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Abstract

One-more problems like One-More Discrete Logarithm (OMDL) and One-More Diffie–
Hellman (OMDH) have found wide use in cryptography, due to their ability to naturally
model security definitions for interactive primitives like blind signatures and oblivious PRF.
Furthermore, a generalization of OMDH called Threshold OMDH (TOMDH) has proven useful
for building threshold versions of interactive protocols. However, due to their complexity it is
often unclear how hard such problems actually are, leading cryptographers to analyze them in
idealized models like the Generic Group Model (GGM) and Algebraic Group Model (AGM). In
this work we give a complete characterization of known group-based one-more problems in the
AGM, using the Q-DL hierarchy of assumptions defined in the work of Bauer, Fuchsbauer and
Loss [BFL20].

1. Regarding (T)OMDH, we show (T)OMDH is part of the Q-DL hierarchy in the AGM; in
particular, Q-OMDH is equivalent to Q-DL. Along the way we find and repair a flaw in
the original GGM hardness proof of TOMDH [JKKX17, Theorem 7], thereby giving the
first correct proof that TOMDH is hard in the GGM.

2. Regarding OMDL, we show the Q-OMDL problems constitute an infinite hierarchy of
problems in the AGM incomparable to the Q-DL hierarchy; that is, Q-OMDL is separate
from Q′-OMDL if Q′ ̸= Q, and also separate from Q′-DL unless Q = Q′ = 0.
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1 Introduction
One-more type problems — first introduced by Bellare et al. [BNPS02] — require an adversary to
solve at least Q + 1 instances of a problem, given only Q accesses to a solver: prominent examples
include One-More RSA, One-More Discrete Logarithm (OMDL), and the One-More (Computational)
Diffie–Hellman (OMDH). Such problems have found wide use in cryptography due to naturally
modelling security definitions of interactive protocols; for example, in a secure blind signature
scheme, an adversary cannot produce Q + 1 valid signatures after Q interactions with the signer,
and in a secure oblivious PRF scheme, an adversary cannot evaluate Q + 1 PRF values after Q
interactions with the sender who holds the PRF key.

The Threshold One-More Diffie–Hellman (TOMDH) assumption is a generalization of OMDH
in the threshold setting, with the secret exponent (t, n)-Shamir secret-shared and the adversary may
(statically) corrupt t′ shares of its choice. It has been used in several works to implement efficient
threshold versions of cryptographic primitives, such as threshold oblivious PRF1 and distributed
Verifiable Random Function (distributed VRF). Certain special cases of the assumption were shown
to be equivalent to classical OMDH [JKKX17, Theorem 1, Theorem 2], but due to the complexity
of the problem it is unclear how it relates in general.2

See Table 1 for an incomplete list of applications of one-more assumptions.

assumption application reference

OMDL
blind signatures [FPS20]
multisignatures [BN06,NRS21]

identification schemes [BP02,BNN04]

OMDH oblivious PRF [JKK14,JKKX16]
blind signatures [Bol03]

TOMDH
threshold oblivious PRF [JKKX17]

password-based threshold authentication [AMMM18]
distributed VRF [KMMM23]

Table 1: Applications of one-more type assumptions

Proofs in the GGM and the AGM. Since one-more assumptions are interactive and more
complex than their “standard” counterparts, researchers often investigate them in the setting of an
idealized computational model. For assumptions in prime-order groups, the models of choice are
the generic and algebraic group models respectively. In the Generic Group Model (GGM) [Sho97],
group elements are not given to the adversary directly, but only via random handles. The adversary
is also given an oracle to multiply group elements, thus modelling the situation where the adversary
interacts with the group “generically”. The appeal of the GGM is that one can show unconditional
lower bounds on solving problems; indeed, it was introduced for the purpose of proving the lower
bound of Discrete Logarithm (DL). However, proofs in the GGM can be inordinately complex,
involving careful bookkeeping and probabilistic arguments, with several instances of published proofs
later found to be incorrect [HLY09,BFP21].

1The original work realizing threshold oblivious PRF under TOMDH [JKKX17] was later found to be flawed, but
can be fixed by adding another round or making more group operations; the former still relies on TOMDH, whereas
the latter only relies on OMDH and DDH. See the end of [GJK+24, Section 1.1] for a discussion.

2The TOMDH assumption is so complex that even describing its definition clearly is a delicate task. In Sect. 3.2 we
provide an explanation of the intuition behind TOMDH, which we believe is more approachable than existing works.
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The Algebraic Group Model (AGM) [FKL18] lies between the GGM and the standard model,
and provides an attractive alternative to the GGM in the analyses of both security properties of
schemes and hardness of computational assumptions. In the AGM, algorithms are given group
elements directly; the only requirement on them is to “explain” how their output Y is computed
from their inputs X1, . . . , Xn via outputting the algebraic coefficients λ1, . . . , λn such that

Y = Xλ1
1 · · ·X

λn
n .

Unlike the GGM, it is not known how to prove unconditional lower bounds in the AGM, and
security reductions in the AGM still assume hardness of a basic computational problem such as
DL. However, one can give a reduction in the AGM to a problem already known to be hard in the
GGM, and hardness should intuitively follow from the fact that a generic algorithm is also algebraic.
This “lifting result” was first argued in [FKL18, Lemma 2.2], and further formalized in the very
recent work of [JM24]. Such hardness proofs in the AGM enjoy two benefits: first, they are strictly
stronger than the corresponding GGM proofs; second, the proofs become simpler and more modular.
Indeed, as pointed out in [JM24], a standard GGM proof usually contains the following steps:

1. Replace “honest” group elements with handles represented by polynomials of the secret
exponent x;

2. Show that the assumption reduces to a “bad event” that the adversary defines two different
polynomials which evaluate to the same value on input x;

3. Argue that the “bad event” occurs with negligible probability.
Steps 1 and 3 are somewhat “boilerplate” which can be filtered out in an AGM proof, and we can
then focus on the more essential step 2. In sum, hardness reductions in the AGM are interesting on
their own, but can also be viewed as a methodology that provides a cleaner and less error-prone
way to write hardness proofs in the GGM. (This advantage of AGM proofs is also briefly discussed
in [FKL18, Section 1.2].)

1.1 Existing Results

To date, the most comprehensive study of group-based assumptions in the AGM is the work of
Bauer, Fuchsbauer and Loss [BFL20], which analyzes a wide class of so-called Uber assumptions.
Uber assumptions are defined as follows: fix a generator g of G and polynomials R1, . . . , Rr, F
in variables X1, . . . , Xn that are linearly independent; the adversary is given (gR1(x⃗), . . . gRr(x⃗))
(for x⃗ ← Fn

p ), and succeeds if it returns gF (x⃗). [BFL20] reduces this problem to Q-DL, where
Q = max deg Ri − 1. (The Q-DL problem is: given (g, gx, gx2

, . . . , gxQ+1) for x← Fp, compute x.3)
This covers a vast array of hardness assumptions, including Computational Diffie–Hellman, Square
Diffie–Hellman, Strong Diffie–Hellman [BB08], and LRSW [LRSW99], as special cases. Furthermore,
[BFL20, Section 9] proves that Q-DL and (Q+1)-DL are separate in the AGM, providing a complete
hierarchy for the relative hardness of all Uber assumptions.4

However, [BFL20] only provides one result on one-more type assumptions, namely there is no
reduction from Q-DL to Q′-OMDL in the AGM, for any Q, Q′ ≥ 1 [BFL20, Section 10]. In fact, the

3Our definition of Q-DL is what’s commonly called (Q + 1)-DL in the literature; in particular, the (regular) discrete
log problem is 0-DL. We make this change for the sake of consistency with Q-OMDL where the adversary is given
Q + 1 challenge group elements (in addition to the generator g).

4[BFL20] does not show that Q-DL is hard in the GGM, so the generic hardness of Uber assumptions remains
unclear. We briefly argue the generic hardness of Q-DL in Sect. 3.2, completing the picture.
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relative hardness of one-more type assumptions in the AGM appears severely understudied. Below
we summarize existing works in this domain, and discuss their limitations and subtleties therein:

• Bresson, Monnerat and Vergnaud [BMV08, Theorem 11] prove that there is no algebraic
reduction from Q-OMDL to (Q + 1)-OMDL (unless Q-OMDL is easy). This does not provide
a separation in the AGM, which is significantly more difficult to prove: their result only
rules out reductions that work for any adversary, rather than algebraic adversaries; requiring
the adversary to be algebraic means that the reduction can see the adversary’s algebraic
coefficients and makes the reduction’s work potentially easier.

• Zhang et al. [ZZC+14] give general separations for many one-more problems, including
Q-OMDH/Q-OMDL for different values of Q, without assuming the reduction is algebraic.
However, their meta-reduction runs only in expected polynomial time, and their proof involves
technically complex rewinding arguments.

• Tyagi et al. [TCR+22] propose a novel one-more Diffie–Hellman-type assumption and shows
that it reduces to Q-DL in the AGM. However, their proof is highly technical and tailored to
their specific use case, and their result gives little indication as to the hardness of simpler or
more commonly used one-more type assumptions in the AGM.

• Schage [Sch24, Corollary 6] gives a separation between (Q + 1)-OMDL and a very general
class of “Q-interactive” assumptions that includes Q-OMDL, without assuming an algebraic
reduction. However, their result only applies to reductions that invoke the adversary once.

Regarding the GGM, the OMDL and (T)OMDH problems have been established to be hard
generically ([BFP21, Theorem 1, Corollary 1] and [JKKX17, Theorem 7]), but these results imply
nothing about where OMDL and (T)OMDH stand in relation to the Q-DL hierarchy in the AGM.
Furthermore, in Sect. 5.2 we will show that the proof of [JKKX17, Theorem 7] is incorrect in the
static corruption case (i.e., the number of corrupted shares t′ > 0), leaving the hardness of TOMDH
in the GGM unsettled.

We can see that despite several results scattered in the literature, a number of fundamental
questions about the relative hardness of one-more type problems remain unanswered. In particular,

1. Can we show separation between Q-OMDH and (Q + 1)-OMDH in the AGM and without
resorting to expected polynomial-time meta-reductions? And how does the hardness of OMDH
compare with that of Q-DL?

2. How hard is TOMDH in the AGM? Does it fall into the Q-DL hierarchy, or is it separated
like Q-OMDL? Finally, can we repair the flawed proof of TOMDH’s hardness in the GGM
when t′ > 0?

3. Can we show separation between Q-OMDL and (Q + 1)-OMDL in the AGM, namely ruling
out reductions that can invoke an algebraic adversary?

4. [BFL20, Section 10] rules out reductions from Q-DL to Q′-OMDL in the AGM. Can we show
the opposite direction, namely ruling out reductions from Q-OMDL to Q′-DL in the AGM?

1.2 Our Contributions

In this work, we present a comprehensive study of one-more type assumptions in the AGM, answering
all questions listed above. Our contributions are as follows:
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1. We show in Thms. 4.1 and 4.2 that Q-OMDH is equivalent to Q-DL in the AGM. We actually
show a stronger result, generalizing Q-OMDH to a class of One-More Uber (OMU) assumptions:
these are the same as Uber assumptions except that the adversary can query an x-th power
oracle Q times and needs to compute the x-th power of Q + 1 challenge group elements.

2. We show in Thm. 5.5 that TOMDH falls into the Q-DL hierarchy in the AGM, giving a
reduction from (Q(n− t)− 1)-DL to (t′, t, n, Q)-TOMDH in the AGM; on the way we point
out and repair the flaw in the GGM argument of [JKKX17, Theorem 7].

3. We show in Thm. 6.1 that there is no reduction from Q-OMDL to (Q + 1)-OMDL in the AGM
unless Q-OMDL is easy.

4. We show in Thm. 6.4 that there is no reduction from Q-OMDL to 1-DL in the AGM for Q ≥ 0
unless Q-OMDL is easy. Since Q′-DL is easier than 1-DL for Q′ ≥ 1, this separates Q-OMDL
and Q′-DL for all Q, Q′ ≥ 0 (except if Q = Q′ = 0).

[BFL20] show that their reductions work in many additional settings (over groups with a billinear
pairing, replacing polynomials with rational functions, gap problems, letting the adversary choose
the polynomials adaptively, etc.). Since our reductions use the same template, these generalizations
also apply to our results: in particular, we cover the Gap TOMDH assumption (where the adversary
is given an additional DDH oracle) as originally considered in [JKKX17].

We have mentioned that the “lifting result” of [JM24, Theorem 2] can “translate” an AGM proof
into a GGM hardness proof. It is easy to see that our reductions from Thms. 4.1, 4.2 and 5.5 satisfy
the syntactical requirements for [JM24, Theorem 2] to apply. Therefore we recover the hardness of
(T)OMDH in the GGM, and give the first correct proof of TOMDH hardness in the static corruption
case.

Overall, our results establish a complete characterization of the hardness of all group-based
one-more problems in the literature in the AGM, summarized in Figure 1 below.

...
...

...
2-OMDL 2-DL = 2-OMDH∧ ∧ ∧
1-OMDL 1-DL = 1-OMDH∧ ∧ ∧
0-OMDL = 0-DL = 0-OMDH

Figure 1: Hierarchies of Q-DL, Q-OMDL, and Q-OMDH in the AGM. TOMDH also falls into the
Q-DL hierarchy but is not directly equivalent to Q′-DL for some Q′.

2 Technical Overview

2.1 Notation

Let G be a group of prime order p, and g ̸= 1G be a generator of G. Let λ = ⌈log p⌉, i.e.,
2λ−1 < p < 2λ. We assume that G and p are public parameters known to any algorithm, and omit
them in the descriptions of security games below. Let Fp be the finite field with p elements, and
[n] = {1, 2, . . . , n}: [n] may be a subset of Z or Fp, which one will be clear from context. If S is a
finite set, let |S| denote the size of S and x← S denote an element x sampled uniformly at random
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from S. Let S≥a be the subset of S consisting of elements at least a. Let Z denote the set of integers
{0, 1,−1, 2,−2, . . . } and N = Z≥0. A function f : N → R≥0 is negligible if for all c ∈ N there is a
dc ∈ N such that f(d) ≤ d−c for all d ≥ dc. A function f is overwhelming if 1− f is negligible.

Runtime calculation. While considering the runtime of an algorithm, we only count group
operations (so computing an exponentiation costs time up to 2λ). Our reductions will often make use
of finite field arithmetic as well (matrix multiplication, row reduction, factorization of polynomials)
but it suffices to observe that all of these operations can be done in probabilistic polynomial time
(e.g., [KU11]).

Basic linear algebra. Notationally, we use uppercase bolded letters to denote matrices: e.x.
A. We use arrows to denote vectors: e.x. v⃗. Given a matrix A, define ker(A) = {v⃗ | Av⃗ = 0⃗}
and im(A) = {w⃗ | ∃v⃗ : Av⃗ = w⃗}. Given a vector space V let dim(V ) be its dimension. Standard
uppercase letters will usually denote group elements, formal variables and polynomials in said formal
variables. Lowercase letters and Greek letters will usually denote elements of Z or Fp. We adopt a
convenient notational convention whereby given an expression v in lowercase quantities ai, we let V
denote the polynomial given by replacing each occurence of ai in v with a new formal variable Ai.

For vectors a⃗ = (a1, . . . , an), b⃗ = (b1, . . . , bn) let a⃗i = (ai
1, . . . , ai

n). Define the Hadamard product
of a⃗, b⃗ to be a⃗⊙ b⃗ = (a1 · b1, . . . , an · bn). Note that

1. a⃗⊙
(∑m

i=1 b⃗i

)
=
(∑m

i=1 a⃗⊙ b⃗i

)
.

2. a⃗⊙ (x⃗b) = x(⃗a⊙ b⃗) where x is a scalar.

3. If a⃗ has no zero entries and a⃗⊙ b⃗ = 0⃗, then b⃗ = 0⃗.

4. By Items 1 and 3, if a⃗ has no zero entries and ∑m
i=1 a⃗⊙ b⃗i = 0⃗ then ∑m

i=1 b⃗i = 0⃗

2.2 Review of Existing Works

We will use techniques from [BFL20] and [Rot22], so we first review these works.

Review of [BFL20]. In [BFL20] the authors reduce the (R1, . . . , Rr, F )-Uber problem to q-DL in
the AGM, where q = max deg Ri − 1. The idea of the reduction is that if the adversary is algebraic,
it returns an algebraic representation F (x⃗) = ∑r

j=1 αjRj(x⃗) to the challenger. By the assumption
of linear independence, R′(X⃗) = F (X⃗) −∑r

j=1 αjRj(X⃗) is a non-zero polynomial that evaluates
to zero on the secret x⃗. Therefore the adversary has implicitly found a polynomial that encodes
the secret x⃗. The reduction then embeds a randomized version of the q-DL secret z into each of
the coordinates of x⃗ by setting xi = aiz + bi for random ai, bi ∈ Fp, and finding the roots of the
polynomial R′(a1Z + b1, a2Z + b2, . . . , anZ + bn).

Review of [Rot22]. In [Rot22, Section 5.2], the author notes that although the reduction of
[BFL20] is tight (losing only an additive factor in advantage) it requires a q-DL challenge dependent
on the maximum total degree of the polynomials Rj . [Rot22, Theorem 5.4] provides an alternative
reduction that reduces from (d′ − 1)-DL, where d′ is the maximum degree of the Rj in any single
variable. In this reduction the (d′ − 1)-DL secret x is only inserted into a single one of the variables
X1, . . . , Xn chosen at random, so the elements gRj(x⃗) can be computed from the (d′−1)-DL challenge.
As the price for this, the reduction loses a factor of n in advantage.
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Why are new reductions needed? The reductions in [BFL20, Rot22] cover a vast array of
hardness assumptions, so it is worth briefly noting why their reductions do not immediately include
one-more type assumptions.

The closest problem to the one-more setting is their flexible GeGenUber problem [BFL20,
Section 8] (for the sake of exposition we described a simplified version of the problem). The security
game is parameterized by a fixed polynomial R. The game chooses x⃗← Fn

p , and the adversary A
has access to an oracle O that, on input Pi ∈ Fp[X1, . . . , Xn], returns gPi(x⃗). The adversary wins
the game if it returns gR(x⃗) and R ̸∈ Span({Pi}). Compare this to the Q-OMDH problem, where
A is given challenge elements gxi , 1 ≤ i ≤ Q + 1, as well as up to Q queries to an x0-th power
oracle, and must return gx0xi for 1 ≤ i ≤ Q + 1. Although the problems appear similar, there is
not an immediate reduction from flexible GeGenUber to Q-OMDH since there is no fixed challenge
element in OMDH, and thus no valid choice for R to make OMDH a special case of GeGenUber: it
is possible that any single element gx0xi was the result of an oracle query.

2.3 Proof Ideas

Reductions between (T)OMDH and Q-DL. Our reduction strategy will be to generalize the
above reductions to the setting of one-more type problems, by again finding a nonzero polynomial
P such that P (z⃗) = 0 for some random secret z⃗, and inserting a Q-DL challenge into z⃗. The main
difference is in the one-more setting, the reduction will produce a collection of polynomials {Pj}
with Pj(z⃗) = 0 such that at least one of them is guaranteed to be nonzero. By the Schwartz–Zippel
lemma the nonzero one can be found efficiently, and the reduction can proceed as before. In the
case of OMDH we insert the challenge into all (or almost all) variables at once, as the total degree
of the polynomials Rj is close to the maximum degree in a single variable. However, in the case of
TOMDH we use the strategy of [Rot22] to not only reduce the degree of the Q-DL challenge needed,
but to ensure that the reduction can simulate the TOMDH game in the first place, as there is no a
priori bound on the degree of polynomials the adversary can produce (see Sect. 5 for details).

Separation between Q-OMDL and (Q+1)-OMDL. Our separations follow the meta-reduction
paradigm: given a reduction R from problem P1 to problem P2, we construct a meta-reduction M
that uses R to unconditionally solve P1 by simulating R’s access to an adversary A for P2.

First note that we cannot trivially adapt the meta-reduction in [BMV08, Theorem 11] — which
shows separation between Q-OMDL and (Q+1)-OMDL assuming non-algebraic adversaries — to the
AGM. The discrete-log oracle queries for their simulated adversary depend on the view of the meta-
reduction, which is problematic when analyzing its advantage in the AGM (see [BFL20, Section 10]
for further discussion). To circumvent this issue, our meta-reduction M queries the discrete-log
oracle at uniformly random elements and uses linear algebra to extract the solution. M has a
Q-OMDL challenge (A−1, A0, . . . , AQ), which it feeds to a reduction R. R will then submit a
(Q + 1)-OMDL challenge (B−1, B0, . . . , BQ+1) to the adversary A, which M must simulate. Let
Bei

−1 = Ai, B
dj

−1 = Bj , for i = −1, . . . , Q and j = 0, . . . , Q+1, soM needs to compute (d0, . . . , dQ+1).
Our strategy uses that d⃗ = (1, d0, . . . , dQ+1) is defined in terms of e⃗ = (e−1, . . . , eQ) via Ze⃗ = d⃗,
where Z is a (Q + 3)× (Q + 2) matrix given by the algebraic representations of Bi in terms of Ai.
Since the first entry of d⃗ is known, e⃗ must satisfy a known nontrivial linear equation specified by
the first row of Z, so e⃗ (and thus Ze⃗) has only Q + 1 degrees of freedom. This is what allows M to
leverage its DL queries: intuitively, M can now recover Ze⃗ by using DL to obtain Q + 1 additional
linear equations over it and solving them. M queries DL on Q + 1 random group elements, whose
algebraic representations (in terms of Bj) form a (Q + 1)× (Q + 2) matrix U. M adds (1, 0, . . . , 0)
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as U’s first row and first column (since M wants to also use the known equation defined by the
first row of Z), making U a (Q + 2)× (Q + 3) matrix. The results of the DL queries are the entries
of Ud⃗. M can now use row reduction to find some solution v⃗ to the equation UZv⃗ = Ud⃗. Since
Z could have low rank there is no guarantee that v⃗ = e⃗. However, since U was chosen randomly
Zv⃗ = d⃗ holds with high probability, so M can recover d⃗.

Separation between Q-OMDL and 1-DL. The idea of our meta-reduction M separating
Q-OMDL and 1-DL is to use linear-algebraic techniques to adapt the meta-reduction in [BFL20,
Theorem 9.1] (that separates Q-DL and (Q + 1)-DL) to work with Q-OMDL. SupposeM receives a
Q-OMDL challenge (A−1, A0, . . . , AQ) and feeds it to R. Let Ai = Axi

−1 for i = 0, . . . , Q, so R needs
to recover x⃗ = (x0, . . . , xQ). When R invokes A on a 1-DL challenge (B−1, B0 = Bu

−1, B1 = Bu2
−1),

the algebraic representations of Bi in terms of Ai allow M to compute polynomials Pj such that
Bj = A

Pj(x⃗)
−1 (for j = −1, 0, 1). Here we start with the observation of [BFL20, Theorem 9.1] that

S(x⃗) = 0 for S = P1P−1 − P 2
0 , since u = P0(x⃗)/P−1(x⃗) = P1(x⃗)/P0(x⃗). If S = 0 as a polynomial,

M can compute u directly, and if S ̸= 0, M obtains a nontrivial polynomial equation over x⃗. In
[BFL20, Theorem 9.1] the secret x⃗ has a single entry, so this suffices to compute x⃗. In our case
we must obtain Q additional equations over x⃗ to compute it: we do so by utilizing the Q queries
to DL that R can make. Concretely, M has to answer R’s discrete log oracle queries V1, . . . , VQ.
Some queries M can answer without querying its own DL oracle; for example, if V3 = V1V 2

2 A−1,
M can answer directly since it already knows dlogA−1(V1), dlogA−1(V2), dlogA−1(A−1). In this way
M only makes DL queries corresponding to linearly independent polynomials in X0, . . . , XQ, and
can “save” some DL queries for the future. When R invokes A on (B−1, B0, B1), M must recover
u = dlogB−1(B0) = dlogB0(B1) as A’s output to R. Suppose M has already made Q′ queries to DL
(where Q′ ≤ Q). M computes S: if the equation S(x⃗) = 0 is trivial (i.e., implied by the Q′ existing
equations from the DL queries) we show M can compute u directly as before. Otherwise M will
make Q−Q′ additional queries to DL on random group elements. By a linear-algebraic argument,
S(x⃗) = 0 remains nontrivial in the presence of the new equations with high probability; M now has
Q + 1 equations over Q + 1 variables and can compute x⃗, from which u is easily computed.

3 Background

3.1 Polynomial Rings

We denote the ring of polynomials in variables X1, . . . , Xm over a field F by F[X1, . . . , Xm], and the
field of rational functions as F(X1, . . . , Xm). The degree of F ∈ F[X1, . . . , Xm] – denoted deg(F )
– is the maximum total degree of all monomials in F . If T ⊂ {X1, . . . , Xm} then degT (F ) is the
maximum total degree of F as a polynomial in the variables T . As an example, consider

F (X1, X2) = X3
1 X2 + X2

2 + X1.

We have deg(F ) = degX1,X2(F ) = 4 since X3
1 X2 has total degree 4, degX1(F ) = 3 since X3

1 X2 has
degree 3 in X1, and degX2(F ) = 2 since X2

2 has degree 2 in X2.
Define

I = ⟨F1, . . . , Fn⟩ =
{

n∑
i=1

GiFi|Gi ∈ F[X1, . . . , Xm]
}

to be the ideal of F[X1, . . . , Xm] generated by F1, . . . , Fn. Denote by F[X1, . . . , Xm]/I the quotient
ring modulo I, whose elements are equivalence classes where F, G are equivalent if F −G ∈ I: in
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this case we write F ≡ G (mod I). Define
V (I) = {x⃗ ∈ Fm|F (x⃗) = 0 ∀ F ∈ I}

to be the vanishing set of the ideal I. Note that for any x⃗ ∈ V (I) and F ∈ F[X1, . . . , Xm]/I, the
value F (x⃗) is well-defined: if F −G = H ∈ I then F (x⃗)−G(x⃗) = H(x⃗) = 0.
In this paper the polynomials F1, . . . , Fn will be of degree 1 and linearly independent, and n <
m. Recall that row reduction defines a set T (I) ⊂ {X1, . . . , Xm} of pivotal variables of size n
corresponding to the system {Fi = 0}, such that all pivotal variables can be eliminated via the
equations {Fi = 0}. Therefore for any R ∈ F[X1, . . . , Xm] there is a canonical polynomial [R] such
that R ≡ [R] (mod I) and [R] contains none of the variables in T (I). We have the properties

1. R(x⃗) = [R](x⃗) for any x⃗ ∈ V (I),

2. [R] = [R′] if and only if R ≡ R′ (mod I).
As a consequence, the degree of F ∈ F[X1, . . . , Xm]/I is well-defined: we simply define deg(F
(mod I)) = deg([F ]) (note that as regular polynomials, deg(F ) ≥ deg([F ])). We retain the standard
properties of the degree in this setting, such as

1. deg(FG) = deg(F ) + deg(G)

2. deg(F + G) ≤ max(deg(F ), deg(G))
since [FG] = [F ][G] and [F + G] = [F ] + [G].

3.2 Computational Problems

The One-More Discrete Log (OMDL) problem. Let DL(·) be an oracle that on the first
Q inputs X1, . . . , XQ ∈ G returns dlogg(Xi), and returns ⊥ on all subsequent inputs; in other
words, DL(·) is a discrete logarithm oracle that can be queried at most Q times. An adversary A’s
advantage in the Q-OMDL problem is defined as

Pr
[

A0, . . . , AQ ← G

(a0, . . . , aQ)← ADL(·)(g = A−1, A0, . . . , AQ) : gai = Ai for i = 0, . . . , Q

]
.

Note that the adversary A is given Q + 1 uniformly random group elements (in addition to the
generator g), and that the (regular) discrete log problem is 0-OMDL.

The One-More Diffie–Hellman (OMDH) problem. For any x ∈ Fp, let Power(·) be an oracle
that on the first Q inputs Y1, . . . , YQ ∈ G returns Y x

i , and returns ⊥ on all subsequent inputs; in
other words, Power(·) is an x-th power oracle that can be queried at most Q times. An adversary
A’s advantage in the Q-OMDH problem is defined as

Pr
[

x← Fp; A0, . . . , AQ ← G

(B0, . . . , BQ)← APower(·)(g, X = gx, A0, . . . , AQ) : Bi = Ax
i for i = 0, . . . , Q

]
.

Note that the adversary A is given Q + 1 uniformly random group elements (in addition to the
generator g and gx), and that the (regular) computational Diffie–Hellman problem is 0-OMDH.

Since different sources [BFP21,JKKX17] disagree on whether to provide X to the adversary or
not, we define the Q-OMDH2 problem to be the same as Q-OMDH, but X = gx is not given to the
adversary.

Next we introduce a generalization which we call the One-More Über (OMU) problem, which
covers both OMDH and OMDH2.
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The One-More Über (OMU) problem. Let Q > 0 be an integer, R⃗ = (R0, . . . , Rt) with
Ri ∈ Fp[Z0, . . . , ZQ+1] and t ≥ Q. For any z⃗ = (z0, . . . , zQ+1) ∈ FQ+2

p , let Power(·) be an oracle
that on the first Q inputs Y1, . . . , YQ ∈ G returns Y z0

i , and returns ⊥ on all subsequent inputs. An
adversary A’s advantage in the (R⃗, Q)-OMU problem is defined as

Pr
[

z⃗ ← FQ+2
p ; Ai := gRi(z⃗)

(B0, . . . , BQ)← APower(·)(g, A0, . . . , At)
: Bi = Az0

i for i = 0, . . . , Q

]
.

The adversary A has Q + 1 challenges A0, . . . , AQ (of which A needs to compute the z0-th power),
plus t−Q additional group elements AQ+1, . . . , At that might help A. As special cases, the Q-OMDH
problem is the (R⃗, Q)-OMU problem with R⃗ = (Z1, . . . , ZQ+1, Z0), and the Q-OMDH2 problem is
the (R⃗, Q)-OMU problem with R⃗ = (Z1, . . . , ZQ+1) (x in the definition of OMDH and OMDH2
above corresponds to z0 here).

To ensure the problem cannot be trivially solved, we require {1, R0, . . . , Rt, Z0R0, . . . , Z0RQ}
to be linearly independent in Fp[Z0, . . . , ZQ+1]. Throughout the rest of the paper we assume all
instances of (R⃗, Q)-OMU are non-trivial.

The Threshold One-More Diffie–Hellman (TOMDH) problem. The TOMDH problem
concerns the setting where the exponent x is (t, n)-Shamir secret shared. It is considerably more
complicated than OMDH, so we begin with a concrete example. Say (t, n) = (1, 3), i.e., x has 3
shares x1, x2, x3, and knowing any 2 of them is sufficient for recovering x. The adversary A is given
access to 3 oracles Power1(·), Power2(·), Power3(·), which compute the x1-th, x2-th, x3-th powers of
the input, respectively. Now let’s say A is is given sufficiently many challenge group elements, and
is allowed to query its oracles 3, 3, 4 times, respectively. How many x-th powers can A compute?

The question boils down to the following: let V = {(1, 1, 0), (1, 0, 1), (0, 1, 1)}, i.e., V is the set
of binary vectors whose length is 3 and there are 2 ones. Each vector in V represents a query
strategy for A to compute an x-th power; for example, (1, 1, 0) corresponds to querying Power1(A)
and Power2(A), and using Lagrange interpolation to compute Ax. A’s “query vector” (3, 3, 4) can
be expressed as

(3, 3, 4) = (1, 1, 0) + 2× (1, 0, 1) + 2× (0, 1, 1);

using this strategy, A can compute the x-th powers of 1+2+2=5 challenge group elements. A
one-more assumption should say that this is the best A can do, i.e., A cannot feasibly compute the
x-th powers of 6 challenges.

In general, fix positive integers t, n, Q where t < n and define W (v⃗) = ∑n
i=1 vi for v⃗ = (v1, . . . , vn).

Let Vt+1 = {v⃗ ∈ {0, 1}n | W (v⃗) = t + 1}. For any n-dimensional vector q⃗, define Ct+1(q⃗) as the
maximum integer m for which there are vectors v⃗1, . . . , v⃗m ∈ Vt+1 such that v⃗1 + · · ·+ v⃗m ≤ q⃗; for
example, when (t, n) = (1, 3), C2(3, 3, 4) = 5.5

For any polynomial poly(·) with degree t, let x = poly(0), x1 = poly(1), . . . , xn = poly(n). Let
Power(·, ·) be an oracle that on input (i, Y ) returns Y xi , subject to the condition that Ct+1(q⃗) ≤ Q,
where q⃗ = (q1, . . . , qn) and qi is the number of (i, ⋆) queries made so far. An adversary A’s advantage
in the (t, n, Q)-TOMDH problem is defined as

Pr
[

poly← {P ∈ Fp[X] | deg P = t}; A0, . . . , AQ ← G

(B0, . . . , BQ)← APower(·,·)(g, X = gx, A0, . . . , AQ) : Bi = Ax
i for i = 0, . . . , Q

]
.

Note that the Q-OMDH problem is the (0, 1, Q)-TOMDH problem. Finally, we extend the TOMDH
5[JKKX17] uses the same example and says C2(3, 3, 4) = 4, which is incorrect.
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problem to allow shares to be corrupted; that is, the adversary can decide a subset of all xi’s. Fix
non-negative integer t′ ≤ t: the adversary can set t′ of the shares. Now the adversary only needs to
make t− t′ + 1 queries to Power(·, ·) to compute an x-th power via Lagrange interpolation, so we
now require that Ct−t′+1(q⃗) ≤ Q (and can assume without loss of generality that qi = 0 if A has set
the ith share). An adversary A’s advantage in the (t′, t, n, Q)-TOMDH problem is defined as

Pr

 F = {f1, . . . , ft′} ← A : F ⊆ [n]; F ′ = {f ′
1, . . . , f ′

t′} ← A : F ′ ⊆ Fp;
poly← {P ∈ Fp[X] | deg P = t and P (fi) = f ′

i}; A0, . . . , AQ ← G

(B0, . . . , BQ)← APower(·,·)(g, X = gx, A0, . . . , AQ)
: Bi = Ax

i for i = 0, . . . , Q

 .

[JKKX17] also lets the number of challenges N vary instead of being fixed at Q + 1. However by
[JKKX17, Theorem 5] the problems are equivalent, so in this work we set N = Q + 1 without loss
of generality.

The Q-Discrete Log (Q-DL) problem. An adversary A’s advantage in the Q-DL problem is
defined as

Pr
[

x← Fp

x∗ ← A(g, gx, gx2
, . . . , gxQ+1)

: x∗ = x

]
.

It is not hard to see that Q-DL is hard in the GGM for any constant Q (assuming group order p is
super-polynomial). Roughly, all group elements a generic adversary may obtain are in the form of
gV (x), where V is a polynomial of degree up to Q + 1. For each pair of group elements gV1(x), gV2(x),
the adversary can test the roots of the equation V1(x) = V2(x), of which there are up to Q + 1 of
them. Therefore, within QG generic group queries the adversary can test up to (Q + 1)

(QG+Q+1
2

)
possible solutions, and it takes approximately

√
2p

Q+1 queries to find x in the worst case (which is
super-polynomial).

For all computational problems above, we say an adversary A (T, ϵ)-solves the problem if A’s
runtime is at most T , and its advantage in the experiment is at least ϵ.

3.3 Lemmas

We now state several technical lemmas that will be utilized in our proofs.

Lemma 3.1 ([BFL20, Lemma 2.1]). Let P ∈ Fp[X1 . . . Xm] be a non-zero polynomial of total degree
d. Define Q(X) ∈ (Fp[Y1, . . . , Ym, W1, . . . , Wm])[X] as Q(X) = P (Y1X + W1, . . . , YmX + Wm).
Then the coefficient of maximal degree of Q is a polynomial in Fp[Y1, . . . , Ym] of degree d.

Lemma 3.2 ([BFL20, Lemma 2.2]). Let P ∈ Fp[X1 . . . Xm] be a non-zero polynomial of total degree
d. Let r1, . . . , rm be independently and uniformly sampled from F×

p . Then

Pr[P (r1, . . . , rm) = 0] ≤ d

p− 1 .

We will use a version of [BFL20, Lemma 9.2] for multivariable polynomials;

Lemma 3.3. Let F ∈ Fp(X1, . . . , Xm) and let 0 ̸= P ∈ Fp[X1, . . . , Xm] have degree at most 1. If
F 2P is a polynomial and has degree at most 1, then F is constant.
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The proof of Lem. 3.3 is identical to the proof of [BFL20, Lemma 9.2], since Fp[X1, . . . , Xm] is a
unique factorization domain and the degree function for multivariable polynomials enjoys the same
properties as for univariate polynomials (e.g deg(F + G) ≤ max(deg(F ), deg(G)).

Given F ∈ Fp[X1, . . . , Xm] with F ̸= 0, define S(F ) = (H1, . . . , Hm) as follows:
1. H1 = F ,

2. For each i ∈ {2, . . . , m}: if Hi−1 = 0 then Hi = 0. Otherwise, write Hi−1 as a polynomial in
Xi−1 with coefficients in Fp[Xi, . . . , Xm]. That is, write

Hi−1 =
d∑

j=0
Gj(Xi, . . . , Xm)Xj

i−1

Let j∗ be the smallest index such that Gj∗ ̸= 0 and set Hi = Gj∗ . If no such index exists, set
Hi = 0. One can easily see Hi ∈ Fp[Xi, . . . , Xm].

Lemma 3.4 ([Rot22, Lemma 5.5]). Let F ∈ Fp[X1, . . . , Xm] with F ̸= 0 and S(F ) = (H1, . . . , Hm).
Then

1. Hi ̸= 0 for 1 ≤ i ≤ m,

2. For every α⃗ ∈ Fm
p such that F (α) = 0, there is some i∗ such that the univariate polynomial

Vi∗(Xi∗) = Hi∗(Xi∗ , αi∗+1, . . . , αm) is not the zero polynomial, and Vi∗(αi∗) = 0.

Given w⃗ ∈ Ft
p, let (w⃗)i be the i-th coordinate of w⃗ and v⃗ · w⃗ = ∑t

i=1 viwi to be the standard dot
product of vectors. Define H(w⃗) = {x⃗ ∈ Ft

p | x⃗ · w⃗ = 0} to be the hyperplane defined by w⃗ and
H(w⃗1, . . . , w⃗k) = ⋂k

i=1 H(w⃗i).
Lemma 3.5. If w⃗1, . . . , w⃗k ∈ Ft

p are chosen according to some probability distribution and k ≤ t,
then

Pr[dim(H(w⃗1, . . . , w⃗k)) = t− k] = Pr[dim(w⃗1, . . . , w⃗k) = k] =

Pr[w⃗1 ̸= 0]
k−1∏
i=1

Pr[w⃗i+1 ̸∈ Span(w⃗1, . . . , w⃗i) | dim(w⃗1, . . . , w⃗i) = i].

Proof. The first equality follows from the rank-nullity theorem (and the fact that row rank equals
column rank). For the second, we proceed by induction. For k = 1 the equality is trivial.
Suppose the equality holds for k: we show it for k + 1. Since dim(w⃗1, . . . , w⃗k+1) = k + 1 implies
dim(w⃗1, . . . , w⃗k) = k we have

Pr[dim(w⃗1, . . . , w⃗k+1) = k + 1] =
Pr[dim(w⃗1, . . . , w⃗k+1) = k + 1 | dim(w⃗1, . . . , w⃗k) = k] Pr[dim(w⃗1, . . . , w⃗k) = k]

If dim(w⃗1, . . . , w⃗k) = k then dim(w⃗1, . . . , w⃗k+1) = k + 1 if and only if w⃗k+1 ̸∈ Span(w⃗1, . . . , w⃗k);
therefore

Pr[dim(w⃗1, . . . , w⃗k+1) = k + 1] =

Pr[w⃗k+1 ̸∈ Span(w⃗1, . . . , w⃗k) | dim(w⃗1, . . . , w⃗k) = k] Pr[dim(w⃗1, . . . , w⃗k) = k] H=

Pr[w⃗1 ̸= 0]
k∏

i=1
Pr[w⃗i+1 ̸∈ Span(w⃗1, . . . , w⃗i) | dim(w⃗1, . . . , w⃗i) = i]

where H follows from the inductive hypothesis.
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4 Reductions Between (R⃗, Q)-OMU and Q′-DL

In this section, we give several reductions in both directions between (R⃗, Q)-OMU and Q′-DL. The
reductions to Q′-DL are simple and do not require the AGM, while the reductions from Q′-DL are
more involved, and have tradeoffs between the tightness of the reduction and the value Q′ used.
Overall our results do not give a complete characterization of the hardness of OMU assumptions in
general, but they suffice for OMDH and OMDH2. See the end of this section for a more detailed
discussion of the specific case of OMDH(2).

Theorem 4.1. For any Q > 0, there is a reduction from (R⃗, Q)-OMU to (Q−1)-DL; if Ri(Z⃗) = Zk
0

for some i and 1 ≤ k ≤ Q + 1 there is a reduction from (R⃗, Q)-OMU to Q-DL.
Concretely,

1. Suppose A (T, ϵ)-solves (Q−1)-DL. Then there is a reduction RA that (T +2(Q+1)λ, ϵ)-solves
(R⃗, Q)-OMU.

2. Suppose A (T, ϵ)-solves Q-DL. Then there is a reduction (R′)A that (T + 2(Q + 1)λ, ϵ)-solves
(R⃗, Q)-OMU, if Ri(Z⃗) = Zk

0 for some i and 1 ≤ k ≤ Q + 1.

Proof. For (1), given such an adversary A for (Q− 1)-DL, we define a reduction R that uses A to
solve (R⃗, Q)-OMU as follows:

Reduction R:

1. On (R⃗, Q)-OMU challenge (g, A0, . . . , At), R queries X1 := Power(g), X2 := Power(X),
. . . , XQ := Power(XQ−1).

2. R runs A on (Q− 1)-DL challenge (g, X1, X2, . . . , XQ).

3. When A outputs x∗, R outputs (Ax∗
0 , . . . , Ax∗

Q ).

We have X1 = gz0 , X2 = Xz0
1 = gz2

0 . . . , XQ = gzQ
0 , so R simulates the (Q− 1)-DL game to A

correctly. If A succeeds then x∗ = z0, so R also succeeds. Thus, R’s success probability is no less
than A’s. R’s runtime consists of running A and computing Q + 1 exponentiations, which is up to
T + 2(Q + 1)λ. (R can additionally be made algebraic by outputting x∗ as the algebraic coefficient
in step 3.)

For (2), if Ri(Z⃗) = Zk
0 for some k ≤ Q + 1, we can construct a reduction R′ to Q-DL that is

almost identical: R′ obtains gz0 , . . . , gzk−1
0 via k− 1 queries to Power on g, and then gzk+1

0 , . . . , gzQ+1
0

via Q− k + 1 queries to Power on Ai. R′ then invokes the Q-DL adversary as before and continues
in the same manner.

In the other direction, we have:

Theorem 4.2. For any Q > 0, let

d0 = max
−1≤j≤t

degZ0(Rj(Z⃗)),

d1 = max
−1≤j≤t

degZ1,...,ZQ+1(Rj(Z⃗)),

Q2 = max(Q + d0, d1)− 1.

Then there is a reduction from Q2-DL to (R⃗, Q)-OMU.
Concretely, suppose A is an algebraic adversary that (T, ϵ)-solves (R⃗, Q)-OMU.
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1. Let d = maxi deg(Ri) and Q1 = Q+d−1. Then there is a reduction RA that
(
T + O(λ), ϵ− Q1+1

p−1

)
-

solves Q1-DL.

2. Let d′ = max(d0, d1). Then there is a reduction (R′)A that
(
T + O(λ), ϵ

2

(
1− d1

p−1

))
-solves

Q2-DL.6

(Observe that Q2 ≤ Q1, so item (2) is stronger if we do not consider the concrete runtime and
advantage.)

Before proving Thm. 4.2 we will need some preliminary results. Suppose R has access to an
adversary A for (R⃗, Q)-OMU and that A is run on a (R⃗, Q)-OMU instance (g, gR0(z⃗), . . . , gRt(z⃗));
to ease notation, let z−1 = 1 and R−1 = 1. After A receives group elements gv1 , . . . , gvQ from
the Power oracle, to succeed A must return elements Bi = gz0Ri(z⃗) for 0 ≤ i ≤ Q with algebraic
representations

z0Ri(z⃗) =
t∑

j=−1
bi,jRj(z⃗) +

Q∑
j=1

b′
i,jvj . (1)

Lemma 4.3. For any 1 ≤ j ≤ Q, vj is a linear combination of the terms zℓ
0Ri(z⃗) for all 1 ≤ ℓ ≤ j

and −1 ≤ i ≤ t, with coefficients known to R.

Proof. Let A’s queries to the Power oracle be gv′
1 , . . . , gv′

Q , so vj = z0v′
j . The proof is by induction

on j. For j = 1, the only group elements A has seen when it makes the first Power query are gRi(z⃗),
so

v′
1 =

t∑
i=−1

αiRi(z⃗)⇒

v1 =
t∑

i=−1
αiz0Ri(z⃗)

for some αi ∈ Fp known to R, so the lemma holds.
Assume the lemma for 1, . . . , j; we show it for j + 1. When making the (j + 1)-th Power query,

A has seen gRi(z⃗) and gv1 , . . . , gvj , so

v′
j+1 =

t∑
i=−1

αiRi(z⃗) +
j∑

i=1
α′

ivi ⇒

vj+1 =
t∑

i=−1
αiz0Ri(z⃗) +

j∑
i=1

α′
iz0vi

for some αi, α′
i ∈ Fp known to R. Since v1, . . . , vj are linear combinations of zℓ

0Ri(z⃗) for ℓ ≤ j (with
coefficients known to R), vj+1 is a linear combination of zℓ

0Ri(z⃗) for ℓ ≤ j + 1 (also with coefficients
known to R).

We now consider the expressions in Eq. (1) as polynomials in the formal variables Z0, . . . , ZQ+1,
i.e., as elements of Fp[Z0, . . . , ZQ+1] (again to ease notation let Z−1 = 1). We use uppercase lettering
to denote a polynomial in these variables; for example, Vj ∈ Fp[Z0, . . . , ZQ+1] is the polynomial
given by replacing each occurrence of zi in vj with Zi.

6Here we assume that Q, t, d1, d2 are all constant and use the big-O notation for the runtime, as the concrete
runtime is difficult to calculate and complicated to express (it can be found in the proof). We stress that our theorem
statement still holds asymptotically even if Q, t, d1, d2 are polynomial in λ.
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Lemma 4.4. There is some 0 ≤ i ≤ Q such that

Si(Z⃗) = −Z0Ri(Z⃗) +
t∑

j=−1
bi,jRj(Z⃗) +

Q∑
j=1

b′
i,jVj ̸= 0.

(Note that if A succeeds then Si(z⃗) = 0 for all i; in other words, there is an i such that Si(Z⃗) is a
non-zero polynomial, but it evaluates to 0 on z⃗.)

Proof. Suppose for the sake of contradiction

Z0Ri(Z⃗) =
t∑

j=−1
bi,jRj(Z⃗) +

Q∑
j=1

b′
i,jVj (2)

for 0 ≤ i ≤ Q. Let W = {1, R0(Z⃗), . . . , Rt(Z⃗), V1, . . . , VQ}. Since |W | = t + Q + 2, Span(W ) has
dimension at most t + Q + 2 as an Fp-vector space. By Eq. (2), Z0Ri(Z⃗) ∈ Span(W ) for 0 ≤ i ≤ Q,
so W ′ = {1, R0(Z⃗), . . . , Rt(Z⃗), Z0R0(Z⃗), . . . , Z0RQ(Z⃗)} ⊂ Span(W ). But we have assumed that the
OMU instance is non-trivial, i.e., W ′ is a set of t + Q + 3 independent elements and thus cannot be
a subset of Span(W ). This forms a contradiction.

Let i∗ be the smallest i satisfying the condition of Lem. 4.4, and let S = Si∗ . Write

S(Z⃗) =
dS∑

j=0
Pj(Z1, . . . , ZQ+1)Zj

0 (3)

where dS is the degree of Z0 in S. Since S(Z⃗) ̸= 0, let j∗ be the smallest index so Pj∗(Z1, . . . , ZQ+1) ̸=
0. Let V (Z0) = S(Z0, z1, . . . , zQ+1), and E be the event that V (Z0) is a non-zero polynomial. We
can now prove Thm. 4.2.

Proof (of Thm. 4.2).

Proof of (1). Given such an adversary A for (R⃗, Q)-OMU, we define a reduction R that uses A
to solve Q1-DL as follows:

Reduction R:

1. On Q1-DL challenge (g, gx, gx2
, . . . , gxQ1+1), R samples yi ← F×

p , wi ← Fp for 0 ≤ i ≤ Q + 1.
Since Q1 + 1 = Q + d > d, R knows g, gx, . . . , gxd and thus can compute gR0(z⃗), . . . , gRt(z⃗),
where zi = yix + wi. R runs A on (g, gR0(z⃗), . . . , gRt(z⃗)).

2. When A queries Power, by Lem. 4.3 R can answer if it knows zℓ
0Ri(z⃗) for all 1 ≤ ℓ ≤ Q and

−1 ≤ i ≤ t. Note that deg(zℓ
0Ri(z⃗)) ≤ Q + d, so R indeed can compute all of them using its

Q1-DL challenges.

3. When A outputs B0, . . . , BQ together with algebraic coefficients bi,j , b′
i,j (see Eq. (1)), R

defines Si(Z⃗) using bi,j , b′
i,j (see Lem. 4.4), finds S(Z⃗) = Si∗(Z⃗), and rewrites S(Z⃗) as a

polynomial of X with Zi = yiX + wi:

S∗(X) = S(y0X + w0, y1X + w1, . . . , yQ+1X + wQ+1).

If S∗(X) = 0 then R outputs ⊥ and aborts. Otherwise, it factors S∗(X) and computes all
roots. If for some root x∗ we have gx∗ = gx then R returns x∗; otherwise R returns ⊥.
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Analysis of R. The analysis follows the same template as in the proof of [BFL20, Theorem 3.5].
Note thatR simulates the (R⃗, Q)-OMU game toA correctly. IfA succeeds then S∗(x) = S(z⃗) = 0,

so x is a root of S∗. Therefore as long as S∗(X) ̸= 0, R returns x. It remains to upper-bound the
probability that S∗(X) = 0.

Interpreting S∗ as an element of (Fp[Y1, . . . , Ym, W1, . . . , Wm])[X], by Lem. 3.1 the maximal
coefficient of S∗ is an element S∗

max of Fp[Y1, . . . , Ym] with total degree equal to the maximal total
degree of S. Note that the behavior of A is independent of the values yix since they are masked by
random wi, i.e., A’s view only contains some functions of zi = yix + wi which is independent of
yix. Therefore the values bi,j , b′

i,j , vj are independent of y⃗, thus S, S∗, S∗
max are also independent of

y⃗. The probability that S∗ = 0 is then upper-bounded by the probability that S∗
max(y⃗) = 0 for a

random point y⃗. By Lem. 3.2 this latter probability is at most deg(S∗)
p−1 . Since deg(S∗) is at most the

total degree of Si∗ , which is at most Q1 + 1, S∗(X) = 0 with probability at most Q1+1
p−1 . Thus, R’s

success probability is at least ϵ− Q1+1
p−1 .

R’s runtime depends on the polynomials R⃗ (i.e., the exact definition of the problem), but in the
worst case, computing gRi(x) involves d + 1 exponentiations and d multiplications, which take time
2(d+1)λ+d; therefore, step 1 takes time t[2(d+1)λ+d]. In step 2, answering each Power query involves
Q+d+1 exponentiations and Q+d multiplications, which take time 2(Q+d+1)λ+Q+d; adding the
time of running A, step 2 takes time T +Q[2(Q+d+1)λ+Q+d]. Step 3 involves no group operations
and is thus considered “free”. Overall, R’s runtime is T + t[2(d+1)λ+d]+Q[2(Q+d+1)λ+Q+d] =
T + O(λ).

Proof of (2). Given such an adversary A for (R⃗, Q)-OMU, we define a reduction R′ that uses A
to solve Q2-DL as follows:

Reduction R′:

1. On Q2-DL challenge (g, gx, gx2
, . . . , gxQ2+1), R′ samples a bit b ← {0, 1} and proceeds as

follows:

• If b = 0: R′ samples wi ← Fp for 1 ≤ i ≤ Q + 1. Since Q2 + 1 ≥ Q + d0 > d0, R′ knows
g, gx, . . . , gxd0 and thus can compute gR0(z⃗), . . . , gRt(z⃗), where z0 = x and zi = wi.

• If b = 1: R′ samples w0 ← Fp, wi ← Fp, yj ← F×
p for 1 ≤ i ≤ Q + 1. Since Q2 + 1 ≥ d1,

R′ knows g, gx, . . . , gxd1 and thus can compute gR0(z⃗), . . . , gRt(z⃗), where z0 = w0 and
zi = yix + wi.

R′ runs A on (g, gR0(z⃗), . . . , gRt(z⃗)).

2. When A queries Power, by Lem. 4.3 R′ can answer if it knows zℓ
0Ri(z⃗) for all 1 ≤ ℓ ≤ Q and

−1 ≤ i ≤ t. Note that degz0(zℓ
0Ri(z⃗)) ≤ Q + d0 (for b = 0) and degz1,...,zQ+1(zℓ

0Ri(z⃗)) ≤ d1
(for b = 1), so R′ indeed can compute all of them using its Q2-DL challenges.

3. When A outputs B0, . . . , BQ together with algebraic coefficients bi,j , b′
i,j (see Eq. (1)), R′

defines Si(Z⃗) using bi,j , b′
i,j (see Lem. 4.4) and finds S(Z⃗) = Si∗(Z⃗). Then:

• If b = 0: R′ computes V (Z0) using zi. If V (X) = 0 then R′ outputs ⊥ and aborts.
Otherwise, it factors V (X) and computes all roots.

• If b = 1: R′ computes P ∗(X) = Pj∗(y1X + w1, . . . , yQ+1X + wQ+1) using wi and yi. If
P ∗(X) = 0 then R′ outputs ⊥ and aborts. Otherwise, it factors P ∗(X) and computes all
roots.
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Either way, if for some root x∗ we have gx∗ = gx then R′ returns x∗; otherwise R′ returns ⊥.

Analysis of R′. Note that R simulates the (R⃗, Q)-OMU game to A correctly. Suppose A succeeds.
Then:

• If b = 0 and E occurs: Then V is a non-zero univariate polynomial, and by Lem. 4.4 it has
z0 = x as a root. Therefore, R′ returns x.

• If b = 1 and E does not occur: Then V (Z0) = 0, and by Eq. (3) we must have Pj∗(z1, . . . , zQ+1) =
0 and Pj∗(Z1, . . . , ZQ+1) ̸= 0. But when b = 1 R′ computes x in almost the same manner as
R; the only difference is that R uses polynomial S and R′ uses polynomial Pj∗ . Using the
same analysis, R′ returns x with probability at least 1− d1

p−1 .

Therefore,

Pr[R′ succeeds | A succeeds ∧ b = 0 ∧ E] = 1,

Pr[R′ succeeds | A succeeds ∧ b = 1 ∧ E] ≥ 1− d1
p− 1 ,

which gives

Pr[R′ succeeds] ≥ Pr[R′ succeeds ∧ A succeeds]
= ϵ · Pr[R′ succeeds | A succeeds]

= ϵ

2
(
Pr[R′ succeeds | A succeeds ∧ b = 0] + Pr[R′ succeeds | A succeeds ∧ b = 1]

)
≥ ϵ

2

[
Pr[E] + Pr[E]

(
1− d1

p− 1

)]
≥ ϵ

2

(
1− d1

p− 1

)
.

The runtime analysis ofR′ is identical to that of R, except that d is replaced by d′ = max(d0, d1).

Applications to OMDH and OMDH2. We now apply our general results on OMU to OMDH
and OMDH2. Recall that Q-OMDH is (R⃗, Q)-OMU with R⃗ = (Z1, Z2, . . . , ZQ+1, Z0), and Q-
OMDH2 is (R⃗, Q)-OMU with R⃗ = (Z1, Z2, . . . , ZQ+1). We have:

• Applying item (1) of Thm. 4.1 to Q-OMDH2 and item (2) to Q-OMDH, we obtain that there
is a reduction from Q-OMDH2 to (Q− 1)-DL and Q-OMDH to Q-DL;

• Applying item (1) of Thm. 4.2 to Q-OMDH and item (2) to Q-OMDH2, we obtain that there
is a reduction from Q-DL to Q-OMDH and (Q− 1)-DL to Q-OMDH2.

We conclude that

Corollary 4.5. For any Q > 0, Q-OMDH is equivalent to Q-DL, and Q-OMDH2 is equivalent to
(Q− 1)-DL.

This establishes a separation between Q-OMDH for different values of Q, as [BFL20, Section 9]
has shown that Q-DL for different values of Q are separate (assuming the reduction is algebraic).
Furthermore, our result also separates Q-OMDH for Q and Q′-OMDL for any positive Q and Q′,
as [BFL20, Section 10] has shown that Q-DL and Q′-OMDL are separate (unless Q-DL is easy).
Finally, the above also applies to OMDH2.
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5 Reductions between (t′, t, n, Q)-TOMDH and Q′-DL
In this section we make use of a lemma of [JKKX17]. Let q⃗ = (q1, . . . , qn) ∈ Nn, t ∈ N and suppose
Ct+1(q⃗) ≤ Q, w = W (q⃗). Let k⃗ = (k1, . . . , kw) ∈ Zw

>0 be any vector with qi of its entries equal to i,
for each 1 ≤ i ≤ n.

Lemma 5.1 ([JKKX17, Lemma 3]). There are no matrices A ∈ F(Q+1)×w
p , B ∈ Fw×(Q+1)

p , K ∈ Fw×w
p

such that:

1. K is diagonal with entries ki;

2. AB = I and AKiB = 0 for 1 ≤ i ≤ t.

We now give a simple reduction from (t′, t, n, Q)-TOMDH to Q − 1-DL. Suppose A is an
adversary for Q−1-DL. R recieves a (t′, t, n, Q)-TOMDH challenge (g, gr1 , . . . , grQ+1) with statically
corruptible shares F = {f1, . . . , ft′} ⊂ [n]. R chooses 0 as the share values, so P (fi) = 0 where P is
the secret polynomial in the TOMDH challenge. R chooses any U ⊂ [n] \ F with |U | = t− t′ + 1
(such a U must exist since n ≥ t + 1). R will use the query vector q⃗ = (q1, . . . , qn), defined by
qi = Q if i ∈ U and qi = 0 otherwise; obviously Ct−t′+1(q⃗) = Q. R then uses the Power(·, ·) oracle
of its challenger to compute a Q − 1-DL challenge, as follows. Suppose R wants to compute ak

for k = P (0). R knows that aP (fi) = 1, and can use Power(·, ·) to compute aP (u) for all u ∈ U .
R can then compute ak from these t + 1 values by Lagrange interpolation. By repeating this for
a = g, gk, gk2

, . . . , R computes (g, gk, . . . , gkQ). R invokes A on this challenge, and receives k∗ as
output. R then outputs {(gri)k∗}i∈[Q+1]. It is easily seen that R can be made to be algebraic if A
is (so this is a reduction in the AGM) and that R’s advantage is the same as A’s.

5.1 Preliminary results

In order to give a reduction from Q′-DL to TOMDH we need a few preliminary results. Suppose
R is a reduction that runs an adversary A on a (t′, t, n, Q)-T-OMDH instance (g, gr1 , . . . , grQ+1)
(set r0 = 1 for convenience) with secret polynomial P (X) = ∑t

i=0 aiX
i, vector of coefficients

a⃗ = (a0, . . . , at), and corrupted shares F = {f1, . . . , ft′} ⊂ [n], F ′ = {f ′
1, . . . , f ′

t′} ⊂ Fp supplied by
A such that P (fi) = f ′

i . Let q⃗ = (q1, . . . , qn) be the query vector of A: that is, A makes qj queries
to Power(j, ·) with Ct−t′+1(q⃗) ≤ Q and qj = 0 for j ∈ F . Let gvi be the result of the i-th query to
Power(·, ·), and denote the second argument to the query by ki. To succeed A must return elements
Bj = ga0rj for indices 1 ≤ j ≤ Q + 1 with algebraic representations

a0rj =
Q+1∑
u=0

b(j)
u ru +

w∑
u=1

c(j)
u vu (4)

Lemma 5.2. Let n⃗s = (1, s, s2, . . . , st). Then

vi =
∑

Z⊂[i],i∈Z

Q+1∑
j=0

β
(i)
jZrj

∏
ℓ∈Z

(n⃗⊤
kℓ

a⃗)


for some choice of coefficients β

(i)
jZ ∈ Fp known to R.

Proof. By induction. If i = 1, since A is algebraic the query input is of the form ∑Q+1
j=0 βjrj so

v1 = (n⃗⊤
k1 a⃗)

Q+1∑
j=0

βjrj
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Suppose the lemma holds for all 1, . . . , i; we show it for i + 1. Again by algebraicity the input is of
the form

Q+1∑
j=0

βjrj +
i∑

j=1
γjvj

which by hypothesis is

Q+1∑
j=0

βjrj +
i∑

j=1
γj

 ∑
Z⊂[j],j∈Z

Q+1∑
j′=0

β
(j)
j′Zrj′

∏
ℓ∈Z

(n⃗⊤
kℓ

a⃗)


We then have

vi+1 = (n⃗⊤
ki+1 a⃗)

Q+1∑
j=0

βjrj + (n⃗⊤
ki+1 a⃗)

i∑
j=1

γj

 ∑
Z⊂[j],j∈Z

Q+1∑
j′=0

β
(j)
j′Zrj′

∏
ℓ∈Z

(n⃗⊤
kℓ

a⃗)


Note that as j ranges from 1 to i, Z ranges over all nonempty subsets of [i]. We can then rewrite as

vi+1 = (n⃗⊤
ki+1 a⃗)

Q+1∑
j=0

βjrj +

 ∑
Z⊂[i+1],i+1∈Z

|Z|≥2

Q+1∑
j′=0

β
′(jZ)
j′Z rj′

∏
ℓ∈Z

(n⃗⊤
kℓ

a⃗)




where jZ = maxz∈Z\{i+1} z and β
′(jZ)
j′Z = γjβ

(jZ)
j′Z . Since the first term corresponds to Z = {i + 1} we

are done.

As before, we now consider the above quantities in the formal variables A0, . . . , At and
R1, . . . , RQ+1 (R0 = 1).

Lemma 5.3. There is some 1 ≤ j ≤ Q + 1 so that

Sj(A⃗, R⃗) = −A0Rj +
Q+1∑
u=0

b(j)
u Ru +

w∑
u=1

c(j)
u Vu ̸= 0

(if A succeeds then Sj (⃗a, r⃗) = 0 for each j).

Proof. First we give a proof in the case t′ = 0, following the same outline as the proof of [JKKX17,
Theorem 6]. Assume towards a contradiction that Sj(A⃗, R⃗) = 0 for all j, and let V ′

i be Vi but with
all terms of degree ≥ 2 in the Ai removed. By Lem. 5.2,

V ′
i = (n⃗⊤

ki
A⃗)(

Q+1∑
j=0

β
(i)
j{i}Rj)

(for notational convenience set β
(i)
j = β

(i)
j{i}). Since A0Rj has degree ≤ 1 in all Ai, we have

A0Rj =
Q+1∑
u=0

b(j)
u Ru +

w∑
u=1

c(j)
u V ′

u
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for 1 ≤ j ≤ Q + 1. These equations can be written in matrix form as A0R1
...

A0RQ+1

 = B1R⃗ + b⃗0 + C

V ′
1
...

V ′
w

 (5)

V ′
1
...

V ′
w

 = (B2R⃗ + β⃗0)⊙


n⃗⊤

k1
A⃗

...
n⃗⊤

kw
A⃗


where

C =


c

(1)
1 · · · c

(1)
w

... . . . ...
c

(Q+1)
1 · · · c

(Q+1)
w

 , B1 =


b

(1)
1 · · · b

(1)
Q+1

... . . . ...
b

(Q+1)
1 · · · b

(Q+1)
Q+1

 , B2 =


β

(1)
1 · · · β

(1)
Q+1

... . . . ...
β

(w)
1 · · · β

(w)
Q+1

 ,

R⃗ =

 R1
...

RQ+1

 , b⃗0 =


b

(1)
0
...

b
(Q+1)
0

 , β⃗0 =


β

(1)
0
...

β
(w)
0


Let β⃗1 = B2R⃗ + β⃗0, b⃗1 = B1R⃗ + b⃗0. We can write

n⃗⊤
k1

A⃗
...

n⃗⊤
kw

A⃗

 =


∑t

i=0 Aik
i
1

...∑t
i=0 Aik

i
w

 =
t∑

i=0

Ai

ki
1
...

ki
w




so by properties of the Hadamard productV ′
1
...

V ′
w

 = β⃗1 ⊙


n⃗⊤

k1
A⃗

...
n⃗⊤

kw
A⃗

 =
t∑

i=0

β⃗1 ⊙Ai

ki
1
...

ki
w


 =

t∑
i=0

AiKiβ⃗1 (6)

where

K =


k1

k2
. . .

kw


Substituting Eq. (6) into Eq. (5) gives A0R1

...
A0RQ+1

 = b⃗1 + C
(

t∑
i=0

AiKiβ⃗1

)
= b⃗1 +

(
t∑

i=0
AiCKiβ⃗1

)
(7)

As the above is an equality of polynomials, we have Cβ⃗1 = R⃗ and CKiβ⃗1 = 0 for 1 ≤ i ≤ t.
Plugging β⃗1 back in, we get (CB2 − I)R⃗ + Cβ⃗0 = 0 and CKiB2R⃗ + CKiβ⃗0 = 0, 1 ≤ i ≤ t. By
Lem. 5.1 CB2 − I or one of the CKiB2 are nonzero, so for some e, i the e-th row of the i-th matrix
(i ∈ {0, 1, . . . , t}) is nonzero. Denote this row by u⃗⊤ and let c⃗⊤ be the e-th row of C. We then have
u⃗⊤R⃗ + c⃗⊤Kiβ⃗0 = 0. We have arrived at a contradiction: u⃗⊤ is nonzero so the left hand side cannot
be the zero polynomial.
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5.2 The Flaw for t′ > 0
We now prove Lem. 5.3 in the case t′ > 0: in the process we show the flaw in the proof of
[JKKX17, Theorem 7] and repair it by proving a new technical lemma. Suppose t′ > 0 and the
adversary has chosen f⃗ = (f1, . . . , ft′) with fi ∈ [n] distinct and f⃗ ′ = (f ′

1, . . . , f ′
t′) so that P (fi) = f ′

i .
Written in matrix notation,

[f⃗ t, . . . , f⃗ , 1⃗]


At

At−1
...

A0

 = f⃗ ′ (8)

By the Vandermonde determinant {f⃗0, f⃗ , . . . , f⃗ t′−1} is linearly independent. Furthermore, since
f⃗ has no zero entries, {f⃗u, f⃗u+1, . . . , f⃗u+t′−1} is linearly independent for any u ≥ 0. Therefore
bringing Equation (8) to row reduced echelon form gives

1 0 . . . 0 α
(t)
t−t′ . . . α

(t)
0

0 1 0 α
(t−1)
t−t′ . . . α

(t−1)
0

... . . . ...
... . . . ...

0 0 . . . 1 α
(t−t′+1)
t−t′ . . . α

(t−t′+1)
0




At

At−1
...

A0

 =


α

(t)
−1

α
(t−1)
−1
...

α
(t−t′+1)
−1


for coefficients {α(ℓ)

j }. By standard properties of row reduction,

Aℓ +
t−t′∑
j=0

α
(ℓ)
j Aj = α

(ℓ)
−1 for t− t′ + 1 ≤ ℓ ≤ t (9)

f⃗ j =
t∑

ℓ=t−t′+1
α

(ℓ)
j f⃗ ℓ for 0 ≤ j ≤ t− t′

Returning to the proof of Lem. 5.3 when t′ > 0, by Equation (9) Sj is a polynomial in A0, . . . , At−t′ , R⃗.
Since Aℓ is degree 1 in A0, . . . , At−t′ , the argument goes through up to Equation (7). In the proof
of [JKKX17, Theorem 7] it is claimed that at this point the equalities Cβ⃗1 = R⃗ and CKiβ⃗1 = 0
for 1 ≤ i ≤ t− t′ hold. However, this is incorrect: At−t′+1, . . . , At have not been set to zero, they
are fixed linear combinations of the free variables A0, . . . , At−t′ . To give a correct proof, using
Equation (9) yields A0R1

...
A0RQ+1

 = b⃗1 + C
(

t∑
i=0

AiKiβ⃗1

)
= b⃗1 +

t−t′∑
j=0

AjCKj β⃗1 +

 t∑
ℓ=t−t′+1

α
(ℓ)
−1 −

t−t′∑
j=0

α
(ℓ)
j Aj

CKℓβ⃗1

 =

b⃗1 +
t∑

ℓ=t−t′+1
α

(ℓ)
−1CKℓβ⃗1 +

t−t′∑
j=0

AjC

Kj −
t∑

ℓ=t−t′+1
α

(ℓ)
j Kℓ

 β⃗1

Equating coefficients of Aj , we have CM0β⃗1 = R⃗, CMj β⃗1 = 0⃗, j ∈ [t− t′] where

Mj = Kj −
t∑

ℓ=t−t′+1
α

(ℓ)
j Kℓ
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Plugging in the definition of β1 yields

(CM0B2 − I)R⃗ + CM0β⃗0 = 0⃗, CMjB2R⃗ + CMj β⃗0 = 0⃗ for j ∈ [t− t′].

As before, to complete the proof it suffices to show CM0B2 − I or one of CMjB2 is nonzero.
Lem. 5.1 no longer applies, so we prove a new lemma that is sufficient (the proof is deferred to
Appx. A).

Lemma 5.4. There are no matrices A ∈ F(Q+1)×w
p , B ∈ Fw×(Q+1)

p such that AM0B = I and
AMjB = 0 for all j ∈ [t− t′] (here I is the identity matrix and 0 is the all-zeroes matrix).

5.3 Reduction from (t′, t, n, Q)-TOMDH to Q′-DL

Theorem 5.5. Let t0 = t− t′ + 1. Given an adversary A for (t′, t, n, Q)-TOMDH in the AGM with
advantage ε, there is a reduction RA in the AGM from (Q(n− t)− 1)-DL to (t′, t, n, Q)-TOMDH
with advantage at least

ε

(t0 + Q + 1)2

(
Q + 1 + t0(n−t′

t−t′
))

Proof. Our reductionR will work as follows. R recieves a (Q(n−t)−1)-DL instance (g, gx, . . . , gxQ(n−t)).
R constructs a (t′, t, n, Q)-T-OMDH instance by first choosing i∗ ← [t0 + (Q + 1)]. R chooses
wi ← Fp for i ∈ [Q + 1]. If i∗ > t0, R implicitly defines ri = wi for i ∈ [Q + 1] \ {i∗ − t0} and
ri∗−t0 = x; otherwise R defines ri = wi, i ∈ [Q + 1]. R invokes the adversary A on challenge
(g, gr1 , . . . , grQ+1), recieving sets F = {f1, . . . , ft′} ⊂ [n], F ′ = {f ′

1, . . . , f ′
t′} ⊂ Fp. The polynomial

P (X) = ∑t
i=0 aiX

i that R uses to share the secret must satisfy P (fi) = f ′
i for each i. R chooses

a uniform random subset C = {c1, . . . , ct0} ⊂ [n] \ F . R chooses c′
i ← Fp, i ∈ [t0]: if i∗ ≤ t0 R

implicitly defines P (ci) = c′
i, P (ci∗) = x for i ∈ [t0] \ {i∗}, otherwise R implicitly defines P (ci) = c′

i

for i ∈ [t0]. We have defined P on t′ + t0 = t + 1 points, so by Lagrange interpolation a⃗ = (a0, . . . , at)
is uniquely determined.

We now describe how the Power oracle is simulated. On query Power(j, b) R must return bP (j). By
Lagrange interpolation P (j) is a linear combination of {P (c)}c∈C ∪ F ′ with known coefficients. If
i∗ > t0, all of these values are known to R, so R can directly answer the query. Otherwise, all of
these values are known to R except P (ci∗) = x, so R answers the query in the same way as for
OMDH; by using the algebraic representation of the query and linearity to compute the answer in
terms of the Q(n− t)− 1-DL challenge. If the degree of the output in x is larger than Q(n− t), R
outputs ⊥ and aborts (*).

When the simulation finishes, A outputs its T-OMDH answer. If A succeeds, by Lem. 5.3 R
can compute a polynomial S1(A0, . . . , At−t′ , R1, . . . , RQ+1) ̸= 0 such that S1(a0, . . . , at−t′ , r⃗) = 0.
R makes a change of variables as follows: introduce the variables C ′

1, . . . , C ′
t0 via ∑t

j=0 Ajcj
i = C ′

i.
By Lagrange interpolation this change of variables is invertible, so the corresponding polynomial
S2(C ′

1, . . . , C ′
t0 , R1, . . . , RQ+1) one gets by converting S1 is also nonzero.

R computes the polynomial Vi∗ corresponding to S2 as defined in Lem. 3.4. Note that R can always
compute Vi∗ , as it is a function of values known to R:

Vi∗ =
{

Vi∗(Ri∗−t0) = Hi∗(Ri∗−t0 , ri∗−t0+1, . . . , rQ+1) if i∗ > t0

Vi∗(C ′
i∗) = Hi∗(C ′

i∗ , c′
i∗+1, . . . , c′

t0 , r1, . . . , rQ+1) otherwise
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If Vi∗ ̸= 0 then R factors Vi∗ and computes all roots. For each root x∗, R checks if gx∗ = gx: if so
R outputs x∗. If Vi∗ = 0 or gx∗ ̸= gx for all roots x∗ then R outputs ⊥ and aborts.

Analysis of R. Note that R simulates the T-OMDH game to A correctly, unless it aborts in

(*). If i∗ > t0 (which happens with probability Q+1
t0+Q+1) then R can always answer the query and

never aborts in (*). Otherwise, if c ∈ C \{ci∗} then Power(c, b) can always be answered. The queries
for the other (n− t′)− (t− t′) = n− t choices of c return b exponentiated by a linear polynomial in x.
Since Ct0(q⃗) ≤ Q, there are ≤ t− t′ “bad” indices i ∈ [n] \ F such that qi > Q. Since elements of C
are chosen uniformly at random from [n] \F , C \ {ci∗} contains all “bad” indices with probability at
least

(n−t′

t−t′
)−1

. R must then answer n− t other queries up to Q times: as the degree in x increases
by 1 per query, the degree of x in any query is at most Q(n− t), so R does not abort in (*). In
total, R doesn’t abort in (*) with probability at least

1
t0 + Q + 1

(
Q + 1 + t0(n−t′

t−t′
))

Assuming A succeeds, we analyze R’s advantage. By Lem. 3.4 there is some j∗ ∈ [t0 + (Q + 1)] such
that the polynomial Vj∗ corresponding to S2 is nonzero: suppose now that i∗ = j∗. Then Vi∗ is a
polynomial in Ri∗−t0 if i∗ > t0 and C ′

i∗ otherwise. In both cases, by R’s simulation of the TOMDH
game and Lem. 3.4, x is a root of Vi∗ so in this case R outputs x and succeeds. Therefore,

Pr[A succeeds|R doesn’t abort in (*)] = ε

Pr[R succeeds|R doesn’t abort in (*) ∧ A succeeds ∧ i∗ = j∗] = 1

Since i∗ is chosen uniformly and is independent of the view of A,

Pr[i∗ = j∗|R doesn’t abort in (*) ∧ A succeeds] = 1
t0 + (Q + 1)

Putting these all together,

Pr[R succeeds] ≥ Pr[R succeeds|R doesn’t abort in (*)]
t0 + Q + 1

(
Q + 1 + t0(n−t′

t−t′
)) ≥

ε Pr[R succeeds|R doesn’t abort in (*) ∧ A succeeds]
t0 + Q + 1

(
Q + 1 + t0(n−t′

t−t′
)) ≥

ε

(t0 + Q + 1)2

(
Q + 1 + t0(n−t′

t−t′
))

6 Separation results
In this section we assume all reductions R are probabilistic polynomial-time reductions in the AGM;
that is, R and the adversary A run by R are both algebraic. Furthermore, we allow R to run its
adversary A as many times as it wants, but we do not allow R to choose the random coins of A or
rewind A, otherwise A could fail with overwhelming probability. For each separation we construct
a meta-reduction M that simulates R’s access to adversary A. As in [BFL20], to correctly and
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cleanly argue about the probability distributions (a) if R incorrectly simulates the security game
to A, then A outputs ⊥ and aborts, and (b) M completely simulates R’s access to A and copies
R’s final output, even if M obtains enough information to cease interacting with R and solve the
problem directly.

6.1 Separation Result for OMDL

Theorem 6.1. For any Q ≥ 0, suppose there is a reduction R in the AGM from the Q-OMDL
problem to the (Q + 1)-OMDL problem. Then the Q-OMDL problem is easy in the AGM.

Concretely, suppose R (T ′, ϵ′)-solves Q-OMDL given access to an adversary A that (T, ϵ)-solves
(Q+1)-OMDL. Then there is an algebraic meta-reductionM such thatMR (T ′, ϵ′)-solves Q-OMDL,
as long as T ≥ (Q + 1)[2(Q + 3)λ + Q + 1] and ϵ ≤ 1− p−1 −O(p−2).

Proof. Given such a reduction R, we define a meta-reduction M that uses R to solve Q-OMDL.
While running R,M needs to play the role of R’s Q-OMDL challenger, as well as the (Q+1)-OMDL
solver that R uses. M works as follows:

Meta-reduction M:

1. On Q-OMDL challenge (A−1, A0, . . . , AQ), M feeds the challenge to R.

2. M, as R’s challenger, must answer (up to) Q discrete log oracle queries by R. This can be
easily simulated since M itself is part of the Q-OMDL game, so it can just forward the oracle
queries of R to its own oracle, along with the algebraic representations of the query elements.

3. To simulate a run of the (Q + 1)-OMDL solver,

(a) Suppose that R runs the solver on challenge (B−1, B0, . . . , BQ+1); since R is algebraic,
it must also provide the algebraic representations Bj = ∏Q

i=−1 A
zi,j

i with each zi,j ∈ Fp

for i = −1, . . . , Q and j = −1, . . . , Q + 1.7 If B−1 = 1G, then M outputs ⊥ and aborts.

(b) M can make Q + 1 queries to DL (the (Q + 1)-OMDL solver’s discrete log oracle
simulated by R). M will choose uj,i ← Fp for i = 0, . . . , Q and j = 0, . . . , Q + 1, and
query mi = DL(∏Q+1

j=0 B
uj,i

j ), providing algebraic representations (0, u0,i, . . . , uQ+1,i). M
checks if R simulates DL correctly, i.e., if Bmi

−1 = ∏Q+1
j=0 B

uj,i

j for all i; if the equality does
not hold for any i, then M outputs ⊥ and aborts.

(c) Finally, M returns dlogB−1(B0), . . . , dlogB−1(BQ+1) to R with some overwhelming prob-
ability (how this is achieved is described later).

4. When R is finished, it is supposed to output dlogA−1(A0), . . . , dlogA−1(AQ), and M copies
R’s output.

Let Z be the (Q + 3)× (Q + 2) matrix

Z =

 z−1,−1 . . . zQ,−1
... . . . ...

z−1,Q+1 . . . zQ,Q+1

 ,

7Note that B−1 might be different than A−1, i.e., R might change the group generator while running the
(Q + 1)-OMDL solver.
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which is defined by R and known to M in step 3a. If M does not abort in step 3a, B−1 ̸= 1G so
the first row of Z is nonzero.

Lemma 6.2. Let Bei
−1 = Ai, B

dj

−1 = Bj for i = −1, . . . , Q and j = 0, . . . , Q + 1. (So M needs to
compute (d0, . . . , dQ+1).) Then

Ze⃗ = Z


e−1
e0
...

eQ

 =


1
d0
...

dQ+1

 = d⃗.

Proof. From step 3a we have Bj = ∏Q
i=−1 A

zi,j

i , so

B
dj

−1 = Bj =
Q∏

i=−1
A

zi,j

i =
Q∏

i=−1
B

eizi,j

−1 = B
e−1z−1,j+···+eQzQ,j

−1 .

As j ranges from −1 to Q + 1 (with d−1 = 1) we obtain the lemma.

Next, let U be the (Q + 2)× (Q + 3) matrix

U =


1 0 · · · 0
0 u0,0 · · · uQ+1,0

0
... . . . ...

0 u0,Q · · · uQ+1,Q

 ,

which is defined by M in step 3b.

Lemma 6.3. Suppose M does not abort in step 3b. Then

UZe⃗ = Ud⃗ =


1

m0
...

mQ

 = m⃗.

Proof. By Lem. 6.2 UZe⃗ = Ud⃗; we now prove that Ud⃗ = m⃗. From step 3b we have Bmi
−1 =∏Q+1

j=0 B
uj,i

j , so

Bmi
−1 =

Q+1∏
j=0

B
uj,i

j =
Q+1∏
j=0

B
djuj,i

−1 = B
d0u0,i+···+dQ+1uQ+1,i

−1 .

As i ranges from −1 to Q (with m−1 = 1) we obtain the lemma.

AssumingM does not abort in step 3b, we now describe howM computes (d0, . . . , dQ+1) in step
3c. If ker(Z) ̸= ker(UZ) then M outputs ⊥ and aborts. (Since ker(Z) ⊆ ker(UZ),M can check if
ker(Z) ̸= ker(UZ) by verifying that dim(ker(Z)) ̸= dim(ker(UZ)) via row reduction.) OtherwiseM
computes some v⃗ such that UZv⃗ = m⃗ (since e⃗ is one such v⃗ by Lem. 6.3, such a v⃗ always exists and
can be computed via row reduction), and then returns (d0, . . . , dQ+1) as the last Q + 2 entries of Zv⃗.
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Analysis of M. To begin with, in R’s viewM’s behavior in step 3 defines a (Q+1)-OMDL solver
A in the real (Q + 1)-OMDL game; in particular, the DL queries in step 3b are uniformly random
and thus independent of M’s view while simulating R’s Q-OMDL challenger (e.g., independent of
the matrix Z). Below we show that A has advantage 1− p−1 −O(p−2) in the real (Q + 1)-OMDL
game; this is the more difficult part of the overall analysis of M. After that, it is clear that if the
reduction R “works” for A, then M solves Q-OMDL with runtime and probability equal to R’s,
since M merely passes inputs and outputs (including oracle queries) between M’s own challenger
and R.

Analysis of A. First suppose R correctly simulates the (Q + 1)-OMDL game to A. Then A does
not abort in steps 3a,3b, so A aborts if and only if ker(Z) ̸= ker(UZ), in step 3c. Suppose A
doesn’t abort. The set of v⃗ such that UZv⃗ = m⃗ is e⃗ + ker(UZ) by Lem. 6.3. By assumption
ker(Z) = ker(UZ) so v⃗ = e⃗ + k⃗ for some k⃗ ∈ ker(Z). Therefore Zv⃗ = Ze⃗ + Zk⃗ = Ze⃗, so by Lem. 6.2
the last Q + 2 entries (i.e., excluding d−1 = 1) are the correct values of dj , and A succeeds.

Next, we show that A aborts with negligible probability. Since U and Z are chosen independently,
we bound the probability of ker(Z) ̸= ker(UZ) where Z is a fixed matrix with a nonzero first row.
Note that ker(Z) ̸= ker(UZ) if and only if im(Z) ∩ ker(U) ̸= {0}. Since im(Z) has dimension at
most Q + 2, and the probability of im(Z) ∩ ker(U) ̸= {0} is maximized when im(Z) is as large as
possible, it suffices to consider the case im(Z) = H (⃗h) for some h⃗ ̸= 0⃗. Let u⃗i be the i-th row of U,
1 ≤ i ≤ Q + 2. Since ker(U) = H(u⃗1, . . . , u⃗Q+2) we have im(Z) ∩ ker(U) = H (⃗h, u⃗1, . . . , u⃗Q+2).

To lighten notation, define

S1 = {h⃗}, Si = {h⃗, u⃗1, . . . , u⃗i−1} if i > 1.

Applying Lem. 3.5 to H (⃗h, u⃗1, . . . , u⃗Q+2) gives

Pr[im(Z) ∩ ker(U) = {0}] = Pr[⃗h ̸= 0]
Q+2∏
i=1

Pr[u⃗i ̸∈ Span(Si) | dim(Si) = i]. (10)

Note that h⃗ ̸= 0 by assumption, and u⃗1, h⃗ are independent: if u⃗1 = λh⃗, λ ̸= 0 then

im(Z) = H (⃗h) = {v⃗ ∈ FQ+3
p | (v⃗)1 = 0},

which contradicts the assumption Z has a nonzero first row. Therefore

Pr[u⃗1 ̸∈ Span(S1) | dim(S1) = 1] = 1

so the i = 1 term of Equation (10) is 1. For i > 1, if u⃗i ∈ Span(Si) then there are coefficients
{αj}i−1

j=1 and β such that u⃗i = ∑i−1
j=1 αj u⃗j + βh⃗. Take the first entry of the vectors in the equation;

since

(u⃗j)1 =
{

0 j ̸= 1
1 j = 1

,

we have

0 = α1 + β(⃗h)1. (11)

There are pi choices of {αj}i−1
j=1 and β, but by Eq. (11) there are only pi−1 possible choices of u⃗i
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contained in Span(Si). Since (u⃗i)1 = 0 and (u⃗i)2, . . . , (u⃗i)Q+3 ∈ Fp, there are pQ+2 total choices for
u⃗i, so

Pr[u⃗i ̸∈ Span(Si) | dim(Si) = i] = 1− pi−1

pQ+2 = 1− pi−Q−3.

Putting it all together,

Pr[im(Z) ∩ ker(U) = {0}] =
Q+2∏
i=2

(1− pi−Q−3) =
Q+1∏
i=1

(1− p−i) = 1− p−1 −O(p−2).

Overall, we have shown that A’s success probability is at least 1− p−1 + O(p−2). If R incorrectly
simulates the (Q + 1)-OMDL game to A, either B−1 = 1G or the discrete log oracle DL is not
implemented correctly. Then A aborts in step 3a or step 3b respectively.

Regarding A’s runtime, in step 3b A makes Q + 1 queries to DL, each of which involves Q + 2
exponentiations and Q + 1 multiplications; after that, A checks consistency of the answers, which
involves Q + 1 exponentiations. So the total number of group operations is up to (Q + 1)[2(Q +
2)λ + Q + 1] + (Q + 1) · 2λ = (Q + 1)[2(Q + 3)λ + Q + 1]. Step 3c does not involve any group
operations and is thus “free”.

6.2 Separation Result for OMDL and Q-DL

Theorem 6.4. For any Q ≥ 0, suppose there is a reduction R in the AGM from the Q-OMDL
problem to the 1-DL problem. Then the Q-OMDL problem is easy in the AGM.

Concretely, suppose R (T ′, ϵ′)-solves Q-OMDL given access to an adversary A that (T, ϵ)-solves
1-DL. Then there is an algebraic meta-reduction M such that MR (T ′, ϵ′)-solves Q-OMDL, as long
as T ≥ (2Q2 + 6Q + 4)λ + (Q + 1)2 and ϵ ≤ 1− 4p−1 −O(p−2).

Proof. Given such a reduction R, we define a meta-reduction M that uses R to solve Q-OMDL.
While running R, M needs to play the role of R’s Q-OMDL challenger, as well as the 1-DL solver
that R uses. M works as follows:

Meta-reduction M:

1. On Q-OMDL challenge (A−1, A0, . . . , AQ), M feeds the challenge to R. Let Ai = Axi
−1 for

i = 0, . . . , Q and x⃗ = (x0, . . . , xQ).

2. M, as R’s challenger, must answer (up to) Q discrete log oracle queries by R. Say Q′ of
them are made before R runs the 1-DL solver, and let the queries be DL(V1), . . . , DL(VQ′)
with algebraic representations Vj = ∏Q

i=−1 A
vi,j

i for j = 1, . . . , Q′. Define polynomials
Lj(X0, . . . , XQ) = ∑Q

i=−1 vi,jXi (denote X−1 = 1), so Vj = A
Lj(x⃗)
−1 . M stores Lj in a se-

quence L, but excludes those that can be linearly expressed by existing polynomials in L;
together with rj = Lj(x⃗) in a separate sequence L′. Concretely, M initializes L = {L∗

0 = 1}
and L′ = {r∗

0 = 1}. When R makes a DL(Vj) query,

• If Lj ∈ Span(L), i.e., Lj = ∑ℓ−1
j′=0 αj′L∗

j′ for some αj′ ∈ Fp (where ℓ = |L|), then M can
compute rj = dlogA−1(Vj) = ∑ℓ−1

j′=0 αj′r∗
j′ by itself.

• Otherwise M queries its own discrete log oracle on Vj , receiving rj as the result. M sets
L∗

ℓ := Lj , r∗
ℓ := rj and adds them to L,L′, respectively.
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Either way, M returns rj to R.

3. To simulate a run of the 1-DL solver,

(a) Suppose that R runs the solver on challenge (B−1, B0, B1); since R is algebraic, it
must also provide the algebraic representations Bj = ∏Q

i=−1 A
zi,j

i for j = −1, 0, 1. If
B−1 = 1G, M outputs ⊥ and aborts. If B0 = B1 = 1G, M outputs 0. Otherwise define
Pj(X0, . . . , XQ) = ∑Q

i=−1 zi,jXi, so Bj = A
Pj(x⃗)
−1 ; and S = P1P−1 − P 2

0 .
Let In be the ideal generated by {L∗

k(X⃗)− r∗
k}

n−1
k=1 for some n. Note that the generators

of In are linearly independent as L is linearly independent (guaranteed in step 2), and
that x⃗ ∈ V (In) for any n. Define [R]n to be the canonical representative (see Sect. 3.1)
of R in Fp[X0, . . . , XQ]/In.

(b) If [S]ℓ = 0 we have [P1]ℓ = ([P0]ℓ/[P−1]ℓ)2[P−1]ℓ; by Lem. 3.3 this implies [P0]ℓ/[P−1]ℓ = c
for some c ∈ Fp ([P−1]ℓ ̸= 0 since B−1 ̸= 0). M returns c to R.

The case when [S]ℓ ̸= 0 is handled as follows.

(c) If ℓ ≤ Q, M chooses {v∗
i,j} ← Fp for i = −1, . . . , Q, j = ℓ, . . . , Q and queries its discrete

log oracle on V ∗
j = ∏Q

i=−1 A
v∗

i,j

i . (M queries its discrete log oracle ℓ−1 times in step 2, so
its total number of queries is Q.) Define L∗

j (X0, . . . , XQ) = ∑Q
i=−1 v∗

i,jXi so V ∗
j = A

L∗
j (x⃗)

−1 ;
M adds L∗

j to L. If L is linearly dependent or [S]Q+1 = 0, M outputs ⊥ and aborts.

(d) Since IQ+1 is generated by Q independent elements, there is a nonpivotal variable Xt

such that [S]Q+1 is a polynomial only in Xt. For each root x′
t of [S]Q+1, M substitutes

Xt = x′
t into the equations defining IQ+1, recovering the full solution x⃗′ via row reduction.

M then computes u′ = P0(x⃗′)/P−1(x⃗′) and checks whether Bu′
−1 = B0, B

(u′)2

−1 = B1. This
will hold for some u′ (we will argue this later); when it does M returns u′ to R.

4. After the 1-DL solver is finished, R might make some additional (up to Q−Q′) discrete log
oracle queries and further invocations of the 1-DL solver.

(a) If M returned in step 3b, M can continue to forward DL oracle queries from R to its
own DL oracle, since M has only made DL oracle queries also made by R. M simulates
subsequent invocations of the 1-DL solver as in step 3.

(b) If M returned in step 3d, M has “used up” all of its DL oracle queries, so it cannot
make any more. However, in this case M has recovered x⃗, so it can now answer any
DL(Vj) query by returning Lj(x⃗), and can simulate any invocation of the 1-DL solver by
returning u = P0(x⃗)/P−1(x⃗).

5. When R is finished, it is supposed to output dlogA−1(A0), . . . , dlogA−1(AQ), and M copies
R’s output.

Analysis of M. As in Thm. 6.1, in R’s view M’s behavior in step 3 defines a 1-DL solver A
in the real 1-DL game. Below we show that A has advantage 1− 4p−1 −O(p−2) in the real 1-DL
game. After that, it is clear that if the reduction R “works” for A, then M solves Q-OMDL with
runtime and probability equal to R’s, since M merely passes inputs and outputs between M’s own
challenger and R, and can answer R’s oracle queries correctly in steps 2 and 4. (Note that steps 2
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and 4 do not involve any group operations and are thus “free”.)

Analysis of A. First suppose that R simulates the 1-DL game to A correctly, i.e., R submits a
valid 1-DL instance (B−1 ̸= 1G, B0 = Bu

−1, B1 = Bu
0 ). Since B−1 ̸= 1G, A does not output ⊥ in

step 3a. If B0 = 1G, A outputs 0 in step 3a and succeeds in the 1-DL game; below we assume
u ̸= 0. Since Bj = A

Pj(x⃗)
−1 (see step 3a) we have u = P0(x⃗)/P−1(x⃗) = P1(x⃗)/P0(x⃗), so S(x⃗) = 0

(P−1(x⃗), P0(x⃗) ̸= 0 since B−1 ̸= 1G and u ̸= 0).
If A enters step 3b, i.e., [S]ℓ = 0, then u = P0(x⃗)/P−1(x⃗) = [P0]ℓ(x⃗)/[P−1]ℓ(x⃗) = c, so A

succeeds.
If A enters step 3c, it may abort if L is linearly dependent or [S]Q+1 = 0; let these events be

D, E respectively. To show Pr[D ∨ E] is negligible, note

Pr[D ∨ E] = Pr[D] + Pr[E|¬D] Pr[¬D] ≤ Pr[D] + Pr[E|¬D]

so we bound Pr[D] and Pr[E|¬D]. Define Sj = {L∗
0, . . . , L∗

j}: Pr[D] is then given by applying
Lem. 3.5 to L;

Pr[dim(SQ) = Q + 1] = Pr[L∗
0 ̸= 0]

Q−1∏
j=0

Pr[L∗
j+1 ̸∈ Span(Sj) | dim(Sj) = j + 1].

The first item is 1 (since L∗
0 = 1 ̸= 0), and byM’s simulation of the discrete log oracle, dim(Sℓ−1) = ℓ,

so if ℓ = Q + 1 the product is 1. Otherwise we are left with

Q−1∏
j=ℓ−1

Pr[L∗
j+1 ̸∈ Span(Sj) | dim(Sj) = j + 1].

For the j-th term, if L∗
j+1 ∈ Span(Sj) there are coefficients {αj′}jj′=0 such that L∗

j+1 = ∑i
j′=0 αj′L∗

j′ .
Therefore there are pj+1 choices of {αj′}jj′=0 for L∗

j+1 ∈ Span(Sj) out of pQ+2 total choices. By linear
independence there are pj+1 choices of L∗

j+1 ∈ Span(Sj), so the j-th term is 1− pj+1

pQ+2 = 1− pj−Q−1;
then

Q−1∏
j=ℓ−1

Pr[L∗
j+1 ̸∈ Span(Sj) | dim(Sj) = j + 1] =

Q−1∏
j=ℓ−1

(1− pj−Q−1) =
Q−ℓ+2∏

j=2
(1− p−j) = 1− p−2 −O(p−3).

Next, we show Pr[¬E|¬D] with high probability. The probability [S]Q+1 ̸= 0 is minimized when
ℓ is the smallest, so it suffices to consider the case ℓ = 1. Let Et be the event that [S]t ̸= 0 but
[S]t+1 = 0 with 1 ≤ t ≤ Q; by assumption [S]1 = S ̸= 0 so E = ∪Q

t=1Et. Let Ut(X⃗) = L∗
t (X⃗)− r∗

t .
We now bound Pr[Et|¬D,∩t−1

i=1¬Ei]. Since ∩t−1
i=1¬Ei occurs we have [S]t ̸= 0. If Et also occurs then

[S]t ≡ 0 (mod ⟨[Ut]t⟩) so [Ut]t divides [S]t.

Lemma 6.5. For each choice of Ut, there are < 2pt−1 choices of U ′
t such that Ut ≡ U ′

t (mod It).

Proof. In the trivial case when t = 1 and I1 = {0} we must have U ′
t = Ut, and 1 < 2p1−1 = 2. We

now assume t > 1 so {L∗
i (X⃗)− r∗

i = 0}t−1
i=1 is nonempty: these equations can be written as

MX⃗ = c⃗ for some M ∈ F(t−1)×(Q+1)
p , c⃗ ∈ FQ+1

p .
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Write Ut(X⃗) = a⃗ · X⃗ + a, U ′
t(X⃗) = b⃗ · X⃗ + b for some a⃗, b⃗ ∈ FQ+1

p ; a, b ∈ Fp and define

x⃗0 =
{

0⃗, if c⃗ = 0⃗
x⃗, otherwise.

In either case Mx⃗0 = c⃗ so

{y⃗ ∈ FQ+1
p |My⃗ = c⃗} = x⃗0 + ker(M).

Since Ut ≡ U ′
t (mod It) we have Ut(x⃗0 + k⃗) = U ′

t(x⃗0 + k⃗) for any k⃗ ∈ ker(M). Plugging this in and
rearranging gives

(⃗a− b⃗) · (x⃗0 + k⃗) = b− a.

Since L is linearly independent, {L∗
i (X⃗)− r∗

i }
t−1
i=1 is as well, so dim(ker(M)) = Q + 2− t. We then

choose k⃗1, . . . , k⃗Q+2−t to be a basis of ker(M), obtaining Q + 3− t constraints on (⃗a− b⃗) as k⃗ ranges
over 0⃗, k⃗1, . . . , k⃗Q+2−t. To examine the linear independence of these constraints, suppose there is
α0, . . . , αQ+2−t such that

α0x⃗0 +
Q+2−t∑

i=1
αi(x⃗0 + k⃗i) = 0,

Q+2−t∑
i=0

αi(b− a) = 0

By the second equation, either ∑Q+2−t
i=0 αi = 0 or b = a. If b ̸= a, we haveQ+2−t∑

i=0
αi

 x⃗0 +
Q+2−t∑

i=1
αik⃗i = 0 (a)⇒

Q+2−t∑
i=1

αik⃗i = 0 (b)⇒ α1, . . . , αQ+2−t = 0 (a)⇒ α0 = 0

where (a) follows from ∑Q+2−t
i=0 αi = 0 and (b) follows from independence of {k⃗i}, so there are

Q + 3− t independent constraints. If b = a and ∑Q+2−t
i=0 αi = 0 the same logic holds, but if b = a

and ∑Q+2−t
i=0 αi ̸= 0,Q+2−t∑

i=0
αi

 x⃗0 = −
Q+2−t∑

i=1
αik⃗i ⇒ x⃗0 = −

Q+2−t∑
i=0

αi

−1Q+2−t∑
i=1

αik⃗i


which implies x⃗0 ∈ ker(M), so x⃗0 = 0⃗ by definition of x⃗0. In this case there are Q + 2− t linearly
independent constraints by the independence of {k⃗i}.
Consequently when b ≠ a, a⃗− b⃗ is contained in a (Q + 1)− (Q + 3− t) = (t− 2)-dimensional affine
subspace of FQ+1

p , and thus there are ≤ pt−2 possible choices for a⃗− b⃗. When b = a this subspace
has dimension ≤ t− 1, so there are ≤ pt−1 choices of a⃗− b⃗. All together, there are at most

(p− 1)pt−2 + pt−1 = pt−2(2p− 1) < 2pt−1

choices of U ′
t in total.

Since [S]t ̸= 0 and has degree at most 2, there are at most 2p choices of [Ut]t that will divide
[S]t (the two coprime linear factors of [S]t and all of their scalar multiples). By Lem. 6.5 there are
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< 2p(2pt−1) = 4pt possible choices for Ut such that [Ut]t divides [S]t. Since there are pQ+1 total
choices for Ut and the choice of Ut is independent of [S]t,

Pr[Et|¬D,∩t−1
i=1¬Ei] <

4pt

pQ+1 = 4p−(Q−t+1).

We then have

Pr[¬E|¬D] = Pr

 Q⋂
t=1
¬Et|¬D

 =
Q∏

t=1
Pr
[
¬Et|¬D,

t−1⋂
i=1
¬Ei

]
>

Q∏
t=1

1− 4p−(Q−t+1) =
Q∏

t=1
1− 4p−t = 1− 4p−1 −O(p−2).

Overall, the probability that A aborts in step 3c is at most

(p−2 + O(p−3)) + (4p−1 + O(p−2)) = 4p−1 + O(p−2).

Finally, if A does not abort in step 3c, then in step 3d 0 = S(x⃗) = [S]Q+1(xt) so xt is a root
of [S]Q+1. Therefore A will compute x⃗ and return u = P0(x⃗)/P−1(x⃗), i.e., A succeeds in the 1-DL
game. We conclude that A’s advantage is at least 1− 4p−1 −O(p−2).
Now suppose R simulates the 1-DL game to A incorrectly; either B−1 = 1G or dlogB−1(B0) ̸=
dlogB0(B1). If the former, M aborts in step 3a. If the latter, first we show M doesn’t hit step 3b.
Note that dlogB−1(B0) ̸= dlogB0(B1) is equivalent to S(x⃗) ̸= 0. Therefore 0 ̸= S(x⃗) = [S]ℓ(x⃗), so
[S]ℓ ̸= 0 and M doesn’t hit step 3b. Therefore either M aborts in step 3c, or M makes it to step
3d: in the latter case, the check on u′ will never pass so M aborts.

Regarding A’s runtime, in step 3c A makes up to Q + 1 queries to DL, each of which involves
Q + 2 exponentiations and Q + 1 multiplications; after that, in step 3d A checks consistency of
the answers, which involves 2 exponentiations. So the total number of group operations is up to
(Q + 1)[2(Q + 2)λ + Q + 1] + 2 · (2λ) = (2Q2 + 6Q + 4)λ + (Q + 1)2.

Remark 6.6. Asymptotic-wise, Thm. 6.1 is stronger than what’s needed for a separation result
for OMDL: a successful reduction should work for any PPT (Q + 1)-OMDL solver that succeeds
with non-negligible probability, while our result even rules out reductions that are much weaker, i.e.,
those that only work for PPT (Q + 1)-OMDL solvers whose success probability is overwhelming.
The same goes for Thm. 6.4.

7 Future Work
While our work covers all group-based one-more assumptions in the literature, there are some
potential future directions that remain unexplored. Bauer, Fuchsbauer, and Loss [BFP21] note it
appears unlikely that OMDL can be shown to be hard in the GGM via standard applications of the
Schwartz–Zippel lemma, the technique by which all other existing proofs of hardness in the GGM
proceed. Instead, they use a different proof technique, and suggest that this difference may be linked
to the result of [BFL20] that the hardness of Q-OMDL cannot be concluded from the hardness of
Q′-DL in the AGM (for any Q ≥ 0, Q′ ≥ 1). Our work lends additional credence to this intuition,
showing that Q-OMDL and Q-DL define infinite and incomparable hierarchies of problems in the
AGM. We believe an intriguing direction for future work is to explore to what extent results in the
AGM function as “meta-theorems” in the GGM. For example, is it possible to show that a problem
is part of the Q-DL hierarchy in the AGM if and only if it admits a “standard” proof of hardness in
the GGM? If so, how would this be formalized?
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A Proof of Lem. 5.4
In this section we prove Lem. 5.4. Lems. A.1 and A.2 are almost identical to [JKKX17, Lemma 1,Lemma 2]:
they are provided here with proof primarily for clarity of exposition, as we fix several typos and
other minor mistakes in the original proofs. On the other hand, Lem. A.3 is an additional technical
result of ours needed for the case t′ > 0.

Lemma A.1. Let u, n ∈ Z>0. Then there is no q⃗ = (q1, . . . , qn) ∈ Zn
≥0 such that

1. w ≥ Qu

2. qi ≤ Q for all 1 ≤ i ≤ n

for w = W (q⃗) and Q = Cu(q⃗) + 1.

Proof. Proof by induction on Q. If Q = 1 then Cu(q⃗) = 0 so there are at most u− 1 nonzero entries
of q. If Item 2 holds then w ≤ u− 1 so Item 1 cannot hold. Now we show if the claim is false for
Q it’s false for Q − 1. Suppose q⃗ is a counterexample to the claim with Q = Cu(q⃗) + 1. Then q⃗
has at most u− 1 entries ≥ Q: otherwise we’d have Cu(q⃗) ≥ Q by decreasing these entries Q times.
Let (q⃗)′ be q⃗ with the largest u entries decreased by 1, and w′ = W ((q⃗)′). By assumption w ≥ Qu
and qi ≤ Q, so w′ = w − u ≥ Qu− u = (Q− 1)u, q′

i ≤ Q− 1 and Cu((q⃗)′) = Q− 2 by construction.
Therefore (q⃗)′ is a counterexample for Q− 1.

Henceforth we assume the definitions in Sect. 5.2 of t′, t, n, q⃗, w, k⃗, {α(ℓ)
j } etc.

Lemma A.2. Let Q = Ct−t′+1(q⃗) + 1 and

m⃗j = k⃗j −
t∑

ℓ=t−t′+1
α

(ℓ)
j k⃗ℓ ∈ Fw

p .

Then for any w-dimensional vectors b⃗1, . . . , b⃗Q the set

V = {m⃗j ⊙ b⃗i}j∈{0,...,t−t′}
i∈[Q]

is linearly dependent over Fp.

Proof. Let M ∈ Fw×Q(t−t′+1)
p be the matrix whose columns are vectors in V : it is sufficient to show

rank(M) < Q(t − t′ + 1). For r ∈ [n] there are qr coordinates of k⃗ with entry r. Consider the
corresponding rows in M and denote this qr×Q(t− t′ + 1) submatrix as Mr. Note that the columns
of Mr are the vectorsrj −

t∑
ℓ=t−t′+1

α
(ℓ)
j rℓ

 [⃗bi] for j ∈ {0, . . . , t− t′}, i ∈ [Q]

where [⃗bi] is the vector b⃗i restricted to the rows of M with entry r. Therefore rank(Mr) ≤ Q: all
columns with i = i0 are multiples of [⃗bi0 ]. For any qr > Q we then select Q rows of Mr that span the
row space of Mr to form M′

r. For any qr ≤ Q set M′
r = Mr. Let q′

r be the number of rows of M′
r

(so q′
r ≤ Q) and let w′ = W ((q⃗)′). Now let M′ ∈ Fw′×Q(t−t′+1)

p be the concatenation of M′
1, . . . , M′

n.
By construction the row space of M′ equals the row space of M, so rank(M′) = rank(M).
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Additionally, Ct−t′+1((q⃗)′) = Ct−t′+1(q⃗) = Q− 1. To see this, by construction Ct−t′+1((q⃗)′) ≤ Q− 1.
On the other hand, take v⃗1, . . . , v⃗Q−1 ∈ Vt−t′+1 such that ∑Q−1

i=1 v⃗i ≤ q⃗. Each entry of ∑Q−1
i=1 v⃗i is at

most Q− 1 so ∑Q−1
i=1 v⃗i ≤ (q⃗)′ since (q⃗)′ is the vector q⃗ with entries > Q decreased to Q. Therefore

Ct−t′+1((q⃗)′) ≥ Q− 1.

By Lem. A.1 we have w′ < Q(t− t′ + 1) so rank(M) = rank(M′) ≤ w′ < Q(t− t′ + 1).

Recall from Sect. 5.2 that {f⃗u, f⃗u+1, . . . , f⃗u+t′−1} is linearly independent for any u ≥ 0, and

f⃗ j =
t∑

ℓ=t−t′+1
α

(ℓ)
j f⃗ ℓ for 0 ≤ j ≤ t− t′

Lemma A.3. Let 1 ≤ j ≤ λ ≤ t− t′. If t− t′ + 1 ≤ ℓ′ ≤ t− j then

α
(ℓ′)
λ−j = α

(ℓ′+j)
λ +

t−t′+j∑
ℓ=t−t′+1

α
(ℓ)
λ α

(ℓ′)
ℓ−j

and if t− j + 1 ≤ ℓ′ ≤ t then

α
(ℓ′)
λ−j =

t−t′+j∑
ℓ=t−t′+1

α
(ℓ)
λ α

(ℓ′)
ℓ−j

Proof. By the linear independence of {f⃗ (t−t′+j)+1, f⃗ (t−t′+j)+2, . . . , f⃗ t+j} it suffices to show
t∑

ℓ′=t−t′+1
α

(ℓ′)
λ−j f⃗ ℓ′+j =

t−j∑
ℓ′=t−t′+1

α
(ℓ′+j)
λ +

t−t′+j∑
ℓ=t−t′+1

α
(ℓ)
λ α

(ℓ′)
ℓ−j

 f⃗ ℓ′+j +
t∑

ℓ′=t−j+1

 t−t′+j∑
ℓ=t−t′+1

α
(ℓ)
λ α

(ℓ′)
ℓ−j

 f⃗ ℓ′+j

The left hand side equals
t∑

ℓ′=t−t′+1
α

(ℓ′)
λ−j f⃗ ℓ′+j = f⃗ j ⊙

t∑
ℓ′=t−t′+1

α
(ℓ′)
λ−j f⃗ ℓ′ = f⃗ j ⊙ f⃗λ−j = f⃗λ

The right hand side equals
t−j∑

ℓ′=t−t′+1
α

(ℓ′+j)
λ f⃗ ℓ′+j +

t−j∑
ℓ′=t−t′+1

 t−t′+j∑
ℓ=t−t′+1

α
(ℓ)
λ α

(ℓ′)
ℓ−j

 f⃗ ℓ′+j +
t∑

ℓ′=t−j+1

 t−t′+j∑
ℓ=t−t′+1

α
(ℓ)
λ α

(ℓ′)
ℓ−j

 f⃗ ℓ′+j

The first term of the right hand side equals
t−j∑

ℓ′=t−t′+1
α

(ℓ′+j)
λ f⃗ ℓ′+j =

t∑
ℓ′=t−t′+1+j

α
(ℓ′)
λ f⃗ ℓ′ = f⃗λ −

t−t′+j∑
ℓ′=t−t′+1

α
(ℓ′)
λ f⃗ ℓ′

The second and third terms are
t−t′+j∑

ℓ=t−t′+1

 t−j∑
ℓ′=t−t′+1

α
(ℓ)
λ α

(ℓ′)
ℓ−j f⃗ ℓ′+j +

t∑
ℓ′=t−j+1

α
(ℓ)
λ α

(ℓ′)
ℓ−j f⃗ ℓ′+j

 =

t−t′+j∑
ℓ=t−t′+1

 t∑
ℓ′=t−t′+1

α
(ℓ)
λ α

(ℓ′)
ℓ−j f⃗ ℓ′+j

 =
t−t′+j∑

ℓ=t−t′+1
α

(ℓ)
λ f⃗ j ⊙

 t∑
ℓ′=t−t′+1

α
(ℓ′)
ℓ−j f⃗ ℓ′

 =

t−t′+j∑
ℓ=t−t′+1

α
(ℓ)
λ f⃗ j ⊙ f⃗ ℓ−j =

t−t′+j∑
ℓ=t−t′+1

α
(ℓ)
λ f⃗ ℓ

so adding them together yields f⃗λ.
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We can now prove Lem. 5.4.

Proof. By contradiction. Let a⃗⊤
1 , . . . , a⃗⊤

Q be the rows of A and b⃗1, . . . , b⃗Q be the columns of B. The
conditions AM0B = I and AMjB = 0 for all j ∈ [t− t′] are equivalent to

a⃗⊤
i b⃗ =

{
1, if b⃗ = m⃗0 ⊙ b⃗i

0, if b⃗ ∈ V \ {m⃗0 ⊙ b⃗i}

This immediately implies m⃗0 ⊙ b⃗i ̸∈ Span(V \ {m⃗0 ⊙ b⃗i}). Unwrapping these equations further, the
first case gives

1 = a⃗⊤
i (m⃗0 ⊙ b⃗i) = a⃗⊤

i b⃗i −
t∑

ℓ=t−t′+1
α

(ℓ)
0 a⃗⊤

i (k⃗ℓ ⊙ b⃗i). (12)

For the second case, if 0 ≤ s ≤ t− t′, u ∈ [Q] such that (s, u) ̸= (0, i) then

0 = a⃗⊤
i (m⃗s ⊙ b⃗u) = a⃗⊤

i

k⃗s ⊙ b⃗u −
t∑

ℓ=t−t′+1
α(ℓ)

s (k⃗ℓ ⊙ b⃗u)

⇒

a⃗⊤
i (k⃗s ⊙ b⃗u) =

t∑
ℓ=t−t′+1

α(ℓ)
s a⃗⊤

i (k⃗ℓ ⊙ b⃗u) (13)

Claim: Let j ∈ [t− t′], i ∈ [Q]. Then

m⃗j ⊙ b⃗i ̸∈ Span(Vj,i)

where

Vj,i = {m⃗λ ⊙ b⃗γ |j ≤ λ ≤ t− t′, γ ∈ [Q], (λ, γ) ̸= (j, i)}

Proof of Claim: Suppose for the sake of contradiction there are coefficients δλ,γ such that

m⃗j ⊙ b⃗i =
∑

j≤λ≤t−t′,γ∈[Q]
(λ,γ)̸=(j,i)

δλ,γ(m⃗λ ⊙ b⃗γ)⇒

k⃗j ⊙ b⃗i −
t∑

ℓ=t−t′+1
α

(ℓ)
j (k⃗ℓ ⊙ b⃗i) =

∑
j≤λ≤t−t′,γ∈[Q]

(λ,γ) ̸=(j,i)

δλ,γ

k⃗λ ⊙ b⃗γ −
t∑

ℓ=t−t′+1
α

(ℓ)
λ (k⃗ℓ ⊙ b⃗γ)



Since k⃗ has no zero entries, we have

b⃗i −
t∑

ℓ=t−t′+1
α

(ℓ)
j (k⃗ℓ−j ⊙ b⃗i) =

∑
j≤λ≤t−t′,γ∈[Q]

(λ,γ) ̸=(j,i)

δλ,γ

k⃗λ−j ⊙ b⃗γ −
t∑

ℓ=t−t′+1
α

(ℓ)
λ (k⃗ℓ−j ⊙ b⃗γ)

 (14)

First we show

0 = a⃗⊤
i

k⃗λ−j ⊙ b⃗γ −
t∑

ℓ=t−t′+1
α

(ℓ)
λ (k⃗ℓ−j ⊙ b⃗γ)

 (15)
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= a⃗⊤
i (k⃗λ−j ⊙ b⃗γ)−

t−t′+j∑
ℓ=t−t′+1

α
(ℓ)
λ a⃗⊤

i (k⃗ℓ−j ⊙ b⃗γ)−
t∑

ℓ=t−t′+j+1
α

(ℓ)
λ a⃗⊤

i (k⃗ℓ−j ⊙ b⃗γ) (16)

Applying Equation (13) to the summands in the first two terms of (16) yields

t∑
ℓ′=t−t′+1

α
(ℓ′)
λ−j a⃗⊤

i (k⃗ℓ′ ⊙ b⃗γ)−
t−t′+j∑

ℓ=t−t′+1
α

(ℓ)
λ a⃗⊤

i

 t∑
ℓ′=t−t′+1

α
(ℓ′)
ℓ−j(k⃗ℓ′ ⊙ b⃗γ)

− t∑
ℓ=t−t′+j+1

α
(ℓ)
λ a⃗⊤

i (k⃗ℓ−j ⊙ b⃗γ) =

t∑
ℓ′=t−t′+1

a⃗⊤
i

α
(ℓ′)
λ−j −

t−t′+j∑
ℓ=t−t′+1

α
(ℓ)
λ α

(ℓ′)
ℓ−j

 (k⃗ℓ′ ⊙ b⃗γ)−
t∑

ℓ=t−t′+j+1
α

(ℓ)
λ a⃗⊤

i (k⃗ℓ−j ⊙ b⃗γ) =

t∑
ℓ′=t−t′+1

α
(ℓ′)
λ−j −

t−t′+j∑
ℓ=t−t′+1

α
(ℓ)
λ α

(ℓ′)
ℓ−j

 a⃗⊤
i (k⃗ℓ′ ⊙ b⃗γ)−

t−j∑
ℓ′=t−t′+1

α
(ℓ′+j)
λ a⃗⊤

i (k⃗ℓ′ ⊙ b⃗γ)

By Lem. A.3 the coefficients in this sum vanish, so the entire sum is zero and Equation (15) holds.
Next we show

1 = a⃗⊤
i b⃗i −

t∑
ℓ=t−t′+1

α
(ℓ)
j a⃗⊤

i (k⃗ℓ−j ⊙ b⃗i) (17)

Again by Equation (13)

t∑
ℓ=t−t′+1

α
(ℓ)
j a⃗⊤

i (k⃗ℓ−j ⊙ b⃗i) =
t−t′+j∑

ℓ=t−t′+1
α

(ℓ)
j a⃗⊤

i

 t∑
ℓ′=t−t′+1

α
(ℓ′)
ℓ−j(k⃗ℓ′ ⊙ b⃗i)

+
t∑

ℓ=t−t′+j+1
α

(ℓ)
j a⃗⊤

i (k⃗ℓ−j ⊙ b⃗i)

By Equation (12)

a⃗⊤
i b⃗i = 1 +

t∑
ℓ′=t−t′+1

α
(ℓ′)
0 a⃗⊤

i (k⃗ℓ′ ⊙ b⃗i)

Together we have

a⃗⊤
i b⃗i −

t∑
ℓ=t−t′+1

α
(ℓ)
j a⃗⊤

i (k⃗ℓ−j ⊙ b⃗i) =

1 +
t∑

ℓ′=t−t′+1
α

(ℓ′)
0 a⃗⊤

i (k⃗ℓ′ ⊙ b⃗i)−
t−t′+j∑

ℓ=t−t′+1
α

(ℓ)
j a⃗⊤

i

 t∑
ℓ′=t−t′+1

α
(ℓ′)
ℓ−j(k⃗ℓ′ ⊙ b⃗i)

− t∑
ℓ=t−t′+j+1

α
(ℓ)
j a⃗⊤

i (k⃗ℓ−j ⊙ b⃗i) =

1 +
t∑

ℓ′=t−t′+1

α
(ℓ′)
0 −

t−t′+j∑
ℓ=t−t′+1

α
(ℓ)
j α

(ℓ′)
ℓ−j

 a⃗⊤
i (k⃗ℓ′ ⊙ b⃗i)−

t−j∑
ℓ′=t−t′+1

α
(ℓ′+j)
j a⃗⊤

i (k⃗ℓ′ ⊙ b⃗i)

By Lem. A.3 (set λ = j) the coefficients in this sum vanish, so the entire expression equals 1 and
Equation (17) holds. We now return to Equation (14): multiplying both sides by a⃗⊤

i and using
Equations (15) and (17) we arrive at 1 = 0, a contradiction.

We now prove the Lemma. By Lem. A.2, V is linearly dependent, so we have δi,j ∈ Fp not
all zero such that

t−t′∑
j=0

Q∑
i=1

δi,j(m⃗j ⊙ b⃗i) = 0.
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If a coefficient δi,0 is nonzero then m⃗0 ⊙ b⃗i ∈ Span(V \ {m⃗0 ⊙ b⃗i}), a contradiction. Therefore

t−t′∑
j=1

Q∑
i=1

δi,j(m⃗j ⊙ b⃗i) = 0.

By the Claim we also have δi,1 = 0, δi,2 = 0, . . . , δi,t−t′ = 0, and we arrive at a contradiction.
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