
1

ARK: Adaptive Rotation Key Management for
Fully Homomorphic Encryption Targeting Memory

Efficient Deep Learning Inference
Jia-Lin Chan , Wai-Kong Lee , Member, IEEE, Denis C.-K Wong

Wun-She Yap , and Bok-Min Goi , Senior Member, IEEE

Abstract—Advancements in deep learning (DL) not only revo-
lutionized many aspects in our lives, but also introduced privacy
concerns, because it processed vast amounts of information
that was closely related to our daily life. Fully Homomorphic
Encryption (FHE) is one of the promising solutions to this privacy
issue, as it allows computations to be carried out directly on
the encrypted data. However, FHE requires high computational
cost, which is a huge barrier to its widespread adoption.
Many prior works proposed techniques to enhance the speed
performance of FHE in the past decade, but they often impose
significant memory requirements, which may be up to hundreds
of gigabytes. Recently, focus has shifted from purely improving
speed performance to managing FHE’s memory consumption as
a critical challenge. Rovida and Leporati introduced a technique
to minimize rotation key memory by retaining only essential keys,
yet this technique is limited to cases with symmetric numerical
patterns (e.g., -2 -1 0 1 2), constraining its broader utility. In
this paper, a new technique, Adaptive Rotation Key (ARK),
is proposed that minimizes rotation key memory consumption
by exhaustively analyzing numerical patterns to produce a
minimal subset of shared rotation keys. ARK also provides a
dual-configuration option, enabling users to prioritize memory
efficiency or computational speed. In memory-prioritized mode,
ARK reduces rotation key memory consumption by 41.17% with
a 12.57% increase in execution time. For speed-prioritized mode,
it achieves a 24.62% rotation key memory reduction with only a
0.21% impact on execution time. This flexibility positions ARK as
an effective solution for optimizing FHE across varied use cases,
marking a significant advancement in optimization strategies for
FHE-based privacy-preserving systems.

Index Terms—Fully Homomorphic Encryption, Memory Op-
timization, Deep Learning, Privacy Preservation, Adaptive Rota-
tion Key, ARK

I. INTRODUCTION

Recent rapid advancements in deep learning (DL) have
raised critical concerns regarding user privacy, especially for
applications that deals with our personal information and daily
lives. Such concerns are even more serious for cloud-based
deployments that store and consume user data on third-party
cloud servers, which is commonly regarded as “honest but
curious”. Fully Homomorphic Encryption (FHE) has emerged
as a promising solution to such concerns, because it allows
computations to be carried out on encrypted data. This pre-
vents exposure of sensitive information during deployment of

The research was supported by the Ministry of Higher Education
(MoHE), Malaysia, through the Fundamental Research Grant Scheme
(FRGS/1/2021/ICT07/UTAR/01/1)
Contributing authors: vicracechan@gmail.com, waikong.lee@gmail.com,
deniswong@utar.edu.my, yapws@utar.edu.my, goibm@utar.edu.my;

DL applications. However, large-scale DL computation using
FHE is significantly slower (up to 100 million times [1]) than
those without encryption, posing a major barrier to widespread
adoption. This performance gap has led to active research
focus on optimizing FHE, particularly for DL applications.
Recent efforts have shown the potential to construct FHE-
protected neural networks that can provide reasonable speed
performance [2]–[4], achieving approximately 255 seconds per
image for ResNet-20 inference on CIFAR-10 [4].

Despite these advancements, many FHE optimization tech-
niques significantly increased the memory requirements, de-
manding up to hundreds of gigabytes [2], [4]–[6]. Recent
works [7]–[10] revealed that memory is an emerging bottle-
neck in FHE applications. This limitation inherently restricts
the application and advancement of FHE in deep learning,
posing a barrier to its ability to provide secure solutions for
increasingly complex challenges. In particular, [8], [9] dis-
covered that one contributor to the high memory consumption
is the substantial memory required for rotation keys during
parameter setup, a challenge that intensifies with model com-
plexity. For instance, the memory requirement is anticipated
to reach terabyte scales for techniques in [3] on a standard
ResNet-20. Such high memory demand results in significant
computational, storage, and communication challenges. The
growing complexity in DL models emphasizes the need for
memory optimization strategies to efficiently support FHE-
based applications in modern privacy-preserving computing.

Techniques that strike a balance between memory consump-
tion and performance speed is becoming an emerging trend
for FHE-protected deep learning. Recent studies focused on
optimizing the rotation key memory usage to enhance the
efficiency of FHE-based privacy-preserving systems [9], [11].
However, these approaches exhibit limitations, indicating room
for further improvements in optimization. For instance, Lee et
al. [9] proposed a hierarchical rotation key generation system
to reduce rotation key memory. However, they do not report
the impact of increasing the rotation count on execution time,
which raises concerns about the overall feasibility of the
approach. Subsequently, the LowMem technique introduced
by [11] reduces rotation key memory by storing a subset
of rotation keys for reconstruction. However, its applicability
is limited to specific numerical patterns in rotation keys,
particularly symmetric number numerical patterns, as detailed
in Section II-A. In contrast, geometric numerical patterns (2n)
are also found in the rotation keys in the FHE domain, as

https://orcid.org/0000-0001-6597-9043
https://orcid.org/0000-0003-4659-8979
https://orcid.org/0000-0002-7985-3449
https://orcid.org/0000-0002-0007-6174
https://orcid.org/0000-0002-9854-7121

2

observed in [4] and illustrated in Fig. 6 rot2. Additionally,
ConvFHE [4] also features another set of rotation keys that
do not adhere to a clear pattern and appear random. Such
limitation highlights the potential for further enhancement, as
a more flexible solution could improve the effectiveness of ro-
tation key management across a broader range of scenarios. In
particular, such solution should cover the symmetric numerical
pattern found in the rotation key in LowMem [11], geometric
numerical pattern found in the ConvFHE framework [4], as
well as other unknown and irregular patterns.

In this paper, a novel technique to accommodate extensive
lists of numerical pattern and generate corresponding sets to
minimize the memory consumption for rotation keys, while
maintaining a reasonable performance speed, is proposed. The
key contributions of this work are outlined as follows:

1) Technique Development: A technique, ARK, is devel-
oped to minimize the number of rotation keys used in
FHE and its memory consumption, harnessing the inher-
ent regularities in numerical sequence patterns. Unlike
LowMem [11] which only handles symmetric numerical
patterns, the proposed ARK can handle a wide range
of numerical sequence patterns and generate a minimal
subset of rotation keys. This is achieved through a se-
ries of algorithms that exhaustively search the potential
numerical sequence patterns, identify minimal subsets
of rotation keys for each pattern, and select the optimal
set of keys to cover all necessary rotations. Thus, ARK
supports a broader range of numerical patterns beyond
the limitations of LowMem [11]. It redefines the balance
between memory efficiency and computational speed in
FHE operations, achieving a smaller key storage size
while ensuring comprehensive reconstruction of rotation
keys. ARK demonstrates the capability to reduce the
number of rotation keys by up to 48.71%, and consumes
up to 57.25% lesser time in generating rotation key.

2) Adaptive Dual-Configuration Approach: The pro-
posed ARK technique also features a novel dual-
configuration approach, allowing users to prioritize ei-
ther memory reduction or time efficiency in generating
the rotation setups for FHE-based CNN. In memory-
constrained scenarios, the user may opt for a configura-
tion that substantially reduces the memory consumption.
Experimental results show that we can lower the setup
memory by 25.33% to 41.17%, in expense of 0.73% to
17.84% time increase. Conversely, in time-critical oper-
ations, the time-prioritized configuration minimizes time
degradation to as little as 0.21%, while still delivering
significant memory reductions of 18.26% to 39.41%.
Notably, the technique enables near zero-cost operations
when ciphertext can be pre-rotated, allowing for the use
of stored intermediate results in subsequent operations
without increasing the rotation count.

The proposed ARK showcases adaptive flexibility enabled
by the adaptive dual configuration, marking an advancement
that allows for customization to address diverse operational de-
mands. This adaptability not only improves overall efficiency
but also broadens the applicability of FHE in situations where

resource constraints and performance requirements must be
carefully configured to achieve a balanced performance.

II. BACKGROUND

A. Overview of Fully Homomorphic Encryption

Fully Homomorphic Encryption facilitates computations on
encrypted data without concerns of privacy leakage, making it
a leading approach for secure data processing. Figure 1 shows
the overview of computational processes for an FHE-protected
application. Initially, the security level λ are determined to
initialize the FHE components and keys (e.g.,

−→
pk, sk,

−→
ek).

Subsequently, the input messages (−→a) are transformed into
polynomial form, often referred to as plaintext (µ), through a
process known as encoding. There are two primary types of
encoding processes in FHE:

1) Slot Encoding: The messages are transformed into a
vector through an Inverse Discrete Fourier Transform
(IDFT). However, it requires rotations to aggregate the
intermediate results within a single ciphertext during
convolution. For instance, previous studies [11], [12]
have performed a convolution by producing k2 rotated
ciphertexts, where k denotes the kernel size.

2) Coefficient Encoding: This method encodes messages
as polynomial coefficients. Research conducted by [4]
has shown that the encrypted multiplication of ciphertext
leads to convolution operations, thereby reducing rota-
tion needs during convolution (Conv2D). Nonetheless,
it still requires rotations to transform the output for
subsequent layers after Conv2D.

Following encoding, the plaintext can be encrypted to
ciphertext (ct) for computation using the public key (

−→
pk).

In FHE, the operations are performed on groups of inputs,
thus, rotations are necessary to align ciphertext to facilitate
convolution and transform data to subsequent layers. For
example, as shown in Fig. 1, in the convolution with a 32×32
feature size and a 5 × 5 filter. The center input (66) is used
as the starting index in the ciphertext rather than the initial
input index 0, thus deriving 25 rotation keys with a symmetric
numerical pattern. This positioning ensures that relevant slots
in the ciphertext align to yield the required results in each
slot during convolution, thereby minimizing the need for more
rotations to realign data. Rescaling and bootstrapping are steps
to refresh the ciphertext, allowing for additional computations
when the Xnoise reaches a threshold. Once the computation
is completed, ciphertext is transmitted to users, in which
decryption is possible with secret key (sk). Finally, a decoding
operation is executed to convert the plaintext back into a usable
form for the end user.

Cheon, Kim, Kim and Song (CKKS) [13] scheme was
proposed to facilitate approximate computations and sup-
port real numbers, which makes them more suitable for DL
applications compared to Brakerski/ Fan-Vercauteren (BFV)
[14], [15] and Brakerski-Gentry-Vaikuntanathan (BGV) [16]
schemes that restricted to integer representations. Although
this advancement provided greater flexibility in data represen-
tation, it also introduced increased computational complexity
and the potential for precision loss. In 2018, the Fast Fully

3

Fig. 1: Overview of the computational processes for an FHE-protected application

Homomorphic Encryption Library (TFHE) [17] scheme was
introduced, allowing bitwise operations by leveraging the
”gates” approach. Several open-source libraries [13], [17]–[20]
have also been developed to enhance the accessibility of FHE.
A prominent area of interest is the application of FHE to deep
learning applications, particularly affected by the increasing
popularity of cloud services. As a result, research efforts
directed at overcoming the performance challenges associated
with the implementation of FHE in deep learning, especially
for privacy preservation, have become an active and dynamic
field of study [2], [4]–[9], [11], [21].

B. Challenges of Memory and Performance Trade-Offs in
Current FHE-based Privacy-Preserving System

Low-latency FHE-based neural network is becoming pop-
ular for applications that focused on in processing one or a
few images [21]. Many of these FHE optimization techniques
often trade-off memory to improve the time performance. For
instance, [21] proposed a novel data packing method that
organizes the data channel-wise, packing each channel into
a single ciphertext, consuming ≈ 126 GB of memory for
a 7-layer CNN. Following that, Kim et al. [5] introduced
the Hyphen method, which tailored packing strategies (2D
gap packing and the PRCR scheme) to enhance convolution
efficiency. This approach reduces the latency of ResNet-20
on CIFAR-10 to 1.40 seconds on GPU, consuming up to
380 GB. Subsequently, Souhail et al. [6] optimized privacy-
preserving deep learning by utilizing several techniques, in-
cluding quantization and depth-optimized compressor-based
accumulators. Nevertheless, their approach still necessitates
192 GB of memory to operate ResNet-20 on CIFAR-10.
Similarly, Kim et al. [4] developed ConvFHE that leverages the
properties of coefficient encoding to eliminate the need for ro-
tation during the convolution. This approach delivers constant
convolution time regardless of the kernel size, resulting in up
to a 46× speedup across different kernel sizes. It achieved 255
seconds per image inference on ResNet-20, attaining state-of-
the-art accuracy of 92.02%. Similar to the previous works, it
consumes a lot of memory (≈ 100 GB).

These research underscores a persistent trend in which
optimizing execution time for FHE-based neural networks
typically requires significant memory trade-offs. Accelerating

models like ResNet-20 on CIFAR-10 demands up to hundreds
of gigabytes of memory, a limitation that becomes more
pronounced for larger, more advanced networks. De Castro et
al. [7] also emphasize memory as a critical bottleneck in FHE
applications, arguing that the performance gains cannot rely
solely on computational acceleration if the inherent memory
constraints in FHE are not addressed. This perspective is
echoed by studies such as [8], [9], which note that the large
memory footprint of rotation keys has increasingly become a
limiting factor in the development of advanced, and efficient
FHE-based privacy-preserving systems. Substantial memory
requirements of current FHE-based neural networks present
significant challenges to the deployment in industrial applica-
tions, particularly in scenarios involving outsourced services
that require communication between users and servers. The
primary concerns include:

1) High Computational Overheads: As system complex-
ity increases, homomorphic computations require more
rotations, resulting an extensive rotation key set that
must be stored and transmitted. For example, [9] em-
ployed the technique in [3] to implement the CKKS
scheme with a polynomial modulus degree N = 216 for
a ResNet-20 on CIFAR-10, requires at least 265 rotation
keys and consumed 105.60 GB of memory. [9] reports
that generating this key set requires approximately 13
minutes on AMD Ryzen Threadripper PRO 3995WX
CPU, underscoring the inefficiency when users need
various rotation key sets for different services, which
is a long waiting process. Thus, it is desirable to reduce
the runtime and memory for rotation key generation to
enhance usability.

2) Inefficient Memory Management: When accommodat-
ing large user bases, servers must allocate substantial
memory for storing rotation keys per user. For example,
supporting 1000 users with 512 GB of rotation key
storage per user would necessitate 512 TB of memory.
However, the memory allocated for keys that are not
frequently accessed can lead to a waste of resources,
while regenerating and retransmitting keys as needed
also introduces overhead.

4

Fig. 2: Example of rotation key and processes involved in LowMem technique [11]

C. Related Work

Recent research has switched their focus on optimizing the
use of rotation keys to reduce memory consumption while
maintaining efficient performance. For example, [9] introduces
a hierarchical rotation key approach, which derives master
keys and generates additional keys as needed, reducing the
memory footprint for ResNet-20 on CIFAR-10 to about 2.91
GB. However, this method requires multiple rotation cycles to
achieve the desired shifts, potentially increasing operation time
and introducing more noise to ciphertext. The study primarily
reports on key generation time, but does not investigate the
trade-off between memory efficiency and potential degradation
in inference times, raising questions about its feasibility in
terms of speed performance. Moreover, Roshan et al. [8]
observed that HEAAN [13] optimizes memory efficiency by
employing powers-of-two to store rotation keys, requiring only
2 log(N) − 2 rotation keys. However, they also pointed out
that these rotation keys may not consistently align with the
anticipated order in FHE, leading to inadequate coverage of
the necessary rotation.

Rovida and Leporati [11] proposed an optimized approach
by storing only the filter width and step size, instead of the
entire set of rotation keys. It employed slot encoding in their
implementation of ResNet-20 on CIFAR-10 dataset. Fig. 2
illustrates the sequence of rotation keys identified in [11]
along with their corresponding rotation operations. For a 5×5
kernel size, the filter width is identified as 32, with each group
positioned ±32 indices apart. Additionally, a step size of ±1
is consistently employed in their solution. Consequently, this
approach allowed them to reduce the storage requirements
from 25 rotation keys to just four key values: -32, 32, 1,
and -1. Thus, the ciphertext at rotation indices of −1, 1,
−32, and 32 can be obtained in the initial round using
the original ciphertext at index 0 (rot0). These ciphertexts
are then used in subsequent rotations to generate additional
ciphertexts. Specifically, to produce the ciphertext at index
−33, the rotated ciphertext at index −32 is subsequently
rotated by -1. Likewise, to achieve the ciphertext at index −64,
it is further rotated by −32. This process requires multiple
rounds of group rotations to complete the overall ciphertext

rotation operation. Although this technique [11] enhances
memory efficiency without increasing the rotation count, it
still encounters limitations that restrict its broader potential in
memory reduction:

1) Limited Support for Different Filter Sizes: This
approach exclusively supports odd-numbered filters and
cannot accommodate rotation keys for even-numbered
filters, such as 2× 2 or 4× 4.

2) Assumption of Symmetric Patterns: It assumes a
symmetric numerical pattern for the rotation key. How-
ever, in practice, rotation keys often exhibit diverse
patterns due to the unique architecture in different neural
networks designed for FHE, which tends to be random
for a large neural network.

3) Inflexibility in Filter Width and Step Size Support:
The dependence on storing only the filter width and
minimal step size presents challenges when the rotation
keys do not align with a uniform step size or filter
dimension.

As a result, this work [11] fails to address more complex
scenarios such as [4], [8]. These investigations highlight the
research gap regarding the optimization of rotation keys for
memory management.

III. ARK

In this paper, the Adaptive Rotation Key (ARK) optimiza-
tion technique is proposed to improve memory efficiency
in FHE setups by minimizing the number of rotation keys.
This technique aims to establish an optimal trade-off between
processing time and memory consumption, thereby facilitating
a memory-efficient solution for FHE-based neural networks.
Fig. 3 illustrates the complete workflow of the ARK technique,
which comprises three major steps:

1) Identify Numerical Patterns and Generating Cor-
responding Pairs of Numbers: This step involves
identifying numerical patterns for rotation keys through
Algorithm 1 (Find Symmetric Pattern), and Algorithm
2 (Find Geometric Pattern) to generate their respective
mappings.

5

Fig. 3: Process flow of the ARK technique

2) Creating Keys Based on the Filtered Pairs: This step
employs the identified mappings to generate the corre-
sponding keys, utilizing Symmetric KeyGen (Algorithm
3) and Geometric KeyGen (Algorithm 4).

3) Finalizing the Rotation Keys: The final step focuses
on producing a comprehensive set of minimal subset
rotation keys that collectively cover all original rotation
keys, through the Merge KeyMap (Algorithm 5).

Subsequently, ARK offers a dual-configuration, allowing
users to select either a memory-optimized or time-optimized
rotation key set. For maximum memory efficiency, the ARK
technique selects the key set with the fewest rotation keys,
minimizing memory usage. For optimized speed, it selects the
map that minimizes the worst-case scenario of rotations when
ciphertext pre-rotation criteria are not feasible. Ultimately, the
ARK technique returns a minimal subset of rotation keys and
a comprehensive map that aligns each original rotation key
with its optimized counterpart. These keys are then applied
to FHE parameters, while the maps are used to efficiently
retrieve the derived rotations set. In summary, the ARK
technique can accommodate rotation key sets with a variety
of numerical patterns, covering most of the commonly found
patterns encountered in FHE.

A. ARK formulation

Fig. 4 analyzes the relationship between rotation count and
the time required for rotation key reconstruction in ConvFHE
[4]. This underscores the trade-offs inherent in the system:
higher rotation counts offer enhanced flexibility for key reuse
and improved memory efficiency, yet it also introduces consid-
erable processing overhead. Beyond a rotation count of two,
the diminishing returns on time performance render further
increases less advantageous. This aligns with findings in [3],
suggesting that minimizing the rotation count is advantageous

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

180

200

Rotation Count

Ti
m

e
Ta

ke
n

(s
ec

on
ds

)

Fig. 4: The relationship between the number of rotation counts
and the time taken to reconstruct a rotation number

for reducing time. Rotation count of two is generally regarded
as an optimal compromise, optimizing memory utilization with
acceptable time performance.

To formalize this approach, a minimal subset D ⊂ Z is
derived from a given set of rotation keys S = {s1, s2, . . . , sn}
such that every key si ∈ S can be reconstructed using keys
from D. The subset D may consist of integers that are either
part of S or newly introduced numbers that maximize the
potential for reuse when reconstructing its elements. This
addresses the challenge of minimizing the cardinality of D,
denoted as m, where m < n. It is to reduce the memory
requirements for rotation keys while ensuring that each key si
can be expressed as:

si =

{
dj if dj ∈ D,

dk + dh if dk + dh ∈ D,

∀ j, k, h ∈ {1, 2, . . . ,m}.
(1)

To achieve an optimized solution, the following require-
ments are enforced: (1) the length of D must be smaller
than that of S; (2) each key in D should be reused as
much as possible to enhance the memory efficiency; and (3)
each rotation key si may be constructed using either one or
two elements from D to control the computational trade-offs
associated with rotation operations in FHE.

B. Identify numerical pattern and generate mapping

The initial step in the ARK technique involves accepting a
list of numbers and systematically identifying their relation-
ships, categorizing them into specific patterns. The pattern of
rotation keys is influenced by several factors:

1) How ciphertext transitions in a specific FHE scheme
are managed between neural network layers that require
rotation for appropriate data formatting.

2) The data packing and encoding method employed in the
FHE operations also leads to variations in rotation key
numerical pattern.

6

Algorithm 1 Find Symmetric Pattern

Require: A list of integers, nums
Ensure: A map of differences, map : [stepsize : [v1, . . . , vn]]

1: n← sort(nums)
2: while i← 0 to i < len(n)− 1 do
3: start← i
4: dif ← n[i+ 1]− n[i]
5: while i < len(n)− 1 and n[i+ 1]− n[i] = dif do
6: i++
7: end while
8: if i > start and (i− start+ 1) > 1 then
9: Append n[start : i+ 1] to patterns [dif]

10: end if
11: i++
12: end while
13: return patterns

Upon investigation, two rotation key patterns have been identi-
fied in FHE-based neural networks. One prominent numerical
pattern is the symmetric rotation key sequence as shown in Fig.
1, employing 5 × 5 filters with 32 filter width, characterized
by 25 rotations grouped into sets of five with a step size
of ±1 that found in [4], [11] utilizes the slot encoding
method. These rotations facilitate convolution operations and
the transformation of ciphertext across neural network layers.
However, the LowMem method [11] may encounter limitations
when the rotation key does not adhere to a uniform step size.
This is because such pattern is usually randomized in complex
architectures [4], [8]. To extends beyond symmetric patterns,
this work presents a novel approach that reduces rotation keys
by identifying the central number and step size within each
group, rather than merely storing a single filter and step size.

Algorithm 1 is designed to identify and group sequences
of numbers that exhibit a consistent difference between con-
secutive elements in a list. The process begins by sorting the
input integers to facilitate pattern detection (line 1). It then
iterates through the sorted list and computes the difference
between consecutive numbers (lines 2 to 4). When a uniform
difference is discovered across a subset of elements, they are
stored in a data map that associates the difference with the
list of numbers forming that sequence (e.g., map [stepsize :
[value1, value2, . . . , valuen]]). The algorithm ensures
that only sequences comprising more than two numbers are
retained (lines 5 to 12), emphasizing the significance of
sufficiently long patterns for effective memory optimization.
This process repeats until all elements are analyzed, then
output a collection of symmetrical patterns, where each key
represents a specific difference, and its associated values
are the integers that follow that arithmetic progression. The
sample output is illustrated as the categorisedNumber in
Fig. 5. This approach overcomes the limitations present in
prior work [11] by providing a concise representation of
the underlying numerical structure, resulting a more versatile
solution applicable to a wide range of contexts.

In addition, geometric patterns are also prevalent in

Algorithm 2 Find Geometric Pattern

Require: A list of integers, nums
Ensure: A map of differences, map : [k : [v1, v2, . . . , vn]]

1: for each a in nums do
2: for n← 0 to ⌊log2(a)⌋+ 1 do
3: base← 2n

4: k ← a− base
5: if k /∈ kGroups then
6: kGroups[k]← a
7: else if a /∈ kGroups[k] then
8: Append a to kGroups[k]
9: end if

10: end for
11: end for
12: for each k, group in kGroups do
13: if len(group) < 2 then
14: Remove k from kGroups
15: end if
16: end for
17: return kGroups

the rotation key sequences, particularly when employing
coefficient encoding [4]. In this context, each number is
derived by multiplying the preceding term by a constant
ratio. This limitation renders the LowMem technique [11]
unsuitable for such cases. Consequently, the second aspect
of ARK focuses on identifying and categorizing geometric
patterns within the rotation key list. It has been observed
that the rotation keys frequently adhere to a pattern related
to powers-of-two; yet, they do not always align precisely
with the values of the power-of-two sequences. For instance,
one specific list in ConvFHE [4] includes the following
values: 3, 5, 9, 17, 33, 65, 129, 257, 513, 1025, 2049, 4097, 8193
, 16385, 32769, 65537. Each of these values can be expressed
as 2n + 1, where n ≤ 16. These numbers can be
categorized following the equation: 2n ± k, where k serves
as an offset to adjust the number to its actual value.

Algorithm 2 is developed to identify and group integers
based on their geometric relationships within a specified list.
For each number in the input list (nums), the algorithm
calculates the potential bases derived from power-of-two (line
3). Subsequently, it computes the difference k between the
number and the nearest identified base (line 4) and group the
number under k into kGroups map (lines 5 to 9). Any groups
containing fewer than two numbers are removed (lines 12 to
16), because they do not form valid geometric sequences;
directly assigning the original rotation key is deemed more
memory efficient. The algorithm produces a structured map
where the keys represent the constant differences k, and the
associated values are rotation keys that share the same differ-
ence, organized as map [k : [value1, value2, . . . , valuen]].
A sample output is illustrated as the categorizedNumber in
Fig. 6. Finally, any numbers that remain uncategorized after
the execution of Algorithms 1 and 2 are added directly to
the map as original keys. All generated maps will be passed
on to phase two of the algorithm, which is dedicated to key

7

Algorithm 3 Symmetric KeyGen

Require: A map of integer numbers, nums.
Ensure: A list of filtered keys, map[int][]int and a map int[]

of key offsets.
1: for each z, n in nums do
2: curGrp← n[0]
3: for i← 1 to i < len(n), +=1 do
4: dif ← n[i]− n[i− 1]
5: if dif > z then
6: mid← findCenter(curGrp)
7: grps[mid]← curGrp, Append mid to centV al
8: else
9: Append n[i] to curGrp.

10: end if
11: end for
12: end for
13: for z, n in grps do
14: if moreSubdivision(n) then
15: mid← findCenter[n[s : e]]
16: grps[mid]← n[s : e], Append mid into centV al
17: end if
18: end for
19: for each mid in centV al do
20: for each val in grps[mid] do
21: k ← val −mid
22: pm[val]← []int{mid, k}, Append k to pk
23: end for
24: end for
25: pk ← concat(pk, centV al)
26: for each ky in pm do
27: if ky exist in pk then
28: pm[ky]← ky
29: end if
30: end for
31: return pk and pm

generation.

C. Rotation Key Generation

In this phase, the aim is to process the previously filtered
maps to facilitate key generation. Algorithm 3 utilizes the
symmetrical map to generate an optimized rotation key set
for each identified rotation key, along with the corresponding
mapping keys in subset D, thereby facilitating the reconstruc-
tion of the original key. The algorithm begins forming initial
groups by iterating through the input map. It initializes a
curGrp with the first number, then examines the differences
between consecutive numbers in the sorted list (lines 1 to
4). Whenever the difference exceeds the discovered step size
(z), a new subgroup is created. The center of each curGrp
is calculated and stored in the group map, while the center
values are added to the centVal list, which is part of the
minimal subset key (lines 5 to 9). This ensures that each
group contains numbers that are closely related based on their
differences. In certain cases, the identified patterns may lack
distinct filter sizes. For example, assuming there is a rotation

Fig. 5: Example process of number filtering and key generation
for incremental/symmetrical numerical pattern.

Fig. 6: Example process of number filtering and key generation
for geometric numerical pattern

key set containing values from 0 to 10 would result in all
numbers within this range being classified as a single group.
In this scenario, the algorithm assigns 5 as the center value,
with step sizes extending from -4 to 5. Consequently, this
limits the ability to optimize rotation key memory by retaining
ten rotation keys: one for the center value and nine for the
associated step sizes. This situation underscores the challenge
of efficiently managing rotation key storage when symmetrical
patterns exhibit uniformity across a large group of numbers.
To overcome this, the algorithm further divides the grouped
number into smaller, more manageable subgroups. It employs
a factor-based approach to distribute numbers into smaller
groups whenever feasible. The centers of these subgroups are
calculated and stored in the groups map, with their respective
center values added to centVal list (lines 13 to 17). If a group
cannot be divided, it is retained in its original form to preserve
its structure.

8

Following that, offset rotation keys are calculated for each
number within the processed groups. Each offset represents
the difference between the current number and its designated
group center. The pm map is then updated to include this
offset, along with the centers, as part of the newly optimized
rotation key set (lines 19 to 24). Consider a subgroup of
numbers like 66, 65, 64, 63, and 62, the center value is 64,
and the associated step sizes are ±1 and ±2. It is sufficient to
retain only the center value for each group, enabling a diverse
step size to be uniformly applied across various symmetric
subgroups. The final rotation keys are produced by merging
the center values with all identified offset values, ensuring
that duplicates are eliminated to maintain uniqueness (line
25). Finally, the algorithm filters out unnecessary entries,
particularly if their corresponding direct keys exist in the new
rotation list (lines 26 to 30). This step significantly reduces
redundancy, ensuring that the resulting list of keys is concise
and efficient. Fig. 5 summarizes the entire process of number
filtering and key generation for incremental and symmetric
pattern rotation keys.

Performing two times of homomorphic rotation for a spe-
cific number can be interpreted as an addition operation. The
geometric rotation key pattern with common factor charac-
teristic requires careful formulation to balance the trade-off
between execution time (the number of sub-rotations required)
and memory optimization. Consider a list of numbers exhibit-
ing a geometric pattern: 2, 4, 8, 16, 32, 64 , and 128, where
each number is a multiple from its predecessor. Employing the
symmetrical algorithm approach would lead to an increased
number of rotation counts for the larger numbers. For instance,
the base number (2) is stored in this sequence, obtaining eight
necessitates four rotations {2, 2, 2, 2}, resulting in significant
performance degradation. To enhance optimization, the focus
shifts toward numbers that are powers-of-two, thereby min-
imizing memory usage. The rot1 list as depicted in Fig. 6,
is derived from ConvFHE [4] experiments. The numbers are
categorized by the offset, k, with each key set adhering to the
formula 2n+k. For example, the first key with a value of 256,
the following power-of-two values is obtained:

384− 256 = 128 (which is 27),

768− 256 = 512 (which is 29).

Thus, the new rotation key subset should consist of one offset
and one value corresponding to a power-of-two. In the case
of the offset 1024, obtaining 1152 involves 1024, 128, which
shares the same power-of-two with 384. Consequently, the
number of rotations in the initial configuration for rot1 realizes
an approximate 46% reduction in key storage.

The rotation key may consist of only power-of-two numbers
that cannot be effectively categorized using the factorization
method, as illustrated by rot2 in Fig. 6, where by only
one mapping that encompasses the entire number set exists.
Without optimization, the algorithm retains the entire key set
from 21 to 215, leading to inefficiencies. Hence, it is proposed
to store rotation values in groups of two, using a stridden
approach while flipping the signs of the offset keys, such as
−1, 3, 9, 33, and so on. This method enables the utilization of

Algorithm 4 Geometric KeyGen

Require: A map of integer numbers, nums.
Ensure: A list of filtered keys int[], and map[int][]int a map

of key offsets.
1: for each ky, num in nums do
2: v ← num
3: if ConsecutiveNum(v, ky) and len(v) > 4 then
4: Append −ky to pk
5: for i← 1 to len(v), +=2 do
6: pm[v[i− 1]]← v[i− 1], Append v[i− 1] to pk
7: pm[v[i]]← []int {v[i− 1], v[i− 1],−ky}
8: end for
9: else

10: for each a in v do
11: if isPowerOfTwo(ky) then
12: pm[a] ← []int {a − ky, ky}, Append ky and

a− ky to pk
13: else if ky = 0 then
14: pm[a]← a, Append a to pk
15: else
16: rm← nums[ky]
17: end if
18: end for
19: end if
20: end for
21: Sort rm in descending order
22: for each ky, v in rm do
23: if val not exists in pm then
24: tm[v]← []int{v − ky, ky}
25: end if
26: end for
27: for each ky, combo in tm do
28: if all values in combo exists in pk then
29: pm[ky]← combo, Append combo into pk
30: else if either 1 value in combo exist in pk then
31: pm[ky]← combo, Append combo into pk
32: end if
33: end for
34: return pk and pm

the first stride number, such as 3, to reconstruct subsequent
values like 5 through the combination {3, 3,−1}. However,
the same base number (3) cannot be employed to construct
higher numbers, such as 17, which would require 6 × 3 − 1.
This results in excessive rotation cycles that could significantly
degrade performance. By adopting a stridden method where
3 constructs 5, 9 constructs 17, and 33 constructs 65, and
utilizing flipped offset keys, a more optimal solution for this
scenario is achieved.

Algorithm 4 is developed to generate optimized rotation
keys for geometric numerical patterns, with a specific focus
on identifying the most effective combinations to express
target numbers while minimizing redundant calculations. The
algorithm begins by iterating through the input map to assess
if the geometric pattern aligns with the criteria for consecutive
numbers in the list, akin to the rot2 pattern. If it meets

9

this criterion, the rotation key is stored in a stridden format,
with the keymap stored in pm and the keys stored in pk for
retrieval (lines 3 to 9). Conversely, if the grouping in the input
map appears random, like rot1, the algorithm prioritizes key
mappings where k = 0. This corresponds to the exact power-
of-two values and combinations where either one value is the
exact power-of-two value (lines 10 to 15). These values are
decomposed into pairs, identifying the nearest power-of-two
alongside its corresponding offset (e.g., rot : {k, 2n}). Any
remaining rotations that do not yield an offset combination
are transferred to rm for further processing (line 16).

Following this, the algorithm prioritizes keys from rm based
on the length of values associated with each key, sorting
them in descending order (line 21). Upon establishing this
order, unselected rotations from rm are incorporated into a
temporary map (tm) to prioritize the combinations that cover
the most numbers (lines 22 to 26). This strategy ensures that
the keys with a broader coverage are processed first. At this
stage, each unselected rotation may belong to multiple key
groups in tm. Subsequent iteration examines tm and selects
the most efficient combination for each rotation (lines 27 to
33), and produces the final rotation keys (pk) and rotation map
(pm), representing the most optimized strategy for geometric
key generation. In summary, the geometric key generation is
guided by the following criteria:

1) Prioritization of key sets belonging to the power-of-two
group.

2) Prioritization of key sets where both values in the
combination exist in the global key list. For example, if 7
has the combination {3, 4}, and both 3 and 4 are already
present as keys in pk, this combination is prioritized.

3) If the above criteria are not met, select key sets where at
least one value in their combination exists in the global
key list.

4) If none of the previous criteria are fulfilled, direct
assignment of the number as a key.

D. Finalizing Rotation Key

Upon completing the second phase of key generation for
each numerical pattern list, two distinct rotation key lists
were obtained, each accompanied by their respective keymaps.
Nevertheless, these generated keymaps do not inherently guar-
antee full coverage of the rotations from the original set.
This is because some values may be associated with only one
numerical pattern. To address this limitation, Algorithm 5 inte-
grates the key combinations derived from both the symmetric
and geometric key sets. This integration aims to produce a
comprehensive key map that ensures full coverage of all values
in the original rotation key list, while simultaneously selecting
the most optimal combination to achieve this objective.

Initially, this algorithm prioritizes selection of rotation keys
that are associated with single-group values (lines 1 to 5).
Next, the algorithm processes the remaining keys by iterating
through all possible combinations for each rotation, specifi-
cally selecting those combinations where all values already
exist in the final key list to ensure efficient rotations (lines
6 to 12). A brute-force approach is employed to assess the

Algorithm 5 Merge KeyMap

Require: A map of rotation keys compiled from multiple
merged maps, inputMap

Ensure: A list of filtered keys int[], and map[int][]int a map
of key offsets

1: for each k, v in inputMap do
2: if len(v) = 1 then
3: map[k]← v[0], Append k into keys
4: end if
5: end for
6: for each key, combinations in inputMap do
7: for each , combo in combinations do
8: if all values in combo exists in keys then
9: map[key]← combo, Append combo into keys

10: end if
11: end for
12: end for
13: for key, combinations in inputMap do
14: minUnique← −1
15: for combo in combinations do
16: unique← countUnique(combo, keys)
17: if minUnique = −1||unique < minUnique then
18: minUnique← unique
19: bestCombo← combo
20: end if
21: end for
22: map[key]← bestCombo, Append key into keys
23: end for
24: return keys, maps

remaining combinations to select the one that requires the
fewest unique additions to the final key list (lines 13 to 23),
thereby minimizing the number of rotation keys introduced
into the final key list. In this work, greedy algorithms and
dynamic programming filtering methods were also evaluated to
determine the optimal subset of keys. Nevertheless, the brute-
force approach was selected due to its ability to consistently
generate the most optimal solution compared to the other
methods, and swift completion time in a few seconds.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

This section presents an experimental evaluation of the
proposed ARK technique as applied to ConvFHE [4], utilizing
CKKS FHE scheme and a ResNet-20 network. ConvFHE [4]
explored a range of configurations across kernel sizes (3, 5,
7), layer depths (8, 14, 20), and wideness factors (1, 2, 3) for
sparse data packing, collectively referred to as K − L −W
experiment (e.g., 3-20-1). In this paper, the original ConvFHE
configuration is used as the baseline, while ARK is assessed
under two configurations: Memory-Prioritized (MP) and Time-
Prioritized (TP).

A. Performance Evaluation of Rotation Key Management in
ResNet-20 for Single-Layer Convolution

Fig. 7 presents a comparison of memory usage, execution
time, and rotation key count for single-layer convolution for

10

ConvFHE LowMem ARK

0

5

10

11.74

3.07

4.75

8.1

4

M
em

or
y

C
on

su
m

pt
io

n
in

G
B

Slot Encoding
Coeff Encoding

(a) Memory

ConvFHE LowMem ARK

0

200

400

600

800

341

575

447

601

869

E
xe

cu
tio

n
Ti

m
e

in
m

ill
is

ec
on

d
(m

s)

(b) Time

ConvFHE LowMem ARK

0

10

20

25

4

8

16

9

N
um

be
r

of
ro

ta
tio

n
ke

ys

(c) Rotation Key

Fig. 7: Comparison of memory, time, and rotation keys for slot encoding and coefficient encoding in single-layer convolution
with [4], [11]

TABLE I: Impact of rotation keys on total memory usage in ConvFHE baseline [4] experiments

K-L-W 3 -20-1 5-20-1 7-20-1 5-8-3 3-14-3 3-20-3
Rotation Key Memory (GB) 81.37 81.05 81.78 88.31 88.75 88.85

Total Memory (GB) 86.74 87.56 87.88 93.05 92.39 90.39
Rotation Key Contribution to Total Memory (%) 93.81 94.85 93.06 94.91 96.06 98.30

Note: K-L-W denotes Kernel Size, Layer, and Wideness Factor for each experiment.

slot and coefficient encoding methods. For slot encoding, the
ConvFHE (baseline) implementation necessitates 25 rotation
keys, consuming 11.74 GB (Fig. 7a). In contrast, the proposed
ARK technique reduces the required rotation keys to 8 (Fig.
7c), achieving 68.00% reduction in key usage and a 59.54%
memory reduction, resulting in only 4.75 GB (Fig. 7a) of
memory consumption. The LowMem [11] method can further
reduces rotation keys to just 4 (Fig. 7c), which consumes
only 3.07 GB, which reduces more memory compared to
ARK. This is because LowMem [11] only retains the filter
width offsets (± 32) and a constant step size (± 1), so the
rotation key count is constant (always four). However, this
approach cannot be used when the subgroup intervals are
inconsistent, while the proposed ARK technique can accom-
modate variable subgroup intervals by categorizing values into
groups. For instance, in the case of a 5 × 5 filter Fig. 2,
LowMem [11] requires only the keys 32,−32, 1,−1, while
ARK retains −64, 64,−32, 32,−1, 1,−2, 2 to accommodate
varying intervals, resulting in slightly higher memory usage.

Note that such compromise is particularly significant in sce-
narios where the rotation key sequence becomes more complex
than a symmetric pattern, especially for large neural network
FHE sequence where the often exhibit randomness. Although
all methods evaluated are having the same rotation count
throughout the experiments, LowMem [11] exhibits higher
latency compared to the ARK technique, with latencies of 575
ms for LowMem [11] and 447 ms for ARK (Fig. 7b). This
discrepancy in latency is primarily due to the greater coverage
of rotation keys in the ARK, which reduces the overhead
associated with initiating rotation operations. Notably, the
LowMem [11] requires multiple rotations to complete (see
Fig 2), but the proposed ARK technique benefits from fewer
iterations due to its larger number of stored rotation keys.
Thus, ARK operates 22.26% faster than the LowMem [11].
This efficiency leads to a lower latency increase in ARK
(31.09%) compared to ConvFHE baseline [4], whereas the
LowMem [11] is significantly slower (68.62%) than [4].

On the other hand, the LowMem [11] method assumes that
the rotation key set is always symmetric, rendering its solution
inapplicable for coefficient encoding convolution in [4]. ARK
can effectively reduces the rotation key count from 16 to 9,
achieving a 43.76% reduction in keys and contributing to a
50.62% decrease in memory usage, dropping from 8.10 GB
to 4.00 GB. However, the time performance also degrades by
44.77%, increasing from 601 ms to 869 ms. Consequently,
the performance of ARK for coefficient encoding is less
effective than for slot encoding. This can be attributed to
the inherent inconsistency of geometric numerical patterns
compared to symmetric numerical patterns, where geometric
sequences often arise from multiplicative factors rather than
arithmetic differences. Such inconsistencies impose limits on
key summarization, as the values increment in powers, thereby
reducing the potential for shared key reuse. As a result, the
overall rotation count required to complete the original rotation
set tends to increase, as illustrated in Fig. 6 rot2 example,
which demonstrates the increased need for additional rotations.

B. Impact of Rotation Key Memory on Total Memory Usage

Table I presents the impact of rotation key memory on
the total memory usage across various experiments in the
ConvFHE baseline [4]. The results were obtained from the
source code released by [4] in open source domain. The results
indicate that the memory usage for experiments with a wide-
ness factor of 1 ranges from 81.05 GB to 81.78 GB, while for
a wideness factor of 3, it ranges from 88.31 GB to 88.85 GB.
The higher memory consumption observed in the wideness
factor of 3 can be attributed to the increased requirement for
rotation keys due to the sparse packing of input data, resulting
in greater overall memory usage compared to the wideness
factor of 1. Furthermore, ConvFHE [4] demonstrates an overall
memory consumption ranging from 86.74 GB to 93.05 GB. A
detailed breakdown indicates that the contribution of rotation
keys to total memory usage is substantial, accounting for
approximately 93.06% to 98.30%. It highlights the potential

11

3-20-1 5-20-1 7-20-1 5-8-3 3-14-3 3-20-3

20

30

40

50

2
5
.3
3

2
7
.5
4

2
5
.7

2
6
.7
4

2
5
.7
6

3
1
.7
5

2
4
.6
2

2
5
.8
7

2
5
.9
4

2
2
.7
5

2
2
.4
7

3
0
.0
8

4
7
.1
7

3
8
.8
6

4
0
.9
9

3
1
.2

2
6
.9
7

3
1
.6
2

3
7
.6
6

3
8
.2
8

3
9
.4
1

3
0
.5
4

1
8
.2
8 2
9
.3
7

ExperimentsM
em

or
y

R
ed

uc
tio

n
(%

) MP CRot1 TP CRot1 MP CRot2 TP CRot2

(a) Rotation Key Memory

3-20-1 5-20-1 7-20-1 5-8-3 3-14-3 3-20-3
0
5
10
15

0
.7
3

0
.8
3

0
.7
7

2
.0
3

2
.3
9

2
.4
9

0
.2
1

0
.5
4

0
.3
6

1
.2
8

1
.0
5

1
.1
2

1
2
.5
2

1
2
.0
8

8
.6
2

1
7
.8
4

1
1
.1
9

9
.4
7

9
.3
6

9
.1
6

6
.8
3

1
4
.9
7

9
.6
6

6
.2

Experiments

Ti
m

e
In

cr
em

en
t

(%
)

(b) Execution Time

3-20-1 5-20-1 7-20-1 5-8-3 3-14-3 3-20-3
40

45

50

55

4
2
.2

4
2
.7
3

4
2
.6
1

4
3
.8
3

4
6
.2
5

4
5
.2
7

4
1
.2
8

4
1
.0
6

4
3
.6
8

4
2
.6
8

4
3
.4
8

4
3
.3
55
0
.5
8 5
7
.2
5

5
6
.1

4
7
.5
3

4
9
.1 5
4
.8
5

4
2
.7
3 4
7
.6
4

4
6
.9
9

4
6
.5
9

4
6
.7
9

4
5
.5
9

Experiments

Ti
m

e
R

ed
uc

tio
n

(%
)

(c) Rotation Key Generation Time

Fig. 8: Analysis of rotation key memory reduction, execution time increment, and rotation key generation time reduction with
ARK across various configurations and experiments

Notes: (1) MP denotes memory prioritized configuration. (2) TP represents time prioritized configuration.

for significant reduction through effective management. Thus,
optimizing rotation key usage emerges as a vital strategy for
advancing efficiency in ConvFHE [4] implementations.

C. Memory and Time Performance Analysis of ARK

Throughout the experiment, two distinct scenarios were
discovered for implementing ARK in ConvFHE [4]. The first
rotation scenario is applied during the block transition of the
ciphertext in ResNet-20, referred as CRot1. This process
iterates over the offset map, multiplying each offset with a
single input ciphertext then rotating it to produce the result.
Another rotation is employed during ciphertext packing after
convolution, referred as CRot2. It accepts an array of inputs
and offsets in ciphertext format, performs a few homomorphic
operations, rotates it, and then reassigns the results back to
their respective slot indices in the inputs for the next iteration.
Table II presents the impact of ARK on rotation key memory
and total memory usage across different rotation scenarios
and configurations. ARK significantly reduces rotation key

memory from an initial range of 81.05 GB to 88.85 GB to
a reduced range of 47.87 GB to 70.99 GB, yielding rotation
key memory reduction of approximately 18.28% to 47.17%
(Fig. 8a). This improvement also reduces the overall memory
usage up to 35.05% to a minimum of 56.34 GB. On the other
hand, Table III analyzes the impact of ARK on execution
time, showing an increase from ConvFHE baseline range of
272 to 594 seconds to 275 to 650 seconds, reflecting a time
increase of around 0.21% to 17.84%, as illustrated in 8b. These
findings indicate that the memory savings achieved in rotation
key storage outweigh the associated time increase, supporting
ARK as a beneficial trade-off technique for memory efficiency.
CRot1 and CRot2 reveals significant differences in memory
efficiency and execution time. CRot1 demonstrates memory
reduction in rotation key between 22.47% and 31.75% in
rotation key memory (see Fig. 8a), while incurring a minimal
time increase of 0.21% to 2.49% (Fig. 8b), compared to the
ConvFHE baseline. In contrast, CRot2 increases execution
time ranging from 6.20% to 17.84% (Fig. 8b), to achieve

12

TABLE II: Comparison of Rotation Key Memory Reduction
and Overall Memory Savings with ARK Across Different
Configurations and Rotation Scenarios in ConvFHE

K-L-W 3-20-1 5-20-1 7-20-1 5-8-3 3-14-3 3-20-3

Memory
Priortized

Configuration (GB)

Rotation
Key

ConvFHE 81.37 81.05 81.78 88.31 88.75 88.85
CRot1 60.76 58.73 60.76 64.70 65.89 64.89
CRot2 47.87 49.55 48.26 60.76 60.57 60.76

Total
ConvFHE 86.74 87.56 87.88 93.05 92.39 90.39

CRot1 62.61 61.94 62.61 67.55 68.75 68.75
CRot2 56.34 59.54 59.28 62.61 62.12 62.61

Time
Priortized

Configuration (GB)

Rotation
Key

ConvFHE 81.37 82.75 81.78 88.31 87.73 86.85
CRot1 61.34 61.34 60.57 68.22 68.02 70.99
CRot2 50.73 51.07 49.55 61.34 61.34 61.34

Total
ConvFHE 86.74 87.86 87.88 93.05 92.39 90.39

CRot1 63.89 63.89 62.12 71.07 70.88 71.85
CRot2 60.04 60.46 59.54 63.89 63.89 63.89

memory saving between 18.26% and 47.17% (Fig. 8a). This
discrepancy arises from the operational design of CRot1,
wherein each offset value is independently applied to a con-
sistent input. By leveraging ARK’s keyMap to pre-rotate the
input ciphertext into a series of pre-rotated ciphertexts, offsets
can be adjusted accordingly in raw form to align with these
pre-rotated inputs. The resulting pre-rotated ciphertext can
then perform homomorphic operations with the offsets without
increasing the rotation count. Thus, the best and worst-case
scenarios for rotation in CRot1 remain consistent with the
original rotation count.

In contrast, CRot2 presents a distinct challenge as it
operates on an array of ciphertexts as inputs instead of
one ciphertext as in CRot1. Pre-rotating the input ci-
phertext results in significant memory expansion, requir-
ing storage for rotation count × number of input
ciphertexts. Since the offsets are in ciphertext format,
the memory required to align offset ciphertexts to pre-rotated
ciphertexts may potentially doubled. However, achieving pre-
rotation of ciphertext is impractical in CRot2 due to the
dependency of the input ciphertext on the operations executed
within the loop. For instance, it utilizes an input ciphertext
at specific slot indices, which must be computed, rotated, and
then reassigned with the computed values to the corresponding
slots. That means the input ciphertext used for operations is
contingent upon the results from the previous round, render-
ing the pre-rotation of ciphertext unfeasible. Therefore, the
rotation of input ciphertext must occur concurrently with the
loop iterations rather than being conducted in advance. For
instance, as illustrated in Fig. 6 rot1, the original rotation
count is 15, ARK necessitates more than 15 rotations due to
the use of a one to two subset rotation to replace a single
rotation, resulting in increased rotation count and time latency.
However, the memory reductions achieved outweigh the time
increments, thereby presenting a favorable trade-off.

Ultimately, ARK offers users the flexibility to prioritize
either maximum memory reduction or a balanced approach
that allows for a certain amount of memory reduction while
maintaining faster execution times. As shown in Fig. 8a, the
lowest rotation key memory achieved through a memory-
prioritized configuration ranges from 25.70% to 41.17%,
which is notably higher than the time-prioritized configuration.
The memory configuration averages a 7.40% greater rotation
memory reduction compared to the time configuration. Con-
versely, the time configuration, as illustrated in Fig. 8b, incurs
a lower execution time increase of 0.21% to 14.97% compared

TABLE III: Comparison of Rotation Key Generation Time and
ResNet Execution Time with ARK Across Various Configu-
rations and Rotation Scenarios in ConvFHE

K-L-W 3-20-1 5-20-1 7-20-1 5-8-3 3-14-3 3-20-3

Memory
Priortized

Configuration
(seconds)

Rotation
Key

Geneneration

ConvFHE 495 498 499 525 530 530
CRot1 274 271 276 290 276 275
CRot2 232 202 205 271 261 225

Resnet
Execution

ConvFHE 406 405 429 272 436 594
CRot1 409 409 432 277 447 607
CRot2 457 454 466 320 485 650

Time
Priortized

Configurtion
(seconds)

Rotation
Key

Generation

ConvFHE 495 497 510 525 530 530
CRot1 278 280 274 296 290 293
CRot2 273 248 257 276 273 275

Resnet
Execution

ConvFHE 406 404 429 272 436 594
CRot1 407 406 430 275 441 601
CRot2 444 441 458 312 478 631

to the execution time increase of 0.73% to 17.84% in the
memory configuration.

ARK can reduce rotation key count ranging from 26.18% to
48.71%. This decrease in rotation key count is associated with
a significant reduction in rotation key generation time, ranges
from 41.06% to 57.25%, as shown in Fig. 8c, corresponding
to a duration of 205 to 296 seconds, as detailed in Table III.
Notably, the operational overhead associated with the ARK
technique is minimal, with a maximum time consumption of
only 5 seconds. This reduction in rotation key generation time
is particularly advantageous for server memory management,
facilitating more efficient memory allocation by allowing for
the release of rotation keys when they are not in use and
enabling their regeneration as needed. In terms of accuracy,
ARK exhibits a near-zero accuracy degradation (≤ 0.03%)
compared to the accuracy reported in ConvFHE [4].

Furthermore, ARK was applied to another research frame-
work [22] that proposed a novel packing method, CBC, which
significantly reduces the rotation operations required in FHE
for ResNet-20. By implementing ARK, this rotation key was
further reduced from 45 to 29 keys, consuming only 3.64 GB.
However, we are unable to directly evaluate ARK’s impact
on CBC because the source code is not available publicly.
Nevertheless, our analysis indicates that the rotations are
conducted within a single ciphertext during convolution—a
process closely aligned with the scenario addressed in CRot1.
This similarity lends strong confidence that ARK can achieve
a 47.32% reduction in memory with a manageable trade-off
in time performance.

V. CONCLUSION

The proposed ARK technique systematically identifies opti-
mized subsets of rotation keys to minimize storage demands. It
also employs a dual configuration, allowing users to prioritize
either memory or speed performance based on application
needs. Experimental results show that implementation of ARK
in ConvFHE [4] can achieve up to a 41.17% reduction
in memory usage when memory optimization is prioritized.
Alternatively, when prioritizing minimal time impact, ARK
achieved a 22.75% memory reduction with a minor time
increase of only 0.21%, approximately. This shows that ARK
is capable in enhancing FHE’s adaptability and performance
across a variety of applications, underscoring its role in
advancing practical solutions for privacy-preserving systems
under diverse operational constraints.

13

REFERENCES

[1] H. Narumanchi, N. Emmadi, and P. Gauravaram, “Costs of
encrypted computation: Why fully homomorphic computations
are slow,” Tata Consultancy Services, 2020, [Online]. Available: https:
//www.researchgate.net/publication/354842186 Costs of Encrypted
Computation Why Fully homomorphic computations are Slow.

[2] E. Lee, J.-W. Lee, J. Lee, Y.-S. Kim, Y. Kim, J.-S. No, and W. Choi,
“Low-complexity deep convolutional neural networks on fully homo-
morphic encryption using multiplexed parallel convolutions,” Proceed-
ings of the 39th International Conference on Machine Learning, vol.
162, pp. 12 403–12 422, 2022.

[3] J.-W. Lee, H. Kang, Y. Lee, W. Choi, J. Eom, M. Deryabin, E. Lee,
J. Lee, D. Yoo, Y.-S. Kim, and J.-S. No, “Privacy-preserving machine
learning with fully homomorphic encryption for deep neural network,”
IEEE Access, vol. 10, pp. 30 039–30 054, 2022.

[4] D. Kim and C. Guyot, “Optimized privacy-preserving cnn inference
with fully homomorphic encryption,” IEEE Transactions on Information
Forensics and Security, vol. 18, pp. 2175–2187, 2023.

[5] D. Kim, J. Park, J. Kim, S. Kim, and J. H. Ahn, “Hyphen: A hybrid
packing method and its optimizations for homomorphic encryption-
based neural networks,” IEEE Access, vol. 12, pp. 3024–3038, 2024.

[6] S. Meftah, B. H. M. Tan, C. F. Mun, K. M. M. Aung, B. Veeravalli, and
V. Chandrasekhar, “Doren: Toward efficient deep convolutional neural
networks with fully homomorphic encryption,” IEEE Transactions on
Information Forensics and Security, vol. 16, pp. 3740–3752, 2021.

[7] L. de Castro, R. Agrawal, R. Yazicigil, A. Chandrakasan, V. Vaikun-
tanathan, C. Juvekar, and A. Joshi, “Does fully homomorphic encryption
need compute acceleration?” ArXiv CoRR, vol. abs/2112.06396, 2021.

[8] R. Dathathri, O. Saarikivi, H. Chen, K. Laine, K. E. Lauter, S. Maleki,
M. Musuvathi, and T. Mytkowicz, “Chet: Compiler and runtime
for homomorphic evaluation of tensor programs,” ArXiv CoRR, vol.
abs/1810.00845, 2018.

[9] J.-W. Lee, E. Lee, Y.-S. Kim, and J.-S. No, “Rotation key reduction
for client-server systems of deep neural network on fully homomorphic
encryption,” Advances in Cryptology – ASIACRYPT 2023, pp. 36–68,
2023.

[10] M. Li, S. S. M. Chow, S. Hu, Y. Yan, C. Shen, and Q. Wang, “Op-
timizing privacy-preserving outsourced convolutional neural network
predictions,” IEEE Transactions on Dependable and Secure Computing,
vol. 19, no. 3, pp. 1592–1604, 2022.

[11] L. Rovida and A. Leporati, “Encrypted image classification with low
memory footprint using fully homomorphic encryption,” International
journal of neural systems, vol. 34, p. 2450025, 03 2024.

[12] R. Dathathri, B. Kostova, O. Saarikivi, W. Dai, K. Laine, and M. Musu-
vathi, “Eva: an encrypted vector arithmetic language and compiler for
efficient homomorphic computation,” Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, p. 546–561, 2020.

[13] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” Advances in Cryptology –
ASIACRYPT 2017, pp. 409–437, 2017.

[14] Z. Brakerski, “Fully homomorphic encryption without modulus switch-
ing from classical gapsvp,” Advances in Cryptology – CRYPTO 2012,
pp. 868–886, 2012.

[15] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” Cryptology ePrint Archive, vol. 2012/144, 2012.

[16] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully ho-
momorphic encryption without bootstrapping,” Proceedings of the 3rd
Innovations in Theoretical Computer Science Conference, p. 309–325,
2012.

[17] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “Tfhe: Fast
fully homomorphic encryption over the torus,” Journal of Cryptology,
vol. 33, pp. 34–91, 2019.

[18] S. Halevi and V. Shoup, “Design and implementation of HElib: a
homomorphic encryption library,” Cryptology ePrint Archive, 2020.

[19] “Lattigo v6,” [Online]. Available: https://github.com/tuneinsight/lattigo,
ePFL-LDS, Tune Insight SA, 2024.

[20] “Microsoft SEAL,” [Online]. Available: https://github.com/Microsoft/
SEAL, microsoft Research, Redmond, WA., 2023.

[21] T. Xie, H. Yamana, and T. Mori, “Che: Channel-wise homomorphic
encryption for ciphertext inference in convolutional neural network,”
IEEE Access, vol. 10, pp. 107 446–107 458, 2022.

[22] J. H. Cheon, M. Kang, T. Kim, J. Jung, and Y. Yeo, “Batch inference on
deep convolutional neural networks with fully homomorphic encryption
using channel-by-channel convolutions,” IEEE Transactions on Depend-
able and Secure Computing, pp. 1–12, 2024.

VI. BIOGRAPHY SECTION

Jia-Lin Chan received a B.Sc. in software en-
gineering from University Tunku Abdul Rahman,
Malaysia, in 2022. She is currently pursuing her PhD
in the Lee Kong Chian Faculty of Engineering and
Science, UTAR, Malaysia. Her research interests in-
clude cryptography, GPU computing, deep learning,
and data mining.

Wai-Kong Lee received a B.Eng. in electronics and
an M.Eng.Sc. from Multimedia University, Malaysia
in 2006 and 2009, respectively. He received a Ph.D.
in engineering from Universiti Tunku Abdul Rah-
man, Malaysia in 2018. Prior to joining academia, he
worked in several multi-national companies includ-
ing Agilent Technologies (Malaysia) as an R&D en-
gineer. His research interests include cryptography,
numerical algorithms, GPU computing, the Internet
of Things, and energy harvesting.

Denis-Chee-Keong Wong received B.Sc. and M.Sc.
degree in Mathematics and the Ph.D. degree in Alge-
bra/Coding Theory on 2001, 2004 and 2013, all from
Universiti Sains Malaysia. He is now the assistant
Professor and Head of Programme for the program,
Master of Mathematics programme in UTAR. His
research interests include Algebraic Coding Theory,
Algebraic Combinatorics and cryptography.

Wun-She Yap is an associate professor in the Lee
Kong Chian Faculty of Engineering and Science,
UTAR, Malaysia. He received the Ph.D. degree
from Multimedia University, Malaysia. He was the
Chairperson of Centre for Cyber Security at UTAR
from 2016 to 2020. He serves as the General Chair
of ISPEC 2019 and has been invited to serve as
program committees of a number of peerreviewed
security conferences and the guest editors of special
issues. His research interests include information
security, cryptography and artificial intelligent.

Bok-Min Goi received his B.Eng. degree from Uni-
versity of Malaya (UM) in 1998, and the M.Eng.Sc.
and Ph.D. degrees from Multimedia University
(MMU), Malaysia in 2002 and 2006, respectively.
He is now the Vice President and a senior professor
in the Lee Kong Chian Faculty of Engineering and
Science, Universiti Abdul Rahman Tunku (UTAR),
Malaysia. He was the General Chair for ProvSec
2010 and CANS 2010, and the PC members for
many crypto/security conferences. His research in-
terests include cryptology, security protocols, infor-

mation security, digital watermarking, computer networking and embedded
systems design.

https://www.researchgate.net/publication/354842186_Costs_of_Encrypted_Computation_Why_Fully_homomorphic_computations_are_Slow
https://www.researchgate.net/publication/354842186_Costs_of_Encrypted_Computation_Why_Fully_homomorphic_computations_are_Slow
https://www.researchgate.net/publication/354842186_Costs_of_Encrypted_Computation_Why_Fully_homomorphic_computations_are_Slow
https://github.com/tuneinsight/lattigo
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL

	Introduction
	Background
	Overview of Fully Homomorphic Encryption
	Challenges of Memory and Performance Trade-Offs in Current FHE-based Privacy-Preserving System
	Related Work

	ARK
	ARK formulation
	Identify numerical pattern and generate mapping
	Rotation Key Generation
	Finalizing Rotation Key

	Experimental results and discussions
	Performance Evaluation of Rotation Key Management in ResNet-20 for Single-Layer Convolution
	Impact of Rotation Key Memory on Total Memory Usage
	Memory and Time Performance Analysis of ARK

	Conclusion
	References
	Biography Section
	Biographies
	Jia-Lin Chan
	Wai-Kong Lee
	Denis-Chee-Keong Wong
	Wun-She Yap
	Bok-Min Goi

