
Truncation Untangled: Scaling Fixed-Point Arithmetic for Privacy-Preserving
Machine Learning to Large Models and Datasets

Christopher Harth-Kitzerow
Technical University of Munich, BMW Group

christopher.harth-kitzerow@tum.de

Georg Carle
Technical University of Munich

carle@net.in.tum.de

Abstract
Fixed point arithmetic (FPA) is essential to enable practical
Privacy-Preserving Machine Learning. When multiplying two
fixed-point numbers, truncation is required to ensure that the
product maintains correct precision. While multiple trunca-
tion schemes based on Secure Multiparty Computation (MPC)
have been proposed, which of the different schemes offers the
best trade-off between accuracy and efficiency on common
PPML datasets and models has remained underexplored.

In this work, we study several different stochastic and exact
truncation approaches found in the MPC literature that require
different slack sizes, i.e. additional bits required by each se-
cret share to ensure correctness. We provide novel, improved
construction for each truncation approach in the semi-honest
3-PC and malicious 4-PC settings which reduce communi-
cation and round complexity up to three times. Moreover,
we propose a truncation scheme that does not introduce any
communication overhead in the online phase and matches the
accuracy of plaintext PyTorch inference of VGG-16 on the
ImageNet dataset with over 80% accuracy using shares with
a bitlength of only 32. This is the first time that high PPML
accuracy is demonstrated on ImageNet.

1 Introduction

Privacy-Preserving Machine Learning (PPML) [23] aims to
enable the training and inference of Machine Learning mod-
els while keeping model parameters and data private using
cryptographic techniques. Secure Multiparty Computation
(MPC) [19] is a key technology to enable PPML. MPC allows
multiple parties to jointly compute a function on their private
inputs without revealing any information about the inputs to
the other parties. While private training of state-of-the-art
neural network models is still out of reach given the perfor-
mance overhead of MPC, private inference is already practical
for many models and datasets: The PIGEON PPML frame-
work [10] recently demonstrated that private inference of
various sate-of-the-art convolutional neural networks (CNNs)

on the popular CIFAR-10 image classification dataset [17]
achieves throughputs of more than 100 images per second.
These performance improvements enable for the first time to
systematically study a wide range of different MPC-specific
configurations and their impact on the performance and accu-
racy of large CNN models such as VGG-16 [28] and various
ResNet architectures [11].

One aspect that helped PPML achieve practical perfor-
mance is the use of fixed point arithmetic (FPA). FPA allows
parties to perform computation using integer-only arithmetic,
which is significantly more efficient in MPC than floating
point arithmetic [14]. A downside of fixed point arithmetic is
that the resulting accuracy may not be equivalent to plaintext
floating point inference. Therefore, it is crucial to carefully
choose the fixed point precision and bit width of numbers to
minimize accuracy loss.

In FPA, real numbers are represented by ℓ-bit integers
where k bits are used for the fractional part and ℓ− k bits
are used for the integer part. The product of two fixed point
numbers results in 2k fractional bits and ℓ− 2k of integer
bits. In order to prevent overflow and maintain the correct
precision, the number of fractional bits must be reduced back
to k bits by performing an arithmetic right shift. This process
is called truncation. While truncating a number is trivial in
plaintext, it is a non-trivial cryptographic primitive in MPC.

Over the last years, several different truncation approaches
have been proposed [6,8,21,22]. Exact truncation approaches
[8] are independent of the value or randomness of a secret
share and are equivalent to an arithmetic right shift in the
plaintext domain. Stochastic truncation approaches [6,21,22],
on the other hand, are biased toward the nearest truncated
value and may differ by one bit from the plaintext trunca-
tion. While there are highly efficient stochastic truncation
schemes [21, 22], they can cause truncation failure with a
high probability, i.e. the result of the truncation can be signifi-
cantly different from the expected value. The probability of
truncation failure can be reduced by either increasing the ring
size of the MPC protocols or by using more expensive stochas-
tic truncation schemes that only require a slack of one bit [6].
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Similarly, exact truncation schemes may require a slack of
one bit or no slack at all, depending on the specific protocol
used [7, 8]. Primitives that reduce slack size are typically less
efficient in terms of communication complexity. However, the
reduced slack may allow using smaller ring sizes for the entire
forward pass, which in turn can reduce the communication
and computational complexity of the entire computation.

Contributions The tradeoffs of utilizing one truncation
scheme over another such as different ring sizes and proba-
bilities of truncation failures, have not been systematically
studied in the context of PPML inference. Additionally, ex-
isting truncation schemes often introduce a high overhead in
both total communication complexity and round complexity,
which throttles the performance of PPML inference.

Our contributions are two-fold: First, we propose the fol-
lowing novel techniques to reduce the communication over-
head and required slack-size of various truncation schemes in
the context of PPML in general.

• We provide efficient constructions for several truncation
approaches in the semi-honest 3-PC and malicious 4-PC
settings based on the Trio and Quad MPC protocols [9].
Our primitives reduce the communication overhead of
these truncation schemes compared to previous work.
Table 1 provides an overview of the communication
complexity of our truncation primitives compared to the
state-of-the-art, with improvements of up to 3 times. Our
constructions are described in §4.

• The focus on PPML allows us to exploit the typical struc-
ture of neural networks and fuse truncation primitives
with the evaluation of other layers. This further reduces
or even eliminates the communication overhead of trun-
cation. Our PPML-specific optimizations are described
in §5, while an overview is again provided in Table 1.

• We also propose several tweaks that reduce the required
slack size when using truncation in the context of PPML.
For instance, public denominators in average pooling can
often be expressed with fewer fractional bits while guar-
anteeing equivalent precision which reduces the proba-
bility of truncation failure.

• Based on these tweaks we propose a novel truncation
approach that utilizes different truncation strategies for
different layers of a neural network. Our approach does
not introduce any communication overhead in the online
phase and matches the accuracy of plaintext VGG-16 in-
ference on the ImageNet dataset with over 80% accuracy
using shares with a bitlength of only 32.

Second, we conduct a large-scale systematic evaluation of
several truncation schemes, ring sizes, neural network archi-
tectures, and datasets to provide clear guidelines on how to
choose the right truncation scheme while focusing solely on
PPML inference.

• We implement all studied truncation primitives into the
open-source HPMPC [9] MPC framework and evaluate
the runtime and accuracy of these truncation approaches
for different ring sizes and neural network architectures
based on various benchmark datasets. For the first, time
we also evaluate PPML inference accuracy on the Im-
ageNet dataset [26] and thus answer the long-standing
question of whether fixed-point MPC can scale to large-
scale models and datasets [23]. Our accuracy-related
results are presented in §7.

• We also study which choices in plaintext training lead to
a reduced probability of truncation failure in PPML in-
ference. We find that training models with the ADAMW
[20] optimizer benefits stochastic truncation due to its
weight decay mechanism.

Given our extensive evaluation, we provide end-to-end guide-
lines on regularization techniques to consider for plaintext
training, which ring size and fractional bitlength to use for
inference, and which truncation approach offers the best trade-
off between communication complexity and accuracy.

Table 1: Communication complexity of truncating a share
by t bits

Primitive Scheme PRE ON Rounds

Stochastic
Truncation,
Large Slack

ABY3 [21] 0 ℓ 1
Ours (3PC) ℓ 0 0
Ours (3PC)p 0 0 0
Tetrad [16] ℓ ℓ 0c

Ours (4PC) ℓ ℓ 0c

Tetrad [16]p 0 0 0
Ours (4PC)p 0 0 0

Stochastic
Truncation,
1-bit Slack

Dalskov [6] 0 8ℓ 3
Ours (3PC) 3ℓ 2ℓ 1
Ours (3PC)p 3ℓ 0 0
Fantastic [7] 0 12ℓ 3
Ours (4PC) 4ℓ 4ℓ 1
Ours (4PC)p 6ℓ 0 0

Ecact
Truncation,
1-bit Slack

Escudero [8] 2Aℓ,t 2Aℓ,t 2Aℓ

Ours (3PC) Aℓ,t Aℓ,t Aℓ

Ours (3PC)p At At 0
Fantastic [7] 3Aℓ,t 3Aℓ,t 2Aℓ

Ours (4PC) Aℓ,t Aℓ,t Aℓ

Ours (4PC)p At At 0

Trunc. prior
to Mult.d

Bicoptor 2.0 [31] 2T 2T T
Ours T T T

Costs are measured in ring elements (ℓ), ℓ-bit and t bit ex-
traction circuits (Aℓ,t ), or truncation primitives (T).

c Constant-round online communication [9].
p Optimized construction when fusing truncation with certain

PPML layers such as ReLU or BatchNorm.
d Tweak to truncate two shares prior to multiplication to reduce

the probability of truncation failure.
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2 Related Work

We focus on truncation primitives for MPC protocols com-
puting over the ring Z2ℓ with ring sizes ℓ ∈ {16,32,64} bits
as computation over these rings can be expressed with native
integer operations on modern hardware. While truncation is
straightforward for protocols computing over fields due to the
availability of division, field-based protocols introduce signif-
icant real-world overhead due to the lack of native hardware
support for field operations.

While several works proposed efficient ring-based trunca-
tion techniques, the comparison of these techniques is lacking
with a few exceptions. Piranha [30] analyzed the impact of
different numbers of fractional bits on the PPML inference
accuracy and recommends a ring size of 64 bits and 26 bits
representing the fractional part when using stochastic trunca-
tion based on ABY3 [21]. However, Bicoptor 2.0 [31] found
that Piranha did not sample random values for their experi-
ments which hides the impact of truncation failure. Bicoptor
2.0 [31] thus found in their experiments that 15 bits for the
fractional part are appropriate for the ring size of 64 bits to
avoid truncation failure which matches the results of Koti et
al. [15] who use 13 bits for the fractional part for a ring size
of 64 bits. Fantastic Four [7] is the only work that empirically
compared two different truncation schemes. When comparing
their stochastic truncation scheme requiring only one bit of
slack to the stochastic truncation scheme based on ABY3 [21]
requiring a large slack, they found that their scheme is two
times more efficient on a ring size of 64 bit than the stochas-
tic truncation scheme on 80 bit. The overhead, however, was
mostly attributed to the computational inefficiency of perform-
ing 80-bit computations on 64-bit hardware. Thus it is left to
examine whether such a large ring size is indeed necessary for
the stochastic truncation when considering that prior works
achieved high accuracy with a ring size of 64 bits for various
neural network architectures using the truncation schemes
based on ABY3 [21] and SecureML [22].

Bicoptor 2.0 also showed that truncating two factors before
multiplication rather than truncating the product after multi-
plication can reduce the probability of truncation failure. As
a downside, their construction requires the parties to perform
two truncations for each multiplication instead of one.

Stochastic Truncation SecureML [22] proposed the first
stochastic truncation protocol in the 2PC setting. ABY3 [21]
picked up on their construction and proposed a stochastic
truncation protocol in the more efficient semi-honest 3PC
setting. Since then, several stochastic truncation primitives
have been proposed in the 3PC [9, 25] and the malicious
4PC settings [5, 7, 9, 15, 16] based on these two prior works.
ABY3 [21] and Trident [5] first proposed fusing the multi-
plication with the truncation primitive in the 3PC and 4PC
settings respectively to reduce the communication overhead
of truncation. This idea was picked up by Tetrad [16], Trio,

and Quad [9] to integrate stochastic truncation into the multi-
plication protocol at no additional communication cost in the
3PC and 4PC settings. Truncating a share after multiplication
with a public fixed-point value, however, still requires parties
to communicate in these protocols.

The probability of truncation failure when using stochastic
truncation schemes based on ABY3 [21] and SecureML [22]
increases proportionally to the closeness of the absolute plain-
text value to the ring size 2ℓ [31]. For this reason, frameworks
that utilize these truncation schemes typically increase the
ring size to reduce the probability of truncation failure. This
overhead in ring size is referred to as a “slack”.

Security of Stochastic Truncation Li et al. [18] raised con-
cerns about stochastic truncation schemes being inherently
insecure using standard security requirements of MPC proto-
cols [3] as the output of the truncation function depends on
the same randomness that already masks the input share. This
finding motivated Orca [12] to propose a stochastic truncation
scheme that does not rely on the same randomness as the
input share. However, Santos et al. [27] showed that by us-
ing an alternative ideal functionality for stochastic truncation,
all earlier covered truncation schemes can be in fact proven
secure.

Stochastic Truncation with Reduced Slack Dalskov et
al. [6] proposed a stochastic truncation scheme that requires
no slack but their scheme only guarantees correct results if
the plaintext value is not negative. They provide an efficient
construction for their truncation scheme in the semi-honest
3PC setting. Fantastic Four [7] extended their protocol to the
malicious 4PC setting. To enable Dalskov et al.’s truncation
scheme for both negative and positive values, Escudero et
al. [8] introduced a simple trick that requires a slack of 1 bit.

Exact Truncation Exact truncation schemes typically re-
quire share conversion from the arithmetic to the boolean
domain, and vice versa. While they can be implemented
without requiring any slack, the communication overhead
of share conversion is significant due to the necessity of
computing a boolean circuit for sign bit extraction or the
addition of decomposed shares. Boolean adders can be im-
plemented using Ripple Carry Adders (RCAs), or Parallel
Prefix Adders (PPAs) [21] using either regular AND gates,
multi-input AND gates [24], or multi-input scalar products [2].
These approaches have different tradeoffs in terms of commu-
nications rounds and number of messages exchanged but each
circuit requires at least O(log(ℓ)) communication rounds and
O(ℓ) messages exchanged.

Exact Truncation with Slack Escudero et al. [8] proposed
a generic exact truncation primitive that requires computing
two bit extraction circuits sequentially and requires a slack of
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1 bit. Fantastic Four [7] proposed an exact truncation primitive
with 1 bit of slack in the 4PC setting that utilizes local share
splitting and requires computing only one most-significant bit
extraction circuit and one t-least-significant bit extraction cir-
cuit in parallel, thus achieving fewer communication rounds.
However, the sharing semantics of Fantastic Four require the
parties to compute each adder on four inputs which in turn
increases both the number of communication rounds and the
number of messages exchanged.

3 Preliminaries

In this section, we provide the preliminaries, including trunca-
tion notations and sharing semantics. We build our truncation
primitives on top of the semi-honest Trio 3PC protocol and
the maliciously secure Quad protocol in the honest majority
setting [9]. As these protocols use similar sharing seman-
tics as ABY2 [24], Astra [4], and Tetrad [16], our truncation
primitives can be adapted to these protocols as well.

Notations We use P to denote the set of parties and Pi to
denote the ith party. PΦ denotes a subset of P consisting of
parties in the set Φ. For instance, PΦ or simply Pi, j indicates
the set of parties Φ = {Pi,Pj}. Similarly, xΦ or simply xi, j
denote a value possessed by all parties in Φ = {Pi,Pj}.

Truncation of a value x by t-bits is denoted by xt = ⌊ x
2t ⌋.

We denote the exact truncation of x as (x)t and stochastic trun-
cation as (x)st . We refer to a stochastic and exact truncation
scheme requiring a slack of s as T S{s} and T E{s} , respec-
tively. Further, we denote by T S{L} a truncation scheme that
requires a large slack that is not further specified. Finally, we
denote by T S{Mix} our truncation strategy that utilizes differ-
ent stochastic truncation approaches throughout the network.

Sharing Schemes We use different sharing schemes
throughout this work, and their overview is provided below.

1. [·]-sharing: A value x ∈ Z2ℓ is [·]-shared among PΦ, if
each Pi ∈ PΦ holds xi such that ∑i xi = x.

2. J·K-sharing: A value x ∈ Z2ℓ is J·K-shared among PΦ, if
parties in PΦ hold mx and [λx] such that mx = x+λx.

3. ⟨·⟩-sharing: To denote a generic secret share of x ∈ Z2ℓ

without specifying its sharing semantics, we use ⟨x⟩.

Primitives in this work that are based on J·K-sharing are con-
structed specifically for the Trio and Quad protocols, while
primitives in this work that are based on ⟨·⟩-sharing can be
implemented with any linear secret sharing scheme and are
not tied to the Trio and Quad protocols. Additionally, ⟨·⟩B rep-
resents Boolean sharing, where addition and multiplication
are replaced by XOR and AND gates, respectively. Similarly,
⟨·⟩A denotes arithmetic sharing. The superscript is omitted
when the type of sharing is clear from the context.

Table 2: Sharing semantic for 3PC and 4PC protocols

Party Trio (3PC) Quad (4PC)

Sharing
Semantics

JxK

P0 λ1
x ,λ

2
x m∗x ,λ

1
x ,λ

2
x

P1 mx,2,λ
1
x mx,λ

∗
x ,λ

1
x

P2 mx,1,λ
2
x mx,λ

∗
x ,λ

2
x

P3 - λ∗x ,λ
1
x ,λ

2
x

Correlation
mx,1 = x+λ1

x λx = λ1
x +λ2

x
mx,2 = x+λ2

x mx = x+λx
m∗x = x+λ∗x

Table 2 summarizes the sharing semantics for Trio
and Quad protocols. We refer to shares of λx as input-
independent shares, and mx as input-dependent shares. All
input-independent shares are generated non-interactively in
the preprocessing phase, while computing input-dependent
shares may require interaction between parties. Some shares
in Quad only serve the purpose of verification and are only
required by the end of the protocol. For instance, all communi-
cation tied to m∗x is considered constant-round communication
that does not affect the round complexity of the online phase.
For further details, we refer readers to [9].

Functionalities Our primitives utilize cryptographically se-
cure implementations of the FSRNG functionality, which al-
lows a subset of parties PΦ to generate fresh random values
without interaction. Random values are generated with the
help of a pseudorandom function (PRF). The protocol as-
sumes a shared-key setup (Fsetup) is established at the begin-
ning, which is the case with most existing protocols [1, 5, 7].
To achieve malicious security in Quad, each party needs to
verify the correctness of the messages it receives. To enable
this, the parties have access to a Compare-View functionality,
similar to the joint-message passing in SWIFT [15] and the
jsnd primitive in Tetrad [16]. We refer readers to [9] for the
formal descriptions of Compare-View (ΠCV) and sampling
shared random values (ΠSRNG).

4 Truncation Approaches

In this section, we introduce the different truncation ap-
proaches that we investigate in this work along with efficient
constructions for each truncation approach in Trio and Quad.

4.1 Truncation-Related Primitives
To construct efficient truncation protocols, we first observe
that existing truncation schemes often benefit from parties
holding a

(2
2

)
additive sharing ([·]-sharings), i.e. a subset of

parties holds x1 and a disjoint subset of parties holds x2 with
x = x1 + x2. Parties can use this sharing to first locally com-
pute modulus or truncation operations on x1 and x2 respec-
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tively, second re-share the modified values, and third aggre-
gate the modified values.

The Trio and Quad MPC protocols [9] are especially suit-
able for this routine as a subset of parties can locally obtain
−λx and a disjoint subset of parties can locally obtain mx
with x = (−λx)+mx. To also enable efficient re-sharing we
introduce the subset-sharing primitives that allow Pλx

, i.e. the
subset of parties that can locally obtain λx, and Pmx , i.e. the
subset of parties that can locally obtain mx to share local
values with the parties of the other subset.

Figures 1,2 and 3, 4 show the subset-sharing primitives
for the 3-PC and 4-PC settings respectively. The primitives
minimize the communication overhead of secret sharing by
exploiting that some shares can be locally obtained using
ΠSRNG while other shares can be set to 0. The 4PC primitives
utilize the verify-send technique introduced by SWIFT [15]
where out of two parties holding a message, one party sends
the message to the recipient while the other parties verify the
message with the recipient using ΠCV. The honest majority
assumption ensures that the recipient receives the correct
message or aborts the protocol. Further, the 4PC protocols
utilize that m∗x is only required by P0 at the end of the protocol
and therefore related online communication does not add
to the round complexity of the protocol. Table 3 shows the
communication complexity of our subset-sharing primitives.

Preprocessing:

1. P0 samples λ1
x with P1 using ΠSRNG.

2. P0 computes λ2
x =−λ1

x − x and sends λ2
x to P2.

Online:
P1,2 set their input-dependent shares to 0.

Protocol ΠSH3PC
(x,P0)→ JxK

Figure 1: 3PC Subset-Sharing by Pλx

Preprocessing:

All parties set their input-independent shares to 0.

Online:
P1,2 set their input-dependent shares to x.

Protocol ΠSH3PC
(x,P1,2)→ JxK

Figure 2: 3PC Subset-Sharing by Pmx

Preprocessing:

1. P0,3 samples λ1
x with P1 using ΠSRNG.

2. P0,3 computes λ2
x =−λ1

x − x and verify-sends λ2
x to P2.

3. P1,2,3 set λ∗x to 0.

Online:

Protocol ΠSH4PC
(x,P0,3)→ JxK

P0 sets m∗x to x while P1,2 set mx to 0.

Figure 3: 4PC Subset-Sharing by Pλx

Preprocessing:

1. P1,2,3 sample λ∗x using ΠSRNG.
2. The parties set all remaining input-independent shares to 0.

Online:

1. P1,2 set their input-dependent share mx = x.
2. P1,2 verify-send m∗x = x+λ∗x to P0 as part of constant-round

communication.

Protocol ΠSH4PC
(x,P1,2)→ JxK

Figure 4: 4PC Subset-Sharing by Pmx

Table 3: Communication complexity of Subset-Sharing
primitives

Setting Subset holding x PRE ON Rounds

3PC Pλx
= P0 ℓ 0 0

Pmx = P1,2 0 0 0

4PC Pλx
= P0,3 ℓ 0 0

Pmx = P1,2 0 ℓ 0

4.2 Stochastic Truncation
Stochastic truncation is the most widely used truncation
approach in the MPC literature. It was first introduced by
SecureML [22], later picked up by ABY3 [21], and has
since been used in many state-of-the-art MPC frameworks
[9, 13, 29, 30]. Stochastic truncation primitives based on
these works assume that P can create an additive sharing
[x] = x1 + x2 from their established sharing ⟨x⟩ such that a
subset of parties holds x1 and a subset of parties holds x2.
The sets of parties then locally compute

(
x1
)t and

(
x2
)t re-

spectively. P can then re-share and add the truncated values
to obtain ⟨(x)st⟩ = ⟨

(
x1
)t⟩+ ⟨

(
x2
)t⟩. Figure 5 shows a gen-

eral procedure for probabilistic truncation. This approach of
stochastic truncation is referred to as T S{L} in this work.

1. Create a
(2

2
)
[·]-sharing of ⟨x⟩ denoted by [x] = x1 + x2.

2. Compute
(
x1)t and

(
x2)t using local truncation and create a

⟨·⟩-sharing of the two values.

3. Output ⟨
(
x1)t⟩+ ⟨(x2)t⟩.

Protocol ΠTS{L} (⟨x⟩)→ ⟨(x)
st⟩

Figure 5: T S{L} : Stochastic Truncation requiring a large
slack [22]

T S{L} suffers from a small one-off error (e0) and with a
certain probability a large error (e1) that causes truncation
failure. The one-off error e0 causes the truncated value to
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be one bit larger or smaller than the corresponding truncated
plaintext value. The large error e1 causes the truncated value
to differ significantly from the expected value. To illustrate
the impact of e1, we borrow an example from [31]:

JxK = 0100 1011, ℓ= 8, t = 4
λx = 1110 0000

mx = x+λx mod 28 = 0010 1011,

(JxK)st

= (mx)
t mod 28− (λx)

t mod 28) mod 28

= (0000 0010−0000 1110) mod 28 = 1111 0100

The actual result of probabilistic truncation in this example is
1111 0100 while truncating plaintext x results in 0000 0100.

This error can be quite devastating to the accuracy of ML
applications. The e1 error is sometimes referred to as a wrap-
around error as a carry bit is falsely propagated through the
truncated values hence causing the large error. The closer the
actual value x is to the ring modulus ℓ, the higher the proba-
bility that T S{L} truncation produces truncation failure due to
a falsely propagated carry bit. More precisely assuming two’s
complement representation and x ∈ [0,2ℓx)

⋃
(2ℓ−2ℓx ,2ℓ) in

Z2ℓ , the probability of truncation failure as analyzed by [31]
is given by:

P =
1

2ℓ−ℓx−1

For this purpose, state-of-the-art frameworks utilize a
“slack”. The slack increases the utilized ring size ℓ in or-
der to reduce the probability of this type of error. As a result,
an application might have to use a ring size of Z264 in settings
where all inputs fit within the ring Z232 without overflow.

Stochastic Truncation in Trio and Quad Figure 6 shows
our construction of T S{L} in Trio and Quad. Observe that
the parties in Trio can locally create an additive secret shar-
ing [x] using their established sharing as P1,2 can locally
compute mx = mx,1 + λ2

x = mx,2 + λ1
x and P0 can compute

−λx =−(λ1
x +λ2

x). Similarly, the parties in Quad can locally
create an additive sharing as P1,2 hold mx = x+λx and P0,3
hold λx. The parties can use this insight to locally truncate
their shares of x and re-share the truncated values using the
subset-sharing primitives.

1. Pλx
locally computes

(
x1)t = (−λx)

t followed by

ΠSH(Pλx
,
(
x1)t).

2. Pmx locally computes
(
x2)t = (mx)

t followed by
ΠSH(Pmx ,

(
x2)t).

3. Output J
(
x1)tK+ J

(
x2)tK.

Protocol ΠTS{L} (JxK→ J(x)stK

Figure 6: T S{L} in Trio and Quad

4.3 Stochastic Truncation with Reduced Slack
Stochastic truncation with reduced slack (c.f. Figure 7) was
first proposed by Dalskov et al. [6]. This type of stochastic
truncation also introduces an e0 error but no e1 error. How-
ever, this truncation scheme only guarantees correct results if
the most significant bit of x is 0. Escudero et al. [8] overcame
this limitation by adding 2ℓ−1 prior to truncation and subtract-
ing 2ℓ−t−1 after truncation. This trick ensures that the most
significant bit of x is 0 but introduces a slack of 1 bit to ensure
correctness. We refer to this type of truncation as T S{1} .

1. Add 2ℓ−1 to ⟨x⟩ to ensure MSB(x) = 0.
2. Generate ℓ random shared bits ⟨ri⟩B and compute
⟨r⟩A← ∑i⟨ri⟩ ·2i.

3. Open c← ⟨x⟩+ ⟨r⟩ and compute c′← ((c)t) mod 2ℓ−t−1.
4. Compute ⟨b⟩ ← ⟨rℓ−1⟩⊕MSB(c).
5. Compute ⟨y⟩= c′−∑

ℓ−2
i=t ⟨ri⟩ ·2i−t + ⟨b⟩ ·2ℓ−t−1

6. Output ⟨y⟩−2ℓ−t−1.

Protocol ΠTS{1} (⟨x⟩)→ ⟨(x)
st⟩

Figure 7: T S{1} : Stochastic Truncation requiring a slack of 1
bit [6]

The intuition of T S{1} is that parties generate a new mask
for x using ⟨r⟩ and replace the old mask of x with the
new mask r by opening ⟨x⟩ + ⟨r⟩ in step 2. By calculating
c′← ((c)t) mod 2ℓ−t−1, the parties truncate the value c to the
desired number of fractional bits t but discard the t most sig-
nificant bits of c. Note that these most significant bits could be
affected by truncation failure when relying on T S{L} . Steps
3-4 exploit that parties also hold a bit decomposition of mask
⟨r⟩ in order to recover the t most significant bits of c′ in a
deterministic way. While Dalskov et al. [6] and Fantastic
Four [7] provide tailor-made constructions for the 3PC and
4PC settings respectively, we show how to construct the slack-
free truncation protocol in Trio and Quad with three times
lower round complexity and up to four times lower online
complexity by utilizing the subset-sharing primitives.

Stochastic Truncation with Reduced Slack in Trio and
Quad Figure 8 shows our construction of T S{1} in Trio and
Quad. To implement T S{1} , we exploit that Pmx can locally
define c = mx while Pλx

can locally define r = λx. This ob-
servation allows parties to skip all communication-related
operations in steps 1 and 2 of Figure 7 including generating
doubly authenticated bits JrK and even opening the value c.
Additionally, parties can locally precompute some operations
such as r′ = ∑

ℓ−2
i=t λi ·2i−t and c′ = (mx)

t mod 2ℓ−t−1 to avoid
computing these expressions jointly. Finally, parties use our
efficient subset-sharing primitives to re-share the locally mod-
ified shares and compute the final result analogous to the orig-
inal protocol. The XOR operation in step 4 can be evaluated
in the arithmetic domain by computing a⊕b = a+b−2ab.
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1. Add 2ℓ−1 to JxK to ensure MSB(x) = 0.
2. Pλx

locally compute r′ = ∑
ℓ−2
i=t λx,i · 2i−t and rℓ−1 =

MSB(λx).
3. Pmx locally compute c′ = (mx)

t mod 2ℓ−t−1 and MSB(c) =
MSB(mx).

4. Create J·KA-sharings Jr′K,Jrℓ−1K,Jc′K,JMSB(c)K using ΠSH.
5. Compute JbKA = Jrℓ−1KA⊕ JMSB(c)KA.
6. Compute JyK = Jc′K− Jr′K+ JbK ·2ℓ−t−1.
7. Output JyK−2ℓ−t−1.

Protocol ΠTS−1(JxK)→ (JxK)st

Figure 8: T S{1} in Trio and Quad

4.4 Exact Truncation
Exact Truncation computes (x)t deterministically without
causing an e0 or e1 error. Figure 9 shows a general procedure
for exact truncation without requiring any slack which we
refer to as T E{0} . The protocol first converts the arithmetic
sharing ⟨x⟩A to a boolean sharing ⟨x⟩B using arithmetic-to-
binary conversion (ΠA2B). In the boolean domain, parties can
locally perform an arithmetic right shift by shifting all bits of
their shares t positions to the right and setting all t vacated bits
to the value of the original sign bit. The parties then convert
the boolean sharing of (x)t back to an arithmetic sharing using
binary-to-arithmetic conversion (ΠB2A). Protocols ΠA2B and
ΠB2A require evaluating a boolean addition circuit which can
be implemented using one of the variants described in §2.

1. Use ΠA2B to convert ⟨x⟩A to ⟨x⟩B.
2. Compute ⟨x′⟩= ⟨x⟩t using an arithmetic right shift of ⟨x⟩B

by t bits using only local bit assignments.
3. Output ΠB2A(⟨x′⟩B).

Protocol ΠTE{0} (⟨x⟩)→ ⟨(x)
t⟩

Figure 9: T E{0} : Exact Truncation without requiring any slack

Fantastic Four [7] proposed a more efficient exact truncation
scheme based on additive sharing that replaced the need for
full-bit adders with bit extraction circuits. These can be imple-
mented with the same number of rounds but often fewer gates.
The resulting approach requires a slack of 1 bit and is referred
to as T E{1} in this work. For f (x) = x− (x mod 2ℓ), they
compute the truncation of [x] with MSB(x) = 0 as follows:

(x)t =
n−1

∑
i=0

xi/2t +

(
∑

i
(xi mod 2t)

)
/2t − f

(
∑

i
xi

)
/2t

The intuition behind this formula is that the first term cal-
culates the truncation of each share individually similar to
T S{L} . The second term corrects the one-off error (e0) while
the third term corrects the wrap-around error (e1) introduced
by the first term. The first term in the sum can be computed
by each party locally dividing each share, while the remaining
terms can be computed interactively in the boolean domain

using binary adders. The authors also noticed that the second
term, ∑i(xi mod 2m)/2m is always smaller than n, where n
is the number of unique shares held by the parties. Hence,
a bit extraction circuit computing the carry bits at positions
[t, t+ logn−1] suffices to obtain the result. Similarly, the third
term can only contain non-zero bits at the log(n) most sig-
nificant bits which requires computing another bit extraction
circuit on log(n)+ℓ bits. Note that extracting the carry bits of
t-bit terms is less expensive than extracting the carry bits of ℓ-
bit terms, thus computing the last term to correct e1 accounts
for most of the amortized communication complexity.

The downside of Fantastic Four’s exact truncation primitive
is that Fantastic Four protocol requires four shares per party.
Thus, the bit extraction circuits need to be evaluated in a
tree-based fashion with three adders and two levels of adders
in total. Evaluating the expression based on a

(2
2

)
additive

sharing on the other hand would enable the parties to not only
reduce the number of bits to extract from four to two but also
to only require a single adder per term.

Exact Truncation in Trio and Quad Fortunately, creating
a
(2

2

)
additive sharing in Trio and Quad is straightforward as

parties can create sharings of mx and −λx with little commu-
nication overhead using subset sharing as exploited by the
previous protocols as well. Figure 10 shows the deterministic
truncation protocol based on the sharing semantics of Trio
and Quad. Steps 2-4 create the necessary sharings to compute
all sums in the truncation formula. Steps 5-6 calculate the
potential non-zero bits in the boolean domain. Finally, step
7 converts the carry bits to the arithmetic domain, and step
8 aggregates the terms to obtain the final result. Note that
combining the correction of the one-off error from Figure 10
with the more efficient correction of the wrap-around error
by T S{1} (c.f. Figure 8) could potentially introduce further
reductions in communication complexity. We leave the inves-
tigation of joining these two approaches for future work.

1. Add 2ℓ−1 to JxK to ensure MSB(x) = 0.
2. Pmx create Jmx/2tK, while Pλx

create J−λx/2tK using ΠSH.
Parties compute Jx/2tK = Jmx/2tK+ J−λx/2tK.

3. Pmx create Jmx mod 2tKB, while Pλx
create J−λx mod 2tKB

using ΠSH.
4. Pmx create JmxKB, while Pλx

create J−λxKB using ΠSH.

5. Calculate the carry bit Jb1KB for bit position t +1 of
Jmx mod 2tKB + J−λx mod 2tKB using a t-bit carry adder.

6. Calculate the carry bit for bit position ℓ+1 of Jb2KB of
JmxKB + J−λxKB using an ℓ-bit carry adder.

7. Convert Jb1KB and Jb2KB to Jb1KA and Jb2KA using ΠBit2A.
8. Compute JyK = Jx/2tK+ Jb1KA− Jb2KA ·2ℓ−t .
9. Output JyK−2ℓ−t−1.

Protocol ΠTE{1} (JxK)→ J(x)tK

Figure 10: T E{1} : Exact Truncation requiring a 1-bit slack in
Trio and Quad

7



5 Applying Truncation in PPML

In this section, we propose how to efficiently integrate the
different truncation approaches into the PPML inference of
neural network layers. We observe that the properties of sev-
eral layers allow us to reduce the slack size required by a
truncation scheme as well as reduce its communication com-
plexity.

Linear Layers and Batch Normalization Linear layers
such as fully connected layers and convolutional layers re-
quire matrix multiplication of fixed point shares. Thus, each
output share needs to be truncated. Batch Normalization com-
putes y(x) = x−µ√

σ2+ε
· γ+β where the parameters µ,σ,γ,β are

model parameters obtained during training, and ε is a small
public constant to avoid division by zero. Thus, during infer-
ence, the party holding the model parameters locally com-
putes σ̂ = γ · 1√

σ2+ε
and shares it along with µ and β among

the parties. Using these shares, the parties can compute the
layer with a single fixed point multiplication. When using
T S{L} , we exploit that truncation can be integrated into the
multiplication protocols of Trio and Quad at no additional
communication costs [9]. The formal protocol is described in
the authors’ work.

As Batch Normalization typically appears directly after
a linear layer, T S{1} of the linear layer can be fused with
the multiplication in Batch Normalization using multi-input
multiplication gates [24] to reduce the T S{1} overhead in
round complexity to 0. These can be further optimized to
multi-input scalar products [2] to also reduce the overhead
in online communication to 0. To do so, observe that step
3 in ΠTS−1 requires an XOR operation of the two shares
JmKA = Jrl−1K and JnKA = JMSB(c)K followed by a multipli-
cation with public value k = 2ℓ−t−1. The results need to be
added to JoK = Jc′K− Jr′K− 2ℓ−t−1− JµK to obtain the first
factor to compute the batch normalization. Hence, the parties
wish to compute the following expression to obtain the layer
output y of batch normalization which can be expressed as a
single scalar product consisting of one two-input multiplica-
tion and one three-input multiplication in a single round of
communication as follows:

JyK = Jσ̂K · (JoK+(JmK⊕ JnK)k+β

= Jσ̂K · JoK+ Jσ̂K · (JkmK+ JknK−2JkmK · JknK)+β

= Jσ̂K(JoK+ JkmK+ JknK)+ J−2σ̂K · JkmK · JknK+β

Activation Functions Normalization layers or linear lay-
ers are typically followed by an activation function. The
most frequently used activation function in convolutional
neural networks is ReLU. The ReLU operation is defined as
ReLU(x) = max(x,0). To perform a ReLU operation, parties
convert ⟨x⟩A to ⟨x⟩B, evaluate a sign bit extraction circuit,
and negate the result to obtain DReLU(x) = ⟨¬MSB(x)⟩B.

ReLU(x) can then be computed as ⟨DReLU(x)⟩B · ⟨x⟩A using
Bit Injection [21].

1. Execute steps 2-5 of ΠTE{1} .

2. Execute step 6 of ΠTE{1} but also extract JMSB(x)KB as
part of the same circuit.

3. Execute step 7-8 of ΠTE{1} and multiply the result with
JMSB(x)KB using ΠBitInj.

Protocol ΠReLU+TE{0} (⟨x⟩)→ ⟨ReLU((x)
t)⟩

Figure 11: ReLU with exact truncation (T E{0} )

All truncation schemes can benefit from delaying the trun-
cation of the layer prior to the ReLU operation, both in terms
of reduced slack and communication overhead. The slack-
related benefit from delaying truncation until the next ReLU
layer is that after an activation all negative values are guar-
anteed to be 0. As truncating 0 has a negligible probability
of truncation failure, this optimization significantly reduces
the number of truncation failures in PPML where negative
values are as common as positive values. Additionally, the
T E{1} and T S{1} schemes can benefit from the ReLU op-
eration as they do not need to respect their non-negativity
constraint: In case of truncation failure, the ReLU operations
set the output share to 0 provided that ReLU is calculated
based on the untruncated share. Consequently, the parties
can omit the addition and subtraction operations required
by the T E{1} and T S{1} schemes which transform them into
T E{0} and T S{0} schemes, respectively.

The performance-related benefit of delaying truncation ap-
plies to the T S{1} , T E{1} , and T E{0} schemes. Trivially,
ReLU can be fused with little communication overhead with
T E{0} as proposed by [12] by performing a full bit decompo-
sition, applying truncation and ReLU in the boolean domain,
and performing a full bit composition to obtain the result.

However, we observe that ReLU can also be merged with
the more efficient T E{1} and T S{1} schemes. The conversion
and bit extraction of ReLU can be fused without additional
overhead into ΠTE{1} by letting the carry adder in step 6 of
the protocol (c.f. Figure 10) also compute the sign bit of JxKB.
Hence, the only communication overhead of adding a ReLU
operation to the truncation primitive is performing a bit in-
jection which is typically similarly complex to performing
a single multiplication in Z2ℓ . Figure 11 describes the pro-
tocol for fusing ReLU with ΠTE{1} . Note that ΠTE{1} can
also implement T S{1} by skipping all computations related to
computing Jb1K which includes steps 3,5, and one ΠBit2A op-
eration (c.f. Figure 10). When optimizing for communication
rounds, a generic way of fusing ReLU with ΠTS{1} is to com-
pute DReLU on the untruncated share ⟨x⟩ while computing
⟨(x)t⟩ in parallel to the ReLU computation. The parties then
bit inject the result of DReLU(⟨x⟩) into the truncated share
⟨(x)t⟩ to obtain ReLU(⟨(x)t⟩) without any overhead in round
complexity.
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We can design a more efficient protocol for Trio and Quad
by fusing the bit injection performed during ReLU with the
online communication required by ΠTS{1} similar to our ap-
proach during batch normalization. An additional challenge
here is that the output of ReLU prior to Bit Injection is given in
the boolean domain and thus the process is more involved than
simply utilizing multi-input scalar products. We observe that
the online phases of bit injection and ΠTS{1} can be merged
at no additional communication cost or round complexity.

Fusing Truncation and Bit Injection Similar to our fused
Batch Normalization approach we define JmKA = Jrl−1K and
JnKA = JMSB(c)K, The shares need to be first XOR-ed, then
multiplied with k = 2ℓ− t − 1, and finally added to JoK =
Jc′K− Jr′K− 2ℓ−t−1 to obtain the first factor to compute the
fused bit injection. The second factor JxKB is the negated
most-significant bit of the untruncated JxK obtained during
the ReLU operation. The output JyK of fusing truncation and
bit injection is thus given by.

JyK = JxKB · (JoKA +(JmKA⊕ JnKA)k)

= JxKB · (JoK+ JkmK+ JknK−2JkmK · JknK)
= (mx +λx−2mxλx) · (JoK+ JkmK+ JknK−2JkmKJknK)
= (mx +λx−2mxλx)(mo−λo +mkm−λkm +mkn−λkn

−2((mkm−λkm)(mkn−λkn))

= (mx +λx−2mxλx)(mo−λo +mkm−λkm +mkn−λkn

−2(mkmmkn−mkmλkn−mknλkm +λkmλkn))

When fully expanding the last equation the parties ob-
tain different combinations of input-dependent and input-
independent subterms, e.g., mx ·mo, λx ·λo, mx ·λo. Note that
all input-dependent terms can be computed locally by Pmx .
To also evaluate the input-independent terms, they need to
obtain additive shares of all relevant λ-terms from Pλx

in the
preprocessing phase, use these to calculate an additive shar-
ing [y] and reshare the result to all parties to obtain JyK. The
complete procedure is described in §A.

Pooling Layers Out of the pooling layers, only average
pooling requires truncation. Computing an average in MPC
requires a division operation, which is not natively supported
in ring-based MPC. However, since the divisor d is public,
we can approximate the division by multiplying the input
⟨x⟩ with the FPA representation of the reciprocal r = 1/d.
We can exploit several slack-related optimizations to reduce
the probability of truncation failure of that multiplication in
average pooling, mainly by exploiting that d is a public value.

Following our proposed approach of computing an aver-
age naively would require to approximate r using t bits of
precision followed by computing ⟨y⟩ = r · ⟨x⟩ with 2t frac-
tional bits which leads to the same probability of truncation
failure as the multiplication of two secret shares. However,
we observe that common denominators in average pooling

are powers of two with the most common denominator be-
ing 4 resulting from a kernel size of 2x2. For d = 2k, the
reciprocals can be expressed with k fractional bits without
any loss of precision. For denominators that are not powers,
we can exploit that the denominator in FPA is approximated
using t fractional bits but not all of these bits are significant.
For instance, r = 1/9 resulting from a kernel size of 3x3 is
approximated as 00111000 for t = 8 but can be expressed
as 111000 for t = 6 without any loss of precision. Finally,
parties can also exploit that when a reciprocal is between two
FPA approximations, choosing the one with lower precision
reduces precision by less than 2−t but still reduces the prob-
ability of truncation failure by a factor of 2. Hence, parties
may additionally choose a threshold to decide when to use
an approximation with fewer fractional bits that introduce
loss of precision. Note that several networks such as VGG-16
or ResNet architectures use adaptive average pooling which
dynamically determines the kernel size of the average pooling
layer. These layers frequently create kernels of size 1x1 which
results in no required truncation. Figure 12 describes the pro-
tocol for computing a division with a reduced probability of
truncation failure that includes all described considerations.

1. Approximate rt ≈ 1/d and rt−1 ≈ 1/d using t and t−1
fractional bits in FPA respectively.

2. Calculate (using floating points) et = |1/d− rt | and
et−1 = |1/d− rt−1|.

3. While et − et−1 ≤ threshold, decrement t. If t = 0, output
⟨x⟩.

4. Compute ⟨y⟩= rt · ⟨x⟩.
5. Output (⟨y⟩)t .

Protocol ΠDivision(⟨x⟩,d, t,threshold)→ ⟨y⟩ ≈ x/d

Figure 12: Division with reduced probability of truncation
failure

Finally, note that average pooling typically follows after
a ReLU layer. Hence, T E{1} and T S{1} can be implemented
without the 1-bit slack requirement thus leading to T E{0} and
T S{0} schemes, respectively. Given that we also achieved
0 bits of slack by delaying the truncation of the layer prior
to ReLU, all common neural network architectures that do
not use Batch Normalization such as AlexNet, LeNet5, and
VGG-16 are completely evaluated without any slack using
T E{1} and T S{1} schemes while layers that use Batch Nor-
malization such as ResNet architectures achieve 0 bits of slack
in more than half of all layers.

Mixed Truncation Given the introduced optimizations, we
propose a mixed truncation strategy that combines the benefits
of all truncation schemes depending on the PPML layer type.
We observed that average pooling deals with small public
reciprocals r ≤ 1/4 that can additionally often be expressed
with a smaller fixed point multiplicator without causing any
loss of precision. Hence, this multiplication is an optimal can-
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didate for T S{L} . In neural network architectures, pooling is
typically followed by a linear layer, in some cases followed
by a normalization layer, and finally by a ReLU layer. If the
linear layer is followed by a Batch Normalization layer, we
can apply our proposed T S{1} optimization to merge the trun-
cation of the linear layer with the multiplication in Batch
Normalization without any overhead in round complexity or
online complexity. The untruncated output of the layer prior
to ReLU is then truncated within the Bit injection operation
required by ReLU as described previously. Observe that the
total overhead of the mixed truncation strategy to the forward
pass is 0 in terms of round complexity and online communi-
cation complexity. Table 4 shows which truncation approach
to apply in each layer to the input JxK and output JyK of the
layer. Note that the described sequence of layers is used by
all common CNN architectures such as VGG-16, ResNets,
AlexNet, and LeNet.

Table 4: Mixed Truncation Strategy
Layer trunc(JxK) trunc(JyK) Optimization

MaxPool - - -
AvgPool - T S{L} Reduced t
Linear - Delay -
BN T S{1} Delay Fuse T S{1} & BN
ReLU T S{1} - Fuse T S{1} & ReLUa

a Including slack-based optimization.

6 Evaluation

In this section, we evaluate our PPML-specific optimizations
for different truncation schemes from both an accuracy and
communication complexity perspective. Our evaluation is
based on our implementation of all truncation schemes in the
HPMPC framework [9] while we utilize PyTorch for plaintext
training and inference.

Slack-related optimizations Our slack-related optimiza-
tion introduced in §5 consists of exploiting non-negativity and
reducing the number of fractional bits for the denominator
during average pooling. Our concept of delaying truncation
does not only reduce communication complexity by fusing
the ReLU and truncation primitives but also reduces the num-
ber of truncation failures by exploiting the non-negativity
guarantee by ReLU. Also layers following the activation func-
tion such as average pooling benefit that their output cannot
be negative thus eliminating the one bit of slack required by
T S{1} and T E{1} . Our tweaks of reducing the number of
fractional bits during average pooling similarly decrease the
probability of overflows and truncation failures.

Table 5 shows that the accuracy of T S{1} and T S{Mix} im-
prove significantly from these tweaks, allowing them to

closely match the accuracy of their deterministic counterparts
and achieve only little accuracy decay compared to plaintext
inference.

Table 5: Truncation accuracy in % for VGG-16 on CIFAR-
10 with bitlengh ℓ= 32 and t = 5 fractional bits. Plaintext
Accuracy: 81.74%.

¬OPTMSB OPTMSB

Scheme ¬OPTAVG OPTAVG ¬OPTAVG OPTAVG

T S{L} 11.62 18.36 10.75 18.36
T S{1} 51.47 81.05 66.31 81.05
T E{0} 80.76 80.86 80.76 80.86
T E{1} 80.76 80.86 80.76 80.86
T S{Mix} 61.04 66.90 71.88 79.49

OPT MSB: Exploiting non-negativity during pooling and
ReLU layers. Includes delayed truncation (c.f. §5).
OPT AVG: Slack-related optimizations to the denominator
during average pooling (c.f. §5).

Plaintext-training-related optimizations Several tech-
niques such as dropout, weight decay, and weight clipping
can be used to reduce the magnitude of weights and therefore
reduce the probability of overflows and truncation failures.
While weight clipping and dropout should lead to univer-
sally better results in PPML as long as the plaintext accuracy
remains high, weight decay might reduce accuracy by requir-
ing more fractional bits to accurately represent the smaller
weights. To study this tradeoff, we train multiple models on
CIFAR-10 with the ADAMW classifier and set the weight
decay hyperparameter to 0.03. Figure 15 shows the accu-
racy of the different truncation schemes on CIFAR-10 using
ResNet50 with a bitlength of 32. The plots for several other
architectures and bitlengths can be found in §D (c.f. Figure
19). We observe that it is indeed more challenging for the
models to match plaintext accuracy with a low number of
fractional bits as setting the fractional bits to 5 suffices for
most truncation approaches to closely match plaintext accu-
racy without weight deacy but shows a noticeable decay in
accuracy with weight decay. However, this decay is mitigated
as the number of fractional bits increases. More importantly,
the results show that the use of weight decay indeed reduces
the number of truncation failures as T S{L} comes close to
achieving plaintext accuracy with weight decay and 6 frac-
tional bits while it does not come close to plaintext accuracy
without weight decay for any number of fractional bits.

Performance-related optimizations Our various tweaks
for different truncation schemes are based on delaying the
truncation of the output of one layer to the next layer where we
can fuse the truncation operation into another primitive. Table
6 shows the reduction in communication complexity of an
entire forward pass for different truncation schemes based on
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Figure 13: Accuracy of different truncation schemes with
ResNet50 on CIFAR-10. Weight decay for ADAMW is set
to 0.03.

VGG16 on ImageNet (preprocessing + online phase). Results
for other models, datasets, and bitlengths are attached in §E.

The table shows that the reduction achieved in total com-
munication is significant especially for the exact truncation
schemes since fusing them with the ReLU operation elimi-
nates most or all of the truncation-related which apparently
can contribute to more than 25% of the total communication
complexity of a forward pass. However stochastic truncation
schemes also benefit from delaying truncation. An exception
is T S{L} as the operation can already be fused into each mul-
tiplication operation at no additional cost in Trio and Quad.
However, reducing the overhead of T S{L} when delaying trun-
cation to 0 could be achieved by designing a similar fused bit
injection scheme as for T S{1} .

While we do not verify the round complexity empirically,
note that the impact of our tweaks is likely even more signifi-
cant as the exact truncation primitives are often multi-round
protocols whereas linear layers, average pooling, and Batch
Normalization can be evaluated in 0 to 1 communication
rounds. In this context, even the reduction in communication
complexity of T S{1} and T S{Mix} from 1 to 0 communication
rounds when fusing truncation with other layers should be
considered a significant improvement as it halves the round
complexity of these layers when truncation is fused with other
operations. The overall impact on the round complexity also
depends on which boolean circuit is used during sign bit ex-
traction which ranges from log4(ℓ) using multi-input scalar
products and a parallel prefix adder to ℓ−1 round when using
a ripple carry adder.

7 Truncation Schemes Compared

In this section, we show the results of our large-scale compari-
son of the different truncation approaches on various datasets.
Analogously to §6 our implementation is based on HPMPC
for secure inference and PyTorch for plaintext inference.

Table 6: Trio and Quad: Reduction in communication com-
plexity of different truncation schemes for VGG16 on Ima-
geNet when delaying truncation.

ℓ= 32 ℓ= 64
Scheme ¬ D D ∆ ¬ D D ∆

3PC

T S{L} 773.3 827.5 -6.55% 1554 1662 -6.52%
T S{1} 1044 995.3 4.93% 2095 1992 5.17%
T E{0} 1305 1039 25.62% 2627 2091 25.68%
T E{1} 1404 1192 17.79% 2842 2412 17.80%
T S{Mix} 1044 995.3 4.93% 2095 1992 5.17%

4PC

T S{L} 1331 1440 -7.53% 2674 2891 -7.50%
T S{1} 1819 1719 5.83% 3649 3441 6.05%
T E{0} 2182 1702 28.19% 4392 3424 28.25%
T E{1} 2421 2050 18.12% 4900 4149 18.11%
T S{Mix} 1819 1719 5.83% 3649 3441 6.05%

¬D: Total communication in MB if not delaying truncation.
D: Total communication in MB if delaying truncation.
∆: Percentage reduction in communication complexity.

7.1 Accuracy Comparison
To compare the accuracy across truncation schemes we utilize
all presented optimizations. We set the threshold for losing
precision during average pooling (c.f. §5) to 0 to ensure that
we only reduce the number of fractional bits if it does not
affect approximation accuracy.

MNIST To evaluate the accuracy of MNIST, we train a
plaintext PyTorch model based on the ADAM optimizer on
the LeNet5 architecture but using only average pooling for
pooling and only ReLU for activations to achieve an MPC-
friendly architecture. The results in Figure 14 show that most
truncation schemes already come close to the plaintext accu-
racy of more than 99% with a bitlength of 16 and 3 factional
bits. Only T S{Mix} and T S{L} requires a bitlength of 32 to
match plaintext accuracy.

CIFAR-10 Similarly, we evaluate the accuracy of CIFAR-
10 by training a PyTorch model with the ADAM optimizer
based on different architectures such as ResNet50, VGG16,
and AlexNet while again replacing max pooling with aver-
age pooling. Figure 15 shows the accuracy of the different
truncation schemes on ResNet50, while the plots for other
architectures can be found in §D (c.f. Figure 18). We observe
that all truncation schemes except T S{L} nearly match the
plaintext accuracy with a bitlength of 32 and 5 fractional bits.
T S{L} requires a bitlength of 64 to match the plaintext accu-
racy. With a bitlength of 16 none of the truncation schemes
achieves more than 40% accuracy.
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Figure 14: Accuracy of different truncation schemes with
LeNet5 on MNIST.

ImageNet ImageNet contains over one million images with
224x224x3 pixels per image so even plaintext training on
the whole training dataset would take weeks. Hence, we take
the pre-trained PyTorch models of VGG-16 and AlexNet that
achieve over 80% and 60% plaintext accuracy respectively.
Both models use maxpooling. We measure the accuracy based
on 128 images from the validation dataset. Figure 16 shows
the accuracy of the different truncation schemes with VGG16
on ImageNet. The plots for AlexNet can be found in §D
(c.f. Figure 18). The results show that all truncation schemes
except T S{L} can match the plaintext accuracy with a bitlength
of 32 and 7 fractional bits. T S{L} requires a bitlength of 64 to
match the plaintext accuracy. With a bitlength of 16 none of
the truncation schemes achieves more than 20% accuracy.

Recommended fixed point ranges We conduct a large-
scale evaluation of different truncation schemes, datasets, and
model architectures. We obtain the fractional ranges that pro-
vide 0%, 1%, and 5% accuracy loss compared to plaintext
training. The results are shown in §D (c.f. Table 10). When
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Figure 15: Accuracy of different truncation schemes with
ResNet50 on CIFAR-10.
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Figure 16: Accuracy of different truncation schemes with
VGG16 on ImageNet

aggregating these results to give general recommendations
based on dataset dimensions we arrive at the fractional ranges
shown in Table 7. Each fractional range shown in the table
provides high accuracy for most models on the given dataset,
while values in bold indicate our recommended bitlength. The
recommended bitlength and fractional range closely match
the plaintext accuracy for most models and increasing it only
provides little to no accuracy improvement for most models.

Table 7: Recommended fixed-point range for different
truncation schemes.

Dataset Scheme
Bitlength

ℓ= 16 ℓ= 32 ℓ= 64

MNIST

T S{L} - 5 2-23
T S{1} 3 6-11 2
T E{0} 3-4 5-11 5
T E{1} 3-4 5-11 5
T S{Mix} 3-4 5-11 5

CIFAR-10

T S{L} - 6 6-7
T S{1} - 5-9 8-12
T E{0} - 8-9 8-12
T E{1} - 8-9 8-12
T S{Mix} - 5-6 8-12

ImageNet

T S{L} - - 8-18
T S{1} - 10 8-28
T E{0} - 8-12 8-28
T E{1} - 8-12 8-28
T S{Mix} - 10 8-28

Additional results We also study the impact of truncating
two factors before the multiplication compared to truncating
their product after multiplication as proposed by Bicoptor
2.0 [31]. We find that truncating prior to multiplication can
be expressed using the regular truncation approach without
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Table 8: Runtime (s) for different truncation schemes in MAN: 1 Gbit/s bandwidth, 2 ms latency.

Setting Scheme
CIFAR-10 ImageNet

ResNet50 VGG-16 VGG-16

32 64 32 64 32 64

3PC

T S{L} 5.07 ± 0.17 8.12 ± 0.00 2.18 ± 0.00 4.20 ± 0.00 8.16 ± 0.02 19.28 ± 0.31
T S{1} 5.68 ± 0.05 9.40 ± 0.30 2.23 ± 0.13 5.26 ± 0.30 8.75 ± 0.02 20.81 ± 0.02
T E{0} 21.95 ± 0.79 54.01 ± 0.14 5.23 ± 0.13 13.96 ± 0.82 9.47 ± 0.02 22.40 ± 0.29
T E{1} 11.92 ± 0.15 31.89 ± 0.80 3.03 ± 0.09 12.42 ± 1.62 9.34 ± 0.09 21.48 ± 0.08

T S{Mix} 5.23 ± 0.38 9.12 ± 0.01 2.22 ± 0.07 4.95 ± 0.00 8.63 ± 0.13 20.14 ± 0.02

4PC

T S{L} 5.50 ± 0.10 12.72 ± 0.33 2.77 ± 0.14 8.25 ± 0.01 17.21 ± 0.04 41.73 ± 0.30
T S{1} 6.36 ± 0.04 12.20 ± 0.92 3.01 ± 0.41 8.63 ± 0.00 17.69 ± 0.06 42.30 ± 0.01
T E{0} 26.38 ± 1.34 39.09 ± 0.87 5.30 ± 0.04 13.78 ± 0.54 18.62 ± 0.28 44.33 ± 0.04
T E{1} 15.65 ± 0.00 21.39 ± 0.03 3.27 ± 0.14 7.23 ± 2.18 18.24 ± 0.07 43.44 ± 0.01

T S{Mix} 7.69 ± 0.02 11.53 ± 0.30 2.85 ± 0.00 8.42 ± 0.00 17.52 ± 0.04 42.21 ± 0.02

any communication overhead. We refer the reader to §B for
the full results. Additionally, we evaluate the impact of the
common optimization [29] to replace MaxPooling with Av-
eragePooling on the plaintext accuracy and find that given
the significant reduction in communication complexity, it is a
worthwhile tradeoff (c.f. §C). While we have already shown
that PPML based on fixed point arithmetic can achieve iden-
tical accuracy to plaintext inference for large models and
datasets, we aim to find an indicator of the limits of fixed
point approximation. Based on the small accumulated fixed
point error in the final layer of neural networks we conclude
that fixed point arithmetic is sufficient for secure inference
even for larger models than evaluated in this work (c.f. §C).
Finally, we refer readers to §D for our extensive evaluation of
utilizing different truncation schemes in practice.

7.2 Performance Comparison
Table 6 showed that as expected that T S{L} achieves the low-
est communication complexity compared to the other ap-
proaches with the same bitlength. However, if we set the
bitlength according to the accuracy achieved by different trun-
cation schemes, we arrive at a different conclusion. As shown
by table 10 in §D, T S{Mix} and T S{1} exactly match plaintext
accuracy of all ImageNet models with ℓ= 32 and 10 fractional
bits while using T S{L} causes an accuracy loss of more than
5% compared to plaintext accuracy with a bitlength of 32 for
all numbers of fractional bits. This accuracy loss is mitigated
when increasing the bitlength to 64. However, at a bitlength of
64, T S{L} requires more communication than all other trunca-
tion schemes. Hence, we conclude that T S{Mix} and T S{1} are
the most efficient truncation schemes when accounting for
both accuracy and total communication complexity.

We compare the end-to-end inference runtime (preprocess-
ing + online phase) of the different truncation schemes in
three network settings: A LAN setting with 25 Gbit/s band-

width and 0.3 ms latency, a MAN setting with 1 Gbit/s band-
width and 2 ms latency, and a WAN network with 200 Mbit/s
bandwidth and 40 ms latency. Table 8 shows the runtime in
seconds for different models in the MAN setting, while the
other settings can be found in §F (c.f. Table 13 and 14).

In line with the results on communication complexity,
T S{L} achieves the lowest runtime compared to the other trun-
cation schemes with the same bitlength but a lower runtime
compared to the other stochastic truncation schemes when
applying the recommended bitlength. The runtime results also
demonstrate the advantage of T E{1} over T E{0} to parallelize
the computation of boolean adders. Despite its high commu-
nication complexity, T E{1} achieves a lower runtime than
T E{0} in MAN and WAN for all models and bitlengths. Note
also that for the VGG-16 model on ImageNet, the relative
difference in runtime between truncation schemes is lower as
the MaxPooling layers present in the default architecture are
responsible for the majority of the runtime.

7.3 Takeaways
We conclude that against common intuition, T S{L} is not the
most efficient stochastic truncation scheme when account-
ing for both accuracy and runtime. Deterministic trunca-
tion schemes achieve similar accuracy as stochastic ones but
can be more reliable for a larger number of fractional bits.
T E{1} matches the accuracy of T E{0} while requiring sig-
nificantly fewer communication rounds. Hence, practitioners
should consider T S{Mix} , T S{1} , and T E{1} for efficient in-
ference. For all these schemes using a bitlength of 32 and 10
fractional bits is a good starting point that closely matches
plaintext accuracy for most models. For plaintext training,
practitioners should consider replacing MaxPooling with Av-
eragePooling and use weight clipping and weight decay. Fi-
nally, our result suggests that 64-bit fixed point arithmetic is
future-proof for secure inference of large models and datasets.
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A Merging Truncation and Bit Injection

When expanding the equation from §5, we obtain the equation
below. Each Pi ∈ Pmx can compute an additive share of y by
holding the input-dependent shares in the clear and obtaining
[·]-sharings of the relevant input-independent shares from Pλx

.

y = (mx +λx−2mxλx)(mo−λo +mkm−λkm +mkn−λkn−2(mkmmkn−mkmλkn−mknλkm +λkmλkn)) (1)
[y] =mxmo−mx [λo]+mxmkm−mx [λkm]+mxmkn−mx [λkn] (2)
−2(mxmkmmkn−mxmkm [λkn]−mxmkn [λkm]+mx [λkmλkn]) (3)
+mo [λx]− [λxλo]+mkm [λx]− [λxλkm]+mkn [λx]− [λxλkn] (4)
−2(mkmmkn [λx]−mkm [λxλkn]−mkn [λxλkm]+ [λxλkmλkn]) (5)
−2(mxmo [λx]−mx [λxλo]+mxmkm [λx]−mx [λxλkm]+mxmkn [λx]−mx [λxλkn] (6)
+4(mxmkmmkn [λx]−mxmkm [λxλkn]−mxmkn [λxλkm]+mx [λxλkmλkn]) (7)
= [λx] (mo +mkm +mkn−2mkmmkn−2mxmo−2mxmkm−2mxmkn +4mxmkmmkn) (8)
+[λo] (−mx)+ [λkm] (−mx +2mxmkn)+ [λkn] (−mx +2mxmkm)+ [λkmλkn] (−2mx)+ [λxλo] (−1+2mx) (9)
+[λxλkm] (−1+2mkn +2mx−4mxmkn)+ [λxλkn] (−1+2mkm +2mx−4mxmkm)+ [λxλkmλkn] (−2+4mx) (10)
+mx(mo +mkm +mkn−2mkmmkn) (11)

Observe that Pmx require the following additive shares to
completely evaluate the equation:

[λx] , [λo] , [λkm] , [λkn] , [λkm ·λkn] ,

[λx ·λo] , [λx ·λkm] , [λx ·λkn] , [λx ·λkm ·λkn]

Out of these terms Pmx already hold [λo],
[
λkm

]
and

[
λkn

]
but not any of the cross-terms and not [λx]

A since they only
initially hold [λx]

B in Z2 . Thus, there are six remaining input-
independent cross-terms that Pλx

need to compute locally
and share with Pmx . Pmx can then proceed to compute [y].
Each Pi ∈ Pmx then samples λi

y, computes Mi = yi +λi
y and

sends it to the other party Pj ∈ Pmx . Finally the parties set
my =M1 +M2 and all parties hold consistent sharings of JyK
according to the Trio sharing semantics.

While this approach accounts for all steps to construct a
semi-honest 3PC protocol in Trio, the malicious 4PC protocol
in Quad requires additional steps to verify correctness. Note
that the sharing of input-independent terms can be trivially
verified as both P0 and P3 can compute and verify-share the
input-independent terms with P1 and P2. However, the online
reconstruction of JyK needs to be secured against a malicious
P1 or P2 who might send incorrect messages. Thus, P0,1,2
engage in a similar computation to compute [y] which is only
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equal to [y] if both P1 and P2 honestly communicated their
messages. To do so, P0,1,2 sets mx =m∗x +λx for each input
share used in the long equation, while P1,2 set mx =mx +λ∗x .

Note that the parties inherently hold
[
λx

]
= λ∗x +λx where

λx is held by P0 and λ∗x is held by P1,2. The parties proceed
to evaluate the identical equation that computes [y] but with
these new shares to compute [y] while P3 supplies the six
input-dependent terms denoted by λ.

After obtaining [y], P1,2 verify-send their masked share to
P0 such that it can obtain m∗y = y+λy. Finally, P0,1,2 compare
their views of my + λy and my +λy using ΠCV to verify the
correctness of the computation. Note that only if both P1
and P2 honestly communicated M1 and M2 the verification
will succeed. As M{1,2} is computed non-interactively by
both P1 and P2, the verification is secure against a malicious
corruption by one of the two parties.

Note that the compare-views used are identical to the ones
used by Quad’s multiplication protocol [9] and the authors pro-
vide simulation-based security proofs for the protocol. Also,
note that M{1,2} is only used for verification and thus part of
the constant-round communication [9]. Figure 17 summarizes
the protocol for semi-honest Trio and malicious Quad. Finally,
observe that we can combine some input-independent terms
to further reduce the number of input-independent shares that
need to be sent from Pλx

to Pmx to five.

[y] = [λx] (mo +mkm +mkn−2mkmmkn−2mxmo

−2mxmkm−2mxmkn +4mxmkmmkn)

+ [λkm] (−mx +2mxmkn)+ [λkn] (−mx +2mxmkm)

+ [λxλkm] (−1+2mkn +2mx−4mxmkn)

+ [λxλkn] (−1+2mkm +2mx−4mxmkm)

+ [λo +2λkmλkn](−mx)

+ [λxλo +2λxλkmλkn](−1+2mx)

+mx(mo +mkm +mkn−2mkmmkn)

The total communication complexity of the protocol is thus
five elements in the preprocessing phase and two elements in
the online phase for Trio and ten elements in the preprocessing
phase and three elements in the online phase for Quad. Since
Bit Injection requires the same online complexity and two
resp. four elements of communication in the preprocessing
phase, the total overhead of fusing truncation and Bit Injection
is three preprocessing elements for Trio and six for Quad.
This overhead is identical to the preprocessing costs of one
three-input multiplication and thus we achieve exactly the
same overhead as fusing Batch Normalization and stochastic
truncation as shown in §5.

Preprocessing:

1. Pλx
subset share λx,λx ·λo,λkm ·λknλx ·λkmλx ·λknλx ·λkm ·

Protocol ΠBitInj+TS{1} (JxKB,JoK,JmK,JmK,k)→ JyK

λkn with Pmx .

2. P3 shares λx,λx ·λo,λkm ·λkn,λx ·λkm,λx ·λkn,λx ·λkm ·λkn
with P0,1,2.

Online:

1. Pmx locally compute [y] using their input shares and prepro-
cessing material provided by Pλx

.
2. P0,1,2 locally compute [y] using their input shares and pre-

processing material provided by P3.
3. Each party Pi ∈ Pmx samples λi

y with Pλx
, computes Mi =

yi + λi
y and sends it to the other party Pj ∈ Pmx . Pmx set

my =M1 +M2.

4. P1,2 sample λy with P3, compute M{1,2} = [y] + λy, and
verify-send it to P0. P0 sets m∗y = [y]+M{1,2}.

5. P0,1,2 compare their views of my + λy and my + λy using
ΠCV.

6. P0 sets m∗y =my−λy while all other parties set λ∗y = λy. All
parties now hold a consistent sharing of JyK.

Figure 17: Merged Bit Injection and Truncation in Quad. Steps
2 of the preprocessing phase and steps 2,4,5,6 of the online phase
are omitted for semi-honest Trio.

B Truncation before Multiplication

Bicoptor 2.0 [31] proposed to utilize truncation before multi-
plication to reduce the probability of truncation failure. When
multiplying c = a ·b, truncation can either be applied to a and
b individually before the multiplication or to the result c after
the multiplication. When truncating c after multiplication, t
is set to k where k is the number of fractional bits used to rep-
resent a value. When parties instead truncate a and b prior to
multiplication, t is set to k

2 . For large absolute values of a and
b, truncation before multiplication can significantly reduce
the probability of truncation failure by producing intermedi-
ary products with k instead of 2k fractional bits. As truncation
prior to multiplication requires two individual truncations
of a and b instead of a single one of c, the communication
overhead is increased by a factor of two. However, we find
that truncating prior to multiplication can be implemented
without any additional communication overhead compared to
truncating c after the multiplication.

Our key observation to perform the optimization is that
each plaintext value can be pre-truncated by t = k

2 without
any communication overhead before entering the MPC pro-
tocol. As a result, all secret shares are already pre-truncated,
and multiplying them produces shares with k fractional bits.
From that point on, truncating prior-to-multiplication can be
implemented as truncating after multiplication by half the
number of fractional bits as truncating ⟨c⟩ after multiplication
by t = k

2 produces a pre-truncated share ⟨(c)t⟩ that can be used
either as the next ⟨(a)t⟩ or ⟨(b)t⟩ for further multiplications.
However, observe also that pre-truncating all plaintext values
by k/2 bits is equivalent to representing all fixed point values
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with k/2 fractional bits to begin with. Hence, truncating prior
to multiplication is actually no different from simply using
half the number of fractional bits and utilizing the standard
truncation after multiplication approach.

C Replacing MaxPooling with AveragePooling

A common optimization in MPC to reduce communication
complexity is to replace max pooling with average pool-
ing [29]. Computing the maximum of n values requires com-
puting n− 1 pairwise comparisons along a tree of height
log2(n). Each pairwise comparison requires on DReLU oper-
ation. Hence, maxpooling with common kernel sizes such as
3x3 can become the most expensive layer in PPML while av-
erage pooling only requires a single fixed-point truncation and
is typically the cheapest layer in PPML. To evaluate whether
this optimization affects the accuracy of ML models we train
different ResNet models on CIFAR-10 with maxpooling and
average pooling using various optimizers and compare the
accuracy. The results are shown in table 9. On average, the
models with maxpooling achieve 72.59% accuracy while the
models with average pooling achieve 71.00% accuracy. Given
the significant reduction in communication complexity, we
replace average pooling with max pooling for all further eval-
uations except ImageNet-based models where we rely on the
official pretrained PyTorch models that use max pooling.

Table 9: Accuracy in % for ResNet models on CIFAR-10
with max pooling and average pooling.

Model Optimizer MaxPool AvgPool

ResNet50

ADAM 77.14 72.04
ADAMW 77.39 74.86
SGD 66.41 63.30
SGDW 73.38 72.95

ResNet101

ADAM 74.55 76.82
ADAMW 76.00 75.22
SGD 65.30 64.04
SGDW 73.50 71.23

ResNet152

ADAM 76.33 75.31
ADAMW 74.69 73.22
SGD 62.77 61.45
SGDW 73.62 71.58

a SGDW refers to SGD with 0.03 weight decay.

How far can FPA scale? FPA enables parties to use 16-bit,
32-bit, or 64-bit integer arithmetic that has low overhead on
modern hardware. While ring sizes of more than 64-bit are
possible, they introduce significant computational overhead.
To obtain an indicator for how much precision is lost when
utilizing 64-bit fixed point arithmetic in PPML, we investigate
the outputs computed by the last layer of the VGG-16 model

on ImageNet and calculate δ f as the fixed point deviation of
each fixed point value with respect to its plaintext floating
point value. Note that by the last layer, all errors from pre-
vious layers’ fixed-point calculations accumulate. We then
calculate δc as the minimum difference of two final class
predictions in floating point. Intuitively, the closer δ f and δc

are the higher the probability that the fixed point errors cause
swapping the likelihood of two classes compared to floating
point arithmetic. As only swapping the likelihood order of
top predictions is relevant in practice we only consider the
top 5 most likely predictions. Over multiple batches we ob-
serve that the minimum δc found for VGG-16 on ImageNet
is 0.22 meaning that two classes in the top 5 predictions are
at least separated by 0.22. The maximum δ f for T S{1} when
using a bitlength of 64 and 13 fractional bits is 0.012 meaning
that the fixed point representation of a class value is at most
0.012 off from the final layer’s floating point value in plain-
text inference. Given this discrepancy, we can conclude that
using 64-bit fixed point arithmetic in PPML can most likely
be used for even larger models and datasets without risking
misclassification due to the accumulation of fixed point errors.
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D Additional Accuracy Evaluation
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Figure 18: Accuracy of different truncation schemes on various models and datasets. Each row corresponds to a different
Bitlength ℓ as indicated.
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Figure 19: Accuracy of different truncation schemes for various models trained on CIFAR=10 with ADAMW and 0.03
weight decay or regular ADAM without weight decay. Each row corresponds to a different Bitlength ℓ as indicated.
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Table 10: Ranges of fractional bits that introduce at most x% of accuracy loss compared to plaintext inference

Model Plaintext Accuracy Scheme
x=0% x=1% x=5%

ℓ= 16 ℓ= 32 ℓ= 64 ℓ= 16 ℓ= 32 ℓ= 64 ℓ= 16 ℓ= 32 ℓ= 64

MNIST (28x28x1)

LeNet 99.12%

T S{L} - 5 - - 2-7 2-23 - 2-8 2-24
T S{1} - 6-11 2 3 2-11 2-27 2-4 2-12 2-28
T E{0} - 5-11 5 2-3 2-11 2-27 2-4 2-12 2-28
T E{1} - 5-11 5 2-3 2-11 2-27 2-4 2-12 2-28
T S{Mix} - 5-11 5 - 2-11 2-27 - 2-12 2-28

CIFAR-10 (32x32x3)

AlexNet 68.55%

T S{L} - 6 11-21 - 6-7 5-23 - 3-8 3-24
T S{1} - 8-9 8-27 - 5-11 6-27 - 3-12 4-28
T E{0} - 8-11 8-27 - 5-11 5-27 - 4-12 4-28
T E{1} - 8-11 8-27 - 5-11 5-27 - 4-12 4-28
T S{Mix} - 6 6-23 - 5-8 6-25 - 4-10 3-26

AlexNetw 64.33%

T S{L} - 4-8 5-24 - 4-8 4-24 - 4-9 4-24
T S{1} - 5-13 5-29 - 5-13 5-29 4-5 4-13 4-29
T E{0} 5 5-13 5-29 5 5-13 5-29 4-5 4-13 4-29
T E{1} 5 5-13 5-29 5 5-13 5-29 4-5 4-13 4-29
T S{Mix} - 4-9 4-26 - 4-10 4-26 - 4-11 4-26

ResNet50 73.34%

T S{L} - - 8-9 - - 6-18 - - 5-19
T S{1} - - 8-9 - - 6-21 - 5-7 5-23
T E{0} - 8-9 8-9 - 6-11 6-27 - 5-11 5-27
T E{1} - 8-9 8-9 - 6-11 6-27 - 5-11 5-27
T S{Mix} - - 8-9 - - 6-22 - 5-7 5-23

ResNet50 w 74.71%

T S{L} - - 9-10 - - 6-20 - 6 6-21
T S{1} - - 6-7 - 6-7 6-22 - 6-7 6-23
T E{0} - - - - 7-13 7-29 - 7-13 7-29
T E{1} - - - - 7-13 7-29 - 7-13 7-29
T S{Mix} - - 6-7 - - 6-22 - 5-7 6-23

VGG-16 81.74%

T S{L} - - 6-7 - - 5-16 - - 5-18
T S{1} - - 10-12 - 5 5-21 - 5 5-21
T E{0} - - 11-12 - - 5-21 - 5 5-21
T E{1} - - 11-12 - - 5-21 - 5 5-21
T S{Mix} - - 10-12 - - 5-21 - 5 5-21

ImageNet (224x224x3)

AlexNetp 62.50%

T S{L} - - 11 - - 8-21 - - 7-22
T S{1} - 10-11 25-26 - 8-12 8-28 - 7-12 7-28
T E{0} - 11 11 - 8-12 8-28 - 7-12 7-28
T E{1} - 11 11 - 8-12 8-28 - 7-12 7-28
T S{Mix} - 10-11 25-26 - 8-12 8-28 - 7-12 7-28

VGG-16p 82.81%

T S{L} - - 7-9 - - 7-18 - - 6-18
T S{1} - 7-10 7-9 - 7-12 7-28 - 6-12 6-28
T E{0} - 7 7 - 7-12 7-28 - 6-12 6-28
T E{1} - 7 7 - 7-12 7-28 - 6-12 6-28
T S{Mix} - 7-10 7-9 - 7-12 7-28 - 6-12 6-28

w Weight decay of 0.03 p Pretrained weights provided by PyTorch. Unmodified model architecture.
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E Additional Evaluation of Communication Complexity

Table 11: Trio (3PC): Reduction in communication complexity of different truncation schemes for various models and datasets
when delaying truncation.

Model Scheme
ℓ= 16 ℓ= 32 ℓ= 64

¬ D D ∆ ¬ D D ∆ ¬ D D ∆

MNIST (28x28x1)

LeNet

T S{L} 0.144 0.157 -8.29% 0.291 0.317 -8.26% 0.589 0.641 -8.22%
T S{1} 0.222 0.212 4.97% 0.447 0.423 5.58% 0.900 0.853 5.52%
T E{0} 0.298 0.235 26.94% 0.605 0.476 27.22% 1.235 0.969 27.46%
T E{1} 0.332 0.282 17.76% 0.664 0.561 18.44% 1.366 1.152 18.62%
T S{Mix} 0.209 0.199 5.28% 0.422 0.398 5.93% 0.849 0.802 5.88%

CIFAR-10 (32x32x3)

ResNet18

T S{L} 3.672 4.276 -14.13% 7.390 8.599 -14.06% 14.82 17.24 -14.01%
T S{1} 6.706 6.533 2.65% 13.46 13.06 3.00% 26.95 26.13 3.17%
T E{0} 9.519 8.410 13.19% 19.31 17.05 13.27% 38.90 34.34 13.28%
T E{1} 10.81 9.951 8.64% 21.52 19.75 8.96% 43.70 40.11 8.95%
T S{Mix} 6.672 6.499 2.66% 13.39 13.00 3.02% 26.83 26.00 3.18%

ResNet50

T S{L} 5.794 6.705 -13.59% 11.66 13.49 -13.52% 23.40 27.04 -13.49%
T S{1} 10.36 10.07 2.97% 20.80 20.13 3.33% 41.67 40.25 3.53%
T E{0} 14.60 12.75 14.50% 29.62 25.84 14.60% 59.63 52.04 14.58%
T E{1} 16.54 15.10 9.58% 32.94 29.96 9.94% 66.85 60.85 9.86%
T S{Mix} 10.33 10.03 2.97% 20.74 20.06 3.35% 41.54 40.12 3.54%

VGG-16

T S{L} 6.052 6.606 -8.39% 12.21 13.32 -8.32% 24.53 26.74 -8.27%
T S{1} 9.073 8.621 5.24% 18.25 17.25 5.82% 36.60 34.49 6.12%
T E{0} 11.92 9.257 28.81% 24.18 18.75 28.99% 48.71 37.72 29.14%
T E{1} 13.23 11.12 18.99% 26.42 22.09 19.62% 53.56 44.80 19.55%
T S{Mix} 8.822 8.372 5.38% 17.75 16.75 5.99% 35.60 33.49 6.30%

AlexNet

T S{L} 0.267 0.291 -8.35% 0.538 0.586 -8.30% 1.080 1.178 -8.26%
T S{1} 0.403 0.383 5.19% 0.810 0.766 5.77% 1.624 1.531 6.09%
T E{0} 0.532 0.415 28.31% 1.080 0.840 28.57% 2.177 1.690 28.81%
T E{1} 0.591 0.498 18.69% 1.181 0.990 19.34% 2.398 2.007 19.48%
T S{Mix} 0.388 0.369 5.37% 0.781 0.737 6.01% 1.567 1.474 6.32%

ImageNet (224x224x3)

AlexNet

T S{L} 28.15 29.14 -3.40% 56.86 58.84 -3.37% 114.3 118.2 -3.33%
T S{1} 33.10 32.28 2.52% 66.73 64.93 2.77% 134.0 130.2 2.91%
T E{0} 37.66 32.90 14.48% 76.25 66.53 14.61% 153.4 133.8 14.67%
T E{1} 39.77 35.99 10.50% 79.84 72.08 10.77% 161.2 145.5 10.79%
T S{Mix} 33.10 32.28 2.52% 66.73 64.93 2.77% 134.0 130.2 2.91%

VGG-16

T S{L} 383.2 410.3 -6.60% 773.3 827.5 -6.55% 1554 1662 -6.52%
T S{1} 518.8 496.7 4.45% 1044 995.3 4.93% 2095 1992 5.17%
T E{0} 644.3 513.6 25.45% 1305 1039 25.62% 2627 2091 25.68%
T E{1} 701.8 598.4 17.28% 1404 1192 17.79% 2842 2412 17.80%
T S{Mix} 518.8 496.7 4.45% 1044 995.3 4.93% 2095 1992 5.17%

¬D: Total communication in MB if not delaying truncation.
D: Total communication in MB if delaying truncation.
∆: Percentage reduction in communication complexity.
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Table 12: Quad (4PC): Reduction in communication complexity of different truncation schemes for various models and datasets
when delaying truncation.

Model Scheme
ℓ= 16 ℓ= 32 ℓ= 64

¬ D D ∆ ¬ D D ∆ ¬ D D ∆

MNIST (28x28x1)

LeNet

T S{L} 0.251 0.277 -9.42% 0.506 0.558 -9.36% 1.021 1.127 -9.37%
T S{1} 0.391 0.369 5.92% 0.784 0.736 6.50% 1.579 1.483 6.47%
T E{0} 0.495 0.381 29.92% 1.005 0.772 30.18% 2.051 1.572 30.44%
T E{1} 0.575 0.487 18.08% 1.149 0.968 18.74% 2.363 1.987 18.89%
T S{Mix} 0.369 0.347 6.31% 0.740 0.692 6.89% 1.491 1.394 6.90%

CIFAR-10 (32x32x3)

ResNet18

T S{L} 6.283 7.491 -16.13% 12.64 15.06 -16.06% 25.35 30.19 -16.01%
T S{1} 11.74 11.38 3.22% 23.56 22.75 3.55% 47.19 45.50 3.70%
T E{0} 15.62 13.61 14.77% 31.69 27.60 14.83% 63.85 55.60 14.84%
T E{1} 18.62 17.11 8.84% 37.05 33.95 9.14% 75.26 68.97 9.12%
T S{Mix} 11.68 11.32 3.22% 23.44 22.64 3.57% 46.96 45.27 3.73%

ResNet50

T S{L} 9.922 11.74 -15.51% 19.97 23.61 -15.44% 40.05 47.35 -15.40%
T S{1} 18.15 17.52 3.58% 36.41 35.04 3.91% 72.94 70.06 4.11%
T E{0} 23.98 20.64 16.20% 48.66 41.85 16.28% 98.00 84.28 16.28%
T E{1} 28.50 25.96 9.78% 56.73 51.52 10.12% 115.2 104.7 10.04%
T S{Mix} 18.09 17.46 3.59% 36.30 34.92 3.93% 72.71 69.84 4.11%

VGG-16

T S{L} 10.48 11.59 -9.56% 21.13 23.34 -9.49% 42.43 46.87 -9.45%
T S{1} 15.90 14.97 6.25% 31.97 29.93 6.82% 64.13 59.87 7.12%
T E{0} 19.83 15.02 32.05% 40.22 30.42 32.20% 81.01 61.23 32.31%
T E{1} 22.87 19.17 19.33% 45.66 38.07 19.94% 92.57 77.22 19.88%
T S{Mix} 15.46 14.53 6.44% 31.10 29.06 7.02% 62.38 58.12 7.33%

AlexNet

T S{L} 0.463 0.511 -9.53% 0.932 1.029 -9.45% 1.871 2.066 -9.42%
T S{1} 0.707 0.666 6.17% 1.420 1.331 6.76% 2.848 2.660 7.06%
T E{0} 0.885 0.673 31.44% 1.795 1.363 31.68% 3.619 2.743 31.94%
T E{1} 1.023 0.860 19.00% 2.042 1.706 19.65% 4.145 3.461 19.77%
T S{Mix} 0.682 0.641 6.45% 1.370 1.280 7.03% 2.747 2.560 7.34%

ImageNet (224x224x3)

AlexNet

T S{L} 48.23 50.20 -3.92% 97.37 101.3 -3.89% 195.7 203.5 -3.88%
T S{1} 57.12 55.44 3.03% 115.2 111.5 3.29% 231.2 223.6 3.42%
T E{0} 63.43 54.83 15.69% 128.4 110.9 15.79% 258.3 223.0 15.84%
T E{1} 68.32 61.67 10.78% 137.1 123.5 11.00% 276.8 249.3 11.02%
T S{Mix} 57.12 55.44 3.03% 115.2 111.5 3.29% 231.2 223.6 3.42%

VGG-16

T S{L} 659.8 714.0 -7.59% 1331 1440 -7.53% 2674 2891 -7.50%
T S{1} 903.8 858.0 5.34% 1819 1719 5.83% 3649 3441 6.05%
T E{0} 1077 841.0 28.05% 2182 1702 28.19% 4392 3424 28.25%
T E{1} 1211 1029 17.63% 2421 2050 18.12% 4900 4149 18.11%
T S{Mix} 903.8 858.0 5.34% 1819 1719 5.83% 3649 3441 6.05%

¬D: Total communication in MB if not delaying truncation.
D: Total communication in MB if delaying truncation.
∆: Percentage reduction in communication complexity.
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F Additional Runtime Evaluation

Table 13: Runtime (s) for different truncation schemes in LAN: 25 Gbit/s bandwidth, 0.3 ms latency.

Setting Scheme
CIAR-10 ImageNet

ResNet50 VGG-16 VGG-16

32 64 32 64 32 64

3PC

T S{L} 3.35 ± 0.06 6.25 ± 0.05 2.72 ± 0.15 6.04 ± 0.03 6.51 ± 0.00 15.29 ± 0.05
T S{1} 4.17 ± 0.02 6.96 ± 0.38 3.23 ± 0.00 6.82 ± 0.00 6.90 ± 0.03 15.80 ± 0.17
T E{0} 14.59 ± 0.29 29.74 ± 0.32 6.74 ± 0.01 14.16 ± 0.02 6.75 ± 0.04 15.90 ± 0.10
T E{1} 8.72 ± 0.14 29.92 ± 0.01 3.56 ± 0.00 11.87 ± 0.01 7.23 ± 0.08 16.22 ± 0.27

T S{Mix} 3.87 ± 0.19 6.70 ± 0.08 3.11 ± 0.00 6.67 ± 0.12 6.86 ± 0.05 15.64 ± 0.04

4PC

T S{L} 3.45 ± 0.03 6.41 ± 0.03 3.35 ± 0.02 6.67 ± 0.01 15.93 ± 0.08 38.34 ± 0.03
T S{1} 4.34 ± 0.00 7.01 ± 0.09 3.72 ± 0.01 7.04 ± 0.00 16.60 ± 0.02 39.09 ± 0.16
T E{0} 14.77 ± 0.53 15.48 ± 2.98 7.13 ± 0.04 14.75 ± 0.01 16.85 ± 0.24 39.34 ± 0.19
T E{1} 8.71 ± 0.08 5.24 ± 0.41 4.07 ± 0.01 13.34 ± 0.09 17.27 ± 0.03 40.30 ± 0.80

T S{Mix} 4.31 ± 0.00 5.13 ± 1.86 3.75 ± 0.00 6.99 ± 0.02 15.95 ± 0.33 39.15 ± 0.03

Table 14: Runtime (s) for different truncation schemes in WAN: 0.2 Gbit/s band-
width, 40 ms latency.

Setting Scheme
CIFAR-10

ResNet50 VGG-16

32 64 32 64

3PC

T S{L} 69.05 ± 0.01 132.38 ± 0.00 20.95 ± 0.00 41.27 ± 0.04
T S{1} 75.43 ± 0.03 138.98 ± 0.11 22.46 ± 0.09 42.27 ± 0.00
T E{0} 282.40 ± 0.09 559.10 ± 0.92 54.03 ± 0.08 106.50 ± 0.27
T E{1} 153.10 ± 0.06 292.61 ± 0.15 29.33 ± 0.06 58.57 ± 0.00

T S{Mix} 72.44 ± 0.05 136.98 ± 0.12 22.31 ± 0.06 42.15 ± 0.12

4PC

T S{L} 69.08 ± 0.00 132.53 ± 0.04 21.43 ± 0.02 41.87 ± 0.02
T S{1} 75.56 ± 0.07 138.77 ± 0.01 22.85 ± 0.02 43.02 ± 0.13
T E{0} 282.32 ± 0.06 559.33 ± 0.01 54.13 ± 0.04 106.65 ± 0.05
T E{1} 152.96 ± 0.33 292.49 ± 0.76 29.99 ± 0.04 56.51 ± 0.02

T S{Mix} 75.44 ± 0.01 138.74 ± 0.02 22.60 ± 0.03 42.69 ± 0.01
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