
Avenger Ensemble: Genetic Algorithm-Driven
Ensemble Selection for Deep Learning-based

Side-Channel Analysis

Zhao Minghui1[0009−0002−2928−0299] and Trevor Yap1,2[0000−0001−8651−574X]

1 School of Physical and Mathematical Sciences, Nanyang Technological University,
Singapore

2 Temasek Laboratories, Nanyang Technological University, Singapore
minghui002@e.ntu.edu.sg, trevor.yap@ntu.edu.sg

Abstract. Side-Channel Analysis (SCA) exploits physical vulnerabili-
ties in systems to reveal secret keys. With the rise of Internet-of-Things,
evaluating SCA attacks has become crucial. Profiling attacks, enhanced
by Deep Learning-based Side-Channel Analysis (DLSCA), have shown
significant improvements over classical techniques. Recent works demon-
strate that ensemble methods outperform single neural networks. How-
ever, almost every existing ensemble selection method in SCA only picks
the top few best-performing neural networks for the ensemble, which
we coined as Greedily-Selected Method (GSM), which may not be opti-
mal. This work proposes Evolutionary Avenger Initiative (EAI), a genetic
algorithm-driven ensemble selection algorithm, to create effective ensem-
bles for DLSCA. We investigate two fitness functions and evaluate EAI
across four datasets, including AES and Ascon implementations. We
show that EAI outperforms GSM, recovering secrets with the least num-
ber of traces. Notably, EAI successfully recovers secret keys for Ascon
datasets where GSM fails, demonstrating its effectiveness.

Keywords: Side-channel analysis · Deep learning · Ensemble learning ·
Genetic algorithm

1 Introduction

Side-channel analysis (SCA) exploits the physical vulnerabilities of a system like
power consumption [8] and electromagnetic emanation [2] to reveal the secret
key. Evaluating such attacks has become crucial, especially with the rise in the
usage of Internet-of-Things (IoTs) in recent years [12]. One such SCA is known
as the profiling attack. In the profiling attack model, it is assumed that the
attacker has access to a clone device that closely resembles the target device.
Deep Learning-based Side-Channel Analysis (DLSCA) has been intensively ex-
plored in recent years [13, 14, 1, 22]. It was demonstrated that with Deep Neural
Networks (DNNs) it can significantly outperform classical SCA techniques like
template attacks [13]. Furthermore, DLSCA has garnered significant interest be-
cause of its capability to recover the secret key of the protected implementations
without needing to resynchronize traces.

2 Zhao Minghui et al.

Recent works have shown that using an ensemble of DNNs shown to have
significant performance improvement compared to using a single best neural
network [17, 18, 23]. DNNs of varying hyperparameters can extract different in-
formation from identical traces, yielding improved performance when combined
together as an ensemble. Most of the works in DLSCA create an ensemble from
greedily selecting the top few best-performing DNNs [17–19], herein referred to
as the Greedily-Selected Method (GSM). However, the GSM may not be optimal
as other combinations of DNNs could attain better results. Therefore, a natural
question is:

Can we develop a methodology to automatically select neural networks for
efficient ensemble formation?

To address this, we focus on ensemble selection, which is defined as the process
of selecting pre-trained DNNs to create an effective ensemble.

Our Contributions. Our contributions are stated as follows:

1. In this work, we proposed a new genetic algorithm-driven ensemble selection
algorithm called Evolutionary Avenger Initiative (EAI) to generate a best-
performing ensemble. To the best of our knowledge, this is the first work to
investigate ensemble selection within the context of SCA. Furthermore, we
investigate two fitness functions for EAI: ge+ntge and validation loss.

2. We assess the efficiency of our methodology across four datasets, comprising
three AES datasets (software and hardware implementations) of the widely
recognized symmetric-key standard [5], and one Ascon dataset, NIST’s
lightweight cryptography standard winner, implemented in software [6]

3. By integrating EAI, we manage to recover the secret with the least number of
traces across all datasets tested, outperforming traditional ensemble selection
techniques, i.e., GSM. Furthermore, EAI with ge+ntge has yielded significant
performance gains across all tested settings and datasets. Notably, for the
Ascon datasets (i.e., Ascon2 and Ascon4), EAI successfully recovered the
secret key within 1000 attack traces, whereas the conventional GSM method
failed to do so. This highlights the effectiveness of EAI.

We validate our approach on first-order masking traces, leaving higher-order
masking for future work. The source code can be accessed at the following web
link. 3

Paper Organization: The paper is organized as follows. Section 3 provides the
background necessary for profiled SCA using an ensemble of DNN and Genetic
Algorithm. Section 4 presented our proposed genetic algorithm methodology to
generate the best-performing ensemble for profiling attacks. Section 5 presents
and analyzes our results. Finally, Section 6 concludes with some discussion and
provides some future works.

3 anonymous for reviews

Genetic Algorithm-Driven Ensemble Selection for DLSCA 3

2 Related Work

Ensemble within DLSCA The introduction of ensemble methods in DLSCA
is attributed to [17]. This pioneering work presented a methodology for comput-
ing the maximum log-likelihood of an ensemble for bagging and showcased its
efficacy on AES -based datasets. However, they use GSM to build their ensemble,
which may be suboptimal. Subsequently, [18] successfully apply GSM to Ascon
implementations. Instead of considering GSM, the authors of [23] consider the
”diversity” between the optimal DNNs and the non-optimal DNNs. Therefore,
they proposed a loss function called Ensemble loss. The Ensemble loss helps to
train a diverse ensemble to recover the secret. Nonetheless, the Ensemble loss has
a drawback: it cannot scale for more than three classes. Consequently, its appli-
cation is restricted, and it cannot be applied to block ciphers like AES (with 256
classes). The authors only tested it on an ECC dataset. Unlike [23], we do not
take into account the training process but consider the same scenarios as [17].
Perin et al. [17] assume that a set of DNNs with randomly generated hyperpa-
rameters have already been trained. We highlight that the above methodologies
considered are bagging [4]. In recent years, methods for stacking DNNs [11] and
boosting DNNs [20] have been explored in SCA. For this work, we will focus on
bagging ensembles. Furthermore, we exploit the capabilities of the genetic algo-
rithm to find the optimal combination to produce the best-performing ensemble.

Ensemble Construction/Selection The idea of constructing an ensemble is
not new, as various works have considered [9, 24]. Prior works use Bayesian
optimization to tune the hyperparameters of one neural network while building
the ensemble [9] or using Bayesian optimization to form an ensemble through
trained DNNs [15]. The authors of [24] model the ensemble construction as an
optimization problem. They propose a method called Neural Ensemble Search
to solve this optimization problem in order to attain a well-performing ensemble.
For our work, we consider ensemble selection methodology. There have been ad-
vancements in ensemble selection that leveraged genetic algorithms to optimize
ensemble composition. Notably, [25] proposed GASEN, which utilizes genetic
algorithms to optimize weight coefficients that capture inter-DNN correlations.
Specifically, GASEN selects DNNs for the ensemble based on their weight co-
efficients, including only those exceeding a predefined threshold. Ortiz et al.
propose EARN, a multi-objective evolutionary approach that generates efficient
DNN ensembles [16] where they consider bagging, boosting, and stacking into
the ensemble. Inspired by these, we develop a genetic algorithm for ensemble
selection within SCA context.

3 Background

3.1 Profiling attack using Ensemble

One of the most common side-channel settings is known as the profiling attack.
It assumes the worst-case scenario where the adversary has access to a clone

4 Zhao Minghui et al.

device similar to the target device. The profiling attack is executed in two phases:
profiling and attack phase.

In the profiling phase, the adversary either knows or can manipulate the key
of the clone device. Then, distinguishers can be built from the profiling traces
of a known set of random public variables (plaintext or ciphertext). During this
phase, the adversary collects a set of traces t corresponding to known public
variables to train distinguishers.

In the attack phase, the adversary performs the attack by collecting several
attack traces from another set of known public variables of the target device.
Typically, the traces are given to a single trained distinguisher for key recovery.

In [17] consider multiple distinguishers for key recovery. Formally, the traces
are given to the trained distinguishers to obtain their output probability scores
for each hypothetical sensitive value. These probabilities are combined together:

score(k) =

Nmodel∑
j=1

Na∑
i=1

log(Prj(Z = zi,k|ti)) (1)

where Na represents the number of attack traces used, Nmodel is the number
of models in the ensemble, Prj(Z = zi,k|ti) denotes the probability output by
the jth distinguisher in the ensemble, and zi,k is the hypothetical sensitive value
which depends on the key candidate k and the trace ti.

The score(k) is computed for each key k ∈ K, where K is the set of all
possible key values. An attacker can sort the scores in descending order to create
a guess vector [G0, . . . , G|K|] where G0 corresponds to the score for the most
likely key candidate while the G|K| represents the score for the least likely key
candidate. Let the index of the guess vector be the rank of the key. Then, we
define the Guessing Entropy (GE) as the rank of the correct key averaging over
multiple experiments. In our analysis, we calculate this average over 100 separate
experiments. When GE reaches zero, it indicates a completely successful attack
- the correct key was consistently ranked first. To quantify attack performance,
we denote the least number of traces for GE to reach zero as NTGE, which
measures the minimum number of traces needed to achieve GE = 0.

3.2 Genetic algorithm framework

The genetic algorithm is a population-based optimization method inspired by
natural evolution. Let X be the search space, and f : X → R be the fitness
function that evaluates potential solutions. The population at generation t is
denoted as

P t = {xt
1, x

t
2, . . . , x

t
n},

where each individual chromosome xt
i ∈ X represents a candidate solution, also

referred to as a chromosome.
By evolving the population over successive generations, the genetic algorithm

seeks to improve the overall fitness of the population, moving closer to the op-
timal solution. Each individual chromosome xt

i is evaluated using the fitness

Genetic Algorithm-Driven Ensemble Selection for DLSCA 5

function f , which assigns a numerical score to indicate its suitability or quality
as a solution. The fitness scores guide the selection process, helping to determine
which chromosomes will contribute genetic material to the next generation. The
evolution process consists of the following phases:

1. Initial Population: The initial population P 0 is typically generated ran-
domly across the search space X .

2. Elitism: It preserves the best chromosomes from one generation to the next.
The basic idea is to ensure that the fittest chromosomes are included in the
next generation without any changes.

3. Selection Method: In genetic algorithms, several distinct selection meth-
ods exist for choosing chromosomes to generate subsequent generations. We
shall recall the commonly used Tournament Selection. The Tournament
Selection process in a genetic algorithm involves sampling multiple tourna-
ments of size ℓ, where ℓ chromosomes are randomly chosen from the popula-
tion. The fittest chromosome in each tournament is selected to generate new
chromosomes for the next generation.

4. Generic Operator: Various genetic operators are proposed to generate
new chromosomes; here, we will recall two such operators: Crossover and
Mutation.

• Crossover: The crossover operator is inspired by biological reproduc-
tion, where genetic material from two or more parent chromosomes is
combined to produce one or more offspring. This process creates new
chromosomes by exchanging segments between parents, thus propagat-
ing beneficial traits across generations. Crossover is typically applied
with a high probability, denoted by Prcross, to enhance the convergence
rate towards optimal solutions by exploiting existing genetic diversity.

• Mutation:Mutation introduces variability and maintains diversity within
a population. It involves making small, random changes to the values (or
“genes”) within an individual chromosome. These random tweaks help
the algorithm explore new potential solutions, preventing premature con-
vergence to suboptimal solutions. Mutation is typically applied with a
low probability, denoted by Prmut = 1−Prcross, to avoid drastic changes
while enabling steady exploration of the solution space.

4 Evolutionary Avengers Initiative

In this section, we present our algorithm, called the Evolutionary Avengers Ini-
tiative (EAI). Each DNN can be viewed as a ”superhero” endowed with distinct
strengths. Drawing inspiration from the Avengers of the Marvel Cinematic Uni-
verse, EAI aims to assemble a diverse group of ”superheroes” called the Avenger
Ensemble to recover the secret key.

The overview of the EAI Framework is described in Algorithm 1. EAI first
initializes the population using a set of pre-trained DNNs from set M. The
population consists of Nens ensembles, with each ensemble consisting of Nmodel

6 Zhao Minghui et al.

DNNs. Subsequently, the steps described below are repeated over Ngen genera-
tions. Firstly, each ensemble within the population is evaluated using the fitness
function (Line 4 of Algorithm 1). Next, the best-performing ensemble is then
preserved for the next generation, a process known as elitism (Line 4 of Algo-
rithm 1). Finally, generic operations such as crossover or mutation are applied
to generate new ensembles (Line 5 of Algorithm 1). We shall describe each step
in detail.

Algorithm 1 Evolutionary Avengers Initiative (EAI)

Input: M: Set of all trained models, Nens: Population size, Nmodel: Number of
models per ensemble, Prcross: Crossover rate, Prmut: Mutation rate, ge fitness fn:
Fitness function, Ngen: Number of generations

Output: Ebest: Best-performing ensemble, sbest: Fitness value of Ebest

1: Initialize Population of First Generation: P = initialize pop(M, Nens, Nmodel)
2: Ebest = ∅, sbest =∞
3: for t← 1 to Ngen do
4: Evaluate population and apply Elitism:

Pnew, S, Ebest, sbest = Eval & Elite(ge fitness fn, P, Pnew, Ebest, sbest)

5: Apply Crossover or Mutation:

Pnew = GeneticOp(M, P, S, Prcross, P rmut)

6: P = Pnew

7: end for
8: return Ebest, sbest

Initialize Population. Prior to the start of EAI, we train a set of DNNs,
denoted as M. We label each DNN with Mi for 0 ≤ i ≤ |M|. EAI will first
initialize the population (Line 1 in Algorithm 1). Algorithm 2 describes how
to initialize the population. The initial population P 0 is generated by picking
Nmodel distinct models from M randomly to create a new ensemble E (Line
5 in Algorithm 2). Then, we check if ensemble E is a duplicate in the initial
population P 0 (Line 6 in Algorithm 2). If it is, E is discarded; if not, the ensemble
E is added into the initial population of ensembles (Line 6 to 8 in Algorithm 2).
This process is repeated until there are Nens ensembles within the population
P 0.

Evaluate Population and Apply Elitism. In this step, all the ensembles’
performances are evaluated using a fitness function. Furthermore, the top-performing
ensemble is preserved for the next generation. Algorithm 3 provides the overall
methodology. Moreover, when evaluating the ensembles’ performance, the best-

Genetic Algorithm-Driven Ensemble Selection for DLSCA 7

Algorithm 2 Initialize Population

1: procedure initialize pop(M, Nens, Nmodel)
2: P 0 ← ∅ ▷ Population of unique ensembles
3: i = 0
4: while i < Nens do
5: E ← Randomly select Nmodel distinct models fromM.
6: if E is not a duplicate in P 0 then
7: P 0 ← P 0 ∪ {E} ▷ Add ensemble to population
8: i = i+ 1
9: end if
10: end while
11: return P 0

12: end procedure

performing ensemble throughout all the generations is recorded (line 6 to 8 of
Algorithm 3).

• Elitism: Next, when applying elitism to preserve the ensemble(s) for the
next generation. EAI only considers the top-performing ensemble within
this population to be preserved. It is possible to preserve more than one
top-performing ensemble, but it requires sorting the performance of the en-
sembles, which is time-consuming. Therefore, we only select the top ensemble
in the population. Furthermore, this enhances the search capability, allowing
for more exploration of a diverse range of ensembles to identify the optimal
combination.

• Fitness Functions: We investigate two fitness functions for EAI in the con-
text of SCA. Namely, we explore ge+ntge and val loss as the fitness function
for ensemble selection.
1. ge+ntge : The fitness function ge+ntge is first proposed by [7]. The au-

thors demonstrate that the metric yields consistently better results when
combined with multifidelity hyperparameter tuning, called Bayesian Op-
timization HyperBand, to identify a single best-performing DNN. This
composite metric combines GE with NTGE to provide a comprehensive
evaluation of side-channel analysis performance. The ge+ntge function is
defined as:

ge+ntge(θ) =

{
NTGE if GE = 0,

GE +Na + c otherwise

where θ represents the model configuration/hyperparameters, Na is the
fixed number of attack traces for evaluation, and c is a small positive
constant (set to 100 in our experiments). This metric considers both the
ability to recover the key (GE) and the efficiency of the attack (NTGE).
It also penalizes configurations that fail to recover the key within the
given number of traces. This provides a single, comprehensive metric for
optimizing SCA models.

8 Zhao Minghui et al.

2. val loss: Research has shown that minimizing categorical cross-entropy
loss effectively maximizes the mutual information between the leakage
model and the trace data, a concept referred to as perceived information
in SCA. Here, we investigate whether using the validation loss of attack
traces as a fitness function, denoted as val loss, can aid in ensemble
selection.

Algorithm 3 Evaluate Population and Apply Elitism

Require:
1: procedure Eval & Elite(ge fitness fn, P, Pnew, Ebest, sbest)
2: S ← [] ▷ Array of scores for current generation
3: for each ensemble E ∈ P do
4: s = ge fitness fn(E)
5: S ← S + [s] ▷ Array Concatenation
6: if s < sbest then
7: Set sbest = s and Ebest = E.
8: end if
9: end for
10: top pop ensemble← argminE∈P S[E]
11: Pnew ← {top pop ensemble} ▷ Elitism: retain the best ensemble
12: return Pnew, S, Ebest, sbest
13: end procedure

Genetic Operators. The remaining ensembles in the population are generated
using tournament selection, crossover, and mutation, which replace the non-elite
ensembles. This configuration supports diversity within the population, which is
critical for the effectiveness of subsequent generations.

Genetic Algorithm-Driven Ensemble Selection for DLSCA 9

Algorithm 4 Genetic Operators with Adaptive Rates

1: procedure GeneticOp(M, P, S, Prcross, P rmut)
2: δ ← |set(tuple(ind) for ind in P)|/|P | ▷ Calculate population diversity
3: Pradaptivecross ← Prcross × δ ▷ Adaptive crossover rate
4: Pradaptivemut ← Prmut × (1 + (1− δ)) ▷ Adaptive mutation rate
5: while |Pnew| < Nens do
6: if random() < radaptivecross then ▷ Adaptive crossover operation
7: parent1 ← TournamentSelection(P, S)
8: parent2 ← TournamentSelection(P, S)
9: offspring1, offspring2 ← Crossover(parent1, parent2, Nmodel)
10: Pnew ← Pnew ∪ {offspring1, offspring2}
11: else ▷ Adaptive mutation operation
12: parent← TournamentSelection(P, S)
13: Pnew ← Pnew ∪ {Mutation(parent,M, radaptivemut)}
14: end if
15: end while
16: return Pnew

17: end procedure

Algorithm 4 outlines the methodology used to generate new offspring ensem-
bles. To ensure diversity and effectiveness in the evolutionary process, we em-
ploy adaptive genetic operators [10], where the rates dynamically adjust based on
population diversity (i.e., the proportion of unique ensembles in the population).
This adaptive approach helps mitigate premature convergence and redundancy,
which can arise from fixed rates.

Let δ represent population diversity, calculated as the ratio of unique ensem-
bles to the total population size. The adaptive mutation rate is defined as:

Pradaptivemut = Prmut × (1 + (1− δ)) .

When δ is low, this formula increases the mutation rate since (1 − δ) is
larger. A higher mutation rate potentially introduces new models from the set of
all the pre-trained DNN, M, into the population, encouraging exploration and
generating novel ensembles. Conversely, when diversity is high, the mutation
rate decreases to avoid disrupting the existing diversity.

Similarly, the adaptive crossover rate is defined as:

Pradaptivecross = Prcross × δ.

This rate increases proportionally with δ, allowing for more frequent recom-
bination within the population when the population contains a wide variety of
ensembles. A high δ indicates ample genetic material, making crossover more
effective in creating new and potentially superior ensembles. On the other hand,
when δ is low, the reduced crossover rate prevents the overexploitation of similar
ensembles. At the same time, increasing the probability of mutation allows the
population to have more unique ensembles.

10 Zhao Minghui et al.

To implement these adaptive mechanisms, we set the base mutation proba-
bility to Prmut = 0.1 and the base crossover probability to Prcross = 0.9, fol-
lowing standard practice in genetic algorithms. By maintaining the diversity of
ensembles within the population through adaptive mutation and crossover rates,
this approach promotes the generation of unique and high-performing ensembles
throughout the evolutionary process.

1. Tournament Selection: The selection method that EAI uses would be
the Tournaments Selection. For each tournament, ℓ ensembles are randomly
selected from the population. Using the fitness value computed before, pick
the best-performing ensemble out of the ℓ ensemble. This ensemble will be
called a parent ensemble. Figure 1 provides an illustration of a Tournament
Selection when ℓ = 3.

Fig. 1: Illustration of a Tournament Selection within EAI when ℓ = 3.

2. Crossover: For Crossover, it uses two tournaments for creating two en-
sembles (aka offspring) as shown in Figure ??. Assume that the ensembles
parent1 and parent2 have the best fitness scores for two different tourna-
ments. Then Crossover randomly generates two indexes c1 and c2. The two
offspring ensembles are produced via:

offspring1[j] =

{
parent1[j] if j < c1 or j > c2

parent2[j] if c1 ≤ j ≤ c2
(2)

offspring2[j] =

{
parent2[j] if j < c1 or j > c2

parent1[j] if c1 ≤ j ≤ c2
(3)

Figure 2 provides an illustration of Crossover when c1 = 3 and c2 = 6 are
chosen. This indicates that the segments from position 3 to 6 (inclusive)
are swapped between the parents We highlight that if crossover results in
duplicate individuals within the population, the process is repeated to ensure
uniqueness.

3. Mutation: As for Mutation, it only uses one tournament. During the Muta-
tion process, one DNN from the selected ensemble is randomly replaced with
a different pre-trained DNN from the set M. Figure 3 depicts the Mutation
process.

If the algorithm chooses Crossover when selecting the last ensemble for the next
generation, we pick the first offspring produced.

Genetic Algorithm-Driven Ensemble Selection for DLSCA 11

Fig. 2: Illustration of Crossover within EAI when c1 = 3 and c2 = 6.

Fig. 3: Illustration of Mutation within EAI when taking a new model M37 from
M.

Time Complexity Analysis: Recall that |M| is the number of models, Ngen is
the number of generations, Nens is the population size, and Nmodel is the number
of models per ensemble. The time complexity of initialize pop is O(Nens ×
Nmodel). For each generation, the time complexity is O(Nmodel) for Eval & Elite
while O(Nens×Nmodel) for GenericOp. Since the time complexity mainly comes
from GenericOp, the overall time complexity of the EAI algorithm is given by
O(Ngen ×Nens ×Nmodel).

5 Experiment Result and Setting

5.1 Datasets and Leakage Models

ASCADf & ASCADr: Both ASCADf and ASCADr are part of the commonly
used ASCADv1 dataset [3]. It comprises traces from first-order masked AES
implementation on an 8-bit AVR microcontroller. Specifically, we target the
third Sbox of the first round. ASCADf contains traces of the same fixed key for
both profiling and attack. On the other hand, ASCADr considers the case where
the profiling traces are generated from a random key setting while a fixed key is
used to generate the attack traces. Both datasets contain 50000 profiling traces
and 10000 attack traces. The traces comprise 700 sample points for ASCADf and
1400 sample points for ASCADr. We target the third byte of the first round sbox

12 Zhao Minghui et al.

output, specifically SboxAES(pt3 ⊕ k∗3) where pt3 represents the third plaintext
byte and k∗3 denotes the third byte of the first round key.

Ascon: We use the publicly available datasets by [21] for Ascon. We will only
investigate the first-order protected implementation of Ascon-128. The Ascon
implementation is running on a ChipWhisperer Lite board on top of a STM32F4.
The traces are collected using an 8-bit oscilloscope. There are 50000 profiling
traces from a random key setting and 10000 attack traces collected from a fixed
key setting. We target the first round of permutation proposed by [21, 18], where
the sensitive variable is of the form:

y = k1 ∧ (255⊕ IV ⊕ n0)⊕ n0 ⊕ n1,

where IV is the constant from the initialization value, while n0, n1 are 8-bits
nonces values. Lastly, k1 is the 8 bits key we are trying to recover. There are
a total of 8 different bytes. We shall focus particularly on bytes 2 and 4, which
have proven challenging for analysis as shown in [18] even with GSM ensemble.
We denote Ascon2 and Ascon4 for byte 2 and byte 4 respectively.

AES HD: The AES HD dataset represents power leakage measurements from
an unprotected AES hardware implementation running on an FPGA with a
round-based architecture. Our analysis targets the side-channel leakage during
the last round, specifically focusing on the Hamming Distance leakage model,
i.e. Sbox−1

AES(ct15 ⊕ k15) ⊕ ct11, where cti refers to the ith ciphertext byte and
k15 corresponds to the 15th byte of the last round key. The dataset consists of
45000 profiling traces used for training and 3000 attack traces for evaluation.

Throughout this work, we use 1000 attack traces for each dataset.

Leakage Models: In this work, we consider three different leakage models.

• Identity (ID): The Identity leakage model assumes that the sensitive inter-
mediate values, such as the AES S-box output SboxAES(pt⊕k), leak directly
through side-channel emissions.

• Hamming Weight (HW): The HW leakage model corresponds to the
Hamming weight of the sensitive variable. For example, for AES S-box out-
put, we have HW (SboxAES(pt ⊕ k)) as the leakage model. This model as-
sumes that the amount of leakage is proportional to the number of 1-bits in
the binary representation of the sensitive value.

• Hamming Distance (HD): The HD leakage model considers the side chan-
nel traces leaks the XOR of two sensitive variables.

For ASCADr and ASCADf datasets, we will investigate with ID and HW leakage
models. As for Ascon datasets, we will present results for ID leakage model. On
the other hand, we only use HD leakage model for AES HD.

Genetic Algorithm-Driven Ensemble Selection for DLSCA 13

5.2 Hyperparameters used for DNN and EAI

DNN’s Hyperparameter Search Space In this study, we consider the com-
monly used Multi-Layer Perceptron (MLP) and Convolutional Neural Network
(CNN) in our study. Specifically, we consider 50 random architectures for each:
solely MLPs, solely CNNs, and a Diverse DNN consisting of 25 MLPs and 25
CNNs, with hyperparameter search spaces defined in Tables 1.

Table 1: Hyperparameter Search Space

MLP

Parameter Values

Layers 1 to 7 (in step of 1)

Neurons 10, 20, 50, 100, 200, 300, 400, or500

Activation Functions ReLU, SELU, ELU, or Tanh

Batch Size 100− 1000 (in steps of 100)

Learning Rate 1e− 3, 5e− 4, 1e− 4, 5e− 5, or1e− 5

Optimizer RMSprop or Adam

Weight Initialization Random uniform, Xavier uniform, or He uniform

CNN

Parameter Values

Convolutional Layers 1− 4 (in step of 1)

Initial Filters 4, 8, 12, 16

Initial Kernel Size 26− 52 (in step of 2)

Pooling Type Max pooling, Average pooling

Pooling Size 2, 4, 6, 8, 10

Padding 0, 4, 8, 12, 16

Fully Connected Layers 1− 7 (in step of 1)
Neurons 10, 20, 50, 100, 200, 300, 400, 500

Activation Functions ReLU, SELU, ELU, Tanh

Batch Size 100− 1000 (in steps of 100)

Learning Rate 1e− 3, 5e− 4, 1e− 4, 5e− 5, 1e− 5

Optimizer RMSprop, Adam

Weight Initialization Random uniform, Xavier uniform, He uniform

14 Zhao Minghui et al.

Hyperparameters for EAI The hyperparameters for EAI are shown in Ta-
ble 2. All the hyperparameters listed are consistent across all datasets, except
for the number of generations. This is because for both Ascon2 and Ascon4 it
require more time to run, hence we decrease the number of generations.

Table 2: Hyperparameters for EAI across all Datasets

Configuration for Each Dataset and Hyperparameters of EAI

ASCADf ASCADr Ascon2 Ascon4 AES HD

Number of Generations, Ngen 50 50 5 5 50

Crossover Probability Prcross 0.9

Mutation Probability, Prmut 0.1

Models per Ensemble, Nmodel 10

Number of Ensembles per Generation, Nens 30

Models per Tournament, ℓ 3

5.3 Experimental Results on Publicly Available Datasets

ASCADf. As shown in Table 3 and Figure 4, we analyze the performance of
different algorithms on the ASCADf dataset. The results demonstrate that our
EAI with the ge+ntge variant significantly outperforms both EAI with val loss
and GSM in terms of number of traces required to recover the key. Across dif-
ferent models, the ID leakage model consistently performs more effectively than
the HW leakage model. Notably, the MLP model with ID leakage model achieves
the best performance (NTGE = 29). We observed significant differences in per-
formance between the use of fitness functions when applying EAI. Our results
show that EAI using val loss is ineffective in recovering the secret key in certain
cases. Conversely, EAI with ge+ntge consistently recovers the secret key across
every scenario, surpassing GSM’s performance. However, it requires a longer

Table 3: NTGE for different algorithms and leakage models in ASCADf Dataset

MLP CNN Diverse DNN

HW ID HW ID HW ID

GSM 785 365 825 385 817 329
EAI with ge+ntge 615 29 727 140 590 58
EAI with val loss (GE = 19) 98 (GE = 3) 615 (GE = 66) 113

time when executing EAI compared to GSM, as shown in Figure 5. This is as

Genetic Algorithm-Driven Ensemble Selection for DLSCA 15

(a) MLP (ID). (b) CNN (ID).

(c) MLP (HW) (d) CNN (HW)

Fig. 4: Guessing entropy for ASCADf .

expected since GSM only needs to select the top few models and execute the
attack phase, but EAI will need to compute the fitness function for different
ensembles over many different generations.

Fig. 5: Execution time comparisons for different algorithms and models in the
ASCADf Dataset.

16 Zhao Minghui et al.

ASCADr. Similar to ASCADf, Table 4 and Figure 6 demonstrates that EAI
with ge+ntge maintains superior performance on the ASCADr dataset, outper-
forming GSM for all scenarios. In contrast to the ASCADf dataset, the HW
leakage model outperforms the ID leakage model. The EAI with val loss shows
particularly poor performance, failing to recover the encryption key across all
model and leakage model combinations.

Table 4: NTGE for different algorithms and leakage models in ASCADr Dataset

MLP CNN Diverse DNN

HW ID HW ID HW ID

GSM 548 976 810 (GE = 126) 445 (GE = 14)
EAI with ge+ntge 296 523 619 (GE = 3) 257 923
EAI with val loss (GE = 1) (GE = 185) (GE = 6) (GE = 178) (GE = 7) (GE = 178)

(a) MLP (ID). (b) CNN (ID).

(c) CNN (HW) (d) MLP (HW)

Fig. 6: Guessing entropy for ASCADr.

Ascon2 Our research investigated both ID and HW leakage models. Due to
the unsuccessful recovery of the secret key using the HW leakage model across

Genetic Algorithm-Driven Ensemble Selection for DLSCA 17

all tested methods, we will only present findings from the ID leakage model
just like in [18]. We see that with GSM and EAI with val loss, we are unable
to successfully recover the secret key with GE ≥ 15. However, using EAI with
ge+ntge, we manage to obtain the secret key withNTGE = 977 when building an
ensemble of MLPs. Furthermore, we attain GE ≤ 3 for having CNN ensembles
and under the Diverse DNN setting. This overall shows the effectiveness of EAI
with ge+ntge.

Table 5: NTGE for different algorithms and leakage models in the Ascon2
Dataset

Algorithm MLP CNN Diverse DNN

GSM (GE = 15) (GE = 54) (GE = 40)
EAI with ge+ntge 977 (GE = 1) (GE = 3)
EAI with val loss (GE = 34) (GE = 93) (GE = 126)

(a) MLP model (b) CNN model

(c) Diverse DNN model

Fig. 7: Guessing entropy evaluation for different model architectures in Ascon2
Dataset.

18 Zhao Minghui et al.

Ascon4 Our findings show that Ascon4 yields similar results to Ascon2. Both
GSM and EAI with val loss attain high GE values, suggesting that these meth-
ods are unable to recover the secret key. However, under the Diverse DNN set-
ting, EAI with ge+ntge recovers the secret key with 914 attack traces. Further-
more, when building a CNN-only ensemble, EAI with ge+ntge attain GE = 1.
These instances suggest the effectiveness of EAI with ge+ntge in obtaining well-
performing ensembles for successful key recovery in SCA.

Table 6: NTGE for different algorithms and leakage models in the Ascon4
Dataset.

Algorithm MLP CNN Diverse DNN

GSM (GE = 140) (GE = 135) (GE = 136)
EAI with ge+ntge (GE = 34) (GE = 1) 914
EAI with val loss (GE = 220) (GE = 179) (GE = 138)

(a) MLP model (b) CNN model

(c) Diverse DNN model

Fig. 8: Guessing entropy evaluation for different model architectures in Ascon4
Dataset.

Genetic Algorithm-Driven Ensemble Selection for DLSCA 19

AES HD Lastly, we also investigate the effectiveness of our methodology on
hardware traces. Here, we only consider the HD leakage model as stated in
Section 5.1. EAI with ge+ntge we manage to recover the secret for all the scenarios
tested and outperform both GSM and EAI with val loss in terms of the NTGE
needed for successful key recovery. This highlights once again the using ge+ntge

as the fitness function is crucial in finding well-performing neural networks.

Table 7: Number of traces for different algorithms and leakage models in the
AES HD Dataset

Algorithm MLP CNN Diverse DNN

GSM 925 840 (GE = 3)
EAI with ge+ntge 569 700 456
EAI with val loss 998 (GE = 12) 662

(a) MLP model (b) CNN model

(c) Diverse DNN model

Fig. 9: Guessing entropy evaluation for different model architectures in AES HD
Dataset.

20 Zhao Minghui et al.

6 Discussion and Future Work

In this work, we propose a novel methodology called EAI for identifying well-
performing ensembles from pre-trained neural networks. EAI significantly re-
duces the number of traces required for successful key recovery compared to
traditional GSM when paired with an effective fitness function. We investigated
two fitness functions, ge+ntge and val loss. We observe that with ge+ntge as the
fitness function, EAI consistently outperforms other methods across five differ-
ent datasets. Furthermore, it managed to recover the secret key across all the
datasets tested, showing the efficiency of the EAI with ge+ntge as an ensemble
selection algorithm. However, with val loss, it can be observed that it did not
find a well-performing ensemble, and in many instances, GSM has much better
performances. This suggests that choosing the right fitness function is very im-
portant, therefore, we recommend to use ge+ntge as the primary fitness function
when employing EAI. However, EAI demands more computational resources,
as evidenced by the longer execution times. Therefore, if resources are limited,
GSM remains a preferable alternative.

We hope that this work opens up a new dimension of research into finding
the optimal ensemble among pre-trained DNNs. Several directions offer poten-
tial for exploration. Firstly, as mentioned above, EAI requires lengthy execution
times. One possible direction is to enhance this approach by leveraging multi-
fidelity optimization methods [7]. Furthermore, ge+ntge fitness function necessi-
tates knowledge of the secret key for deployment. This limitation suggests that
its application is restricted to white-box settings during evaluation, specifically
for identifying worst-case scenarios. Developing a novel fitness function for EAI
that does not require secret key knowledge and achieves comparable performance
would be an intriguing area of study.

References

1. Acharya, R.Y., Ganji, F., Forte, D.: Information Theory-based Evolution of Neu-
ral Networks for Side-channel Analysis. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2023(1), 401–437 (2023). https://doi.org/10.46586/TCHES.V2023.I1.401-
437, https://doi.org/10.46586/tches.v2023.i1.401-437

2. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM Side-Channel(s).
In: Jr., B.S.K., Koç, Ç.K., Paar, C. (eds.) Cryptographic Hardware and Embed-
ded Systems - CHES 2002, 4th International Workshop, Redwood Shores, CA,
USA, August 13-15, 2002, Revised Papers. Lecture Notes in Computer Science,
vol. 2523, pp. 29–45. Springer (2002). https://doi.org/10.1007/3-540-36400-5“˙4,
https://doi.org/10.1007/3-540-36400-5 4

3. Benadjila, R., Prouff, E., Strullu, R., Cagli, E., Dumas, C.: Deep learn-
ing for side-channel analysis and introduction to ASCAD database. J. Cryp-
togr. Eng. 10(2), 163–188 (2020). https://doi.org/10.1007/s13389-019-00220-8,
https://doi.org/10.1007/s13389-019-00220-8

4. Bishop, C.M.: Pattern recognition and machine learning, 5th Edition. Information
science and statistics, Springer (2007), https://www.worldcat.org/oclc/71008143

Genetic Algorithm-Driven Ensemble Selection for DLSCA 21

5. Daemen, J., Rijmen, V.: The Design of Rijndael - The Advanced Encryption Stan-
dard (AES), Second Edition. Information Security and Cryptography, Springer
(2020). https://doi.org/10.1007/978-3-662-60769-5, https://doi.org/10.1007/978-
3-662-60769-5

6. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2: Lightweight
Authenticated Encryption and Hashing. J. Cryptol. 34(3), 33 (2021).
https://doi.org/10.1007/S00145-021-09398-9, https://doi.org/10.1007/s00145-
021-09398-9

7. Eng, T.Y.H., Bhasin, S., Weissbart, L.: Train Wisely: Multifidelity Bayesian Opti-
mization Hyperparameter Tuningin Side-Channel Analysis. IACR Cryptol. ePrint
Arch. p. 170 (2024), https://eprint.iacr.org/2024/170

8. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M.J.
(ed.) Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceed-
ings. Lecture Notes in Computer Science, vol. 1666, pp. 388–397. Springer (1999).
https://doi.org/10.1007/3-540-48405-1“˙25, https://doi.org/10.1007/3-540-48405-
1 25

9. Levesque, J., Gagné, C., Sabourin, R.: Bayesian Hyperparameter Optimiza-
tion for Ensemble Learning. In: Ihler, A., Janzing, D. (eds.) Proceedings of
the Thirty-Second Conference on Uncertainty in Artificial Intelligence, UAI
2016, June 25-29, 2016, New York City, NY, USA. AUAI Press (2016),
http://auai.org/uai2016/proceedings/papers/73.pdf

10. Lin, W., Lee, W., Hong, T.: Adapting crossover and mutation
rates in genetic algorithms. J. Inf. Sci. Eng. 19(5), 889–903 (2003),
http://www.iis.sinica.edu.tw/page/jise/2003/200309 10.html

11. Llavata, D., Cagli, E., Eyraud, R., Grosso, V., Bossuet, L.: Deep Stacking
Ensemble Learning Applied to Profiling Side-Channel Attacks. In: Bhasin, S.,
Roche, T. (eds.) Smart Card Research and Advanced Applications - 22nd In-
ternational Conference, CARDIS 2023, Amsterdam, The Netherlands, Novem-
ber 14-16, 2023, Revised Selected Papers. Lecture Notes in Computer Science,
vol. 14530, pp. 235–255. Springer (2023). https://doi.org/10.1007/978-3-031-54409-
5“˙12, https://doi.org/10.1007/978-3-031-54409-5 12

12. Lueth, K.L.: State of the IoT 2020: 12 billion IoT connections, surpassing non-IoT
for the first time (2021)

13. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking Cryptographic Imple-
mentations Using Deep Learning Techniques. In: Carlet, C., Hasan, M.A.,
Saraswat, V. (eds.) Security, Privacy, and Applied Cryptography Engineer-
ing - 6th International Conference, SPACE 2016, Hyderabad, India, De-
cember 14-18, 2016, Proceedings. Lecture Notes in Computer Science, vol.
10076, pp. 3–26. Springer (2016). https://doi.org/10.1007/978-3-319-49445-6“˙1,
https://doi.org/10.1007/978-3-319-49445-6 1

14. Masure, L., Dumas, C., Prouff, E.: A Comprehensive Study of Deep Learn-
ing for Side-Channel Analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2020(1), 348–375 (2020). https://doi.org/10.13154/TCHES.V2020.I1.348-375,
https://doi.org/10.13154/tches.v2020.i1.348-375

15. Mendoza, H., Klein, A., Feurer, M., Springenberg, J.T., Hutter, F.: Towards
Automatically-Tuned Neural Networks. In: Hutter, F., Kotthoff, L., Vanschoren,
J. (eds.) Proceedings of the 2016 Workshop on Automatic Machine Learn-
ing, AutoML 2016, co-located with 33rd International Conference on Machine
Learning (ICML 2016), New York City, NY, USA, June 24, 2016. JMLR

22 Zhao Minghui et al.

Workshop and Conference Proceedings, vol. 64, pp. 58–65. JMLR.org (2016),
http://proceedings.mlr.press/v64/mendoza towards 2016.html

16. Ortiz, M., Scheidegger, F., Casas, M., Malossi, A.C.I., Ayguadé, E.: Generating Ef-
ficient DNN-Ensembles with Evolutionary Computation. CoRR abs/2009.08698
(2020), https://arxiv.org/abs/2009.08698

17. Perin, G., Chmielewski, L., Picek, S.: Strength in Numbers: Improv-
ing Generalization with Ensembles in Machine Learning-based Profiled
Side-channel Analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2020(4), 337–364 (2020). https://doi.org/10.13154/TCHES.V2020.I4.337-364,
https://doi.org/10.13154/tches.v2020.i4.337-364

18. Rezaeezade, A., Basurto-Becerra, A., Weissbart, L., Perin, G.: One for All,
All for Ascon: Ensemble-Based Deep Learning Side-Channel Analysis. In:
Andreoni, M. (ed.) Applied Cryptography and Network Security Workshops
- ACNS 2024 Satellite Workshops, AIBlock, AIHWS, AIoTS, SCI, AAC,
SiMLA, LLE, and CIMSS, Abu Dhabi, United Arab Emirates, March 5-
8, 2024, Proceedings, Part I. Lecture Notes in Computer Science, vol.
14586, pp. 139–157. Springer (2024). https://doi.org/10.1007/978-3-031-61486-
6“˙9, https://doi.org/10.1007/978-3-031-61486-6 9

19. Savu, I., Krcek, M., Perin, G., Wu, L., Picek, S.: The Need for MORE: Unsu-
pervised Side-Channel Analysis with Single Network Training and Multi-output
Regression. In: Wacquez, R., Homma, N. (eds.) Constructive Side-Channel Anal-
ysis and Secure Design - 15th International Workshop, COSADE 2024, Gar-
danne, France, April 9-10, 2024, Proceedings. Lecture Notes in Computer Science,
vol. 14595, pp. 113–132. Springer (2024). https://doi.org/10.1007/978-3-031-57543-
3“˙7, https://doi.org/10.1007/978-3-031-57543-3 7

20. Wang, H., Dubrova, E.: Tandem deep learning side-channel attack on
FPGA implementation of AES. SN Comput. Sci. 2(5), 373 (2021).
https://doi.org/10.1007/S42979-021-00755-W, https://doi.org/10.1007/s42979-
021-00755-w

21. Weissbart, L., Picek, S.: Lightweight but Not Easy: Side-channel Analysis of the
Ascon Authenticated Cipher on a 32-bit Microcontroller. IACR Cryptol. ePrint
Arch. p. 1598 (2023), https://eprint.iacr.org/2023/1598

22. Wu, L., Rezaeezade, A., Alipour, A., Perin, G., Picek, S.: Leakage
Model-flexible Deep Learning-based Side-channel Analysis. IACR Com-
mun. Cryptol. 1(3), 41 (2024). https://doi.org/10.62056/AY4C3TXOL7,
https://doi.org/10.62056/ay4c3txol7

23. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Efficiency through Di-
versity in Ensemble Models applied to Side-Channel Attacks - A Case
Study on Public-Key Algorithms -. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2021(3), 60–96 (2021). https://doi.org/10.46586/TCHES.V2021.I3.60-96,
https://doi.org/10.46586/tches.v2021.i3.60-96

24. Zaidi, S., Zela, A., Elsken, T., Holmes, C.C., Hutter, F., Teh, Y.W.:
Neural Ensemble Search for Uncertainty Estimation and Dataset Shift.
In: Ranzato, M., Beygelzimer, A., Dauphin, Y.N., Liang, P., Vaughan,
J.W. (eds.) Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, virtual. pp. 7898–7911 (2021),
https://proceedings.neurips.cc/paper/2021/hash/41a6fd31aa2e75c3c6d427db3d17ea80-
Abstract.html

Genetic Algorithm-Driven Ensemble Selection for DLSCA 23

25. Zhou, Z., Wu, J., Jiang, Y., Chen, S.: Genetic Algorithm based Selective Neural
Network Ensemble. In: Nebel, B. (ed.) Proceedings of the Seventeenth International
Joint Conference on Artificial Intelligence, IJCAI 2001, Seattle, Washington, USA,
August 4-10, 2001. pp. 797–802. Morgan Kaufmann (2001)

