/blog/posts/pqc-signatures-2024/
https://dadrian.io/blog/posts/pqc-signatures-2024/
https://doi.org/10.6028/NIST.IR.8528
https://doi.org/10.6028/NIST.IR.8528
https://doi.org/10.1007/978-3-030-88238-9_19
https://doi.org/10.4230/LIPIcs.ICALP.2022.8
https://eprint.iacr.org/2023/335
https://eprint.iacr.org/2023/335
https://doi.org/10.46586/tches.v2023.i3.221-245
https://doi.org/10.46586/tches.v2023.i3.221-245
https://doi.org/10.1007/978-3-030-38471-5_12
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/3-540-46766-1_34
https://eprint.iacr.org/2020/1343
https://eprint.iacr.org/2020/1343
https://eprint.iacr.org/2021/1144
https://pqmayo.org/assets/specs/mayo.pdf
https://pqmayo.org/assets/specs/mayo.pdf
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures


nist . gov / Projects / pqc - dig - sig / round - 1 - additional -

signatures. National Institute of Standards and Technology, 2023.
[Beu+23c] Ward Beullens, Ming-Shing Chen, Jintai Ding, Boru Gong, Matthias

J. Kannwischer, Jacques Patarin, Bo-Yuan Peng, Dieter Schmidt,
Cheng-Jhih Shih, Chengdong Tao, and Bo-Yin Yang. UOV — Un-
balanced Oil and Vinegar. Tech. rep. available at https://csrc.
nist . gov / Projects / pqc - dig - sig / round - 1 - additional -

signatures. National Institute of Standards and Technology, 2023.
[Beu+23d] Ward Beullens, Ming-Shing Chen, Shih-Hao Hung, Matthias J. Kan-

nwischer, Bo-Yuan Peng, Cheng-Jhih Shih, and Bo-Yin Yang. Oil
and Vinegar: Modern Parameters and Implementations. Cryptol-
ogy ePrint Archive, Report 2023/059. https://eprint.iacr.
org/2023/059. 2023.

[Beu+23e] Ward Beullens, Ming-Shing Chen, Shih-Hao Hung, Matthias J. Kan-
nwischer, Bo-Yuan Peng, Cheng-Jhih Shih, and Bo-Yin Yang. Oil
and Vinegar: Modern Parameters and Implementations. Cryptol-
ogy ePrint Archive, Paper 2023/059. 2023. url: https://eprint.
iacr.org/2023/059.

[Beu+23f] Ward Beullens, Ming-Shing Chen, Shih-Hao Hung, Matthias J. Kan-
nwischer, Bo-Yuan Peng, Cheng-Jhih Shih, and Bo-Yin Yang. “Oil
and Vinegar: Modern Parameters and Implementations”. In: 2023.3
(2023), pp. 321–365. doi: 10.46586/tches.v2023.i3.321-365.

[Beu24] Ward Beullens. Improved Cryptanalysis of SNOVA. Cryptology ePrint
Archive, Paper 2024/1297. 2024. url: https://eprint.iacr.org/
2024/1297.

[BJ18] Marina Blanton and Myoungin Jeong.“Improved Signature Schemes
for Secure Multi-party Computation with Certified Inputs”. In: 2018,
pp. 438–460. doi: 10.1007/978-3-319-98989-1_22.

[BKP13] Rikke Bendlin, Sara Krehbiel, and Chris Peikert. “How to Share a
Lattice Trapdoor: Threshold Protocols for Signatures and (H)IBE”.
In: 2013, pp. 218–236. doi: 10.1007/978-3-642-38980-1_14.

[BMP22] Constantin Blokh, Nikolaos Makriyannis, and Udi Peled. Efficient
Asymmetric Threshold ECDSA for MPC-based Cold Storage. Cryp-
tology ePrint Archive, Paper 2022/1296. 2022. url: https : / /

eprint.iacr.org/2022/1296.
[Bol03] Alexandra Boldyreva. “Threshold Signatures, Multisignatures and

Blind Signatures Based on the Gap-Diffie-Hellman-Group Signature
Scheme”. In: 2003, pp. 31–46. doi: 10.1007/3-540-36288-6_3.

[Bon+19] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and
Yuval Ishai. “Zero-Knowledge Proofs on Secret-Shared Data via
Fully Linear PCPs”. In: 2019, pp. 67–97. doi: 10.1007/978-3-
030-26954-8_3.

[Bos+24] Cecilia Boschini, Darya Kaviani, Russell W. F. Lai, Giulio Mala-
volta, Akira Takahashi, and Mehdi Tibouchi. Ringtail: Practical
Two-Round Threshold Signatures from Learning with Errors. Cryp-

34

https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://eprint.iacr.org/2023/059
https://eprint.iacr.org/2023/059
https://eprint.iacr.org/2023/059
https://eprint.iacr.org/2023/059
https://doi.org/10.46586/tches.v2023.i3.321-365
https://eprint.iacr.org/2024/1297
https://eprint.iacr.org/2024/1297
https://doi.org/10.1007/978-3-319-98989-1_22
https://doi.org/10.1007/978-3-642-38980-1_14
https://eprint.iacr.org/2022/1296
https://eprint.iacr.org/2022/1296
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/978-3-030-26954-8_3
https://doi.org/10.1007/978-3-030-26954-8_3


tology ePrint Archive, Paper 2024/1113. 2024. url: https : / /

eprint.iacr.org/2024/1113.
[Boy+18] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai.“Com-

pressing Vector OLE”. In: 2018, pp. 896–912. doi: 10.1145/3243734.
3243868.

[Boy+22] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl,
Nicolas Resch, and Peter Scholl. “Correlated Pseudorandomness
from Expand-Accumulate Codes”. In: 2022, pp. 603–633. doi: 10.
1007/978-3-031-15979-4_21.

[Cab+24] Daniel Cabarcas, Peigen Li, Javier Verbel, and Ricardo Villanueva-
Polanco. Improved Attacks for SNOVA by Exploiting Stability under
a Group Action. Cryptology ePrint Archive, Paper 2024/1770. 2024.
url: https://eprint.iacr.org/2024/1770.

[Can01] Ran Canetti. “Universally Composable Security: A New Paradigm
for Cryptographic Protocols”. In: 2001, pp. 136–145. doi: 10.1109/
SFCS.2001.959888.

[Can+02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai.
Universally Composable Two-Party and Multi-Party Secure Com-
putation. Cryptology ePrint Archive, Report 2002/140. https://
eprint.iacr.org/2002/140. 2002.

[Cas+19] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico
Savasta, and Ida Tucker. “Two-Party ECDSA from Hash Proof
Systems and Efficient Instantiations”. In: 2019, pp. 191–221. doi:
10.1007/978-3-030-26954-8_7.

[CDP22] Sanjit Chatterjee, M. Prem Laxman Das, and Tapas Pandit. “Re-
visiting the Security of Salted UOV Signature”. In: 2022, pp. 697–
719. doi: 10.1007/978-3-031-22912-1_31.

[Che+20] Hao Chen, Miran Kim, Ilya P. Razenshteyn, Dragos Rotaru, Yong-
soo Song, and Sameer Wagh. “Maliciously Secure Matrix Multi-
plication with Applications to Private Deep Learning”. In: 2020,
pp. 31–59. doi: 10.1007/978-3-030-64840-4_2.

[Chi+18] Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi,
Yehuda Lindell, and Ariel Nof. “Fast Large-Scale Honest-Majority
MPC for Malicious Adversaries”. In: 2018, pp. 34–64. doi: 10.1007/
978-3-319-96878-0_2.
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A Concrete Protocols for the ABB Model

Different concrete instantiations of the ABB model depend on the adversarial
model. Below, we discuss some concrete protocols that can instantiate the ABB
model depending on the security setting.

Dishonest Majority. In settings where all but one of the parties is corrupt
(dishonest majority), protocols that instantiate the ABB model employ a well-
established approach, typically using additive secret-sharing. In this scheme, a
secret x is shared as x = x1 + · · · + xn across parties. For active security, the
most common technique, introduced in [Dam+13], uses one-time MACs along-
side each shared secret x. This approach includes sharing a global random value
∆ and a “MAC” (∆ · x), which prevents adversarial parties from reconstructing
invalid values maliciously.

Protocols in dishonest majority often rely on computationally expensive tools,
including heavy public-key techniques. A widely adopted strategy to mitigate
these costs is to split the MPC protocol into two phases: an offline phase (also
called a preprocessing phase) and an online phase. The offline phase is performed
before the input (in our case, the message to be signed) is known, while the online
phase occurs once the inputs are available. Beaver [Bea92] demonstrated that by
generating multiplication triples12 in the offline phase, the online phase can be
both information-theoretic and highly efficient, avoiding the need for continuous
public-key cryptography. Modern schemes rely on this technique.

Building on this, several protocols have extended the seminal SPDZ
works [Dam+13; Dam+12]. These protocols generally follow Beaver’s approach
and the SPDZ MAC structure, differing primarily in how they instantiate the
offline phase (i.e., generate the triples). The original SPDZ protocol utilized
somewhat homomorphic encryption for the offline phase, ensuring active secu-
rity via zero-knowledge proofs. MASCOT [KOS16] later improved efficiency by
relying on oblivious transfer for preprocessing. Further enhancements were made
in protocols like Overdrive [KPR18] and TopGear [BCS19], which revisited ho-
momorphic encryption and introduced new zero-knowledge techniques.

A recent development in dishonest-majority MPC protocols is the use of
pseudorandom correlation generators (PCGs) in the offline phase, allowing par-
ties to non-interactively expand a small initial batch of triples into a larger set.
PCGs were introduced by Boyle et al. [Boy+18], with subsequent work providing
further refinements. For an overview of current constructions, we refer readers
to [Boy+22].

Honest Majority. In scenarios where the adversary corrupts only a minority of
the parties, more efficient protocols can be developed that circumvent the need

12 Given a multiplication triple represented as a tuple ([a], [b], [c]) where a, b ∈ F are
random elements that satisfy c = a · b, one can perform private multiplication of x
and y.
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for public-key cryptography. The most widely used tool in this context is Shamir
secret-sharing [Sha79]. In this approach, a secret x is distributed by sampling
a polynomial f of degree ≤ t constrained to f(0) = x. Each party i receives
a share of the form f(i). Importantly, parties can locally multiply their shares,
which allows them to generate new shares represented by a polynomial of degree
up to 2t, which is less than the number of parties. While multiplication triples
can be utilized in the honest majority setting, it is also common to employ the
concept of double-sharings, introduced by Damg̊ard and Nielsen [DN07]. Double-
sharings consist of pairs of random values that are secret-shared: one with degree
t and the other with degree2t. This technique effectively reduces the degree of
locally multiplied sharings from 2t back to t. For references on concretely efficient
protocols in this setting, we refer to the relevant following works [LN17; Chi+18;
NV18; GSZ20; Goy+21; DE21; GPS21; Esc+22].

B “One-Sided Masking” in ΠSolve.

One can consider a simpler and more efficient variant ofΠSolve to return a random
solution of the system A · x = y at the expense of leaking more information in
case that A is rank-deficient (where A ∈ Fs×t

q ) and even more in the case that
A is non-square. This, already proposed by Cozzo and Smart [CS19], consists
of “only masking A on one side”. In concrete terms, we compute T = A · S
(which we define as “right-masking”), and remove R from Line 3. This approach
results in less calls to FRand (item 1), and two less calls to FMult (lines 3 and 5).
However, note that the matrix T = A · S retains the same image space as A
(assuming S is invertible), and in case that A is not full rank, this image space
is non-trivial.13 While this could be safely used for some tweaked parameter sets
of OV-based schemes that guarantee that, with high probability, A is full rank,
this technique raises concerns in the context of the parameter sets proposed for
UOV and MAYO in their specifications for standardization.

Recall that in MAYO and UOV, A is of dimensions m × ko with m ≤ ko.
In a “right-masking” approach for FSolve, if A is full-rank, then A · S (for S ←
Fko×ko
q ) is uniformly distributed among matrices

[
Im 0m×(ko−m)

]
· U(Fko×ko

q )
and is independent of the matrix A. However, whenever A is not full-rank, then
the matrix A · S reveals the image space of A whenever S is invertible, which
is a non-trivial information. For current parameter sets of MAYO and UOV, A
has a non-negligible probability of being rank deficient (at most 2−36 and 2−4

respectively, for security level 1).
To understand this leakage in more depth, take the case with k = 1 (cor-

responding to UOV). Here, any vector x in the kernel of (AT) satisfies for
all
∑m

i=1 L
T
i · v · xi = 0. This relationship can be linked to the trapdoor O:

13 If one masks “on the left”, that is, set T = R · A, a similar issue is encountered,
except this time the kernel of A is leaked instead of its column space. When s < t,
the kernel of A contains more information than its column space. For example, even
if A is full rank, its kernel would be non-trivial while its column space would be the
whole Fs

q.
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∑m
i=1((P

(1)
i + P

(1)T
i ) ·O − P

(2)
i )T · v · xi = 0. Although v remains hidden, this

equation reveals structure in the trapdoor O. As a high level intuition for an
attack, we could define a system to solve for O. For every basis vector x of the
kernel of AT, we add ko new equations. We also add n− o variables to guess v.
Whenever the kernel of AT has a sufficiently high dimension, we thus decrease
the difference between the number of variables and the number of equations,
making the guessing of O easier.

We leave the details and practicality of such an attack as future work. How-
ever, this appears to be a significant concern: masking on only one side should
be avoided when the image space of A that is leaked may be non-trivial.
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