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ABSTRACT
Postal voting is a frequently used alternative to on-site voting.
Traditionally, its security relies on organizational measures, and
voters have to trust many entities. In the recent years, several
schemes have been proposed to add verifiability properties to postal
voting, while preserving vote privacy.

Postal voting comes with specific constraints. We conduct a
systematic analysis of this setting and we identify a list of generic
attacks, highlighting that some attacks seem unavoidable.This study
is applied to existing systems of the literature.

We then propose Vote&Check, a postal voting protocol which
provides a high level of security, with a reduced number of authori-
ties. Furthermore, it requires only basic cryptographic primitives,
namely hash functions and signatures. The security properties are
proven in a symbolic model, with the help of the ProVerif tool.
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1 INTRODUCTION
Electronic voting and voting in general aim at two main security
properties, namely vote secrecy and verifiability. Vote secrecy guar-
antees that no one learns information about how a certain voter
voted while verifiability ensures that the result corresponds to the
actual votes of the eligible voters.

Internet voting has attracted a lot of attention in the past two
decades. Several countries use Internet voting for legally binding
elections, such as Estonia [23], Australia [16], Switzerland [26], or
France [13]. Many academic systems have been proposed as well,
such as the simple protocol Helios [2], used by the IACR (Interna-
tional Association for Cryptologic Research), or more advanced
protocols that aim at achieving higher guarantees such as coercion
resistance (e.g. Civitas [9, 17] or VoteAgain [22]). An other form of
remote voting is postal voting. Its advantage is its simplicity: voters
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do not need any computer to cast a vote, they simply send a paper
ballot by mail. This is a common practice in many countries: it is
used by 90% of the voters in Switzerland [25] and 46% of the votes
were cast via mail ballot in the 2020 US presidential election [31].

Surprisingly, while postal voting is used for high stake elections,
it has deserved much less attention than Internet voting and its
security level is typically low. For example, in the United States,
the voters simply fill-in their ballot and manually sign the return
envelop that contains their ballot. Not only this is a weak form
of authentication but the authorities need to be trusted for vote
privacy: they may open the envelop and read the vote right after
having authenticated the voter. Verifiability is not provided either.
Once the ballots are received, they need to be securely stored until
the tally. Any person having access to them may remove or replace
them. Moreover, when ballots travel through postal services, post-
men may selectively drop ballots that come from some area known
to vote for a certain candidate. A study in Switzerland [18] shows
that postal voting is actually complex and involves many parties.

There has been some recent effort to improve the security of
postal voting. STROBE [4] makes a significant first step by introduc-
ing verifiability. Roughly speaking, the voting sheet contains the
name of the candidate in clear but also its encrypted version. The
voter selects their favorite candidate and can then check that the
corresponding encryption appears on some public board after the
tally. In order to verify that the ballots have been correctly gener-
ated, each voter actually receives two ballots and randomly selects
one for audit: the printer must prove that it was encrypted correctly
by providing the corresponding randomness. RemoteVote and SAFE
Vote [12] further improve this approach in term of usability, so that
the voter no longer receives two ballots. An important drawback of
these systems however is that they improve verifiability at the cost
of sacrificing privacy. Indeed, an honest but curious printer knows
perfectly well to whom it has sent the ballots and it also knows the
correspondence between candidates and encrypted ballots. Hence
after the tally, it can simply read the accepted ballots from the pub-
lic board and deduce who voted what, for the entire population.
We explain this attack in more detail in Section 2. Another recent
work is the system by Devillez et al. [15]. An additional authority
is introduced, the verification server, that the voters should contact
to verify that their ballot has been correctly counted. Indeed, there
is no public bulletin board where the voters can look at to find for
their ballot. While this system has better security properties than
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STROBE, RemoteVote and SAFE Vote, specially regarding privacy,
it only provides proxy-verifiability instead of the usual stronger
notion of universal verifiability.

Design choices. While being called postal voting, all these sys-
tems make use of Internet. In particular, voters need to access a
public bulletin board or a verification server and they may need to
perform cryptographic checks. Nevertheless, voters can cast a vote
without any computer: they receive a ballot by post, they select
a candidate, they possibly write some notes and they send back
their ballot. Then, optionally, they may perform verifiability steps,
to check that their vote is properly counted. We believe that such a
design is a promising approach that may ease the replacement of
old style (insecure) postal voting: voters may still vote as usual and
they cast a vote for the candidate they see printed on the ballot. Of
course, voters who do not verify get less guarantees but the fact
that a proportion of voters will verify may be sufficient to incen-
tivize the authorities to behave as expected, because droping or
modifying ballots becomes more risky.

Our contributions. We first provide a list of attack scenarios, that
are applicable to most postal voting systems. Whether or not the
attack is successful then depends on the analysed system. For ex-
ample, one generic attack is the full privacy breach scenario that
we mentioned above: the printer (or another authority) records all
the data it has generated and provided to voters. Then looking at
the public information available after tally (e.g. the public bulletin
board), it looks for identifying data such as encrypted votes or re-
turn codes, which may allow it to deduce the vote of each voter. We
apply our attack scenarios to the STROBE protocol and we unveil
several flaws, beyond the weaknesses that were acknowledged by
the author in the paper. In addition to the privacy attack, we show
how authorities can manipulate the votes. Interestingly, some of
our attacks seem inherent to postal voting and hence will proba-
bly apply to any system. For example, for most of these protocols,
complaints may be used to break privacy. Indeed, if the authority
in charge of collecting the ballot drops one ballot that votes for
candidate A, then a voter will complain, and the authority will learn
that this voter voted for A. This applies to other Internet voting pro-
tocols such as Selene [28] or Select [20]. We further study whether
our attack scenarios successfully apply to RemoteVote, SAFE vote,
and Devillez et al.’s protocols.

Our second and main contribution is the design of Vote&Check,
a simple postal voting system that aims at providing vote privacy
against a dishonest printer and any other dishonest authority (but
not against a collusion of them). The idea is simple: the voter re-
ceives a voting sheet that contains a credential 2 from the printer,
the list of candidates in clear (and some authentication data). The
voter selects their candidate and sends back their ballot, with the
credential. Then the vote will appear in clear on the bulletin board,
next to a public tracker F = ℎ(2, C) that is obtained by hashing
2 with a tracker C that the voter can obtain by connecting to an
external authority, the Tracker Server. This protects the voter from
privacy attacks from both the printer and the Tracker Server, un-
less they collude. Vote&Check also guarantees (public) end-to-end
verifiability without having to rely on a proxy. Namely, it provides
individual and universal verifiability. A voter can check on a public
bulletin board that their vote intent has been counted. Furthermore,

anyone can check that the result corresponds to the votes on the
bulletin board. Indeed, since the votes are provided in clear, it is
sufficient to count. Finally, the fact that votes only come from legit-
imate voters (eligibility verifiability) is guaranteed as soon as one
authority is honest and up to the fact that a dishonest printer may
always cast a ballot for an absentee voter. This is due to the fact
that the material received by post solely suffices to cast a vote. This
is also one of our generic attack scenarios that we describe in the
first part of our work.

Interestingly, our protocol achieves a higher degree of security
than previous systems with much less cryptography: it only re-
quires hash functions and standard digital signatures, which means
that it will be very easy to implement. Moreover, since there is no
encryption, it does not need independent tallying authorities as in
the previous systems, which simplifies the organization of elections.
Vote&Check requires a public bulletin board, but this is a rather
simple version of it, since it is not used during the voting phase. A
webpage containing the data signed by all authorities at the end of
the setup and at the end of the tally is enough for implementing it.

Furthermore, a nice feature of our protocol compared to STROBE
and other verifiable postal voting systems that we are aware of, is
that it supports complex counting systems based on ranking the
candidates or giving them a grade (STV, Condorcet, etc).

Security proof. We formally prove the security of Vote&Check us-
ing ProVerif [6], a popular tool for the analysis of security protocols.
While the cryptographic primitives are very simple and hence easy
to model, we had to account for particular physical channels such
as postal voting where the attacker can send a mail to a targeted
voter but it cannot open their mailbox (at least in some threat mod-
els). For privacy, we had to handle the fact that complaints break
privacy, as indicated by one of our generic attacks. We instead show
that our protocol preserves privacy provided that complaints can
be made anonymously, for example through a trusted third party
(a judge). For verifiability, we use the recently proposed frame-
work [10] developed for ProVerif. While our protocol is simple
in terms of cryptography, it unveiled a limitation of the frame-
work, that implicitly assumes that each ballot can be identified and
linked to a voter. However, in Vote&Check, there is no identifying
data. Instead, we show how to use the credential and the tracker,
with a flexible assocation that can depend on the compromission
scenario. We also had to circumvent the fact that ProVerif cannot
easily reason on “else” branches and we introduced a new axiom,
for which we provide a proof of correctness. We believe that these
proof techniques can be used for other voting protocols.

Related work. The closest works are the protocols STROBE [4],
RemoteVote and SAFE Vote [12], and Devillez et al.’s [15] that we
already discussed. We conduct a more thorough analysis of them in
Section 2. In brief, the main difference with STROBE, RemoteVote
and SAFE Vote is that we wish to prevent an authority from learn-
ing the votes of the entire population, without being detected. The
security guarantees offered by Devillez et al.’s are closer to our
system, although we also protect against some less severe attacks
such as clash attacks [19]. Moreover, this protocol involves a larger
number of independent authorities, namely four independent au-
thorities plus = talliers, where we only require three independent
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authorities (the Printer, the Tracker Server and the Election Office)
as well as a public bulletin board.

Other approaches [5, 24] are also called postal voting as voters
cast their ballot by post but they need a computer to generate the
voting material and they also need to print the material themselves.
This helps a lot to avoid breaking voter’s privacy but such systems
require a computer in order to vote (and a printer), hence they are
in that sense closer to Internet voting.

Finally Prêt-à-Voter [29] and Pretty Good Democracy (PGD) [30]
are voting systems where voters can vote using only paper ballots.
However, these protocols are designed for on-site voting, which
leads to a different threat model. It is not obvious to turn them into
(remote) postal voting.

2 ATTACK SCENARIOS
Verifiable postal voting systems have a common structure. Voters
receive some material by post, that has been issued by one or
several authorities (among them, the printer). Voters then select
their candidate and send back their selection, possibly retaining
some part of the voting material. At the end of the election, voters
typically have access to some additional data, for example on a
public bulletin board, and they can perform some checks to verify
that their vote has been properly counted.

2.1 Generic attack scenarios
We list generic potential attacks against privacy and verifiability.
2.1.1 Privacy.

Full privacy breach. Some authority, typically the printer,
knows the link between the voter and some identifying data (e.g.
an authentication token). This identifying data may appear on the
bulletin board, next to the vote in clear. In that case, the authority
(honest but curious) breaks vote privacy of all voters. A variant of
the attack is when the authority generates all possible encrypted
votes for a voter and the selected encrypted ballot appears on the
bulletin board.The ballot identifies the voter and hence vote privacy
is broken again.

This is a powerful attack since the privacy of all voters is broken
w.r.t. this authority, without any detection.

Targeted privacy attack. A dishonest voter Charlie gives his
material to Alice (e.g. drops his material in Alice’s mailbox) and
keeps a copy. Alice uses this material instead of her’s. Then Charlie
uses the verification mechanism to learn Alice’s vote.

A more powerful variant is when Charlie can actually generate
valid ballots by himself, which allows him to attack privacy of
several voters, while keeping his right to vote.

Privacy breach by complaints. When votes appear in clear
on the paper ballot, the authority collecting the ballots may alter
or remove a vote (without knowing who voted for it) and see who
complains.

Such an attack also applies to pure Internet voting schemes as
well, such as Select [20], Selene [28], or Hyperion [27]. This attack
is detectable, by construction, but a few complaints may not draw
attention. This attack was not detected in their respective privacy
proofs [8, 20] because they assume that the collecting authority
behaves honestly w.r.t. the honest voters.
2.1.2 Verifiability.

Ballot stuffing and vote flooding attacks. In some systems,
anyone may create a fake ballot and vote, which leads to ballot
stuffing. This is typically avoided by authenticating at least part
of the voting material. A weaker form of this attack is when an
attacker may find sufficient information (e.g. on the bulletin board)
such that they can cast a vote without knowing for whom they
voted. This allows to artificially increase the turnout and change
the proportion of votes for each party, allowing e.g. small parties
to reach a certain quorum. We call this attack vote flooding.

Weak eligibility attack.An authority (typically the printer) can
keep copies of the voting material and vote for absentees. Such an
attack seems unavoidable if the printed material is solely sufficient
to cast a vote.

Clash attack. An authority (typically the printer) may send
the same ballot to two voters that vote the same way (this can be
guessed easily for some voters). Then only one of the two votes is
counted. Such an attack leaves traces since the ballot collector will
typically receive duplicated ballots. However, it is hard to decide
what to do when two identical ballots are received since some (dis-
honest) voters may also try to vote twice by reusing their material.
Hence it is hard to identify who misbehaved.

Alter votes of non-verifying voters. Not all voters perform
the verification steps. For non-verifying voters, an authority may
try to flip their vote. Note that the collecting authority may always
drop the vote (since the voters do not verify) but flipping the vote
yields a more powerful attack.

2.2 Example of the STROBE protocol
The STROBE [4] voting scheme is a postal voting scheme designed
by Josh Benaloh. It aims to provide verifiability while staying as
close as possible to traditional vote by mail. The different entities
involved are the printer, the postal service, the cast officer, the voters
and a set of trustees. There is a public board where the printer, the
cast officer and the trustees can write any message.

2.2.1 Protocol. STROBE uses probabilistic homomorphic encryp-
tion (for example ElGamal) under the public key of the set of
trustees. For each voter, the printer encrypts the votes, i.e. the
identity matrix of size the number of candidates (blank vote is en-
coded as a candidate named “None”). Each line of the encrypted
matrix is hashed, only the last byte of the hash is kept as a short
code (shown on Figure 1a). This is repeated until all short codes
are different. Lines of the matrix are permuted such that the short
codes increase. The identifier of this ballot is the hash of the per-
muted matrix. The permuted matrix, the short codes and the ballot
identifier are published on the board, as well as zero-knowledge
proofs that this matrix is the encryption of a permutation (cf Fig-
ure 1c). Ballots (shown on Figure 1b) are paired and the pairings are
made public. Each voter receives by postal mail two paired ballots.
They can verify that the ballots are well-formed by looking if the
information on the board corresponds to what they have received.
Then they simply choose one of the ballots, tick the box of their
choice and send it by postal mail to the cast officer. The cast officer
publishes the ballot identifier and the chosen short code, that a
conscientious voter can verify. Finally, the trustees multiply all the
selected encryptions and decrypt the product, giving the result of
the election. The printer also reveals the random numbers used to
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encrypt the unused ballots; auditors can then check that they were
well-formed.

2.2.2 Instantiation of the attacks. Most of the generic attacks apply
to the STROBE protocol, in different threat models.

Full privacy breach.The printer is supposed to not retain the link
between voters and ballots. However, there is no way to verify that
a dishonest printer indeed deleted it and if they have not, then they
can learn the correspondence between plaintext votes and voters,
by looking at the selection code and recalling to which candidate it
corresponds.

Targeted privacy breach. If Charlie is a dishonest voter and wants
to learn Alice’s vote, he can copy his ballot and drop the original one
in Alice’s mailbox. In STROBE, ballots are all similar and unrelated
to the voters, so that Alice has no way to distinguish her ballot
from Charlie’s. If she votes with the latter, Charlie will learn her
vote by reading the selection code on the public board.

Privacy breach by complaints. The cast officer collects all the
ballots. They know all plaintext votes, but they ignore the link
between those votes and the voters. A compromised officer can
willingly drop ballots for a specific candidate.Then, they can deduce
that all the voters who complain have voted for this candidate.

Vote flooding. Using the public information from Figure 1c, an
attacker can produce fake ballots, indistinguishable from real ones.
They just have to rank the selection codes in a random order and
send the forged ballot to the polling station to have it counted. This
will artificially raise the turnout, as well as the score of the smaller
candidates.

Alter votes of non-verifying voters. The cast officer receives all
plaintext votes and have to record the corresponding selection
codes on the public board. A compromised officer can drop the
ballots they dislike or record other selection codes instead. This will
be undetected if the corresponding voters do not verify.

Among all of these, Full privacy breach and Alter non-verifying
voters are acknowledged in the STROBE paper: it is made very clear
by the author that the printer is assumed to be honest, and there is
no claim of verifiability if the voter does not verify. The other three
attacks seem to have been overlooked by the author.

2.3 Other protocols
RemoteVote and SAFE Vote [12] are two postal voting schemes
inspired by STROBE. The goal was to gain everlasting privacy as
well as some usability. The approach proposed in [15] by Devillez et
al. still relies on return codes, but goes further away from STROBE.
It has the highest security features among the 3.

2.3.1 RemoteVote. The main difference between STROBE and Re-
moteVote is that each voter receives a single ballot instead of two, to
improve usability. The ballot contains the two columns of selection
codes that would have been on the two STROBE ballots. Similarly,
one of these columns is spoiled after the election for verification
while the second is used for tallying. But unlike in STROBE, it is not
the voter who arbitrarily chooses which column is audited but it is
the result of a computation with the data of the ballot and a nonce
randomly chosen after the election by a third party. This makes a
clash attack possible.

If the printer suspects several voters to cast the same vote, they
may provide them with the same ballot. The polling station cannot
distinguish this from one voter sending multiple copies of their
ballot. Since which column is spoilt is the result of an unpredictable
but deterministic computation, it is the same for all the copies of
the ballot so each voter will be able to conduct the verifiability even
if only one vote has been recorded for all of them.This attack would
have been detected in STROBE, where the voters with the same
two ballots would have cast either one or the other. The polling
station would have accepted only one of them and the voters that
used the other one could have detected it.

Another major difference with STROBE is that, in RemoteVote,
there is no permutation. Hence, from the data that is published,
anyone can create a fake ballot, and vote for the candidate of their
choice. Therefore, the vote flooding attack that was present in
STROBE becomes a more powerful ballot stuffing attack.

2.3.2 SAFE Vote. In this variant, each ballot contains a single col-
umn of selection codes. The randomness that allows to perform the
audit for this ballot is printed directly on the ballot, but is concealed
behind a scratch-off surface.

This does not really change the situation. The clash attack by
the printer works exactly the same as in RemoteVote. Also, since
the audit is not performed by the authorities, anyone can use the
public data to create fake ballot, putting random values behind the
scratch-off. We therefore have the same ballot stuffing attack as in
RemoteVote.

2.3.3 Devillez et al.’s protocol. In this protocol, the printer gener-
ates all the voting material to be sent to voters, together with the
associated cryptographic data to be sent to other parties. The paper
ballots received by the voters contain one selection sheet, that is
very similar to a classical paper ballot, with the only addition of
a random token tk. The voter ticks the boxes near the candidates
they select, and they send back this sheet by post. They also receive
from the printer a list of return codes, 2 for each candidate, corre-
sponding to whether or not they selected this candidate. They also
get the value hash(tk).

After the result is announced, the voters can contact (electron-
ically) a verification server, send them hash(tk), and they will re-
ceive back the return codes corresponding to their choices.

In order to make this process secure, the verification server
does not receive directly the return codes from the printer. Instead,
the printer will send them encrypted to talliers, who share the
decryption key. These talliers operate after the tally; they collec-
tively decrypt only the relevant return codes and send them to the
verification server.

We skip many important details, but the outcome is that the
scheme is claimed to be secure as soon as there is no collusion
between two authorities.

We discovered however that a clash attack is still possible to
be mounted by the printer, if it colludes with the post. Indeed, if
the printer suspects that two voters will vote in the same way, it
can send them exactly the same voting material, and send to the
authorities the same cryptographic data for these voters. In this
attack, the post will drop one of the ballots sent by those two voters.
Still, the verification server, will answer correctly to both voters,
based on the cryptographic material received from the election
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Candidate Encryption Code
Alice (enc(1), enc(0), enc(0), enc(0), enc(0) ) Q4
Bob (enc(0), enc(1), enc(0), enc(0), enc(0) ) D6

Charlie (enc(0), enc(0), enc(1), enc(0), enc(0) ) L7
None (enc(0), enc(0), enc(0), enc(0), enc(1) ) E1

(a) Structure of the encryption

Alice � Q4
Bob � D6
Charlie � L7
None � E1

1960-857c-c5db-
3939-2711-95e3

(b) Paper ballot

Encryption Code
(enc(0), enc(1), enc(0), enc(0), enc(0) ) D6
(enc(0), enc(0), enc(0), enc(0), enc(1) ) E1
(enc(0), enc(0), enc(1), enc(0), enc(0) ) L7
(enc(1), enc(0), enc(0), enc(0), enc(0) ) Q4
Ballot code : 1960-857c-c5db-3939-2711-95e3

(c) Information published on the board

Figure 1: Voting material in the STROBE protocol.

STROBE [4] RemoteVote /
SAFE Vote [12]

Devillez et al. [15] Vote&Check
(this work)

# of authorities (excl. post and auditor) 2 + 1 2 + 1 4 + 1 3
public board yes yes no yes

pr
iv
ac
y

att
ac
ks

full privacy breach 8 8 4 4

targeted privacy breach 8new 8new 4 4

privacy breach by complaintsnew 8 8 8 8

ve
ri
fia

bi
lit
y

att
ac
ks

ballot stuffing 4 8new 4 4

vote flooding 8new 8new 4 4

clash attack 4 8new 8∗new 4

alter non-verifying voters 8 8 8 8

weak eligibilitynew 8 8 8 8

universal verifiability 4 4 proxy 4

Table 1: Application of the generic attacks to postal voting schemes. For the number of authorities, we indicate with a bold font “+ 1”,
when one authority is actually a set of thresholdized authorities, typically the decryption trustees. The symbol 4 means we did not find this
kind of attack on the protocol, while the symbol 8 indicates that the protocol is subject to this attack. The symbol new means that this attack
is our finding; otherwise, it was part of the threat model of the authors of the said protocol. When the symbol qualifies a property, it means
that this is a refined security property that we introduce in this paper. Finally, the clash attack for [15] is marked with ∗, because we believe
it can be fixed by a simple additional verification.

office. Therefore, only one ballot will be counted instead of two. A
possible fix would be to ask the verification server to ensure that
there are no duplicate in the data they received from the printer,
but we did not fully check that this is enough.

Compared to our Vote&Check protocol, other more fundamental
drawbacks of the protocol by Devillez et al. are the following. First,
it is not really universally verifiable; one has to trust authorities for
this property. Furthermore, it uses more advanced cryptographic
tools, such as a distributed threshold key generation, for the talliers.
Finally, it requires more authorities than in Vote&Check, which
might be a problem for practical deployment.

3 VOTE&CHECK
3.1 High level description
3.1.1 Participants. The Vote&Check protocol involves the follow-
ing participants:

• Printer. This entity is responsible for sending by postal mail
the voting material to the voters.

• Tracker Server. This server provides a tracker to each voter,
to let voters check that their ballot is counted.

• Election Office. This entity receives the postal ballots from
the voters, and in the end publishes the votes in clear, to-
gether with verification data.

• Public board. A publicly readable place, that contains the
result and verifiability data.

• Auditors. One or several entities who perform consistency
checks of what is written on the board.

• Voters.The voters are assumed to have a valid postal address,
and, for verifiability, an electronic way to receive securely
data from the Tracker Server, and to read the public board.

In the description of Vote&Check and in its security analysis,
we will often separate the (honest) voters in two groups: those
who perform all the optional verifications steps, thus requiring
an electronic device which is able to scan QR-codes and which is
connected to the Internet, and those who stick to the traditional
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Tracker Server

Printer

Voter

Election Office

Bulletin Board
…
…
…
…
…

Setu
p in

form
atio

n

Verif. information

Tracking numbers

Empty ballot

Filled ballot

Verif. information

Valid pseudonyms

Result

Alice �
Bob �
Charlie �
David �
None �

Figure 2: Vote&Check protocol overview (left part). A different color is assigned to each phase: red for the setup phase, blue for the
voting phase, green for the tally phase, and violet for the verification phase. Dotted lines are optional: voters can still vote if they are offline.
Example of a ballot (right part). The QR-code contains the voters’s pseudonym 08 , the ballot’s credential 28 , and signatures by the Printer.
The empty box is for the voter to write their nonce =8 .

steps that require only pen and paper. Voters in the first group are
called conscientious, and the others are called offline.

3.1.2 Protocol phases. The protocol is divided into several phases:
setup, vote, tally and verification, as shown on Figure 2. During the
setup, authorities send material to voters: they get voting material
(right part of Figure 2), by post, from the Printer and (optionally)
receive electronically verification material from the Tracker Server.
The Tracker Server also sends tracking information to the Election
Office. During the voting phase, voters fill in their paper ballot with
a pen, and send them, by post, to the Election Office. During the
tallying phase, the Election Office performs some validity checks
and publishes every valid vote next to the corresponding tracking
information. During the verification phase, voters can verify that
their vote has been recorded using their verification material.

3.2 Detailed description
The details of each phase of the protocol, with the flow of messages
between the participants, are summarized in Figure 3.

3.2.1 Channels and authentication. The protocol relies on secure
channels between the participants, which guarantee integrity, au-
thenticity and confidentiality of all messages. The exceptions are
that reading the board does not require authentication and that the
postal channels are anonymous.

Writing on the board requires authentication and we assume
that each piece of data on the board is available together with the
identity of the writer of this data, which could be implemented
by each writer signing the data that they put on the board. We let
these implicit, because we consider them as part of the public board
functionality.

Furthermore, the Printer needs to sign some material that is sent
to the voter, and this is made explicit in the protocol. Any classical
signature scheme, like Schnorr or ECDSA, can be used, as long as it
fits in a QR-code. The public key of Printer is assumed to be known
by all parties. We denote by sig the Printer’s signature function,
and we omit the key. We also omit the fact that the signature
must be bound to a precise election, so that it can not be replayed,
for instance if there are two rounds of elections with the same

participants. Therefore the notation sig(G) that we will use from
now must be understood as sigsk(Printer) (context, G). The protocol
will also use a cryptographic hash function, denoted by hash.

3.2.2 Setup phase. Let V = {+8 , 8 ∈ I} be the set of all = voters,
where I = [1, =]. We assumeV is public.

First, for every voter +8 , the Tracker Server generates a pseudo-
nym 08 (a nonce) and a tracker C8 (an other nonce). The Tracker
Server sends their pseudonym and tracker (08 , C8 ) to each voter
+8 over an electronic channel. The Tracker Server also sends the
permuted list {(0c (8 ) , Cc (8 ) ), 8 ∈ I} to the Election Office, where c
is the permutation over I that sorts the 08 alphabetically. Finally,
the Tracker Server sends the list ((+8 , 08 ), 8 ∈ I) to the Printer.

The Printer checks that the pseudonyms are pairwise distinct and
that the identities match the already published listV . If it is the case,
they generate for each voter+8 a credential 28 and send to+8 over the
postal channel a ballot containing 08 , 28 , sig(08 ) and sig(08 , 28 ) in a
QR-code, plus a sheet that contains sig(08 , 28 ,+8 ). This last signature
is sent in a separate sheet so that the Election Office will not receive
it, to protect voter’s privacy. Finally, the Printer publishes the list
A = (0c (8 ) , 8 ∈ I) on the board. The Election Office checks that
this list matches the one they received from the Tracker Server.

3.2.3 Voting phase. Each voter receives by post the two sheets
of paper sent by the Printer: their paper ballot and the additional
paper with just a signature. Each conscientious voter, with their
verification device, also receives their verification material from the
Tracker Server and verifies that the three signatures on the ballot
and on the additional paper are correct and consistent, that their
name appears (signed) on the additional sheet, and that the pseu-
donym on the ballot matches the one on the verification material
and that this pseudonym is present in the list A from the board.

The voting procedure itself, done by both conscientious and
offline voters involves just pen and paper. They pick a short nonce
=8 and write it on their ballot. Then, they tick the box corresponding
to their vote E8 and send the ballot to the Election Office via the post.
Combining the hand-written and the electronic data contained in
the QR-code, the ballot contains (08 , 28 , E8 , =8 , sig(08 ), sig(08 , 28 )).
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{(+8 , 08 ), 8 ∈ I}
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check sig
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P

B,PB
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{(0c (8 ) , Cc (8 ) ), 8 ∈ I}

(08 , 28 , sig(08 ), sig(08 , 28 ))

sig(08 , 28 ,+8 )

(08 , 28 , E8 , =8 , sig(08 ), sig(08 , 28 ))

B = {(hash(2d (8 ) , Cd (8 ) ), Ed (8 ) , =d (8 ) ), 8 ∈ Ieff }

P = {(0c ′ (8 ) , sig(0c ′ (8 ) )), 8 ∈ Ieff }

Figure 3: Vote&Check protocol. Dotted lines and boxes represent optional steps for the voter. The conscientious voters perform them,
while the offline voters do not.
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The nonce =8 is chosen and written by the voter and must there-
fore be short. However, it must be large enough to ensure that a
clash attackwill go undetectedwith only a small (but non-negligible)
probability. We typically suggest =8 to be a 3-digit number.

3.2.4 Tally phase. The Election Office controls the signatures on
the received ballots and discards those with incorrect ones. They
also discard ballots with a pseudonym 08 that does not belong to
A, as seen on the board. Lastly, they discard every ballot using a
pseudonym that has already been used. For every remaining ballot
(08 , 28 , E8 , =8 , sig(08 ), sig(08 , 28 )), the Election Office finds the corre-
sponding couple (08 , C8 ) in the list received from the Tracker Server
during setup, and inserts (hash(28 , C8 ), E8 , =8 ) in the list B of valid
votes and (08 , sig(08 )) in the list P of used pseudonyms. To publish
the result, the ElectionOffice publishes the shuffled list of valid votes
B = (hash(2d (8 ) , Cd (8 ) ), Ed (8 ) , =d (8 ) ) where d sorts the hash(28 , C8 )
in alphabetical order. The index 8 belongs to Ieff = [1, =eff ] where
=eff is the size of B. The Election Office also publishes the list of
used pseudonyms P = (0c (′8 ) , sig(0c ′ (8 ) )), where, as for A, c ′
sorts the 08 in alphabetical order.

The Printer and the Tracker Server can each reconstruct the
voter list by checking which pseudonyms 08 have been used.

3.2.5 Verification phase. Auditors verify that the list of used pseudo-
nyms and the list of valid votes have the same length, that each
pseudonym is signed and belong to A, and that A has a size equal
to the number of registered voters. Each conscientious voter verifies
that their vote is in the list of valid votes.

3.3 Security claims
3.3.1 Privacy. Vote secrecy is guaranteed as long as at least two
authorities among the Tracker Server, the Printer and the Election
Office are honest. The key to this is that the information published
on the board can not be tracked back to voters without data coming
from both the Tracker Server and the Printer.

Not surprisingly, as soon as two authorities collude, they can
break privacy, as we now explain briefly. If the Tracker Server
and the Printer collude, they hold all the information that voters
use to perform the verification: the Tracker Server knows (+8 , C8 ),
the Printer knows (+8 , 28 ) and on the board stands (hash(28 , C8 ), E8 ).
Similarly, the Election Office knows (C8 , E8 ) and (28 , E8 ) so they may
collude either with the Tracker Server or the Printer to break the
confidentiality.

Moreover, Vote&Check is subject to privacy breach by com-
plaints as introduced in Section 2.1: if the Election Office removes a
ballot for candidate �, it can then observe who complains: the com-
plaining voter has voted for �. This can be scaled to several voters
by removing several ballots for �. Instead, Vote&Check ensures
privacy in the context of anonymous complaints, where we assume
that complaining voters can anonymously contact a third party
(a judge for example). In practice, a voter will lose privacy if they
complain publicly, for example on a social network. But they will
more reasonably be instructed to contact some dedicated authority
that does not know which ballots have been removed.

3.3.2 Verifiability. Vote verifiability covers four main properties:
cast-as-intended, i.e. the ballot cast by the voter contains their in-
tended vote; individual verifiability, i.e. the ballot registered in the

ballot box is the ballot cast by the voter; universal verifiability, i.e.
the result corresponds to the ballots in the ballot box; eligibility
verifiability the ballots only come from legitimate voters.

These sub-properties are intuitive but they assume a particular
setting (e.g. a global ballot box) and they may miss some attacks
such as clash attacks [19] where two voters agree on the same bal-
lot. Moreover, they do not cover the case of offline voters, or more
generally, the case of voters who do not verify, while it unfortu-
nately corresponds to the most frequent case. Hence instead, a more
general notion of end-to-end verifiability has been proposed [11].
It guarantees that the result of the election is the disjoint union of
the following:

• all the votes of conscientious voters. This combines the indi-
vidual verifiability property and no clash attack.

• a subset of the votes of honest voters who did not verify
their votes (called offline voters). Intuitively, an attacker may
always drop such votes hence at best a subset of these votes
will be counted.

• a set of votes corresponding to the corrupted voters (as many
as the number of corrupted voters).

In Vote&Check some properties come for free: the voter sees
their vote on their ballot hence they are guaranteed that their ballot
contains their intended vote. Moreover, anyone can count the votes
on the ballot box since they appear in clear.

Since every conscientious voter can verify that their vote stands
on the board next to their tracker hash(28 , C8 ) and their anti-clash
number=8 , then individual verifiability is guaranteed in Vote&Check,
even if all authorities are dishonest. To obtained end-to-end verifia-
bility, one must also control that no votes can be added for offline
voters (or absentee voters). In Vote&Check, end-to-end verifiability
is guaranteed only if both the Printer and the Election Office are
honest. Let us explain why this the case. If the Printer is compro-
mised, since they have all the voting material, they can vote in
place of absentees. Also, if the Election Office is corrupted, they
can record every cast vote E8 into another vote E ′

8
. If the voter +8

does not perform the verification, this will be undetected. However,
this attack no longer works if every voter that cast a ballot verifies.

In order to show that these are the only obstructions to end-to-
end verifiability, we introduce a variant of end-to-end verifiability,
called weak verifiability that now tolerates that votes from offline
voters can be modified. Then Vote&Check guarantees weak verifia-
bility as long as the Printer is honest.

4 SECURITY ANALYSIS
We formally prove our security claims using ProVerif [6], one pop-
ular tool dedicated to the analysis of security protocols. Moreover,
ProVerif now comes with a specialized framework [10] for proving
verifiability of voting protocols.

4.1 ProVerif
ProVerif analyzes the security properties in a symbolic model where
messages are modelled with terms, roles by processes, and the
network by input/output on communication channels.

Terms are inductively defined as atomic values, e.g. n,m,k, or
function symbols, representing cryptographic primitives, applied to
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terms, e.g. f(t1,...,tn). Rewriting rules and/or equational theories
equip terms to model the functional properties of the primitives.

More concretely, a digital signature is modelled as follows: we
define a symbol pk() of arity one that produces a public verification
key from a secret signing key sk, and a symbol sign of arity 2 that
produces a signature from a message m and a key sk. Checking a
signature is modelled by a symbol check and a rewriting rule that is,
for all m and sk, the term check(sign(m,sk),m,pk(sk)) rewrites as
true. By default, ProVerif defines true and false two atomic value
modelling boolean values. Moreover, it defines rewriting rules to
model logical operations such as conjunction (b1 && b2), and dis-
junction (b1 || b2).

Communication channels are declared public or private. In the
former case, the attacker has full control over it. It can read, inter-
cept, modify, or inject messages. On the contrary, when private, the
channel guarantees confidentiality, integrity, and authenticity.

Finally, the different roles of the protocol are modelled by pro-
cesses that describe the actions done by each agent. The command
new n allows to create a fresh nonce. These are atomic values, un-
known from the attacker and indistinguishable from each other.

Communications are modelled by input and output: in(c,x) in-
puts a message on channel c; the variable x being instantiated by
the input message upon reception. The command out(c,m) outputs
message m on channel c. Agents can perform tests with the com-
mand if b then P else Q. For instance, the term b can be of the
form check(...)which is expected to reduce to true when the check
succeeds, or simply an equality test, m1 = m2. Another command
can be used to perform tests: let (a,b) = m in P allows to test
whether m is a pair and in that case extracts its two components.

Using tables ProVerif can model stateful protocols that rely on
an append-only memory. Given a table tbl, a process can insert
an element m using the command insert tbl(m). It can then look
for a specific entry using the command get tbl(x) suchthat b in

P else Q. This command executes to P if there is an entry m in the
table such that b (where occurrences of x are replaced by m) reduces
to true. Otherwise, it executes to Q. Tables are extensively used
in the verifiability framework we are building on, to record data
generated during the initialisation of the protocol.

Finally, ProVerif allows to verify security protocols in rich scenar-
ios by defining concurrent and replicable processes. The command
P|Q denotes the concurrent execution of P and Q, and !P denotes
that P can be replicated as often as desired. Concretely, !P can be
rewritten as P|!P and is used, for instance, to model that there is
an arbitrary number of voters or elections.

4.2 Model
Most actors are modelled in a natural way. For example, the role
of the Voter is represented by the process depicted in Figure 4.
The voter receives their voting material in their postbox, modelled
by the voter_letterbox(voter) channel. The material includes in
particular their pseudonym a and their credential c.They then check
that the material is valid in order to avoid targeted privacy breach,
as defined in Section 2.1. This is modeled here by checking the
cryptographic signature to represent the fact that the voter receives
some authenticated material. In practice, we can assume that the

1 let Voting(voter, v) =

2 in(voter_letterbox(voter), (a, c, sig1, sig2, sig3)); (* The

voter gets their ballot in their postbox *)

3 if check(sig1, a, pk(sk_Pri)) then

4 if check(sig2, (a, c), pk(sk_Pri)) then

5 if check(sig3, (a, c, voter), pk(sk_Pri)) then

6 in(trackerserver_to_voter(voter), (a', t)); (* Get the

verification material from the Tracker Server *)

7 if a = a' then (* Check that the identifier on the ballot is

8 correct *)

9 new n;

10 new date_sent;

11 out(deposit_letterbox, ((a, c, sig1, sig2, v, n), date_sent)); (*

Send their ballot *)

12 in(bulletin_board, (hashv, =v, =n));

13 if hashv = hash(c, t) then event Happy(voter)

14 else out(public, complaint).

Figure 4: Process for the voter.This is a simplified version: for
privacy the verification steps have to be modified (see Section 4.3)
and for verifiability, the use of the framework imposes some changes
as well (see Section 4.4).

voters made a visual inspection of the received material, looking
for example for an official stamp. The case where the voter may be
fooled into using fake voting material is modeled by considering
a dishonest Printer. Then the (conscientious) voter contacts the
Tracker Server in order to get its pseudonym and tracker, and it
checks that it corresponds to the pseudonym received from the
Printer. This check is optional and won’t be made by offline voters.
The voter then simply selects their vote v and writes some (small)
random number n on their voting sheet and send it by mail to the
Election Office. This is modelled by sending a, c, sig1, sig2, v,

n on the channel deposit_letterbox. Finally, once the election is
tallied, the conscientious voter checks that their hashed tracker
hash(c, t), their vote v and their random n appear on the ballot
box. They raise a complaint otherwise.

Physical channels. Because our protocol relies on physical chan-
nels, we have to model the postbox. For voters, this is a special
channel voter_letterbox(V) where anyone can write (anyone can
send a letter to a dedicated voter) but only the voter V can read
(only the voter can open their postbox).This is modelled by defining
voter_letterbox as a private function (that the attacker cannot use)
but we let the attacker posts any message with an explicit process
that writes anything on Alice’s mailbox:
!(in(public, x: bitstring); out(voter_letterbox(Alice), x))

Dishonest authorities. Since Vote&Check involves 3 authorities
(Tracker Server, Printer, Election Office), we consider multiple cor-
ruption scenario (23 = 8 in total) depending on who is honest. In
most cases, this is easy to model: a corrupted party simply gives all
its secrets to the adversary. The case of the Election Office requires
more care. Indeed, when it is honest, it is in charge of writing on
the Bulletin Board (BB). When dishonest, it can then freely control
the content of BB, up to the fact that BB is monitored by Auditors.
The Auditors check in particular that the number of accepted votes
corresponds to the number of valid signatures. We model this by
letting a dishonest Election Office write on BB only if it can first
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produce a pseudonym 0 that is properly signed by the Printer. This
lets the Election Office add one element in B. To ensure that the
Election Office does not reuse the same signed pseudonym several
times, during the setup phase, the Printer outputs all 08 on a private
channel token_list and the Election Office needs to input the 08
from this channel, consuming them one by one.

4.3 Privacy
Intuitively, vote privacy is preserved if an attacker cannot distin-
guish the case where Alice votes 0 and Bob votes 1 from the case
where the two votes are swapped [14]. This can be written

Voter(Alice,0) |Voter(Bob,1) |( ≈ Voter(Alice,1) |Voter(Bob,0) |(

where ( represents the overall system that runs in parallel with the
processes of Alice and Bob. The relation % ≈ & is an observational
equivalence [1] that intuitively states that an adversary cannot
distinguish % from & . The privacy property can equivalently be
written in ProVerif as follows

Voter(Alice,choice[0,1]) | Voter(Bob,choice[1,0]) | (
in a way that highlights the only few differences from the two
processes. If ProVerif returns true, then the process instantiated
with the left part of the choice operator is equivalent to the process
instantiated with the right part of the choice operator.

Anonymous complaints. As explained in Section 3.3.1, Vote&Check
is subject to privacy breach by complaints: the Election Office or
the postman in charge of delivering the cast ballots could destroy
some ballots for a certain candidate � and observe who complains.
We hence prove privacy under the assumption that voters complain
anonymously. This is modeled by a “double complaint”: in the same
way that the vote of Alice is protected by Bob voting in another way,
the privacy of a complaining Alice is protected by a complaining
Bob voting in another way. Hence we remove the lines 12 to 14
of the process Voter presented in Figure 4 and we replace it by a
process Verification where Alice and Bob simultaneously check
their ballots and a complaint is raised if any of the two checks fail,
without letting the attacker knows which test failed.

1 let Verification =

2 in(voter_to_verifier(Alice), (hashA, vA, nA));

3 in(voter_to_verifier(Bob), (hashB, vB, nB));

4 in(bulletin_board, (hash0, v0, n0));

5 in(bulletin_board, (hash1, v1, n1));

6 if (hashA, vA, nA) = (hash0, v0, n0) &&

7 (hashB, vB, nB) = (hash1, v1, n1)

8 ||

9 (hashA, vA, nA) = (hash1, v1, n1) &&

10 (hashB, vB, nB) = (hash0, v0, n0)

11 then event Happy(Alice); event Happy(Bob)

12 else out(public, complaint).

The verification done by Alice and Bob is simulated by looking at
the Bulletin Board and using with their respective data received on
channels voter_to_verifier(Alice) and voter_to_verifier(Bob).
The disjunction in lines 7-10 handles the fact that the ballots of
Alice and Bob may appear in any order on the Bulletin Board.

Offline voters. Voters may not want to contact the Tracker Server
before casting their vote. In that case, they may be subject to a
targeted privacy attack if the Printer is dishonest. Indeed, assume
that the attacker wants to learn Alice’s vote. A dishonest Printer

could print official voting material with Alice’s name on it but with
Charlie’s pseudonym a'. Then the dishonest voter Charlie could use
his own verification mechanism, and in particular his tracker t' to
find out Alice’s vote that will be associated to hash(c,t'). We show
however that this is the only additional risk w.r.t. privacy for offline
voters. That is, we prove privacy for offline voters when the Printer
is honest and either the Tracker Server or the Election Office is
honest. Offline voters are easily modeled by removing all optional
checks (process Verification and line 8 of process Voting).

Multiple permutations. In Vote&Check, vote privacy is not en-
sured through cryptographic mechanisms such as encryption. In-
stead, it relies on multiple shuffles:

• the ballots are implicitly shuffled by the postal services when
the voters send back their ballots to the Election Office. This
prevents the Election Office from learning who sent what;

• the Printer and the Tracker Server shuffle respectively the
08 and the (08 , C8 ) (possibly by sorting them alphabetically).
This prevents the Election Office from linking the ballots to
the actual identities;

• the Election Office handles B and P separately, with a dif-
ferent shuffle, which prevents the Tracker Server and the
Printer from linking the votes to the voting material.

All these shuffles need to be properly modeled to prove privacy.
This can be easily done taking advantage of the non-determinism in
ProVerif. For example, the following process receives two messages
on a channel 2 and outputs them in some non-deterministic order:

in(c,x1);in(c,x2); (out(c,x1)|out(c,x2)).

An attacker does not know, a priori, if G1 is output first or second.
The issue is that ProVerif actually does not prove observational

equivalence but diff-equivalence [7], a stronger notion that checks,
step by step that the two processes take exactly the same action. In
particular, if ProVerif has to prove %1 | %2 ≈ &1 | &2, it will instead
try to prove that any action of %1 can be mapped to an action of&1
(and not &2) and that any action of %2 can be mapped to an action
of &2 (and not &1). This can be solved by asking ProVerif to prove
%1 | %2 ≈ &2 | &1 instead, if one thinks that the correspondence
will work better. Hence we had to guide ProVerif by permuting
some processes at the right place, still making sure that we do not
change the model. To do this, we treated separately the two voter
processes of Alice and Bob (for which privacy is proved) from the
other voter processes that did not require this manual adjustments.

4.4 Verifiability
End-to-end verifiability has been informally defined in Section 3.3.2.
It can be stated as correspondence properties between events, which
are process annotations used to identify specific steps of the proto-
col. The main difficulty lies in the fact that the definition requires to
count the votes, which is a difficult task for most of the verification
tools in the symbolic setting.

Verifiability framework. A framework has been recently devel-
oped [10] in order to prove end-to-end (E2E) verifiability. The au-
thors of [10] leverage injective correspondence queries [6] (a re-
finement of correspondence properties supported by ProVerif) to
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encode E2E verifiability. They show that proving E2E verifiability
is equivalent to proving the following two properties:

• individual verifiability: all votes of voters who verified should
be counted.
event(Finish()) && inj-event(Verified(v_id,v)) ==>

inj-event(Counted(v))

• universal verifiability: counted votes come from honest vot-
ers that did cast these votes, plus a set of valid votes, whose
size is bounded by the number of dishonest voters
event(Finish()) && inj-event(Counted(v)) ==>

inj-event(HV(v_id)) && event(Verified(v_id,v))

|| inj-event(HNV(v_id)) && event(Voted(v_id,v))

|| inj-event(Corrupt(v_id))

The events are placed as expected: Counted(v) is emitted as soon as
a vote is counted during the tally phase; Finish() occurs once the
tally is over, events Voted(v_id,v) and Verified(v_id,v) happen
respectively when voter v_id has sent their ballot, resp. has verified
their vote on the bulletin board. The events HV(v_id) comes from
the framework’ terminology and distinguish respectively between
the conscientious voters, the offline voters, and the dishonest voters.

Vote&Check achieves E2E verifiability, that is individual and
universal verifiability, when both the Printer and the Election Office
are honest.

Weak universal verifiability. Unfortunately, universal verifiability
no longer holds as soon as the Election Office is dishonest. Indeed,
when receiving a ballot from an offline voter, it could easily modify
the candidate’ name. Note that the Election Office does not know
the origin of a ballot so it has to bet that the corresponding voter
will not check. We therefore consider a weaker version of universal
verifiability, where an attacker is allowed to modify the votes of
voters who do not verify. This is the notion of verifiability consid-
ered in [21] for example. To model weak universal verifiability, we
consider a slightly modified property where votes of non verifying
voters can be modified.
event(Finish()) && inj-event(Counted(v)) ==>

inj-event(HV(v_id)) && event(Verified(v_id,v))

|| inj-event(HNV(v_id)) && event(Voted(v_id,v')) (*v' instead of v*)

|| inj-event(Corrupt(v_id))

Vote&Check achieves weak universal verifiability as soon as the
Printer is honest. Conversely, a dishonest Printer can always vote in
the name of absentees and hence break weak universal verifiability.

Finally, even when (weak) universal verifiability is broken, indi-
vidual verifiability is preserved in all cases: voters who verify are
guaranteed that their votes will be counted. When all parties are
corrupted, individual verifiability relies solely on the nonce chosen
by the voters. However, if either the Printer or the Tracker Server
is honest, we show that individual verifiability holds even if voters
all use an empty nonce.

Identifying public identifiers. We had to adapt our model to make
it fit into the framework. In particular, the verifiability framework
assumes that each voter can be associated to a public identifier and
that this public identifier can then be extracted from a ballot. The
public identifier is typically the signing key of the voter or another
form of voting credential. However, in Vote&Check, there is no such
public identifier. A natural candidate is the credential 2 provided

by the Printer. However, there are immediately two issues. First,
2 cannot be read from a ballot of the form ℎ, E, = since it is hidden
by the hash. Second, when the Printer is dishonest, the credential
can no longer be trusted. Indeed, a dishonest Printer could give the
same credential to several voters, in order to try to perform a clash
attack (see Section 2.1.2). Instead, one could reason on the tracker C
provided by the Tracker Server. But again, the tracker cannot be
trusted if the Tracker Server is compromised. Actually, when both
the Printer and the Tracker Server are compromised, only the fresh
nonce chosen by the voter still provide some verifiability.

To circumvent this issue, we proceed in two steps:

(1) We define as public identifier all material that is used by the
voter, namely 0, hash(2, C), =. Note that it also includes =, the
nonce generated by the voter. This identifier is added in a
table public_identifier by the framework.

(2) We provide a dynamic association between ballots and public
identifiers, depending on the honesty status of each party. In-
tuitively, this association is computed “magically”, knowing
all the private information from all (honest) participants.

We believe that our approach is rather systematic and could be ap-
plied on other voting contexts, when the notion of public identifier
is a blurry concept.

In Vote&Check, we compute this association through the func-
tion get_ident_from_ballot that associates an identifier to a ballot
0, hash(2, C), E, =. Note that 0 and hash(2, C), E, = are published sep-
arately on the bulletin board. When all parties behave honestly,
get_ident_from_ballot returns 0, hash(2, C), = as expected. When
the Printer is honest and the other parties might be dishonest,
given a ballot 01, hash(2, C1), E, =1, we look for a voter that used
the credential 2 provided by the Printer, with an identifier of the
form 02, hash(2, C2), E, =2 and we return 02, hash(2, C2), E, =2 since
this ballot must have been built by the voter that received 2 , hence
identifier by 02, hash(2, C2), E, =2. In case no such voter exist (for
example, 2 has been given to a dishonest voter), then we return the
identifier associated to 01, This is our default case: any accepted bal-
lot can be associated to one of the 0’s since the number of accepted
ballots is bounded by the number of (signed) 0’s. This property is
enforced by the Auditors.

1 letfun get_ident_from_ballot(bal) =

2 let ballot_of_bit((a1,h1, v,n)) = bal in

3 let c1 = getc(h1) in (* returns c such that h1=h(c,_) *)

4 if printer_status = honest

5 then (

6 get public_identifier(_, ident_of_triplet(a2, h2, n2)) suchthat

c1 = getc(h2) in

7 ident_of_triplet(a2, h2, n2)

8 else

9 get public_identifier(_, ident_of_triplet(a2, h2, n2)) suchthat

a1 = a2 in

10 ident_of_triplet(a2, h2, n2)

11 else dummy_ident ) (* this should never happen *)

12 else ... (* all other cases of corruption *)

13 else

14 get public_identifier(_, ident_of_triplet(a2, h2, n2)) suchthat

a1 = a2 in

15 ident_of_triplet(a2, h2, n2)

16 else dummy_ident (* this should never happen *)
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Corruption scenario Privacy Verifiability
Tracker
server Printer Election

office
Offline
voters

Conscientious
voters

Common
lemmas Universal Weak univ. Individual

H H H 4 (12.3 s) 4 (12.3 s) 4 (9.0 s) 4 (0.5 s) 4 (0.6 s) 4 (0.4 s)
C H H 4 (15.7 s) 4 (15.6 s) 4 (9.5 s) 4 (0.4 s) 4 (0.5 s) 4 (0.3 s)
H C H 8 4 (2.1 s) 4 (26.4 s) 8 8 4 (0.3 s)
H H C 4 (0.4 s) 4 (0.4 s) 4 (39.6 s) 8 4 (3.9 s) 4 (0.5 s)
H C C 8 8 4 (6.2 s) 8 8 4 (0.2 s)
C H C 8 8 4 (45.0 s) 8 4 (2.9 s) 4 (0.6 s)
C C H 8 8 4 (32.3 s) 8 8 4 (0.2 s)
C C C 8 8 4 (8.1 s) 8 8 4 (0.2 s)

Figure 5: Security properties. Each line gives a corruption scenarios, where H means that the entity is honest, and C means that it colludes
with the attacker. For each property, the 4 symbol means that it has been proven in ProVerif, in the given amount of time; the 8 means that
we know that there is an attack. The special 4 symbol means that in this case, the individual verifiability holds only if different voters uses
different =, which is weak, since = is short. Privacy holds no matter if = is short or long.

Proving verifiability. The verifiability framework [10] comes with
a library of lemmas that take care of proving individual and uni-
versal verifiability, two injective properties, thanks to a variety of
counters and temporal constraints. However, we detected a small
discrepancy in the framework, acknowledged by the authors. The
framework distinguishes between three types of voters: conscien-
tious voters, honest voters that do not verify (called here offline
voters), and dishonest voters. However, this was inaccurately mod-
eled by first generating a voter and then, later on, assigning it to
one of the three types, at the adversary’s choice. This actually led
to a fourth type of voters: voters that were not yet assigned to
any category but that the adversary could try to use to vote on
their behalf. We corrected this issue by requiring that all voters are
assigned to one of the three types.

Then a remaining issue is caused by our complex
get_ident_from_ballot function that calls the table public_identifier
multiple times, with many else branches. Due to its internal trans-
lations into first order logic, ProVerif does not properly capture
the fact that, whenever a else branch is considered, the previous
conditions in the if branches must be falsified. In particular, if
some term C has been inserted in a table tab and if the term C

satisfies some condition � that appears in a branch of the form
get tab(x) suchthat D ... else event E then the event E can no
longer be emitted in the trace. We prove this implication and we
add as an axiom the conclusion of the implication, as soon as the
assumptions can be proved by ProVerif (as a set of lemmas). This is
formally stated and proved in Appendix B.4.

4.5 Results
All our ProVerif files are available at [3]. The verifiability frame-
work [10] requires to use a special version of ProVerif. We used the
commit cc4f8cde5 of the improved_scope_lemma branch, from
the official development repository. All experiments were run on a
standard laptop equipped with a 4-core Intel i7-8665U CPU, with
16 GB of RAM; the running times are given for this machine. The
resulting analysis is displayed in Figure 5 and confirms our secu-
rity claims. The common lemmas refer to the lemmas provided by
the framework, meant to help proving verifiability, and our own
lemmas needed to infer our new axiom, as explained in Section 4.4.

Vote&Check preserves vote privacy provided that no more than
one authority is corrupted and it always provides individual ver-
ifiability (the votes of conscientious voters are counted). In order
to have full end-to-end verifiability, that is, votes of offline voters
can only be dropped, we need to assume an honest Printer and
Election Office. If we relax to weak verifiability (votes of offline
voters may be changed), then this property holds as soon as the
Printer is honest. Indeed, the Printer possesses the entire voting
material hence it can always vote for absentee voters.

5 DISCUSSION
Vote&Check achieves a better level of verifiability and privacy than
STROBE, RemoteVote and SAFE Vote, while keeping a similar infras-
tructure: all protocols require a printer and a collecting authority
(the Election Office). In Vote&Check, we introduce a Tracker Server,
that replaces the set of decryption authorities used in STROBE,
RemoteVote and SAFE Vote. Compared to Devillez et al, the secu-
rity level is similar since the clash attacks against Devillez et al.
is easily fixable. We however reduce significantly the number of
independent authorities (from 4 + a set of decryption authorities to
3) and we recover full universal verifiability (no proxy).

Vote&Check remains however subject to several attacks.
Privacy breach by complaints.This attack seems unavoidable as soon
as the votes are sent in clear, which is an important feature for us-
ability. The Election Office can selectively remove ballots that vote
for a certain candidate A and see who complains. To circumvent
this issue, one would need to provide a complaint mechanism that
preserves vote privacy, so that voters may be encouraged to launch
false complaints, in order to hide true complaints. This also requires
a robust accountability mechanism to avoid accepting wrong com-
plaints. So in short, there is no easy solution to prevent privacy
breach by complaints.

Weak eligibility. The printer in charge of printing and sending
the material to voters may vote in place of absentees. To improve
on this, one could use several printers that each sends a part of
the voting material. Such an approach has cost and usability issues.
Alternatively, voters may be requested to write down some authen-
tication token, obtained for example through a mobile application.
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This however means that the solution is no longer purely paper
based, which may cause some usability issue.

Alter votes of non verifying voters.The Election Office may always
drop some ballots. If the corresponding voters do not check, this will
remain undetected. This is indistinguishable from the case where
the corresponding voters did not vote. However, in Vote&Check as
well as all the other protocols under study, the Election Office may
not only drop but also simply change a vote for another candidate
that they prefer. Here, we can imagine some room for improvement,
for example adding some authenticated secret data to each voting
option. The Election Office would not know the secret associated
to another vote. This should be carefully design to preserve vote
privacy (and usability).

As future work, it would also be interesting to try to add an
accountability mechanism when voters detect an issue. Another
interesting direction is to design a system that can resist coercion.

Altogether, and even if not perfect, the recent proposals for postal
voting show that it is possible to significantly improve postal voting
in terms of verifiability and vote privacy.
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A RECOMMENDED SIZE FOR THE DATA IN
VOTE&CHECK

To ensure security, some data must be large enough, but others
don’t need to be, and other can’t be, because they involve human
interactions.

• The role of the 08 is to be a pseudonym in order to provide
vote secrecy with respect to the Election Office. The only re-
quirement is that they are all distinct.They could, in principle
be taken as integers in the interval [1, #V].

• The 28 ’s and the C8 ’s must be hard to guess. Furthermore,
all the hash(28 , C8 ) must be distinct (with high probability),
and this can not be checked during setup. Taking them as
uniformly random bit strings of 128 bits makes the result
of the hash function also uniformly random as soon as the
Tracker Server and the Printer are not both dishonest, in
the random oracle model. The probability of collision is then
negligible.

• The nonce =8 is chosen and written by the voter and must
therefore be short. On the other hand, it must be large enough
to ensure that a clash attack will go undetected with only a
small (but non-negligible) probability. We suggest =8 to be a
3-digit number.

This is summarized in Table 2.

B SOUNDNESS OF THE AXIOM
In this section we formally state and prove the soundness of the
axiom, informally mentioned in Section 4.4, and used in the ProVerif
models to prevent the tool from deriving false attacks by over-
approximating else branches.We first recall parts of ProVerif theory
needed to establish our result.

https://anonymous.4open.science/r/vote-and-check-proverif-887F
https://anonymous.4open.science/r/vote-and-check-proverif-887F
https://eprint.iacr.org/2024/926
https://eprint.iacr.org/2024/926
https://www.post.ch/de/ueber-uns/aktuell/2023/wie-die-schweiz-zur-briefwahl-nation-wurde
https://www.post.ch/de/ueber-uns/aktuell/2023/wie-die-schweiz-zur-briefwahl-nation-wurde
https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/-/tree/master/System
https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/-/tree/master/System
https://electionlab.mit.edu/articles/how-we-voted-2020
https://electionlab.mit.edu/articles/how-we-voted-2020


XXX YYYY(X) Véronique Cortier, Alexandre Debant, Pierrick Gaudry, and Léo Louistisserand

Notation Role Created by Size (bits)
08 pseudonym Tracker Server log(#V)
28 credential Printer 128
C8 tracker Tracker Server 128
=8 voter’s nonce Voter 10

Table 2: Elements involved in a ballot and its verification.

While ProVerif defines an operational semantics between con-
figurations, for sake of simplicity and understandability, we only
consider abstract traces made of events and predicates that high-
light specific actions. Mapping executions in ProVerif semantics to
our abstract traces shall be straightforward. Interested readers can
refer to [6] for a comprehensive description of ProVerif theory.

B.1 Terms
Messages are modelled with terms that can either be a variable
G ∈ X, a name = ∈ N , or a function symbol applied to terms,
i.e. 5 (C1, . . . , C=) where C1, . . . , C= are terms and 5 /= ∈ Σ a function
symbol of arity =. The set of function symbols Σ is split in two
disjoint subsets: Σ2 that contains constructor symbols, and Σ3 the
destructor symbols. Without loss of generality, we assume that
{true, false} ⊆ Σ2 and that they represent the two boolean values.

The set of messages is denoted T (Σ,X ∪ N). A term is said
destructor-free if it is does not contain destructor symbols. A ground
term C is a term that does not contain variables, i.e that belongs
to T (Σ,N). We denote E0AB (C) the set of variables occurring in C

(E0AB (C) = ∅ when C is a ground-term). Terms can be instantiated
thanks to substitutions: a substitution f is a mapping from variables
to terms, denoted f = {G1 ↦→ D1, . . . , G= ↦→ D=}. Given a term C

and a substitution f , if E0AB (Cf) = ∅, we say that f is a grounding
substitution for C . We say that a substitution f′ extends f if f′ =
f ∪ {~1 ↦→ E1, . . . , ~< ↦→ E<} and ~8s are distinct from G8s.

The term algebra is equipped with a finite set R of rewriting
rules. A term C can be rewritten in a term C ′ if there exists a position
? in C , a rewriting rule ; → A , and a substitution f such that C |? = D,
D = ;f , and C ′ is equal to C in which the term D at position ? has
been replaced by the term Af .

We only consider sets of rewriting rules that yield a convergent
system. Given a term C , we thus note C ⇓ the destructor-free term
obtained after the application of the rewriting rules on C . When no
such term exist, we denote C ⇓= fail.

B.2 Protocol
A protocol is defined by its (infinite) set of execution traces. We
note E a specific set of function symbols used to define events, and
T1; a specific set of function symbols used to define tables. For our
reasoning, we only need to consider some particular actions in a
protocol execution.

More precisely, a trace is a finite sequence of actions of the
following form:

CA := 0 empty trace
| event(� (4 (D1, . . . , D=))) .CA event
| insert(C1; (D1, . . . , D=)) .CA table insertion
| getSucc(�, C1; (D1, . . . , D=)) .CA table get success
| getFail(�, C1;) .CA table get failure

where D1, . . . , D= ∈ T (Σ2 ,N), 4 ∈ E is an event symbol, C1; ∈ T1;
is a table symbol, and � ∈ T (Σ,X ∪N) is a term.

Intuitively, the term� represents the condition which appears in
the ProVerif command get tbl(x) suchthat D in P else Q. Hence,
� is a term that is expected to reduce to a boolean value. This is
formally defined now.

An execution trace is a trace tr = tr1 . . . . .tr= such that for all
8 ∈ {1, . . . , =} we have:

• tr8 is an event; or
• tr8 is a table insertion; or
• tr8 = getSucc(�, C1; (D1, . . . , D=)) and there exists an index

9 < 8 such that tr 9 = insert(C1; (D1, . . . , D=)) and �{G1 ↦→
D1, . . . , G= ↦→ D=}⇓= true where {G1, . . . , G=} = E0AB (�); or

• tr8 = getFail(�, C1;) and for all indices 9 < 8 if tr 9 = insert(C1; (D1, . . . , D=))
then�{G1 ↦→ D1, . . . , G= ↦→ D=}⇓= failwhere {G1, . . . , G=} =
E0AB (�).

B.3 Queries
Even if ProVerif supports complex queries we only consider simple
ones in our model. These last are expressive enough to state and
prove our soundness result.

In what follows, we consider only six types of predicates:
• p−event(4 (C1, . . . , C=))where 4 ∈ E and C1, . . . , C= ∈ T (Σ2 ,X),
• p−insert(C1; (C1, . . . , C=)) where C1; ∈ T1; and C1, . . . , C= ∈
T (Σ2 ,X).

• p−getSucc(C1; (C1, . . . , C=)) where C1; ∈ T1; and C1, . . . , C= ∈
T (Σ2 ,X).

• p−getFail(�, C1;) where C1; ∈ T1; and � ∈ T (Σ,X).
• D = E where D, E ∈ T (Σ,X).
• 8 > 9 where 8, 9 ∈ VC , VC being a specific set of variables
used to model timing annotations1.

We consider queries of the form �1@88 ∧ . . . ∧ �=@8= ⇒ �@8

where �, �1 . . . , �= are predicates, and 8, 81, . . . , 8= ∈ VC . Timing
annotations apply to the four first predicates only. When not ap-
plicable or not necessary, timing annotations 8 9 are be omitted.
Moreover, we assume that E0AB (� ) ⊆ ⋃

9=1...= E0AB (� 9 ).

We define the satisfaction relation ` as follows: given an execu-
tion trace tr = tr1 . . . . .tr? and a grounding substitution f , tr, f `
p−event(4 (C1, . . . , C=))@8 if tr8f = event(4 (C1f, . . . , C=f)). The sat-
isfaction relation is defined similarly for p−insert(·), p−getSucc(·),
and p−getFail(·, ·).

Note that the p−getSucc(·) predicate records only the table
element used to pass the get. In contrast, to ease the formal devel-
opment, the p−getFail(·, ·) keeps track of the condition � .

1It is important to note that these variables cannot appear in other predicates/events/…
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The satisfaction relation is then extended as expected to conjunc-
tion of predicates and implications following the usual interpreta-
tion of logical operators. More specifically, a protocol P (i.e. a set
of execution traces) satisfies a query d = (�1@81 ∧ . . . ∧ �=@8= ⇒
�@8), noted P ` d if for all execution trace tr ∈ P and for any
grounding substitution f such that tr, f ` �1@81 ∧ . . . ∧ �=@8= ,
there exists a grounding substitution f′ extending f such that
tr, f ′ ` �@8 and 8f ′ ≤ <0G 9=1...= (8 9f).

Encoding from ProVerif models. If events are a standard com-
mand in ProVerif, it is not the case for the specific events that
we have introduced. However, any ProVerif model can be eas-
ily annotated to correspond to the model described just before.
To do so, any command insert tbl(u1,...,un) is preceded by
a specific event Insert(tbl(u1,...,un)) used to record it in the
trace in ProVerif labelled operational semantics. Similarly, an event
getSucc() is placed at the very beginning of the positive branch
of a get command to record the action. Similarly, a specific event
getFail() is placed at the very beginning of the negative branch of
a get command. However, unlike p−getSucc(·) that only record
the entry used to pass the test, p−getFail(·, ·) predicate records the
table but also the test applied to enter in the else branch. Unfortu-
nately, ProVerif does not allow to encode such an element into an
event. For sake on simplicity, we thus simply assume that the spe-
cific event is tagged with a fresh name to uniquely identify the get

command that failed. This extra annotation is easy to implement.

B.4 Soundness result
Intuitively, we state that if two events �1 and �2 guarantee that a
tem C has been successfully retrieved from a table C1; satisfying a
condition � , then once �1 and �2 are executed in a trace, it is no
longer possible to take the else branch of a command of the form
get tbl(x) suchthat D in P else Q.

Let P be a protocol, i.e. a set of execution traces.
Let d1 = �1@81 ∧ �2@82 ⇒ p−getSucc(C1; (D1, . . . , D=))@8B .
Let d2 = p−getSucc(C1; (~1, . . . , ~=)) ⇒ �{G1 ↦→ ~1, . . . , G= ↦→
~=}⇓= true.
Let d3 = �1@81 ∧ �2@82 ⇒ 81 > 82.
Let d4 = �1@81 ∧ �2 ∧ p−getFail(�, C1;)@8 5 ⇒ 81 < 8 5 .
Let 0G = �1@81 ∧ �2 ∧ p−getFail(�, C1;)@8 5 ⇒ false.

Proposition B.1. If P ` d1 ∧ d2 ∧ d3 ∧ d4 then P ` 0G .

Proof. Let tr ∈ P be an execution trace and f a grounding
substitution such that tr, f ` �1@81 ∧ �2 ∧ p−getFail(�, C1;)@8 5 .

Since P ` d1 we know that there exists a grounding substitution
f′ extending fU (fU is equal to f up to an U-renaming of variables
occurring in predicates and timing annotations) such that tr, f ′ `
p−getSucc(C1; (D1, . . . , D=))@8B . By definition of the satisfaction of
the predicate, we have that tr8Bf ′ = getSucc(_, C1; (D1f′, . . . , D=f′))
and 8Bf

′ ≤ <0G (811f
′, 812f

′) = <0G (88f, 82f) (811 and 812 being the
timing annotation occurring in d1). By definition of an execution
trace, we know that there exists 8insert ≤ 8Bf

′ such that tr8insert =

insert(C1; (D1f′, . . . , D=f′)).
Moreover, because P ` d2 we have that tr, f ′U ` d2 (where f′U is

equal to f′, up to, as before, an U-renaming of variables occurring
in predicates), and thus �{G1 ↦→ D1f

′, . . . , G= ↦→ D=f
′}⇓= true.

Let us show that 8 5 f′ < 81f . Applying the definition of the sat-
isfaction relation to tr, f ` p−getFail(�, C1;)@8 5 and considering
the table element C1; (D1f′, . . . , D=f′) we deduce that

8 5 f
′ < 8insert (def. getFail(·))

< 8Bf
′ (def. getSucc(·))

< <0G (811f
′, 812f

′) (def.⇒)
< <0G (81f, 82f) (def of f′)
< 81f (<0G (81f, 82f) = 81f by d3)

We hence derive a contradiction with d4.
We conclude that CA, f ` 0G , hence P ` 0G . �
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