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Abstract. In this paper, we put forward a new practical application
of Inner-Product Functional Encryption (IPFE) that we call Message
Selection functional encryption (M-Sel) which allows users to decrypt
selected portions of a ciphertext. In a message selection functional en-
cryption scheme, the plaintext is partitioned into a set of messages M =
{m1, . . . ,mt}. The encryption of M consists in encrypting each of its
elements using distinct encryption keys. A user with a functional de-
cryption key skx derived from a selection vector x can access a subset
of M from the encryption thereof and nothing more. Our construction is
generic and combines a symmetric encryption scheme and an inner prod-
uct functional encryption scheme, therefore, its security is tied to theirs.
By instantiating our generic construction from a DDH-based IPFE we
obtain a message selection FE with constant-size decryption keys suit-
able for key storage in lightweight devices in the context of Internet of
Things (IoT).

Keywords: Functional Encryption, Inner-Product Functional Encryp-
tion, Adaptive Security.

1 Introduction

1.1 Functional Encryption.

Unlike traditional Public-Key Encryption (PE), which allows a user with a de-
cryption key to uncover the entire encrypted data, Functional Encryption (FE)
allows a finer control over the amount of information accessible to each user
from the ciphertext. For a more meaningful formulation, let c = Encrypt(m) be
a ciphertext and skf a secret key derived from a function f , the decryption of c
using skf reveals nothing more than f(m). The key skf is also called functional
decryption key.

Functional encryption first appeared in the forms of Identity-Based En-
cryption [33,20,15], Searchable Encryption [14,1], Attribute-Based Encryption
[32,25,12] and Predicate Encryption [30,27]. But the formal study of functional
encryption giving its definitions and various security notions was done later by
Boneh, Sahai and Waters [16] and O’Neill [31]. The first FE schemes for less
general functionality was proposed by Abdalla et al. [4]. Their schemes allow
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the evaluation of the inner product 〈x,y〉 of two vectors (x encrypted and y
associated with a decryption key sky). Therefore, these schemes are called Inner-
Product Functional Encryption (IPFE) schemes. The publication of Abdalla et
al. [4] has aroused a lot of interest among researchers [8,10,7] as application fields
are diverse and varied.

Although it is not required that the function associated with the decryption
key be hidden, function hiding is very important since its guarantees that sensi-
tive information on the plaintext do not leak. If f is known, information on the
plaintext m can be gained from f(m). Therefore, the inner-product functionality
with function hiding is investigated in [13,21,22].

The single input inner-product functionality is extended to the multi-user
setting [6,2,18,19,23,29,5]. The latter setting refers to Multi-Input Functional
Encryption (MIFE) and Multi-Client Functional Encryption (MCFE). MIFE
introduced in [24] is designed for scenarios where input data m1, . . . ,mn come
from different sources. Each functional decryption key skf is derived from a
multi-input function f that allows computation of f(m1, . . . ,mn) from encrypted
data Encrypt(m1), . . . ,Encrypt(mn). Also, the requirement that nothing beyond
f(m1, . . . ,mn) is revealed applies. MCFE allows the same computation as MIFE
but for input data coming from clients 1, . . . , n who do not trust each other. Each
client i using a secret encryption key generates a ciphertext ci = Encrypt(mi, t, i)
for a plaintext mi associated with a tag t and an index i. However, MCFE is
more restrictive than MIFE on decryption since a decryption key allows the
computation of f(m1, . . . ,mn) only if the corresponding ciphertexts c1, . . . , cn
are labeled with the same tag t.

1.2 This Work.

This work introduces a new type of functional encryption scheme that we call
Message Selection functional encryption (M-Sel), which has several attractive
real-life applications. For example:

Classified Documents. The document owner identifies the elements of infor-
mation that must be classified and establishes the level of classification for
each such element. A document M = {m1, . . . ,mt} ∈ 2{0,1}

∗
is considered

as a set of messages which can be words, phrases, paragraphs, images, etc.
To encrypt M , one computes C = {Encrypt(sk1,m1), . . . ,Encrypt(skt,mt)}
where each mi,i∈[1..t] is encrypted using a secret key ski. Decrypting C using
a functional key skx derived from a selection vector x ∈ Z`2 yields a subset
of M .

Image Sharing. A cloud server hosts images consisting of set of encrypted lay-
ers (e.g., map layers in Geographic Information System (GIS)). With their
functional decryption key each user accesses a new image obtained by flat-
tening a subset of layers.

Chat room. Participants produce encrypted message flows and each of them
can only view message flows associated to their functional decryption key.
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M-Sel uses a symmetric encryption scheme SE , an inner-product functional
encryption scheme IPFE and hashing. Our construction can succinctly be pre-
sented as follows: the plaintext is partitioned into a set of plaintexts M =
{m1, . . . ,mt} ∈ 2{0,1}

∗
. For each mi ∈ M we pick a random si ∈ Z∗p, derive

a bit string σi ← H(si) and compute ui = SE .Encrypt(σi,mi). Then, a vec-
tor yi in the canonical basis of Z`2 is chosen and si is hidden by computing
vi = IPFE.Encrypt(mpk, si · yi). Therefore, the encryption of mi is (ui, vi). A
user with a functional decryption key skx derived from a selection vector x ∈ Z`2
accesses mi if IPFE.Decrypt(skx, vi) = si. For more details, please refer to the
section 3 of the paper.

We prove that our message selection functional encryption scheme have in-
distinguishable encryptions under a chosen-plaintext attack (IND-CPA) if the
underlying SE and IPFE schemes are IND-CPA secure.

1.3 Related work

Abdalla, Bourse, De Caro and Pointcheval [4] are the first to propose a func-
tional encryption scheme for the inner product functionality. They provided two
simple and efficient constructions for IPFE, one based on the Decision Diffie-
Hellman assumption (DDH) and the other based on the Learning-With-Errors
assumption (LWE). However, the IPFE schemes in [4] are only proven secure in
the selective security model where the adversary is asked to declare its challenge
messages before the setup of the security game. Subsequently, Agrawal et al.
[8] proposed an improvement to attain full security under the DDH, LWE, and
Decision Composite Residuosity (DCR) assumptions. Chosen ciphertext secure
IPFE schemes are first obtained by Benhamouda et al. [11]. Their construction is
based on projective hash functions with homomorphic properties. These propos-
als are of great theoretical interest but are not sufficiently efficient for practical
applications. Since either they require that the inner product 〈x,y〉 be small
enough for the decryption to work or their parameters sizes are impractical.
Finally, Castagnos et al. [17] provided IPFE schemes which are efficient for the
evaluation of unbounded inner products modulo a prime p. The efficiency of
their constructions is obtained by relying on a cyclic group where the DDH as-
sumption holds containing a subgroup where the discrete logarithm problem is
easy.

The message selection functionality can be tackled in the naive way with
traditional Hybrid Public-key Encryption HPE which is capable of encrypt-
ing arbitrary bit strings. Hybrid public-key encryption combines a symmet-
ric encryption scheme SE and a public-key encryption scheme. In this con-
text, the public-key encryption scheme is called key-encapsulation mechanism
KEM = (Gen,Encaps,Decaps).

The naive scheme is the following. For a plaintext M = {m1, . . . ,m`} ∈
2{0,1}

∗
, generate ` independent key pairs {ski, pki}`i=1, set mpk = {pk1, . . . , pk`}

and msk = {sk1, . . . , sk`}. Apply the encryption algorithm of HPE to mpk and
M to obtain C ← {HPE .Encrypt(pki,mi)}`i=1 = {(ci, c′i)}`i=1 where (ci, si) ←
KEM.Encaps(1λ, pki) and c′i = SE .Encrypt(si,mi). A user who wants to access a
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subset of M from C is given the secret keys ski corresponding to the indices of
the selected elements of M .

In table 1 we summarize the comparison between our approach (M-Sel) based
on functional encryption and the naive one based on traditional hybrid public-
key encryption in terms of key size and ciphertext size. For this comparison, we
consider the instantiation M-SelDDH of M-Sel from the DDH-based IPFE scheme
of [8]. M-SelDDH is described in section 5. Without loss of generality, we assume
that the secret keys ski are randomly picked from Zp and the corresponding
public keys pki are picked from a cyclic group G of prime order p.

Table 1. Comparing M-Sel and the naive approach based on HPE . |M | =
∑`
i=1 |mi|.

mpk msk Ciphertext Decryption key
The naive scheme ` log p ` log p ` log p+ |M | O(` log p)

M-SelDDH ` log p 2` log p `(`+ 2) log p+ |M | 2 log p

We note that the size of the ciphertext in M-Sel is quadratic in ` whereas
it is linear in ` in the naive solution. However, it is important to note that
the advantage of our scheme over the naive one is its short and constant size
decryption key which is significantly smaller than that of the naive scheme (which
consists of a set of O(`) secret keys). This makes M-Sel interesting for key storage
in lightweight devices in the context of Internet of Things (IoT).

1.4 Organization

The remainder of this paper is organized as follows. Section 2 is devoted to prim-
itives used as components in M-Sel and various settings of encryption. In section
3 we describe the construction of our message selection functional encryption
scheme. The security analysis of M-Sel is done in section 4. We show an instan-
tiation of M-Sel from the DDH-based IPFE scheme of [8] in section 5. Section 6
concludes this work.

2 Basic Tools

In this section, we recall the syntax of symmetric encryption and of inner-product
functional encryption. We also discuss the setting of multi-recipient encryption
and the setting of multiple encryptions.

2.1 Symmetric Encryption

Definition 1 (Symmetric Encryption Scheme). A symmetric encryption
scheme SE = (KeyGen,Encrypt,Decrypt) consists of 3 polynomial-time algo-
rithms:
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1. KeyGen(1λ) takes as input a security parameter λ and returns a key sk.

2. Encrypt(sk,m) takes as input a key sk and a plaintext message m ∈ {0, 1}∗
and returns a ciphertext c← Encrypt(sk,m; r) ∈ {0, 1}∗ where r is randomly
picked from the coins set associated to SE. We consider r to be a part of the
ciphertext.

3. Decrypt(sk, c) takes as input a key sk and a ciphertext c and returns a mes-
sage m or an error denoted by the symbol ⊥.

For correctness it is required that Decrypt(sk,Encrypt(sk,m)) = m for all m ∈
{0, 1}∗.

A symmetric encryption scheme can be used in the multi-recipient setting
with randomness re-use. We define multi-recipient encryption as follow:

Multi-recipient encryption schemes and randomness re-use. Let SE =
(KeyGen,Encrypt,Decrypt) be a standard symmetric encryption scheme. Con-
sider n receivers, numbered 1, . . . , n each of which has its secret key ski. A
sender picks random coins r1, . . . , rn from the coins set associated to SE and
uses the symmetric encryption scheme SE = (KeyGen,Encrypt,Decrypt) to com-
pute C ← SE .Encrypt((sk1, . . . , skn), (m1, . . . ,mn); (r1, . . . , rn)) = (c1, . . . , cn),
where ci ← SE .Encrypt(ski,mi; ri). Each receiver i recovers the plaintext mi =
SE .Decrypt(ski, ci). The symmetric encryption scheme SE is termed the Multi-
Recipient Encryption Scheme (MRES) associated to SE . When all the coins ri are
equal (ri = r for i ∈ [1 .. n]) that is ci ← SE .Encrypt(ski,mi; r), SE is termed the
Randomness Re-using MRES (RR-MRES) associated to the underlying standard
encryption scheme SE .

The definition of security for multi-recipient encryption schemes first ap-
peared in [28] and was later refined in [9]. Following [9], we define hereunder
indistinguishable encryptions under a chosen-plaintext attack (IND-CPA) exper-
iment for RR-MRES. Let SE = (KeyGen,Encrypt,Decrypt) be a randomness re-
using symmetric multi-recipient encryption scheme, let A be an adversary and
λ be the security parameter. A has access to an oracle which takes a vector of
n ∈ poly(λ) messages and outputs a ciphertext vector.

Experiment ExpIND-RR-CPA
SE,A (λ)

(t, skt+1, . . . , skn)← A(1λ) such that 1 ≤ t ≤ n ∈ poly(λ)
For each i ∈ [1 .. t] do ski ← SE .KeyGen(1λ) EndFor
SK ← (sk1, . . . , skn)

(m1
0, . . . ,m

t
0;m

1
1, . . . ,m

t
1;mt+1, . . . ,mn)← ASE(SK,·)

b
R← {0, 1}

M ← (m1
b , . . . ,m

t
b,mt+1, . . . ,mn)

r
R← Coins
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C ← SE .Encrypt(SK,M ; r)

b′ ← ASE(SK,·)(C)
Return 1 if b′ = b, 0 otherwise

It is mandated that |mi
0| = |mi

1| for all i ∈ [1 .. t]. Coins is the coins set associated
to SE . Notice that when given the security parameter adversary A outputs n− t
secret keys and in the challenge phase in addition to messages m1

0, . . . ,m
t
0 and

m1
1, . . . ,m

t
1 it provides n− t other messages. As indicated in [9], this solves the

problem of insider attacks (A has successfully corrupted n− t users).

Definition 2 (IND-CPA security of RR-MRES). The advantage of any poly(λ)-
time adversary A in the experiment ExpIND-RR-CPA

SE,A (λ) is defined as follow:

AdvIND-RR-CPA
SE,A (λ) = 2 · Pr

[
ExpIND-RR-CPA
SE,A (λ) = 1

]
− 1.

A randomness re-using symmetric multi-recipient encryption scheme SE is IND-CPA
secure, if the function AdvIND-RR-CPA

SE,A (·) is negligible.

Theorem 1 (RR-MRES security [9]). Fix a symmetric-key encryption scheme
SE = (KeyGen,Encrypt,Decrypt) and a polynomial n. Let SE = (KeyGen,Encrypt,
Decrypt) be the corresponding RR-MRES. If SE is reproducible then for any
polynomial-time adversary B, there exists a polynomial-time adversary A, such
that:

AdvIND-RR-CPA
SE,B (λ) ≤ n(λ) · AdvIND-CPA

SE,A (λ)

Also, [9] states that if F is a pseudorandom function family then the sym-
metric encryption scheme CBC[F ] that operates in CBC mode is reproducible.
For the remainder of the paper, we consider SE to be a symmetric encryption
scheme that operates in CBC mode.

2.2 Functional Encryption

Functional Encryption is formalized by Boneh, Sahai and Waters in [16]. It is
related to the notion of functionality. Inner product functional encryption [4] is a
special case of functional encryption and was first provided by Abdalla, Bourse,
De Caro and Pointcheval.

Definition 3 (Functionality). A functionality F defined over (K,M) is a
function F : K × M → Σ ∪ {⊥}, where K is a key space, M is a message
space and Σ is an output space.

Definition 4 (Inner-Product Functional Encryption). Inner-product func-
tional encryption is designed for the functionality F : R` ×R` → R∪ {⊥} such
that F (x,y) = 〈x,y〉 for some ring R and a natural number `. An inner product
functional encryption scheme IPFE = (Setup,KeyDer,Encrypt,Decrypt) consists
of 4 polynomial-time algorithms:
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1. Setup(1λ, 1`) takes as input a security parameter λ and a functionality pa-
rameter ` and returns a master public key mpk and a master secret key
msk.

2. KeyDer(msk,x) takes as input the master secret key msk and a key x ∈ R`
and derives a secret key skx.

3. Encrypt(mpk,y) takes as input the master public key mpk and a plaintext
y ∈ R` and returns a ciphertext cy.

4. Decrypt(mpk, skx, cy) takes as input the master public key mpk, a secret key
skx and a ciphertext cy and returns 〈x,y〉.

For correctness, it is required that for all x ∈ R` and all y ∈ R`, we have
Decrypt(mpk, skx,Encrypt(mpk,y)) = 〈x,y〉 or ⊥ with negligible probability.

The ring R is either Z or Zp for some prime number p. When the inner prod-
uct is computed in Zp, the KeyDer algorithm must monitor secret key requests to
avoid giving an adversary decryption keys associated with linearly independent
vectors. Indeed, an adversary can request secret keys associated to vectors which
are linearly dependent in Zp but linearly independent in Z. Such linearly inde-
pendent secret keys can lead to a solvable system of linear equations where the
unknowns are the components of the master secret key. Therefore, the KeyDer
algorithm must be stateful [8]. Meaning that the adversary obtains redundant
information when trying to collect more than ` − 1 linearly independent secret
keys since the KeyDer algorithm will return a linear combination of the previous
secret keys.

The definition of security for IPFE in the sense of indistinguishable encryp-
tions under a chosen-plaintext attack (IND-CPA) is given via the following ex-
periment. Let A be an adversary.

Experiment ExpIND-CPA
IPFE,A (λ)

Let 1 ≤ q1 ≤ q ∈ poly(λ); ` ∈ poly(λ); S ← ∅; Sx ← ∅
(mpk,msk)← Setup(1λ, 1`)

For each i ∈ [1 .. q1] do
xi ← A(mpk, S)
skxi ← KeyDer(msk,xi)
S ← S ∪ skxi

Sx ← Sx ∪ xi
EndFor

B
First phase of secret key
queries,xi ∈ R`.

(y0,y1)← A(mpk, S) BChallenge phase.

b
R← {0, 1}

C ← Encrypt(mpk,yb)
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For each i ∈ [q1 .. q] do
xi ← A(mpk, S,C)
skxi ← KeyDer(msk,xi)
S ← S ∪ skxi

Sx ← Sx ∪ xi
EndFor

B
Second phase of secret key
queries.

b′ ← A(mpk, S,C)
Return 1 if b′ = b, 0 otherwise

It is mandated in the challenge phase and in the second phase of secret key
queries that 〈xi,y0〉 = 〈xi,y1〉 for all xi ∈ Sx.

Definition 5 (IND-CPA security of IPFE). The advantage of any poly(λ)-time
adversary A in the experiment ExpIND-CPA

IPFE,A (λ) is defined as follow:

AdvIND-CPA
IPFE,A (λ) = 2 · Pr

[
ExpIND-CPA

IPFE,A (λ) = 1
]
− 1.

An inner-product functional encryption scheme IPFE has indistinguishable en-
cryptions under a chosen-plaintext attack, if the function AdvIND-CPA

IPFE,A (·) is negli-
gible.

Multiple Encryptions. Using the same master public key to encrypt multiple
messages is termed Multiple Encryptions (ME). The security of ME is related
to that of the based encryption scheme. Hereunder, we define indistinguishable
encryptions under a chosen-plaintext attack (IND-CPA) experiment for multiple
encryptions. Let FE = (Setup,KeyDer,Encrypt,Decrypt) be a functional encryp-
tion scheme for the functionality F , let K be the key space, letM be the message
space, let A be an adversary and λ be the security parameter.

Experiment ExpIND-ME-CPA
FE,A (λ)

Let 1 ≤ q1 ≤ q ∈ poly(λ); t ∈ poly(λ); S ← ∅; Sk ← ∅
(mpk,msk)← Setup(1λ)

First phase of secret key queries B
Syntactically identical
to that of ExpIND-CPA

IPFE,A (λ).

(m1
0, . . . ,m

t
0;m

1
1, . . . ,m

t
1)← A(mpk, S) BChallenge phase.

b
R← {0, 1}

C ← (Encrypt(mpk,m1
b), . . . ,Encrypt(mpk,m

t
b))

Second phase of secret key queries B
Syntactically identical
to that of ExpIND-CPA

IPFE,A (λ).
b′ ← A(mpk, S,C)
Return 1 if b′ = b, 0 otherwise
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It is mandated in the challenge phase and in the second phase of secret key
queries that F (ki,m

j
0) = F (ki,m

j
1) for all ki ∈ Sk ⊂ K and |mj

0| = |m
j
1|,m

j
0,m

j
1 ∈

M for j ∈ [1 .. t].

Definition 6 (IND-CPA security of ME). The advantage of any poly(λ)-time
adversary A in the experiment ExpIND-ME-CPA

FE,A (λ) is defined as follow:

AdvIND-ME-CPA
FE,A (λ) = 2 · Pr

[
ExpIND-ME-CPA
FE,A (λ) = 1

]
− 1.

A functional encryption scheme FE has indistinguishable multiple encryptions
under a chosen-plaintext attack, if the function AdvIND-ME-CPA

FE,A (·) is negligible.

Theorem 2 (Multiple encryptions security [26]). If a public-key encryp-
tion scheme PE is CPA-secure, then it also has indistinguishable multiple en-
cryptions.

3 Our Message Selection FE scheme

In this section, we describe our functional encryption scheme for the message
selection functionality.

Definition 7 (Message Selection Functionality). Let S be the set con-
taining finite sets of messages such that for every M ∈ S , 2M ⊂ S . Consider
2M = {Mw}w∈{0,1}|M| as an indexed family of sets. The message selection func-
tionality is the function F : {0, 1}n ×S → S ∪ {⊥} such that F (w,M) = Mw

where n is a natural number.

Let SE = (KeyGen,Encrypt,Decrypt) be a symmetric encryption scheme operat-
ing in CBCmode with key length κ. Let IPFE = (Setup,KeyDer,Encrypt,Decrypt)
be an inner-product functional encryption scheme. The construction of M-Sel is
as follow:

Setup(1λ, 1`). This algorithm performs the following steps:

1. Choose a cryptographic hash function H : Zp → {0, 1}κ for some prime
number p > 2λ.

2. Call IPFE.Setup(1λ, 1`) to obtain a master secret key msk and a master
public key mpk.

KeyDer(msk,x) derives from x ∈ Z`2 a functional key skx ← IPFE.KeyDer(msk,x).

Encrypt(mpk,M). To encrypt a plaintext M = {m1,m2, . . . ,mt} ∈ 2{0,1}
∗
this

algorithm performs the following steps:

1. Let S ← ∅.
2. Let B` be the canonical basis of Z`2.
3. Pick a random coins r from the coins set associated to SE .
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4. For each i ∈ [1 .. t] do:
4.1. Pick a random number si ∈ Z∗p\S; S ← S ∪ si.
4.2. Compute ui ← SE .Encrypt(H(si),mi; r).
4.3. Choose yi ∈ B` and compute vi ← IPFE.Encrypt(mpk, si · yi).

5. Return the ciphertext C = (r, u1, v1, . . . , ut, vt).

Decrypt(skx, C). Using skx to decrypt the ciphertext C = (r, u1, v1, . . . , ut, vt),
this algorithm performs the following steps:

1. Let Mx = ∅.
2. For each i ∈ [1 .. t] do:
2.1. Compute ρi = IPFE.Decrypt(skx, vi). Note that ρi = 〈x, si · yi〉 is either

equal to 0 or si.
2.2. If ρi = 0 then return to step 2.1. for the next value of i. Otherwise,

compute mi = SE .Decrypt(H(ρi), ui; r).
2.3. If mi = ⊥ then return to step 2.1. for the next value of i. Otherwise, Set

Mx ←Mx ∪mi

3. Return the plaintext Mx.

Correctness. For each i ∈ [1 .. t], we have that

SE .Decrypt
[
H
[
IPFE.Decrypt(skx, vi)

]
, ui; r

]
= SE .Decrypt

[
H
[
〈x, si · yi〉

]
, ui; r

]
=

{SE .Decrypt(H(0), ui; r
)

or
SE .Decrypt

(
H(si), ui; r

)
=

{⊥
or
mi

Therefore, Decrypt(skx, C) ∈ 2M .

4 Security against Chosen-Plaintext Attack

Here, we prove that M-Sel has indistinguishable encryptions under a chosen-
plaintext attack assuming the underlying symmetric CBC encryption scheme SE
and inner product functional encryption scheme IPFE are IND-CPA secure.

The experiment ExpIND-CPA
M-Sel,A (λ) by which we define IND-CPA security for M-Sel

is syntactically identical to the experiment ExpIND-ME-CPA
FE,A (λ) given in section 2.2

except for some slight differences presented below:

1. The key space is Z`2.
2. F is the message selection functionality.
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3. In the challenge phase, adversary A chooses two distinct sets of messages
M0 ← {m1

0, . . . ,m
t
0}, M1 ← {m1

1, . . . ,m
t
1} ∈ 2{0,1}

∗
subject to the restric-

tion that, F (xi,M0) = F (xi,M1) for all xi ∈ Sx ⊂ Z`2.

Theorem 3. If the underlying SE and IPFE schemes are IND-CPA secure, then
M-Sel is IND-CPA secure.

We recall the definition of perfect secrecy.

Definition 8. (Perfectly Secret [26]). An encryption scheme E = (KeyGen,
Encrypt,Decrypt) with message spaceM is perfectly secret if for every probability
distribution overM every message m ∈M, and every ciphertext c ∈ C for which
Pr[C = c] > 0:

Pr[M = m|C = c] = Pr[M = m].

(The requirement that Pr[C = c] > 0 is a technical one needed to prevent condi-
tioning on a zero-probability event.)

Proof (of theorem 3). Let A be an IND-CPA adversary that has advantage ε(λ)
against M-Sel by making q ∈ poly(λ) secret key queries. Since M-Sel uses SE and
IPFE, we consider the following extreme cases:

– Case 1: the underlying IPFE seems perfectly secret. Therefore, the security of
the RR-MRES based on the underlying SE reduces to the security of M-Sel.
We present an adversary B that interacts with A to break the SE-based
RR-MRES.

– Case 2: the underlying SE primitive seems perfectly secret. Therefore, the
security of the ME based on the underlying IPFE reduces to the security of
M-Sel. We present an adversary C that interacts with A to break the IPFE
multiple encryptions.

Let F be the message selection functionality.

Case 1. Let SE = (KeyGen,Encrypt,Decrypt) be the RR-MRES associated to
SE . Adversary B challenges the IND-CPA security of SE . Let λ be the security
parameter and ` be the functionality parameter of the underlying IPFE. Consider
the following interactions between B and A:

(t, skt+1, . . . , skn)← B(1λ) such that 1 ≤ t ≤ n ∈ poly(λ)

For each j ∈ [1 .. t] do: skj
R← SE .KeyGen(1λ) EndFor Ê

SK ← (sk1, . . . , skn)

(mpk,msk)← M-Sel.Setup(1λ, 1`) Ë
Let 1 ≤ q1 ≤ q ∈ poly(λ); S ← ∅;Sx ← ∅
For each i ∈ [1 .. q1] do

xi ← A(mpk, S)
skxi ← M-Sel.KeyDer(msk,xi)
S ← S ∪ skxi

Sx ← Sx ∪ xi
EndFor

B
First phase of secret
key queries. xi ∈ Z`2.
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({m1
0, . . . ,m

t
0}, {m1

1, . . . ,m
t
1})← A(mpk, S) B Challenge phase.

M0 ← {m1
0, . . . ,m

t
0}

M1 ← {m1
1, . . . ,m

t
1}

(m1
0, . . . ,m

t
0;m

1
1, . . . ,m

t
1;mt+1, . . . ,mn)← BSE(SK,·)(M0,M1) Ì

b
R← {0, 1}

M ← (m1
b , . . . ,m

t
b,mt+1, . . . ,mn)

r
R← Z∗p

(r, u1, . . . , ut, ut+1, . . . , un)← SE .Encrypt(SK,M ; r) Í
C ← (r, u1, . . . , ut, ut+1, . . . , un)

Let B` be the canonical basis of Z`2
For each j ∈ [1 .. t] do

sj
R← Z∗p; yj

R← B`
vj ← M-Sel.IPFE.Encrypt(mpk, sj · yj)

EndFor
(r, u1, v1, . . . , ut, vt)← BSE(SK,·)(M0,M1, C)

For each i ∈ [q1 .. q] do
xi ← A(mpk, S, (r, u1, v1, . . . , ut, vt))
skxi

← M-Sel.KeyDer(msk,xi)
S ← S ∪ skxi

Sx ← Sx ∪ xi
EndFor

B
Second phase of secret
key queries.

b′ ← A(mpk, S, (r, u1, v1, . . . , ut, vt))
b′ ← BSE(SK,·)(M0,M1, C, b

′)

Ê The challenger sets up the IND-RR-CPA security game for B.
Ë B sets up the IND-CPA security game of M-Sel and gets ready to answer to

secret keys queries from A.
Ì B outputs its challenge messages.
Í The challenger outputs the challenge ciphertext for B who also prepares the

challenge ciphertext for A.

It is mandated in the challenge phase and in the second phase of secret key
queries that F (xi,M0) = F (xi,M1) for all xi ∈ Sx and M0,M1 ∈ 2{0,1}

∗
.

Assuming that the underlying IPFE primitive seems perfectly secret, we see
that adversary B interacts with A as the latter would interact with the challenger
during a chosen plaintext attack against M-Sel. Therefore, we have:

AdvIND-RR-CPA
SE,B (λ) = AdvIND-CPA

M-Sel,A (λ) (1)

Case 2. Let IPFE = (Setup,KeyDer,Encrypt,Decrypt) be an inner-product func-
tional encryption scheme. Adversary C challenges the IND-CPA multiple encryp-
tions security of IPFE. Let λ be the security parameter and ` be the functionality
parameter of the underlying IPFE. Consider the following interactions between
C and A:
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Let 1 ≤ q1 ≤ q ∈ poly(λ); t ∈ poly(λ); S ← ∅;Sx ← ∅
(mpk,msk)← IPFE.Setup(1λ, 1`) Ê

For each i ∈ [1 .. q1] do
xi ← A(mpk, S)
skxi

← IPFE.KeyDer(msk,xi)
S ← S ∪ skxi

Sx ← Sx ∪ xi
EndFor

B
First phase of secret
key queries. xi ∈ Z`2.

({m1
0, . . . ,m

t
0}, {m1

1, . . . ,m
t
1})← A(mpk, S) B Challenge phase.

M0 ← {m1
0, . . . ,m

t
0}

M1 ← {m1
1, . . . ,m

t
1}

Let B` be the canonical basis of Z`2 Ë

r
R← Z∗p

For each j ∈ [1 .. t] do

yj
R← B`

sj0
R← Z∗p; ej0 ← sj0 · yj

sj1
R← Z∗p; ej1 ← sj1 · yj

ui ← M-Sel.SE .Encrypt(H(sj0),m
j
0; r)

EndFor

(e10, . . . , e
t
0; e

1
1, . . . , e

t
1)← C(mpk,M0,M1) B

〈xi, ei0〉 = 〈xi, ei1〉
for all xi ∈ Sx.

b
R← {0, 1}

(v1, . . . , vt)←
(
IPFE.Encrypt(mpk, e1b), . . . , IPFE.Encrypt(mpk, e

t
b)
)

Ì
C ← (v1, . . . , vt)
(u1, v1, . . . , ut, vt)← C(mpk,M0,M1, C) Í

For each i ∈ [q1 .. q] do
xi ← A(mpk, S, (u1, v1, . . . , ut, vt))
skxi ← IPFE.KeyDer(msk,xi)
S ← S ∪ skxi

Sx ← Sx ∪ xi
EndFor

B
Second phase of secret
key queries.

b′ ← A(mpk, S, (u1, v1, . . . , ut, vt))
b′ ← C(mpk,M0,M1, C, b

′)

Ê The challenger sets up the IND-ME-CPA security game and gets ready to
answer to secret keys queries from C who itself gets those secret key queries
from A.

Ë C prepares the challenge ciphertext for A.
Ì The challenger outputs the challenge ciphertext for C.
Í C outputs the challenge ciphertext for A.

It is mandated in the challenge phase and in the second phase of secret key
queries that F (xi,M0) = F (xi,M1) for all xi ∈ Sx and M0,M1 ∈ 2{0,1}

∗
.
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Assuming that the underlying SE primitive seems perfectly secret, we see
that adversary C interacts with A as the latter would interact with the challenger
during a chosen plaintext attack against M-Sel. Therefore, we have:

AdvIND-ME-CPA
IPFE,C (λ) = AdvIND-CPA

M-Sel,A (λ) (2)

By summing up equations 1 and 2, we obtain:

AdvIND-CPA
M-Sel,A (λ) =

1

2
· AdvIND-RR-CPA

SE,B (λ) +
1

2
· AdvIND-ME-CPA

IPFE,C (λ)

From theorem 1, we know that if a symmetric encryption scheme operates in CBC
mode and is IND-CPA secure then the corresponding RR-MRES is also IND-CPA
secure. Therefore, AdvIND-RR-CPA

SE,B (λ) is negligible. From theorem 2, we also have
AdvIND-ME-CPA

IPFE,C (λ) is negligible. Thus, AdvIND-CPA
M-Sel,A (λ) is negligible and we conclude

that M-Sel is IND-CPA secure. ut

5 Instantiation from a DDH-based IPFE scheme

Instantiation of M-Sel from IPFE schemes of [17] which compute efficiently the
inner product is straightforward. Therefore, we give here an instantiation from
the DDH-based IPFE scheme of [8] for which the inner product is hard to com-
pute. That DDH-based IPFE scheme (see figure 1) can give short ciphertexts and
keys using elliptic curves [3].

Algorithm Setup(1λ, 1`)

1. Choose a cyclic group G of prime
order p > 2λ with generators g, h

2. s = (s1, . . . , s`)
R← Z`p

3. t = (t1, . . . , t`)
R← Z`p

4. For each i ∈ [1 .. `]
compute hi = gsi · hti

5. Return
msk = (s, t),
mpk = (G, g, h, {hi}`i=1)

Algorithm Encrypt(mpk,y)

y = (y1, . . . , y`) ∈ Z`p

1. Pick r R← Z∗
p

2. Compute C = gr, D = hr

3. Compute {Ei = gyi · hri }`i=1

4. Return Cy = (C,D,E1, . . . , E`)

Algorithm KeyDer(msk,x)

x = (x1, . . . , x`) ∈ Z`p

1. Compute α =
∑`
i=1 si · xi

2. Compute β =
∑`
i=1 ti · xi

3. Return skx = (α, β)

Algorithm Decrypt(mpk, skx, Cy)
skx = (α, β)

1. Compute
Ex = (

∏`
i=1E

xi
i )/(Cα ·Dβ)

2. Return 〈x,y〉 = logg(Ex)

Fig. 1. DDH-based IPFE scheme of Agrawal et al. [8].
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To suit our M-Sel scheme, we customize the decryption algorithm so that it
does not compute the actual value of 〈x,y〉 but returns Ex = g〈x,y〉. In the re-
mainder of the paper, to avoid confusion, we denote Decrypt? this customization
of Decrypt. This immunizes M-Sel against the main drawback of DDH-based
IPFE schemes that is the inner product 〈x,y〉 must be small enough for the
decryption to work.

DDH-based M-Sel. In the description hereunder of M-SelDDH, we only show
steps in our generic construction (in section 3) that change.

Let SE = (KeyGen,Encrypt,Decrypt) be a symmetric encryption scheme op-
erating in CBC mode with key length κ. Let IPFEDDH = (Setup,KeyDer,Encrypt,
Decrypt) be the DDH-based IPFE scheme of [8]. Let G be a cyclic group of prime
order p > 2λ with generators g, h.

Setup(1λ, 1`).

1. Choose a cryptographic hash function H : G→ {0, 1}κ.

KeyDer(msk,x). No changes.

Encrypt(mpk,M). M = {m1,m2, . . . ,mt} ∈ 2{0,1}
∗
.

4.2. Compute ui ← SE .Encrypt(H(gsi),mi; r).

Decrypt(skx, C). C = (r, u1, v1, . . . , ut, vt).

2.1. Compute ρi = IPFEDDH.Decrypt
?(skx, vi). Note that ρi = g〈x,si·yi〉 is

either equal to the identity element 1G or gsi .
2.2. If ρi = 1G then return to step 2.1. for the next value of i. Otherwise,

compute mi = SE .Decrypt(H(ρi), ui; r).

6 Conclusion

We proposed a generic construction for the message selection functionality called
M-Sel that achieves security against adaptive adversaries. M-Sel can be efficient
an practical when instantiated with an efficient inner-product functional encryp-
tion (IPFE) scheme. An instantiation of M-Sel from a DDH-based IPFE was also
presented. The latter instantiation has short and constant size decryption key
thus, suitable for key storage in lightweight devices in the context of Internet of
Things (IoT).

Acknowledgements. We would like to thank the anonymous reviewers for
providing helpful comments and suggestions about this work.
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