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Abstract

We propose plausible post-quantum (PQ) oblivious pseudorandom functions (OPRFs) based
on the Power Residue PRF (Damgård CRYPTO’88), a generalization of the Legendre PRF. For
security parameter λ, we consider the PRF Goldk(x) that maps an integer x modulo a public
prime p = 2λ · g + 1 to the element (k + x)g mod p, where g is public and log g ≈ 2λ.

At the core of our constructions are efficient novel methods for evaluating Gold within two-
party computation (2PC-Gold), achieving different security requirements. Here, the server Ps

holds the PRF key k whereas the client Pc holds the PRF input x, and they jointly evaluate
Gold in 2PC. 2PC-Gold uses standard Vector Oblivious Linear Evaluation (VOLE) correlations
and is information-theoretic and constant-round in the (V)OLE-hybrid model. We show:

• For a semi-honest Ps and a malicious Pc: a 2PC-Gold that just uses a single (V)OLE
correlation, and has a communication complexity of 3 field elements (2 field elements if
we only require a uniformly sampled key) and a computational complexity of O(λ) field
operations. We refer to this as half-malicious security.

• For malicious Ps and Pc: a 2PC-Gold that just uses λ
4 +O(1) VOLE correlations, and has

a communication complexity of λ
4 +O(1) field elements and a computational complexity of

O(λ) field operations.

These constructions support additional features and extensions, e.g., batched evaluations with
better amortized costs where Pc repeatedly evaluates the PRF under the same key.

Furthermore, we extend 2PC-Gold to Verifiable OPRFs and use the methodology from Beullens
et al. (ePrint’24) to obtain strong OPRF security in the universally composable setting.

All the protocols are efficient in practice. We implemented 2PC-Gold—with (PQ) VOLEs—
and benchmarked them. For example, our half-malicious (resp. malicious) n-batched PQ OPRFs
incur about 100B (resp. 1.9KB) of amortized communication for λ = 128 and large enough n.
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1 Introduction

OPRF. Pseudorandom functions [GGM86] (PRFs) are essential tools in cryptography. Modern
applications often require the evaluation of PRFs in a distributed and privacy-preserving manner.
This leads to the notion of oblivious pseudorandom functions (OPRFs) [FIPR05, NR97].

Concretely, consider a PRF F , a server Ps that holds a PRF key k, and a client Pc that holds
a PRF input x. Through the OPRF protocol, Pc learns the output Fk(x) without obtaining any
additional information about k while Ps learns nothing about x (including nothing about the
output Fk(x)). Alternatively, an OPRF can be viewed as a specialized instance of secure two-party
computation (2PC) [Yao86] tailored for evaluating a PRF.

It is important to note that OPRFs are sometimes defined with more stringent requirements
than a standard 2PC over a PRF, i.e., they demand additional properties. However, the core
component—2PC over PRFs—underlies also the stronger notions and we focus on the design of such
a component. We then show how to extend the design to obtain stronger forms of OPRFs.
Post-Quantum OPRF. Currently, the most widely deployed OPRF protocols rely on Diffie-Hellman-
type assumptions, with the 2HashDH OPRF [JKK14] being a notable example. While these protocols
are lightweight and highly efficient, they are insecure against quantum adversaries [Sho94, Sho99].
In light of the potential threats posed by quantum computing, it is imperative to develop OPRF
protocols that remain secure in the quantum era.

Over the past five years, numerous proposals for post-quantum (PQ) OPRFs have emerged,
e.g., [ADDS21, BKW20, Bas23, ADDG24, SHB23, HHM+24, DGH+21, APRR24, FOO23, BDFH24,
AG24, ESTX24]. However, a significant efficiency gap remains: these PQ OPRFs are primarily of
theoretical interest and are not yet practical for widespread deployment. Addressing this efficiency
gap is crucial for practical adoption of PQ OPRFs, and our work focuses on constructing novel PQ
OPRFs to help bridge this gap.
Challenges. Constructing an efficient PQ OPRF presents two primary and intertwined challenges.
First, it requires identifying or designing a suitable PQ PRF. Second, it involves developing methods
to efficiently evaluate the chosen PQ PRF within 2PC based on PQ assumptions.

1.1 Our Results

In this work, we aim to bridge the efficiency gap by leveraging the Power Residue PRF [Dam90], a
generalization of the Legendre PRF. Let λ denote the security parameter (e.g., λ = 128). To get an
O(λ)-bit output, we consider the following PRF:

Fk(x) := (k + x)g mod p

where p = 2λ · g + 1 is a non-secret prime, k ∈ Fp is the key, and x ∈ Fp is the input to the PRF.
Crucially, when p is sufficiently large (log p ≈ 3λ), there are currently no known quantum attacks

against this PRF.1

Gold. We name this PRF Gold since it has a private base and a public exponent, whereas the
well-known discrete logarithm has a public base and a private exponent—reversing the order of
characters in dlog gives Gold.

1There exists an efficient quantum distinguisher if it is allowed to make quantum queries [RS04, vDH00]. In this
work, we restrict ourselves to (quantum) attacks with classical queries and justify this choice in Section 2.5.
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2PC-Gold. Our first major contribution is developing a family of efficient 2PC protocols, called
2PC-Gold, for evaluating the Gold function across various settings between a server Ps that inputs
a key k and a client Pc with input x. 2PC-Gold protocols leverage standard Vector Oblivious
Linear Evaluation (VOLE) correlations (recalled in Section 2.6) in a black-box manner and are
information-theoretically secure and constant-round in the VOLE-hybrid model.2 Our 2PC-Gold
protocols include:

• A protocol secure against an unbounded semi-honest Ps and an unbounded malicious Pc that uses
a single (V)OLE correlation, and has a communication complexity of 3 field elements (2 if only
a uniformly sampled key is required) and a computational complexity of O(λ) field operations
(essentially, the cost of a single exponentiation). This protocol requires 3 rounds (2 if only a
uniformly sampled key is required). We refer to this as our half-malicious protocol. It is useful in
scenarios where the server is trusted not to depart from its intended behavior.

• An enhanced protocol secure against unbounded malicious Ps and Pc that uses λ + 8 VOLE
correlations, and has a communication complexity of λ+ 15 field elements and a computational
complexity of O(λ) field operations. We further show that for any small constant ϕ that, w.l.o.g.,
divides λ, the communication complexity can be improved to λ

ϕ + 2ϕ + 13 field elements, and the
number of VOLE correlations required is reduced to λ

ϕ +O(1). This protocol requires 5 rounds (3
with the Fiat-Shamir transformation [FS87]). We refer to this as our malicious protocol.

The above protocols have additional features and extensions useful in different applications, including:

• Offline-Online Mode: Our half-malicious and malicious 2PC-Gold support an offline-online
mode. The generation of VOLE correlations can be performed during an input/key-independent
offline phase. Moreover, in our malicious 2PC-Gold, the majority of the work can be further shifted
to the offline phase, resulting in an online communication complexity of only 6 Fp elements.

• Batching: Our protocols support batched evaluations for better amortized costs, allowing Pc to
repeatedly evaluate the PRF under the same key with arbitrary inputs. For example, the online
communication of our malicious 2PC-Gold can be reduced to amortized 2 + 4

n Fp elements for
n-batched evaluations.

• Classical and PQ Instantiations: Our half-malicious and malicious 2PC-Gold rely solely on
standard VOLE correlations and are information-theoretically secure in the VOLE-hybrid model.3

By employing appropriate methods to generate these VOLE correlations, our unmodified protocols
can be instantiated to achieve either classical or post-quantum security in the plain model. We
implement both options and report performance in Section 7. This performance will further
improve in the future with ongoing optimizations in VOLE generation.

• Key Verification: Malicious 2PC-Gold supports zero-knowledge proofs [GMR85] of any NP
relation over the key. Notably, we build efficient verifiable OPRFs based on this property.

See Section 3 for a concise technical overview of 2PC-Gold.
2To clarify, our 2PC protocols for evaluating Gold is information-theoretically secure in the VOLE-hybrid model.

However, when we employ this protocol as an OPRF, we rely on computational assumptions to guarantee Gold being
a secure PRF and to generate VOLE correlations.

3We note that looking ahead, our simulation does not need rewinding in the VOLE-hybrid model.
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O-Gold and UC-Gold. OPRFs have been defined in multiple ways in the literature. In its basic
form, just the 2PC over a PRF between server and client (i.e., 2PC-Gold) suffices for the OPRF
definition. This, however, is not sufficient for some applications and stronger OPRF notions have
been formulated. Our second major contribution is augmenting 2PC-Gold to achieve these
notions.

Let H1 be a hash function mapping arbitrary strings to Fp elements and H2 be another hash
function producing {0, 1}2λ elements. We define the function O-Goldk(x) as H2(x,Goldk(H1(x))). A
simple 2PC over O-Gold (leaking4 Goldk(H1(x)) to Pc) can be implemented by Pc inputting H1(x)
to 2PC-Gold, obtaining y := Goldk(H1(x)) and locally computing H2(y). O-Gold function inherits
the 2PC security of Gold and, in addition, supports arbitrary inputs, avoids collisions under the
same k, and allows modeling its outputs as a random oracle. It also serves as a basis for a verifiable
OPRF and to achieve strong universal-composable security.

We show how different forms of verifiability can be efficiently implemented for our OPRFs, includ-
ing the approach to achieve standard verifiable OPRFs [JKK14]; see Section 6.1. Finally, we show
how to extend O-Gold to achieve strong UC security by following the methodology from [BDFH24]
in Section 6.2; we call the resultant OPRF UC-Gold.5

We refer to the three constructions—2PC-Gold, O-Gold, and UC-Gold—as OPRFs, each distin-
guished by its features.
Implementation. All our protocols are efficient in practice. We implemented half-malicious and
malicious 2PC-Gold, with classical and PQ VOLEs.6 We report the performance in Section 7. The
cost of O-Gold is similar to 2PC-Gold, and we estimate concrete overheads for UC-Gold.

Consider λ = 128. Our half-malicious (resp. malicious) non-batched PQ 2PC-Gold needs 774KB
(resp. 970KB) of communication, 568ms (resp. 1.1s) of wall-clock time in a WAN-like network,
and 163ms (resp. 510ms) of wall-clock time in a LAN-like network. Most of the overhead comes
from generating standard PQ VOLE correlations: it only needs 96B (resp. 2.7KB) in the VOLE-
hybrid world. Indeed, by deploying the sublinear generation of large enough PQ VOLE correlations
from [BCGI18], our half-malicious (resp. malicious) batched PQ 2PC-Gold only needs 100B (resp.
1.9KB) of amortized communication, 87µs (resp. 1.6ms) of amortized wall-clock time in a WAN-like
network, and 57µs (resp. 1ms) of amortized wall-clock time in a LAN-like network. Finally, achieving
UC-Gold requires an additional (amortizable) 899KB of communication.

1.2 Related Work

OPRF and Its Applications. The concept of obliviously evaluating PRFs dates back to [NR97]
and was later refined and formalized as Oblivious PRF (OPRF) by [FIPR05].

Informally, OPRFs increase the entropy of the client’s inputs, making them essential com-
ponents in many real-world privacy-preserving applications. Notable examples include private
set intersection (e.g., [CM20, KKRT16]), key management (e.g., [JKR19]), anonymous tokens
(e.g., [DGS+18, KLOR20]), and password-based key-exchange (e.g., [JKX18]).

One of the most successful OPRF constructions is the 2HashDH OPRF [JKK14]. This construction
relies on Diffie-Hallman-type assumptions and is extremely efficient: the basic version requires only

4This leakage to Pc is usually harmless in OPRF applications.
5We note that [BDFH24]’s proof considers the classical random oracle model; extension to the Quantum

ROM [BDF+11] is an interesting topic for future work.
6Our implementation will be open-sourced soon.
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2 group elements of communication per evaluation. For more details, we refer the reader to a
Systematization of Knowledge work on OPRFs [CHL22].
PQ OPRF Constructions. Research on PQ OPRF schemes has emerged in the past five years.

One approach is to build PQ OPRFs based on isogenies. This was initiated by [BKW20],
relying on the SIDH and CSIDH assumptions. Subsequent work [Bas23, HHM+24] optimized
these constructions and addressed vulnerabilities exposed by SIDH attacks [BKM+21, MM22]
over [BKW20]’s constructions. However, isogeny-based OPRFs remain computationally intensive.

Another approach is to build PQ OPRFs based on lattices, initiated by the work [ADDS21]. This
is merely a feasibility result: [ADDS21]’s constructions require more than 2MB (resp. 128GB) of
communication per evaluation for semi-honest (resp. malicious) security. Very recent work [AG24,
ESTX24] optimized the communication cost to amortized under 200KB for malicious security over
batched evaluations. To our best knowledge, the only available implementation of lattice-based
OPRF protocols is the one in [ADDS21] for semi-honest security.

An alternative, straightforward approach to constructing PQ OPRFs is to apply Yao’s Garbled
Circuits [Yao86] to, e.g., AES with the help of post-quantum oblivious transfers (e.g., [MR19,
DCZ+24]). This idea was explored in [FOO23]. However, the size of the garbled circuit for AES is
relatively large, making further optimization inherently hard.

This approach, however, opens up the possibility of building PQ OPRFs based on PQ MPC-
friendly PRFs. The literature has explored this method using two such PRFs:

• “Crypto Dark Matter” PRFs [BIP+18]: These PRFs are specifically designed for efficient
use within MPC. Several proposals have explored the oblivious evaluations of these PRFs. In
particular, [DGH+21] studied preprocessing 2PC over them, and [ADDG24] studied TFHE over
them. Most recently, [APRR24] has aggressively improved the constructions of these PRFs and
showed that the amortized communication cost per evaluation over batched evaluations can only
be ≈1Kbit for semi-honest security. However, these PRF constructions rely on new assumptions
that need further study. Moreover, achieving malicious security may require substantial effort,
e.g., [ADDG24] relies on a heuristic argument to achieve it. Furthermore, these PRFs are only
weak PRFs (i.e., they are only secure when the input is chosen uniformly at random). In the
semi-honest case, this is not an issue as the input can be hashed; however, in the malicious case,
additional mechanisms are required.

• Legendre PRFs [Dam90]: Another type of MPC-friendly PRF is the Legendre PRF, originally
proposed by Damgård in 1988. This PRF was first identified as MPC-friendly by [GRR+16]
and has since been employed to construct PQ OPRFs in works [SHB23, BDFH24]. The state-of-
the-art construction presented in the recent work of [BDFH24] incurs approximately 900KB of
(non-amortizable) communication per evaluation for malicious security.

Our work constructs PQ OPRFs using the generalized Legendre PRF, i.e., the Power Residue
PRF also introduced in [Dam90]. See Section 2.5 for more detailed discussions of the Legendre and
Power Residue PRFs.

We note that our work may appear to extend the recent study by [BDFH24], which also utilizes
VOLE correlations; however, this is not the case. In particular, our protocols use VOLE correlations
in the opposite direction to build a novel customized 2PC for PRF evaluation, enabling efficient
extension to batched (amortized) evaluations and malicious security. Moreover, our protocols rely
solely on black-box usage of the standard VOLE correlations, whereas [BDFH24] requires non-black-
box modifications of the VOLE functionality. Finally, our work provides a complete end-to-end
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implementation along with a comprehensive benchmark. At the same time, our work borrows from
[BDFH24] the elegant methodology for building the strong UC variant of Gold.
VOLE and VOLE-Based ZK. Our protocols leverage the standard VOLE correlations; see Sec-
tion 2.6. In particular, our malicious OPRFs utilize efficient zero-knowledge proofs based on VOLE,
commonly referred to as VOLE-based ZK; see Section 2.7.
Concrete Performance Comparison. Section 7.3 includes a concrete performance comparison
between our protocols and prior work.

2 Preliminaries

2.1 Notation

• λ is the security parameter (e.g., 128).
• The server is Ps. We refer to Ps by she, her, hers...
• The client is Pc. We refer to Pc by he, his, him...
• x := y denotes that y is assigned to x.
• We denote sets by upper-case letters. We denote that x is uniformly drawn from a set S by x

$← S.
• [m] := {1, . . . ,m} and [a, b) := {a, a+ 1, . . . , b− 1}.
• We use F to denote a finite field. For a prime p, we use Fp to denote the standard modular-p

arithmetic field.
• We use Z to denote the integer ring.
• We use G to denote a cyclic group.
• We denote row vectors by bold lower-case letters (e.g., a), where ai (or a[i]) denotes the i-th

component of a (starting from 1). |a| denotes the length of a.
• For vectors a, b where |a| = |b|. ⟨a, b⟩ denotes the inner product; a⊙ b denotes the element-wise

product.
• xa := (xa1, . . . xam) for some a = (a1, . . . , am).
• We use n to denote the number of OPRF evaluations.

2.2 Schwartz-Zippel Lemma

The security of our protocols relies on the well-known Schwartz-Zippel lemma [Sch80, Zip79] and its
corollary:

Lemma 1 (Schwartz-Zippel). Let F be a finite field and P ∈ F[X] be a polynomial of degree d (in
X). Then

Pr
[
P (v) = 0 | v $← F

]
≤ d

|F|

Corollary 1. Let F be a field and d be a positive integer, for any a, b ∈ Fd, if a ̸= b, then

Pr
[
⟨a, c⟩ = ⟨b, c⟩ | β $← F, c := (1, β, . . . , βd−1)

]
≤ d− 1

|F|

Indeed, our work only requires the Schwartz-Zippel lemma for the univariate case.
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2.3 Security Model

We formalize our protocols in the universally composable (UC) framework [Can01]. We consider
static corruptions. In particular, our basic OPRF protocol is secure against a semi-honest Ps and a
malicious Pc. We refer to this protocol as the half-malicious OPRF. On the other hand, our malicious
protocol is secure against malicious Ps and Pc. For simplicity, we omit standard UC (sub-)session
IDs. We also omit that each time a party sends a message to the functionality, it provides a receipt
to the simulator, and that whenever the functionality needs to deliver an output to a party, it waits
for the simulator’s instruction to do so. Note, this includes the standard security with abort.

2.4 Pohlig-Hellman Discrete Logarithm Algorithm

Our work uses the well-known Pohlig-Hellman algorithm [PH78] for solving (special-case) discrete
logarithms (DLOGs). Consider a finite cyclic group G of order m generated by h ∈ G, where m
has a prime factorization as m =

∏r
i=1 p

ei
i . Then there exists a deterministic algorithm to solve the

DLOG of any element x ∈ G in base h in O
(∑

i ei · (logm+
√
pi)

)
group operations.

Our work uses the Pohlig-Hellman algorithm in a finite cyclic group of order m = 2λ, in which
the DLOG can be solved in O(λ2) group operations.

2.5 Legendre and Power Residue PRFs

Pseudorandom Functions (PRFs) [GGM86] are deterministic keyed functions that are indistinguish-
able from random functions, when the key is chosen uniformly at random.

Our protocols essentially obliviously evaluate the Power Residue PRF, which is a generalization
of the Legendre PRF. Both PRFs can be traced back to the work of Damgård [Dam90] in 1988. This
section briefly reviews these two PRFs and existing (classical and quantum) attacks.

Legendre PRF. Let p be a prime. For a ∈ Fp, the Legendre symbol
(
a
p

)
is defined as:

(
a
p

)
:= a

p−1
2

(mod p).
It is conjectured that for a sufficiently large public prime p, the function Fk(x) :=

(
k+x
p

)
is a

PRF defined over Fp 7→ {1,−1}, with key k ∈ Fp. The output of Fk on −k is zero, which is neither
1 nor −1. However, since k is supposed to be chosen uniformly, an adversary cannot find the single
input x = −k that results in an output of zero.7

Power Residue PRF. A glaring downside of the Legendre PRF is that it only produces a single-bit
output. In many scenarios, (oblivious) PRF is only useful when it can produce O(λ) bits. A direct
way to achieve this is by repeating the Legendre PRF O(λ) times (e.g., on O(λ) different keys;
see [BDFH24]). This is clearly undesirable. Instead, we exploit the higher order residues, a natural
generalization of the Legendre PRF also proposed by [Dam90].

In more detail, consider a sufficiently large prime p = eg + 1 where p, e, g are public. For a
random key k

$← Fp, the PRF F on input x ∈ Fp is defined as:

Fk(x) := (k + x)
p−1
e = (k + x)g (mod p)

This PRF can produce e different non-zero outputs (and a unique input results in a zero output).
This is because, as indicated by its name, each non-zero output is a g-th residue (aka an e-th root of

7We note that in (UC) OPRF constructions, the UC environment may choose the input x = −k. This is also true
for OPRFs based on the Power Residue PRF, and we handle this case carefully.
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unity). This is crucial for efficiency, as now one evaluation can produce a ⌊log e⌋-bit output. Note,
for e = 2, the Power Residue PRF is the Legendre PRF.

In this work, we set e to be 2λ and name this PRF Gold. One evaluation of Gold can produce
λ-bit entropy. See Section 4.1 for how to transfer the output to {0, 1}λ, or O(λ) bits in general, and
for associated formal assumptions.
Statistical Properties. The study of the distribution of Legendre symbols dates to Davenport,
1931 [Dav31], followed by extensive work (e.g., [Per92, MS97, GMS14, Tót07, DHS98, DE52]). It
points to statistical properties of Legendre symbols that resemble the behavior of fair coin tosses.
Some of these properties can be extended to Power Residue symbols [DE52].
Attacks and Quantum Resistance. Several works attempt to break the Legendre and Power
Residue PRFs. This trend has become popular recently, mainly because of Legendre’s candidate
usage in the Ethereum 2.0 blockchain.

Both Legendre and Power Residue PRF can be broken in quantum polynomial time with a single
quantum superposition query access to the PRF [RS04, vDH00]. However, currently, cryptographic
protocols and algorithms are only implemented on classical computers, including OPRFs. As long as
all systems holding the OPRF key are classical, an adversary cannot make a quantum superposition
of queries. Thus, we restrict ourselves to attacks with classical queries.

For the Legendre PRF, classical and quantum attacks include [BBUV20, KKK20b, MZ22,
SHB23, KKK20a, Kho19, FS21]. In particular, the best-known (quantum) attack by [FS21] has time
complexity 2O(log p) ·p1/3. For the Power Residue PRF, the additional (quantum) attack by [BBUV20]
has time complexity O( p log2 p

Le log2 e
) where L ≤ p1/4 denotes the number of queries.

Finally, a recent elegant work [CW24b] considers an extension of the Legendre PRF to any
modulo N instead of a prime modulo p. The authors break the pseudorandomness of such a function
when N is composite and can be factored, which implies PQ insecurity [Sho94]. However, this
factoring-based attack (and subsequent work [CW24a]) does not apply to the Legendre and Power
Residue PRFs modulo a prime p.
Legendre vs. Power Residue with e = 2λ. When e = 2λ, breaking the Power Residue PRF is
not harder than breaking the Legendre PRF. Indeed, one can trivially compute (k + x)

p−1
2 from

(k + x)
p−1
e . Conversely, we do not know of any reduction from breaking the Legendre PRF to the

Power Residue PRF. We leave it as an interesting open problem.
Nevertheless, considering the previously cited works, we believe that our Power Residue PRF Gold

is a natural, reasonable assumption (see the formal definition in Section 4.1) and encourage further
study on its pseudorandomness.

2.6 Vector OLE

Our OPRFs use Vector Oblivious Linear Evaluation (VOLE) correlations: they are in the VOLE-
hybrid model. VOLE correlations of size m (or m VOLE correlations) over a field F are correlated
random vectors held by a sender Pa and a receiver Pb. The sender Pb obtains a uniformly sampled
scalar ∆(b) $← F and a vector v $← Fm. The receiver Pa obtains a uniformly sampled vector u $← Fm

and a correlated vector w := v − u∆(b).
Our protocols rely solely on a weaker form of VOLE correlations known as endemic [MR19]

VOLE correlations, where the adversary is allowed to choose its own correlated shares. See Figure 1
for the formal definition.

7



Functionality Fa,b
VOLE

Fa,b
VOLE, parameterized by a field F, running with a sender Pa, a receiver Pb and an adversary S, proceeds as follows:

Initialize. Upon receiving (init) from Pa and Pb, if Pb is honest, set ∆(b) $← F, else receive ∆(b) from S. Store
∆(b). Send ∆(b) to Pb. Ignore subsequent (init).

Extend. Upon receiving (extend,m) from Pa and Pb:
• If Pb is honest, set v

$← Fm, else receive v ∈ Fm from S.
• If Pa is honest, set u

$← Fm and compute w := v − u∆(b) ∈ Fm, else receive u ∈ Fm and w ∈ Fm from S and
compute v := w + u∆(b) ∈ Fm.

• Send (u,w) to Pa and v to Pb.

Figure 1: The VOLE correlation functionality [WYKW21].

Looking ahead, our half-malicious OPRFs use Fc,s
VOLE: Ps plays the role of the VOLE receiver,

whereas Pc plays the role of the VOLE sender. Our malicious OPRFs also use Fs,c
VOLE (with Ps’s and

Pc’s roles are switched in VOLE).
Multiple ways exist to realize FVOLE with malicious security. In this work, we adopt the approaches

in [BDFH24] and [WYKW21]. Namely, when we only need a small amount of VOLE correlations
(e.g., evaluating OPRF once), we realize it using the subset VOLEs [Roy22, BBD+23] and randomly
linear combinations [BDFH24], via Oblivious Transfers (OTs) [Rab05]. In contrast, when we need
many VOLE correlations (e.g., evaluating multiple inputs over a fixed-key OPRF), we deploy the
“silent VOLE extension” technique to save (amortized) costs. This is also known as pseudorandom
correlation generator (PCG), stemming from the seminal works [BCGI18, BCG+19].

The above approaches only rely on minicrypt-type cryptographic primitives (e.g., PRF, PRG)
and/or the Learning Parity with Noise (LPN) assumption [BFKL94], in the OT-hybrid model. When
using post-quantum OTs (e.g., [MR19, DCZ+24]), our instantiations of FVOLE are PQ secure:

Lemma 2 (Informal). Assuming the existence of one-way functions or the hardness of LPN, there
exists a protocol that UC-emulates FVOLE (Figure 1) in the OT-hybrid model.

A more straightforward way to realize FVOLE is via linearly homomorphic encryptions. With
lattice-type assumptions, post-quantum security can be achieved. Our estimation shows that the
performance difference is nuanced (see discussions in, e.g., [BDSW23]). We leave the exploration
of this approach as a valuable future work. Crucially, our OPRFs are black-box in the VOLE
functionality and can benefit from any future improvement over VOLE constructions.

2.7 VOLE-Based ZK

Our malicious OPRFs also use VOLE correlations to build lightweight ZKPs to protect against a
malicious Ps, aligning with recent progress on VOLE-based ZK (e.g., [DIO21, YSWW21, HY24]).
Here, Ps is the prover, whereas Pc is the verifier. We review related techniques in this section.
IT-MAC. Consider a single VOLE correlation generated by Fs,c

VOLE defined over Fp. That is, Ps holds
u and wu whereas Pc holds ∆(c) and vu, such that vu = wu + u∆(c). This correlation can be rather
interpreted as the information-theoretic message authentication code (IT-MAC) [BDOZ11, NNOB12]
commitment over the value u, from Ps to Pc. We denote this correlation as ⟨(u,wu), vu⟩∆(c) or [u]∆(c)

in short. IT-MAC commitments have the following properties:
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Ps(m,x,y, z, r,wx,wy,wz, wr) Pc(m,∆,vx,vy,vz, vr)

γ ←$ Fp

γ

C1 := r +

m∑
i=1

γi · (xiwy,i + yiwx,i − wz,i) Π := vr +

m∑
i=1

γi · (vx,ivy,i − vz,i∆)

C0 := wr +

m∑
i=1

γiwx,iwy,i

C1, C0

If C1∆+ C0 ̸= Π, proof fails and abort.

Figure 2: The diagram of the batch LPZK technique. Here, Ps is the prover, and Pc is the verifier.

• Perfect Hiding: vu and ∆(c), held by Pc, are independent of the committed value u.

• Statistical Binding: Ps can open [u]∆(c) by sending u and wu, where Pc would check if
vu

?
= wu + u∆(c). For a malicious Ps to open it to a different value u′ ̸= u, she has to guess

∆(c)—succeed with probability 1
p .

• Linear Homomorphism: Suppose Ps and Pc hold ⟨(x,wx), vx⟩∆(c) and ⟨(y, wy), vy⟩∆(c) . For
any public α, β, γ ∈ Fp, parties can locally generate [αx + βy + γ]∆(c) as follows: Ps computes
αwx + βwy, whereas Pc computes αvx + βvy + γ∆(c).

Note, the linear homomorphism property implies that, for a random IT-MAC [u]∆(c) (from VOLE),
Ps can send z − u to commit to z, where u acts as a one-time pad [Bea95].
Line-Point Zero-Knowledge. Our malicious OPRFs need Ps to prove in ZK that three IT-MAC
commitments form a multiplication triple. Namely, Ps and Pc hold [x]∆(c) = ⟨(x,wx), vx⟩∆(c) ,
[y]∆(c) = ⟨(y, wy), vy⟩∆(c) , [z]∆(c) = ⟨(z, wz), vz⟩∆(c) , where Ps wants to prove in ZK to Pc that
z = xy. This can be done using the line-point zero-knowledge (LPZK) technique [YSWW21, DIO21].
LPZK relies on the following equality (let ∆ = ∆(c) for simplicity):

known by Pc︷ ︸︸ ︷
vxvy − vz∆

=(x∆+ wx)(y∆+ wy)− (z∆+ wz)∆

= (xy − z)︸ ︷︷ ︸
0

∆2 + (xwy + ywx − wz)︸ ︷︷ ︸
known by Ps

∆+ wxwy︸ ︷︷ ︸
known by Ps

Hence, if ZK is not required, Ps can send two coefficients C1 = xwy + ywx − wz and C0 = wxwy,
and Pc will check if vxvy − vz∆

?
= C1∆+ C0. This is sound because the equality holds only when ∆

happens to be the root of a quadratic equation if xy ̸= z. If ∆ has full entropy to Ps, this will only
happen with probability 2

p since this is a degree-2 polynomial [Sch80, Zip79]. Of course, this is not
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ZK as C1, C0 are correlated with x, y, z. ZK can be recovered by consuming one random IT-MAC
[r]∆(c) (from VOLE). That is, Ps sends C1 = xwy + ywx − wz + r and C0 = wxwy + wr and Pc
checks if vxvy − vz∆+ vr

?
= C1∆+ C0.

LPZK technique can be optimized in the batched settings. Namely, parties hold [x]∆(c) , [y]∆(c) ,
[z]∆(c) each of length m, and Ps wants to prove in ZK that z = x ⊙ y. In this case, instead of
sending 2m coefficients, the m verifications can be batched as follows: Pc sends a random linear
combination, Ps evaluates the linear combination on the m coefficients C1 and m coefficients C0,
and then sends resulting 2 aggregated coefficients. One random IT-MAC [r]∆(c) is needed as before
for ZK. In this work, this random linear combination is generated as the powers of a random field
element, achieving information-theoretical security. The full batched LPZK is depicted in Figure 2.
Generalized LPZK. As observed by [YSWW21], the LPZK technique can be generalized to higher
degree polynomials. In this work, we use this generalized technique to improve concrete efficiency in
the following setting: Ps and Pc hold [x]∆(c) = ⟨(x,wx), vx⟩∆(c) , [y]∆(c) = ⟨(y, wy), vy⟩∆(c) , where Ps
wants to prove in ZK to Pc that y = xe for some public positive integer e. The core of this technique
is the following (generalized) equality:

known by Pc︷ ︸︸ ︷
vex − vy∆

e−1

=(x∆+ wx)
e − (y∆+ wy)∆

e−1

=(xe − y)∆e + (exe−1wx − wy)∆
e−1 +

e−2∑
i=0

(
e

i

)
xiwe−i

x ∆i

where
(
e

i

)
denotes the binomial coefficient “e chooses i”. Crucially, all coefficients before each ∆

term in the last row are known by Ps. Hence, if we do not need ZK, Ps can send e coefficients
where Pc checks the equality. Similar to the LPZK, a malicious Ps can only create a wrong
proof with probability e

p . ZK can be recovered using e − 1 random IT-MACs (from VOLE).
See [YSWW21, HHK+24] for details. The batched optimization can also be applied: with m e-th
exponential proofs, the total communication cost is e+ 1 Fp elements.

The generalized LPZK can be used to improve the following task (used by our malicious OPRFs):
parties hold [x]∆(c) and want to obtain [x2

128
]∆(c) . The naïve approach would require Ps to commit to

128 intermediate results with a batched multiplication LPZK proof—the total communication is 131
Fp elements. By deploying the generalized LPZK, Ps can only commit to, e.g., x24 , x28 , x212 , · · · , with
a batched 24-th exponential relation proof—the total communication decreases to 128/4+24+1 = 49
Fp elements. Note that this optimization does not improve communication asymptotically. It also
increases the computation concretely.

All the proof techniques shown in this section provide information-theoretic security in the
VOLE-hybrid model.

3 Technical Overview

In this section, we present our half-malicious and malicious 2PC-Gold with sufficient detail to
understand our first major contribution. Other Gold OPRFs, formalization, and detailed analysis
are presented in subsequent sections.
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Ps(pp, k = ∆(s), v) Pc(pp, u, w, x)

msg1 := −w + ux

msg1

α
$← Fp

msg2 := α2λ · (msg1 + v)

msg2

res :=
(
u−1 ·msg2

)g
Output res

Figure 3: The diagram of our half-malicious 2PC-Gold between Ps and Pc. pp := (1λ, p, g) denotes
the public parameters. Ps holds the PRF key k whereas Pc holds the PRF input x. The objective is
to allow Pc obliviously obtain (k + x)g. Recall that k, v, u, w form a single VOLE correlation, i.e.,
v = w + uk.

We focus on efficiently and obliviously evaluating Gold in the VOLE-hybrid model (see Figure 1).
Namely, for a public prime p = 2λ · g+1 where g is of O(λ) bits, Ps holds a PRF key k ∈ Fp whereas
Pc holds a PRF input x, and the objective is to allow Pc to learn (k + x)g over Fp obliviously, with
the help of VOLE correlations over Fp. See Section 4 for the choice of g and how to efficiently
convert the output into a O(λ)-bit element.

We first address scenarios where Ps uses a (fresh) uniformly sampled PRF key. Later, we show
how to adapt the protocol to accommodate a server-specified key at the cost of Ps sending a single
extra field element.

3.1 Overview of Half-Malicious 2PC-Gold

We give an overview of our half-malicious 2PC-Gold, namely, providing security against a malicious
client and a semi-honest server. The protocol is depicted in Figure 3.
Random Root Technique. Inspired by [GRR+16], our protocol relies heavily on a simple
observation: to evaluate (k+x)g obliviously, it is sufficient to let Pc obliviously learn α2λ ·(k+x), where
α ∈ Fp is uniformly sampled and unknown to Pc. Then, Pc can locally compute

(
α2λ · (k + x)

)g

over Fp. This works because (1) for any α ∈ F∗
p, α2λ·g = 1 over Fp (which ensures correctness), and

(2) α2λ · (k + x) is distributed as a uniformly chosen root of the equation Xg = (x+ k)g over Fp,
which can be simulated by choosing such a random root (see Section 4.2).
Protocol. Our half-malicious 2PC-Gold (see Figure 3) only requires two messages in the VOLE-
hybrid model. Informally, the first message is sent by Pc and encrypts the evaluated input x. Then,
the second message is sent by Ps and allows Pc to recover α2λ · (k + x) over Fp where α is sampled
uniformly by Ps.

In detail, Ps and Pc use Fc,s
VOLE (Figure 1) to obtain one VOLE correlation: Ps holds ∆(s), v

whereas Pc holds u,w such that v = w + u∆(s). Since ∆(s) is uniformly sampled, it can be used as
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the PRF key k.8 We make the following remarks w.r.t. correctness, security, and performance:

• Correctness: Recall that v = w + u∆(s) = w + uk. The correctness relies on the following
equality:

u−1 ·msg2 = u−1 · α2λ · (msg1 + v)

= u−1 · α2λ · (−w + ux+ v)

= u−1 · α2λ · (uk + ux)

= α2λ · (k + x)

Note that u is zero with negligible probability 1
p since it is uniformly sampled by FVOLE.

• Semi-honest Ps: This protocol is secure against a semi-honest Ps in the VOLE-hybrid model.
Indeed, consider msg1 + v = u · (k + x). If k + x ≠ 0, since u is uniformly random in the view
of Ps, so is u · (k + x). Thus, it can be simulated by a random value in Fp. In case k + x = 0,
Ps learns this fact, which we formalize as a 1-bit leakage in our UC treatment (Figure 5). See
Section 3.4 for simple and efficient ways to eliminate this leakage.

• Malicious Pc: This protocol is secure against a malicious Pc in the VOLE-hybrid model. Indeed,
the only place a malicious Pc can cheat is by choosing an arbitrary m̃sg1.

Let us first assume that u ̸= 0. Then the simulator S can extract a corresponding input x̃ from
m̃sg1 as follows: since S knows u and w (by emulating FVOLE), it can compute x̃ := (m̃sg1+w)·u−1.
Then, S gets from the ideal functionality the PRF output (k+ x̃)g. Finally, S can use the random
root technique described above to simulate msg2 as a random root X of Xg = (k + x̃)g.

If u = 0, we remark that v = w. Thus, S knows v and can trivially simulate msg2 = α2λ ·(m̃sg1+v).

• Performance: Our half-malicious 2PC-Gold is extremely efficient. It has near-optimal communi-
cation: 2 messages, each consisting of a single Fp element. It consumes a single VOLE correlation
per OPRF invocation, and the time complexity of each party is dominated by the time to perform
a single exponentiation modulo p (with O(λ)-bit exponents). In more detail, Pc and Ps also
perform one multiplication modulo p, and Pc performs an inversion modulo p, which can be done
using the standard extended GCD algorithm in time Õ(log2 p).

Note that the security of our protocol in the VOLE-hybrid model is information-theoretic.
Batched Evaluations. Our protocol can support n-batched evaluations using n VOLE correlations
(which can be generated more efficiently as a batch). That is, we can execute the protocol in Figure 3
in n parallel instances: for each i ∈ [n], Pc sends −wi + uixi; then Ps sends α2λ

i · ui · (k + xi);
v,w,u ∈ Fn

p are output by FVOLE s.t. v = w + uk. As noted in footnote 8, if Ps wants to adjust
the key to a given value k∗ instead of using the FVOLE’s ∆(s), it suffices to send k∗ −∆(s) only once.
We remark that these n inputs do not need to be different.

8In applications where Ps inputs an arbitrary key k∗ (e.g., a key committed earlier), Ps will send k∗−∆(s), allowing
Pc to adjust the correlation as v = w + uk∗. That is, Pc sets w := w − (k∗ −∆(s)) · u.
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3.2 Overview of Malicious 2PC-Gold

We give an overview of our malicious 2PC-Gold, which is information-theoretically secure against a
malicious Ps and a malicious Pc in the VOLE-hybrid model.

Here, we focus on 2PC-Gold with malicious security. This is different from the public verifiability
property of an OPRF, which is covered in Section 6.1.
Malicious Ps Attack Surface. To see how our malicious 2PC-Gold works, it is instructive to
analyze what a malicious Ps can do in our half-malicious 2PC-Gold. The only place the malicious Ps
can inject an error is in the second message msg2 sent from Ps to Pc. As a result, to protect against
a malicious Ps, it suffices to require Ps to prove in ZK that msg2 is generated correctly. That is,

1. Ps adds the value v, output by Fc,s
VOLE, to msg1, yielding the intermediate result int = msg1 + v.

2. Ps multiplies int with α2λ to generate msg2 = int · α2λ for some α ∈ Fp.

Even with such zero-knowledge proof, we note that a malicious Ps is still able to learn whether k+ x
equals zero. This is the 1-bit leakage we mentioned in Section 3.1. See Section 3.4 for details on how
to eliminate it efficiently.
Deploying ZK. Malicious 2PC-Gold exploits the VOLE-based ZK techniques (see Section 2.7) to
ensure a well-formed msg2. Namely, Ps and Pc will use another VOLE correlation functionality,
with reversed roles as Fs,c

VOLE, in addition to the correlations required by the half-malicious 2PC-Gold
from Figure 3. These new correlations can be viewed as IT-MAC commitments from Ps to Pc over a
Ps-known random element r ∈ Fp, denoted as [r]∆(c) . Note, ∆(c) is known by Pc and can be viewed
as the verifier private coins in the ZK proof. (Instead, ∆(s) in our half-malicious protocol is used as
the OPRF key.) If parties can get [v]∆(c) and [α]∆(c) , since msg1 and msg2 are public, parties can
directly use a VOLE-based ZK to prove that msg2 is equal to α2λ · (msg1 + v). In other words, with
[v]∆(c) , [α]∆(c) and msg1, parties can generate [msg2 = α2λ · (msg1 + v)]∆(c) ; then Ps can bindingly
open msg2 to Pc. While this blueprint is relatively straightforward, there are several challenges to
tackle:

1. [v]∆(c) needs to be generated correctly, even with a malicious Ps. Note, v is not an arbitrary value
but rather is part of the VOLE correlation from Fc,s

VOLE, used by our half-malicious protocol. That
is, we not only need Ps to commit to v but to commit to a consistent v. More importantly, recall
that v = w + uk where u will be used as a one-time pad during the OPRF evaluation; hence, we
must generate [v]∆(c) without revealing any information correlated to u.

2. [α]∆(c) needs to be generated. This is easy as α is only used to protect Ps’s OPRF key. In fact,
[α]∆(c) can be directly generated as one correlation from Fs,c

VOLE since the committed value α is
pseudorandom.

3. Generating [α2λ ]∆(c) from [α]∆(c) requires λ+ 3 field elements of communication: λ of them are
used to commit to the intermediate results (i.e., [α21 ]∆(c) , [α22 ]∆(c) , . . ., [α2λ ]∆(c)), and 3 of them
are used to deploy the batched LPZK technique (see Section 2.7) to ensure each squaring is
computed correctly.

We could further reduce this cost via the generalized LPZK technique (see Section 2.7). Namely,
w.l.o.g., for any constant ϕ that divides λ, Ps commits to λ

ϕ intermediate results as [α2ϕ ]∆(c) ,

[α22ϕ ]∆(c) , . . ., [α2λ ]∆(c) and proves in ZK that each 2ϕ-powering is computed correctly. Now, the
communication cost to generate [α2λ ]∆(c) is reduced to λ

ϕ + 2ϕ + 1 field elements.
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Generating Consistent [v]∆(c). We now show how to tackle Challenge 1. Recall that v = w + uk
where v, k are known by Ps and u,w are known by Pc. We aim to generate [v]∆(c) . We first present
an ineffective yet insightful approach. Ps commits to [v]∆(c) and [k]∆(c) ; then Pc reveals u and
w = v−uk and requires Ps to show that [v]∆(c)−w−u[k]∆(c) = [v−w−uk]∆(c) commits to zero. We
now argue why this check ensures a correct [v]∆(c) and [k]∆(c) . Assume Ps committed to [ṽ ̸= v]∆(c)

or [k̃ ̸= k]∆(c) . Then, if the IT-MAC [ṽ]∆(c) − w − u[k̃]∆(c) commits to zero, based on the binding
property of IT-MAC, we know w.h.p. ṽ − w − uk̃ = 0. This implies ṽ − uk̃ = v − uk. If k = k̃, then
v = ṽ. Otherwise, we have u = (v − ṽ)/(k − k̃). This means that Ps can successfully guess u before
u is revealed. Note that since u is uniformly sampled when Pc is honest by Fs,c

VOLE (see Figure 1),
this can only happen with probability 1

p . However, although this approach guarantees a well-formed
[v]∆(c) , it is ineffective. This is because u is revealed and, crucially, is later used as a one-time pad.

Therefore, we must ensure a well-formed [v]∆(c) without revealing any information correlated to
u (and w). We notice that this can be done by exploiting a random linear combination to “sacrifice”
another usa, which will be discarded immediately after the check to ensure u remains full entropy.
In detail, let parties hold another VOLE correlation from Fs,c

VOLE: vsa = wsa + usak where vsa, k are
known by Ps and usa, wsa are known by Pc. Now, let Ps commit to [vsa]∆c , [v]∆c and [k]∆c . Then,
Pc samples a uniform χ

$← Fp and reveals χ, χu+ usa and χw+wsa. Finally, Pc requires Ps to show
that the following IT-MAC

χ[v]∆(c) + [vsa]∆(c) − (χw + wsa)− (χu+ usa)[k]∆(c)

=[χ(v − w − uk) + (vsa − wsa − usak)]∆(c)

commits to zero. Note, this can be viewed as a consistency check over the value χv + vsa. That is, it
ensures that χṽ + ṽsa = χv + vsa and k̃ = k, where ṽ, ṽsa, k̃ are arbitrary (potentially inconsistent)
values committed by Ps. Moreover, since χ is sampled and revealed only after ṽ, ṽsa are chosen,
χṽ + ṽsa = χv + vsa implies ṽ = v and ṽsa = vsa with overwhelming probability based on the well-
known Schwartz-Zippel lemma [Sch80, Zip79]. Crucially, the values revealed by Pc (i.e., χ, χu+ usa
and χw + wsa) are independent of u, so u remains full entropy.

One essential remark is that we also need to ensure a well-formed χ, χu + usa and χw + wsa

for a malicious Pc. These new messages also provide a new opportunity for a malicious Pc to
exploit—indeed, a malicious Pc can learn the OPRF key with ill-formed messages. Interestingly,
this can be resolved as follows: recall that u and usa can also be viewed as committed values inside
IT-MAC but rather from Pc to Ps; thus, χw+wsa can be used as a proof to force correct opening of
χu+ usa. That is, an honest Ps can check if χv + vsa is equal to χw + wsa + (χu+ usa)k.

We emphasize that this check relies on k with enough entropy to the UC environment. Hence,
when k is input from Ps, this does not work. Instead, parties can perform the consistency check
with the committed ∆(s) rather than k (see Footnote 8 and Section 5.3). However, note that ∆(s)

will also be revealed to the UC environment (1) as Ps’s output when the OPRF uses a uniformly
sampled key, or (2) from k∗ −∆(s) when the OPRF uses a server-specified key. Therefore, the step
of generating consistent [v]∆(c) must take place before the above step (1) or (2) is performed. This
can be easily enforced if parties only need to execute the OPRF once but it requires additional care
in other cases, e.g., batched offline phases presented in Section 3.3.

Finally, we remark that [k]∆(c) is an IT-MAC of the OPRF key and thus can be used to prove
any NP relation over it using regular VOLE-based ZK. For example, it can be used to prove in ZK
that the server reuses the same committed OPRF key across different invocations as how we do to
achieve verifiable OPRFs in Section 6.1.
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Batched Evaluations. Our malicious protocol can be extended to the batched variant naturally
using more VOLE correlations in both directions (i.e., Fc,s

VOLE and Fs,c
VOLE). For n-batched evaluations,

the step to generate IT-MACs of [v1]∆(c) , . . . , [vn]∆(c) can be improved (i.e., addressing Challenge 1)

by “sacrificing” a single correlation. Namely, after Ps commits to v, Pc can reveal χ
$← Fp,(∑n

i=1 χ
iui

)
+ usa and

(∑n
i=1 χ

iwi

)
+ wsa, reducing the communication of this step from 6n+ 1 to

n+ 6 field elements. Note that the ∆(s) must remain full entropy to the UC environment at this
point. Furthermore, the batched (generalized) LPZK can be applied across n evaluations to generate
[α2λ

i∈[n]]∆(c) and prove the correct msg2,i.

3.3 Offline-Online Mode

Our protocols support an offline-online mode where most portions of computation and communication
can be pushed into an input-independent (and PRF-key-independent) offline (aka preprocessing)
phase. Clearly, the generation of (V)OLE correlations is a hybrid input-independent functionality,
so it can be pushed into the offline phase. This is true even when Ps wants to select its own OPRF
key k∗, since this can be done via sending k∗ −∆(s) in the online phase.

Moreover, for our malicious protocol, the parts generating [v]∆(c) and [α2λ ]∆(c) can also be pushed
into the offline phase. Again, this is true even when the Ps wants to select its own OPRF key k∗.
Crucially, this does not affect the ability to obtain the committed key. That is, the parties in the
offline phase would obtain [∆(s)]∆(c) , which can be locally adjusted to [k∗]∆(c) via k∗ −∆(s). The
online phase cost of our malicious protocol is very lean compared to the online phase cost of our
half-malicious protocol: it only needs 3 more field elements (i.e., a batched LPZK), regardless of n.

In all, our protocols are very efficient in the amortized offline-online setting and reasonably
efficient even with offline cost included. See Section 7.
Batched Offline Phases. Our protocols support batched offline phases. That is, offline phases of
nbatch evaluations can be prepared together for better amortized costs. Then, each n-sub-batched
evaluation—where various values of n add up to nbatch—can be processed immediately without
needing the entire nbatch batch, paying an n-amortized online phase. Note that once the online phase
starts, the UC environment learns ∆(s), making the consistency check in our malicious 2PC-Gold no
longer UC-secure; see Section 3.2. Thus, in our malicious OPRFs, nbatch must be predetermined,
and the batched offline phases must be completed in advance. We formalize batched offline and
sub-batched online phases as our ideal functionality in Section 5.1.

In certain applications, fixing nbatch in advance is either impractical or impossible. In Section 6.1,
we demonstrate how to remove this limitation easily via private verifiability.

3.4 Eliminating 1-bit Leakage in Our Protocols

The protocols presented in Sections 3.1 and 3.2 incur a 1-bit leakage per evaluation. In particular,
for each evaluation, Ps learns u · (k + x), which allows her to determine whether k + x equals zero.

Namely, our ideal functionality to capture these protocols has to leak this 1-bit information to
the simulator if Ps is corrupted. Note, if we consider UC security, this 1-bit leakage is unavoidable
even for a semi-honest Ps with a uniformly sampled key. This is because the environment can always
set the honest Pc’s input as −k.

While this leakage may not be a problem for many applications (in particular, this leakage also
exists in Dodis-Yampolskiy PRF [DY05] and some corresponding OPRFs), we now demonstrate how
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to eliminate this leakage, depending on whether we need an OPRF with a uniformly sampled key or
one specified by Ps.
Uniformly Sampled Key. If only a uniformly sampled PRF key is needed, we first show how to
enforce a malicious Ps to use a uniformly sampled key. Note, in FVOLE (see Figure 1), the malicious
receiver (i.e., Ps) is allowed to select an arbitrary scalar ∆(s) (i.e., an arbitrary PRF key). Our key
observation is that this scalar ∆(s) can be randomized by Pc. That is, Pc can send a uniformly
sampled ∆′ $← Fp to set the scalar as ∆(s)+∆′—which will be used as the PRF key that is guaranteed
to be uniformly sampled—and adjust his VOLE shares locally.

By enforcing a uniformly sampled key k, this leakage can be naturally eliminated in the standalone
setting. However, in the UC setting, the leakage persists because the environment can always set
x as −k after learning k. To further eliminate it in the UC setting, we can let Pc hash the input
before executing the OPRF protocol(s). Intuitively, this prevents the leakage as the environment
cannot find an x s.t. H(x) = −k when H(·) is modeled as a random oracle.
Server-Specified Key. If we need an OPRF where the key is fully specified by Ps, the previously
mentioned fix does not apply. Instead, we can eliminate the leakage by restricting the PRF key to
be chosen from elements in Fp that have two leading zero bits (i.e., the two most significant bits are
0s) and by limiting the PRF input to the subset of Fp consisting of all non-zero elements with two
leading zero bits. In essence, this ensures that k + x is never zero.

If Ps is malicious, we can further require Ps to provide a VOLE-based ZK proof over IT-MAC
[k∗]∆(c) to show it has two leading zero bits. This proof requires communicating O(λ) field elements
and performing O(λ) field operations. It can be amortized in batched evaluations.

Note that this fix requires a minor modification of the underlying PRF assumption to sample
the key accordingly; see Section 4.1.

4 Gold PRF Basics

4.1 Formal Hardness Assumptions

We define the underlying computation problem—the Decisional Shifted Power Residue Symbol—as
follows:

Definition 1 (Decisional Shifted Power Residue Symbol (DSPRS) Problem). Let p = p(λ) be a
family of prime numbers, where each p = e(λ) · g(λ) + 1. Let k be uniformly sampled from Fp. Let
D := {ag mod p | a ∈ F∗

p}. Let OPR be an oracle that on input x ∈ Fp outputs (x+ k)g mod p, and
OR be a random oracle that maps elements from Fp to D. The DSPRS problem asks to distinguish
between OPR and OR given 1λ and p, g, with classical queries.

The post-quantum security of our Gold PRF relies on the following hardness assumption:

Assumption 1. For any p = p(λ) = e(λ) · g(λ) + 1, where e(λ) is smooth and g(λ) = Ω(λ), there is
no probabilistic polynomial time (quantum) algorithm for the DSPRS problem (Definition 1) with
non-negligible advantage in λ.

In this work, we set e = 2λ and log g = 2λ+O(1). Gold is essentially OPR in Definition 1. Existing
attacks presented in Section 2.5 guide this choice. These parameters are very conservative—the
best-known quantum attack for Gold by [BBUV20] has time complexity O( gL) using L ≤ p1/4 queries;
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SolveEq(1λ, p, g, a)

1 : Apply Fact 2 to get a generator h = rg of G
2 : Apply Fact 1 to get z such that hz = a

3 : return rz

Figure 4: An efficient algorithm to find a solution X of the equation Xg ≡ a (mod p) where a ∈ G,
G := {xg mod p | x ∈ F∗

p}, and p = 2λ · g + 1 is a prime of length O(λ). Correctness comes from:
hz = (rg)z = (rz)g = a.

the best-known quantum attack for the Legendre PRF over p (which also applies for Gold) by [FS21]
has time complexity 2O(log p) · p1/3 using p1/3 queries.

Finally, we note that a minor modification of Definition 1 is needed to eliminate the one-bit
leakage when the OPRF key is chosen by Ps (see Section 3.4). Namely, we only need to sample the
PRF key from the subspace of Fp consisting of all elements with two leading zero bits.

4.2 Power Residue Subgroup

Let p = 2λ · g + 1 be a prime of O(λ) bits. We review several useful properties of the g-th power
residue subgroup G of the multiplicative group F∗

p of Fp. That is,

G := {xg mod p | x ∈ F∗
p}

where the group operation is multiplication modulo p.

Fact 1. G is a finite cyclic group of order 2λ. Let h be a generator of G. Then, for any element
x ∈ G, the Pohlig-Hellman algorithm [PH78] can solve the discrete logarithm (DLOG) of x in base h
in O(λ2) group operations.

Fact 2. There exist 2λ−1 generators in G. In particular, there exists an efficient way to find a
generator h: repeatedly sample r

$← F∗
p, and set h := rg, until h2λ−1 ̸= 1.

Converting Output. Fact 1 implies a straightforward deterministic way to transfer the output of
2PC-Gold from G to {0, 1}λ. I.e., Pc can locally solve the DLOG of 2PC-Gold output to a publicly
agreed base h. Note that when k + x = 0, Pc will abort, so there is no need to solve the DLOG. Of
course, there exist other standard ways to post-process output, such as applying a hash function
over it, in particular, if more than λ bits of output are required (e.g., O-Gold).
Solving Equation Xg ≡ a (mod p). Facts 1 and 2 can be exploited to design an efficient algorithm
(defined in Figure 4) to find a solution X of the equation Xg ≡ a (mod p) for some a ∈ G. This
algorithm is essential for arguing the security of our protocols: the simulator uses it.

5 Formalization and Analysis of 2PC-Gold

In this section, we formalize our 2PC-Gold protocols in the UC framework. Our other OPRFs and
their corresponding ideal functionalities, theorems, and proofs can be derived through straightforward
modifications or, in the case of UC-Gold in section 6.2, via the elegant transformation from [BDFH24].
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Functionality F2PC-Gold

F2PC-Gold, parameterized by a field Fp where (1) p = p(λ) = 2λ · g + 1 is a prime and (2) g = g(λ) is an integer of
2λ+O(1) bits, running with a server Ps, a client Pc and an adversary S, proceeds as follows:

Initialize. Upon receiving (init, nbatch) from Ps and Pc where nbatch ∈ Z+, if Ps is honest (or semi-honest), sample
k

$← Fp, else receive k from S. Store nbatch and k. Send k to Ps. Set neval := 0. Ignore subsequent (init, ·).

Evaluate. Upon receiving (eval, n) from Ps and (eval, n, x1, x2, . . . , xn) from Pc, where n ∈ Z+ and each
xi∈[n] ∈ Fp. If neval + n > nbatch, ignore the instruction; otherwise, set neval := neval + n and proceed as follows:
1. For each i ∈ [n], compute yi := (k + xi)

g over Fp.
2. (One-bit leakage) If Ps is corrupted, for each i ∈ [n], compute ℓi := (k + xi)

?
= 0, send (eval, ℓ) to S. If

∃i ∈ [n] such that ℓi is 1, send (abort) to Pc and halt.
3. Send (eval,y) to Pc.

Figure 5: The 2PC-Gold functionality.

5.1 Ideal Functionality for 2PC-Gold

The ideal functionality F2PC-Gold achieved by our 2PC-Gold is defined in Figure 5. For simplicity, we
assume the PRF key is uniformly sampled when Ps is honest. We remark that our protocols can
support a server-specified key almost for free (see Section 5.3). We directly define F2PC-Gold (and
realizations) with batched offline phases (i.e., init instruction) and sub-batched online phases (i.e.,
eval instruction). The non-batched evaluation setting is the particular case where nbatch = n = 1.

Note that init can be called only once per session with a predetermined nbatch, capturing the
maximum number of evaluations (if more are needed init needs to be called again). See Section 3.3
for the reason behind this restriction and Section 6.1 for how to remove it easily. Our half-malicious
2PC-Gold in fact does not even have this restriction. Specifically, Step 3 in our protocol in Figure 6
can be executed repeatedly, even after the online phase has been performed. However, for simplicity,
since our plain malicious protocol has this restriction on init (specifically Step 5 cannot be executed
again after init ends), we adopt a unified F2PC-Gold that restricts init in all settings.
One-Bit Leakage. Recall that protocols presented in Section 3 incur a one-bit leakage per evaluation.
We show how to remove this leakage efficiently in Section 3.4. Since this functionality (with the
one-bit leakage in Step 2) is already useful for many applications (justified in Section 3.4), we stitch
to this definition. Essentially, the changes to upgrade the functionality/protocols/proofs to the
version without the one-bit leakage are straightforward (see Section 3.4).

5.2 Formal 2PC-Gold Protocols and Theorems

We defer the reader to Section 3 for concise overviews of 2PC-Gold, including intuitive arguments
regarding security. In this section, we formalize our protocols as Π2PC-Gold in Figures 6 and 7 with
corresponding theorems.

Theorem 1 (Half-Malicious). Protocol Π2PC-Gold (Figures 6 and 7 without gray boxes) information-
theoretically UC-realizes F2PC-Gold (Figure 5) in the Fc,s

VOLE-hybrid model (Figure 1), in the presence
of static corruptions, where a corrupt Ps can be semi-honest and a corrupt Pc can be malicious.

Proof. By constructing the simulators. When both Ps and Pc are honest, simulation is trivial and
the ideal world is statistically indistinguishable from the real world: it only fails when ui = 0 for one
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Protocol Π2PC-Gold (Offline)
Π2PC-Gold, parameterized by a field Fp where (1) p = p(λ) = 2λ · g + 1 is a prime and (2) g = g(λ) is an integer of
2λ+O(1) bits, running with a server Ps, a client Pc, with hybrid access to Fc,s

VOLE and Fs,c
VOLE over Fp, proceeds as

follows:
Initialize. Ps and Pc, each on receiving (init, nbatch) where nbatch ∈ Z+, proceed as follows:
1. Sample OPRF key: Ps and Pc each sends (init) to Fc,s

VOLE, where Ps receives the uniformly sampled OPRF
key k := ∆(s) ∈ Fp.

2. Sample ZKP private coins: Ps and Pc each sends (init) to Fs,c
VOLE, where Pc receives the uniformly sampled

∆(c) ∈ Fp.
3. Sample VOLE correlations used for OPRF evaluations: Ps and Pc each sends (extend, nbatch) to Fc,s

VOLE,
and then Ps receives v whereas Pc receives u,w such that u,v,w ∈ Fnbatch

p ,v = w + u∆(s).
4. Prepare the committed g-th residues:

(a) Sample the hiding pads: Ps and Pc each sends (extend, nbatch) to Fs,c
VOLE, and then parties receive

length-nbatch random IT-MACs as [α]∆(c) . (Note: when Ps is honest, α looks uniform to Pc.)
(b) Sample the VOLE correlations used for raising powers: Ps and Pc each sends (extend, nbatch ·λ) to
Fs,c

VOLE, and then parties receive length-(nbatch · λ) random IT-MACs as [δi,j ]∆(c) for each i ∈ [nbatch], j ∈ [λ].
(c) Raising powers: for each i ∈ [nbatch], j ∈ [λ], Ps sends α2j

i − δi,j , then parties compute [α2j

i ]∆(c) :=

[δi,j ]∆(c) + (α2j

i − δi,j).
(d) ZKP check on raising powers: Ps and Pc deploy the batched LPZK check (see Section 2.7) to ensure

for each i ∈ [nbatch], j ∈ [λ], [α2j−1

i ]∆(c) and [α2j

i ]∆(c) satisfy the relation:
(
α2j−1

i

)2

= α2j

i . Note, this needs
a random VOLE correlation from Fs,c

VOLE. If the check fails, Pc aborts the protocol.
5. Prepare the committed v:

(a) Commit the OPRF key k = ∆(s): Ps and Pc each sends (extend, 1) to Fs,c
VOLE, and then parties

receive length-1 random IT-MACs as [β]∆(c) . Next, Ps sends ∆(s) − β to Pc, then parties compute
[k = ∆(s)]∆(c) := [β]∆(c) + (∆(s) − β).

(b) Commit v: Ps and Pc each sends (extend, nbatch) to Fs,c
VOLE, and then parties receive length-nbatch

random IT-MACs as [ζ]∆(c) . Next, for each i ∈ [nbatch], Ps sends vi − ζi to Pc, then parties compute
[vi]∆(c) := [ζi]∆(c) + (vi − ζi).

(c) Sample the sacrificed VOLE correlation: Ps and Pc each sends (extend, 1) to Fc,s
VOLE, and then Ps

receives vsa whereas Pc receives usa, wsa such that vsa, usa, wsa ∈ Fp, vsa = wsa + usa∆
(s).

(d) Commit vsa: Ps and Pc each sends (extend, 1) to Fs,c
VOLE, and then parties receive length-1 random

IT-MACs as [γ]∆(c) . Next, Ps sends vsa − γ to Pc, then parties compute [vsa]∆(c) := [γ]∆(c) + (vsa − γ).
(e) Perform the consistency check: Pc samples χ ∈ Fp, then computes upoly := usa +

∑nbatch
i=1 ui · χi

and wpoly := wsa +
∑nbatch

i=1 wi · χi. Next, Pc sends χ, upoly, wpoly to Ps, and then Ps computes vpoly :=

vsa +
∑nbatch

i=1 vi · χi; Ps checks if vpoly
?
= wpoly + upoly∆

(s), if not, Ps aborts the protocol. Finally, parties
locally compute the IT-MAC

[vpoly − wpoly − upoly ·∆(s)]∆(c) = [vpoly]∆(c) − wpoly − upoly · [∆(s)]∆(c)

= [vsa]∆(c) +

n∑
i=1

χi · [vi]∆(c) − wpoly − upoly · [∆(s)]∆(c)

and Ps proves to Pc that it commits to a zero via opening the IT-MAC. If the check fails, Pc aborts the
protocol.

Finally, Ps and Pc each sets neval := 0, ignoring the subsequent (init, ·). In the half-malicious protocol, Ps samples
α

$← Fnbatch
p and computes α2λ

i for each i ∈ [nbatch] (in the malicious case, α is sampled and α2λ is computed
in Sub-step 4a). Then, Ps outputs k.

Figure 6: Our 2PC-Gold protocols (offline phase) in the (Fc,s
VOLE,F

s,c
VOLE)-hybrid model. The de-

scriptions include our half-malicious and malicious protocols. In particular, the malicious protocol
includes the steps (and corresponding sub-steps) in gray boxes .
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Protocol Π2PC-Gold (Online)
Π2PC-Gold, parameterized by a field Fp where (1) p = p(λ) = 2λ · g + 1 is a prime and (2) g = g(λ) is an integer of
2λ+O(1) bits, running with a server Ps, a client Pc, with hybrid access to Fc,s

VOLE and Fs,c
VOLE over Fp, proceeds as

follows:
Evaluate. Ps on receiving (eval, n) and Pc on receiving (eval, n,x), where n ∈ Z+ and x ∈ Fn

p . If neval+n > nbatch,
ignore the instruction; otherwise, proceed as follows:
6. Pc sends the first message: For each i ∈ [n], Pc sends msg1,i := −wneval+i + uneval+i · xi to Ps.

7. Ps sends the second message: For each i ∈ [n], Ps sends msg2,i := α2λ

neval+i · (msg1,i + vneval+i) to Pc. If

∃i ∈ [n],msg2,i = 0, Pc aborts the protocol. (Note, the computing of α2λ has been performed in the offline
phase.)

8. ZK proofs on a well-formed second message: Ps and Pc deploy the batched LPZK check (see Section 2.7)

to ensure for each i ∈ [n], [vneval+i]∆(c) (from Sub-step 5b), [α2λ

neval+i] (from Sub-step 4c), msg1,i (from Step 6),

and msg2,i (from Step 7) satisfy the relation: α2λ

neval+i · (msg1,i + vneval+i) = msg2,i. Note, this needs a random
VOLE correlation from Fs,c

VOLE, which can be generated in the offline phase. If the check fails, Pc aborts the
protocol.

9. Pc computes the final output: for each i ∈ [n], Pc computes yi :=
(
u−1
neval+i ·msg2,i

)g

∈ Fp. Pc outputs
(eval,y).

Finally, Ps and Pc each sets neval := neval + n.

Figure 7: Our 2PC-Gold protocols (online phase) in the (Fc,s
VOLE,F

s,c
VOLE)-hybrid model. The de-

scriptions include our half-malicious and malicious protocols. In particular, the malicious protocol
includes the steps (and corresponding sub-steps) in gray boxes . Note that for the malicious eval
with n = 1, it suffices to use (cheaper) non-batched LPZK technique in Step 8.

i ∈ [nbatch], which happens with probability ≤ nbatch
p . We now focus on the cases where either Ps or

Pc is corrupted. In these cases, the simulation is perfect.
Semi-honest Ps: The simulator S only needs to sample the (honest) transcript seen by Ps.

Clearly, simulating the call to init is trivial as S only needs to emulate FVOLE. Additionally, we
can sample each call to eval separately, as long as we carefully reuse the same k = ∆(s) for each
call. Thus, we only focus on the scenario with a single eval. The transcript in the real world is:

{k, n,v,−w + u⊙ x} | k $← Fp,v,u
$← Fn

p , s.t. v = w + u · k

where x is the Pc’s input and ⊙ denotes the element-wise product. As −w = −v+u ·k, by replacing
w and adding v into the fourth entry, we need to sample:

{k, n,v,u⊙ (k + x)} | k $← Fp,v,u
$← Fn

p

Note that S gets ℓi := (k+xi)
?
= 0 for each i ∈ [n] from the F2PC-Gold.9 Therefore, for each i ∈ [n], if

ℓi = 1, we can replace ui(k + xi) with a zero; otherwise, since ui is uniformly sampled and unknown
to Ps, we can replace ui(k + xi) with a uniformly sampled Fp element. That is,

{k, n,v, r ⊙ (1− ℓ)} | k $← Fp,v
$← Fn

p , r
$← Fn

p

The final distribution is sampled without x.
9We note that in the protocols where the leakage is eliminated, ℓ can be viewed as 0—a vector of zero. See Section 3.4.
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Malicious P∗
c : The simulator S needs to interact with the malicious P∗

c to sample the transcript
and extract the inputs. Similar to the semi-honest Ps case, we only need to focus on the scenario
with a single eval. S, emulating Fc,s

VOLE for P∗
c , will perform as follows:

1. In Step 3, P∗
c would send (extend, nbatch) to S. Here, S emulates the Fc,s

VOLE and receives u,w
from P∗

c . S maintains a global counter ncur, initialized to 0. For each call eval with n, S sets
ncur := ncur + n after completing the following steps.

2. Extracting the inputs: In Step 6, for each i ∈ [n], P∗
c would send m̃sg1,i ∈ Fp to S; now, if

uncur+i = 0, set xi := 0; otherwise, set xi := (m̃sg1,i +wncur+i) · u−1
ncur+i in Fp. S sends (eval,x)

to F2PC-Gold and receives y ∈ Fn
p from F2PC-Gold, where for each i ∈ [n], yi = (k + xi)

g.

3. Simulating the transcript: In Step 7, for each i ∈ [n]:

(a) If uncur+i = 0, S samples uniform α′
i ∈ Fp and sends msg′2,i := α′2λ

i · (m̃sg1,i + wncur+i);

(b) Else if yi = 0, S sends msg′2,i := 0 to P∗
c ;

(c) Else, S executes the PPT algorithm in Figure 4 to find a zi such that zgi = yi, then S
samples uniform α′

i ∈ Fp and sends msg′2,i := α′2λ
i · uncur+i · zi to P∗

c .

4. S outputs whatever is output by P∗
c .

We now argue why this is a valid simulator. Note that Ps does not have output except k and n,
nbatch. As k is uniformly sampled (or a Ps’s input in the server-specified case), all we need to show is
that the transcript simulated by S is indistinguishable from the one in a real-world execution. This
can be done by a straightforward case analysis (note, here ncur is the same as neval in our protocol):

• If uncur+i = 0, in the real-world execution, vncur+i = wncur+i + uncur+i · k = wncur+i, Ps would
send α2λ

i · (m̃sg1,i+vncur+i) = α2λ
i · (m̃sg1,i+wncur+i), where αi is uniformly sampled by (honest)

Pc. In the ideal execution, our simulator S (Sub-step 3a) generates an identical distribution.

• If uncur+i ̸= 0, m̃sg1,i can be uniquely written as −wncur+i+uncur+i ·xi. Hence, in the real-world
execution, msg2,i = α2λ

i · uncur+i · (k + xi) where αi is uniformly sampled by (honest) Pc. On
the other hand, in the ideal execution, since Step 2 extracts the same xi, yi = (k + xi)

g. Now:

– If k + xi = 0, the real-world and ideal (Sub-step 3b) P∗
c both receive a 0—an identical

distribution.

– If k + xi ≠ 0, the ideal (Sub-step 3c) P∗
c receives α′2λ

i · uncur+i · zi where zgi = (k + xi)
g.

This implies there exists an a ∈ F∗
p, such that zi = a2

λ · (k+xi). Hence, α′2λ
i ·uncur+i · zi =

(a · α′
i)
2λ · uncur+i · (k + xi) where α′

i ∈ Fp is uniformly sampled by S—an identical
distribution to the real-world.

To conclude, the distribution seen by P∗
c in the real world is identical to the one seen by P∗

c in
the ideal world, which further infers an identical distribution seen by the UC environment. The
simulation is perfect.

Theorem 2 (Malicious). Protocol Π2PC-Gold (Figures 6 and 7 with gray boxes) information-theoretically
UC-realizes F2PC-Gold (Figure 5) in the (Fc,s

VOLE,F
s,c
VOLE)-hybrid model (Figure 1), in the presence of

static corruptions, where a corrupt Ps or Pc can be malicious.
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Proof. By constructing the simulators. When both Ps and Pc are honest, simulation is trivial and
the ideal world is statistically indistinguishable from the real world: it only fails when ui = 0 for one
i ∈ [nbatch], which happens with probability ≤ nbatch

p . We now focus on the cases where either Ps or
Pc is corrupted. In these cases, the simulation is perfect.

For simplicity and readability, we assume nbatch = n. Supporting one nbatch with multiple n’s (of
eval’s) can be handled the same as our proof of Theorem 1, i.e., by S maintaining an ncur.

Malicious P∗
c : Intuitively, compared to the simulator used in our half-malicious protocol, the

simulator S interacting with the malicious P∗
c in our malicious protocol only needs to additionally

sample the transcript generated by the consistency check (Step 5) as well as the VOLE-based ZK
proofs (Steps 4 and 8) as a verifier. In a nutshell, this part of the simulation is simple since S, by
emulating the hybrid functionality Fs,c

VOLE for P∗
c , knows the ZKP private coins ∆(c) as well as every

IT-MAC shares of P∗
c ; hence, S can directly compute the corresponding values P∗

c is expecting to
receive. More precisely, we extend S for P∗

c from the half-malicious case with the following steps:

1. At Step 2, S, by emulating the hybrid functionality Fs,c
VOLE for P∗

c , receives ∆(c) ∈ Fp from P∗
c .

2. At Sub-steps 4a and 4b, S, by emulating the hybrid functionality Fs,c
VOLE for P∗

c , receives
n · (1 + λ) IT-MAC shares of P∗

c from P∗
c .

3. At Sub-step 4c, S sends P∗
c n · λ uniformly sampled elements in Fp. Note, this distribution

in the ideal world is identical to the real-world one since each committed value generated
in Sub-step 4b looks uniform to P∗

c . Then, S adjusts each share of IT-MAC of P∗
c according

to these uniform samples and ∆(c).

4. At Sub-step 4d, S calls the batched LPZK simulator for verifier. This simulation is simple: S
receives the challenges from P∗

c , which is used to aggregate the proof; then, S can compute
the P∗

c ’s expected value Π ∈ Fp. Finally, S samples C1 ∈ Fp, sets C0 := Π − C1 ·∆(c), and
sends C0, C1 to P∗

c . This simulated distribution is identical to the real-world one, as in the
real world and the batched LPZK check, C1 is one-time padded by a uniform value, generated
by Fs,c

VOLE.

5. At Sub-step 5a, S, by emulating the hybrid functionality Fs,c
VOLE for P∗

c , receives 1 IT-MAC
share of P∗

c from P∗
c . Then, S sends a uniformly sampled element in Fp. This generates an

identical distribution as argued in the simulator S’s Steps 2 and 3.

6. At Sub-step 5b, S, by emulating the hybrid functionality Fs,c
VOLE for P∗

c , receives n IT-MAC
shares of P∗

c from P∗
c . Then, S sends n uniformly sampled elements in Fp. This generates an

identical distribution as argued in the simulator S’s Steps 2 and 3.

7. At Sub-step 5c, S, by emulating the hybrid functionality Fc,s
VOLE for P∗

c , receives wsa, usa from
P∗
c .

8. At Sub-step 5d, S, by emulating the hybrid functionality Fs,c
VOLE for P∗

c , receives 1 IT-MAC
share of P∗

c from P∗
c . Then, S sends a uniformly sampled element in Fp. This generates an

identical distribution as argued in the simulator S’s Steps 2 and 3.

9. At Sub-step 5e, S receives χ, ũpoly, w̃poly from P∗
c , then checks if ũpoly

?
= usa +

∑n
i=1 ui · χi

and w̃poly
?
= wsa +

∑n
i=1wi · χi. (Note, this can be done since S, by emulating the hybrid
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functionality Fs,c
VOLE for P∗

c know all u,w, usa, wsa.) If check fails, S sends abort to P∗
c and

outputs whatever outputted by P∗
c . Crucially, the real-world honest Ps would also abort w.h.p.

This is because, if Ps does not abort, this implies

w̃poly + ũpoly ·∆(s) = vpoly = (wsa +
n∑

i=1

wi · χi) + (usa +
n∑

i=1

wi · χi) ·∆(s)

Then, if w̃poly ̸= wsa +
∑n

i=1wi · χi or ũpoly ≠ usa +
∑n

i=1 ui · χi, since ∆(s) is uniformly
sampled in Fp, the above equality can only happen with up to negligible probability 1

p , based
on Corollary 1. Now, conditioned on the check is passed, S can compute the equation
[vsa]∆(c) +

∑n
i=1 χ

i · [vi]∆(c) −wpoly−upoly · [∆(s)]∆(c) over P∗
c ’s shares and sends it to P∗

c , which
is identical to the real world as it must be an IT-MAC of 0.

10. At Step 8, S calls the batched LPZK simulator for verifier, same as the simulator S’s Step 4.

To conclude, the distribution seen by P∗
c in the real world is statistically close to the one seen by

P∗
c in the ideal world, which induces a statistically indistinguishable distribution seen by the UC

environment. In particular, the statistical distance is ≤ 1
p—a negligible probability.

Malicious P∗
s : The simulator S for malicious P∗

s needs to simulate (1) the transcripts seen by
P∗
s and (2) the honest client’s output. In a nutshell, S achieves this by relying on the soundness of

the VOLE-based ZK (i.e., the batched LPZK) and our consistency check. In detail, the simulator S,
emulating Fc,s

VOLE and Fs,c
VOLE for P∗

s , operates as follows:

1. At Step 1, S receives the OPRF key k = ∆(s) from P∗
s . Note, this step reflects the fact that P∗

s

can select her own OPRF key, captured by Fc,s
VOLE; see Figure 1. Then, S sends k to F2PC-Gold

to set the ideal-world OPRF key.

2. At Step 3, S receives v ∈ Fn from P∗
s .

3. At Step 4, S performs as follows:

(a) At Sub-step 4a, S receives n IT-MAC [α]∆(c) shares of P∗
s from P∗

s , including α ∈ Fn
p .

(b) At Sub-step 4b, S receives n · λ IT-MAC [δi,j ]∆(c) (for i ∈ [n], j ∈ [λ]) shares of P∗
s from

P∗
s , including {δi,j}i∈[n],j∈[λ] where each δi,j ∈ Fp.

(c) At Sub-step 4c, for each i ∈ [n], j ∈ [λ], S receives ηi,j ∈ Fp from P∗
s and set ηi,j :=

ηi,j + δi,j .

(d) At Sub-step 4d, S mimics the verifier behaviors in the batched LPZK check. I.e., S sends
some uniform elements to P∗

s .

Now, S checks if the following condition is satisfied:

∃i ∈ [n], j ∈ [λ], ηi,j ̸= α2j

i

If so, S sends (abort) to F2PC-Gold and then outputs whatever outputted by P∗
s . Crucially, when

the above condition is satisfied, relying on the soundness of the batched LPZK technique, the
real-world honest Pc would also abort except for up to probability λn+1

p . Subsequently, consider
only the case where the above condition is unsatisfied, i.e., we assume ∀i ∈ [n], j ∈ [λ], ηi,j = α2j

i .

23



4. At Step 5, S performs as follows:

(a) At Sub-step 5a, S receives the IT-MAC [β]∆(c) share of P∗
s from P∗

s , and a value in Fp

from P∗
s , which is used to obtain [k̃]∆(c) . I.e., k̃ ∈ Fp is selected by P∗

s , which does not
have to be equal to k.

(b) Similarly, at Sub-step 5b, S receives the IT-MAC [ṽ1]∆(c) , . . . , [ṽn]∆(c) shares of P∗
s from

P∗
s .

(c) At Sub-step 5c, S receives vsa ∈ Fp from P∗
s .

(d) At Sub-step 5d, S receives the IT-MAC [ṽsa]∆(c) share of P∗
s from P∗

s .

(e) At Sub-step 5e, S samples χ
$← Fp, upoly

$← Fp and computes wpoly := vsa +
∑n

i=1 vi ·
χi − upoly · k. (Note, vi∈[n] and vsa, specified by P∗

s , are known by S.) Then, S sends
χ, upoly, wpoly to P∗

s . We remark that the distribution generated here is identical to the
one for this step used in the real-world execution. This is because upoly in the real-world
execution is one-time padded by a uniform sampled usa ∈ Fp.

Now, S checks if the following condition is satisfied:

ṽsa +
n∑

i=1

χi · ṽi − wpoly − upoly · k̃ ̸= 0 ∨ k̃ ̸= k ∨ ṽsa ̸= vsa ∨ ∃i ∈ [n], ṽi ̸= vi

If so, S sends (abort) to F2PC-Gold and then outputs whatever outputted by P∗
s . Crucially,

we now argue that when the above condition is satisfied, the real-world honest Pc would also
abort w.h.p. as follows:

• If ṽsa +
∑n

i=1 χ
i · ṽi − wpoly − upoly · k̃ ̸= 0, based on the binding property of IT-MAC,

except for probability 1
p , it cannot be opened to 0, implying real-world honest Pc’s abort.

• If ṽsa+
∑n

i=1 χ
i · ṽi−wpoly−upoly · k̃ = 0, by plugging in wpoly = vsa+

∑n
i=1 vi ·χi−upoly ·k

and in the real-world, upoly = usa +
∑n

i=1 ui · χi, we have:

(ṽsa − vsa) + usa · (k − k̃) +
n∑

i=1

χi · [(ṽi − vi) + ui · (k − k̃)] = 0

Now, if k̃ ̸= k ∨ ṽsa ̸= vsa ∨∃i ∈ [n], ṽi ≠ vi, since usa and ui∈[n] each is uniformly sampled
in Fp and has full entropy when ṽ, ṽsa,v, vsa, k̃, k are selected by P∗

s , except for up to
probability 1

p , the vector:

(ṽsa − vsa) + usa · (k − k̃), {(ṽi − vi) + ui · (k − k̃)}i∈[n]

must be a non-zero vector. Since χ is uniformly sampled from Fp after ṽ, ṽsa,v, vsa, k̃, k
were selected by P∗

s , based on Corollary 1, the equality would only hold (i.e., Pc not
abort) with probability at most n

p .

To sum up, the real-world honest Pc would also abort except for up to probability n+2
p .

Subsequently, consider only the case where the condition is unsatisfied, which implies that
∀i ∈ [n], ṽi = vi.
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5. At Step 6, S receives (eval, ℓ) from F2PC-Gold where ℓ is the leaky array defined as ℓi =

(k + xi)
?
= 0 for each i ∈ [n]. Now, for each i ∈ [n]:

• If ℓi = 1, S sends msg′1,i := −vi to P∗
s . Note, this transcript is identical to the real-world

one as in the real-world execution msg1,i + vi = ui · (k + xi) = 0.

• If ℓi = 0, S samples and sends msg′1,i
$← Fp to P∗

s . Note, this transcript is identical to
the real-world one as in the real-world execution: (1) ui is uniformly sampled by Fc,s

VOLE
and crucially remains full entropy to P∗

s at this point, and (2) msg1,i + vi = ui · (k + xi).

6. At Step 7, for each i ∈ [n], S receives m̃sg2,i ∈ Fp. If ∃i ∈ [n], m̃sg2,i = 0, S sends (abort) to
F2PC-Gold and then outputs whatever outputted by P∗

s ; obviously, the real-world Pc would also
abort in this case.

7. At Step 8, S mimics the verifier behaviors in the batched LPZK check. I.e., S sends some
uniform elements to P∗

s .

8. Finally, if ∃i ∈ [n], α2λ
i · (msg′1,i + vi) ̸= m̃sg2,i, S sends (abort) to F2PC-Gold and then outputs

whatever outputted by P∗
s . Otherwise, S sends (continue) to F2PC-Gold and then outputs

whatever outputted by P∗
s . Clearly, based on the soundness of the batch LPZK technique,

in the real-world execution, if ∃i ∈ [n], α2λ
i · (msg1,i + vi) ̸= msg′2,i, the real-world honest Pc

would also abort except for up to probability n+1
p ; otherwise, Pc in the real-world would output

correct OPRF evaluations, same as the ideal-world.

To conclude, the distribution seen by P∗
s in the real world is statistically close to the one seen by P∗

s

in the ideal world, and the honest Pc outputs identical distribution is the two worlds. This induces a
statistically indistinguishable distribution seen by the UC environment. In particular, the statistical
distance is ≤ n(λ+2)+4

p —a negligible probability.

5.3 Some Details

Cost Analysis. We tally the cost of our half-malicious and malicious protocols in Figures 6 and 7
(for simplicity, we assume nbatch = n):

• Step 3 and Sub-steps 4a and 4b require n(λ+ 2) VOLE correlations over Fp.

• Sub-step 4c requires Ps to sends nλ field elements, and each party to perform O(nλ) field
operations.

• Sub-step 4d requires 1 VOLE correlation over Fp, Pc to send 1 field element, Ps to send 2 field
elements, and each party to perform O(nλ) field operations.

• Sub-step 5a requires 1 VOLE correlation over Fp, Ps to send 1 field element, and each party to
perform 1 field operation.

• Sub-step 5b requires n VOLE correlations over Fp, Ps to send n field elements, and each party to
perform n field operations.

• Sub-step 5c requires 1 VOLE correlation over Fp.
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• Sub-step 5d requires 1 VOLE correlation over Fp, Ps to send 1 field element, and each party to
perform 1 field operation.

• Sub-step 5e requires Pc to send 3 field elements, Ps to send 1 field element, and each party to
perform O(n) field operations.

• Step 6 requires Pc to send n field elements.

• Step 7 requires Ps to send n field elements. In our half-malicious protocol, it requires Ps to sample
n field elements and perform O(nλ) field operations (in the offline phase). Then, in both protocols,
it requires Ps to perform O(n) field operations.

• Step 8 requires 1 VOLE correlation over Fp, Pc to send 1 field element, Ps to send 2 field elements,
and each party to perform O(n) field operations.

• Step 9 requires Pc to perform O(nλ) field operations.

To sum up, in the VOLE-hybrid model, our protocols cost10:

• Half-malicious one needs n VOLE correlations with:

– Ps’s Comp.: O(nλ) (resp. O(n)) field operations in offline (resp. online) phase.

– Pc’s Comp.: O(nλ) field operations in online phase.

– Comm.: 2n field elements in online phase.

– Round: 2. Note that the online phase only involves the generation of VOLE correlations.

• Malicious one needs nλ+ 3n+ 5 VOLE correlations with:

– Ps’s Comp.: O(nλ) (resp. O(n)) field operations in offline (resp. online) phase.

– Pc’s Comp.: O(nλ) field operations in both offline and online phases.

– Comm.: nλ+ n+ 9 (resp. 2n+ 3) field elements in offline (resp. online) phase.

– Round: 5 (as all checks can be executed in parallel). It can be compressed to 3 using the
Fiat-Shamir transformation [FS87], which is PQ secure [YZ21].

Optimization via Generalized LPZK. The communication bottleneck of our malicious protocol
lies in Sub-step 4c where Ps needs to commit to nbatch ·λ field elements representing each intermediate
result of computing α2λ

i∈[nbatch]
. We can exploit the generalized LPZK technique [YSWW21] (see

Section 2.7) to optimize this step. In particular, w.l.o.g., let ϕ be some constant that divides λ. We
can raise each element to the power of 2ϕ rather than 2. This will reduce the communication cost of
this step to nbatch·λ

ϕ . Note that this will also increase the coefficients Ps needs to send in Sub-step 4d
to 2ϕ. Hence, ϕ can only be a small constant. In conclusion, for any constant ϕ divides λ, we can
improve the offline communication cost to nbatch·λ

ϕ + nbatch + 7 + 2ϕ field elements, with reduced
VOLE correlations required.

Using the generalized LPZK will also increase the computation concretely—the hidden constant
will increase by a factor of ≈ 2ϕ in asymptotic. Moreover, while it saves the required VOLE
correlations for committing to the intermediate results by ϕ×, it requires 2ϕ − 2 more VOLE

10For computation, we count the field operations, which are the dominating costs.
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correlations (see [HHK+24]) to randomize the coefficients sent in ZKP. Finally, the statistical
advantage needs to be adjusted.
Key Selection. The protocols in Figures 6 and 7 assume a uniformly sampled PRF key k := ∆(s).
In some applications, Ps may instead want to specify this key k∗. This can be done by Ps sending
k∗ − ∆(s) at the very beginning of the online phase, followed by Pc adjusting his w. Crucially,
k∗ −∆(s) is one-time padded by uniformly sampled ∆(s) and the simulator can trivially extract k∗.

Note, this does not affect the generation of [v]∆(c) in the offline phase of our malicious protocol
since this generation (and check) can be based on [∆(s)]∆(c) (see Sub-step 5a).

Of course, this increases the communication complexity of both protocols by 1 Fp element (in
the online phase).
ZKP over the Committed Key. In our malicious protocol, Sub-step 5a generates [∆(s)]∆(c)

and Step 5 ensures the unforgability of ∆(s). Namely, this is an IT-MAC over the PRF key. (Note,
this is true even in the case where Ps selects her own PRF key since [k∗]∆(c) = [∆(s)]∆(c)+(k∗−∆(s)).)
Thus, Ps can execute the standard VOLE-based ZKP using this IT-MAC to demonstrate any NP
relation involving the used PRF key. In particular, for a standard fan-in 2 arithmetic circuit
C : Fnin

p 7→ F∗
p with n× multiplication gates. Ps can perform a ZKP to show Pc that she knows

w ∈ Fnin−1
p s.t. C(k,w) = 0 with a communication complexity of nin +n×+O(1) field elements and

a computation complexity of O(n×) field operations. This can be exploited to, e.g., (1) prove the
leading two bits of key is zero to get rid of the one-bit leakage in F2PC-Gold (Figure 5) as discussed in
Section 3.4; and (2) prove that the key binds to a public verification key as discussed in Section 6.1.

6 Verifiability and Strong UC Security

6.1 Verifiability: Ensuring a Consistent Key

In this section, we discuss how to add different forms of verifiability to our protocols, which ensures
the same key is used across multiple sessions and/or clients.

Verifiability is important, sometimes essential, in many applications. Naturally, this requires the
client to keep verification information across OPRF invocations.
Private Verifiability. We show how to achieve private verifiability, namely, the verification
information is specific to a client. This client wants to participate in an OPRF protocol multiple
times and ensure that the server, which can be malicious, only uses a single key.

Note, since the PRF key is embedded in the VOLE correlations generated by Fc,s
VOLE, if Pc can save

all correlations (i.e., malicious batched offline phases), it already achieves private verifiability—the
ZKP with a wrong key fails w.h.p.

We highlight that Pc can also achieve this by saving only one fresh correlation related to k.
Specifically, consider Pc saves u and w, whereas Ps has k and v = uk + w. Now, during the new
invocation, we can start a new Fc,s

VOLE where Ps inputs her key k′ (via sending k′ −∆
(s)
new) and the

client verifies that k′ = k. For this, let v′ = u′k′ + w′ be a correlation generated by this new Fc,s
VOLE.

Parties proceed:

1. Pc sends α := u− u′.

2. Ps commits β := v − v′ − α · k via a commitment scheme.

3. Pc sends γ := w − w′. If γ ̸= β, Ps aborts.
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4. Ps opens β, If β ̸= γ, Pc aborts.

Here, the commitment scheme prevents a malicious Pc to learn k. Additionally, since u and u′ are
uniformly sampled, w−w′ = v − v′ − (uk − u′k′) is uniformly random to Ps given v, v′, u− u′ when
k ̸= k′. After verification, these two involved correlations are discarded. Note that the Fs,c

VOLE to
support ZK (and Steps 4 and 5 in Figure 6) must also be re-executed. These steps need to be
executed before k′−∆

(s)
new is sent. This ensures that ∆(s)

new remains full entropy to the UC environment
to protect against a malicious client.

We note that the UC environment can learn k from the honest Ps output, so a malicious Pc can
easily pass the equality check in Step 3 with maliciously-chosen α∗ = u−u′+ δ and γ∗ = w−w′− δk
for some δ ̸= 0. While this implies the extraction of k by the UC simulator, we still need to simulate
the honest Ps’s abort. This can be done by adding one extra instruction in the ideal functionality,
defined as follows:

“Global-key query. If Pc is corrupted, receive (guess, k′) from S: if k = k′, send success to
S and ignore any subsequent query; otherwise, send abort to both parties.”

This global-key query is harmless as the Pc with PRF evaluation can always verify his guess on the
key locally.

Finally, we remark that the above technique to achieve private verifiability with a single correlation
can be used to remove the predetermined nbatch limit: it allows the execution of a new offline phase
with a new nbatch and ensures the same key is reused. Actually, we can directly adopt the commit-
verify-open idea to the consistency check for [v]∆(c) (particularly the proof of a zero IT-MAC;
see Section 3.2) in a way that it can be executed even after the key k (or ∆(s)) is revealed to the UC
environment.
Public Verifiability. We show how to achieve public verifiability, namely, the verification informa-
tion is public (denoted as VK) and can be used by multiple clients. VK can be viewed as a public
key of the server, hiding and binding to her PRF key k, and it needs to be obtained by the clients
from a reliable source (e.g., authenticated by the server, via certificates, etc.). This corresponds to
the notion of Verifiable OPRF (VOPRF) in the literature.

We achieve this inspired by [BDFH24, Lemma 7 and 8], which focuses on building (V)OPRFs
from Legendre PRFs. We first port the core Lemma into our Gold setting as follows (proof is deferred
to the full version):

Lemma 3. For a prime p and any positive integer g that divides p− 1, for any k ̸= k′ ∈ Fp, there
are at most g − 1 different x ∈ Fp such that (k + x)g = (k′ + x)g.

Proof. The equation is of degree-(g − 1) in x.

Lemma 4. For a prime p and any positive integer g that divides p− 1, for m uniformly sampled
elements ℓ1, . . . , ℓm

$← Fp, the following statement holds:

Pr
[
∃k ̸= k′, ∀i, (k + ℓi)

g = (k′ + ℓi)
g
]
≤ (p− 1)(g − 1)m

2pm−1

Proof. By applying the union bound and Lemma 3:

Pr
[
∃K ̸= K ′, ∀i ∈ [m], (K + ℓi)

g = (K ′ + ℓi)
g
]
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≤
∑

0≤K<K′<p

Pr
[
∀i ∈ [m], (K + ℓi)

g = (K ′ + ℓi)
g
]

(Union bound)

=
∑

0≤K<K′<p

∏
i∈[m]

Pr
[
(K + ℓi)

g = (K ′ + ℓi)
g
]

(Independent ℓ)

≤
∑

0≤K<K′<p

∏
i∈[m]

g − 1

p
(Lemma 3)

=
(p− 1)(g − 1)m

2pm−1

In our approach, let ℓ1, . . . , ℓm ∈ Fp be public parameters which are assumed to be uniform; Ps
publishes

VKm := (k + ℓ1)
g, . . . , (k + ℓm)g (1)

as the public key. Based on Lemma 4, this achieves statistical binding for large enough m. Concretely,
since log p ≈ 3λ and log g ≈ 2λ, we can set m = 7. For a uniformly sampled k, this also achieves
computational hiding based on the hardness of the DSPRS problem (see Assumption 1). We only
consider the uniform key since this is typical of how the OPRF key is chosen in the first place.

To validate, we exploit [k]∆(c) , the IT-MAC of k, generated intermediately in our malicious 2PC-Gold
(i.e. Sub-step 5a in Figure 6). With it, Ps can prove that for each i ∈ [m], (k + ℓi)

g meets the i-th
entry of VKm where ℓi is public. Note, instead of raising to the power g directly, the random root
technique (see Section 3.1) can be applied for better efficiency: Ps can let Pc get r2

λ

i · (k + ℓi) for

ri
$← Fp. In detail, parties generate [r2

λ

i ]∆(c) , i ∈ [m], which can be merged into Step 4; then Ps
sends r2λi · (k+ ℓi) and proves each multiplication is done correctly, which can be merged into Step 8.
This results in mλ

ϕ +m additional Fp elements of communication (independently of n) and mλ
ϕ +m

additional VOLE correlations, in the VOLE-hybrid model. See Section 7.4 for concrete cost, including
VOLE.

Practically, ℓ can be generated by applying a public hash function H over [m]. In this case, it is
essential to hash the inputs to Gold with an independent hash function (this is H1 in the O-Gold
function discussed below). Otherwise, VKm would reveal m Gold evaluations.
Stateless Verifiability. Either private or public verifiability discussed above requires the client
to be stateful or be able to receive authenticated VK. However, in some applications, the client is
stateless and has no means to guarantee an authenticated VK. Interestingly, in applications such as
Password-Protected Secret Sharing (PPSS) [JKKX16], a weaker form of verification suffices: if a
malicious Ps changes the key with Pc using the same input, the output is different. 2PC-Gold does
not ensure this property, particularly due to the collision issues discussed in Section 6.2. The same is
the case for the function O-Gold that we defined (see section 1.1) as the 2Hash mode of Gold, namely,

O-Goldk(x) := H2(x,Goldk(H1(x))).

However, the above property can be provided by including the verification value VK6 in the
computation of O-Gold, namely,

H2(x,Goldk(H1(x)),Goldk(ℓ1), . . . ,Goldk(ℓ6)) (2)
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where ℓ1, . . . , ℓ6
$← Fp are public parameters. This value VK6 and its binding property (i.e., Lemma 4)

ensures two keys produce two different public keys, ultimately resulting in two different OPRF
outputs. Note that we only need VK6 rather than VK7 since H1(x) acts as an extra point. Looking
ahead, this modified O-Gold directly implements a strong UC OPRF [BDFH24], which also explains
why it supports PPSS [JKKX16].

6.2 Avoiding Collisions in Gold: Towards Strong UC Security

In this section, we discuss collisions in the Gold function and their effect in defining a Gold-based
UC OPRF in the strong sense (e.g., [JKK14, JKKX16, BDFH24]). By the end of this section, we
show how to build such an OPRF (UC-Gold).

Collisions in Gold—pairs (k, x) ̸= (k′, x′) s.t. Goldk(x) = Goldk′(x
′)—are trivial to find. However,

when considering the function O-Goldk(x) := H2(x,Goldk(H1(x))) where H1 and H2 are modeled
as random oracles, the latter with 2λ bits of output, finding collisions with x ̸= x′ is infeasible.
Yet, O-Gold inherits one form of Gold collisions, namely, colliding pairs (k, x), (k′, x) for k ̸= k′. To
see that such pairs exist (and can be computed), consider a procedure similar to the algorithm
in Figure 4 that on input k, x finds X such that Xg = (k + x)g and then outputs k′ := X − x.

While collisions of the form (k, x), (k′, x) do not violate the standard security of PRFs, OPRF
applications often require stronger properties. In particular, strong UC formulations of OPRF
model these functions as random oracles with outputs independent for any two pairs (k, x) ̸=
(k′, x′). Therefore, collisions of the form (k, x), (k′, x) are not allowed (some OPRF applications,
e.g., [JKKX16], are actually insecure in the presence of such collisions).

Hence, to achieve such strong UC OPRFs, we need to eliminate these collisions. Thanks to the
fact (Lemma 4) that Goldk(ℓ1), . . . ,Goldk(ℓ6) act as a commitment to a single k, the function defined
in Equation (2) achieves this.

This function can be proven UC secure using the formalism and methodology from [BDFH24].
Informally, they show that the 2Hash mode applied to a keyed function F , namely, H2(x, Fk(H1(x))),
results in a strong UC-secure OPRF (in their corresponding OPRF functionality) provided the
following properties hold for F : (1) F has a secure UC two-party computation between a server with
input a key k and a client with input x (similar to the leakage-free version of 2PC-Gold functionality
from Figure 5); (2) F is one-more unpredictable; and (3) collisions Fk(x) = Fk′(x) are hard to find
for any x and any k ̸= k′.

For our case, we consider the function Fk(x) defined as the concatenation of the 7 values:

Goldk(H1(x)),Goldk(ℓ1), . . . ,Goldk(ℓ6).

This F inherits from Gold its UC 2PC security (Section 5.1) and one-more unpredictability (implied
by the hardness of the DSPRS problem; see Assumption 1). In addition, it is collision-resistant (in
the sense of condition (3) above) based on Lemma 4. Thus, if we consider F in 2Hash mode, we
obtain exactly the function defined in Equation (2), and the results from [BDFH24, Theorem 1]
imply this function is a UC OPRF in the formalization of [BDFH24]. For concreteness and future
use, we define:

UC-Goldk(x) := H2

(
x,Goldk(H1(x)),Goldk(H0(1)), . . . ,Goldk(H0(6)

)
where H0,H1,H2 are hash functions modeled as independent random oracles with ranges Fp, Fp and
{0, 1}2λ, resp.
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7 Implementation and Benchmark

We implemented our half-malicious and malicious 2PC-Gold with both non-batched and batched
variants (Figures 6 and 7) using C++.11 In particular, since the performance difference is nuanced,
we consider batched variants with a single batch, i.e., nbatch = n. In this section, we discuss this
implementation and provide a comprehensive benchmark.

We only implemented 2PC-Gold since it is sufficient for many applications and reflects our
performance. Note, 2PC-Gold and O-Gold have similar concrete performance, and we estimate
additional costs needed for UC-Gold in Section 7.4. One can easily extend our compact and modular
implementation to O-Gold and UC-Gold.

We only consider the case where the key is uniformly sampled since extra costs to support a
server-specified key are negligible, as discussed in Section 7.4.

7.1 Setup

Security Level. Our implementation considers λ = 128, aiming at the NIST Security Strength
Category 1 for post-quantum cryptography. In particular, we use 128-bit OTs, and AES-128 to
implement, e.g., the PRNG. We chose this based on baselines in the literature. We note that the
famous Grover algorithm [Gro96] can indeed provide a square-root quantum attack over AES-128,
but this is not considered as a practical attack (see, e.g., [GLRS16, Zal99]). We can upgrade our
implementation to be based on 256-bit OTs and AES-256 with some engineering efforts, and our
estimated performance overhead is only ≤ 2×.
Prime p. Our implementation sets p = 2128 · g + 1 as a 384-bit prime to produce 128-bit OPRF
outputs. We choose g = 2256 − 33375, which is the largest 256-bit prime, ensuring p is also a prime.
Observe that for our selected p, hash functions or PRNGs generating outputs in {0, 1}384 suffice to
produce Fp elements.12 We remark that g does not need to be a prime, but we chose a prime g as a
conservative option. We use the GMP library [Gt20] for Fp operations.
Functionality FVOLE. Recall that our protocols are designed in the VOLE-hybrid (Figure 1) model.
To generate these VOLE correlations, we deploy the following malicious-secure VOLE protocols:

• Non-batched variant: Our non-batched (i.e., single-input) variant, either half-malicious or
malicious, only requires a small number of VOLE correlations. Hence, we implemented the VOLE
protocol in [BDFH24], which relies on [Roy22, BBD+23]. In short, in this protocol, besides a
one-time setup to generate random OTs, each VOLE correlation requires ≈ log p+2σ

t elements of
Fp, where σ = 64 is the statistical security parameter and t = 8 is a communication-computation
trade-off parameter—a per-correlation cost of ≈ 3KB.

• Batched variant: Our n-batched (particularly for a sufficiently large n) variant, either half-
malicious or malicious, requires a large number of VOLE correlations. Hence, we deployed
the [WYKW21]’s VOLE protocol to extend a small amount of VOLE correlations into a large
amount of VOLE correlations with sublinear communication (in length) based on OTs and the
post-quantum LPN assumption. That is, amortized communication is almost free. [WYKW21]’s
implementation is open-sourced in the EMP-Toolkit [WMK16], and we adopted it with adjustments
toward Fp and PQ OTs.
11Our implementation will be open-sourced soon.
12A random integer in [2384] is < p with overwhelming probability.
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Security Metric ϕ =
1 2 4 8

Classical
Comm. (KB) 488 302 242 914

WAN, E2E Time (ms) 1447 1120 966 2229
LAN, E2E Time (ms) 879 606 508 1509

PQ
Comm. (KB) 1216 1030 970 1642

WAN, E2E Time (ms) 1682 1333 1206 2423
LAN, E2E Time (ms) 887 607 510 1503

Table 1: Performance of our non-batched malicious protocol as a function of the optimization
parameter ϕ. Note that ϕ = 1 is essentially the case of no optimization. We highlight the column
ϕ = 4, which provides the lowest cost.

OTs. We utilize the libOTe library [RR] to implement OTs. These (random) OTs are generated
using the state-of-the-art malicious-secure post-quantum OT extension technique [Roy22] relied
on base (random) OTs, which we generate using the malicious-secure OT protocol in [MR19]. In
particular, [MR19]’s OT protocol can be instantiated under either a classical (i.e., Diffie-Hellman-type
with curve25519) or post-quantum (i.e., lattice-type with Kyber512) assumption. Switching between
these instantiations yields classical or post-quantum security to the full 2PC-Gold. We consider both
in our benchmark.
Hardware. Our experiments were executed on two AWS EC2 m5.large machines13 that respectively
implemented Ps and Pc. Each party ran single-threaded. We configured different network settings
via Linux tc command:

• WAN-like: 25Mbps with a 30ms round-trip latency.

• LAN-like: 1Gbps with a 2ms round-trip latency.

These configurations are selected to match prior work.
Metrics. We report the following metrics:

• Communication: the total communication.

• Computation: the total execution time of Ps and Pc respectively. Note that the end-to-end
(E2E) execution time is exactly the Pc’s execution time.

7.2 Performance of Our Protocols

Optimization Parameter ϕ. Recall that our malicious 2PC-Gold can leverage the generalized
LPZK technique [YSWW21] (Section 2.7) to balance communication and computation. We set
ϕ = 4. Our full version includes related experiments.

We performed experiments over our non-batched malicious 2PC-Gold with either classical or
post-quantum security to select this optimization parameter ϕ. Table 1 tabulates the results.

According to these results, we set ϕ = 4. We remark that while our batched protocols may enjoy
a larger ϕ since the communication overhead induced by 2ϕ coefficients in ZKP can be amortized,
our experiments showed that this is not the case because of 2ϕ field operations in computation.
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Variant Security Comm. WAN, Time LAN, Time
Ps-Pc Ps Pc Ps Pc

Non-batched G#- 46KB 338ms 368ms 158ms 160ms
(single-input)  - 242KB 936ms 966ms 506ms 508ms

Batched G#- 99B 61µs 87µs 30µs 56µs
(amortized)  - 1.9KB 1.6ms 1.6ms 1ms 1ms

(a) Classical

Variant Security Comm. WAN, Time LAN, Time
Ps-Pc Ps Pc Ps Pc

Non-batched G#- 774KB 538ms 568ms 161ms 163ms
(single-input)  - 970KB 1.1s 1.1s 507ms 510ms

Batched G#- 100B 61µs 87µs 30µs 57µs
(amortized)  - 1.9KB 1.6ms 1.6ms 1ms 1ms

(b) Post-quantum

Table 2: Performance of our protocols with classical and post-quantum OTs. The overall security is
inherited from the OT. G# denotes the semi-honest security whereas  denotes the malicious security.
The costs of batched protocols correspond to the costs of a single OPRF evaluation when amortized
as part of a n-batched evaluation with a large enough n (see text).

Security Offline Comm. (B) Online Comm. (B)

Ps-Pc
OT VOLE Πoffline Πonline

Ps → Pc Pc → Ps Ps → Pc Pc → Ps Ps → Pc Pc → Ps Ps → Pc Pc → Ps

G#- Classical 13,805 8,368 16 25,552 – – 48 48PQ 439,757 327,800

 - Classical 14,917 22,109 179,792 28,592 2,496 192 144 48PQ 440,869 341,541

Table 3: Fine-grained communication analysis of our non-batched protocols. G# denotes the semi-
honest security whereas  denotes the malicious security. Note that the difference between classical
and PQ instantiations lies only in OTs.

Overall Performance. Table 2a (resp. Table 2b) tabulates the results with classical (resp.
post-quantum) OTs.

For the batched test cases, we set the evaluation number n large enough to enable VOLE extension
and use up the extended VOLE correlations, seeking the best amortization. In particular, n ≈ 107

(resp. ≈ 3× 105) for half-malicious (resp. malicious) protocols.14 This is purely for benchmarking.
While this n ≈ 107 (or ≈ 3× 105) is determined by the LPN parameter in [WMK16], one can adjust
their VOLE extension parameters (e.g., using the LPN estimator [LWYY24]) to smaller values (e.g.,
104) with little effect on the amortized cost.

The performance of our batched variant is almost identical between classical and post-quantum
instantiations. This is because only λ = 128 base OTs need to be generated accordingly, and the
(amortized) cost difference is negligible.
Fine-grained Analysis. We performed fine-grained analysis over the communication of our non-
batched protocols, tabulated in Table 3. Here, Πoffline (resp. Πonline) denotes the offline (resp. online)
phase of our protocols (see Figures 6 and 7) in the VOLE-hybrid model; the communication of OTs
includes the generation of base OTs and OT extension.

We make the following remarks:

• The communication difference between classical and PQ instantiations only lies in the cost of OTs.
In particular, the communication cost of OTs mainly depends on the generation of base OTs.

• For either classical or PQ instantiation, the communication of OTs between the half-malicious
13Intel Xeon Platinum 8259CL @ 2.50GHz, 2 vCPUs, 8GiB Memory
14Note, Ps and Pc each only needs to save the base VOLE correlations to support, e.g., day-to-day invocations. For

example, for n = 107, about 5000 base correlations suffice, requiring about 1MB physical memory.
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and malicious protocols is small. This might be counter-intuitive since our malicious protocols
require OTs in both directions. However, note that we only need to generate base OTs in one
direction, and the extended OTs can be used as base OTs in the opposite direction.

• The communication of Πoffline+Πonline in malicious protocols (2.8KB) does not match the amortized
communication cost of the batched variants (1.9KB). This is mainly because in the batched variants,
the 16 coefficients of the generalized LPZK to prepare [α2λ ]∆(c) can be amortized over n evaluations,
inducing a 16 · 384 bits difference.

• The online phase of our malicious protocol incurs 96 additional Bytes (i.e., 2 Fp elements),
compared to the online phase of our half-malicious protocol. This reflects the VOLE-based ZK
over a single multiplication. In the batched variant, the additive overhead (i.e., independent of n)
is 3 Fp elements, where one extra element is used to aggregate the n-multiplication check.

• Almost all communication of our protocols is used to generate VOLE correlations. As our protocols
are black-box in VOLE, it is valuable to study how to more efficiently generate a small amount of
VOLE correlations, even classically. Indeed, even improving the cost of generating (base) PQ OTs
may significantly increase the performance of our non-batched PQ performance.

Our half-malicious non-batched protocol needs only a single VOLE correlation, whereas our
malicious non-batched protocol requires a total of 54 VOLE correlations (2 in one direction and
52 in the other direction).

7.3 Comparison with Prior Work

We compare our protocols concretely with prior post-quantum OPRFs. Most of them do not have a
(public) implementation, but we try our best to compare with them:

• Isogeny-based: The state-of-the-art semi-honest (both client and server are semi-honest) OPRF
based on isogenies is OPUS [HHM+24]. OPUS focuses on the non-batched setting, and it is unclear
how it can be optimized/amortized in the batched setting. When λ = 128, the communication
cost of OPUS is ≈ 24KB. This outperforms our half-malicious non-batched PQ protocol. (Note
that in our half-malicious model, the client is fully malicious, and only the server is semi-honest.)

However, OPUS requires 258 rounds while ours requires 3 rounds in the VOLE-hybrid model
(with Fiat-Shamir), and the generation of VOLE correlations can be finished in ≤5 rounds. More
importantly, OPUS is extremely computationally intensive. We tested the open-sourced OPUS
implementation on our machines, and it required over 13s E2E for each evaluation in the WAN.
Hence, ours is over 20× better in terms of E2E time and has stronger security. Our improvement
is over 50× in LAN and over 100000× in the batched setting.

The state-of-the-art malicious isogeny-based OPRF is [Bas23], which requires 8.7MB communica-
tion. Our communication is over 9× smaller. Note, [Bas23]’s protocol is a theoretical result, and
no implementation is available. Similar to OPUS, it is very heavy in computation.

• Lattice-based: The state-of-the-art malicious OPRF based on lattices is [AG24, ESTX24], which
requires over 200KB in the batched amortized setting. Ours is over 100× better. Both [AG24]
and [ESTX24] need 2 rounds.
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• “Crypto-Dark-Matter”: The state-of-the-art semi-honest OPRF based on the “Crypto-Dark-
Matter” [BIP+18] is [APRR24]. [APRR24] requires 119 Bytes in the batched amortized setting.
Ours achieves 100 Bytes and in addition we provide security against a malicious client. [APRR24]
needs 2 rounds in the VOLE-hybrid model, same as ours.

• Legendre-based: The state-of-the-art malicious OPRF based on regular Legendre PRFs
is [BDFH24] which focuses on non-batched setting and estimates a 911KB communication (without
implementation). This protocol needs 9 rounds [ESTX24].

In comparison, our real-world tested communication is 970KB. However, [BDFH24] estimates
a 296KB cost of OTs, relying on [BMM22] to generate base OTs. By using these OTs, our
communication can get down to 502KB—1.8× better. More significantly, our per-evaluation
communication reduces to just 1.9KB when amortized over batched evaluations. In contrast,
[BDFH24]’s protocol does not support batched amortization. This is inherent in their approach
because they use (non-standard) VOLE to commit the evaluation input x by revealing x −∆,
where ∆ is the scalar from the VOLE. Thus, for each new x, new VOLE correlations (with a new
∆) must be generated. See also Section 1.2.

Note that our protocols rely solely on standard VOLE correlations in a black-box manner.
[BDFH24]’s protocol requires a customized VOLE functionality. Hence, our protocols are more
friendly to future improvements of VOLE.

7.4 Projected Overhead for Additional Properties

In this section, we discuss the overhead that will occur if additional properties are added to our
implementation. We focus solely on the non-batched setting, as this overhead would be amortized in
the batched setting.
Server-specified Key. This only incurs an additional Fp element (48 Bytes) to be transferred in
the online phase.
Randomized ∆(s). This only incurs an additional Fp element (48 Bytes) to be transferred in the
offline phase. Recall that this can eliminate the one-bit leakage if we only need a uniformly sampled
key; see Section 3.4.
Avoiding Leakage for a Server-specified Key. In the case of a server-specified key, we can
eliminate the one-bit leakage by using a key with two leading zeros, as discussed in Section 3.4. This
can be done by requiring (malicious) Ps to bit-decompose [k]∆(c) . To improve efficiency, Ps can
decompose k into 95 4-bit trunks and 2 1-bit trunks. Hence, it requires 97 VOLE correlations (each
cost ≈ 3KB) and 97 derandomization over correlations (each cost 48 Bytes, i.e., sending z − u to
convert a random IT-MAC [u]∆(c) to [z]∆(c)). In total, this gives a ≈ 296KB overhead. We also need
to ensure that Ps uses values within the ranges [0, 16) (and [0, 2)). This can be freely incorporated
with the power-raising check as degree-16 (and 2) polynomials.
Public Verifiability. Recall that Gold over 7 public random inputs can be used as the public
verification information (i.e., VK7 in Equation (1)) to achieve public verifiability. To ensure the key
used is indeed in line with published VK7, each public input (i.e., ℓi∈[7]) requires λ

ϕ + 1 = 33 more
VOLE correlations (each cost ≈ 3KB) and λ

ϕ = 32 derandomization over the intermediate result

(each cost 48 Bytes) and 1 field element for sending r2
λ

i · (k + ℓi); see Section 6.1. Hence, the total
overhead for achieving public verifiability is ≈ 703KB.
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UC-Gold. To achieve UC-Gold, we need to verify VK6 (which does not need to be public now) and
also deploy leakage-free 2PC-Gold; see Section 6.2. Hence, the total overhead for achieving UC-Gold
is ≈ 899KB (≈ 603KB for verification of VK6 and ≈ 296KB for verification that the key has two
leading zeros to remove leakage). This overhead is independent of n and can be amortized.
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